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Existence and stability of strong solutions to
the Abels—Garcke—Griin model in three dimensions

Andrea Giorgini

Abstract. This work is devoted to the analysis of the strong solutions to the Abels—Garcke—Griin
(AGG) model in three dimensions. First, we prove the existence of local-in-time strong solutions
originating from an initial datum (ug, ¢o) € HL x H?(2) such that ug € H1(R) and |$o| < 1.
For the subclass of initial data that are strictly separated from the pure phases, the corresponding
strong solutions are locally unique. Finally, we show a stability estimate between the solutions to
the AGG model and the model H. These results extend the analysis achieved by the author in 2021
from two-dimensional bounded domains to three-dimensional ones.

1. Introduction

Given a domain Q C R3, we study the Abels—Garcke—Griin (AGG) model in Q x (0, T')

3 (p(P)u) + div (u ® (p(d)u + T)) — div (v(¢)Du) + VP = —div (Vo ® V¢p),

divu =0,

(1.1)
dip+u-Vo = Ap,
p=—A¢p+ V().
completed with the following boundary and initial conditions:
{u =0, dp=0pu=0 ondx(0,T), 12
u(,0) =ug, ¢¢,0)=¢o inQ.

Here, n is the unit outward normal vector on 02, and 0,, denotes the outer normal deriva-
tive on d92. In the system, u = u(x, t) represents the volume averaged velocity,
P = P(x,t) is the pressure of the mixture, and ¢ = ¢ (x, ) is the difference of the fluids’
concentrations. The operator D is the symmetric gradient %(V + VT). The flux term J,
the density p and the viscosity v of the mixture are defined as

- — 1 1— 1 1—
T=-LP290 o) = +¢ ¢ +¢ 2"’

5 +pzT, V() = VlT-i-vz

. (13)
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where p;, p» and vy, v, are the positive homogeneous density and viscosity parameters of
the two fluids, respectively. The homogeneous free energy density W is the Flory—Huggins
potential

U(s) = F(s) — %sz = g[(l + 5)log(1 4 5)+(1 —s)log(1 —s)] — %sz (1.4)

for all s € [—1, 1], where the constant parameters 6 and 6, fulfill the conditions 0 < 6 < 6.
In what follows, we will often use the non-conservative form of (1.1), that is,

p()du + (@) - Vu — p/(¢)(Vpa - Vu — div (v()Du) + V P
= —div (Vo ® Vop). (1.5)

We also recall the total energy associated to system (1.1) given by

1 1
E.9) = Einlu.§) + Eine@) = [ Sp@ulax -+ [ 1992 + w(@)ax,

and the corresponding energy equation that reads as

iE(u,(]ﬁ)—f-/ v(¢)|Du|2dx+/ |Vu|?dx = 0. (1.6)
dr Q Q

The AGG system is a primary model in the theory of diffuse interface (phase field)
modeling, which describes the motion of two viscous incompressible fluids with different
densities. It was proposed in the seminal work [9] (see also [8]). The well-known model H
is recovered from (1.1) in the case of matched densities p; = p, (see [27] for the deriva-
tion and [2,25] for the analysis of the model H). The existence of global weak solutions
(with finite energy) to the AGG model (1.1)—(1.2) has been established in the case of
non-degenerate mobility in [5] and in the case of degenerate mobility in [6]. Global weak
solutions were also proven for viscous non-Newtonian fluids in [4] and for the case with
dynamic boundary conditions describing moving contact lines in [21]. Further generaliza-
tions to non-local versions of the AGG model have been studied in [10] for fractional free
energies and in [19] and [20] for free energy with regular convolution kernels. The con-
nection between local and non-local AGG models has recently been investigated in [11]
by exploiting the arguments in [17]. Concerning the existence and uniqueness of regular
solutions, far fewer results are known. In [12], the local well-posedness of strong solutions
is proven in three dimensions for polynomial-like potentials W provided that ug € H}
and ¢ € (LP(R2), Wp‘tN(Q))l_%,p for 4 < p < 6 (in this range of p, ¢o € H3(Q))
such that ||¢o||Le < 1. It is worth mentioning that the solution in [12] may not satisfy
|¢(x,2)| <1 for all positive times. In [24], the local well-posedness of strong solutions in
two-dimensional bounded domains has been achieved for the logarithmic potential case
(see (1.4)) with initial conditions (uo, o) € HL x H?(Q) such that 1o € H'(2) and
|po| < 1. 1In this case, the solution satisfies the physical bound |¢ (x,#)| < 1 at all times. In
addition, in the case of periodic boundary conditions, the strong solutions are shown to be
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globally defined in time in [24]. We also refer the interested reader to [14,18,23,28,30,33]
and [1,3,7,15,16,26,29,35] for the modeling and the analysis of different diffuse interface
models with unmatched densities.

The purpose of the present contribution is to study the well-posedness of strong solu-
tions to the AGG model (1.1)—(1.2) in bounded domains in R3. In particular, we aim at
generalizing the analysis obtained in [24] from the two-dimensional case to the three-
dimensional one. The first result regarding the existence and uniqueness of strong solu-
tions reads as follows:

Theorem 1.1. Let Q be a bounded domain of class C* in R3. Assume that ug € H}
and ¢pog € H?(Q) such that ||¢o||zo < 1, || < 1, o = —A¢o + ¥ (¢o) € H'(RQ), and
0npo = 0 on 092. Then, there exist Ty > 0, depending on the norms of the initial data,
and (at least) a strong solution (u, P, ¢) to system (1.1)—(1.2) on (0, Ty) in the following
sense:

(i) The solution (u, P, ¢) satisfies the properties

u € C([0, To]: Hy) N L*(0, To; H) N WH2(0, To; L),

P e L*(0, To; H'(RQ)).

¢ € L0, To: W>(Q)), d:¢ € L™(0, To: (H'(R))") N L*(0, To: H' (),
¢ € L=(Q x (0, Ty)) such that |¢p(x,t)] < 1 a.e in Q x (0, Ty),

p € L0, To: H'(Q)) N L*(0, To: H>()).

F'(¢) € L0, To: L*()). (1.7)

(ii) The solution (u, P, ¢) fulfills the system (1.1) almost everywhere in Q x (0, Typ)
and the boundary conditions 9,¢ = 0,0 = 0 almost everywhere in Q2 x (0, Tp).

Furthermore, if additionally Q is a bounded C* domain in R3 and ||¢o |~ < 1, then the
solution is locally unique, that is, there exists a time T € (0, Ty], depending only on the
norms of the initial data, such that the solution is unique on the time interval [0, T1).

Before proceeding with our second result, it is worth mentioning that the proof of
Theorem 1.1, although still based on a semi-Galerkin approximation, differs from the one
of [24, Theorem 3.1] in several aspects. First, the proof of [24, Theorem 3.1] exploited
the continuity of the chemical potential and the regularity of its time derivative, which are
properties available for the strong solutions of the convective Cahn—Hilliard equation in
two dimensions. Since these are still an open question in three dimensions, we overcome
this issue by employing an approximation procedure involving the convective viscous
Cahn—Hilliard equation (see Appendix A), together with an appropriate regularization of
the initial datum. Such approximations are crucial to rigorously justify the higher-order
Sobolev estimates obtained for the approximate solutions. Secondly, due to the lack of
global-in-time separation property in three dimensions, we show local uniqueness of solu-
tions departing from a subclass of initial data such that ||¢o||z < 1. For such a class of
solutions, the separation property holds on a (possibly short) time interval due to the reg-
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ularity of the solution in Holder spaces. We point out that the separation property (or, at
least, L?-estimates of W (¢) and ¥ (¢)) seems to be necessary to control the additional
term p'(¢)(Vi - V)u in (1.5). Notice that the argument proposed in [25] based on esti-
mates in dual spaces cannot be used due to the non-constant density. On the other hand,
the estimate in L2 x H () of the difference of the solutions in [24, Theorem 3.1] fails
in three dimensions due to the above-mentioned term p’(¢) (Vi - V)u in (1.5). To over-
come these issues, the proof of the uniqueness is carried out by means of a Sobolev type
estimate in L2 x H?2(Q) for the difference of the solutions.

Next, we prove a stability result between the strong solutions to the AGG model and
to the model H departing from the same initial datum in terms of the density values.

Theorem 1.2. Let Q be a bounded domain of class C3 in R3. Given an initial
datum (ug, ¢o) as in Theorem 1.1, we consider the strong solution (u, P, @) to the AGG
model with density (1.3) and the strong solution (ug, Py, ¢rr) to the model H with con-
stant density p > 0, both defined on [0, Ty]. Then, there exists a constant C, that depends
on the norm of the initial data, the time Ty and the parameters of the systems, such that

sup |u(@) —un(@)ll@gsy + sup [¢@) — du(O)llary
t€[0,To] t€[0,To]

P1— P2 p1+p2
SC(‘ 2 ‘Jr‘ 2 _p‘)' (1.8)

Remark 1.3. Assuming that p; = p and p, = p + ¢, for (small) ¢ > 0, the stability
estimate (1.8) reads as

sup |lu(t) —ug @)llgy + sup ¢@) —du @)y < Ce.
t€[0,To] t€[0,T]

Theorem 1.2 justifies the model H as the constant density approximation of the AGG
model when the two viscous fluids have negligible difference between their densities.
To make a comparison with [24, Theorem 3.5], we notice that the estimate holds in dual
Sobolev spaces. Indeed, the main idea is to write the momentum equation for the solutions
difference (u — up, ¢ — ¢pp) as the Navier—Stokes equations with constant density and
exploit the uniqueness argument introduced in [25].

Plan of the paper. We report in Section 2 the preliminaries for the analysis. Sections 3
and 4 are devoted to the proof of Theorem 1.1, in particular, the local existence of strong
solutions and their uniqueness, respectively. In Section 5 we prove the stability result
contained in Theorem 1.2. Appendix A is concerned with the well-posedness results for
the convective viscous Cahn—Hilliard equation.

