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On the Rayleigh–Taylor instability for the two-phase
Navier–Stokes equations in cylindrical domains

Mathias Wilke

Abstract. We are considering the two-phase Navier–Stokes equations with surface tension, mod-
elling the dynamic behaviour of two immiscible and incompressible fluids in a cylindrical domain,
which are separated by a sharp interface forming a contact angle with the fixed boundary. In the case
that the heavy fluid is situated on top of the light fluid, one expects the effect which is known as
Rayleigh–Taylor instability. Our main result implies the existence of a critical surface tension with
the following property: In the case that the surface tension of the interface separating the two fluids
is smaller than the critical surface tension, Rayleigh–Taylor instability occurs. On the contrary, if the
surface tension of the interface is larger than the critical value, one has exponential stability of the
flat interfaces. The last part of this article is concerned with the bifurcation of nontrivial equilibria
in multiple eigenvalues. The invariance of the corresponding bifurcation equation with respect to
rotations and reflections yields the existence of bifurcating subcritical equilibria.

1. Introduction

Let u D u.t; x/ and � D �.t; x/ denote the velocity field and the pressure field of a
single incompressible fluid in a domain�, respectively. By saying that the fluid is incom-
pressible, we mean that its density � > 0 is constant. Then the dynamics of the fluid are
described by the Navier–Stokes equations

@t .�u/ � ��uC �.u � r/uCr� D �f; t > 0; x 2 �;

divu D 0; t > 0; x 2 �;
(1.1)

where � > 0 represents the viscosity of the fluid and f is some external force (e.g., grav-
ity). The first equation reflects the balance of momentum, while the second equation states
the conservation of mass.

Let us consider a more comprehensive situation, where the domain � is occupied
by an incompressible and an immiscible fluid, fluid 1 and fluid 2, respectively, which
are separated by a sharp interface �.t/ for each t � 0. We denote by �j .t/ the subset
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of � which is filled with fluid j , j 2 ¹1; 2º with �j ; �j being the density and viscosity,
respectively, of fluid j . If uj and �j are the velocity fields and the pressure fields of
fluid j , respectively, then, for t � 0 one sets

u.t; x/ WD

´
u1.t; x/; x 2 �1.t/;

u2.t; x/; x 2 �2.t/;
�.t; x/ WD

´
�1.t; x/; x 2 �1.t/;

�2.t; x/; x 2 �2.t/:

Assuming that .uj ; �j / satisfies the Navier–Stokes equations in each of the phases�j .t/,
then we may conclude that .u; �/ satisfies (1.1) for all t > 0 and x 2 �n�.t/, where �
and � are defined by

�.x/ WD

´
�1; x 2 �1.t/;

�2; x 2 �2.t/;
�.x/ WD

´
�1; x 2 �1.t/;

�2; x 2 �2.t/:

Clearly, one expects that the two fluids should affect each other in their dynamics. There-
fore, it is natural to ask for relations that describe the coupling of the two fluids across
the interface �.t/. If one neglects effects of phase transitions between the phases �1.t/
and �2.t/ (e.g., the exchange of mass), then the motion of the moving boundary �.t/
should only be caused by the velocity fields of both fluids. Therefore, it is natural to pro-
pose that u2j�.t/ D u1j�.t/. Then, the normal velocity V� of �.t/ is given by

V� D u � �� ; (1.2)

where �� denotes the unit normal field on �.t/ pointing from�1.t/ to�2.t/. We call the
quantity JuK WD u2j�.t/ � u1j�.t/ the jump of u across �.t/. Note that JuKD 0 if and only
if the velocity field u is continuous across the interface �.t/. Another condition on �.t/
reads

� J�.ruCruT/K�� C J�K�� D �H��� ; (1.3)

where � > 0 denotes the (constant) surface tension of �.t/ and H� WD � div� �� is the
mean curvature of �.t/ with div� being the surface divergence on �.t/. Condition (1.3)
describes the balance of forces on the interface. To be precise, there is no contribution to
the rate of change of the momentum coming from the interface �.t/.

If the fixed boundary @� of� is not empty, then system (1.1)–(1.3) with JuKD 0 has to
be equipped with appropriate boundary conditions on @� as well as some initial conditions
on u.0/ D u0 and �.0/ D �0. There is a vast literature concerning the mathematical
treatment of free boundary problems for the Navier–Stokes equations with or without
surface tension. To this end, we can only give a subjective selection and refer the reader to
[2, 5, 6, 8–13, 23, 24, 27–30, 32, 33, 35, 36, 38–50]. For a derivation of (1.1)–(1.3) we refer
to [18] or [31].

To describe the effect of what is called Rayleigh–Taylor instability, let us consider
the case that � D Rn consists of two phases �1.t/ and �2.t/ which are separated by an
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interface �.t/, given by the graph of a height function h over Rn�1, i.e.,

�.t/ WD
®
x D .x0; xn/ 2 � W xn D h.t; x

0/; x0 2 Rn�1
¯
:

Assume further that �2.t/ is the upper phase, that is,

�2.t/ D
®
x D .x0; xn/ 2 � W xn > h.t; x

0/; x0 2 Rn�1
¯
:

Both phases are filled with two fluids with possibly different densities which are acceler-
ated in the direction of �en by the gravitational force.

Taking a close look at system (1.1)–(1.3), it turns out that the vanishing velocity fields,
constant pressure fields and the flat interfaces belong to the set of equilibria, i.e., the set of
all solutions which are constant with respect to t . Henceforth, we will speak of the trivial
equilibrium whenever u D 0, p is constant and h D 0. Heuristically, one expects that the
stability behaviour of the trivial equilibrium is being influenced by the densities �2 > 0

and �1 > 0 of the fluids. Indeed, if J�K D �2 � �1 > 0, i.e., if the heavier fluid is placed
above the lighter fluid, then one expects that the trivial equilibrium is unstable, while in
the case that J�K � 0, the trivial equilibrium should be stable. In fact, if J�K > 0 then the
upper phase, which is the heavier one, should sack down into the lower phase; see Fig-
ure 1. This effect is called Rayleigh–Taylor instability and it goes back to the pioneering
works of Rayleigh [33] and Taylor [50]. For more information concerning Rayleigh–
Taylor instability, we refer the interested reader to Chandrasekhar [7] and Kull [24] and
the references cited therein. A rigorous proof of Rayleigh–Taylor instability for the two-
phase Navier–Stokes equations in the above setting has been given by Prüss and Simon-
ett [28]. The basic strategy is to consider the full linearisation of the quasilinear problem
(1.1)–(1.3) at the trivial equilibrium and to compute the spectrum of the linearisation. Due
to the lack of compactness, there is a portion of approximate eigenvalues in the spectrum
of the linearisation. In addition, there is no spectral gap which would allow us to apply
classical tools to carry over the linear stability properties to the nonlinear case. To this
end, the authors in [28] apply Henry’s instability theorem [17, Theorem 5.1.5] which does
not require a spectral gap.

In the periodic framework, i.e., with � D T2 � R where T D R=Z is the 1-torus, a
rigorous proof of Rayleigh–Taylor instability has been given by Tice and Wang in [53].
Note that if J�K > 0, then the result in [28] states that the trivial equilibrium is always
unstable, no matter what the remaining parameters � > 0 and � > 0 are. However, in the
periodic setting considered in [53], the stability properties of the trivial equilibrium also
depend on the surface tension. To be more precise, there exists a critical surface tension
�c > 0 such that if � > �c , then the trivial equilibrium is stable, while if 0 < � < �c , it is
unstable. In other words, even if J�K> 0, a sufficiently large surface tension � > 0 of �.t/
prevents the heavier phase from sacking down into the lower phase.

An advantage of the approach via maximal regularity of type Lp which has been used
in [28] is that one obtains a semi-flow for the free boundary problem in a natural phase



M. Wilke 490

space. In particular, there is no loss of regularity. With the help of functional calculus
for sectorial operators and harmonic analysis, it is then shown that there exists �1 > 0

such that the interval Œ0; �1� is the unstable part of the spectrum of the linearisation. The
functional-analytic setting used in [28] then allows us to apply Henry’s instability theorem
[17, Theorem 5.1.5] to conclude instability for the nonlinear problem. In contrast to the
result in [28], the authors in [53] construct so-called growing mode solutions (horizontal
Fourier modes growing exponentially in time) for the linearised problem and use several
energy estimates to study the spectrum of the full linearisation. The passage from linear
to nonlinear (in-)stability follows from a Guo–Strauss bootstrap procedure, which has
been introduced by Guo and Strauss in [15]. Due to the higher-order energy estimates,
the regularity of the initial values is considerably high and therefore not optimal, when
one compares with the assumptions in [28]. However, the authors in [53] obtain a clear
picture of the stability properties of the trivial equilibrium, which depend on J�K and � > 0.
Concerning further results on Rayleigh–Taylor instability for different problems, we refer
the reader to the selection [3, 14, 16, 19–21, 52].

It is one purpose of this article to extend the results obtained in [28] to the framework
of bounded cylindrical domains. To be precise, we assume that�DG � .H1;H2/, where
G � Rn�1, n 2 ¹2; 3º is a bounded domain with smooth boundary and H1 < 0 < H2.
Suppose further that there is a family of hypersurfaces ¹�.t/ºt�0 given by the graph of
some height function h over G, i.e.,

�.t/ D
®
.x0; xn/ 2 � W xn D h.t; x

0/; x0 2 G
¯
; t > 0;

such that for each t � 0 the interface �.t/ divides� into two subdomains�1.t/ and�2.t/
which are filled with two fluids, respectively. We adopt the convention that �2.t/ is the
upper phase. Assuming that equations (1.1)–(1.3) together with the condition JuK D 0 are
satisfied, we are led in a natural way to the problem of finding suitable boundary con-
ditions on the vertical part S1 WD @G � .H1; H2/ and the horizontal part S2 WD .G �

¹H1º/ [ .G � ¹H2º/ of the boundary @� of �. This turns out to be a delicate question,
since within the above setting we are on the one hand concerned with two parts S1 and S2
of the boundary such that @S1 D @S2. Therefore, the boundary conditions on S1 and S2
have to be chosen in such a way that they are compatible with each other. On the other
hand, we have to deal with a contact angle problem, as @�.t/ is a moving contact line
on S1. At this point we want to emphasise that the choice of the periodic setting in [53]
allows us to circumvent the formation of a contact angle. The theory of contact angle
problems, in particular with a dynamic contact angle which depends on t , is not well
understood yet. In fact, there exist different points of view about how to model such a prob-
lem. One party supposes that the dynamic contact angle is determined by an additional
equation, while the other party assumes that the contact angle will be determined by the
dynamic equations for the interface and the fluid, hence the equation for the contact angle
should be redundant. We refer the reader to [4, 37] and to the references given therein for
more details.
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conditions on the vertical part S1 := ∂G × (H1, H2) and the horizontal part S2 :=
(G × {H1}) ∪ (G × {H2}) of the boundary ∂Ω of Ω. This turns out to be a delicate
question, since within the above setting we are on the one side concerned with two
parts S1 and S2 of the boundary such that ∂S1 = ∂S2. Therefore the boundary
conditions on S1 and S2 have to be chosen in such a way that they are compatible
to each other. On the other side we have to deal with a contact angle problem, as
∂Γ(t) is a moving contact line on S1. At this point we want to emphasize that the
choice of the periodic setting in [44] allows to circumvent the formation of a contact
angle.

�

G
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6�

6�
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Figure 1. Cylindrical domain

The theory of contact angle problems, in particular with a dynamic contact angle
which depends on t, is yet not well understood. In fact, there exist different points of
view about how to model such a problem. Some researchers argue that the dynamic
contact angle is determined by an additional equation, while others assume that the
contact angle will be determined by the dynamic equations for the interface and the
fluid, hence the equation for the contact angle should be redundant. We refer to [3]
& [31] and to the references given therein.

Therefore, in order to avoid this lack of clarity, we assume throughout this article
that the contact angle is constant and equal to 90 degrees. One can interpret this
ansatz as an idealization. It is possible to translate the condition on the contact
angle to a condition on the height function h from above. Indeed, if h is sufficiently
smooth, then the unit normal on Γ(t) with respect to Ω1(t) is given by

νΓ =
1√

1 + |∇x′h|2

(
−∇x′h

1

)
.

Since the outer unit normal on S1 is given by νS1 = (ν∂G, 0)T, the condition on
the contact angle reads νΓ · νS1 = 0 or equivalently ∂ν∂G

h = 0 at the contact
line. Concerning S1 it is not possible to propose Dirichlet boundary conditions,
the so-called no-slip boundary conditions, since this leads to a paradoxon for the
moving contact line, see e.g. [28]. The next canonical choice are the so-called Navier
boundary conditions or partial-slip boundary conditions

u · νS1 = 0, PS1(µ(∇u + ∇uT)νS1) + αu = 0,

Figure 1. A cylindrical domain

Therefore, in order to avoid this lack of clarity, we assume throughout this article that
the contact angle is constant and equal to 90 degrees. One can interpret this ansatz as
a kind of idealisation. It is possible to translate the condition on the contact angle to a
condition on the height function h from above. Indeed, if h is sufficiently smooth, then the
unit normal on �.t/ with respect to �1.t/ is given by

�� D
1p

1C jrx0hj2

�
�rx0h

1

�
:

Since the outer unit normal on S1 is given by �S1 D .�@G ; 0/
T, the condition on the contact

angle reads �� � �S1 D 0, or equivalently, @�@Gh D 0 at the contact line. Concerning S1,
it is not possible to propose Dirichlet boundary conditions, the so-called no-slip bound-
ary conditions, since this leads to a paradox for the moving contact line (see, e.g., [32]).
The next canonical choices are the so-called Navier boundary conditions or partial-slip
boundary conditions

u � �S1 D 0; PS1.�.ruCru
T/�S1/C ˛u D 0;

where PS1 WD I � �S1 ˝ �S1 denotes the projection to the tangent space on S1. The
parameter ˛ � 0 has the physical meaning of a friction coefficient. However, as long
as ˛ > 0, it turns out that this kind of boundary condition does not allow the interface
to move along S1, which is not very reasonable, as numerical simulations show. For a
two-dimensional analytical explanation of this pathology, see [55, Section 1].

