
Interfaces Free Bound. 25 (2023), 37–107
DOI 10.4171/IFB/484

© 2022 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Weak-strong uniqueness for the mean curvature flow
of double bubbles

Sebastian Hensel and Tim Laux

Abstract. We derive a weak-strong uniqueness principle for BV solutions to multiphase mean cur-
vature flow of triple line clusters in three dimensions. Our proof is based on the explicit construction
of a gradient flow calibration in the sense of the recent work of Fischer et al. (2020) for any such
cluster. This extends the two-dimensional construction to the three-dimensional case of surfaces
meeting along triple junctions.
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1. Introduction

Multiphase mean curvature flow (MCF) arises as the L2-gradient flow of the area func-
tional and has been studied intensively over the last decades. Its earliest motivation comes
from materials science where MCF models the slow relaxation of grain boundaries in
polycrystals.

While a lot of progress has been achieved in the two-dimensional case, often referred
to as network flow, in the physically most relevant case of three spatial dimensions results
concerning strong solutions are just beginning to emerge. The short-time existence for
the MCF of three surfaces coming together at a triple junction has been established by
Freire [5] when all three surfaces can be parametrized as graphs over a single plane—
a condition which then was relaxed by Depner, Garcke, and Kohsaka [3] who derived

2020 Mathematics Subject Classification. Primary 53C38; Secondary 35A02, 53E10.
Keywords. Mean curvature flow, double bubble, triple line, weak-strong uniqueness, relative entropy
method, gradient flow calibration.

https://creativecommons.org/licenses/by/4.0/


S. Hensel and T. Laux 38

the local well-posedness without relying on this graphical geometry. In this work, they
parametrize the surface cluster over a fixed reference surface cluster and phrase MCF as
a non-local, quasilinear parabolic system of free boundary problem. Independently and as
the result of an improved compactness property of Brakke flows, Schulze and White [12]
established short-time existence in a similar geometric setting. Recently, Baldi, Haus, and
Mantegazza [2] derived the existence of a self-similar shrinking “lens-shaped" surface
cluster describing a solution to MCF just before the disappearance of the smaller bub-
ble in the cluster. We refer the interested reader to [4] for a more detailed discussion
and further relevant references. The construction of regular solutions starting from non-
regular initial surface clusters has not yet been accomplished, but the recent microlocal
approach [11] might give new insights. However, this approach relies on an explicit con-
struction of gluing in self-similar expanders, which does not immediately carry over to the
three-dimensional case.

Most results on weak solutions of MCF, however, are often quite general and in partic-
ular apply in our present three-dimensional case. While the theory of viscosity solutions
is not available for surface clusters (even in two dimensions), Brakke’s solution concept,
and in particular the more refined version of Kim and Tonegawa [6] apply, and so do the
conditional convergence results in [7] and [8].

In the present work, we prove the stability and weak-strong uniqueness of regular sur-
face clusters with triple junctions moving by MCF in three dimensions. The key step is the
explicit construction of a gradient flow calibration in the sense of our recent work [4] with
Fischer and Simon. Therein, we constructed such a gradient flow calibration in the planar
case of networks moving by curve shortening flow and proved that, in arbitrary dimension,
any calibrated MCF is stable. The main contribution of the present work is the exten-
sion of the first part to the three-dimensional case, which then immediately implies the
weak-strong uniqueness. The concept of gradient flow calibrations is the time-dependent
counterpart of calibrations and paired calibrations for minimal surfaces and minimal sur-
face clusters, respectively (see in particular [10]).

While our main result establishes uniqueness of BV solutions to multiphase MCF
within a class of sufficiently regularly evolving double bubbles (cf. Definition 10 below),
we note that this in particular implies uniqueness of (again sufficiently regular) strong
solutions for MCF of double bubble geometries as constructed in the work of Depner,
Garcke, and Kohsaka [3]. We emphasize that the proof of our main result does not rely on
the uniqueness of such strong solutions, and that the latter was indeed left open in [3].

There are two model cases in which our new construction (essentially) reduces to the
two-dimensional case: if the three-dimensional configuration is (i) rotationally symmetric
or (ii) translation invariant in one direction. However, in the general case, a direct slicing
argument across normal planes to the triple junction of course does not yield torsion-free
tangent frames of the interfaces. By introducing suitable gauge rotations, we correct this ad
hoc construction. We prove that these gauged tangent frames then give a natural extension
of the respective normal vector fields to a vicinity of each interface and even across the
triple line using Herring’s condition. Furthermore, we show that these constructions are
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Figure 1. A simplified illustration of a double bubble in three dimensions. The triple line x� along
which all three interfaces meet is marked in red. We emphasize that neither flatness of an interface
nor symmetry of the triple line is required for our results.

regular and first-order compatible along the triple line. Although the present method would
immediately carry over to more general surface clusters only containing smooth surfaces
coming together along triple lines, we restrict ourselves to the case of a “double bubble”,
that is, a cluster of three surfaces as displayed in Figure 1. For general surface clusters
in R3, triple lines could meet in quadruple points, some of which will persist over time
(cf. [13] for the static case). For these systems, even the short-time existence of regular
solutions has not been established. It would be interesting to generalize our present work
to construct a gradient flow calibration in this more general setting.

2. Main results

In our recent contribution [4] with Fischer and Simon, we developed a general approach
to the question of weak-strong uniqueness of BV solutions to multiphase mean curvature
flow in arbitrary ambient dimension d � 2. This approach splits into a two-step procedure.

In the first step, we introduced a novel concept of calibrated flows with respect to
the gradient flow of the interface energy functional given by the (weighted) sum of the
surface areas of the interfaces (cf. (8) below). This concept can be interpreted as the evo-
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lutionary analogue of the well-known notion of paired calibrations due to Lawlor and
Morgan [10] from their study of the minimization problem of interfacial surface area of
networks. Indeed, the main merit of a calibrated flow is that its existence (essentially)
implies qualitative uniqueness and quantitative stability of BV solutions to multiphase
mean curvature flow in arbitrary ambient dimension d � 2.

In the second step, we then put this theory to use by showing that any sufficiently reg-
ular network of interfaces in the plane R2, which in addition is subject to the correct angle
condition at triple junctions, is in fact calibrated in the precise sense of [4]. The purpose
of the present work is to extend this second step of the approach to the three-dimensional
setting of mean curvature flow of sufficiently regular double bubbles (again with the cor-
rect angle condition along the triple line). The main contributions are summarized in the
following result:

Theorem 1. Let T 2 .0;1/ be a time horizon, and let .x�1; x�2; x�3/ be a regular double
bubble smoothly evolving by MCF on Œ0; T � in the sense of Definition 10. The evolution
of .x�1; x�2; x�3/ on Œ0; T � is then calibrated in the sense that there exists an associ-
ated gradient flow calibration ..�i /i2¹1;2;3º; B/ on Œ0; T � (cf. Definition 2). Moreover, the
smoothly evolving regular double bubble .x�1; x�2; x�3/ admits a family of transported
weights .#i /i2¹1;2;3º on Œ0; T � in the sense of Definition 5.

As a corollary, we obtain a weak-strong uniqueness and stability of evolutions prin-
ciple for BV solutions .�1; �2; �3/ to multiphase MCF on Œ0; T � (cf. Definition 12) with
respect to the class of regular double bubbles smoothly evolving by MCF on Œ0; T � in the
sense of Definition 10. We refer to Theorem 6 for a more detailed statement of this corol-
lary, and to the discussion below it for an account of the general regime of P � 3 phases
on the level of the BV solution.

Proof. The existence of a gradient flow calibration ..�i /i2¹1;2;3º; B/ on Œ0; T � is the con-
tent of Theorem 3. Its proof occupies almost the whole paper and is carried out from
Section 3 to Section 5. We emphasize in this context that the local construction at a triple
line performed in Section 4 represents the core contribution of the present work. The exis-
tence of transported weights .#i /i2¹1;2;3º on Œ0; T � is proven in Section 6 in the form of
Proposition 5.

These two existence results in turn realize the assumptions of the general condi-
tional weak-strong uniqueness and stability of evolutions principle [4, Proposition 5] for
BV solutions to multiphase mean curvature flow (with respect to the setting of P D 3

phases and d D 3 dimensions), which therefore establishes the claim of the corollary.

The results of [4] together with Theorem 1 admittedly only cover two thirds of the
story concerning weak-strong uniqueness for general clusters in R3 evolving by mul-
tiphase mean curvature flow. Indeed, one also has to allow for quadruple junctions at
which four distinct phases meet (cf. the structure result on minimizers of interfacial sur-
face energy by Taylor [13]). We expect that a suitable generalization of our ideas for the



Weak-strong uniqueness for MCF of double bubbles 41

construction at a triple line should also lead to the correct construction in the case of a
quadruple junction, and thus to a full-fledged weak-strong uniqueness result in R3.

2.1. Existence of gradient flow calibrations

For the sake of completeness, let us first restate the precise definition of the concept of a
gradient flow calibration.

Definition 2 (Gradient flow calibration). Let T 2 .0;1/ be a time horizon, and let
� 2 RP�P be an admissible matrix of surface tensions (cf. Remark 7) for P � 2 phases.
Also, let .x�1; : : : ; x�P / be an evolving partition of finite interface energy on Rd � Œ0; T �
in the sense of Definition 8 in dimension d � 2, and denote by

S
i¤j
xIi;j the associated

network of evolving interfaces.
A tuple of vector fields

.�i /i2¹1;:::;P º W R
d
� Œ0; T �! .Rd /P ;

B W Rd � Œ0; T �! Rd

is called a calibration for the L2-gradient flow of the interface energy (8) on Œ0; T � with
respect to the evolving partition .x�1; : : : ; x�P /—or, in short, a gradient flow calibration—
if it is subject to the following requirements:

(i) It holds that �i ; B 2 C 0.Œ0; T �IC 0cpt.R
d IRd // for all i 2 ¹1; : : : ; P º. Moreover,

for each time t 2 Œ0; T �, there exists an Hd�1-null set �t � Rd such that for
� WD

S
t2Œ0;T � �t � ¹tº it holds that �i 2 .C 0t C

1
x \ C

1
t C

0
x /.R

d � Œ0; T � n �/ for
all i 2 ¹1; : : : ; P º and B 2 C 0t C

1
x .R

d � Œ0; T � n �/. Finally, there exists C > 0

such that

sup
t2Œ0;T �

sup
x2Rd n�t

jrB.x; t/j C jr�i .x; t/j C j@t�i .x; t/j � C:

(ii) For i; j 2 ¹1; : : : ; P º with i ¤ j , define the vector field

�i;j WD
1

�i;j
.�i � �j / in Rd � Œ0; T �: (1a)

Denoting by xni;j the unit normal vector field along the interface xIi;j (pointing
from the i th into the j th phase), it is then required that

�i;j D xni;j along xIi;j : (1b)

Moreover, there exists c 2 .0; 1/ such that the following coercivity estimate in
terms of the length of the vector field �i;j holds true:

j�i;j .x; t/j � 1 � cmin
®
dist2.x; xIi;j .t//; 1

¯
; .x; t/ 2 Rd � Œ0; T �: (1c)
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(iii) The vector field B represents a velocity field for the partition .x�1; : : : ; x�P / in
the sense that the following two approximate evolution equations hold true for
the vector fields �i;j , i; j 2 ¹1; : : : ; P º with i ¤ j :ˇ̌

@t�i;jC.B � r/�i;jC.rB/
T�i;j

ˇ̌
.x; t/ � C min

®
dist.x; xIi;j .t//; 1

¯
; (1d)ˇ̌

@t j�i;j j
2
C .B � r/j�i;j j

2
ˇ̌
.x; t/ � C min

®
dist2.x; xIi;j .t//; 1

¯
; (1e)

for some C > 0 and all .x; t/ 2 Rd � Œ0; T �.