2. Notation and functional spaces

Let X be a real Banach space. Its norm is denoted by | - ||x and the symbol (-, -)x/ x
stands for the duality between X and its dual space X’'. We assume that €2 is a bounded
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domain in R3 with boundary 92 of class C3. For p € [1, 00], let L?(2) be the Lebesgue
space with norm || - ||z». The inner product in L?(R2) is denoted by (-, -). For s € N,
p € [1,00], WP(Q) is the Sobolev space with norm || - ||ws.r. If p = 2, we use the
notation W*2(Q2) = H*(Q). For every f € (H'(2)), we denote by f the general-
ized mean value over €2 defined by f = |Q|~1(f, D @y,mave)-If f € LY(Q), then

f=1Q! Jo f dx. By the generalized Poincaré inequality, there exists a positive con-
stant C such that

£l < CIVAI2 +1F2)2. YV feH\(®. @1

We recall the Ladyzhenskaya, Agmon and Gagliardo—Nirenberg inequalities in three dim-
ensions:

1l < CUFIZIA G, ¥ f € HY (@), 2.2)
1 fllew < CIAIZ I f 15 ¥ f € HAS), 2.3)
IV Flls < CUFIZ=If s ¥ f € HAQ), 2.4)
1 llwrs < CIEIG S Byaes ¥ f € W2S(Q). 2.5)

Next, we introduce the Hilbert spaces of solenoidal vector-valued functions:

Lg: {ueLz(Q):divu=0inQ, u-n:OonBQ},
H, = {u e H(Q) :divu =0in Q, u = 0 on 9Q}.

We also use (-,-) and || - ||z> for the inner product and the norm in L2, respectively.
The space H} is endowed with the inner product and norm (u, V), = (Vu, Vv) and
lwllgy = [[Vullz2, respectively. We recall the Korn inequality

|Va| 2 < V2|Dul2. VueH., (2.6)

which implies that |Du||z> is a norm on H! equivalent to ||u |l - We introduce the space
H; = H?(Q) N H;, with inner product (#,v)y2 = (Au, Av) and norm ||u||y2 = [|Aul.2,
where A = P(—A) is the Stokes operator and [P is the Leray projection from L?(R)
onto L2. We recall that there exists a positive constant C > 0 such that

lullgz < Cllullyz. VueH;. (2.7)

We denote by A~! : (H!) — H}, the inverse map of the Stokes operator; that is, given
f € (H})', there exists a unique u = A~'f € H} such that (VA™'f, V¥) = (f.v) 1 g1
forallv € Hcl, As a consequence, it follows that

1
Flls == IVA"I = (£ A7) o

is an equivalent norm on (H})’.
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Throughout this paper, we will use the following notation:
o« = min{p1, p2}, p* = max{p1,p2}, v« = min{vy,v2}, v* = max{vy,vs}.

The symbol C will denote a generic positive constant whose value may change from line
to line. The specific value depends on the domain €2 and the parameters of the system,
such as p«, p*, v, v*, 6 and 6. Further dependencies will be specified when necessary.

3. Proof of Theorem 1.1. Part one: Existence of solutions

3.1. Approximation of the initial datum

First of all, we approximate the initial concentration ¢ following the method introduced
in [25]. For k € N, we consider the elliptic problem

—Apok + F'(Pok) = flox inS2, 3.1
0o =0 on 02, '
where [ig x = hg o [lo, hx : R — R is the globally Lipschitz function
-k, z < —k,
hk(Z) = zZ, VARS [_k5k]v (32)
k, z >k,

and [lg = —A¢o + F’(¢o). Thanks to the superposition principle [31], we have that
Rox € H'(Q) N L>(R) and
Zokllear < llizoll a1 (3.3)

As shown in [25, Lemma A.1], there exists a unique solution ¢ to (3.1) such that
ok € H?(Q), F'(¢ox) € L?(Q2), which satisfies (3.1) almost everywhere in Q and
Ontho,x = 0 almost everywhere on d<2. In addition, there exist 1 € (0, 1), which is inde-
pendent of k, and k sufficiently large such that

ol <1+ llgollgr. Ipoxl <m <1, ldosllgz < C(L+[HollL2) (3.4
for any k > k. Furthermore, by [25, Theorem A.2] (see also [2, Lemma 2]), we have
I F' (o)L < o kllLe < k.
Then, there exists § = §(k) > 0 such that
[ pokllLe <1—=6. (3.5)

As a consequence, since F'(¢o ) € H'(Q), it is easily seen that ¢g x € H?>(2) by ellip-
tic regularity. Finally, observing that [io s — fLo in L?(2), it follows that ¢ x —> o
in H(Q).
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3.2. Definition of the approximated problem

Let us consider the family of eigenfunctions {w;}?2, and eigenvalues {A;}7Z, of the
Stokes operator A. For any integer m > 1, let V,,, denote the finite-dimensional subspaces
of L2 defined as V,, = span{wy, ..., Wy, }. The finite-dimensional spaces V,, are endowed
with the norm of L2. The orthogonal projection on V,, with respect to the inner product
in L2 is denoted by PP,,. Recalling that €2 is of class C3, the regularity theory of the Stokes
operator yields that w; € H3>(€2) N H} for all j € N. As a consequence, the following
inverse Sobolev embedding inequalities hold for allv € V,,;:

IVl < Culvlice.  Wllg2 < Culvliz,  vlas < Callvllee. (3.6)

Letusset T > 0. For any k > 0, € (0,1) and m € N, we claim that there exists an
approximate solution (#,, ¢,) to system (1.1)—(1.2) in the following sense:

Uy, € CH0,T]; Vi),
¢m € L®(0,T; H*(R)), 0:¢m € L®(0, T; H'(Q)) N L*(0, T; H*(Q)),

¢m € L°(2 x (0, T)) such that |¢y, (x,1)] <1 —3§ae.in Qx (0,T), S
ftm € L0, T; H*(R)) N WH2(0,T; L*(R)),
for some § > 0, such that
(0(Bm)Bettm, W) + (0(Dm) @ - V)it W) + (V(m) Dittyr, VW)
— B (Tt - VYt W) = (1 Vb ). (3.8)

forallw € V,, and ¢ € [0, T], and
0tPm +ttm - Vom = Am,  fm = @0 — Adm + V' (¢) ace.in Q x (0,7T), (3.9)

together with

=0, dudm = dnfim =0 9% x (0, T),
{u ¢ H on 982 > (0.7) (3.10)

um("()) = Pm”Ov ¢('!0) = ¢0,k ln Q
3.3. Existence of approximate solutions

We now exploit a fixed point argument to show the existence of (u,, ¢,,) satisfying
(3.7)—(3.10). For this purpose, we fix v € W2(0, T; V,,). We consider the convective
viscous Cahn—Hilliard system

0 m .V m:A m .
{ tPm + V-V H in Qx(0,7), @I

Um = Q0 Pm — Apm + F'(dm) — OoPm

which is equipped with the boundary and initial conditions

On®m = Opty =0 ondQ x (0,7), Om(-,0) = pox in Q. (3.12)
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Thanks to Theorem A.1, there exists a unique solution ¢, to (3.11)—(3.12) such that

dm € L0, T; H3(Q)), 0:pm € L0, T; H(Q)) N L*(0,T; H*(RQ)),
dm € L=(Q x (0, T)) such that | (x.1)] <1 -8 ae.in Q x (0,T), (3.13)
m € L=(0,T; H*(R)) N W2(0,T; L*(Q)),

for some 8 which depends on o and k. We report the following estimates for sys-
tem (3.11)—(3.12):

(1) L? estimate: for any T > 0,

T
sup (Ilfm ()12 + |V (1)]122) + / | A (0)]12 dr
t€l0,T] 0

< llgokllZ> + & Voo ll2 + 03I1QT:

(2) Energy estimate: for any 7' > O,

1 T T
wp Eqwe@(®)+ 5 [ IVin(@lzdr +a [ om0l dr
t€[0,T] 0 0

1 T
< Eum(on) + 5 [ PO dr G.14)
0

We now make the ansatz that
m
Um(x,1) = Za;"(t)wj (x)
i=1

is the solution to the Galerkin approximation of (1.1); which reads as

(p(@m)0sttm. wi) + (p(@m)(V - VIttm. W) + (V($m) Dty , Vwy)

- %((wm V)t W1) = (U Vmowr), YI=1,....m,  (3.15)

such that u,,, (-, 0) = Py,u0. Setting A™(t) = (al*(t),....,a} (t)T, (3.15) is equivalent to
the system of differential equations
d

Mm(t)EA’" +L"()A™ = G™ (1), (3.16)

where the matrices M™(¢), L (¢) and the vector G™ (¢) are defined as

M” (1)), = /Q P W1 - W d,

W Os = [ (pm) - Vs w1+ v (@)D, < Vs

- (m—;pz)(vum “V)w; -w,) dx,
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@ (1)), = /Q Vb - wy L,

and A (0) = ((Pnttg. 1), - .., (Puttg,wm))T . The regularity properties (3.13) imply the
continuity of ¢, € C([0, T]: W'*(Q)) and p,, € C([0, T]; H'(2)). In turn, we have
that p(¢m), v(¢m) € C(R2 x [0, T]). Moreover, we observe that v € C([0, T]; L2). Thus,
we infer that M and L™ belong to C ([0, T]; R™*™), and G™ € C([0, T]; R™). Since the
matrix M () is positive definite on [0, 7] (see [26, Appendix A]), the inverse (M™)~! €
C([0, T]; R™>*™) Thus, the existence and uniqueness theorem for systems of linear ODEs
guarantees that there exists a unique solution A™ € C ([0, T]; R™) to (3.16) on [0, T]. As
a result, the problem (3.15) has a unique solution u,,, € C'([0, T]; V,).
Next, multiplying (3.15) by a]" and summing over /, we find
|2 |t |2

/Qp(¢m)a,(|”’£’ )dx—i—/gp(gbm)v-V(T) dx+/gu(¢m)|m>um|2dx

_ 2
_u/ Vum-V(|"’”| )dx=/ 'V - Uy dx.
Q 2 Q

2
Integrating by parts, we obtain
d unml? , Um|?
o | pem™ = [ (@p@m) + aiv (otgnm) 2 ax
dr Jo 2 Q
+/ V(Pm) | Dty |? dx + u/ A,um| ul dx = / mV - U dx.
Q 2 Q 2 Q
Recalling that o' (¢,) = 2522 and divy = 0, by using (3.11);, we have
Upm|? - Un|?
_ / (310(bm) + div (p(hm)¥)) 2 a4 PLZ P2 / At P g — o,
Q 2 2 Q
Thus, we infer that
d |um|2 2 .
- 0(Pm) dx + V(¢m) Dy |~ dx = OmV i - Uy dx. (3.17)
dr Jo 2 Q Q

By using (3.13), and the Poincaré inequality, we get

% 1
/chmvum “Um dX = ([ m Lo |V imllL2 wm L2 < E*IIDumlliz + Hllvumlliz-

So, we find the differential inequality

d/ (¢ )|"’"|2d +U*/ID Pdr < — Vil (3.18)
—_— X —_— u X e . .
ar Jo PO 2 Jo PHmlGx = WY Hmll

Integrating the above inequality on [0, s] with s € [0, T'], and using (3.14), it follows that

Pauio|? 2
| = 0| dx + Efree(¢0,k)
2 AIV*

/ [v(x)lI7 > dr, (3.19)
0

[ S ar < [ oo

1

+ )le*
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which, in turn, entails that