In order to circumvent this problem, we will consider the case ˛ D 0, which character-
ises the so-called pure-slip boundary conditions. From a physical point of view this means
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that there is no friction on the boundary S1. Having fixed the boundary conditions on S1,
we may choose suitable boundary conditions on S2, having in mind that these conditions
have to match those on S1. It turns out that homogeneous Dirichlet boundary conditions
are a good choice, since they are compatible with the pure-slip boundary conditions on S1
and furthermore, they allow us to apply Korn’s inequality forDu WD ruCruT; see The-
orem A.4. Note that the no-slip boundary conditions on S2 do not cause any problems
with the moving interface, since we will always have �.t/\ S2 D ; for all t � 0. We are
thus led to the problem

@t .�u/ � ��uC �.u � r/uCr� D ��
aen; in �n�.t/;

divu D 0; in �n�.t/;

�J�.ruCruT/K�� C J�K�� D �H��� ; on �.t/;

JuK D 0; on �.t/;

V� D u � �� ; on �.t/;

PS1
�
�.ruCruT/�S1

�
D 0; on S1n@�.t/;

u � �S1 D 0; on S1n@�.t/;

u D 0; on S2;

�� � �S1 D 0; on @�.t/;

u.0/ D u0; in �n�.0/;

�.0/ D �0;

(1.4)

where we denote by 
a > 0 the acceleration constant due to gravity.
With this article, we present a rather complete stability analysis of (1.4). In Section 2

we will transform the time-dependent domain �n�.t/ to a fixed domain by means of a
Hanzawa transformation. For the transformed problem, we have already proven the exist-
ence and uniqueness of a strong Lp-solution in [55, Theorem 4.2]. Section 3 is devoted
to the investigation of the stability properties of the trivial equilibrium, i.e., when u D 0,
h D 0 and � is constant. It turns out that if J�K > 0, then there exists a critical surface
tension

�c WD
J�K
a
�1

> 0;

where �1 > 0 denotes the first nontrivial eigenvalue of the Neumann Laplacian in L2.G/.
If � > �c , then the trivial equilibrium is exponentially stable in the natural phase space,
while in case � 2 .0; �c/ it will be unstable. If J�K � 0, then the trivial equilibrium is
always exponentially stable. Specialising to the case G D BR.0/, we obtain as a corollary
that for fixed surface tension � > 0 and if J�K > 0, there exists a critical radius

Rc WD
� ���1
J�K
a

�1=2
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such that if R < Rc , then the trivial equilibrium is exponentially stable, while for R > Rc
it will be unstable. Here ��1 > 0 denotes the first nontrivial eigenvalue of the Neumann
Laplacian in L2.B1.0//, given by ��1 D .j

0
1;1/

2, where j 01;1 is the first zero of the deriv-
ative J 01 of the Bessel function J1 (see, e.g., [1]). The proof of the stability result requires
some effort, since after the transformation to a fixed domain one has to pay the price that
in particular the (transformed) velocity field is no longer divergence free. Therefore, one
has to split the solution into two parts in a suitable way such that one part is divergence
free while the other part, whose divergence does not vanish, satisfies a nonlinear problem
which can be handled by the implicit function theorem.

The results in Section 3 suggest that if � decreases from � > �c to � < �c , then an
eigenvalue of the full linearisation will cross the imaginary axis. Therefore, it is natural to
ask for possible bifurcations from the trivial equilibrium. In Section 4 we will see that the
eigenvalue which crosses the imaginary axis through zero is, unfortunately, not simple if
nD 3. Therefore, it is not possible to apply the bifurcation results of Crandall–Rabinowitz
directly. By the choice of the boundary conditions, the equilibria of the transformed prob-
lem are such that u D 0, p is constant and the height function h satisfies the capillary
equation

� divx0
�

rx0hp
1C jrx0hj2

�
C J�K
ah D 0; x0 2 BR.0/;

@�BR.0/
h D 0; x0 2 @BR.0/:

(1.5)

This equation for h exhibits certain symmetry properties; in particular, we will show that
it is invariant under the group action of the orthogonal group O.2/. This fact enables us
to reduce the bifurcation equation to a one-dimensional equation and to apply the implicit
function theorem which yields the existence of subcritical bifurcating branches from the
trivial solution.

Finally, we collect all technical results which are needed for the execution of the above
program in Appendix A.

Notation. The symbols H s
p , W s

p , s � 0 refer to the Bessel potential spaces and Sobolev–
Slobodeckij spaces, respectively (Sobolev spaces for s 2 N with H D W ). If J D Œ0; T �
is some interval and X a suitable Banach space, then 0W s

p .J IX/ denotes the subspace of
W s
p .J IX/ consisting of all functions having a vanishing trace at t D 0, whenever it exists.

Finally, we denote by PW k
p .�/D

PH k
p .�/ the homogeneous Sobolev space of order k 2N,

where � � Rn is a sufficiently smooth domain. The symbol .�j�/ denotes the standard
inner product in Rn and we will sometimes also make use of the notation u � v D .ujv/
for u; v 2 Rn.

Remark 1.1. The results in this paper are partially taken from the author’s habilitation
thesis [54].
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2. Preliminaries

For the sake of readability we will assume throughout this article that the space dimension
n is equal to 3. This is the most important case from a viewpoint of applications. Further-
more, we will assume from now on that p > 5. In [55], an article about the well-posedness
of the nonlinear model, this condition on p is needed for an application of some Sobolev
embeddings. For arbitrary n one may work with the restriction p > nC 2.

It is convenient to introduce the modified pressure

z� WD � C �
ax3

in (1.4). Then, we obtain the following problem:

@t .�u/ � ��uC �.u � r/uCrz� D 0; in �n�.t/;

divu D 0; in �n�.t/;

�J�.ruCruT/K�� C Jz�K�� D �H��� C J�K
ax3�� ; on �.t/;

JuK D 0; on �.t/;

V� D u � �� ; on �.t/;

PS1
�
�.ruCruT/�S1

�
D 0; on S1n@�.t/;

u � �S1 D 0; on S1n@�.t/;

u D 0; on S2;

�� � �S1 D 0; on @�.t/;

u.0/ D u0; in �n�.0/;

�.0/ D �0:

(2.1)

Here�DG � .H1;H2/,H1 < 0 <H2, is a cylindrical domain whereG �R2 is an open
bounded domain with a smooth boundary @G. The compact free boundary �.t/ divides�
into two unbounded disjoint phases �j .t/, j D 1; 2, so that � D �1.t/ [ �.t/ [�2.t/.
The convention is that �2.t/ is the upper phase while �1.t/ is the lower one, with the
unit normal �� at x 2 �.t/ pointing from�1.t/ to�2.t/. We denote by �S1 the outer unit
normal at the fixed boundary S1 WD @G � .H1;H2/. The operator PS1 WD I � �S1 ˝ �S1
stands for the projection to the tangential space on S1. Finally, S2 WD

S2
jD1G � ¹Hj º.

2.1. Reduction to a flat interface

In this section we transform the time-dependent domain �n�.t/ to a fixed domain by
means of a Hanzawa tranformation. To this end, we assume that

�.t/ D
®
x 2 G � .H1;H2/ W x3 D h.t; x

0/; x0 D .x1; x2/ 2 G; t � 0
¯
:

Let ' 2 C1.RI Œ0; 1�// be such that '.s/ D 1 if jsj � ı=2 and '.s/ D 0 if jsj � ı, where
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we have ı < min¹�H1;H2º=2. Define a mapping

‚h.t; xx/ WD xx C '.xx3/h.t; xx
0/e3 DW xx C �h.t; xx/

where xx WD .xx0; xx3/, and for fixed t > 0 we set x D‚h.t; xx/. An easy computation shows

� 0Th D

0@0 0 @1h'

0 0 @2h'

0 0 h'0

1A :
It follows that ‚0

h
is invertible if khk1;1 < 1=.2j'0j1/, and

.‚0h/
�T
D .I C � 0Th /

�1
D

1

1C h'0

0@1C h'0 0 �@1h'

0 1C h'0 �@2h'

0 0 1

1A :
In what follows, let khk1;1 < � with 0 < � � 1=.2j'0j1/ being sufficiently small. Then,
the inverse ‚�1

h
W �! � is well-defined and it transforms the free interface �.t/ to the

flat and fixed interface † WD G � ¹0º. Now we define the transformed quantities

xu.t; xx/ WD u.t;‚h.t; xx//;

x�.t; xx/ WD z�.t;‚h.t; xx//

and compute �� D .�rx0h; 1/T=
p
1C jrx0hj2, where

rz� D rx� �M0.h/rx�;

divu D div xu � .M0.h/rjxu/;

�u D �xu �M1.h/ W r
2
xu �M2.h/rxu;

@tu D @t xu � '@th.1C '
0h/�1@3xu;

with

M0.h/ WD �
0T
h .I C �

0T
h /
�1;

M1.h/ W r
2
xu WD

�
2 sym.� 0Th ŒI C �

0
h�
�T/ � ŒI C � 0h�

�1� 0h�
0T
h ŒI C �

0
h�
�T�
W r

2
xu;

and
M2.h/rxu WD

�
Œ�‚�1h � ı‚hjr

�
xu:

Furthermore, it holds that

V� D .@t‚hj��/ D @th.e3j��/ D
@thp

1C jrx0hj2
:
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This yields the following transformed problem for xu and x� (for convenience, we drop the
bars in what follows):

@t .�u/ � ��uCr� D F.u; �; h/; in �n†;

divu D Fd .u; h/; in �n†;

�J�@3vK � J�rx0wK D Gv.u; h/; on †;

�2J�@3wKC J�K � ��x0h � J�K
ah D Gw.u; h/; on †;

JuK D 0; on †;

@th � w D H1.u; h/; on †;

PS1
�
�.ruCruT/�S1

�
D H2.u; h/; on S1n@†;

u � �S1 D 0; on S1n@†;

u D 0; on S2;

@�@Gh D 0; on @†;

u.0/ D u0; in �n†;

h.0/ D h0; on †:

(2.2)

Here,

F.u; �; h/ WD �'@th.1C '
0h/�1@3u � �.M1.h/ W r

2uCM2.h/ru/CM0.h/r�;

Fd .u; h/ WD .M0.h/rju/;

Gv.u; h/ WD �J�.rv CrvT/KrhC jrhj2J�@3vK

C
�
.1C jrhj2/J�@3wK � .rhjJ�rwK/

�
rh;

Gw.u; h/ WD �.rhjJ�rwK/ � .rhjJ�@3vK/C jrhj2J�@3wKC �G�.h/;

G�.h/ WD div
�

rhp
1C jrhj2

�
��h;

H1.u; h/ WD �.vjrh/;

H2.u; h/ WD PS1.�.M0.h/ruCru
TM0.h/

T/�S1/;

where we have set

v WD .u1; u2/; w WD u3;

rw D rx0w; rv D rx0v; rh D rx0h

for the sake of readability. Note thatH2.u;h/D 0 on S1 n @† since u � �S1 D 0 on S1 n @†
and @�@Gh D 0 on @G; see [55, Section 4.1].

The following result on the existence and uniqueness of strong Lp-solutions having
optimal regularity has been published in [55, Theorem 4.2]:

Theorem 2.1. Let nD 3, p > 5. For each given T > 0 there exists a number �D �.T / > 0
such that for all initial values .u0; h0/ 2 W

2�2=p
p .�n†/3 � W

3�2=p
p .†/ satisfying the
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compatibility conditions

divu0 D Fd .u0; h0/;

�J�@3v0K � J�rx0w0K D Gv.v0; h0/;

Ju0K D 0;

u0 � �S1 D 0;

PS1.�.ru0 Cru
T
0/�S1/ D 0;

u0jS2 D 0;

@�@Gh0 D 0;

as well as the smallness condition

ku0kW 2�2=p
p .�n†/

C kh0kW 3�2=p
p .†/

� �;

there exists a unique solution .u; �; J�K; h/ of (2.2) with regularity

u 2 H 1
p ..0; T /ILp.�/

3/ \ Lp..0; T /IH
2
p .�n†/

3/; � 2 Lp..0; T /I PH
1
p .�//;

J�K 2 W 1=2�1=2p
p ..0; T /ILp.†// \ Lp..0; T /IW

1�1=p
p .†//:

and

h 2 W 2�1=2p
p ..0; T /ILp.†// \H

1
p ..0; T /IW

2�1=p
p .†// \ Lp..0; T /IW

3�1=p
p .†//:

3. Rayleigh–Taylor instability

3.1. Equilibria and spectrum of the linearisation

In this section we compute the equilibria of (2.1) as well as the spectrum of the full lin-
earisation of (2.1) in the trivial equilibrium.

Assume that we have a time-independent solution of (2.1). Then multiplying (2.1)1
by u and integrating by parts yields the identity

k�1=2Duk2L2.�/ D 0;

hence uD 0 on @� and therefore uD 0 in all of�, by Korn’s inequality (Theorem A.4). If
u D 0, then � must be constant, with possibly different values in different phases. Hence,
condition (2.1)3 yields that

�H� C J�K
ax3 D const.

on � . In particular, ifH� D 0 then x3 must be constant, hence flat interfaces belong to the
set of equilibria. Assume that � is given by the graph of a height function h, that is,

� D
®
x 2 � W x3 D h.x1; x2/; .x1; x2/ 2 G

¯
:
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Then the normal �� on � pointing from �1 .x3 < h.x1; x2// into �2 .x3 > h.x1; x2// is
given by

��.x
0; h.x0// D

1p
1C jrx0h.x0/j2

Œ�rx0h.x
0/; 1�T; x0 D .x1; x2/ 2 BR.0/:

Since H� D � div� �� , we obtain the quasilinear elliptic problem

� divx0
�

rx0hp
1C jrx0hj2

�
C J�K
ah D c; x0 2 G;

@�@Gh D 0; x0 2 @G;

(3.1)

where c WD J�K
a
jGj

R
G
hdx0. All admissible height functions which solve (3.1) belong to the

set of equilibria.
We are interested in the stability properties of the flat interface † D G � ¹0º in � D

G � .H1; H2/. After transformation of (2.1) to the fixed domain �n†, we consider the
full linearisation around the equilibrium .0;†/:

@t .�u/ � ��uCr� D 0; in �n†;

divu D 0; in �n†;

�J�.ruCruT/Ke3 C J�Ke3 D �.�x0h/e3 C J�K
ahe3; on †;

JuK D 0; on †;

@th � u3 D 0; on †;

PS1
�
�.ruCruT/�S1

�
D 0; on S1n@†;

.uj�S1/ D 0; on S1n@†;

u D 0; on S2;

@�@Gh D 0; on @†;

u.0/ D u0; in �n†;

h.0/ D h0; on †:

(3.2)

Observe that by conservation of mass, it holds thatZ
G

h.t/ dx0 D

Z
G

h0 dx
0

for t > 0. Indeed, this follows from an integration of (3.2)5 over†D G � ¹0º and the fact
that Z

G

u3 dx
0
D

Z
�1

divu dx D 0

by (3.2)2;4;7;8 and the divergence theorem for Lipschitz domains. Therefore, if h0 is mean
value free, the solution h.t/ inherits this property for t > 0.