(iv) The velocity B represents motion by multiphase mean curvature (i.e., the L2-
gradient flow with respect to the interface energy (8)) in the sense that there exists
a constant C > 0 such thatˇ̌
�i;j � B Cr � �i;j

ˇ̌
� C min

®
dist.x; xIi;j .t//; 1

¯
; .x; t/ 2 Rd � Œ0; T �: (1f)

If a gradient flow calibration exists, we say that the evolving partition .x�1; : : : ; x�P /
is calibrated on Œ0; T �.

Note that the required regularity from the first item of the above definition is slightly
less than what is actually stated in [4, Definition 2]. However, it is easy to see that this
regularity is still sufficient to ensure the validity of [4, Theorem 3].

The main result of the present work is now that any sufficiently regular and smoothly
evolving double bubble admits an associated gradient flow calibration.

Theorem 3 (Existence of gradient flow calibrations). Let T 2 .0;1/, let � 2 R3�3 be an
admissible matrix of surface tensions, and let .x�1; x�2; x�3/ be a regular double bubble
smoothly evolving by MCF on Œ0; T � in the sense of Definition 10. Then, .x�1; x�2; x�3/ is
calibrated on Œ0; T � in the sense of Definition 2.

It turns out that the existence of a gradient flow calibration already implies a quantita-
tive inclusion principle for the surface cluster of general BV solutions to multiphase mean
curvature flow; see [4, Theorem 3]. More precisely, if at the initial time each interface of
a BV solution is contained in the corresponding interface of a calibrated flow, then this
inclusion property remains to be satisfied as long as the calibrated flow exists. Further-
more, this qualitative property is in fact a consequence of a quantitative stability estimate
for the interface error between a general BV solution and a calibrated flow (formulated in
terms of an error functional—see (3) below).

The inclusion principle, however, is of course consistent with the vanishing of a phase
in the BV solution, so that weak-strong uniqueness cannot be derived by means of a gra-
dient flow calibration alone. In order to get a control on the bulk deviations of the phases,
one relies on an additional input which can be formalized as follows:

Definition 4 (Family of transported weights). Let T 2 .0;1/ be a time horizon, and
let � 2 RP�P be an admissible matrix of surface tensions satisfying the strict triangle
inequality for P � 2 phases. Let d � 2, and let .x�1; : : : ; x�P / be an evolving parti-
tion of finite interface energy on Rd � Œ0; T � in the sense of Definition 8, and denote
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by .x�1; : : : ; x�P / the associated family of indicator functions. We then in addition assume
that the measure @t x�i is absolutely continuous with respect to the measure jr x�i j, and
that @x�i .�; t / is Lipschitz regular for all t 2 Œ0; T �. Consider finally a velocity vector
field B 2 C 0.Œ0; T �IC 1cpt.R

d IRd //.
A map # D .#i /i2¹1;:::;P º W Rd � Œ0; T �! Œ�1; 1�P is called a family of transported

weights for ..x�1; : : : ; x�P /; B/ if it satisfies the following properties:

(i) In terms of regularity, we require #i 2 .W 1;1 \W 1;1/.Rd � Œ0; T �I Œ�1; 1�/ for
all i 2 ¹1; : : : ; P º.

(ii) We require that #i .�; t / D 0 on @x�i .t/, and #i .�; t / > 0 in the essential exterior
(resp. #i .�; t / < 0 in the essential interior) of x�i .�; t / for all i 2 ¹1; : : : ; P º and
all t 2 Œ0; T �.

(iii) Each weight is approximately advected by the velocity B in the form of

j@t#i C .B � r/#i j � C j#i j on Rd � Œ0; T �; i 2 ¹1; : : : ; P º: (2)

The existence of a family of transported weights is precisely what is needed to derive a
quantitative stability estimate for the bulk error between a general BV solution and a cal-
ibrated flow (formulated in terms of an error functional—see (4) below), which together
with the already mentioned quantitative inclusion principle then implies a weak-strong
uniqueness principle for BV solutions of multiphase mean curvature flow; see [4, Propo-
sition 5].

It is therefore of interest to extend the 2D existence result from [4] to the 3D setting
of any sufficiently regular and smoothly evolving double bubble.

Proposition 5 (Existence of a family of transported weights). Let T 2 .0;1/ be a time
horizon, and let .x�1; x�2; x�3/ be a regular double bubble smoothly evolving by MCF
on Œ0;T � in the sense of Definition 10. LetB denote the velocity field from the gradient flow
calibration on Œ0; T � associated with .x�1; x�2; x�3/, whose existence in turn is guaranteed
by Theorem 3. Then, there exists an associated family of transported weights .#i /i2¹1;2;3º
on Œ0; T � with respect to the data ..x�1; x�2; x�3/; B/ in the precise sense of Definition 4.

2.2. Weak-strong uniqueness and stability of evolutions

Combining Theorem 3 and Proposition 5 with the conditional stability of any calibrated
MCF in arbitrary dimensions [4, Proposition 5], we obtain the following weak-strong
uniqueness principle for distributional (i.e., BV) solutions to multiphase MCF in three
dimensions:

Theorem 6 (Weak-strong uniqueness and quantitative stability). Let T 2 .0;1/ be a time
horizon and let d D 3, P D 3, and � 2 R3�3 be a surface tension matrix satisfying the
strict triangle inequality. Let x� D .x�1; x�2; x�3/ be a regular double bubble smoothly
evolving by MCF on Œ0; T � in the sense of Definition 10 (with respect to � ), and let � D
.�1; �2; �3/ be a BV solution to multiphase MCF in the sense of Definition 12 (again
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with respect to � ). If the initial conditions of the regular double bubble and the BV solution
coincide, then the solutions also coincide for later times on Œ0; T �. More precisely,

L3
�
.�i .0/ n x�i .0/

�
[
�
x�i .0/ n�i .0/

�
D 0 for all i 2 ¹1; 2; 3º

H) L3
�
.�i .t/n x�i .t// [ .x�i .t/n�i .t//

�
D0 for a.e. t 2 Œ0; T � and all i 2¹1; 2; 3º:

Moreover, we have quantitative stability estimates in the following sense: Denote
by � WD ..�i /i2¹1;2;3º; B/ the gradient flow calibration on Œ0; T � from Theorem 3 with
respect to .x�1; x�2; x�3/, and denote by .#i /i2¹1;2;3º the corresponding family of trans-
ported weights on Œ0; T � from Proposition 5. Let ni;j .�; t / be the measure-theoretic unit
normal along the interface @��i .t/\ @��j .t/ pointing from�i .t/ into�j .t/, t 2 Œ0; T �.
Then, the error functionals defined for all t 2 Œ0; T � by

EŒ�j��.t/ WD
X

i;j2¹1;2;3º; i¤j

�i;j

ˆ
@��i .t/\@��j .t/

1 � ni;j .�; t / � �i;j .�; t / dH2; (3)

EŒ�j x��.t/ WD

3X
iD1

ˆ
.�i .t/nx�i .t//[.x�i .t/n�i .t//

j#i .�; t /j dx (4)

satisfy the stability estimates

EŒ�j��.t/ � EŒ�j��.0/eCt ; (5)

EŒ�j x��.t/ �
�
EŒ�j��.0/CEŒ�j x��.0/

�
eCt (6)

for almost every t 2 Œ0; T �. The constant C > 0 in these estimates depends only on the
data of the smoothly evolving regular double bubble .x�1; x�2; x�3/ on Œ0; T � through the
explicit constructions ..�i /i2¹1;2;3º; B/ and .#i /i2¹1;2;3º.

Proof. As mentioned above, this is a straightforward application of Theorem 3, Proposi-
tion 5 and [4, Proposition 5].

Remark 7 (Admissible surface tensions). Let us briefly comment on the matrix of sur-
face tensions � 2 RP�P . We say � is admissible if it satisfies precisely the assump-
tion in [4, Definition 9]. More concretely, we require that there exists a non-degenerate
.P � 1/-simplex .q1; : : : ; qP / in RP�1 which represents the surface tensions in the form
of �i;j D jqi � qj j.

In the framework of the present paper, that is, the case P D 3, this is equivalent to the
strict triangle inequality

�i;j < �i;k C �k;j for all choices ¹i; j; kº D ¹1; 2; 3º: (7)

In the general case P � 3, the `2-embeddability is in fact stronger than (7), and it con-
stitutes the key ingredient to construct the missing calibration vector fields .�i /i2¹4;:::;P º,
for which one may in fact argue along the same lines as in the proof of [4, Lemma 35] with-
out requiring any additional ingredients from the constructions performed in this work.
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We emphasize that only for simplicity, we considered in Theorem 6 the case of P D 3
phases on the level of the BV solution. Let us briefly outline the additional ingredi-
ents which are needed to establish stability estimates (5) and (6) in terms of general
BV solutions .�1; : : : ; �P /, P > 3, defined on R3 � Œ0; T � with respect to a given
`2-embeddable matrix of surface tensions � D .�i;j /i;j2¹1;:::;P º 2 RP�P , and a fixed
regular double bubble .x�1; x�2; x�3/ smoothly evolving by MCF with respect to the restric-
tion .�i;j /i;j2¹1;2;3º of the surface tension matrix � 2 RP�P .

Recalling definitions (3) and (4) of the error functionals (in which one only needs to
replace 3 by P in the case P > 3), it is clear that we have to augment the gradient flow cal-
ibration provided by Theorem 3 with additional calibrating vector fields .�i /i2¹4;:::;P º, and
the family of transported weights by Proposition 5 with additional weights .#i /i2¹4;:::;P º,
such that the resulting augmented families adhere to the requirements of Definition 2 and
Definition 4, respectively, in order to allow for the desired application of [4, Proposition 5].
For consistency with our definitions, let us interpret the smoothly evolving regular double
bubble as a partition .x�1; : : : ; x�P / with the convention that x�i WD ; for all additional
phases i 2 ¹4; : : : ; P º in the BV solution.

Extending the family of transported weights is trivial since we may define #i WD 1 for
all i 2 ¹4; : : : ; P º, thus representing consistently the fact that the additional phases on the
level of the smoothly evolving regular double bubble are empty.

Furthermore, the missing calibration vector fields can be constructed along the lines of
the proof of [4, Lemma 35]. It is then straightforward that the associated additional vector
fields

�i;j �i;j WD �i � �j ; i 2 ¹4; : : : ; P º or j 2 ¹4; : : : ; P º

satisfy (1b)–(1f) (together with the desired regularity). Indeed, except for coercivity con-
dition (1c), all these properties are trivially satisfied in terms of the relevant additional
pairs of indices, since the associated interfaces on the level of the smoothly evolving reg-
ular double bubble are empty. With respect to (1c), the proof of [4, Lemma 37] applies
verbatim without requiring any additional ingredients from the constructions of this work.