* S
5 o 5 4 2 5
len I < ol + o Fueelni) + 7 [ @IFdr. G20
At this point, setting
P 4 2
G = —||”0||iz + ———Epee(Por), Co= ,
Px A1PxVx A1PxVx
and assuming
t
/ [v(0)|2, dr < C3e¥, 1t e[0,T], (3.21)
0

where C3 = CT, we deduce that

t t rs
/ lum(s)|I7,ds < C3 + 02/ / (D)2, drds < C3ef. Vie[0.T]. (3.22)
0 0 Jo
Furthermore, thanks to (3.20) and (3.21), we also infer that

1
sup [lum(t)llz2 < (C1 + C3C2e2T)? =: K,. (3.23)
t€l0,T]

Now, we control the time derivative of u,,. Multiplying (3.15) by %a;" and summing
over [, we find

P[0 tm ||12) < —(p(Pm) (v - VItum, dsttm) — (v(m) Dy, VO rtt)

i ((Vﬂm : V)um» 0rttm) + (¢mvﬂm» 81,‘um)~

3

By exploiting (3.6), we obtain

pxlldrtm 72 < p*IVIL2lIVitmll Lo 18 rtml L2 + v [ Dtt |2 VOt | 2
P1— P2
2
+ [ @mllLoo IV imll 211V Ortm|l L2

2
< p*Clwliczllwmllzs10wmllLz + v Colltm || 2110 wm | 2

|22 1Vt [V b 2Bt .2

P1— P2
+ C| B2 Mt 23 1V bt 2210t 2 + Conl| Vbt 221yt 1.2
< 0" Conllv L2 10112 + ™ C2 it 22 1t 2
P1— P2
+ Co | P2 |t 121V ke 22 1t 2

+ CnllVism | L2 |0 um || L2
Then, by using (3.14), (3.21), (3.22) and (3.23), we infer that

T * 2 T \)* 2
| 10 a0 < 4(2Cuko) [ @I dr 4 4(3-C2) cae®T
0 P 0 Px

+4((i—1” z

T
PI_PZ‘ )2 Cm)/ 5

K Xz \Y d

5 o) + 02 ) [ //«m(f)”Lz T
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* 2 v 2
< 4((”—ch0) n (—*C,%,) )C3eczT
P o

+ 4((% P ;pz K0)2 + i—?)(zEt‘ree((pO,k) + C3eT)

=: K?, (3.24)

where K; depends only on px«, p*, v«, 0o, lluoll12, Efec(dbo), T, 2, m.
We define the setting of the fixed point argument. We introduce the set

S ={ue W20, T: V) : /Ot lu(0)|2: dr < C3¢%', 1 € [0, T),
drtli20,rv,) < Ki .
which is a subset of L2(0, T; V,,). We define the map
A:S—L%>0,T:Vy), AWV) =un,

where u,, is the solution to the system (3.15). In light of (3.22) and (3.24), we deduce that
A : S — S.Itis easily seen that S is convex and closed. Furthermore, .S is a compact set in
L?(0,T;V,,). We are left to prove that the map A is continuous. This is done by adapting
the argument in [24, proof of Theorem 3.1] to the viscous case. Let us consider a sequence
{v,} C S such that v, — ¥in L2(0, T; V,,). By arguing as above, there exist a sequence
{(Wn, uyn)} and a pair (1/~/, /1) that solve the convective viscous Cahn—Hilliard equat-
ion (3.11)—(3.12), where v is replaced by v, and ¥, respectively. Repeating the unique-
ness argument in the proof of Theorem A.1, we have

1d ~ - -
VAT G~ D + el — F13a) + IV — DI
5/ wn<vn—ﬂ-VA—lwn—&)dx+/(wn—xz)’v“-VA—l(wn—&)dx
Q 5 Q
+ B0l — T,

where the operator A is the Laplace operator —A with homogeneous Neumann boundary
conditions. Since v belong to S, we infer that

1d 1 ~ ~
S5O+ 31V = D)2 = CFO) + Ivn =12,

where f(1) = VAT (Y (1) — ¥ (O)|12, + allYm(t) — ¥ (1)]2,, for some constant C
depending on Cy, C,, K; and 6. Observing that v, (0) — 1;(0) = 0, by the Gronwall
lemma we obtain

T
[V — ¥ llLoco,1;22@)NL20,T: H (@) = GCT/ [vn(z) = F(0)||7.dr > 0 (3.25)
0
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as n — 00. On the other hand, using that {v, } and ¥ belong to S, the continuous embedding
W12(0,T;V,,) < Yr (see Appendix A for the definition of Y7) and the properties of
the initial condition ¢  (cf. ¢pox € H 3(Q) and (3.5)), it follows from Theorem A.1 that
10:¥nllLoo.m:m1 (@) + 10:¥nllL20.7:82(2)) = C. (3.26)

19:¥ Lo, ;1)) + 110: ¥ [IL20,m3 2 (02)) < € (3.27)

for some C independent of n. Moreover, we also have

”/'Ln”LOO(O,T;HZ(Q)) + ||1/fn||L°°(0,T;H3(Q)) <C, (328)
”ﬁ”LOO(O,T;HZ(Q)) + ||1/f||L°°(0,T;H3(Q)) <C, (3.29)
||8tl'Ln||L2(0,T;L2(Q)) + ||8,/TL||L2(0’T;L2(Q)) <C (3.30)

and
max x,t)| <1-6% max J(x.0)| <1—6" 331
(x,1)€Qx(0,T) V(0] = (1) o 0.T) ¥ (x,1)] < (3.31)

for some positive C and §* € (0, 1) independent of n. Our claim is that w, — [ in

L>®(0,T; H'(R)). To this end, in light of the above estimates, we first deduce from the

Aubin-Lions compactness result that there exists a subsequence p,, with the property

that p,; — it — p*in L*=(0, T; H'(R)). Let us show that u* = 0 by using the equation
pn = L= £0i(Yn — V) = AWn = V) + V' (Yn) = V().

By interpolation, we infer from (3.25), (3.28) and (3.29) that

1V — ¥ lroor:m2@) — 0, as n — oo. (3.32)

As a consequence, thanks to (3.31), ||V (¥,) — lp/('(;)”Loo(O,T;LZ(Q)) — 0, as n — oo.
On the other hand, it follows from (3.25), (3.26) and (3.27) that (up to a subsequence)
3¢ (Yn; — U) — 0 weakly in L2(0, T; H2(S2)). Thus, we obtain that #* = 0. Besides, by
uniqueness of the (weak) limit point, we conclude that

l4n — itllLooo, ;1 (@) — 0, as n — oo, (3.33)

We now define u, = A(v,) € S, for any n € N, and # = A(¥) € S. We consider
W=ty —, Y =Yy —V,v=v, —¥ and & = [, — [I that solve
(o) 0w, w) + ((p(¥n) — (YD W) + (p(Yn) V- VIttw — p(P) (¥ - V)i, w)
+ (V(Yn)Du, Yw) + ((v(¥n) — v(§))DE. Vi)
— B (Vi Vo = (VE- V)W) = VY = iVTW)  (3.34)
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forallw € V,, and for all ¢ € [0, T]. Taking w = u, we obtain

[ ot ax + [ v () Dt dx
- T”/Qa,wnwdx—%/Ql/f(a,ﬁ-u)dx

~ [ W0 Vn = (DG V) -wdx = 2222 [y (O : Dy ax
Q 2 Q

2dr

+ 2 ;’)2/9((% V), — (Vi - V)i -udx+/ﬂ(unw,, —IVY) -udx.
Thanks to (2.6) and (3.26), we have
P1— Pz

/ 3 Ynlul? dx < C 19 Yn Lo lull L2 llulls < IIDulle + Cllull7

— 10
and
01— P2 ~ ~ 2 ~12 2
/. V(0.1 -u)dx < C||Y || ||0:ttl|p2llull2 < Clullz. + Clloalz: 1V
Noticing that v,, v, u, € S, by exploiting (2.6) and (3.6), we find

—fg (P(Wn)0n - VIuy — p(¥)(F - V)ii) - udx

=P [ (e V) - dx = [ oI V)
Q Q
~ [ D@ V)
< CIW e ol [ Vanlzlullz + el Va2
£ Pl Valo a2
< Cull ¥zl + Con ¥l 2 + € Vel 2
< P Duls + CullalZs + Cul¥ 1 + Coulb 1.

In addition, we deduce that

V1 — V2 ~ ~ v
- /QW(Du :Du)dx < Clly || Dl 2 [[DullL2 < ﬁllDulliz + Cnll ¥ II72

and

e fQ (Vitn - VYttn — (VT - V) -1 dx

= P22 [ = ) = PP (Vi 50 Vi
Q Q

:—pI;pz/(l/«Aun+ﬁAu)'udx—pl;m/(ll«vunﬂLﬁV"):V”dx
o Q
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= Clulr2l|Aunli2llwlLo + Cllil Lo || Aull L2 |Jul s
+ ClliullezVun s VallLs + CllEl sl Val e [ Va5

< Cullpll2 IVl + CnlVul 2 l|ul L2
v
< 15IPulZ2 + Cnlllze + CmllullZa.
Finally, by (3.28)—(3.29), we have

/Q(anwn —AVY) - udx < (|l IV¥allzs + 1L IV o) e s
= Cllpllzz + 1Y L) Va2
V
=< %IIDuIIiz + Cllplz> + Cllv -

Combining the above inequalities, we are led to the differential inequality

d

3 [ plal? ax < m) fQ (W)l dx + ha(0).

where
hl(t) = Cm(l + ”ath(t)”i]l)
and
ha(t) = Co (1087 1Y O 32 + 1 Oz + IPOIF2 + 1(@)]72)-
Thus, the Gronwall lemma entails
1 T
sup [lu(r)]2, < ~elo @iz / ha (1) dr.
t€[0,T] P 0

On account of (3.26), (3.32), (3.33), and the convergence v, — ¥ in L2(O, T:V,), we
deduce thatu, — @ in L*°(0, T; V,,), implying that the map A is continuous. Finally, we
are in the position to apply the Schauder fixed point theorem and conclude that the map A
has a fixed point in S, which gives the existence of the approximate solution (u,, @)
on [0, T'] satisfying (3.7)—(3.10) for any m € N.