Define a linear operator L W X1 ! X0 by

L.u; h/ WD Œ.�=�/�u � .1=�/r�; u � e3�; (3.3)
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where X0 WD Lp;� .�/ � ¹h 2 W
2�1=p
p .†/ W

R
G
h dx0 D 0; @�@Gh D 0º,

Lp;� .�/ WD
®
u 2 C1c .�/

3 W divu D 0
¯k�kLp

; xX1 D H
2
p .�n†/

3
�W 3�1=p

p .†/;

and

X1 WD D.L/ D
®
.u; h/ 2 X0 \ xX1 W P†.J�.ruCruT/Ke3/ D 0; JuK D 0; ujS2 D 0;

PS1
�
�.ruCruT/�S1

�
D 0; .uj�S1/ D 0; @�@Gh D 0

¯
: (3.4)

The function � 2 PH 1
p .�n†/ in the definition of L is determined as the solution of the

weak transmission problem�1
�
r�jr�

�
L2.�/

D

��
�
�ujr�

�
L2.�/

;

J�K D ��x0hC J�K
ahC .J�.ruCruT/Ke3je3/ on †;

where � 2 H 1
p0.�/ and p0 D p=.p � 1/, which we know is well-defined thanks to [55,

Lemma 5.7]. We will sometimes make use of the notation via solution operators, i.e.,

1

�
r� D T1Œ.�=�/�u�C T2Œ��x0hC J�K
ahC .J�.ruCruT/Ke3je3/�; (3.5)

where T1 W Lp.�/3! Lp.�/
3 and T2 WW

1�1=p
p .†/! Lp.�/

3 are bounded linear oper-
ators.

In what follows, we will analyse the spectrum of the operator L. Note that L has a
compact resolvent. This implies that the spectrum of L is discrete and it consists solely of
eigenvalues with finite multiplicity. Consider the eigenvalue problem �.u; h/ D L.u; h/,
that is,

��u � ��uCr� D 0; in �n†;

divu D 0; in �n†;

�J�.ruCruT/Ke3 C J�Ke3 D �.�x0h/e3 C J�K
ahe3; on †;

JuK D 0; on †;

�h � u3 D 0; on †;

PS1
�
�.ruCruT/�@�

�
D 0; on S1n@†;

.uj�S1/ D 0; on S1n@†;

u D 0; on S2;

@�@Gh D 0; on @†:

(3.6)

We test the first equation with u and integrate by parts to obtain

�j�1=2uj2L2.�/ C
1

2
j�1=2Duj2L2.�/ C

x�
�
� jrx0hj

2
L2.G/

� J�K
ajhj2L2.G/
�
D 0: (3.7)
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The above identity for �D 0 implies uD 0, by Korn’s inequality (Theorem A.4), hence p
as well as JpK are constant. Therefore, h is a solution of the linear elliptic problem

�x0hC
J�K
a
�

h D 0; x0 2 G;

@�@Gh D 0; x0 2 @G;

(3.8)

since h is mean value free. Let �.��N / � .0;1/ denote the spectrum of the negative
Neumann Laplacian in the space

X WD
°
h 2 W 1�1=p

p .G/ W

Z
G

h dx0 D 0
±

and let E.�/ denote the eigenspace corresponding to the eigenvalue � 2 �.��N /. It fol-
lows that h D 0 is the unique solution of (3.8) if and only if

J�K
a
�
… �.��N /;

and there exists 0 ¤ h 2 E.�/ if and only if

� WD
J�K
a
�
2 �.��N /:

This shows that

0 2 �.L/ if and only if
J�K
a
�
2 �.��N /:

Suppose that 0¤ � 2 �.L/ with Re�D 0. Taking real parts in (3.7), it follows that uD 0
by Korn’s inequality (Theorem A.4), hence h must be nontrivial. By equation (3.6)5, it
follows that � D 0. This shows that � D 0 is the only eigenvalue of L on the imaginary
axis.

In particular, if
J�K
a
�

< �1;

with �1 > 0 being the first nontrivial eigenvalue of ��N in X , then

�.L/ �
®
� 2 C W Re� � �! < 0

¯
for some ! > 0, since

jrx0hj
2
L2.G/

�
J�K
a
�
jhj2L2.G/ � 0

by the Poincaré inequality for functions h with mean value zero. To see this, observe that
(by a bootstrap argument) ej is an eigenfunction of ��N with eigenvalue �j in X if and
only if ej is an eigenfunction of ��N with eigenvalue �j in

L
.0/
2 .G/ WD

°
h 2 L2.G/ W

Z
G

h dx0 D 0
±
:
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As ��N is self-adjoint in L.0/2 .G/ with compact resolvent, the spectral mapping theorem
yields

jrx0hj
2
L2.G/

� �1jhj
2
L2.G/

for all h 2 H 1
2 .G/ \ L

.0/
2 .G/.

Note that there exists � > 0 such that � � L is a sectorial operator, since L has
maximal Lp-regularity. In particular, it holds that �.L � �/ � †�=2Cı , or equivalently,
�.L/ � †�=2Cı C � for some ı 2 .0; �=2/. This concludes the proof of existence of the
number ! > 0 above.

Now, we aim to show that �.L/ \ CC ¤ ; whenever J�K
a
�

> �1. To this end, for
� � 0 and given g 2 W 1�1=p

p .G/, p > 2, we solve the elliptic two-phase Stokes problem

��u � ��uCr� D 0; in �n†;

divu D 0; in �n†;

�J�.ruCruT/Ke3 C J�Ke3 D ge3; on †;

JuK D 0; on †;

PS1
�
�.ruCruT/�S1

�
D 0; on S1n@†;

.uj�S1/ D 0; on S1n@†;

u D 0; on S2

(3.9)

by Theorem A.3 to obtain a unique solution u2H 2
p .�n†/\H

1
p .�/. Define the (reduced)

Neumann-to-Dirichlet operator N� W W
1�1=p
p .G/! W

2�1=p
p .G/ by N�g WD .uje3/.

With the compact operator N� at hand, we may rewrite the eigenvalue problem (3.6) as

�hCN�.A�h/ D 0; (3.10)

where A�h WD ���Nh � J�K
ah is the shifted Neumann Laplacian with domain

D.A�/ D
°
h 2 W 3�1=p

p .G/ W

Z
G

h dx0 D 0; @�@Gh D 0 on @G
±
:

We remark that for � � 0 problems (3.6) and (3.10) are equivalent. Therefore, it suffices
to show that for J�K
a

�
> �1 there exists � > 0 such that equation (3.10) has a nontrivial

solution h 2 D.A�/.
Concerning N�, we have the following result (see also [31, Section 10.5] for the case

of a bounded smooth domain with �.t/ \ @� D ;):

Proposition 3.1. The Neumann-to-Dirichlet operator N� of the Stokes problem (3.9)
admits a compact self-adjoint extension to L2.G/ which has the following properties:

(1) If u denotes the solution of (3.9), then

.N�gjg/2 D �j�
1=2uj2L2.�/ C

1

2
j�1=2Duj2L2.�/

for all g 2 W 1�1=p
p .G/ and � � 0.



M. Wilke 502

(2) For each ˛ 2 .0; 1=2/ there is a constant C > 0 such that

.N�gjg/2 �
.1C �/˛

C
jN�gj

2
L2.G/

for all g 2 L2.G/ and � � 0. In particular,

jN�jB.L2.G// �
C

.1C �/˛

for all � � 0.

(3) N�g has mean value zero for all � � 0 and each g 2 L2.G/.

Proof. The first assertion follows from integration by parts, while for the proof of the
second assertion one uses trace theory, interpolation theory and Korn’s inequality (The-
orem A.4). To show the third assertion, observe that for each � � 0 we haveZ

G

N�g dx
0
D

Z
G

.uje3/ dx
0
D

Z
�1

divu1 dx D 0

by the divergence theorem, where u1 WD uj�1 .

Proposition 3.1 combined with Korn’s inequality (Theorem A.4) implies that when-
ever N�g D 0, then u D 0, hence g must be constant. Therefore, the restriction of N� to
functions with mean value zero is injective. Therefore, we may rewrite equation (3.10) as

�N�1� hC A�h D 0 (3.11)

for each h 2D.A�/. Let us consider (3.11) in L.0/2 .G/, the subspace of L2.G/ consisting
of functions with vanishing mean value. Define B� WD �N�1� C A� with

D.B�/ D D.A�/ D
®
h 2 W 2

2 .G/ \ L
.0/
2 .G/ W @�@Gh D 0 on @G

¯
;

since N�1
�

is a relatively compact perturbation of A�. We will show that the operator B�
is positive definite provided � > 0 is large enough. Let �j > 0 be an eigenvalue of N�1

�

in L.0/2 .G/ with corresponding eigenfunction ej . Then

1

�j
jej j2 D jN�ej j2 �

C

.1C �/˛
jej j2;

hence �j � 1
C
> 0 for each � � 0. It follows that

.B�hjh/2 D �.N
�1
� hjh/2 C .A�hjh/2 � .�=C � J�K
a/ jhj22 > 0

for each h 2 D.A�/, if � > 0 is sufficiently large.
On the other hand, let 0 ¤ h� 2 D.A�/ be an eigenfunction of ��N to the first non-

trivial eigenvalue �1 > 0 of ��N , i.e., ��Nh� D �1h�. This yields

.B�h�jh�/2 D �.N
�1
� h�jh�/2 � �

�J�K
a
�
� �1

�
jh�j

2
2:
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Since lim�!0C �.N
�1
�
h�jh�/ D 0, it follows that .B�h�jh�/2 < 0 provided � > 0 is suf-

ficiently small and J�K
a
�

> �1. Let J�K
a
�

> �1 and define

�� WD sup
®
� > 0 W B� is not positive semi-definite for each � 2 .0; ��

¯
:

Then, �� > 0 by what we have shown above and B� has a negative eigenvalue for each
�< ��, since the resolvent ofB� is compact. It follows that 0 2 �.B��/, hence there exists
a solution 0 ¤ h 2 D.A�/ in L.0/2 .G/ of (3.11). A bootstrap argument finally shows that
h 2D.A�/\W

3�1=p
p .G/. This in turn yields that �.L/\CC ¤ ; whenever J�K
a

�
> �1.

We have proven the following result:

Proposition 3.2. The operator L defined above has the following spectral properties:

(1) �.L/ \ iR � ¹0º and 0 2 �.L/ if and only if J�K
a=� 2 �.��N /.

(2) If J�K � 0 then �.L/ � C�.

(3) If J�K > 0 and J�K
a
�

< �1, then �.L/ � C�.

(4) If J�K > 0 and J�K
a
�

> �1, then �.L/ \CC ¤ ;.

3.2. Parametrisation of the nonlinear phase manifold

We have already seen that after a Hanzawa transformation, the transformed velocity field
is no longer divergence free. Moreover, the jump condition of the stress tensor as well as
the divergence condition are transformed into some nonlinear terms. It is the aim of this
section to parametrise the nonlinear phase manifold

P M WD
®
.u; h/ 2 W 2�2=p

p .�n†/3 � ŒW 3�2=p
p .†/ \X� W

ujS2 D 0; ujS1 � �S1 D 0; PS1.�.ruCru
T/�S1/ D 0; JuK D 0;

P†.�.ruCru
T/e3/ D .Gv.u; h/; 0/; @�@Gh D 0; divu D Fd .u; h/

¯
as a subset of the set X
 WD W

2�2=p
p .�n†/3 �W

3�2=p
p .†/, near the trivial equilibrium

.u�; h�/ D .0; 0/ over the linear phase manifold

X0
 WD
®
.u; h/ 2 ŒW 2�2=p

p .�n†/3 �W 3�2=p
p .†/� \X0 W ujS2 D 0; ujS1 � �S1 D 0;

PS1.�.ruCru
T/�S1/ D 0; JuK D 0; P†.�.ruCruT/e3/ D 0; @�@Gh D 0

¯
:

Let E� WD PW
1�2=p
p .�n†/, Eq WD W

1�3=p
p .†/,

Eu WD
®
u 2 W 2�2=p

p .�n†/3 W JuK D 0; ujS1 � �S1 D 0; ujS2 D 0;

PS1.�.ruCru
T/�S1/ D 0

¯
;

E WD ¹.u; �; q/ 2 Eu � E� � Eq W q D J�Kº; and

F WD
®
.f1; f2/ 2 ŒW

1�2=p
p .�n†/\ yH�1p .�/��W 1�3=p

p .†/3 W .P†f2/ � �S1 D 0 at @†
¯
:
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We will need the following auxiliary result for the Stokes problem:

�!u � ��uCr� D 0; in �n†;

divu D fd ; in �n†;

�J�@3vK � J�rx0wK D gv; on †;

�2J�@3wKC J�K D gw ; on †;

JuK D 0; on †;

PS1.�.ruCru
T/�S1/ D 0; on S1n@†;

u � �S1 D 0; on S1n@†;

u D 0; on S2:

(3.12)

Proposition 3.3. Let n D 3, p > 5 and �j ; �j > 0. If ! > 0 is sufficiently large, then
there exists a unique solution .u; �; J�K/ 2 E of (3.12) if and only if .fd ; .gv; gw// 2 F .
Moreover, there exists a constant M! > 0 such that

k.u; �; J�K/kE �M!k.fd ; .gv; gw//kF :

Proof. For the proof of this result one may apply the same strategy which was used in the
proof of Theorem A.3. We omit the details.