We decided to restrict ourselves to the case P D 3 in the formulation of Theorem 6
because we view the main contribution of this paper to be the first part of Theorem 1
(i.e., the combination of Theorem 3 and Proposition 5), and thus aim to shift the focus on
the required 3D generalization of those results of [4] which are concerned with the given
strong solution only (i.e., in the present work a regular double bubble smoothly evolving
by MCF).

2.3. Definition of a regular double bubble smoothly evolving by MCF

This part is concerned with the formulation of a “strong solution concept” for a (topologi-
cally standard) double bubble moving by mean curvature flow, for which we are then able
to show that its flow is calibrated in the precise sense of Definition 2. We start with the
associated energy functional; see [4, Definition 12] for further details.
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Definition 8 (Partition with finite interface energy). Consider d � 2, P � 2, and an
admissible matrix of surface tensions � 2 RP�P . Let .x�1; : : : ; x�P / be a family of mea-
surable subsets of Rd such that Ld .Rd n

SP
iD1
x�i / D 0 and Ld .x�i \ x�j / D 0 for

all i; j 2 ¹1; : : : ; P º with i ¤ j . We then call .x�1; : : : ; x�P / a partition of Rd with
finite interface energy if

EŒ.x�1; : : : ; x�P /� WD
X

i;j2¹1;:::;P º; i¤j

�i;jHd�1.@� x�i \ @
� x�j / <1: (8)

Next, let T 2 .0;1/ be a time horizon, and consider a family .x�1; : : : ; x�P / of open
subsets of Rd � Œ0; T � in the form of x�i D

S
t2Œ0;T �

x�i .t/ � ¹tº for all i 2 ¹1; : : : ; P º. In
this evolutionary setting, we call .x�1; : : : ; x�P / an evolving partition on Rd � Œ0; T � with
finite interface energy if, for all t 2 Œ0; T �, the family .x�1.t/; : : : ; x�P .t// is a partition
of Rd with finite interface energy in the above sense and if the following holds:

sup
t2Œ0;T �

EŒ.x�1.t/; : : : ; x�P .t//� <1:

For such an evolving partition, we denote the associated evolving interfaces by
xIi;j WD

S
t2Œ0;T �

xIi;j .t/ � .t/, where xIi;j .t/ WD @� x�i .t/ \ @� x�j .t/ for all t 2 Œ0; T � and
all pairs i; j 2 ¹1; : : : ; P º, i ¤ j .

In the next step, we formalize the topological setup as well as the main regularity
assumptions. We also state the main compatibility condition in the form of the Herring
angle condition.

Definition 9 (Regular double bubble). Let � 2 R3�3 be an admissible matrix of surface
tensions, and consider a partition .x�1; x�2; x�3/ of R3 with finite interface energy in the
sense of Definition 8. Assume in addition that x�i is an open, non-empty and simply con-
nected subset of R3 such that @x�i is the closure of @� x�i for all i 2 ¹1; 2; 3º. Then, define
for each i; j 2 ¹1; 2; 3º with i ¤ j the associated interface xIi;j WD @x�i \ @x�j , which is
assumed to be non-empty.

We call .x�1; x�2; x�3/ a regular double bubble if the following additional regularity
conditions are satisfied:

(i) Each interface xIi;j is a two-dimensional, compact and simply connected manifold
with boundary of class C 5. The interior of each interface is embedded.

(ii) The three interfaces xI1;2, xI2;3, and xI3;1 intersect precisely along their respective
boundary, which in turn is a non-empty one-dimensional, compact and connected
manifold x� without boundary of class C 5.

(iii) Along the triple line x� , the Herring angle condition

�1;2xn1;2 C �2;3xn2;3 C �3;1xn3;1 D 0 (9)

has to be satisfied, where we denote by xni;j the associated unit normal vector
field along xIi;j pointing from x�i into x�j .
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With the notion of a regular double bubble in place, we finally clarify what we mean
by a (sufficiently) smooth evolution of a regular double bubble with respect to mean cur-
vature flow. It turns out that the construction of an associated gradient flow calibration
in the vicinity of the evolving triple line requires two additional higher-order compatibil-
ity conditions. For a sufficiently smooth evolution of a regular double bubble, these two
compatibility conditions are consequences of differentiating in time the assumed zeroth-
order compatibility condition (i.e., the triple line being the common boundary of the three
interfaces) or first-order compatibility condition (i.e., the Herring angle condition), respec-
tively. Since we will require regularity down to time t D 0, we have to include the resulting
compatibility conditions for the initial double bubble.

Definition 10 (Regular double bubble smoothly evolving by MCF). Let � 2 R3�3 be an
admissible matrix of surface tensions. Let .x�01; x�

0
2;
x�03/ be an associated initial partition

of R3 representing a regular double bubble in the sense of Definition 9. Assume in addition
that .x�01; x�

0
2;
x�03/ satisfies the following two higher-order compatibility conditions:

First, we require for the scalar mean curvatures in form of H 0
i;j WD �r

tan � xn0i;j that
along the initial triple line x�0 it holds that

�1;2H
0
1;2 C �2;3H

0
2;3 C �3;1H

0
3;1 D 0; (10)

which by (9) is equivalent to the existence of a unique vector field Vx�0 along x�0, which
takes values in the normal bundle Tan?x�0 such that

xn0i;j � Vx�0 D H
0
i;j along x�0 for all i; j 2 ¹1; 2; 3º with i ¤ j:

Second, denoting by Nt0 a unit-length tangent vector field along the initial triple line x�0

and defining x�0i;j WD xn
0
i;j �

Nt0 along x�0 for all i; j 2 ¹1; 2; 3º with i ¤ j , we require that
along x�0 the quantity

�
�
x�0i;j ˝ x�

0
i;j W r

tan
xn0i;j

�
.x�0i;j � Vx�0/C .x�

0
i;j � r

tan/H 0
i;j (11)

is independent of the choice of distinct i; j 2 ¹1; 2; 3º at each point on x�0.
Now, let T 2 .0;1/ be a time horizon and .x�1; x�2; x�3/ be an evolving parti-

tion on R3 � Œ0; T � with finite interface energy in the sense of Definition 8. We call
.x�1; x�2; x�3/ a regular double bubble smoothly evolving by MCF on Œ0; T � with initial
data .x�01; x�

0
2;
x�03/ if it satisfies:

(i) For each t 2 Œ0; T �, the family .x�1.t/; x�2.t/; x�3.t// is a regular double bubble
in the sense of Definition 9. Furthermore, the initial condition is attained in the
sense that .x�1.0/; x�2.0/; x�3.0// D .x�01; x�

0
2;
x�03/.

(ii) There exists a family of diffeomorphisms  t W R3 ! R3, t 2 Œ0; T �, such that
 0.x/ D x holds for all x 2 R3, and x�i .t/ D  t .x�0i / and xIi;j .t/ D  t .xI 0i;j /

hold for all t 2 Œ0; T � and all i; j 2 ¹1; 2; 3º, i ¤ j . In addition, the map

 i;j W xI
0
i;j � Œ0; T �!

xIi;j ; .x; t/ 7! . t .x/; t/

is a diffeomorphism of class .C 0t C
5
x \ C

1
t C

3
x /.
xI 0i;j � Œ0; T �/.
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(iii) For each i; j 2 ¹1;2;3ºwith i ¤ j and each .x; t/ 2 xIi;j , denote by VxIi;j .x; t/ the
normal velocity vector of xIi;j .t/ at x 2 xIi;j .t/. We then require motion by MCF
for each interface, that is,�
xni;j �VxIi;j

�
.x; t/DHi;j .x; t/; .x; t/ 2 xIi;j ; i; j 2 ¹1; 2; 3º with i ¤ j: (12)

Existence of C 2C2˛;1C˛x;t strong solutions for the MCF of double bubble geometries is
contained in the work of Depner, Garcke, and Kohsaka [3] under the assumption that the
initial double bubble is of class C 2C˛x and satisfies the geometric compatibility conditions
up to order 2 (i.e., (9) and (10) next to the obvious zeroth-order condition that the triple
line is the common boundary of the three interfaces). In order to obtain solutions with the
regularity from Definition 10, one has to establish higher regularity for the strong solutions
of Depner, Garcke, and Kohsaka [3], which necessitates both higher-order regularity and
higher-order compatibility of the initial double bubble. However, a rigorous argument for
the required higher regularity will surely be a technically demanding task and is therefore
out of the scope of the present paper. In the next remark, let us at least provide a formal
heuristic why the desired higher regularity result should be expected to hold true. To this
end, we restrict our attention to a gain of one order of regularity within a neighborhood of
the triple line.

Remark 11. The main result in the work of Depner, Garcke, and Kohsaka [3] is based on
solving in a Hölder space setting a set of three non-linear non-local parabolic IBVP which
are defined on the initial double bubble. The solution of each of these PDEs represents
the normal component of a time-dependent diffeomorphism mapping at each time the
initial double bubble to the evolved double bubble at that time. The non-locality of the
associated set of PDEs just stems from the fact that the necessary tangential components
of the diffeomorphisms are used only after projecting onto the triple line, so that they
can be expressed up to a linear transformation by the values of the corresponding normal
components at the triple line. This has the advantage of having only one unknown per
interface.

Depner, Garcke, and Kohsaka [3] then solve this set of non-linear non-local parabolic
PDEs by a linearization and contraction mapping argument, which in this context is by
no means a trivial task, as the PDEs are defined on the curved and singular geometry of a
double bubble. However, at least formally, the derivation of higher regularity of solutions
should then be possible along the lines of usual regularity theory arguments which follow.
For the following, we only focus on a gain of one order of regularity and only argue in the
vicinity of the initial triple line:

The formal argument in principle consists of three steps. It is convenient to make use
of the tangent frames .x�i;j ; Nti;j / from Construction 19 below.

(i) First, one differentiates each PDE of the system [3, (25)] in the direction of the
corresponding vector field Nti;j (a rigorous argument would proceed by the dif-
ference quotient method). By this, one obtains a non-linear non-local parabolic



Weak-strong uniqueness for MCF of double bubbles 49

IBVP for the derivative of the solution in the direction of Nti;j which is at least of
similar structure to the one in [3, (25)]. Of course, both the leading-order linear
spatial differential operator and the non-local contribution do not simply com-
mute with the directional spatial derivative, but the non-trivial commutators may
in principle be put into the right hand side term.
Since the resulting system of PDEs is of similar structure, one may apply the
arguments of Depner, Garcke, and Kohsaka [3] to deduce higher regularity for
the derivative of the solution in the direction of Nti;j . Note that this requires higher
regularity of the initial double bubble but not higher compatibility, because Nti;j is
tangent to the triple line.

(ii) Then, one repeats the reasoning from the first step by differentiating [3, (25)]
in time. The resulting system is again of similar structure, but solving it now
requires compatibility conditions up to order four for the initial double bubble.
Recall that we already derived the third-order condition (cf. (11)). The fourth-
order condition can be computed by differentiating the second-order one (10) in
time, expressing everything in terms of spatial derivatives, and finally restricting
to t D 0. Together with the necessary higher-order regularity of the initial double
bubble, this should allow one to deduce higher regularity for the time derivative
of the solution.