3.4. Uniform estimates independent of the approximation parameters

Integrating (3.9); over €2, we get

/¢m(t)dx=/ doxdx, Yiel[0,T] (3.35)
Q Q

Owing to (3.4), for k > k, |¢pm(t)| < < 1 forall ¢ € [0, T]. Taking w = u,, in (3.8) and
integrating by parts, we have (cf. (3.17))

d 1
ar _p(¢m)|um|2dx+/ V(¢m)|Dum|2dx :/ HmV m - U dx. (3.36)
tJo?2 Q Q
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Multiplying (3.11) by ., integrating over 2 and exploiting the definition of u,,, we find

d

1 2 2 2
([ 51982+ ¥@)ax) + [ 19+l

+ / Up - Vomim dx = 0. (3.37)
Q

By summing (3.36) and (3.37), we reach

d
G En )+ [ v@m)Dunax + [ Vi s+ [ aliignlax =0. 339

An integration in time on [0, 7], with 0 < ¢t < T, yields

t
E(um (1), pm (1)) + /0 (RY V(¢m(s))Dum(s)”iz + ||Vﬂm(s)||1%2 + a”at‘pm(s)”iz ds
= E(Pnuo, $ox)-

Thanks to (3.4) and (3.5), we observe that

*

P 1
E(Ppuo, o) < —=luoll7> + = ldollz + 6o(1 + || max [W(s)]).
2 2 se[-1,1]

Since ¢y, € L*°(2 x (0, T)) such that |¢,,(x, )| < 1 almost everywhere in Q2 x (0, T),
we obtain

lwmllLooo,r12) + lUmllL20,7:m1) = C. (3.39)
mllLooo,:H1 (@) < C, (3.40)
IVikmllz20,7;2202)) < C, (3.41)
Vel|0:dmllL20,7:02(0)) < C. (3.42)

where the constant C depends on |ug||z2 and ||¢o] g1, but is independent of m, o and k.
Multiplying (3.11) by —A¢y,, integrating over 2 and using (3.13), we get

[ Adm I3 + /Q F" (¢m) |V |* dx = a[Qa,qsmAqsm dx + /Q Viim - Ve dx
+ 60l Vmll7 -
Since F”(s) > 0 for s € (—1, 1), by using (3.40), we have
1AGmlI7> < C(1+ IVimZ2 + & 13:dml72) (3.43)

for some C independent of m. Then, it follows from (3.41) and (3.42) that

mllz20,7;H2(02)) < C. (3.44)



A. Giorgini 580
We now recall the well-known inequality (see [32])
[ 1E @l ax < o [ Fn) o) ax 4 C (345)

where the positive constants Cy, C, depends only on ¢k, thereby they are independent
of k (for large k). Then, multiplying (3.9), by ¢m — ¢ox (cf. (3.35)), we find

/ IV dx + / F' () (m — Bo) dx
Q Q
= _a/s;atﬁbm(ﬁbm _¢0,k) dx + /S;(,um _/L_m)qsm dx

+90/Q¢m(¢m—m)dx.

By the Poincaré inequality and (3.40), we obtain

| /Q F'(@m)@m — G0 dx| = C(1 4 | Vitmll 22 + l0:mllz2). (3.46)

Since 1 = F'(¢m) — Bogo x» we infer from (3.45) and (3.46) that
[Fom] < C(1+ IVitm L2 + ol|0:hmllz2)-
Thanks to (2.1), we have
lm ey < C(L+1VimlLz + el|0chmllL2)- (3.47)
As a direct consequence, we deduce that

lm L2 0,7:11 (@) = Cs (3.48)

for some constant C independent of m, « and k. In addition, using the boundary condi-
tions (3.10) and (3.39), we find

10:Pmll 1y < C(1+ IVitmllL2). (3.49)

which, in turn, implies that

19:Pm 20,151 2))) = C-
Next, taking w = 0;u,, in (3.8), we find
1d

L9 ) D dx + / ()|t
2dt Jo Q

Vi —Va

_ [ (o) (- V)t - Dt A + f 3¢ 6m Dt dx
Q Q

P1 — P2

M

/Q (Vs - V)it - Bytt x + /Q YoV - et A, (3.50)
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Thanks to the regularity of ., (cf. (3.13)), we multiply (3.9); by 9,1, and integrate
over 2 to obtain

1d

Ed_/ |V/Lm|2dx + (Ot m 0:Bm) + (Ot o, U - V) = 0.
tJao

Direct computations give that

(Ortm, 0rPm) = (011 Pm» 0¢Pm) + ”vat¢m”i2 + /;2 F" (¢pm)|0spm|* dx
— 00|9:¢m 72
and
d
Ot - Vo) = —(/ Wmtnm - Vm dx) —/ Wm0ty - Ve, dx
dr \Jgq Q

_/Q/Lmum'vat‘pm dx.

As a result, we find

d 1 o
([ 31V s [ S0P ax + [ ot - Vg dx) + 190,43
dr \Jgq 2 Q2 Q
< 00|0:pml3> + /Q U st - Vi dx + /Q Wl - V Oy dx. (3.51)
By summing (3.50) and (3.51), we arrive at

d
—Hy + pulldcttm| 72 + V0 ¢mll72

dr
Vi — V2 2
< /Q )t - V) - Byt e+ 22 /Q 1 Dt | dx
P1 — P2
P2 [ (Vi Vi) But 0342 [ Ve Dt
Q Q
T B0l 22 + /Q it - Vi dx
=Y R, (3.52)
k=1
where

1 1 o
Hu(t) = E/Qu(qs,n)uD)u,,,Pdx+§/Q|V;L,,,|2alx+5[9|a,¢,,,|2c1x

+/ MmUm -V dx.
Q
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By exploiting (2.2), (2.6), (3.39), (3.40), and (3.47), we observe that
[t 9 x| = Vil 131
1
< C(1L+IVimlirz + alldehml2) [ Vaml ;.
1 1 o
< g | v@mIDun P ax + 19pmlEs + G100l + Co
4 Ja 4 4
for some Cy independent of m, o and k. Thus, it follows that
1 2 1 2 o 2
Hpn z o | v(@m)|Dum|”dx + 2[Vitmlz2 + 7 19:bml72 = Co. (3.53)
Q
Similarly, it is easily seen that

Hy < /Q 0 () Dt P dx + [Vjim |22 + @ [9ehmlZe + Co.  (3.54)

for some C independent of m, o and k. Before proceeding with the estimate of the
terms R;, i = 1,...,7, we need to control the norms ||Au,,||z2 and ||m| g3. To this
end, taking w = Au,, in (3.15), we have

1
_E(V(‘pm)Aumv Aup) = —(0(hm)0sttm, Atyy) — (0(Dm) W - V)b, Auyy,)

- ;pz ((Vitm - V)t Awy) + (i V b, Attyy)
V1 —Vp

+ = Dt V. Aty). (3.55)

+

By arguing as in [25] (see also [24]), there exists 7, € C([0, T]; H'(RQ)) such that
—Auy, + Vi, = Au,, almost everywhere in  x (0, T'). Moreover, 1, satisfies

1 1
[7mll2 < ClIVumll; N Auml 2, N7mllar < CllAum|.2, (3.56)
where C is independent of m, o and k. Therefore, we obtain
1
E(V(d)m)Aums Aup) = —(p(Pm)0cttm, Aty) — (0(Pm) W - V)tty, Attyy,)
- ; & (Vm - V)t Atty) + (U Vo, Atty)
V1 —

vy —V v
12 2 2 2(71,,,V¢m,Aum)

+

+ (Duy Ve, Auy,) —

=) R (3.57)

On the other hand, taking the gradient of (3.9);, multiplying it by VA, and integrating
over 2, we find

”VA/LmHZZ = (VO:bm, VAum) + (V(tm - Vom), VA ). (3.58)
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Then, in light of (3.9); and (3.10);, it follows that

”Mm”,zv.p = C(”/’Lm”fql + "VA/Lm”iz),
which, in turn, by (3.53) gives that

”,um”zs = C(] + ”vﬂm”iz + a2||at¢m||i2 + (VO:Pm, VAum)

+ (V(um - V), VAI'Lm))
14

=C(1+Co+ Hn)+ Y Ri, (3.59)
i=13

where C is independent of m, o and k. Now, multiplying (3.57) and (3.59) by two positive
constants w; and @, (which will be chosen later on), respectively, and summing them
with (3.52), we obtain

d VW1
g Hm pxllditm|Z2 + V0 mF2 + —=— Aumll72 + @l tim I
6 12 14
<CU+m)(1+Co+Hp)+ Y Ri+wm » Ri+wm Y Ri. (3.60)
i=1 i=7 i=13
Let us proceed with the estimate of the terms R;, i = 1, ..., 14. In what follows, the

generic constant C may depend on @ and @,. Exploiting (2.2), (2.6), (3.39) and (3.53),
we have

= [ )t Do) Bt x| = 0 it |Vt 3 et

A

P
o 10t 2o + ClI V22 | At 2

IA

p Vs T
g 10eumll72 + =5 [ Aum |2 + C a3

IA

Px 2
gllazumlle t—

+ C(Co + Hp)?.

By the Sobolev embedding, (2.2) and (3.53), we obtain

‘VI_VZ

. /Q 81 Dt 2 dx| < 118, bl | Dty 3| Dty 2

1
< < 1V3:mll7z + CllAupm|| L2 |Dum|;

8
1 VT
< g IVObmlz: + =5~ IAuml 72 + C Duml|

1 V@
< gIV0dmlZ2 + = 1 AumlZ2 + C(Co+ Hm)®.
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By the Sobolev interpolation, (2.3) and (3.47), we get

‘,01—/02
2

[t D) Bt x| <€ 1Vt = Vit 210
= CUV sl it iy | Vit 120 2
<2022 + C IV sl 2ty [ Dt 2
e O A I
+ CIVhm D
< BN lF2 + " il + C(Co + Hn

Exploiting (3.43), (3.47), (3.49) and (3.53), we find

2 [ ¥ But 3] = 20pen 195Dt
< LN + Cllgm Iz Nl
< BNz + C(1+ 1Vin 2 + 021006mlF2)”
< B + €+ Co+ Ha)”
and

00l19:¢m 72 < Cl3:hmll 1y Vi pmllL2
< é”va,(pmuiz +C(+ Co + Hyp),
as well as
) /Q Wmttm + VOrm dx| < [[pm Lo lmllL3VO: Pl L2
SIVO bl + CIDun 221+ Vi3 + 0 [rgm)
éuva,(pmuiz +C(+ Cy + Hp)>.

IA

IA

By Young’s inequality, we have

@10 |0t 2| Aty || 12

|- / (o) Dsttm - Att
Q

IA

p 2(0*)’w
) dgum |, + L
8w Px

IA

2
[Aum |7
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By using (2.2), (2.3), (2.6) and (3.53), we find

= [ )t -Vt - At x| = il it At
Q

3 3
ClDum| 72| Amllf

IA

Vv
i”Aum”iz + C | Dup|z

IA

V
ﬁ”Aumniz + C(Co + Hm)3y
and

22 [ b Dot Aty 0| = €1Vt Tt 2 At 1.