Let us consider the elliptic problem

�!xu � ��xuCrx� D 0; in �n†;

div xu D P0Fd .xuC zu; zh/; in �n†;

�J�@3xvK � J�rx0 xwK D Gv.xuC zu; zh/; on †;

�2J�@3 xwKC Jx�K D Gw.xuC zu; zh/; on †;

JxuK D 0; on †;

PS1.�.rxuCrxu
T/�S1/ D 0; on S1n@†;

xu � �S1 D 0; on S1n@†;

xu D 0; on S2

(3.13)

for .xu; x�; Jx�K/, where ! > 0 and .zu; zh/ 2 rBX0
 .0/ are given. Here we have set

P0f WD f �
1

j�j

Z
�

f dx

for f 2 L1.�/.
Define a nonlinear mapping N W Eu �X0
 ! F via

N.xu; zu; zh/ WD

 
P0Fd .xuC zu; zh/�

Gv.xuC zu; zh/;Gw.xuC zu; zh/
�T! :
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Let S! denote the solution operator which is induced by Proposition 3.3 and define a
mapping H WD E �X0
 ! E by

H..xu; x�; xq/; .zu; zh// WD .xu; x�; xq/ � S!N.xu; zu; zh/;

where xq is a dummy variable representing Jx�K. SinceN.0/D 0, it follows that the equation
H.0; 0/ D 0 holds. Since N 2 C 2, it holds that H 2 C 2, too. Differentiating H with
respect to .xu; x�; xq/, we obtain

D.xu;x�;xq/H.0; 0/ D IE;

where we used the fact that DxuN.0/ D 0. The implicit function theorem implies the
existence of a C 2-function �0 W rBX0
 ! E with �0.0/ D 0 and �00.0/ D 0, such that
H.�0.zu; zh/; .zu; zh// D 0 whenever .zu; zh/ 2 rBX0
 .0/. In other words, this means that
.xu; x�; xq/ D �0.zu; zh/ is the unique solution of (3.13) for a given .zu; zh/ 2 rBX0
 .0/. Fur-
thermore, it can be shown that P0Fd .xuC zu; zh/ D Fd .xuC zu; zh/ (see proof of [55, Theo-
rem 4.2]).

Let P.xu; x�; xq/ WD xu and define �.zu; zh/ WD P�0.zu; zh/ as well as

ˆ.zu; zh/ WD .zu; zh/C .�.zu; zh/; 0/:

It follows that ˆ.rBX0
 .0// � P M and that ˆ is injective. We will now show that ˆ is
locally surjective near 0. To this end, we assume that .u; h/ 2 P M is given and close to 0
in X
 . Then we solve the linear problem

�!xu � ��xuCrx� D 0; in �n†;

div xu D P0Fd .u; h/; in �n†;

�J�@3xvK � J�rx0 xwK D Gv.u; h/; on †;

�2J�@3 xwKC Jx�K D Gw.u; h/; on †;

JxuK D 0; on †;

PS1.�.rxuCrxu
T/�S1/ D 0; on S1n@†;

xu � �S1 D 0; on S1n@†;

xu D 0; on S2

(3.14)

by Proposition 3.3 to obtain xu 2 Eu. Define .zu; zh/ WD .u � xu; h/ and observe that

div zu D Fd .u; h/ � P0Fd .u; h/ D
1

j�j

Z
�

Fd .u; h/ dx:

Since zu 2H 1
p .�/

3 with zujS1 � �S1 D 0, zujS2 D 0 and JzuKD 0, it follows that the equation
P0Fd .u; h/ D Fd .u; h/ holds, hence div zu D 0.

This in turn yields .zu; zh/ 2 X0
 and �.zu; zh/ D xu, showing that ˆ is locally surjective
near 0.
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3.3. Main result on Rayleigh–Taylor instability

In this section we are going to prove the following main result:

Theorem 3.4. Let n D 3, p > 5 and �j ; �j ; 
j ; � > 0. Denote by .u�; h�/ D .0; 0/ the
trivial equilibrium and let s.L/ denote the spectral bound of the linearisation L (see
equation (3.3)). Furthermore, let �1 > 0 be the first eigenvalue of ��N in°

h 2 W 1�1=p
p .G/ W

Z
G

h dx0 D 0
±
:

Then, the following assertions hold:

(1) If J�K
a=� < �1, then .u�; h�/ is exponentially stable in the sense that there exist
constants � 2 Œ0;�s.L// and ı > 0 such that whenever .u0; h0/ 2 P M with

k.u0; h0/kX
 � ı;

the solution .u; h/ of (2.2) exists globally and satisfies the estimate

k.u.t/; h.t//kX
 � e
��t
k.u0; h0/kX


for all t � 0.

(2) If J�K > 0 and J�K
a=� > �1, then .u�; h�/ is unstable in the sense that there is a
constant "0 > 0 such that for each ı > 0 there are initial values .u0; h0/ 2 P M

with
k.u0; h0/kX
 � ı

such that the solution .u; h/ of (2.2) satisfies

k.u.t0/; h.t0//kX
 � "0

for some t0 > 0.

Proof. For � � 0, let

e��Eu.RC/ WD
®
u 2 e��ŒH 1

p .RCILp.�/
3/ \ Lp.RCIH

2
p .�n†/

3/� W JuK D 0;

u � �S1 D 0; PS1.�.ruCru
T/�S1/ D 0; ujS2 D 0

¯
;

e��E�.RC/ WD e
��Lp.RCI PH

1
p .�n†//;

e��Eq.RC/ WD e
��ŒW 1=2�1=2p

p .RCILp.†// \ Lp.RCIW
1�1=p
p .†//�;

e��Eh.RC/ WD
®
h 2 e��ŒW 2�1=2p

p .RCILp.†//

\H 1
p .RCIW

2�1=p
p .†// \ Lp.RCIW

3�1=p
p .†//� W @�@Gh D 0

¯
;

and

e��E.RC/ WD
®
.u;�; q; h/ 2 e��ŒEu.RC/�E�.RC/�Eq.RC/�Eh.RC/� W q D J�K

¯
:
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Moreover, we define the data spaces as follows:

e��F1.RC/ WD e
��Lp.RCILp.�/

3/;

e��F2.RC/ WD e
��ŒH 1

p .RCI yH
�1
p .�// \ Lp.RCIH

1
p .�n†//�;

e��F3.RC/ WD
®
f3 2 e

��ŒW 1=2�1=2p
p .RCILp.†/

3/ \ Lp.RCIW
1�1=p
p .†/3/� W

P†.f3/ � �S1 D 0
¯
;

e��F4.RC/ WD
®
f4 2 e

��ŒW 1�1=2p
p .RCILp.†//

\ Lp.RCIW
2�1=p
p .†//� W @�@Gf4 D 0

¯
;

and e��F.RC/ WD�4jD1e
��Fj .RC/. We can now prove each of the assertions.

(1) Let .u0; h0/ 2 P M be fixed such that ku0kW 2�2=p
p

C kh0kW 3�2=p
p

� ı for some
sufficiently small ı > 0 to be determined later. It follows from the results of Section 3.2
that .u0;h0/D .zu0; zh0/C .�.zu0; zh0/;0/, i.e., we have zh0D h0, where .zu0; zh0/2 rBX0
 .0/.
For h 2 L1.†/, we define

P†0 h WD h �
1

j†j

Z
†

h dx0;

and consider the linear evolution equation

@t .zu; zh/ � L.zu; zh/ D !
�
.I � T1/xu; P

†
0
xh
�
; .zu; zh/jtD0 D .zu0; zh0/ (3.15)

in the space

X0 WD Lp;� .�/ �
°
h 2 W 2�1=p

p .†/ W

Z
G

h dx0 D 0; @�@Gh D 0
±
;

where L has been defined in Section 3.1 and .xu; xh/ 2 e��ŒEu.RC/ � Eh.RC/� are given
functions. Here � 2 Œ0;�s.L//, where s.L/ denotes the spectral bound of L.

By [55, Corollary 3.3] and Proposition 3.2, it follows that the operator L has the
property of Lp-maximal regularity on RC provided that J�K
a=� < �1. Since .f; g/ WD
!..I � T1/xu; P

†
0
xh/ 2 e��Lp.RCIX0/ and .zu0; zh0/ 2 X0
 , we obtain a unique solution

.zu; zh/ 2 e��ŒH 1
p .RCIX0/ \ Lp.RCIX1/� DW e

�� zE.RC/

for each � 2 Œ0;�s.L//, where X1 D D.L/ is given by (3.4). We denote by

„ WD .@t � L; tr jtD0/�1 W e��Lp.RCIX0/ �X0
 ! e�� zE.RC/

the corresponding solution operator which satisfies the estimate

k„..f; g/; .zu0; zh0//ke�� zE.RC/ �Mk..f; g/; .zu0;
zh0//ke��Lp.RCIX0/�X0
 :

In particular, by (3.5), we obtain on the one hand that rz� is given in terms of .xu; xh/ and

kr z�ke��Lp.RCILp.�// � CMk..f; g/; .zu0;
zh0//ke��Lp.RCIX0/�X0
 :
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At this point, we remark that the function zh possesses some more regularity. Indeed, it
holds that

@t zh D zu3j† C !P
†
0
xh 2 e��W 1�1=2p

p .RCILp.†//;

hence zh 2 e��W 2�1=2p
p .RCILp.†// holds in addition.

Next, we consider the problem

!�xuC @t�xu � ��xuCrx� D F.zuC xu; z� C x�; zhC xh/; in �n†;

div xu D P0Fd .zuC xu; zhC xh/; in �n†;

�J�@3xvK � J�rx0 xwK D Gv.zuC xu; zhC xh/; on †;

�2J�@3 xwKC Jx�K � ��x0 xh � J�K
axh D Gw.zuC xu; zhC xh/; on †;

JxuK D 0; on †;

!xhC @t xh � u � e3 D H1.zuC xu; zhC xh/; on †;

PS1
�
�.rxuCrxuT/�S1

�
D 0; on S1n@†;

xu � �S1 D 0; on S1n@†;

xu D 0; on S2;

@�@G
xh D 0; on @†;

xu.0/ D �.zu0; zh0/; in �n†;
xh.0/ D 0; on †;

(3.16)

where .zu; zh/D !„..I � T1/xu;P†0 xh/ and rz� is given by (3.5), with .u;h/ being replaced
by .zu; zh/.

Define an operator L! W e��E.RC/! e��F.RC/ by

L!.xu; x�; xq; xh/ WD

0BB@
!�xuC @t�xu � ��xuCrx�

div xu
�J�.rxuCrxuT/Ke3 C xqe3 � ��x0 xhe3 � J�K
axhe3

!xhC @t xh � xu � e3

1CCA ;
where xq D Jx�K. Set

xX
 WD
®
.u; h/ 2 W 2�2=p

p .�n†/3 �W 3�2=p
p .†/ W ujS2 D 0;

ujS1 � �S1 D 0; PS1.�.ruCru
T/�S1/ D 0; JuK D 0; @�@Gh D 0

¯
and denote by

ext� W xX
 ! e��ŒEu.RC/ � Eh.RC/�

a linear extension operator such that ext�.yu; yh/jtD0 D .yu; yh/. The existence of such an
extension operator can be seen in [55, Section 4.2], by solving the corresponding auxiliary
problems in exponentially weighted spaces.
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Furthermore, we define a nonlinear mapping

N W e��ŒEu.RC/ � E�.RC/ � Eh.RC/� �X
0

 ! e��F.RC/

by

N..xu; x�; xh/; .zu0; zh0// WD

0BBBBBBB@

xF .xu; x�; xh/

P0 xFd
�
.xu; xh/C ext�Œ.�.zu0; zh0/; 0/

�.xu.0/; xh.0//�
��

xGv
�
.xu; xh/C ext�Œ.�.zu0; zh0/; 0/
�.xu.0/; xh.0//�

�
; xGw.xu; xh/

�T
xH1.xu; xh/

1CCCCCCCA :

Here the functions . xF ; xFd ; xGj ; xH1/ result from .F; Fd ; Gj ; H1/ by replacing .zu; zh/
and rz� by !„..I � T1/xu; P†0 xh/ and (3.5), respectively.

Consider the equation

L!.xu; x�; xq; xh/ D N..xu; x�; xh/; .zu0; zh0//;

subject to the initial condition .xu; xh/jtD0 D .�.zu0; zh0/; 0/. If we can show that this prob-
lem has a unique solution .xu; x�; xq; xh/ 2 e��E.RC/, then, by construction, .xu; x�; xq; xh/ is
a solution of (3.16). Here, we have set xq D Jx�K.

Let .f; fd ; gv; gw ; gh/ 2 e��F.RC/ and .u0; h0/ 2 xX
 be given in such a way that
div u0 D fd jtD0 and �J�rx0w0K � J�@3v0K D gvjtD0, where u0 D .v0; w0/. Consider
the linear problem to find a unique w D .u; �; q; h/ 2 e��E.RC/, q D J�K, such that

L!w D F; z.0/ D z0 D .u0; h0/;

for a sufficiently large ! > 0, where F WD .f; fd ; gv; gw ; gh/ and z WD .u; h/. Indeed, by
Corollary A.2 we may assume without loss of generality that f D u0 D 0, fd D gw D 0
and gv D 0. The remaining problem with zF D .0; 0; 0; 0; gh/ (gh has been modified but
not relabelled) and zz0 D .0; h0/ can be written in the abstract form

!z C Pz C Lz D .0; gh/; t > 0; z.0/ D zz0;

where the operator L has been defined in Section 3.1. If ! > 0 is chosen sufficiently large,
then there exists a unique solution z 2 e�! ŒEu.RC/ �Eh.RC/�, since L has the property
of maximal regularity of type Lp on RC in

Lp;� .�/ �
®
h 2 W 2�1=p

p .†/ W @�@Gh D 0
¯
;

by [55, Corollary 3.3].
Therefore, it makes sense to define a functionH W e��E.RC/ �X0
 ! e��E.RC/ by

H..xu; x�; xq; xh/; .zu0; zh0// WD .xu; x�; xq; xh/

� .L! ; tr jtD0/�1ŒN..xu; x�; xh/; .zu0; zh0//; .�.zu0; zh0/; 0/�:
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Note that H is well-defined, since all compatibility conditions at t D 0 as well as at @†
and @S2 are satisfied by construction. It follows from [55, Proposition 4.1] and the results
in Section 3.2 that H is a C 2-mapping with H.0; 0/ D 0 and

D.xu;x�;xq;xh/H.0; 0/ D Ie��E.RC/:

Therefore, applying the implicit function theorem yields the existence of a C 2-function
 WX0
 ! e��E.RC/with .0/D 0 and 0.0/D 0 such thatH. .zu0; zh0/; .zu0; zh0//D 0,
whenever .zu0; zh0/ 2 rBX0
 .0/ for some sufficiently small r > 0.