(iii) Finally, one aims to improve the regularity for the derivative of the solution in the
direction of x�i;j . This can be done by going back to the original problem [3, (25)]
and extracting from the equation this directional derivative (e.g., by expressing
the Laplace–Beltrami operator in local coordinates as a perturbation of the stan-
dard Euclidean Laplacian). The desired gain in regularity then follows from the
previous two steps.

For the sake of completeness, we conclude this subsection with a definition of BV
solutions to multiphase MCF. Global-in-time existence of such solutions was established
by Otto and the second author [7, 8] (as limit points of the thresholding scheme under an
energy convergence assumption) as well as by Simon and the second author [9] (as limit
points of solutions to the vector-valued Allen–Cahn equation under an energy convergence
assumption).

Definition 12 (BV solutions to multiphase MCF). Let d � 2, let P � 2, let � 2 RP�P

be a surface tension matrix satisfying the strict triangle inequality, and let T 2 .0;1/ be a
finite time horizon. Let �0 D .�0;1; : : : ;�0;P / be an initial partition with finite interface
energy (cf. Definition 8).

A tuple�D .�1; : : : ;�P / consisting of time-dependent partitions with finite interface
energy�D .�.t//t2.0;T /,�.t/D .�1.t/; : : : ;�P .t//, t 2 .0; T /, is called a BV solution
of multiphase MCF with initial partition �0 and time horizon T if:

(i) Let � D .�1; : : : ; �P / W Rd � .0; T / ! ¹0; 1ºP be the associated tuple of
time-dependent characteristic functions with bounded variation. Then, for each
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phase i 2 ¹1; : : : ; P º, there exists Vi 2 L2.0; T IL2.Rd Id jr�i .�; t /j// such that
ˆ

Rd

�i .�; T
0/�.�; T 0/ dx �

ˆ
Rd

�i;0�.�; 0/ dx

D

ˆ T 0

0

ˆ
Rd

�i@t� dx dt �
ˆ T 0

0

ˆ
Rd

Vi� djr�i j dt

for a.e. T 0 2 .0; T / and all � 2 C1cpt .R
d � Œ0; T //.

(ii) Abbreviating Ii;j .t/ WD supp jr�i .�; t /j \ supp jr�j .�; t /j for i ¤ j 2 ¹1; : : : ;P º
and t 2 .0; T /, it holds that Vi

r�i
jr�i j

D Vj
r�j
jr�j j

a.e. on
S
t2.0;T / Ii;j .t/ � ¹tº and

PX
i;jD1; i¤j

�i;j

ˆ T 0

0

ˆ
Ii;j .t/

Vi
r�i

jr�i j
� B dHd�1 dt

D �

PX
i;jD1; i¤j

�i;j

ˆ T 0

0

ˆ
Ii;j .t/

�
Id �

r�i

jr�i j
˝
r�i

jr�i j

�
W rB dHd�1 dt

for a.e. T 0 2 .0; T / and all B 2 C1cpt .R
d � Œ0; T /IRd /.

(iii) It holds that

EŒ�.T 0/�C

PX
i;jD1; i¤j

�i;j

ˆ T 0

0

ˆ
Ii;j .t/

jVi j
2 dHd�1 dt � EŒ�0�

for a.e. T 0 2 .0; T /.

2.4. Notation

We briefly review the standard notation employed throughout the present work. The nota-
tion of geometric quantities will be introduced in the course of the paper.

We write Ld for the d -dimensional Lebesgue measure, H s for the s-dimensional
Hausdorff measure, as well as @�D for the reduced boundary of a set of finite perimeter.
The standard Lebesgue spaces with respect to the Lebesgue measure are denoted as always
by Lp.D/ for any p 2 Œ0;1� and any measurable D � Rd , whereas in addition for any
k 2 N we denote by W k;p.D/ the standard Sobolev space. We further write C k.D/,
k � 0, for the space of functions with bounded and continuous derivatives up to order k
on D � Rd . The intersection with the space C 0cpt.D/ of continuous and compactly sup-
ported functions on D is denoted by C kcpt.D/. Vector-valued versions of these function
spaces are denoted by Lp.DIRd /, and so on. In addition, given a differentiable function
f W D ! Rm we write rf 2 Rm�d for its Jacobian matrix, that is, .rf /i;j D @jfi
holds. If f W M ! Rm is a differentiable function along a given C 1 manifold M , we
denote by r tan its tangential gradient.

For a space-time domain D � Rd � Œ0; T � of the form D D
S
t2Œ0;T �D.t/ � ¹tº we

write C lt C
k
x .D/, l; k � 0, for the space of continuous functions f on D with continuous
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and bounded partial derivatives @l
0

t @
k0

x f on D for any 0 � l 0 � l and any multi-index k0

such that 0� jk0j � k. With a slight abuse of notation, the distance function dist.�;D/with
respect to such a space-time domain D is understood as the distance to the corresponding
time slice, that is, .x; t/ 7! dist.x;D.t// for all .x; t/ 2 Rd � Œ0; T �.

In terms of vector and tensor notation, we denote by v � w the cross product bet-
ween two vectors v; w 2 R3; by v ^ w WD v ˝ w � w ˝ v the exterior product of
v; w 2 R3; and by A W B WD

P
i;j Ai;jBi;j the complete contraction of two matrices

A;B 2 Rm�n. Abusing notation, we will also write a ^ b WD min¹a; bº for the minimum
of two numbers a; b 2 R; however, it will always be perfectly clear from the context what
the symbol ^ represents. We also occasionally use a _ b WD max¹a; bº for the maximum
of two numbers a; b 2 R.

3. Local gradient flow calibration at a smooth interface

The aim of this section is to provide the local building block of a gradient flow calibration
in the vicinity of an interface present in a smoothly evolving double bubble. To this end,
we introduce the following geometric setup:

Definition 13 (Localization radius for interface). Let .x�1; x�2; x�3/ be a regular double
bubble smoothly evolving by MCF in the sense of Definition 10 on a time interval Œ0; T �.
Fix i; j 2 ¹1; 2; 3º with i ¤ j . We call a scale ri;j 2 .0; 1� an admissible localization
radius for the interface xIi;j if

‰i;j W xIi;j � .�ri;j ; ri;j /! R3 � Œ0; T �; .x; t; s/ 7! .xCsxni;j .x; t/; t/

is bijective onto its image im.‰i;j / WD ‰i;j .xIi;j � .�ri;j ; ri;j //. Moreover, it is required
that the inverse ‰�1 is a diffeomorphism of class .C 0t C

4
x \ C

1
t C

2
x /.im.‰i;j //, and that it

splits into the form

‰�1i;j W im.‰i;j /! xIi;j � .�ri;j ; ri;j /; .x; t/ 7! .Pi;j .x; t/; t; si;j .x; t//;

where the map si;j represents a signed distance function (oriented by means of xni;j , i.e.,
rsi;j D xni;j along the interface xIi;j )

si;j .x; t/ D

´
dist.x; xIi;j .t// if .x; t/ 2 ‰i;j .xIi;j � Œ0; ri;j //;

� dist.x; xIi;j .t// if .x; t/ 2 ‰i;j .xIi;j � .�ri;j ; 0//;
(13)

and the map Pi;j being (in each time slice) the nearest-point projection onto xIi;j , that is,

Pi;j .x; t/ D arg min
y2xIi;j .t/

jy � xj; .x; t/ 2 im.‰i;j /:

In view of Definition 10 regarding a regular double bubble smoothly evolving by MCF,
it follows from the tubular neighborhood theorem that all interfaces admit an admissible
localization radius in the sense of Definition 13.
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We introduce some further notation and consequences with respect to Definition 13.
First, the nearest-point projection onto the interface admits the representation

Pi;j .x; t/ D x � si;j .x; t/rsi;j .x; t/; .x; t/ 2 im.‰i;j /:

Second, it holds in terms of regularity

si;j 2 .C
0
t C

5
x \ C

1
t C

3
x /.im.‰i;j //; Pi;j 2 .C

0
t C

4
x \ C

1
t C

2
x /.im.‰i;j //: (14)

The scalar mean curvature of the interface xIi;j with respect to the orientation induced
by xni;j is denoted by Hi;j . We extend these geometric quantities away from the interface,
performing a slight abuse of notation, by means of

xni;j W im.‰i;j /! S2; .x; t/ 7! rsi;j .x; t/; (15)

Hi;j W im.‰i;j /! R; .x; t/ 7! ��si;j .Pi;j .x; t/; t/: (16)

Observe that these definitions immediately imply that

xni;j 2 .C 0t C
4
x \ C

1
t C

2
x /.im.‰i;j //; Hi;j 2 .C

0
t C

3
x \ C

1
t C

1
x /.im.‰i;j //: (17)

Construction 14 (Gradient flow calibration along smooth interfaces). Let the assump-
tions and notation of Definition 13 be in place, and let Yi;j W im.‰i;j / ! R3 be an
arbitrary vector field of class C 0t C

1
x .im.‰i;j //. We then define a pair of vector fields

.�i;j ; B/ W im.‰i;j /! S2 �R3 as follows:

�i;j WD xni;j ; B WD Hi;jxni;j C .Id � xni;j ˝ xni;j /Yi;j : (18)

We call .�i;j ; B/ a local gradient flow calibration for the interface xIi;j . }

We now register the properties of the pair of vector fields .�i;j ; B/—in particular, that
it satisfies locally the requirements of Definition 2, with the exception of (1c). The latter
will only be satisfied once we glue together the local constructions in Section 5 by means
of a suitable family of cutoff functions.

Lemma 15. Let the assumptions and notation of Construction 14 be in place. Then, it
holds that

�i;j 2 .C
0
t C

4
x \ C

1
t C

2
x /.im.‰i;j //; B 2 C 0t C

1
x .im.‰i;j //:

Moreover, there exists a constant C > 0 which depends only on the data of the smoothly
evolving regular double bubble .x�1; x�2; x�3/ on Œ0; T � such that the following hold
throughout the space-time domain im.‰i;j /:

jr�i;j j C j@t�i;j j � C; (19)

jBj C jrBj � C; (20)

@t�i;j C .B � r/�i;j C .rB/
T�i;j D 0; (21)

jr � �i;j C B � �i;j j � C dist.� xIi;j /; (22)

@t j�i;j j
2
C .B � r/j�i;j j

2
D 0: (23)
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Proof. The asserted regularity follows immediately from definitions (18) and the regular-
ity of the constituents (see (17)). Equation (21) for the time evolution of �i;j follows from
differentiating in the spatial variable the PDE satisfied by the signed distance function si;j ,
that is,

@tsi;j D �Hi;j D �.B � r/si;j ; (24)

relying in the process on the product rule and xni;j D rsi;j . The divergence constr-
aint (see (22)) is a direct consequence of definitions (15), (16) and (18) in combination
with the regularity of the signed distance (see (14)). Finally, equation (23) is satisfied for
trivial reasons since �i;j 2 S2.