IA

1 1
CIVimll o lltm | s I Vttm [l L2 | At | 2

IA

Vi 1 3
3 1Atm 172 + CUV il 72 il 775 Dt 172

IA

Vi 2 wy 2
3_2”Aum "LZ + a“ﬂm“[{s
+ ClIVitm |72 IDumll} >

IA

Vi 2 [p) 2 5
3_2”Aum ”LZ + 6w, ”//vm“[-]s + C(Co + Hp).
In light of (3.43) and (3.47), we have

A

| 1 At 5] < Dl D

IA

%
é | Az, ”iz + Cllpm ”%{1 | m ”%{2

IA

vV 2
3—;||Aum||iz + C(1+ VimlZa + o?3:hml2,)

IA

vV
£||Aum||i2 +C( + Co + Hp)?,
and
V1 — V2
‘T DV om - Ay dx| < C|Duy || 1311V dm |6 | Aty || 1.2
Q

1 3
C | Dup, “Zz (| Aup ||Zz b |l 2

V
ﬁ 1AUm |72 + C | Dt |72 16l 52

IN A

IA

Vv
é”Aum”iz +C(1+Co+ Hm)3 .
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Owing to (3.43) and (3.56), we obtain

V1 —V
B2 [V A dx| = Clrnls 19 e[ At

< Clltml 2 17m 12 N o 22 | At 1.

< CIDtp o At (1 + [V pim ]2,
+ a2 [0ipm22)?

S 1Au 3 + Cll D (1 + Vit 3
+ a2 3eml22)"

< ;—;uAumn{z +C(1 + Co + Hp)®.

IA

By using the Young inequality, it easily follows that

1
| V0t V8 dx| = VOl + 22l
Q w2

Finally, by exploiting (2.2), (2.3), (2.6), (3.43) and (3.53), we infer that

V91 88| < €Ut 13Vl

V2Pl L2 mll o) [V A | 2

IA

1 1
C Dl o | Al 2 l1pm || 72 | 1m || 23
V*wl
32‘(D’2

Ve 2 1 5 3
32w_2 ”Aum”LZ + 8||/’Lm||H3 + C(l + CO + Hm) .

=

1
1Awm 7 + gllumllip + C Dt |72 16l

=

Combining (3.60) with the above estimates, we arrive at

d 1 vewr  2(p%)*w?
e Hy o+ E 0 + SIV0gn 3 + (Z57 = =L ) IAunl
w
+ (22 =23 ) lumllys = €+ Co+ Ha)®, (3.61)

where the positive constant C depends on w; and >, but is independent of m, « and k.

Therefore, by setting
PV 1

1602 T w

we deduce the differential inequality

w1

d
3 Hn+ Fn = C1+Co+ Hn), (3.62)
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where
P 1 wiv 1
Fn®) = S 00um 172 + 5 1V0em O + =g [Aun (0132 + 55 1m0

and the constant C is independent of the approximation parameters «, m and k. Hence,
whenever T > 0 satisfies

1—4CT(1 + Co + Hn(0))* > 0,

we infer that

(1—4C1(Cy + Hp(0)))*

Co + Hp(t) < vielo, T (3.63)

To deduce an estimate of H,, which is independent of m, « and k, we are left to control
o 0:m (0) ||1242 (cf. the definition of H,, and (3.54)). For this purpose, we first observe that
d:¢m € C([0,T]; HY(R)), tm € C([0, T]; H'(R)) due to the regularity in Theorem A.1.
By comparison with terms in (3.9),, it follows that —A¢,, + ¥'(¢m) € C([0, T]; H(R)).
Now, multiplying (3.9), by d;¢,, and integrating over 2, we have

@|dcpmlz> + (—Adm + V' ($m). drdm) = (1m, drpm)-

By using (3.9);, we find

O5||at‘l5m||12d2 + (=Adm + V' (), Aptm — tm - Vo) = (Wms Afim — tm - Vm).

Integrating by parts, we arrive at

|0t Pm ”22 + IV itm ”22 = (V(-A¢m + ‘P/(¢m))» Vikm — Smttm) + (Vs Gm tm).
By continuity, we obtain
Ol||3,¢m(0)||iz + ||V,U*m(0)||]23
= (V(=Adox + V' (¢0.k)), Vitm(0) — ¢o k m(0)) + (Vitm(0), go k tm(0)),

which, in turn, implies that

@[|9:¢m O 172 + Viem O)[72 < CIV(=A¢ox + ¥ (G072 + Clum(0)]|7,. (3.64)
Thus, we conclude from (3.1), (3.3), (3.4) and (3.54) that

Hpn(0) < C(1+ [luoligy + Il = Ao + F'(¢o) Iz + lpoll;1)+Co := Ko.

1

where the constant C is independent of m, o and k. Therefore, setting Ty = WCCTE

yields that

1+ Co+ Ko

S Vie[0,T0).
(1 —4Ct(Cy + I(())“)Z

0<Co+ Hp(t) <
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Notice that fo is independent of m, o and k. Let us now fix Ty € (0, To). Thanks to (3.53),
we infer that

sup [[Vum(@)llrz + sup [[Vum (@2 + sup valdigm(@)lr2 < K1, (3.65)

t€[0,7o] t€[0,7o] t€[0,7o]

where K is a positive constant that depends on E(uo, ¢o), |uollg. lollm1, and the
parameters of the system, but is independent of m, « and k. Recalling (3.43) and (3.47),
we immediately obtain

sup N pm gz + sup um@ g + sup [|F'(pm())ll2 < K2 (3.66)

t€[0,To] t€[0,To] t€[0,To]

Integrating (3.60) on [0, Ty], we deduce that

To
/0 18ewm (D172 + 1V ¢m (D72 + Atm (D172 + [ tm (D) 73 dT < K3 (3.67)

Finally, in light of (3.65) and (3.67), we observe that separation property (3.13), (cf. The-
orem A.1) depends on « and k, but is independent of m, that is,

¢m € L®(22 x (0, T)) is such that |¢, (x,1)] < 1 — §ae.in Qx (0, Ty) (3.68)

for some § = 8~(oe, k).

3.5. Passage to the limit and existence of strong solutions

Thanks to estimates (3.65)—(3.67) given above, we deduce the following convergences (up
to a subsequence) as m — 00:

Uy — Uy weak-star in L*°(0, Ty; H(IT),

Upm — Uy weakly in L2(0, To; H?) N W'2(0, Tp; L2),
Om — P weak-star in L% (0, To: H*(Q)),

dm — da weakly in W12(0, Ty; HY(Q)),

W — Mo weak-star in L°°(0, To;: H(RQ)),

Um — Mo weakly in L2(0, To; H3(RQ)).

(3.69)

The strong convergences of u,, and ¢,, are recovered through the Aubin—Lions lemma,
which implies that

Uy — Ug strongly in L*(0, To; H),

, 1 (3.70)
Om — Pa strongly in C ([0, To]; W P (RQ)), V¥ p € [2,6).

As a consequence, we infer that

p(dm) = p(da). V(dm) = v(¢a)  strongly in C([0, To]; WP (R)). (3.71)



The Abels—Garcke—Griin model in 3D 589

for all p € [2, 6). Additionally, we have
Pq € L=(2 x (0, T)) is such that |¢y (x,7)| < 1 -8 ae.in Q x (0, Tp) (3.72)

for some § = §(«, k). The above properties entail the convergence of the non-linear terms
in (3.8) and of the logarithmic potential ¥/(¢) in (3.9), and thereby we pass to the limit in
the Galerkin formulation as m — oo in (3.8)—(3.9). The limit solution (u, @) satisfies

(p(¢e)0sttg, W) + (p(Pe) (g, - Vg, w) — (div (v(pe)Dug), w)
- (Pl(d)a)(vﬂa Vug,w) — (Lo Vo, w) =0, (3.73)

forallw € L?, and almost every ¢ € (0, Tp), and
0o +g Voo = A, o = 0Py —Adg+V (do) ae.in Q x (0,Tp). (3.74)

Moreover, we have

{ua =0, Oy = dupta =0  a.e.on dQ x (0. T), (3.75)

Uy (-,0) = uo, ¢(-,0) = o in Q.

Next, we proceed with the vanishing viscosity limit in the Cahn—Hilliard equation. Thanks
to the lower semicontinuity of the norm, we obtain from (3.65)—(3.67) that

esssup || Vatg (1) L2 + esssup | () | 1 + esssup valld,pa (1)llz2 < K1, (3.76)

t€[0,To] t€[0,To] t€[0,To]
esssup [|pa ()| g2 + esssup [| F'(¢a(1))l|22 < K2, (3.77)
t€[0,To] t€[0,To]

and

To
/ 18,20 ()72 + IV0:¢a (D72 + [Aua ()72 + (D)l dr < K. (3.78)
0

Therefore, we can infer that
Uy — uy weak-star in L>(0, Tp; H},),
Uy — uy weakly in L(0, To; H*) N W12(0, Tp; L2),
o — Dk weak-star in L>°(0, To; H*(R)),
o — Prc weakly in W12(0, To: H(Q)),
Ha — i weak-star in L°°(0, Tyo; H'(Q)),
Mo — Mk weakly in L2(0, To; H>(R)).

(3.79)

In a similar manner as above, we have
Uy — Uy strongly in L2(0, To; H},),
Pa = Pr strongly in C([0, To]; WP (),
p(¢a) = p(dx)  strongly in C([0, To]; W7 (),
V(o) = v(gx)  strongly in C([0, To]; W'P(R)),

(3.80)
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for all p € [2, 6). In order to pass to the limit in F’, we observe that
Po € L=(Q x (0, Ty)) is such that |y (x,2)| < 1 ae.in Q x (0, Tp).
Thanks to (3.80),, it follows that ¢, — ¢x almost everywhere in Q x (0, Tp), and thereby,
or € L=(Q x (0, Ty)) is such that | (x, )| < 1a.e.in Q x (0, Tp).

Then, since F'(¢y) — F'(¢hr) almost everywhere in 2 x (0, Tp), by the Fatou lemma we
have F'(¢r) € L?(Q x (0, Tp)), which also implies that

or € L*=(Q x (0, Ty)) is such that |¢r (x,1)| < 1 a.e.in Q x (0, Tp).
Owing to this and (3.77), we conclude that
F'(¢o) — F'(¢r) weak-star in L>®(0, Tp; L*(R)).
Thus, letting o« — 0 in (3.74)—(3.73), we obtain

(0(Pr)drug, w) + (p(r) (g - Vug, w) — (div (v(¢r)Duyg), w)
— (0" (1) (Viek - Vyug, w) — (g Vb, w) = 0, (3.81)

for all w € L2 and almost every 7 € (0, Tp), and
O +up -V = A, ik = —Adp + W' (¢r)  ae.in Qx(0,Tp), (3.82)

together with

{uk =0, 8n¢k = 8,,,uk =0 a.e.on 92 x ©, TO)’ (3.83)

up(-,0) =ug, ¢(-.0) = ¢ox in Q.