Let
.u; �; q; h/ WD .zu; z�; zq; zh/C .xu; x�; xq; xh/:

As in the proof of [55, Theorem 4.2], one can show that P0Fd .u; h/ D Fd .u; h/, since
divu D div.zuC xu/ D div xu. Integrating zw D zu � e3 over † yieldsZ

†

zw dx0 D

Z
�1

div zu1 dx D 0:

This in turn implies that�
! C

d

dt

� Z
†

xh dx0 D

Z
†

Œ xw � .vjrh/� dx0

D

Z
†

Œw � .vjrh/� dx0

D

Z
†

.uj��.t//
p
1C jrhj2 dx0

D

Z
�.t/

..u ı‚�1h /j��.t// d�.t/

D

Z
�1.t/

div.u ı‚�1h / d�1.t/

D 0;

since

div.u ı‚�1h / D .divu � Fd .u; h// ı‚�1h D .div xu � Fd .u; h// ı‚�1h D 0:

Since xhjtD0 D 0, this readily yields that xh is mean value free, hence P†0 xh D xh and there-
fore .u; �; q; h/ is a solution of (2.2) which is unique, by Theorem 2.1. The compon-
ent .u; h/ of the solution has the representation

.u; h/ D x .zu0; zh0/C x„.zu0; zh0/;

where x .zu0; zh0/ WD .xu; xh/ and x„ results by replacing .xu; xh/ by x .zu0; zh0/ in the definition
of „. This yields the estimate

k.u; h/ke�� ŒEu�Eh� �Mk.zu0;
zh0/kX0
 ;
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whereM >0 does not depend on .zu0; zh0/ 2 rBX0
 .0/ as long as r > 0 is sufficiently small.
This follows from smoothness of the function  . Since .zu0; zh0/ D .u0; h0/ � �.zu0; zh0/,
�.0/ D 0 and �0.0/ D 0, we find for each " > 0 a number r."/ > 0 such that the estimate

k.zu0; zh0/kX
 � k.u0; h0/kX
 C k�.zu0;
zh0/kX


� k.u0; h0/kX
 C "k.zu0;
zh0/kX


is valid. This implies the final estimate

k.u; h/ke�� ŒEu�Eh� �M"k.u0; h0/kX
 ;

proving the first assertion.

(2) Denote by �C the collection of the eigenvalues of L with positive real parts and
let PC be the spectral projection related to �C. Define P� WD I �PC andX˙0 WDP

˙X0.
Since �C is finite, it follows that XC0 is finite-dimensional and the decompositions

X0 D X
C
0 ˚X

�
0 ; L D LC ˚ L�

hold, where LC is a bounded linear operator fromXC0 toXC0 . Note further that the spaces
D.LC/ and XC0 coincide and that

kzk WD kPCzkX0 C kP
�zkX0

defines an equivalent norm in X0, since P˙ are bounded linear operators. By spectral
theory, it holds that �˙ D �.L˙/ and �� � C�. Let �� 2 �C denote the eigenvalue with
the smallest real part and choose numbers �; � > 0 such that Œ� � �; � C �� � .0;Re��/.
It follows that the strip ®

� 2 C W Re� 2 Œ� � �; � C ��
¯

does not contain any eigenvalues of L. Therefore, the restricted semigroups e�L
˙t satisfy

the estimates

keL
�t
k �Me.���/t ; ke�L

Ct
k �Me�.�C�/t ; t � 0 (3.17)

for some constant M > 0.
Our aim is to prove the second assertion by a contradiction argument. To this end,

we assume that .u�; h�/ D .0; 0/ is stable. Then there exists a global solution .u.t/; �.t/;
q.t/;h.t// of (2.2) such that .u;�;q;h/2E.T / for each finite interval J D Œ0;T �� Œ0;1/,
q D J�K. Also, for each " > 0 there exists ı."/ > 0 such that whenever k.u0; h0/kX
 � ı
then k.u.t/; h.t//kX
 � " for all t � 0. Note that the solution admits the decomposition

.u; �; q; h/ D .zu; z�; xq; zh/C .xu; x�; xq; xh/;

where .zu; zh/ solves (3.15) with z� , zq D Jz�K given in terms of .zu; zh/ (see (3.5)) and
.xu; x�; xq; xh/ solves (3.16) with a given right hand side .u; �; q; h/. Observe that in this
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case, P†0 xh D xh by integration of (3.16)6 over †, sinceZ
†

.xujen/d† D

Z
�1

div xu1dx D
Z
�1

Fd .u
1; h/dx D

Z
�1

divu1dx

and Z
†

H1.u; h/d† D

Z
†

.@th � .uje3//d† D �

Z
�1

divu1dx;

where u1 WD uj�1 and where we made use of the fact that P†0 h D h.
To shorten the notation we introduce the new functions zz WD .zu; zh/, xz D .xu; xh/, zw D

.zu; z�; xq; zh/ and xw D .xu; x�; xq; xh/. The functions P˙zz solve the evolutionary problem

d

dt
P˙zz � L˙P˙zz D !P˙Qxz; P˙zzjtD0 D P

˙
zz0; (3.18)

where Qxz WD ..I � T1/xu; xh/ and zz0 WD .zu0; zh0/. In the first step, we show that PCzz is
given by the formula

PCzz.t/ D �

Z 1
t

eL
C.t�s/!PCQxz.s/ ds: (3.19)

Since PC is bounded and X0
 ,! X0, it follows from the assumption that

kPCzz.t/kXC0
� kPCz.t/kXC0

C kPCxz.t/kXC0
� C."C kxz.t/kX0/

for all t � 0. This implies the estimate

ke��tPCzzkLp.0;T IXC0 /
� C

�
"
�Z T

0

e��pt dt
�1=p

C ke��txzkLp.0;T IX0/

�
� C.�; p/

�
"C ke��txzkzE.T /

�
; (3.20)

where
zE.T / WD Eu.T / � Eh.T /;

and zE.T / ,! Lp.0; T IX0/, with an embedding constant being independent of T > 0.
Employing the relation

d

dt
.e��tPCzz.t// D .��I C LC/e��tPCzz.t/C e��tPCQxz.t/; (3.21)

we obtain that
ke��tPCzzkZ.T / � C1."C ke

��t
xzkzE.T //; (3.22)

where the constant C1 > 0 does not depend on T > 0. Here we have set

Z.T / WD H 1
p .0; T IX0/ \ Lp.0; T ID.L//:
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For the function e��tP�zz.t/, the identity

d

dt
.e��tP�zz.t// D .��I C L�/e��tP�zz.t/C e��tP�Qxz.t/ (3.23)

holds. Since by (3.17) the semigroup generated by .��I C L�/ is exponentially stable
in X�0 , we obtain from Lp-maximal regularity theory that the estimate

ke��tP�zzkZ.T / �M
�
kP�zz0kX0
 C ke

��tP�QxzkLp.0;T IX0/
�

�M
�
kP�zz0kX0
 C ke

��t
xzkzE.T /

�
(3.24)

is valid for some constantM > 0 that does not depend on T > 0. A combination of (3.22)
and (3.24) implies

ke��tzzkZ.T / � C2
�
"C kP�zz0kX0
 C ke

��t
xzkzE.T /

�
; (3.25)

with C2 > 0 being independent of T > 0. In what follows, we want to reproduce the norm
of e��tzz in zE.T / on the left hand side of (3.25). To this end, we have to estimate e��t zh
and e��t@t zh in W 1�1=2p

p .0; T ILp.†//.
To estimate e��t zh in W 1�1=2p

p .0; T ILp.†//, we cannot simply use interpolation of
H 1
p .0; T ILp.†// with Lp.0; T ILp.†//, since the interpolation constant would depend

on T > 0. The following proposition takes care of this problem:

Proposition 3.5. Let T 2 .0;1/, � > 0 and let zz 2Z.T / be the unique solution to (3.15).
Then there exists yz 2 Z.RC/ with yzjŒ0;T � D zz such that the estimate

ke��tyzkZ.RC/ �M
�
kzz0kX0
 C ke

��t
xzkLp.0;T IX0/ C ke

��t
zzkLp.0;T IX0/

�
is valid, with a constant M > 0 being independent of T > 0.

Proof. We fix a > 0 large enough such that the operator L � aI has the property of Lp-
maximal regularity on RC. Define a function f W RC ! X0 by

f .t/ WD

´
!Qxz.t/C azz.t/; if t 2 Œ0; T �;

0; if t > T:

Then f 2 Lp.RCIX0/ and we may solve the problem

@tyz � .L � aI /yz D f; yzjtD0 D zz0 (3.26)

to obtain a unique solution yz 2 Z.RC/. Observe that by the uniqueness of the solution
of (3.15), it holds that yzjŒ0;T � D zz.

Multiplying (3.26) by e��t , it follows that the function e��tyz.t/ solves the initial value
problem

@t .e
��t
yz/ � .L � .aC �/I /e��tyz D e��tf; yzjtD0 D zz0:

Since the operator L � .a C �/I has Lp-maximal regularity on RC as well, we obtain
the desired estimate. The independence of the constant M > 0 from t follows from the
exponential stability of the analytic semigroup which is generated by L � .aC �/I .
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Since ke��tzzk
W
1�1=2p
p .0;T IX0/

� ke��tyzk
W
1�1=2p
p .RCIX0/

(here we use the intrinsic
norm in W 1�1=2p

p ), it follows by the real interpolation method and Proposition 3.5 that
the estimate

ke��tzzk
W
1�1=2p
p .0;T IX0/

�M
�
kzz0kX0
 C ke

��t
xzkLp.0;T IX0/ C ke

��t
zzkLp.0;T IX0/

�
�M

�
kzz0kX0
 C ke

��t
xzkzE.T / C ke

��t
zzkZ.T /

�
(3.27)

is valid. The second equation in (3.15) and Proposition 3.5 together with trace theory
imply

ke��t@t zhkW 1�1=2p
p .0;T ILp.†//

� C3
�
ke��t zuk

W
1�1=2p
p .0;T ILp.†//

C ke��t xhk
W
1�1=2p
p .0;T ILp.†//

�
� C4

�
kzz0kX0
 C ke

��t
xzkzE.T / C ke

��t
zzkZ.T /

�
: (3.28)

Observe that for the estimate of e��t xh, we have used the fact that

Eh.T / ,! W 1�1=2p
p .0; T ILp.†//

with an embedding constant being independent of T > 0, since the norm in the last space
is a part of the norm in Eh.T /. Combining (3.25) with (3.27) and (3.28), we obtain

ke��tzzkzE.T / � C5
�
"C kzz0kX0
 C kP

�
zz0kX0
 C ke

��t
xzkzE.T /

�
; (3.29)

with a constant C5 > 0 being independent of T > 0.
We are now turning our attention to system (3.16) for xw D .xu; x�; xq; xh/, which we

write shortly as L! xw D N. zw C xw/ with initial condition xzjtD0 D .�.zz0/; 0/. It will be
convenient to write N.w/ D N1.z/ C N2.z; �/, where all components of N2.z; �/ are
zero except for the first one, which is given by M0.h/r� .

Proposition 3.6. Let � � 0. There exists a nondecreasing function ˛ W RC ! RC with
˛."/! 0 as "! 0 such that

(i) if z 2 Z.RC/, then

ke��tN1.z/kF.RC/ � ˛."/ke
��tzkZ.RC/;

whenever kz.t/kX
 � " for all t � 0;

(ii) if yz 20Z.T / and z� 2 Z.RC/, then

ke��tN1.yz C z�/kF.T / � ˛."/C
�
ke��tyzkZ.T / C ke

��tz�kZ.RC/
�
;

whenever
kyz.t/kX
 � C"

for all t 2 Œ0; T � and
kz�.t/kX
 � C"

for all t � 0. The constant C > 0 does not depend on T > 0.
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Proof. The proof of the first assertion follows by similar arguments as in [25, Proposi-
tion 9]. Therefore, we concentrate on the proof of the second assertion. For yz 20zE.T / we
define a bounded linear extension operator E W0Z.T /!0Z.RC/ by

.Eyz/.t/ WD

8̂̂<̂
:̂
yz.t/; t 2 Œ0; T �;

yz.2T � t /; t 2 ŒT; 2T �;

0; t � 2T:

For the norm of e��t .Eyz/ in Z.RC/, we then obtain

ke��tEyzk
p

Z.RC/
D

Z T

0

e��tpkyz.t/k
p
X1
dt C

Z 2T

T

e��tpkyz.2T � t /k
p
X1
dt

C

Z T

0

e��tpkPyz.t/k
p
X0
dt C

Z 2T

T

e��tpkPyz.2T � t /k
p
X0
dt

D

Z T

0

e��tpkyz.t/k
p
X1
dt C

Z T

0

e��.2T��/pkyz.�/k
p
X1
d�

C

Z T

0

e��tpkPyz.t/k
p
X0
dt C

Z T

0

e��.2T��/pkPyz.�/k
p
X0
d�

� ke��tyzkZ.T /;

since 2T � � � � for � 2 Œ0; T �.
In addition, there holds k.Eyz/.t/k

W
2�2=p
p �W

3�2=p
p

� C" for all t � 0. Then, the first
assertion yields

ke��tN1.yz C z�/kF.T / � ke
��tN1.Eyz C z�/kF.RC/

� ˛."/Cke��t .Eyz C z�/kZ.RC/

� ˛."/C
�
ke��tyzkZ.T / C ke

��tz�kZ.RC/
�
:

In order to apply this proposition to the system L! xw D N. xwC zw/, let z� be an exten-
sion of z0 such that e��tz� 2 zE.RC/ and kz�kZ.RC/ � Ckz0kX
 . The existence of such
an extension can be seen as in the proof of the first assertion. Then we use the repres-
entation N.w/ D N1.z/CN2.z; �/ as well as the identity N1.z/ D N1.z � z� C z�/ D
N1.yz C z�/, where yz WD .z � z�/ 20Z.T /. Finally, note that

ke��tN2.z; �/kLp.0;T ILp.�// � C"ke
��t�kE� .T /:

Therefore, the second assertion of Proposition 3.6 implies the estimate

ke��tN. xw C zw/kF.T / � ˛."/C
�
ke��tzzkZ.T / C ke

��t
xzkZ.T / C ke

��tz�kZ.RC/
�

C "C
�
ke��t z�kE� .T / C ke

��t
x�kE� .T /

�
� ˛1."/

�
ke��tzzkzE.T /Cke

��t
xzkzE.T /Cke

��t
x�kE� .T /Ckz0kX


�
;
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where ˛1."/ WD ˛."/C "! 0 as "! 0. Here we have used the estimates

ke��tz�kZ.RC/ � Ckz0kX


and
ke��t z�kE� .T / � C

�
ke��tzzkzE.T / C ke

��t
xzkzE.T /

�
;

which hold for some constant C > 0 that does not depend on T > 0. Note also that
zE.T / ,! Z.T / with a universal embedding constant being independent of T > 0 and
kyz.t/kX
 � .1C C/" for all t 2 Œ0; T �, kz�.t/kX
 � C" for all t � 0.