4. Local gradient flow calibration at a triple line

This section constitutes the core of the present work. We establish the existence of a gradi-
ent flow calibration in the vicinity of the triple line for a double bubble smoothly evolving
by MCF in the sense of Definition 10. The main result of this section reads as follows:

Proposition 16 (Existence of gradient flow calibration at the triple line). Consider a regu-
lar double bubble .x�1; x�2; x�3/ smoothly evolving by MCF on a time interval Œ0; T � in the
sense of Definition 10. Let r 2 .0; 1� be an associated admissible localization radius for
the triple line in the sense of Definition 17 below. Then, there exists a potentially smaller
radius yr 2 .0; r�, only depending on the data of the smoothly evolving regular double
bubble .x�1; x�2; x�3/ on Œ0; T �, which gives rise to the following assertions:

Denote by Nyr .x�/ WD
S
t2Œ0;T �Byr .

x�.t// � ¹tº the neighborhood of the evolving triple
line. For all i; j 2 ¹1; 2; 3º with i ¤ j , there exists a continuous local extension

�i;j W Nyr .x�/! B1.0/

of the unit normal vector field xni;j jxIi;j of xIi;j , and a continuous local extension

B W Nyr .x�/! R3

of the velocity vector field of the network 	 D
S
i;j2¹1;2;3º;i¤j

xIi;j , such that the pair
..�i;j /i;j2¹1;2;3º;i¤j ; B/ satisfies the following list of requirements:

(i) For all i; j 2 ¹1; 2; 3º with i ¤ j , we have �i;j 2 .C 0t C
1
x \ C

1
t C

0
x /.Nyr .

x�/ n x�/

andB 2C 0t C
1
x .Nyr .

x�/ n x�/, with corresponding estimates throughout Nyr .x�/ n x�

given by

jr�i;j j C j@t�i;j j � C; (25)

jBj C jrBj � C (26)

for some constant C > 0 which depends only on the data of the smoothly evolving
regular double bubble .x�1; x�2; x�3/ on Œ0; T �.
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(ii) We have for all i; j 2 ¹1; 2; 3º with i ¤ j

�i;j .�; t / D xni;j .�; t / along xIi;j .t/ \ Byr .x�.t//;

B.�; t / D Vx�.�; t / along x�.t/ (27)

for all t 2 Œ0; T �, where Vx� denotes the normal velocity of the triple line x� .
Moreover, the skew-symmetry relation �i;j D ��j;i holds true.

(iii) The Herring angle condition is satisfied in the whole space-time tubular neigh-
borhood Nyr .x�/ of the triple line, that is,

�1;2�1;2 C �2;3�2;3 C �3;1�3;1 D 0 in Nyr .x�/:

(iv) There exists a constant C > 0, depending only on the data of the smoothly evolv-
ing regular double bubble .x�1; x�2; x�3/ on Œ0; T �, such that for all i; j 2 ¹1; 2; 3º
with i ¤ j the estimates

j@t�i;j C .B � r/�i;j C .rB/
T�i;j j � C dist.�; xIi;j /; (28)

jB � �i;j Cr � �i;j j � C dist.�; xIi;j /; (29)

@t j�i;j j
2
C .B � r/j�i;j j

2
� C dist2.�; xIi;j / (30)

hold true within Nyr .x�/ n x� .

A pair ..�i;j /i;j2¹1;2;3º;i¤j ; B/ subject to these conditions is called a local gradient flow
calibration at the triple line x� .

The remainder of this section is organized as follows: In Section 4.1, we introduce
the necessary notation employed in the construction of the desired vector fields. Sec-
tion 4.2 implements the construction of the main building blocks for the vector fields
..�i;j /i¤j ; B/, which will then be glued together in Section 4.3. Section 4.4 contains the
proof of Proposition 16. Finally, in Section 4.5, we formalize the fact that the local gra-
dient flow calibration at the triple line due to Proposition 16 represents an admissible
perturbation of the local gradient flow calibrations at the interfaces in a suitable sense.

4.1. Local geometry at a triple line

We first provide a suitable decomposition of the space-time tubular neighborhood of the
triple line of a smoothly evolving regular double bubble in the sense of Definition 10. The
main ingredient is given by the following notion of an admissible localization radius for
the triple line (cf. Figure 3):

Definition 17 (Localization radius for triple line). Let .x�1; x�2; x�3/ be a regular double
bubble smoothly evolving by MCF in the sense of Definition 10 on a time interval Œ0; T �.
For each i; j 2 ¹1; 2; 3º with i ¤ j , let ri;j 2 .0; 1� be an admissible localization radius
for the interface xIi;j in the sense of Definition 13. We call r D rx� 2 .0;min¹ri;j W i; j 2
¹1; 2; 3º; i ¤ j º� an admissible localization radius for the triple line x� if the following
properties are satisfied:
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Ī1,2

Ī2,3

Γ̄ t̄1,2

n̄1,2

τ̄1,2

Rn̄1,2

Figure 2. The smooth solution close to the triple line x� . Three sheets come together at fixed angles
along x� (here, 120ı). In this general situation, one needs to introduce an additional gauge rotation
field Rxn1;2 . At each point, this matrix is a rotation in the tangent plane spanned by x�1;2 and xt1;2,
illustrated here by a shaded (blue) rectangle.

(i) Regularity of triple line. Define Nr .x�/ WD
S
t2Œ0;T � Br .

x�.t//�¹tº. The squared dis-
tance to x� satisfies dist2.�; x�/2C 0t C

4
x .Nr .x�//\C

1
t C

2
x .Nr .x�//, and for the nearest-point

projection onto x� , we have Px� 2 C
0
t C

4
x .Nr .x�// \ C

1
t C

2
x .Nr .x�//.

(ii) Wedge decomposition. For each i; j 2 ¹1; 2; 3º with i ¤ j , there exist sets WxIi;j WDS
t2Œ0;T �WxIi;j .t/�¹tº;WxIj;i WDWxIi;j ; and Wx�i WD

S
t2Œ0;T �Wx�i .t/�¹tº subject to the fol-

lowing conditions:
First, for each t 2 Œ0; T � the sets .WxIi;j .t//i;j2¹1;2;3º;i¤j and .Wx�i .t//i2¹1;2;3º are

non-empty, pairwise disjoint open subsets of Br .x�.t//. For each x 2 x�.t/, the slice of
each of these sets in the normal plane xCTan?x x�.t/ is the intersection of Br .x�.t// and
a cone with apex x (cf. Figure 3). More precisely, there exist unit-length vector fields
.X˙
xIi;j
/i;j2¹1;2;3º;i¤j and .X˙

x�i
/i2¹1;2;3º along x� , taking values for each t 2 Œ0; T � in the
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W2,3

W3

W3,1

W1

W1,2

W2

I1,2

I2,3

I3,1

Figure 3. A cross-section orthogonal to the triple line illustrating the wedge decomposition in Def-
inition 17. The “interpolation wedges” are marked with a dotted pattern and the “interface wedges”
with striped patterns.

normal bundle Tan?x�.t/ and being of class C 0t C
4
x .
x�/ \ C 1t C

2
x .
x�/, so that for all i; j 2

¹1; 2; 3º with i ¤ j and all .x; t/ 2 x� , it holds that

WxIi;j .t/ \
�
xCTan?x x�.t/

�
D
�
xC

®
˛XC
xIi;j
.x; t/C ˇX�xIi;j

.x; t/ W ˛; ˇ 2 .0;1/
¯�
\ Br .x�.t//; (31)

as well as

Wx�i .t/ \
�
xCTan?x x�.t/

�
D
�
xC

®
˛XC
x�i
.x; t/C ˇX�x�i

.x; t/ W ˛; ˇ 2 .0;1/
¯�
\ Br .x�.t//: (32)

Moreover, X˙
xIi;j
D X˙

xIj;i
and

.XC
x�i
; X�x�i

/ 2
®
.XC
xIi;j
; X�xIk;i

/; .XC
xIk;i
; X�xIi;j

/
¯

for all i; j; k 2 ¹1; 2; 3º such that ¹i; j; kº D ¹1; 2; 3º. The opening angles of these
cones are constant along x� and take values in .0; �/.
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Second, for each t 2 Œ0; T � these sets provide a decomposition of the tubular neigh-
borhood of the triple line in the sense that

Br .x�.t// D WxI1;2.t/ [WxI2;3.t/ [WxI3;1.t/ [
[

i2¹1;2;3º

Wx�i .t/: (33)

Third, for all t 2 Œ0; T � and all distinct i; j 2 ¹1; 2; 3º, it holds that

xIi;j .t/ \ Br .x�.t// � WxIi;j .t/ [
x�.t/ �

®
x 2 R3 W .x; t/ 2 im.‰i;j /

¯
; (34)

Wx�i .t/ �
\

j2¹1;2;3ºn¹iº

®
x 2 R3 W .x; t/ 2 im.‰i;j /

¯
; (35)

where we refer to Definition 13 for the diffeomorphisms ‰i;j .

(iii) Comparability of distances. There exists C > 0 such that for all pairwise distinct
i; j; k 2 ¹1; 2; 3º, it holds that (recall that 	 D

S
i;j2¹1;2;3º;i¤j

xIi;j )

dist.�; x�/C dist.�; xIi;j /C dist.�; xIk;i / � C dist.�;	/ in Wx�i ; (36)

dist.�; x�/ � C dist.�; xIi;j / in WxIj;k [WxIk;i ; (37)

dist.�; xIi;j / � C dist.�;	/ in WxIi;j : (38)

We refer from here onward to the sets .WxIi;j /i;j2¹1;2;3º;i¤j as interface wedges, and to the
sets .Wx�i /i2¹1;2;3º as interpolation wedges.

Equations (31) and (32) simply mean that the domains Wx�i.t/ and WxIi;j.t/ are
“wedges” in the sense that their respective slices across the normal space x C Tan?x�.t/
of the triple line have a cone structure close to x�.t/. The comparability (36)–(38) of dis-
tance functions in the various slices can already be guessed from Figure 3.

Let us first briefly discuss the existence of an admissible localization radius.

Lemma 18. Let the assumptions and notation of Definition 17 be in place. Then, there
exists an admissible localization radius r D rx� 2 .0; 1� for the triple line. The radius r
and the associated data only depends on the data of the smoothly evolving regular double
bubble .x�1; x�2; x�3/ on Œ0; T �.

Proof. We provide details on how to arrange the vector fields .X˙
xIi;j
/i;j2¹1;2;3º;i¤j and

.X˙
x�i
/i2¹1;2;3º in order to ensure properties (31)–(33). The remaining conditions are a

consequence of exploiting the uniform space-time regularity of the interfaces present in
the smoothly evolving regular double bubble .x�1; x�2; x�3/ on Œ0; T � (cf. Definition 10),
and choosing the scale r 2 .0; r1;2 ^ r2;3 ^ r3;1� to be sufficiently small.

Fix .x; t/ 2 x� , and up to a translation and rotation we may assume without loss of
generality that x D 0 and Tan?x x�.t/D ¹0º �R2 D he2; e3i, where ¹e1; e2; e3º denotes the
standard basis of R3 and he2; e3i the R-linear span of ¹e2; e3º. Denote then by x�1;2; x�2;3;
x�3;1 2 he2; e3i the tangent vectors at x D 0 to the interfaces xI1;2, xI2;3 and xI3;1, respec-
tively, with the orientation chosen so that along x� all of them point in the direction of
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the associated interface (which is also described in more detail in Construction 19 below).
These tangent vectors define associated half-spaces

H1;2 WD
®
y 2 he2; e3i W y � x�1;2 > 0

¯
;

where H2;3 and H3;1 are defined analogously.
We now construct a set of pairwise disjoint open cones Cx�1 ; Cx�2 ; Cx�3 � he2; e3i

which will provide the cone structure of the interpolation wedges by means of the fol-
lowing procedure: If the cone given by H1;2 \H3;1 has an opening angle strictly greater
than 90ı, we define Cx�1 WD H1;2 \H3;1. In the other case, we define Cx�1 to be the mid-
dle third of the cone with opening vectors x�1;2 and x�3;1. The remaining two cones, Cx�2
and Cx�3 , are defined in the same way.