Finally, since the estimates (3.76)—(3.78) are independent of k, we can further pass to the
limit as k — oco. The argument readily follows the one above, and so it is left to the reader.
As a result, we obtain

(p(9)d:u + p(p)(u - VIu — div (v(¢)Du) — p' (@) (Vi - VIu — uVe,w) =0, (3.84)
for all w € L2 and almost every 7 € (0, Ty), and
dp+u-Vo=Apu, pu=-Ap+V(p) aein Qx(0,Tp), (3.85)
together with

{u =0, 0,0 =0,u=0 a.e. on 92 x (0, Tp), (3.86)

u(-,0) = ug, ¢(-,0) = ¢o in Q.



The Abels—Garcke—Griin model in 3D 591

Recalling the well-known relation
. 1 2
HV$ = —div (V¢ @ V) + V(5[ + ¥(@)).

in a canonical way, there exists P € L2(0, Ty; H'(R)) (see, e.g., [22]) such that P (1) = 0
and

VP = —p($)du — p(¢)(u - Vu +div (v(¢)Du) + p'(9) VuVu — div (Ve ® V¢).

Moreover, exploiting the regularity theory of the Cahn—Hilliard equation with logarithmic
potential (see [2, Lemma 2] or [25, Theorem A.2]), we have that ¢ € L>®(0, T; W?%(Q))
and F'(¢) € L0, T: L5(R)).

4. Proof of Theorem 1.1. Part two: Uniqueness

Let (u1, Py, ¢1) and (uz, P, ¢2) be two strong solutions to system (1.1)—(1.2) defined
on the interval [0, Tp] as stated in Theorem 1.1. We define u = u; —u,, P = Py — P,,
¢ = ¢1 — P2, which solve
p(P1)0:u + (p(d1) — p(2))d:uz + (p(P1) (uy - VIuy — p(d2) (2 - Vuz)
— PP (Vi Vo = (Viaz - V)ws) = div (v(g1) D)
—div ((v(¢1) — v(¢2))Duz) + VP = —div (V1 ® V1 — Vo ® Vo), (4.1)

and

0:ptur-Vo+u-Vo, = Ap,

—A¢ + V' (p1) — V' (g2) = p,
almost everywhere in Q x (0, Ty), where u; = —A¢; + W (¢;), fori = 1,2, and subject
to the boundary conditions

4.2)

u=0, 0,0=0,u=0 a.e.ond2 x (0,7). 4.3)
We recall that

@i ll oo o, 10;w26()) + 19:PillL2o,10: 1)) = K, i =1,2, 4.4

where K is a positive constant depending only on E(uo, ¢o), [#ollgz. ll14ollz1. To, and
and the parameters of the system. As a consequence, we claim that

il . 5

5 _ <CK, i=1,2,
C 16 ([0,To;C(2))

for some constant C depending only on 2. Indeed, by (2.5), we have

¢ (t1) — @i (22) [l ey < Cligi(t1) — pi(t2) [l wr
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< Cllgr(11) = 4112 I e1) = By (22) e
3 2 %
< ek ([ 10l av)

131

— |15, Vit €0, Tol i =1,2.

3 5
< CKs ||8t¢l ”ZZ(O,T();HI(Q))“I

In light of the assumption |||~ < 1, we infer that

(1= lgollL=y*5 .
ma i(O)||Le <1, here T <mn{<— ,T}, =1,2. 4.5
max [9i(0)] where 7; < mi ) T 45)

Owing to (4.5), it immediately follows that W (¢;), ¥ (¢;) € L*=°(22 x (0, T1)). Since 2
is a C* domain, by the elliptic regularity theory of the Laplacian and (4.4), we deduce
that ¢; € L>(0, Ty; H3(R2)) N L*(0, Ty; H*(R)), for i = 1, 2. In addition, it follows
from (4.3) that 9, A¢ = 0 almost everywhere on 92 x (0, T1).
Next, multiplying (4.1) by # and integrating over €2, we find
1d
2dt Jo
=~ [ 000 - p@002 -t ~ [ p(p0)a- V-

p(d0)lul dx + [9 v(é)Du dx

P1— P2
2

- / (p(d1) — p(d2))(ttz - Vs - dx + / (Vi - V)uz) - wdx
Q Q

- /Q(v(qh) —v(¢2))Duy : Vudx + /Q(Vqﬁl Q@ Ve + Vo @ Vi) : Vudx

6
= ZZ,-. (4.6)
i=1

Here, we have used that

ul? ul? — ul?
—/ atp(¢1)|—|dx~l-/P(¢1)u1‘vud)€—pl pz/ Ly —
o 2 o 2 2 Jo 2

Taking the gradient of (4.2);, multiplying by VA¢ and integrating over €2, we obtain

1d

3318018 + 18713, = [ w-Voatpax+ [ u-Vpa%par
Q Q

4 / AW/ ($1) — W' () A% dx
Q

9
=Y Z.

i=7

Therefore, we arrive at

9
d /1 5 1 2 2 2,2 _ .
a3 [ po0uP o 1801E:) + [ @oul s 18%1E: = 32
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Arguing in a similar way as in [24, Section 6], it is easily seen that
1Z1 + 22 + Z3 + Zs + Zs| < —|Dul,
+ C(1+ lualzpn + 10:u2l72) (Il + [1A6175)-
By (4.4) and (4.5), together with Sobolev embeddings, we find
1Zi = [ (VA9 Vyuz-ul ar + [ (VW (@1) =¥/ @a))- V) ua2-u] ax

IVASILslIVazllslullz + 197 (@1) L2 Vol Lol Vel s ullz2
+ (197 @Dl + V7 ($2) L)l | V2l | Va2 [lu] 2

1
=< 6||A2¢|Iiz + C V|75 llull7z + C(1+ | Vazllzs) (lulZ. + 1A1172).

IA

A

As for the remaining terms, by using (4.4) and (4.5) once more, we have
1Z7 + Zs| < lurllLalIVolLsIA%@ L2 + llull2 I VhallLe | A% L2
< 1A%l + C(lul?: + 186132)
and

1Zo| < /Q (W7 (1) Ad + (V" (1) — U ($2)) Ad2) A% dx

+ /Q|(‘I’W(¢1)(|V¢1|2 — |V$a|?) + (V" (1) — V" ($2))| Vo |*) A% dx

< CllAlL2 1A%z + C (1" (@1) L
+ [V (@2) L) 1l Lo | Ada L2 A% 2
+ C(IIVe1llLey + IV2llLe=) VL2 | A% 2

(1@l + 19" (@) |2) (@l V27 1A% 2
1
= <18%12, + CllAGIZ.

In conclusion, we find the differential inequality

dr \2
< C(K)(1 + l[uallZ> + 10:u2ll7,) (lell7> + |1AG]I32).

An application of the Gronwall lemma implies the desired uniqueness of strong solutions
on the time interval [0, T7].

d /1 1 v 1
(5 [ p@olul ax + S1881E:) + S Dl + 514%13

5. Proof of Theorem 1.2: Stability

Let (u, P, ¢) and (upy, Py, ¢x) be the strong solutions to the AGG model with den-
sity p(¢) and to the model H with constant density p, respectively, defined on a common
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interval [0, Tp]. We recall that the existence of (ug, Py, ¢g ) fulfilling the same regularity
properties of (u, P, ¢), as stated in Theorem 1.1, has been proven in [25, Theorem 5.1].
For simplicity, we assume that the viscosity function is given by v(s) = v, % + vz%
(cf. (1.3)) for both systems. We definev =u —ug, Q = P — Py, ¢ = ¢ — ¢g, and the
difference of the chemical potentials w = u — g . They clearly solve the problem

(,01 ;Pz)atv_i_ (,01 ;p2¢>8tu n <P1 ;—Pz —ﬁ)azuﬂ
+ (@)@ Vyu = plu - Vyum) = (P22 (V- Vo) - div (v(@)DY)
—div((v(¢) —v(@n))Dup) + VO = —div(Vep @ V¢ — Vo ® Vén), (5.1)

and

dip+u-Vo+v-Vog = Aw,
—Ap + V' (p) — V' (pn) = w,

almost everywhere in Q x (0, 7). In addition, we have the boundary and initial conditions

(5.2)

v=0, 0d,9o=0w=0 ae.on dQx(0,T),

. (5.3)
v(-,00=0, ¢(,00=0 in Q.

Multiplying (5.1) by A~!y and integrating over Q, we obtain

(Pl + P2

d 2 . -1 _ P1 — P2 1
: )Envnwfngmv.m vdX——/SZ(Tqﬁ)a,u-A vdx

—/ (pl -;pz —ﬁ)atuH A ydx —[ (p(¢)(u -Vu —p(uy - V)uH) A wdx
Q Q

+/ (pl _pz)((w -V)u) - Ay dx —/ (v($) — v(dg))Dugs : VA~ v dx

Q 2 Q

+ / Vo @ Vo — Vo @ Vo : VA 'vdx.