By the invertibility of L! , we obtain

ke��t xwkE.T / � C6
�
k�.zz0/kX
 C ke

��tN. xw C zw/kF.T /
�

� C6
�
k�.zz0/kX
 C ˛1."/.ke

��t
xzkzE.T / C ke

��t
zzkzE.T /

C ke��t x�kE� .T / C kz0kX
 /
�
: (3.30)

Choose " > 0 sufficiently small such that C6˛1."/ � 1=2 and note that

ke��t xwkE.T / D ke
��t
xzkzE.T / C ke

��t
x�kE� .T / C ke

��tJx�KkEq.T /:

This implies the estimate

ke��txzkzE.T / � 2C6
�
k�.zz0/kX
 C ˛1."/.ke

��t
zzkzE.T / C kz0kX
 /

�
: (3.31)

If " > 0 is sufficiently small, we obtain from (3.29) and (3.31) that

ke��tzzkzE.T / C ke
��t
xzkzE.T / � C7

�
"C kzz0kX0
 C kP

�
zz0kX0
 C k�.zz0/kX


�
(3.32)

with C7 > 0 being independent of T > 0 and where we made use of the fact that
z0 D zz0 C �.zz0/. In particular, this shows that

e��tzz; e��txz 2 zE.RC/:

This in turn yields that

e��t
Z 1
t

keL
C.t�s/PC!Qxz.s/kX0 ds

�M
�Z 1
t

e�p
0.t�s/ ds

�1=p0
ke��t!xzkLp.RCIX0/

� C.�; p0/ke��t!xzkzE.RC/ <1:

For the projection of the solution zz of (3.15) to XC0 , we have the variation of parameters
formula

PCzz.t/ D PCeL
Ct
zz0 C

Z t

0

eL
C.t�s/PC!Qxz.s/ds

D PCeL
Ct
zz0 C

Z 1
0

eL
C.t�s/PC!Qxz.s/ds �

Z 1
t

eL
C.t�s/PC!Qxz.s/ds
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at our disposal. Since eL
Ct extends to a C0-group, we obtain the identity

e�L
Ct
�
PCzz.t/C

Z 1
t

eL
C.t�s/PC!Qxz.s/ds

�
D PCzz0 C

Z 1
0

e�L
CsPC!Qxz.s/ds;

which holds for all t � 0. The left hand side of this equation may be estimated in X0 as
follows: 


e�LCt�PCzz.t/C Z 1

t

eL
C.t�s/PC!Qxz.s/ds

�



X0

�Me�.�C�/t
�
kzz.t/kX0 C

Z 1
t

keL
C.t�s/PC!Qxz.s/kX0 ds

�
�Me��t

�
ke��tzz.t/kX0 C C

�
:

Here we made use of the fact that the integral does not grow faster than e�t by the com-
putations above. Since the function Œt 7! ke��tzz.t/kX0 � is bounded (see above), it follows
that

e��t
�
ke��tzz.t/kX0 C C

�
! 0

as t !1. This shows in particular that PCzz0C
R1
0
e�L

CsPC!Qxz.s/ds D 0, hence the
relation (3.19) holds.

From (3.19) and Young’s inequality, we obtain the estimate

ke��tPCzzkLp.RCIX0/ �M.�/ke
��tPCxzkLp.RCIX0/:

By (3.21), this yields

ke��tPCzzkZ.RC/ �M.�/ke
��tPCxzkzE.RC/: (3.33)

One may now mimic the above estimates with the interval Œ0; T � being replaced by RC to
obtain the relation

ke��tzzkzE.RC/ C ke
��t
xzkzE.RC/ � C

�
kP�zz0kX
 C k�.zz0/kX


�
: (3.34)

At this point, we want to emphasise that the term kzz0kX0
 does not appear on the right hand
side of (3.34), since on RC there is no need to apply Proposition 3.5. Furthermore, since
we estimate norms on the half-line RC, we may use the first assertion of Proposition 3.6
instead of the second one.

Then, formula (3.19) for t D 0 and (3.34) imply

kPCzz0kX0
 �M.!; �/ke
��t
xzkL1.RCIX0
 / �M1.!; �/ke

��t
xzkzE.RC/

� C
�
kP�zz0kX0
 C k�.zz0/kX


�
;

since zE.RC/ ,! BUC.RCIX0
 /. Due to the fact that �.0/ D 0 and �0.0/ D 0, we may
decrease ı > 0 (if necessary) to obtain

k�.zz0/kX
 �
1

2

�
kP�zz0kX0
 C kP

C
zz0kX0


�
;
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whenever zz0 2 ıBX0
 .0/. Finally, this yields the relation

kPCzz0kX0
 � CkP
�
zz0kX0
 :

Choosing zz0 2 ıBX0
 .0/ in such a way that P�zz0 D 0 and PCzz0 ¤ 0, we have a contra-
diction. The proof is complete.

We complete this section by considering the special case G D BR.0/ and give a result
on stability which is dependent on the radius R > 0.

Corollary 3.7. Let the conditions of Theorem 3.4 be satisfied and let the surface tension
� > 0 be fixed. Denote by ��1 > 0 the first nontrivial eigenvalue of the negative Neumann
Laplacian in L2.B1.0//. Then the following assertions hold:

(1) If R2J�K
a=� < ��1 , then .u�; h�/ D .0; 0/ is exponentially stable in the sense of
Theorem 3.4.

(2) If J�K > 0 and R2J�K
a=� > ��1 , then .u�; h�/D .0; 0/ is unstable in the sense of
Theorem 3.4.

Proof. The assertions follow from Theorem 3.4. Indeed, denoting by �1.R/ > 0 the first
nontrivial eigenvalue of the Neumann Laplacian on BR.0/, Theorem 3.4 yields that .0; 0/
is exponentially stable if J�K
a=� < �1.R/ and unstable if J�K
a=� > �1.R/ and
J�K > 0. An easy computation yields that �1.R/ D ��1=R

2. This concludes the proof of
the corollary.

4. Bifurcation at a multiple eigenvalue

In this section we consider the special case G D BR WD BR.0/ � R2 for some radius
R > 0. Proposition 3.2 implies that an eigenvalue of the linearisation L crosses the ima-
ginary axis through zero if J�K
a=� D �1, where �1 >0 is the first nontrivial eigenvalue of
the negative Neumann Laplacian inL2.G/. This suggests that .�1; 0/ is a bifurcation point
for the nonlinear Navier–Stokes system (2.2). Unfortunately, the eigenvalue �1 > 0 is not
simple. Indeed, it is a double eigenvalue, being semi-simple. Therefore, we cannot dir-
ectly apply the results of Crandall and Rabinowitz. Instead, we will use certain symmetry
properties of the bifurcation equation to reduce it to a purely one-dimensional bifurcation
equation which then can be solved by the implicit function theorem. For a general theory
concerning bifurcation at multiple eigenvalues, we refer the reader to [22, 34, 51].

We recall that the set of equilibria E for height functions h with vanishing mean value
is given by

E D
®
.u�; ��; q�; h�/ W u� D 0; �� D const.; q� D J��K D 0; h� solves (4.1)

¯
:
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Note that if there exist nontrivial equilibria, i.e., h� ¤ 0, then these equilibria are determ-
ined by the nontrivial solutions of the quasilinear elliptic boundary value problem

� divx0
�

rx0hp
1C jrx0hj2

�
C J�K
ah D 0; x0 2 BR.0/;

@�BR.0/
h D 0; x0 2 @BR.0/:

(4.1)

Here the differential operators rx0 and divx0 act only in the variables x0 2 G. We intend
to show that if J�K
a=� D �1, then there exist bifurcating nontrivial solutions h� of (4.1)
from the trivial solution h D 0. To this end, let

X WD
°
h 2 W 1�1=p

p .BR/ W

Z
BR

hdx0 D 0
±
;

Y WD
°
h 2 W 3�1=p

p .BR/ \X W @�@BR
h D 0

± (4.2)

and define F W RC � Y ! X by

F.˛; h/ WD divx0
�

rx0hp
1C jrx0hj2

�
C ˛h: (4.3)

For h 2 W s
p .BR/, s > 0, define .�O�h/.xx

0/ WD h.O�xx
0/, where

O� WD

�
cos� � sin�
sin� cos�

�
describes a two-dimensional rotation of xx0 2 BR through the angle �. Note that O� is an
orthogonal matrix, i.e., OT

� D O�1� . Furthermore, we define .�Rh/.xx
0/ WD h.Rxx0/, where

Rxx0 WD .xx1;�xx2/
T. It is easily seen that �j leaves both spaces X and Y invariant and one

readily computesrxx0.�O�h/DOT
�.�O�rx0h/,�xx0.�O�h/D �O��x0h andr2

xx0.�O�h/D

OT
�.�O�r

2
x0h/O� , where xx0 D OT

�x
0. Therefore, the identity

divx0
�

rx0hp
1C jrx0hj2

�
D

�x0hp
1C jrx0hj2

�
.r2x0hrx0hjrx0h/p
1C jrx0hj2

3

implies that �O�F.˛;h/D F.˛;�O�h/. Similarly, it holds that �RF.˛;h/D F.˛;�Rh/.
This shows that F is invariant with respect to the group operations of the orthogonal
group O.2/.

4.1. Lyapunov–Schmidt reduction

By smoothness of the mapping ŒR3 s 7! .1C s2/�1=2�, it holds that F 2C1.RC � Y IX/
and the first Fréchet derivative of F is given by

ŒDhF.˛; h/�yh D divx0
�

rx0
yhp

1C jrx0hj2

�
� divx0

�
rx0h.rx0 yhjrx0h/p
1C jrx0hj2

3

�
C ˛yh:
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Therefore, it holds that DhF.�1; 0/ D �N C �1I , where �N denotes the Neumann
Laplacian and �1 > 0 is the first eigenvalue of��N inX (note that 0 … �.��N /, since all
functions in X have a vanishing mean value). For convenience, we set A WD DhF.�1; 0/.
We claim that 0 2 �.A/ is a semi-simple eigenvalue. Since the operator A has a com-
pact resolvent, it follows that the spectrum consists only of discrete eigenvalues having
finite multiplicity. Therefore, it suffices to show that N.A/ D N.A2/. To this end, let
0 ¤ v 2 N.A2/ and u WD Av. Then u 2 N.A/ and we compute

kuk2L2.BR/ D .Avju/L2.BR/ D .vjAu/L2.BR/ D 0;

sinceA is self-adjoint inL2.BR/. This shows that uD 0, hence v 2N.A/ and 0 2 �.A/ is
semi-simple. We note here that this implies X D N.A/˚R.A/. Rewriting the eigenvalue
problem ��Nh D �h in polar coordinates .r; '/, it follows that the kernel N.A/ of A is
spanned by the two linearly independent functions

u�1.x
0/ WD J1.j

0
1;1r=R/ cos'; u�2.x

0/ WD J1.j
0
1;1r=R/ sin'; (4.4)

for r 2 Œ0; R�; ' 2 Œ0; 2�/, where J1 is a Bessel function of first order and j 01;1 denotes
the first zero of the derivative J 01 of J1. Hence, dimN.A/ D 2 (notably, A is a Fred-
holm operator of index zero). In particular, each h 2 X can be written in a unique way as
h D uC v, where u 2 N.A/ and v 2 R.A/. Defining Ph WD u, it follows that the map-
ping P W X ! N.A/ is a projection onto N.A/. With Q WD I � P we also have that the
mappingQ W X ! R.A/ is onto andQhD v. Moreover, it holds that Y D U ˚ V , where
U WD N.A/ and V WD R.A/ \ Y .

Let us now split the equation F.˛; h/ D 0 into two parts: PF.˛; u C v/ D 0 and
QF.˛; uC v/ D 0. Since the operatorDvQF.�1; 0/ DQDhF.�1; 0/ W V ! R.A/ is an
isomorphism, we may solve the equationQF.˛;uC v/D 0 in a neighbourhood of .�1; 0/,
by making use of the implicit function theorem, to obtain a unique smooth function
v� W RC � U ! V such that QF.˛; u C v�.˛; u// D 0 for all .˛; u/ close to .�1; 0/.
The function v� D v�.˛; u/ has the following properties:

(1) v�.˛; 0/ D 0 if ˛ > 0 is close to �1;

(2) D˛v�.�1; 0/ D 0, Duv�.�1; 0/ D 0;

(3) �j v�.˛; u/ D v�.˛; �ju/ for j 2 ¹R;O�º if .˛; u/ is close to .�1; 0/.

The first two properties follow directly from the equation QF.˛; uC v�; ˛; u// D 0 after
differentiation, and the fact that F.˛; 0/ D 0 for each ˛ 2 RC. The last property follows
from the uniqueness of v� and the fact that �jQF.˛; uC v/ D QF.˛; �juC �j v/ for
j 2 ¹R;O�º. To see this, we differentiate the identity �jF.˛;u/DF.˛;�ju/with respect
to u and evaluate the result at .˛; u/ D .�1; 0/ to obtain the relation

�jA D A�j :

In other words, �j commutes with the operator A. It follows readily that �j leaves N.A/
as well as R.A/ invariant, hence we have �jP D P�j as well as �jQ D Q�j .
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4.2. Reduction to a one-dimensional bifurcation equation

It remains to study the equation 0D G.˛;u/ for .˛;u/ 2 RC �U in some neighbourhood
of .�1; 0/, where G.˛; u/ WD PF.˛; u C v�.˛; u//. Let us remark that this equation is
purely two-dimensional. Similar to the above, it holds that �jG.˛; u/ D G.˛; �ju/ for
j 2 ¹R;O�º. Let‰ WU !R2 be defined by‰.u/ WD .b1; b2/T for uD b1u1C b2u2 2U ,
bk WD .ujuk/L2.BR/ 2 R, where uj WD u�j =ku

�
j kL2 . It follows that ‰ is an isomorphism

with inverse ‰�1 given by ‰�1.b1; b2/ D b1u1 C b2u2. Consider now the equation

g.˛; b/ WD ‰G.˛;‰�1b/ D 0; b 2 R2;

and define �0j WD ‰�j‰
�1 on R2 for j 2 ¹R;O�º. With these definitions, it holds that

�0j g.˛; b/ D g.˛; �
0
j b/ for j 2 ¹R;O�º. A short computation also shows that the iden-

tities

• �0
O�
b D O�b;

• �0
R
b D Rb

hold for each b 2 R2. We will use these two properties to reduce g.˛; b/ D 0 to a purely
one-dimensional equation. Choose � in such a way that O�b D se1 D .s; 0/T for some
s 2 R close to 0. Then g.˛; b/ D 0 if and only if g.˛; se1/ D 0, by the first property.
Furthermore, Re1 D e1, hence

g.˛; se1/ D g.˛; sRe1/ D Rg.˛; se1/:

This in turn yields that g2.˛; se1/ D 0 is always satisfied and therefore, we have reduced
the equation g.˛; b/ D 0 to g1.˛; se1/ D 0 for .˛; s/ 2 RC �R close to .�1; 0/.