Note that the opening angles of the cones .Cx�i /i2¹1;2;3º are always strictly smaller
than 180ı, since the surface tensions satisfy the strict triangle inequality. We proceed by
selecting cones CxI1;2 DWCxI2;1 ;CxI2;3 DWCxI3;2 ;CxI3;1 DWCxI1;3 � he2; e3i, which are uniquely
determined by the requirement that together with .Cx�i /i2¹1;2;3º they form a family of
pairwise disjoint open cones in he2; e3i such that

he2; e3i D CxI1;2 [ CxI2;3 [ CxI3;1 [
[

i2¹1;2;3º

Cx�i ;

x�1;2 2 CxI1;2 ; x�2;3 2 CxI2;3 ; x�3;1 2 CxI3;1 :

We finally define .X˙
xIi;j
/i;j2¹1;2;3º;i¤j and .X˙

x�i
/i2¹1;2;3º by means of the unit-length

opening vectors of the cones .CxIi;j /i;j2¹1;2;3º;i¤j and .Cx�i /i2¹1;2;3º, respectively. The
right hand sides of properties (31) and (32) now serve as the defining objects for the inter-
face and interpolation wedges, respectively.

In the second preparatory step, we proceed with the definition of a preliminary ortho-
normal frame along each of the three respective interfaces in the vicinity of the triple line
(cf. Figure 2).

Construction 19 (Preliminary choice of tangent frame). Let the assumptions and notation
of Definition 17 be in place. In particular, let r 2 .0; r1;2 ^ r2;3 ^ r3;1� be an associated
admissible localization radius for the triple line x� . We then provide for all t 2 Œ0; T � and
all distinct phases i; j 2 ¹1; 2; 3º two tangent vector fields x�i;j .�; t /; Nti;j .�; t / 2 S2 along
the local interface patch xIi;j .t/ \ Br .x�.t// by means of the following procedure:

First, slicing the interface xIi;j .t/ along the planes yCTan?y x�.t/ produces a family of
curves

xI
y
i;j .t/ WD

xIi;j .t/ \ .yCTan?y x�.t// \ Br .x�.t//

for all y 2 x�.t/. Second, for each t 2 Œ0; T � and each y 2 x�.t/, denote by x�yi;j .�; t / 2
S2 the tangent vector field along the curve xI yi;j .t/ which is oriented by yC r

2
x�
y
i;j .y; t/ 2

WxIi;j .t/ \ .yCTan?y x�.t//. We then define two tangent vector fields on the local interface
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patch xIi;j \Nr .x�/ by

x�i;j .x; t/ WD x�
y
i;j .x; t/

ˇ̌
yDPx� .x;t/

2 S2; .x; t/ 2 xIi;j \Nr .x�/;

Nti;j .x; t/ WD .xni;j � x�i;j /.x; t/ 2 S2; .x; t/ 2 xIi;j \Nr .x�/:

This yields an orthonormal frame .xni;j ; x�i;j ; Nti;j / on xIi;j \Nr .x�/. Observe also that

Nt1;2jx� D Nt2;3jx� D Nt3;1jx� : (39)

By a minor abuse of notation, we finally introduce extensions of these tangential vector
fields away from the interfaces, namely

.x�i;j ; Nti;j /.x; t/ WD .x�i;j ; Nti;j /.y; t/
ˇ̌
yDPi;j .x;t/

; .x; t/ 2 im.‰i;j / \Nr .x�/: (40)

We refer to Definition 13 for the diffeomorphism ‰i;j and the projection Pi;j onto the
interface xIi;j . We register in terms of regularity that

x�i;j ; Nti;j 2 .C 0t C
4
x \ C

1
t C

2
x /.im.‰i;j / \Nr .x�//: (41)

This concludes our construction of orthonormal frames .xni;j ; x�i;j ; Nti;j /. }

In the rest of the paper, we will repeatedly rely on an explicit representation of the
gradients for the normal and tangential vector fields. These formulas are the content of the
following result:

Lemma 20. Let the assumptions and notation of Definition 17 and Construction 19 be
in place. To ease notation, let xI WD xI1;2, xI 0 WD xI2;3 and xI 00 WD xI3;1 for the three inter-
faces present in the smoothly evolving regular double bubble .x�1; x�2; x�3/. We proceed
accordingly for the associated orthonormal frames .xn; x�; Nt/, .xn0; x� 0; Nt0/ and .xn00; x� 00; Nt00/,
respectively.

Using also the abbreviations �x� x� WD �x� ˝ x� W rxn, �Nt Nt WD �Nt ˝ Nt W rxn as well as
�x� Nt WD �x� ˝ Nt W rxn, it holds that �x� Nt D �Nt˝ x� W rxn and

rxn D ��x� x� x� ˝ x� � �Nt Nt Nt˝ Nt � �x� Nt .Nt˝ x� C x� ˝ Nt/; (42)

rx� D �x� x� xn˝ x� � .r � Nt/ Nt˝ x� C �x� Nt xn˝ NtC .r � x�/ Nt˝ Nt; (43)

rNt D �Nt Nt xn˝ NtC �x� Nt xn˝ x� C .r � Nt/ x� ˝ x� � .r � x�/ x� ˝ Nt (44)

along the local interface patch xI \ Nr .x�/. Analogous formulas of course hold true for
.xn0; x� 0; Nt0/ along xI 0 \ Nr .x�/ in terms of .�0

x� 0x� 0 ; �
0

Nt0Nt0
; �0
x� 0Nt0
/, and for .xn00; x� 00; Nt00/ along

xI 00 \Nr .x�/ in terms of .�00
x� 00x� 00 ; �

00

Nt00Nt00
; �00
x� 00Nt00
/.

Proof. Representation (42) is essentially just a rephrasing of the definition of the coeffi-
cients �x� x� , �Nt Nt and �x� Nt. The only additional ingredients needed for the validity of (42) are
.rxn/Txn D 1

2
rjxnj2 D 0 and the symmetry of rxn D r2s1;2 (cf. (15)).
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For a proof of (43), we write x� D Jxn where J D x� ^ xnC Nt˝ Nt denotes the associated
rotation matrix around the Nt-axis. Based on .xn � r/x� D 0, .rx�/Tx� D 1

2
rjx� j2 D 0 and (42),

we then obtain

rx� D �x� x� xn˝ x� � �Nt Nt Nt˝ Nt � �x� Nt .Nt˝ x� � xn˝ Nt/

C
�
.x� � r/J

�
xn˝ x� C

�
.Nt � r/J

�
xn˝ Nt

D �x� x� xn˝ x� � �Nt Nt Nt˝ Nt � �x� Nt .Nt˝ x� � xn˝ Nt/

C
�
xn˝ xn W .x� � r/J

�
xn˝ x� C

�
Nt˝ xn W .x� � r/J

�
Nt˝ x�

C
�
xn˝ xn W .Nt � r/J

�
xn˝ NtC

�
Nt˝ xn W .Nt � r/J

�
Nt˝ Nt:

For the two appearing .xn˝ xn/-components of rJ , it suffices to take the symmetric part
of J into account, which is Nt˝ Nt. It then follows from Nt � xn D 0 that

xn˝ xn W .x� � r/J D xn˝ xn W .Nt � r/J D 0:

Based on (42), Nt � .Nt � r/Nt D 1
2
.Nt � r/jNtj2 D 0 and Nt D xn � x� , we may further compute

Nt˝ xn W .Nt � r/J D .Nt˝ xn/ W .Nt � r/.x� ^ xn/C xn � .Nt � r/Nt

D .Nt˝ xn/ W .Nt � r/.x� ^ xn/ � Nt˝ Nt W rxn

D .Nt˝ xn/ W .Nt � r/.x� ^ xn/C �Nt Nt:

Based on (42), Nt � xn D 0, .Nt ˝ xn/ W .x� � r/.x� ^ xn/ D .Nt ˝ x�/ W rx� and Nt D xn � x� , we in
addition have

Nt˝ xn W .x� � r/J D .Nt˝ x�/ W rx� C xn � .x� � r/Nt

D .Nt˝ x�/ W rx� � Nt˝ x� W rxn

D .Nt˝ x�/ W rx� C �x� Nt:

The combination of the previous four displays yields

rx� D �x� x� xn˝ x� C ..Nt˝ x�/ W rx�/ Nt˝ x� C �x� Nt xn˝ NtC .r � x�/ Nt˝ Nt;

r � x� D .Nt˝ xn/ W .Nt � r/.x� ^ xn/:

Moreover, exploiting Nt D xn � x� and employing the product rule, (42), and the previous
display yields

rNt D �Nt Nt xn˝ NtC .r � Nt/ x� ˝ x� C �x� Nt xn˝ x� � .r � x�/ x� ˝ Nt;

r � Nt D �.Nt˝ x�/ W rx�:

The previous two displays in turn directly imply (43) and (44).

The orthonormal frames provided by Construction 19 together with the signed distance
functions (see (13)) constitute all ingredients for the construction of a suitable building
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t̄1,2

n̄1,2

τ̄1,2

R′
t̄1,2

t̄2,3

n̄2,3

τ̄2,3

Ī3,1(t)

Ī1,2(t)

Ī2,3(t)

Γ̄(t)

Figure 4. Local geometry at the triple line and preliminary construction of tangent frame. For sim-
plicity, we illustrate here the case of three flat sheets coming together at equal angles of 120ı along
a straight triple line x�.t/. In this case, the “Herring” rotation R0.y; t/ is a rotation by 120ı about
the axis given by the tangent vector NtD Nt1;2.y; t/ of x�.t/. The dotted lines represent the three slices
xI
y
i;j .t/ of the interfaces xIi;j .

block z�i;j for the vector field �i;j , at least in Nr .x�/ \ im.‰i;j /—see Construction 23
below. However, we also have to provide a construction of the vector field �i;j outside
of the domain Nr .x�/ \ im.‰i;j /, that is, where this vector field a priori does not have a
“natural” definition. The guiding principle is to mimic the Herring angle condition valid
on the triple line:

�1;2xn1;2 C �2;3xn2;3 C �3;1xn3;1 D 0:
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This condition motivates to appropriately rotate the already defined candidate vector
fields z�j;k and z�k;i to provide the building blocks for the vector field �i;j throughout
Nr .x�/ \ im.‰j;k/ and Nr .x�/ \ im.‰k;i /, respectively.

The rotations used in this procedure have to be chosen carefully so that our construc-
tions will satisfy the requirements of a local gradient flow calibration at the triple line, such
as sufficiently high regularity (in particular, adequate compatibility along the triple line)
and the validity of the required evolution equations (up to a desired error in the distance
to the interface).

Construction 21 (Gauged Herring rotation fields). Let the assumptions and notation of
Definition 17, Construction 19 and Lemma 20 be in place. Consistent with the notational
conventions of the latter, denote by‰,‰0 and‰00 the diffeomorphisms from Definition 13
with respect to the interfaces xI , xI 0 and xI 00. We proceed accordingly for the surface tensions
.�; � 0; � 00/ and the projections .P; P 0; P 00/.