Q
Following [25, proof of Theorem 3.1], we infer that
/ v(p)Dy : VA lydx > %”””iz — / V' (0) DA™ WV - vdx
Q Q
1

+ 5/ V' (¢)Ve -v I dx, 5.4

Q

where IT € L>®(0, To; H'(Q)) is such that —AA™!y + VII = v a.e. in  x (0, Tp). In
addition, IT fulfills the estimates

1 1
IMz2 < CIVA™WI LIV, [ITlan < Clvlize. (5.5)

Therefore, we are led to
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p1+ p2\ d v
(B52) S I + Iz

=—L(%d))atu-A_lvdx—/ﬂ(#—ﬁ)alupr_]vdx

= [ (o) Vo = Bl - Vo) - A

+ /;2(101 ;PZ)((VM . V)u) Ay dx —/;Z(v(¢) — v(¢r))Dug : VA~ lydx

+ / Vo @ Vo — Vg @ Vo : VA lvdx + / V' (9)DA™ V¢ - vdx
Q Q

1
- —/ V' (¢)Ve -v T dx. (5.6)
2 Ja

On the other hand, multiplying (5.2), by A~ '¢, where A is the Laplace operator with
homogeneous Neumann boundary conditions, and integrating over €2, we get

1d 1 _ _
~—llollz + 5 1IVell7. < Cligll: +[ pu-VA  pdx +/ puv-VA lpdx (5.7)
2 dt 2 Q Q

(see [25, proof of Theorem 3.1] for more details). We proceed with the estimate of the
terms on the right-hand side of (5.6) and (5.7). To this end, we will exploit the following
bounds on the solution:

[, wr )| oo (0,708 ) L2 0,102 (@)W 120, 70:1.2) = Ko, (5.8)

(@, dr) Lo, 1o:w28(@)) + IVl Looo,10:22(0)) = Ko,

where K is a constant depending on the norms of the initial conditions. Exploiting these
estimates, we have

P1 — P2 — P1— P2 _
[ (B3 20)0- a7 ax| <[22 g lilomlzalA e
Q

P1— P2
2

2
= CIvIE + €[22 ol

and

+ _ — + _|?
[ (P52 =R - Ay ax] = i + €[22~ Youun e

By Sobolev embeddings, we find
(o@D - D) - A v
< )/ p(¢)(v-V)u-A_1vdx‘ + ‘f o(@)(ug - Vyv- A lvdx
Q Q

+| [ (007w - VoA
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< p*(ll2 Vel Lo |A™ ls
+ ‘/ o) (ug - VA v - vdx +/ 0 (@) (Ve -up)(v-A~"v) dx‘
Q Q

+1p(¢) = Dllzeolluer Lo Vet | L2 |A™ vl s
Vi —
EIIVIIiz + C(L+ llullz) IVIE + p*IVAT Wl fug [l V]2

A

L1 — P2 _
+ |P 2 19 ol o vz A vl
— 0|2 + 2
+C(K0)(‘012102‘ +‘P12P2_ﬁ‘ )

V
E*IIVIIiz + C(Ko) (1 + llullZz + lluzl172) V113

_ 2 + 2
1 Pz‘ +‘101 Pz_p‘ )

+ C(K")(‘p 2 2

and

P1— P2 - P1— P2 -
(P 522) (D) A = |22 0 VA

P1— P2
2

2
= CIpI} + C(Ko) |22 vl

In a similar way as in [25, proof of Theorem 5.1], we obtain
|| 0:@) = v(@unDus VAT ax| = Clplze Dus |51 9A vl

< Vo7 + Cllua 121V,

N =

[ (7689101 VA v dx| < (198l + 199 1) T2 VA ¥
1
< gllvwlliz + C(Ko) vz,
and

— — v
|| v @DAT9s vax| = CIDAT 2|99l Ivlie < S IvIEs + CKo

1 v
'5 [ v (T -m x| < CIVplnploallze < G + CKo) bl

IA

_ 1
’/Qw.m Ypdx| < <19l + Cllallyag, ol

_ Vv
[ ouyvatpar] < i+ clolz
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Collecting the above estimates together, we find the differential inequality

d 1
_(<¥)||v||g +5l012) = AOWIE + llel2)

dr
prL—p2|2  |p1t+p2  _|?
+f2(l)(‘ 2 ‘+‘ 2 _p‘)’

where

fi(t) = C(Ko) (1 + lun 3> + llulz2),

fo(t) = C(Ko) (1 + 9sun |7 + llum 72 + 197> + ulF)-
Here, the positive constant C depends on the norm of the initial data and the time Ty. By
using the Gronwall lemma, together with initial conditions (5.3),, we infer that

(252" + 242 - o))

min{252 1)

t 't
IvOIF + lle@|3 < fo els NI g (5)ds, V1 €[0,To.

Thus, the above inequality implies that

() = wr @)l @y + 16 = du @l a1y
LK) ()m —,02’ n ‘Pl + P2 _ﬁ')
min{./px, 1} 2 2
where the positive constant C(K() depends on the norm of the initial data, the time T}
and the parameters of the systems.

, Vte [O, To],

A. On the convective viscous Cahn-Hilliard system

Given o > 0 and an incompressible velocity field u#, we consider the convective viscous
Cahn—Hilliard (cvCH) system

0 +u-Vo =Au
{M =adip — Ap + V'(¢)
with boundary and initial conditions
Opp = 0yt =0 ondQ x(0,7),
¢(-,0) = ¢o in Q.
‘We observe that (A.1) can be rewritten as

0:(p —aAp) +u-Vo = A(—A¢p + F'(¢p) — 6pp) inQ x(0,T).

inQ x (0,7), (A1)

(A2)

We state well-posedness and regularity results for system (A.1). The aim of this appendix
is to extend the analysis performed in [32] to the convective case under minimal assump-
tions on the velocity field. In particular, we focus on the regularity of the chemical poten-
tial u.
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Theorem A.l. Let Q be a bounded domain of class C3 in R3. We assume that
u e L®0, T;L2(Q) N L3(R)), ¢o € H(Q) N L>®(Q) such that |po|lLe < 1 and
|po| < 1. Then, there exists a unique weak solution to (A.1)—(A.2) such that
¢ € L0, T; HY(Q) N L®(R)) with |¢p(x.1)| < 1 ae. in Q x (0,T),
¢ € L?0,T; H*(Q) N W20, T; L*(Q)), (A.3)
peL*0.T:H*(Q). F'(¢) € L*(0.T:L*(Q)),
which satisfies (A.1) almost everywhere in Q2 x (0, T), (A.2) almost everywhere on
a2 x (0,T) and ¢ (-,0) = ¢o(:) in Q. In addition, the following regularity results hold:
(R1) If —A¢o + F'(¢o) € L2(RQ) and d,;u € L3 (0, T; L1 (), we have

3¢ € L=(0,T; L*(R)) N L*(0.T: H'(Q)),
¢ € L®0,T; H*(Q)), p e L%0,T; H*(Q)).

(R2) Let the assumptions of (R1) hold. Suppose that |¢o|L < 1 — 8o, for some
80 € (0, 1). Then, there exists § > 0 such that

ma ) <1-38, A4
(x,t)eS2>)<([0,T] Ipx. O = (AD

and
¢ € L*0,T; H3(Q)).
(R3) Let the assumption of (R2) hold. Suppose that ¢ € H3(Q2) such that d,¢p = 0
on 0K, and d;u € L?(0, T; Lg(Q)). Then, we have
¢ € L0, T H*(Q)). 3¢ € L0, T: H'(2)) N L*(0.T: H*(Q)),
¢ € L*(0,T; L*(R)), € L*(0,T; L*(RQ)).

Proof. The proof is divided into several parts. We notify the reader that the estimates
proved herein are not independent of the viscous parameter «.

Existence. The existence of a weak solution satisfying (A.3) is proved in a classical way'.
We proceed here by proving the basic energy estimates. First, we observe that, by inte-
grating (A.1); over 2 and using the boundary conditions, we have

d(t)=¢o and 3,¢(t)=0 Vte[0,T]. (A.5)
Multiplying (A.1); by u, integrating over €2, and using the boundary conditions (A.2) and
[34, Ch. 1V, Lemma 4.3], we find

d

1
a(/ SIVOP + (@) dx) + |VplZ: + gl =/¢u-V;de.
« Q

IThe interested reader might exploit the combination of the Galerkin method with the approximation
of the logarithmic potential by smooth potentials (see, e.g., [32], or [13] for a different approach).



The Abels—Garcke—Griin model in 3D 599

By the Holder inequality and the boundedness of ¢, we simply obtain

d

1 2 1 N ) 1 "
E(/Q SIVOP + W (@) dx)+3IVRl: +alldigl: < 5 lull:.

Thus, integrating over [0, 7] and using the continuity of W, we have

V@llLoo,7:22) + IVllL20,7522(2)) + 10:D N 1200, 722 (22))
< Co(V Efree(90) + llullL20,7:12()))- (A.6)
In light of (2.1) and (A.5), we infer that
@1l Looo.7:m1 (@) < Ca(V Esee(o) + llullr20.7:12(2)) + |Pol)- (A7)
Now, multiplying (A.1), by —A¢ and integrating over 2, we get

ad

S VoI + 1001 + [ ~F@)apdx = [ Vi Voax+ 6019412,

The third term on the left-hand side is clearly positive by monotonicity. Then, using (A.7)
we obtain

T
o 2
/0 [Ap ()72 dT < 5||V¢0||iz + Ca(1 + T)(V Efrec(P0) + lullL20,7:22(2)) + (A8)

which entails that

I$ll20,7:m20) < Ca(14+11Vollr2 + V1+T(V Esee(d0) + 1|20, 7:2202))))- (A.9)

Next, we control the total mass of the chemical potential. Arguing as for the Cahn—Hilliard
equation, we multiply (A.1), by ¢ — ¢ and integrate over 2. We find

[veras+ [ Foxo-pax
Q Q
= [ n@=Brax+bolo -1 —a [ 2166 —Prax
By using the Poincaré inequality and (A.3);, we find
[ F@@-Bax < a4+ 1Vulie + g0
for some C, depending on €2, 6y and «. We are now in position to control a full Sobolev

norm of . Thanks to [32, Proposition A.1], there exist two positive constants Cy, C»
(depending only on ¢) such that

/ |F'($)]dx < a/ F' (@) — $o) dx + G,
Q Q
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thus we infer that

IF' @)L < Cal + [IViuliLz + 19:9ll22)-

Since 7t = F’(¢) — Hp¢o, the above control yields
[l = Ca(1 + [[Vieliz + 119:4lL2)- (A.10)

As aresult, it immediately follows that

Iellzo.rm1@) < Ca(VT + VEsee(po) + lullL20.7:12(2))- (A.11)

In addition, by using (A.1);, we observe that

[Apllzz < 18:pll> + llullLs[[VellLe-

Then, combining the elliptic regularity with (A.6) and (A.9), we find

Il 20,7:m2(2)) < C(@, Eree(o), T)((1 + [l oo 0,723 2))
x (1+ |lullr20,7:22(2)))- (A.12)
By comparison with terms in (A.1),, a similar estimate can be obtained for F'(¢) in

L2(0, T; L2(Q)).

Uniqueness. Let ¢, ¢, be two weak solutions. We define the solutions difference by
¥ = ¢1 — ¢» which solves

W +u-Vy = Aady — Ay + W' ($1) — ¥ ($r)) inQx(0,T).