Since D˛g1.�1; 0/ D 0, we cannot simply solve the equation g1.˛; se1/ D 0 for ˛
in a neighbourhood of .�1; 0/ by the implicit function theorem. Instead, we define a new
function

zg.˛; s/ WD

´
g1.˛; se1/=s; s ¤ 0;

Dbg1.˛; 0/e1; s D 0:

Since Dbg1.�1; 0/ D 0, we have zg.�1; 0/ D 0. Moreover, we compute

D˛ zg.�1; 0/ D D˛Dbg1.�1; 0/e1:

Since D˛DhF.�1; 0/ D I and

D˛Dbg.�1; 0/e1 D ‰PD˛DhF.�1; 0/‰
�1e1 D e1;

it follows thatD˛Dbg1.�1; 0/e1 D 1¤ 0. Hence, the implicit function theorem yields the
existence of a smooth function ˛ W .��; �/! R with ˛.0/ D �1 such that zg.˛.s/; s/ D 0
for all s 2 .��; �/ and some (small) � > 0. This in turn yields the following result:
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Theorem 4.1. Modulo the action inO.2/, all solutions ofF.˛;h/D 0 in a neighbourhood
U of .�1; 0/ in RC � Y are given by

F �1.0/ \U D
®
.˛.s/; su1 C y.s// W jsj < �

¯
[
®
.˛; 0/ W .˛; 0/ 2 U

¯
;

where ˛ 2 C1..��; �/IR/ with ˛.0/ D �1 > 0 and y 2 C1..��; �/IR.A/ \ Y / with
y.0/ D y0.0/ D 0 are uniquely determined.

Proof. Define y.s/ WD v�.˛.s/; su1/. Then the assertions for y follow from the properties
of the function v�.

Let us now show that the bifurcation in .�1; 0/ is of subcritical type, i.e., s˛0.s/ < 0
for 0 < jsj < ı and some ı > 0. We first prove that ˛0.0/D 0. To this end, we differentiate
the expression F.˛.s/; su1 C y.s// D 0 with respect to s twice and evaluate at s D 0 to
obtain

0 D �Ny
00.0/C �1y

00.0/C 2˛0.0/u1:

By multiplying this identity by u1 in L2.BR/ and integrating by parts, we obtain
˛0.0/ku1k

2
L2.BR/

D 0, since u1 2 N.A/. This implies that ˛0.0/ D 0, since u1 ¤ 0. Dif-
ferentiating F.˛.s/; su1 C y.s// D 0 a third time yields at s D 0

0 D �Ny
000.0/C �1y

000.0/ � 3 div.ru1jru1j2/C 3˛00.0/u1;

where we have used the fact that ˛0.0/ D 0. We test the latter equation by u1 in L2.BR/
and integrate by parts to obtain

0 D ˛00.0/ku1k
2
L2.BR/

C ku1k
4
L4.BR/

;

hence ˛00.0/ < 0, since u1 ¤ 0.

Corollary 4.2. The bifurcation in Theorem 4.1 at .�1; 0/ is of subcritical type, i.e.,
s˛0.s/ < 0 for 0 < jsj < ı and some ı > 0.

Remark 4.3. One can prove that the bifurcating equilibria induced by Theorem 4.1 are
unstable with respect to the flow that is generated by problem (2.2). To this end, one
defines an operator L.s/, jsj < ı, as an analogue of the operator L from Section 3.1, rep-
resenting the full linearisation of (2.2) in one of the bifurcating equilibria. For sufficiently
small ı > 0, the operator L.s/ possesses a positive eigenvalue, implying the instability of
the bifurcating equilibria. We refrain from giving the details and refer the interested reader
to [54, Section 5.3] for the proof.

A. Appendix

A.1. The two-phase Stokes problem on the half-line

Let G � R2 be open and bounded with @G 2 C 4. Define � WD G � .H1; H2/ and let
† WD G � ¹0º. Let S1 WD @G � .H1; H2/ and S2 WD .G � ¹H1º/ [ .G � ¹H2º/. In this
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section we consider the two-phase Stokes problem

!�uC @t .�u/ � ��uCr� D f; in �n†;

divu D fd ; in �n†;

�J�@3vK � J�rx0wK D gv; on †;

�2J�@3wKC J�K D gw ; on †;

JuK D u†; on †;

PS1
�
�.ruCruT/�S1

�
D PS1g1; on S1n@†;

u � �S1 D g2; on S1n@†;

u D g3; on S2;

u.0/ D u0; in �n†

(A.1)

on the half-line RC for ! > 0. Define the function spaces

F1 WD Lp.RCILp.�/
3/;

F2 WD Lp.RCIH
1
p .�n†//;

F3 WD W
1=2�1=2p
p .RCILp.†/

2/ \ Lp.RCIW
1�1=p
p .†/2/;

F4 WD W
1=2�1=2p
p .RCILp.†// \ Lp.RCIW

1�1=p
p .†//;

F5 WD W
1�1=2p
p .RCILp.†/

3/ \ Lp.RCIW
2�1=p
p .†/3/;

F6 WD W
1=2�1=2p
p .RCILp.S1/

3/ \ Lp.RCIW
1�1=p
p .S1n@†/

3/;

F7 WD W
1�1=2p
p .RCILp.S1// \ Lp.RCIW

2�1=p
p .S1n@†//;

F8 WD W
1�1=2p
p .RCILp.S2// \ Lp.RCIW

2�1=p
p .S2//;

and zF WD�8jD1Fj , as well as

F WD
®
.f1; : : : ; f8/ 2 zF W .f2; f5; f7; f8/ 2 H

1
p .RCI yH

�1
p .�//

¯
:

Furthermore, we set X
 WD W
2�2=p
p .�n†/3. Then we have the following result:

Theorem A.1. Let �j ; �j ; Hj ; � > 0, p > 2, p ¤ 3. Then there exists !0 > 0 such that
for each ! � !0, problem (A.1) has a unique solution

u 2 H 1
p .RCILp.�/

3/ \ Lp.RCIH
2
p .�n†/

3/; � 2 Lp.RCI PH
1
p .�n†//;

and
J�K 2 W 1=2�1=2p

p .RCILp.†// \ Lp.RCIW
1�1=p
p .†//

if and only if the data are subject to the following regularity and compatibility conditions:

(1) .f; fd ; gv; gw ; u†; g1; g2; g3/ 2 F ,

(2) u0 2 X
 ,
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(3) divu0 D fd jtD0, �J�rx0w0K � J�@3v0K D gvjtD0, Ju0K D u†jtD0,

(4) PS1.�.ru0Cru
T
0/�S1/DPS1g1jtD0 .p > 3/, u0 � �S1 D g2jtD0, u0D g3jtD0,

(5) Jg2K D u† � �S1 ,

(6) J.g1 � e3/=� � @3g2K D @�S1 .u† � e3/;

(7) P@†Œ.D
0v†/�

0� D JP@†g01=�K;

(8) .gvj�S1/ D �Jg1 � e3K, .g3j�S1/ D g2,

(9) P@G Œ�.D
0g03/�

0� D .P@Gg
0
1/;

(10) �@�S1 .g3 � e3/C �@3g2 D g1 � e3.

Here we have set gj D .g1j ; g
2
j ; g

3
j / DW .g

0
j ; g

3
j / for j 2 ¹1; 3º, D0k D rx0k Crx0kT for

k 2 ¹v†; g
0
3º and �0 WD �@G .

Proof. The proof may be based on a localisation procedure. Making use of reflection
arguments as in [55], shifted quarter-space problems and two-phase half-space problems
are traced to shifted half-space problems and two-phase full-space problems, which may
then be solved by [31, Theorem 7.2.1] and [31, Theorem 8.2.2], respectively.

Note that in contrast to the proof of [55, Theorem 3.2], we are able to control all
commutator terms which appear during the localisation procedure by C=!a for some
uniform a > 0 and some C > 0 being independent of !, by means of interpolation and
trace theory. Choosing! >0 large enough, the norms of the lower order terms will become
small. This yields the linear well-posedness of (A.1) on the half-line RC for sufficiently
large ! > 0. Since the strategy of the proof parallels the one used in the proof of [55,
Theorem 3.2] to a large extent, we refrain from giving the details.

As an immediate consequence of the last theorem, one obtains maximal regularity of
type Lp of (A.1) in exponentially weighted spaces. To see this, we define

e�ıFj WD
®
f 2 Fj W Œt 7! eıtf .t/� 2 Fj

¯
;

where ı 2 R. We define e�ı zF and e�ıF similarly.
We write ! D ! � ı C ı in (A.1), multiply each equation by eıt and use the formula

@t .e
ıtu.t// D eıt .ıu.t/C @tu.t// to obtain the following result:

Corollary A.2. Let the conditions of Theorem A.1 be satisfied. Suppose that ı 2 R and
let ! � max¹!0; !0 C ıº. Then there exists a unique solution

u 2 e�ı ŒH 1
p .RCILp.�/

3/ \ Lp.RCIH
2
p .�n†/

3/�; � 2 e�ı ŒLp.RCI PH
1
p .�n†//�;

and
J�K 2 e�ı ŒW 1=2�1=2p

p .RCILp.†// \ Lp.RCIW
1�1=p
p .†//�

of (A.1) if and only if the data are subject to the conditions in Theorem A.1 with F being
replaced by e�ıF .
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A.2. Elliptic two-phase Stokes problems

Let yf 2 Lp.�/3, yfd 2 H 1
p .�n†/, .ygv; ygw/ 2 W

1�1=p
p .†/3, yu† 2 W

2�1=p
p .†/3, yg1 2

W
1�1=p
p .S1n@†/, and yg2 2 W

2�1=p
p .S1n@†/ as well as yg3 2 W

2�1=p
p .S2/ be given such

that . yfd ; yu†; yg2; yg3/ 2 yH�1p .�/ and such that the compatibility conditions (5)–(10) in
Theorem A.1 are satisfied at @S1 \ @S2 and S1 \ @†.

Define f .t/ WD te�t yf and in the same way define fd .t/; u†.t/ and gj .t/ for j 2
¹v;w; 1; 2; 3º. Then it holds that

.f; fd ; gv; gw ; u†; g1; g2; g3/ 2 e
�ıF

for each ı 2 .0; 1/ and the compatibility conditions (3)–(10) in Theorem A.1 are satisfied
with u0 D 0. By Corollary A.2, there exists a unique solution .u; �; J�K/ of (A.1) with
! � !0 C ı such that

u 2 e�ı Œ 0H
1
p .RCILp.�/

3/ \ Lp.RCIH
2
p .�n†/

3/�; � 2 e�ı ŒLp.RCI PH
1
p .�n†//�;

and
J�K 2 e�ı Œ 0W 1=2�1=2p

p .RCILp.†// \ Lp.RCIW
1�1=p
p .†//�:

Therefore, the Laplace transform L of each term in (A.1) is well-defined. Observe that

.Lf /.�/ D

Z 1
0

e��tf .t/ dt D yf

Z 1
0

te�.�C1/t dt D
1

.�C 1/2
yf

for Re � > �1, hence .Lf /.0/ D yf . Doing the same for all the other data and defining
.yu; y�; Jy�K/ WD L.u; �; J�K/, we obtain that .yu; y�; Jy�K/ solves the elliptic problem

!�yu � ��yuCry� D yf ; in �n†;

div yu D yfd ; in �n†;

�J�@3yvK � J�rx0 ywK D ygv; on †;

�2J�@3 ywKC Jy�K D ygw ; on †;

JyuK D yu†; on †;

PS1
�
�.ryuCryuT/�S1

�
D PS1 yg1; on S1n@†;

yu � �S1 D yg2; on S1n@†;

yu D yg3; on S2

(A.2)

whenever ! � !0 C ı. Let Au WD .�=�/�u � .1=�/r� with domain

D.A/ D
®
u 2 H 2

p .�n†/
3
\ Lp;� .�/ W J�@3vKC J�rx0wK D 0; JuK D 0;

PS1.�.Du/�S1/ D 0; u � �S1 D 0; ujS2 D 0
¯
;

and � 2 PW 1
p .�n†/ be the unique solution of the weak transmission problem�1

�
r�jr�

�
L2.�/

D

��
�
�ujr�

�
L2.�/

; � 2 W 1
p0.�/;

J�K D 2J�@3wK; on †;
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which we know exists, thanks to [55, Lemma 5.7]. Since A has a compact resolvent,
the spectrum �.A/ of A consists solely of isolated eigenvalues having a finite multipli-
city. Furthermore, it holds that Re �.A/ D �.A/ � .�1; 0/ by Korn’s inequality (The-
orem A.4). Indeed, multiplying the eigenvalue problem Au D �u by u and integrating by
parts, we obtain the identity

�kuk2L2.�/ D �k�
1=2Duk2L2.�/:

This yields the following result:

Theorem A.3. Let ! � 0, �j ; �j ; � > 0, p > 2, p ¤ 3 and let � and † be as in Theo-
rem A.1. Then there exists a unique solution .yu; y�; Jy�K/ with

yu 2 H 2
p .�n†/

3; y� 2 PH 1
p .�n†/; Jy�K 2 W 1�1=p

p .†/

of (A.2) if and only if the data are subject to the following regularity and compatibility
conditions:

(1) yf 2 Lp.�/
3, yfd 2 H 1

p .�n†/,

(2) .ygv; ygw/ 2 W
1�1=p
p .†/3, yu† 2 W

2�1=p
p .†/3,

(3) yg1 2 W
1�1=p
p .S1n@†/, yg2 2 W

2�1=p
p .S1n@†/,

(4) yg3 2 W
2�1=p
p .S2/, . yfd ; yu†; yg2; yg3/ 2 yH�1p .�/,

(5) Jyg2K D yu† � �S1 ,

(6) J.yg1 � e3/=� � @3yg2K D @�S1 .yu† � e3/;

(7) P@†Œ.D
0yv†/�

0� D JP@†yg01=�K;

(8) .ygvj�S1/ D �Jyg1 � e3K, .yg3j�S1/ D yg2,

(9) P@G Œ�.D
0yg03/�

0� D .P@G yg
0
1/;

(10) �@�S1 .yg3 � e3/C �@3yg2 D yg1 � e3,

where �0 D �@G .