We now define a pair of Herring rotation fields

R0Nt; R
00
Nt W Nr .x�/ \ im.‰/! SO.3/ � R3�3

around the Nt-axis by

R0Nt.x; t/ WD cos � 0 IdC sin � 0 .x� ^ xn/.x; t/C .1 � cos � 0/ .Nt˝ Nt/.x; t/; (45)

R00Nt .x; t/ WD cos � 00 IdC sin � 00 .x� ^ xn/.x; t/C .1 � cos � 00/ .Nt˝ Nt/.x; t/

for all .x; t/ 2 Nr .x�/ \ im.‰/ (cf. Figure 4). The associated angles � 0; � 00 2 .0; �/ are
independent of .x; t/ 2Nr .x�/\ im.‰/ and chosen based on the triple of surface tensions
.�; � 0; � 00/ such that the relations

R0Ntxn D xn
0; (46)

R00Nt xn D xn
00 (47)

hold true along the triple line x� . Hence, the Herring condition (9) implies that for all
.x; t/ 2 Nr .x�/ \ im.‰/ and all v 2 R3 such that v � Nt.x; t/ D 0, it holds that

�v C � 0R0Nt.x; t/v C �
00R00Nt .x; t/v D 0: (48)

Analogously, one defines a pair of rotations .RNt0 ; R
00

Nt0
/ (resp. .RNt00 ; R

0

Nt00
/) throughout the

region Nr .x�/ \ im.‰0/ (resp. Nr .x�/ \ im.‰00/).
Apart from the Herring rotation fields, we also introduce the gauge rotation field

Rxn WD R
.2/
xn R

.1/
xn W Nr .x�/ \ im.‰/! SO.3/ � R3�3 (49)

around the xn-axis (cf. Figure 2). The auxiliary rotation fields R.1/
xn and R.2/

xn around the
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xn-axis are defined via

R
.1/
xn .x; t/ WD cos ı.x; t/ IdC sin ı.x; t/ .Nt ^ x�/.x; t/

C .1 � cos ı.x; t// .xn˝ xn/.x; t/; (50)

R
.2/
xn .x; t/ WD cos!.x; t/ IdC sin!.x; t/ .Nt ^ x�/.x; t/

C .1 � cos!.x; t// .xn˝ xn/.x; t/: (51)

Here, the rotation angle ı.x; t/ is given explicitly by

ı.x; t/ WD s.x; t/�x� Nt.x; t/; .x; t/ 2 Nr .x�/ \ im.‰/; (52)

and the angle !.x; t/ is given by the extension

!.x; t/ WD y!.P.x; t/; t/; .x; t/ 2 Nr .x�/ \ im.‰/ (53)

of y!.x; t/, which in turn is defined by the one-parameter family of ODEs´
y!.x; t/ D 0; .x; t/ 2 x�;�
x�.x; t/ � r

�
y!.x; t/ D .r � Nt/.x; t/; .x; t/ 2 xI \Nr .x�/:

(54)

Analogously, one defines a gauge rotation Rxn0 WD R
.2/

xn0 R
.1/

xn0 (resp. Rxn00 WD R
.2/

xn00 R
.1/

xn00 )
throughout the region Nr .x�/ \ im.‰0/ (resp. Nr .x�/ \ im.‰00/).

We finally define via conjugation a pair of gauged Herring rotation fields

zR0xI WD RxnR
0
NtR

T
xn W Nr .x�/ \ im.‰/! SO.3/ � R3�3; (55)

zR00xI WD RxnR
00
Nt R

T
xn W Nr .x�/ \ im.‰/! SO.3/ � R3�3; (56)

and analogously, a pair . zRxI 0 ; zR
00
xI 0
/ (resp. . zRxI 00 ; zR

0
xI 00
/) of gauged Herring rotation fields

throughout the region Nr .x�/ \ im.‰0/ (resp. Nr .x�/ \ im.‰00/). }

In a symmetric setting with either rotational or translational symmetry (cf. Figure 4),
the gauge rotations Rxn, Rxn0 , and Rxn00 are not needed and, in fact, reduce to the identity
matrix. In the general case (cf. Figure 2), they account for the fact that, for instance, the
normal vector field xn.�; t / evaluated along a slice xI .t/\ .xCTan?x x�.t// for some x 2 x�.t/
will in general rotate out of the plane xCTan?x x�.t/ as one moves away from the triple line
point x.

We conclude this section with the derivation of compatibility conditions along the
triple line. These represent the last missing ingredients to ensure compatibility of the main
building blocks z�i;j (cf. Construction 23 below) for the vector field �i;j and its rotated
counterparts along the triple line (see Lemma 24 below).

Lemma 22. Let the assumptions and notation of Definition 17, Construction 19, Lem-
ma 20, and Construction 21 be in place. Consistent with the notational conventions of the
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latter two, denote by H , H 0 and H 00 the extended scalar mean curvatures defined by (16)
with respect to the interfaces xI , xI 0 and xI 00. Denote by Vx� the normal velocity vector field
of the triple line.

Then, the following compatibility conditions are satisfied along the triple line x�:

x� 0 D R0Ntx�; x�
00
D R00Nt x�; (57)

�0
x� 0Nt0 D �x� Nt; �00

x� 00Nt00 D �x� Nt; (58)

�0
Nt0Nt0 D .R

0
Ntxn � xn/�Nt Nt � .R

0
Ntxn � x�/r � x�; (59)

�00
Nt00Nt00 D .R

00
Nt xn � xn/�Nt Nt � .R

00
Nt xn � x�/r � x�; (60)

r � x� 0 D .R0Ntxn � x�/�Nt Nt C .R
0
Ntxn � xn/r � x�; (61)

r � x� 00 D .R00Nt xn � x�/�Nt Nt C .R
00
Nt xn � xn/r � x�; (62)

�HC� 0H 0C� 00H 00 D 0; (63)

�00N� 00; N� 00.x�
00
� Vx�/C.x�

00
� r/H 00 D �0x� 0x� 0.x�

0
� Vx�/C.x�

0
� r/H 0

D �x� x� .x� � Vx�/C.x� � r/H: (64)

Of course, the analogues of (57) as well as (59)–(62) hold true for the appropriate rela-
belings of the associated data.

Next, we introduce a gauged orthonormal frame on Nr .x�/ \ im.‰/ by means of

.xn; x��; Nt�/ WD .xn; Rxnx�; RxnNt/: (65)

Then, the following compatibility condition holds true:

.xn; x��; Nt�/ D .xn; x�; Nt/ along the triple line x�: (66)

The analogue of (66) with respect to the gauged frame .xn0; x� 0�; Nt
0

�/ WD.xn
0; Rxn0x�

0; Rxn0Nt
0
/

on Nr .x�/ \ im.‰0/ (resp. .xn00; x� 00� ; Nt
00

�/ WD .xn
00; Rxn00x�

00; Rxn00Nt
00
/ on Nr .x�/ \ im.‰00/) is also

satisfied.

Proof. Except for conditions (57) and (66), the asserted compatibility conditions are con-
sequences of differentiating the existing zeroth- and first-order compatibility conditions
along the triple line.

Step 1: Proof of (57). By (39) and the choice of the orientation for the tangent fields
.x�; x� 0; x� 00/ along the triple line (cf. Construction 19), it holds that

x� D Jxn; x� 0 D Jxn0; x� 00 D Jxn00 on x�: (67)

In terms of a single 90ı rotation field around the Nt-axis, we have

J D .x� ^ xn/C Nt˝ Nt D .x� 0 ^ xn0/C Nt0 ˝ Nt0 D .x� 00 ^ xn00/C Nt00 ˝ Nt00 on x�: (68)

Hence, it follows from (46) and the fact that the Herring rotation R0
Nt is a rotation around

the same axis that
R0Ntx� D R

0
NtJxn D JR

0
Ntxn D Jxn

0
D x� 0 on x�:
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This proves the first asserted identity of (57); the second of course follows analogously
based on (47).

Step 2: Proof of (58)–(60). Since the Herring rotation R0
Nt defined by (45) is a rota-

tion around the Nt-axis with constant angle, the coefficients in the representation R0
Ntxn D

.R0
Ntxn � xn/xnC .R

0
Ntxn � x�/x� are constant. Hence, together with formulas (42) and (43), we may

compute along x�

.Nt � r/R0Ntxn D .R
0
Ntxn � xn/.Nt � r/xnC .R

0
Ntxn � x�/.Nt � r/x�

D
�
.R0Ntxn � x�/.r � x�/ � .R

0
Ntxn � xn/�Nt Nt

�
Nt � .R0Ntxn � xn/�x� Ntx�

C .R0Ntxn � x�/�x� Ntxn:

Furthermore, by the analogue of (43) for the tangent field x� 0 as well as identities (39)
and (57), and again the fact that R0

Nt and J commute, we obtain along the triple line x�

.Nt0 � r/xn0 D ��0
Nt0Nt0
Nt0 � �0

x� 0Nt0x�
0
D ��0

Nt0Nt0
Nt � .R0Ntx� � x�/�

0

x� 0Nt0x� � .R
0
Ntx� � xn/�

0

x� 0Nt0xn

D ��0
Nt0Nt0
Nt � .R0Ntxn � xn/�

0

x� 0Nt0x� C .R
0
Ntxn � x�/�

0

x� 0Nt0xn:

Hence, the defining condition (46) of the Herring rotation R0
Nt and matching coefficients

in the previous two displays implies the first identity of (58) as well as (59) (note that of
course, either .R0

Ntxn � xn/ or .R0
Ntxn � x�/ is non-zero). The second identity of (58) as well as (60)

in turn follow from an analogous computation based on (47).
Step 3: Proof of (61)–(62). These two compatibility conditions are derived as in the

previous step, this time computing the tangential derivative along the triple line for both
sides of the identities from (57), respectively.

Step 4: Proof of (63)–(64). By (12), the normal velocity Vx� of the triple line satisfies
along x�

Vx� � �xn D �H; Vx� � �
0
xn0 D � 0H 0; Vx� � �

00
xn00 D � 00H 00: (69)

Summing these identities results in (63), thanks to the Herring angle condition (9) being
satisfied at each time.

To derive compatibility condition (64), we differentiate the Herring angle condition
and obtain

.@t C Vx� � r/.�xnC �
0
xn0 C � 00xn00/ D 0:

Now we compute, using (15) and (24) for the first term and (42) for the second one,

@txnC .Vx� � r/xn D �.Nt � rH/Nt � .x� � rH/x� � .Vx� � x�/.�x� x�x�C�x� NtNt/ (70)

on x� . The analogous equations hold for xn0 and xn00. Plugging those into (70) and us-
ing (39) and (58), we obtain

0 D
�
Nt � r.�H C � 0H 0 C � 00H 00/

�
NtC .x� � rH/�x� C .x� 0 � rH 0/� 0x� 0 C .x� 00 � rH 00/� 00x� 00

C �x� x� .Vx� � x�/�x� C �
0
x� 0x� 0.Vx� � x�

0/� 0x� 0 C �00x� 00 x� 00.Vx� � x�
00/� 00x� 00

C Vx� � .�x�C�
0
x� 0C� 00x� 00/.�x� NtNt/
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on x� . Differentiating (63) along x� , we see that the first term vanishes. The last term
vanishes by applying the fixed rotation J to the Herring condition (9). Thus, since the
three vectors x� , x� 0, and x� 00 lie in one plane, we deduce (64) from the previous display.