Since ¥ (¢t) = 0 for all ¢ € [0, T], multiplying by A=, where the operator A is the
Laplace operator —A with homogeneous Neumann boundary conditions, and integrating
over €2, we obtain

1d

33 IVAT VI + oy i) + IV¥ 1 < [ v VA v ax -+ Golly e

Here, we have used that F’ is a monotone function. Observing that

[ e 9T x| < Wl 1947 i < Clullslly I,

it is easily seen that
1d (
2dt

An application of the Gronwall lemma yields

IVAT Y lIz2 + allylizz) = €A+ Jullza) vz

IVAT Y ()2, + ally ()]22 < (IVA Y 0) 2, + |y (0)]2,)eCx oI+l o

for all ¢ € [0, T'], which implies the uniqueness of the solution.
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Regularity 1. For / € (0, 1), we define the notation 8" f(-, 1) = %(f(-,t +h)— f(-,1)).
We observe that ¢ € C([0, T]; H'()) and u € C([0, T]; L' (R)); thereby, we can extend
both ¢ andu on [0, T + 1] by ¢(¢) = ¢(T) andu(t) = u(T) fort € (T, T + 1]. It follows
from (A.1) that

00" + 0"u - Vo(-+h)+u-Vohe = A@d, 8" — A + "W (9))  (A13)

in Q x (0, 7). We multiply the above equation by A~19”¢ and integrate over Q. Exploit-
ing the monotonicity of F’, the boundary condition of # and the Agmon inequality (2.3),
we obtain

1d _
53 VAT 0 lIZ. + a0t gl 72) + I VOy 1z

5/ G-+ h)d'u - VAT P dx +[ Mpu-VA P dx + 60)37 97,

Q Q

< [|0%ul 1 [IVAT 0"l oo + 02l L2 Il 3 IVAT 0" L6 + Ooll02 |7
1

< Cll0"ul 1 108)1 2,11V pll 2 + C(1 + [lulls) 07012,

1 4
< SIVOIgIZa + Cllayull (1 + 197 ¢172) + C1 + llull o) 076172

The Gronwall lemma entails
t
aldhp @l + [ 11 dr

: 4 't
= (IVAT' 00O, + a9t )2, + C / |9fu(o)ll;, dr)elo £ @ (A14)
0

forallt € [0, T], where g(t) = Co(1 + ||lu|zs + ||3ﬁ’u||§l) In order to control the right-
hand side, we compute
1d
S (1947 @ = go) 2 + el — ol22)
= (ad;p — psp — o) + (pu, VA~ ($ — o))
= (Mg — V' (¢).¢ — o) + (pu. VA (& — o))
= (A(@ — ¢o) — (F'(¢p — F'($0)), ¢ — ¢0) +(Ado — F'(¢0),  — o)

<0

+ 60(p. ¢ — do) + (pu, VA~ (¢ — ¢o)).

Therefore, we have
1d

oP T (IVA™ (¢ — o172 + llp — ol )

< C(1+[[Ago — F'(¢o)ll2 + llullz2)ll¢ — dollL2-
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Thanks to [34, Chap. IV, Lemma 4.1], we arrive at
IVATH @ (0) = d) 172 + b (6) — oll7-
= (Cull+ 10 = F'o)l o) + Cu | )2 de)’
forall ¢ € [0, T']. By choosing t = h, we deduce that

VAT 3201122 + |G O) 2> < Ca(l + [Ado — F'@0) 122 + luleeo.ro2):

(A.15)
Since
h
192415 70120 = 108 0,7, 00y
by combining (A.14) and (A.15), we obtain
t
Bt + [ IV (©)IE: dr = CuD(T)OD, (A16)
0

for all ¢ € [0, T'], where

4
_ I 2 2 3
D(T) =1+ [[Ago — F'(¢o)ll72 + lullzoo,7:22(0)) T ||3z”||L%(O’T;L1(Q)),

T T 4
G() = [ Cult + ()t + o [ o, o
0 0
In light of the convergence 8"¢ — d,¢ in L2(0, T; L2(Q2)) as h — 0, we infer that

[10:@llLooco,7:202)) + 19:DllL20,7:m1 @) < C (@, T, | Ado — F'(do) |2, lullxr),
(A.17)
where X7 = L%°(0,T; L3*(Q)) N Wi (0, T; LY(R2)). Next, we derive further regularity
properties on ¢ and . By the incompressibility constraint, we recall that ||V 2 <
C(||9:¢]lL2 + llu]lL2)- Then, thanks to (A.10) and (A.17), we easily have

il Lo, ;01 (2)) < C (. T. [[Ado — F'(d0) |20y lullxy)- (A.18)

As a consequence, by [25, Theorem A.1], we get

@1l Looco,7: 1202 + 1F (@)oo, 75020 < C (. T, [[Ago — F'(do)ll L2y lellxy)-
(A.19)
Finally, since we have u € L>®(0,T; L3()) and V¢ € L°°(0, T; L°(R2)), by comparison
with terms in (A.1);, we also find

il Lo, 712y < C (o T. [[Ado — F' (o) |20y lullxy)- (A.20)
Regularity 2. Let us now write (A.1);, as follows:
adip— AP+ F'(p) =h inQx(0,T), (A.21)

where & = [ 4+ 6y¢. Thanks to (A.20), h € L*°(0, T; L*°(£2)). Next, we consider the
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ODE problems

{aatU + F(U)=H. {aar" + (V) =H, in(0.7), (A22)

U0) =1— 4o, V() =—-1+4 8o
where H = ||h||z~ and H = —||h|| . It is not difficult to show that there exist two
unique solutions U, V € C([0, T]) with Uy, V; € L°°(0, T). In particular, since we have

limg_s+1 F'(s) = +ooand H, H € L*®(0, T, a simple comparison argument entails that
there exists § > 0 such that

“14+8<V(@)<U@)<1-8, Vielo,T]

More precisely, it can be checked that 1 —§ < max{1 — 8, (F')~! (”ﬁ”Loo(o’T))}. We are
left to show that V(z) < ¢(x,1) < U(t) in Q x [0, T']. To this aim, we use the Stampacchia
method. We define w = ¢ — U and we consider the problem

{oeatw+u-V¢—A¢+F’(¢)—F/(U) =h—H inQx(0.7), (A.23)

w(0) = ¢o — 1 + o inQ.

Multiplying the equation by w™ = max{¢ — U, 0} and integrating over 2, and using that
V¢ = VwT ontheset {x € Q: ¢ < U}, we find

d
%a”uﬁniz + / (@-VwHw*dx + [VwT||7, + / (F'(¢) — F'(U))w™ dx
Q Q

= / (h — H)w™ dx.
Q
By the monotonicity of F’, it follows that

d
5|Iw+lliz <0 = [w" Ol = lw" (). =0. Vrel0.T],

which in turn gives the desired result, namely, ¢(x, ) < U(t) in Q x [0, T]. A similar
argument entails that V(¢) < ¢(x,t) in Q X [0, T']. Therefore, we obtain by continuity the
so-called separation property

max  |p(x,7)| < 1-36. (A.24)
(x,1)eQx[0,T]

As a consequence, it follows from (A.19) that W' (¢) € L>®(0, T; H'(Q)). Then, we
deduce by comparison with terms in (A.1), and by elliptic regularity that

I¢ll20.1:m3@) < Cla. T.8, | Ago — F'(¢o) 2. lullxs)-
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Regularity 3. Thanks to the above regularity, we rewrite (A.13) as follows
/Q 3:0"pv +av,dh¢ - Vudx + /Q M (u - Vo) dx
= /Q(ma?qs — VW' (¢)) - Vudx (A.25)

for all v € H'(Q). Taking v = Bi’gb and exploiting the boundary conditions of ¢ and u,
we find

33 (07013 + alVolglzs) + [ 18897 ax

= LB?(utﬁ)-V&i’d)dx—i—/Qai’F’@))AB?(pdx+90||V3',’¢||i2

< |197ull, IV pliLe + laells 19 SlLs VOS2 + ClIBT P2 | AGF L2
+ 60V 1720

=

1807 lIZ2 + Cllotul? ¢ + C (1 + fullza) [V HI72 + ClIO G172

N =

Here, we used separation property (A.24) and the inequality ||8§‘¢|| m <C ||A8ﬁ’¢|| 2.
Then, we infer from the Gronwall lemma that

t
I8t @Iz + VO $ @172 + /0 A3 P (0)IIZ2 dr
t ~
= (198 13, + V)O3, + C /0 |fu(@)]? ¢ dr)eT (A26)

for all ¢ € [0, T'], where

~ T
G(T) = Ca /0 (1 + u(0)]s) d.

Since d,¢p9 = 0 on 32 by assumption, we observe that
1d
55(”‘15 —¢oll7> + |V — ¢o)lI?>)
- /Q¢>u V(b — o) dx + /Q V(Ap— F'($) + 60d) - V($ — go) dx
- /Qdm V(b — do) dx — | AW — do)|12 + /Q VAo - V(- go) dx

+ / V(—F'(¢) + fod) - V(e — o) dix.
Q

Thus, we obtain
1d

T (I = @ollZ> + V(g — o)l72) = C (1 + llullzz + ol 3) IV (P — o) ll2
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By using [34, Chap. IV, Lemma 4.1] and taking ¢ = &, we arrive at

197 ¢ O)172 + @I VI[P 7> < Ca(l + llgollzys + Il o rr2y)  (A2D)
Combining the above inequality with (A.26), we are led to
t
197172 + I VIip(1)]7. + / 1A97¢(7)]7. dr
0
2 2 2 C o +lu(@)]3)d
< Co(1+ ligollzys + oo, 20 + ”a’””u(o,rH;L%(sz)))e ' -
for all t € [0, T], which, in turn, implies
10:llLooo,7;m1 (@)) + 10:PllL20,7:m2(0)) < Cle, T8, [lpoll g3, llullyy),  (A.28)

where Y7 = L>®(0, T; L3()) N W12(0, T; L5 (R)). As an immediate consequence, in
light of (A.19), (A.20) and (A.24), we infer by comparison with terms in (A.1), and by
elliptic regularity (cf. the fact that Q is C3) that

Pl Lo, 1:m3@)) < Ca, T, 8, lIpolla3) lullyr)- (A.29)
Next, we take v = A—laﬁa,qs in (A.25). Exploiting (A.24) and (A.28), we obtain
S IVLGIZ, + IV A HDp12 + 0613
< /Q M (pu) - VA", dx — /Q M ($)3"0,¢ dx
< Clldeull, ¢ 1879:pll2+C llall 319, pll2 VAT 97 0 ll s +ClI37 P2 1197 0, 2
< %nai’azqsniz + C (L4l g + ul75)-

By recalling (A.27), the Gronwall lemma entails

T
[ 12012 ac = C@. 7.5 gollns. ). (A30)
0
which, in turn, gives that there exists 37¢ € L?(0, T'; L(2)) such that

1020l 20.7:1202)) < Clet, T, 8, ol a3, el vy)-

Thus, by comparison with terms in (A.1), we conclude that there exists 9,4 € L2(0, T’;
L?(R2)) such that

10: 1l L2¢0,7:12()) < C(. T, 8. ol 3 (). llellyy)-

The proof is complete. ]
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