A.3. A Korn inequality

For u 2H 1
2 .�/

n, letDu WD ruCruT. The following result is well known: There exists
a constant C > 0 such that

kukH1
2 .�/
� CkDukL2.�/

for all u 2 H 1
2 .�/

n such that u D 0 on @� (in the sense of traces). The proof of this
inequality relies on integration by parts. We will show that the estimate remains true if
u D 0 on some subset of @� having a positive .n � 1/-dimensional Hausdorff measure.

Theorem A.4 (Korn’s inequality). Let � � Rn, n D 2; 3, be a connected, bounded
Lipschitz domain. Then there exists C > 0 which depends only on� such that the estimate

krukL2.�/ � CkDukL2.�/ (A.3)
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holds for each u 2 H 1
2 .�/

n with u D 0 on some subset @D� of the boundary @� of �
such that Hn�1.@D�/ > 0, where Hd denotes the d -dimensional Hausdorff measure.

Proof. Let us first show that we have some kind of Poincaré type estimate, that is, there
exists a constant C > 0 such that the estimate

kukL2.�/ � CkDukL2.�/

holds for all u 2H 1
2 .�/

n with uD 0 on some subset @D� of the boundary @� of� such
that Hn�1.@D�/ > 0.

Assume on the contrary that for each m 2 N there exists um 2 H 1
2 .�/

n with um D 0
on @D� and kumkL2.�/ D 1 such that

kumkL2.�/ � mkDumkL2.�/:

It follows that Dum ! 0 in L2.�/ as m ! 1. By Korn’s inequality for functions in
H 1
2 .�/

n (see [26]), we obtain

kumkH1
2 .�/
� C0.kDumkL2.�/ C kumkL2.�// (A.4)

for some constant C0 > 0. It follows that .um/ � H 1
2 .�/

n is bounded. By Rellich’s the-
orem, there exists a subsequence .umk / such that umk ! u� in L2.�/. Then we have
ku�kL2.�/ D 1 and by trace theory it holds that u�.x/ D 0 for a.e. x 2 @D�. We make
use of (A.4) one more time to conclude that .umk / is a Cauchy sequence inH 1

2 .�/
n, since

Dumk ! 0 in L2.�/. Therefore, we obtain umk ! u� even in H 1
2 .�/. Since

kDumk �Du�kL2.�/ � Ckrumk � ru�kL2.�/ ! 0

as k !1, it follows readily that Du� D 0.
Therefore, there exists a skew-symmetric matrixA 2Rn�n and some b 2Rn such that

u�.x/ D Ax C b for a.e. x 2 � (see [26]). Define U WD ¹x 2 Rn W Ax C b D 0º. Then
U ¤ ; is an affine subspace of Rn, since @D� � U . Fix any x0 2 U and define

U0 WD U � x0 WD
®
x � x0 W x 2 U

¯
:

Observe that dimU0 D n � 1 (by the assumption on the surface measure of @D�) and
Ax D 0 for each x 2 U0. Let U?0 be the orthogonal complement of U0 and let y 2 U?0 .
Then .xjAy/ D �.Axjy/ D 0 for each x 2 U0, since A is skew-symmetric, wherefore
Ay 2 U?0 . Furthermore, we have .Ayjy/D 0, since A is skew-symmetric. It follows from
dimU?0 D 1 that Ay 2 .U?0 /

? D U0 and therefore Ay D 0 for each y 2 U?0 . But, this
means that Ax D 0 for each x 2 Rn, since Rn D U0 ˚ U?0 . Thus, we have shown that
A D 0, hence u�.x/ D b for some b 2 Rn. Since ku�kL2.�/ D 1 and u�.x/ D 0 for a.e.
x 2 @D�, we have a contradiction.

Finally, the assertion of the proposition follows from the Poincaré type estimate com-
bined with Korn’s inequality for functions in H 1

2 .�/
n.
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[26] J. Nečas and I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: An intro-
duction, Stud. Appl. Mech. 3, Elsevier, Amsterdam, 1980 MR 0600655

[27] J. Prüss and G. Simonett, Analysis of the boundary symbol for the two-phase Navier-Stokes
equations with surface tension. In Nonlocal and abstract parabolic equations and their applic-
ations, pp. 265–285, Banach Center Publ. 86, Polish Acad. Sci. Inst. Math., Warsaw, 2009
Zbl 1167.35555 MR 2571494

[28] J. Prüss and G. Simonett, On the Rayleigh-Taylor instability for the two-phase Navier-Stokes
equations. Indiana Univ. Math. J. 59 (2010), no. 6, 1853–1871 Zbl 1234.35323
MR 2919738

[29] J. Prüss and G. Simonett, On the two-phase Navier-Stokes equations with surface tension.
Interfaces Free Bound. 12 (2010), no. 3, 311–345 Zbl 1202.35359 MR 2727674

[30] J. Prüss and G. Simonett, Analytic solutions for the two-phase Navier-Stokes equations with
surface tension and gravity. In Parabolic problems, pp. 507–540, Progr. Nonlinear Differential
Equations Appl. 80, Birkhäuser, Basel, 2011 Zbl 1247.35207 MR 3052594

[31] J. Prüss and G. Simonett, Moving interfaces and quasilinear parabolic evolution equations.
Monogr. Math., Basel 105, Birkhäuser, Cham, 2016 Zbl 1435.35004 MR 3524106

[32] V. V. Pukhnachev and V. A. Solonnikov, On the problem of dynamic contact angle. (Russian)
Prikl. Mat. Mekh. 46 (1982), no. 6, 961–971. Translation in J. Appl. Math. Mech. 46 (1983),
771–779 Zbl 0532.76026 MR 726121

[33] L. Rayleigh, Analytic solutions of the Rayleigh equation for linear density profiles. Proc. Lon-
don Math. Soc. 14 (1883), 170–177

[34] D. H. Sattinger, Transformation groups and bifurcation at multiple eigenvalues. Bull. Amer.
Math. Soc. 79 (1973), 709–711 Zbl 0268.35042 MR 343117

[35] Y. Shibata and S. Shimizu, Free boundary problems for a viscous incompressible fluid. In
Kyoto Conference on the Navier-Stokes Equations and their Applications, pp. 356–358, RIMS
Kôkyûroku Bessatsu B1, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007 Zbl 1122.35100
MR 2323924

https://zbmath.org/?q=an:1204.76002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2352856
https://zbmath.org/?q=an:1342.35253&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3483895
https://zbmath.org/?q=an:1302.76217&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3169790
https://zbmath.org/?q=an:1401.76067&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3593408
https://zbmath.org/?q=an:0552.47025&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=797678
https://zbmath.org/?q=an:1317.35300&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3048614
https://zbmath.org/?q=an:1113.35110&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2267699
https://mathscinet.ams.org/mathscinet-getitem?mr=0600655
https://zbmath.org/?q=an:1167.35555&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2571494
https://zbmath.org/?q=an:1234.35323&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2919738
https://zbmath.org/?q=an:1202.35359&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2727674
https://zbmath.org/?q=an:1247.35207&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3052594
https://zbmath.org/?q=an:1435.35004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3524106
https://zbmath.org/?q=an:0532.76026&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=726121
https://zbmath.org/?q=an:0268.35042&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=343117
https://zbmath.org/?q=an:1122.35100&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2323924


M. Wilke 530

[36] Y. Shibata and S. Shimizu, On a free boundary problem for the Navier-Stokes equations. Dif-
ferential Integral Equations 20 (2007), no. 3, 241–276 Zbl 1212.35353 MR 2293985

[37] Y. D. Shikhmurzaev, Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334
(1997), 211–249 Zbl 0887.76021 MR 1442613

[38] V. A. Solonnikov, Solvability of the problem of evolution of an isolated amount of a viscous
incompressible capillary fluid. (Russian. English summary) Zap. Nauchn. Sem. Leningrad.
Otdel. Mat. Inst. Steklov. (LOMI) 140 (1984), 179–186. Zbl 0551.76022 MR 765724

[39] V. A. Solonnikov, Unsteady flow of a finite mass of a fluid bounded by a free surface. (Rus-
sian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 152 (1986), 137–157.
Translation in J. Soviet Math. 40 (1988), no. 5, 672–686 Zbl 0639.76035 MR 869248

[40] V. A. Solonnikov, An initial-boundary value problem for a Stokes system that arises in the
study of a problem with a free boundary. (Russian) Trudy Mat. Inst. Steklov. 188 (1990),
150–188. Translation in Proc. Steklov Inst. Math. (1991), no. 3, 191–239 MR 1100542

[41] V. A. Solonnikov, Solvability of a problem on the evolution of a viscous incompressible fluid,
bounded by a free surface, on a finite time interval. (Russian) Algebra i Analiz 3 (1991), no. 1,
222–257. Translation in St. Petersburg Math. J. 3 (1992), no. 1, 189–220 Zbl 0850.76132
MR 1120848

[42] V. A. Solonnikov, On quasistationary approximation in the problem of motion of a capillary
drop. In Topics in nonlinear analysis, pp. 643–671, Progr. Nonlinear Differential Equations
Appl. 35, Birkhäuser, Basel, 1999 Zbl 0919.35103 MR 1725589

[43] V. A. Solonnikov and A. Tani, Free boundary problem for a viscous compressible flow
with a surface tension. In Constantin Carathéodory: an international tribute, Vol. I, II, pp.
1270–1303, World Sci. Publ., Teaneck, NJ, 1991 Zbl 0752.35096 MR 1130887

[44] V. A. Solonnikov and A. Tani, A problem with a free boundary for Navier-Stokes equations for
a compressible fluid in the presence of surface tension. Zap. Nauchn. Sem. Leningrad. Otdel.
Mat. Inst. Steklov. (LOMI) 182 (1990), 142–148. Translation in J. Soviet Math. 62 (1992),
no. 3, 2814–2818 Zbl 0783.76028 MR 1064103

[45] V. A. Solonnikov and A. Tani, Evolution free boundary problem for equations of motion of vis-
cous compressible barotropic liquid. In The Navier-Stokes equations II—theory and numerical
methods (Oberwolfach, 1991), pp. 30–55, Lect. Notes in Math. 1530, Springer, Berlin, 1992
Zbl 0786.35106 MR 1226506

[46] N. Tanaka, Global existence of two phase nonhomogeneous viscous incompressible fluid flow.
Comm. Partial Differential Equations 18 (1993), no. 1–2, 41–81 Zbl 0773.76073
MR 1211725

[47] N. Tanaka, Two-phase free boundary problem for viscous incompressible thermocapillary con-
vection. Japan. J. Math. (N.S.) 21 (1995), no. 1, 1–42 Zbl 0845.35138 MR 1338355

[48] A. Tani, Small-time existence for the three-dimensional Navier-Stokes equations for an incom-
pressible fluid with a free surface. Arch. Rational Mech. Anal. 133 (1996), no. 4, 299–331
Zbl 0857.76026 MR 1389902

[49] A. Tani and N. Tanaka, Large-time existence of surface waves in incompressible viscous fluids
with or without surface tension. Arch. Rational Mech. Anal. 130 (1995), no. 4, 303–314
Zbl 0844.76025 MR 1346360

[50] G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to
their planes. I. Proc. Roy. Soc. London Ser. A 201 (1950), 192–196 Zbl 0038.12201
MR 36104

[51] A. Vanderbauwhede, Local bifurcation and symmetry. Research Notes in Mathematics 75,
Pitman, Boston, MA, 1982 Zbl 0539.58022 MR 697724

https://zbmath.org/?q=an:1212.35353&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2293985
https://zbmath.org/?q=an:0887.76021&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1442613
https://zbmath.org/?q=an:0551.76022&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=765724
https://zbmath.org/?q=an:0639.76035&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=869248
https://mathscinet.ams.org/mathscinet-getitem?mr=1100542
https://zbmath.org/?q=an:0850.76132&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1120848
https://zbmath.org/?q=an:0919.35103&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1725589
https://zbmath.org/?q=an:0752.35096&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1130887
https://zbmath.org/?q=an:0783.76028&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1064103
https://zbmath.org/?q=an:0786.35106&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1226506
https://zbmath.org/?q=an:0773.76073&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1211725
https://zbmath.org/?q=an:0845.35138&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1338355
https://zbmath.org/?q=an:0857.76026&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1389902
https://zbmath.org/?q=an:0844.76025&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1346360
https://zbmath.org/?q=an:0038.12201&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=36104
https://zbmath.org/?q=an:0539.58022&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=697724


Rayleigh–Taylor instability for the two-phase Navier–Stokes equations 531

[52] J. Wang and F. Xie, On the Rayleigh-Taylor instability for the compressible non-isentropic
inviscid fluids with a free interface. Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 8,
2767–2784 Zbl 1354.35116 MR 3555140

[53] Y. Wang and I. Tice, The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor
instability. Comm. Partial Differential Equations 37 (2012), no. 11, 1967–2028
Zbl 1294.76143 MR 3005533

[54] M. Wilke, Rayleigh–Taylor instability for the two-phase Navier–Stokes equations with surface
tension in cylindrical domains. http://dx.doi.org/10.25673/1016, habilitation thesis, Martin-
Luther-University Halle-Wittenberg, Halle, 2013

[55] M. Wilke, The two-phase Navier-Stokes equations with surface tension in cylindrical domains.
Pure Appl. Funct. Anal. 5 (2020), no. 1, 121–201 Zbl 1460.35266 MR 4061173

Received 20 September 2021.

Mathias Wilke
Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, Theodor-Lieser-Straße 5,
06099 Halle (Saale), Germany; mathias.wilke@mathematik.uni-halle.de

https://zbmath.org/?q=an:1354.35116&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3555140
https://zbmath.org/?q=an:1294.76143&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3005533
https://zbmath.org/?q=an:1460.35266&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4061173
mailto:mathias.wilke@mathematik.uni-halle.de

	1. Introduction
	2. Preliminaries
	2.1. Reduction to a flat interface

	3. Rayleigh–Taylor instability
	3.1. Equilibria and spectrum of the linearisation
	3.2. Parametrisation of the nonlinear phase manifold
	3.3. Main result on Rayleigh–Taylor instability

	4. Bifurcation at a multiple eigenvalue
	4.1. Lyapunov–Schmidt reduction
	4.2. Reduction to a one-dimensional bifurcation equation

	A. Appendix
	A.1. The two-phase Stokes problem on the half-line
	A.2. Elliptic two-phase Stokes problems
	A.3. A Korn inequality

	References