Step 5: Proof of (66). Requirement (66) is immediate from definitions (49)–(54) in the
form of

Rxn D Id (71)

along the triple line x� .

With all of these ingredients in place, we may soon move on with the construction of
a local gradient flow calibration at a triple line.

4.2. Extension of vector fields close to each interface

The aim of this section is to provide auxiliary extensions of the unit normal vector fields
and an auxiliary extension of the normal velocity vector field which are defined in the
neighborhood Nr .x�/ \ im.‰i;j / for each interface xIi;j , respectively. These extensions
constitute the main building blocks for the desired extensions from Proposition 16.

Throughout this whole subsection, let the assumptions of Proposition 16 and the nota-
tion of Section 3 and Section 4.1 be in place. In particular, let us again make use of the
following notational conventions which basically aim to drop the indices i; j 2 ¹1; 2; 3º:
we denote by xI WD xI1;2; xI 0 WD xI2;3; xI 00 WD xI3;1 the three interfaces present in the given
smoothly evolving regular double bubble .x�1; x�2; x�3/ on Œ0; T �. We proceed accord-
ingly for the associated orthonormal frames .xn; x�; Nt/, .xn0; x� 0; Nt0/, .xn00; x� 00; Nt00/ according to
Construction 19, the surface tensions .�; � 0; � 00/, the signed distances .s; s0; s00/, the pro-
jections .P; P 0; P 00/, the scalar mean curvatures .H; H 0; H 00/ and the diffeomorphisms
.‰;‰0; ‰00/ from Definition 13.

Construction 23 (Extension of normal vector fields close to their associated interfaces).
Define a coefficient function ˛ W Nr .x�/ \ im.‰/! R by

˛.x; t/ WD ˛vel.x; t/C .r � x�/.x; t/; .x; t/ 2 Nr .x�/ \ im.‰/; (72)

where ˛vel W Nr .x�/ \ im.‰/ ! R denotes, for the time being, an arbitrary coefficient
function of class C 0t C

2
x .Nr .x�/ \ im.‰// such that along the triple line it holds that

˛vel.x; t/ D x�.x; t/ � Vx�.x; t/; .x; t/ 2 x�: (73)

Here, Vx� denotes again the normal velocity vector field of the triple line x� . Recall finally
definition (65) of the gauged orthonormal frame .xn; x��; Nt�/.

We then define an initial extension z� W Nr .x�/ \ im.‰/! R3 for the normal vector
field xnjxI of the interface xI by means of the gauged expansion ansatz

z�.x; t/ WD xn.x; t/C ˛.Px�.x; t/; t/s.x; t/x��.x; t/�
1

2
˛2.Px�.x; t/; t/s

2.x; t/xn.x; t/ (74)

for all .x; t/ 2 Nr .x�/ \ im.‰/.
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Analogously, one defines initial extensions z� 0 W Nr .x�/ \ im.‰0/ ! R3 as well as
z� 00 W Nr .x�/ \ im.‰00/! R3 of the normal vector fields xn0jxI 0 and xn00jxI 00 . }

The following result shows that, after applying the correct gauged Herring rotation as
provided by Construction 21, the initial extensions of our normal vector fields are regular
and first-order compatible along the triple line x�:

Lemma 24. Let .z�; z� 0; z� 00/ be the initial extensions from Construction 23 of the normal
vector fields .xnjxI ;xn

0
jxI 0 ;xn

00
jxI 00/. Moreover, let . zR0

xI
; zR00
xI
/, . zRxI 0 ; zR

00
xI 0
/ and . zRxI 00 ; zR

0
xI 00
/ be the

gauged Herring rotations as provided by Construction 21.
Then, it holds that .z�; zR0

xI
z�; zR00

xI
z� / 2 .C 0t C

2
x \ C

1
t C

0
x /.Nr .x�/ \ im.‰// with corre-

sponding estimates

j.r;r2; @t /.z�; zR
0
xI
z�; zR00xI

z� /j � C in Nr .x�/ \ im.‰/; (75)

where the constant C > 0 only depends on the data of the smoothly evolving regular dou-
ble bubble .x�1; x�2; x�3/ on Œ0; T �. Moreover, the constructions are first-order compatible
in the sense that along the triple line x� ,

zR0xI
z� D z� 0; zR00xI

z� D z� 00; (76)

r
�
zR0xI
z�
�
D rz� 0; r

�
zR00xI
z�
�
D rz� 00: (77)

Analogous claims are satisfied in terms of the vector fields . zRxI 0 z�
0; z� 0; zR00

xI 0
z� 0/ (resp. the

vector fields . zRxI 00 z�
00; zR0

xI 00
z� 00; z� 00/) throughout the region Nr .x�/\ im.‰0/ (resp. the region

Nr .x�/ \ im.‰00/).

Proof. We split the proof into two steps.
Step 1: Regularity estimates. We first claim that for each R 2 ¹R0

Nt; R
00
Nt ; Rxnº,

j.r;r2; @t /Rj � C in Nr .x�/ \ im.‰/ (78)

for some constant C > 0 which depends only on the data of the smoothly evolving reg-
ular double bubble .x�1; x�2; x�3/ on Œ0; T �, and that analogous estimates hold true for
R 2 ¹RNt0 ; R

00

Nt0
; Rxn0º in Nr .x�/ \ im.‰0/, or for R 2 ¹RNt00 ; R

0

Nt00
; Rxn00º in Nr .x�/ \ im.‰00/.

For a Herring rotation R 2 ¹R0
Nt;R
00
Nt º, claim (78) follows directly from the regularity of

the frame .xn; x�; Nt/ (see (17) and (41)), since the associated angles � 0; � 00 are independent
of .x; t/ 2 Nr .x�/ \ im.‰/; see Construction 21. In terms of the gauge rotation R D Rxn,
it suffices to show that

j.r;r2; @t /.ı; !/j � C in Nr .x�/ \ im.‰/

for the associated angles .ı; !/ defined in (52) and (53), respectively. For the angle ı,
the regularity estimate from the previous display can be deduced from the regularity of
the normal xn (see (17)). The regularity estimate for the angle ! in turn follows from the
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regularity of the projection onto the interface xI (see (14)), the regularity of the tangent
vector fields .x�; Nt/ (see (41)), and from explicitly integrating (in each time slice) ODE (54)
along the integral lines of the tangent vector field x� .

We next claim that there exist constants c1; c2 2 .�1; 1/ only depending on the surface
tensions such that

˛vel.x; t/ D .1 � c
2
1/
�1c2

�
H 0.x; t/ � c1H.x; t/

�
(79)

for all .x; t/ 2 x� . For a proof of (79), we define c1 WD x�.x; t/ � x� 0.x; t/ and c2 WD

xn0.x; t/ � x�.x; t/ D �xn.x; t/ � x� 0.x; t/, and then simply observe from (69) and (73) that

˛vel.x; t/ D c2H
0.x; t/C c1˛

0
vel.x; t/;

˛0vel.Px�.x; t/; t/ D �c2H.x; t/C c1˛vel.x; t/ on x�:

Inserting the second identity of the previous display into the first one then directly yields
claim (79).

The upshot of (78) and (79) is now the following: First, it follows from (72), the
regularity of the projection onto the triple line x� (cf. Definition 17 (i)), the regularity of
the tangent x� (see (41)), representation (79) and finally, the regularity of the extended
scalar mean curvatures (see (17)) that ˛x�.x; t/ WD ˛.Px�.x; t/; t/ satisfies

j˛x� j C j.r;r
2; @t /˛x� j � C in Nr .x�/ \ im.‰/:

The previous display in combination with (78) and expansion ansatz (74) finally implies
the asserted regularity estimate (75).

Step 2: First-order compatibility along triple line. Zeroth-order conditions (76) are
immediate from definitions (74) as well as identities (46) and (47), respectively. For a
proof of the first-order condition, we focus on deriving the first identity of (77). The second
follows along the same lines.

Recalling the definition of the gauged Herring rotation (see (55)) and the gauged
expansion ansatz (see (74)), we compute on the interface xI (using the abbreviation
˛x�.�; t / WD ˛.Px�.�; t /; t/ for t 2 Œ0; T �)

r
�
zR0xI
z�
�
D .rRxn/R

0
NtxnCRxnr

�
R0Ntxn

�
C ˛x�

�
RxnR

0
Ntx�
�
˝ xn: (80)

Let us now first compute r.R0
Ntxn/ and neglect the gauge rotations for a while. Recalling

the fact that R0
Nt is a rotation around the Nt-axis with constant angle (see (45)), we obtain on

the interface xI

r.R0Ntxn/ D r
�
.R0Ntxn � xn/xnC .R

0
Ntxn � x�/x�

�
D .R0Ntxn � xn/rxnC .R

0
Ntxn � x�/rx�:

Plugging in identities (42) and (43), and using in a second step that R0
Ntxn � xn D R

0
Ntx� � x� as
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well as R0
Ntxn � x� D �R

0
Ntx� � xn, we further compute

r.R0Ntxn/ D ��x� x�
�
.R0Ntxn � xn/ x� ˝ x� � .R

0
Ntxn � x�/xn˝ x�

�
�
�
.R0Ntxn � xn/�x� Nt C .R

0
Ntxn � x�/.r � Nt/

�
Nt˝ x�

� �x� Nt
�
.R0Ntxn � xn/ x� ˝ Nt � .R

0
Ntxn � x�/xn˝ Nt

�
�
�
.R0Ntxn � xn/�Nt Nt � .R

0
Ntxn � x�/.r � x�/

�
Nt˝ Nt

D ��x� x�R
0
Ntx� ˝ x� �

�
.R0Ntxn � xn/�x� Nt C .R

0
Ntxn � x�/.r � Nt/

�
Nt˝ x�

� �x� NtR
0
Ntx� ˝ Nt �

�
.R0Ntxn � xn/�Nt Nt � .R

0
Ntxn � x�/.r � x�/

�
Nt˝ Nt; (81)

which holds true on the interface xI .
Recalling the choice for ˛ (see (72)), we may infer from formula (81) for r.R0

Ntxn/,
substituting �x� x� D H � �Nt Nt along xI , identity (71), and formula (80) the following repre-
sentation for the gradient of zR0

xI
z� along the triple line x�:

r. zR0xI
z�/ D R0Ntx� ˝ .�Hx� C ˛velxn/CR0Ntx� ˝ .�Nt Ntx� C .r � x�/xn/

C ..Nt � r/ zR0xI
z�
�
˝ Nt � ..R0Ntxn � xn/�x� Nt C .R

0
Ntxn � x�/.r � Nt/

�
Nt˝ x�

C .rRxn/R
0
Ntxn: (82)

A direct computation based on ansatz (74), identities (42), (43), and (71), and substitut-
ing �0

x� 0x� 0 D H
0 � �0

Nt0Nt0
also yields along the triple line x�

rz� 0 D x� 0 ˝ .�H 0x� 0 C ˛0velxn
0/C x� 0 ˝ .�0

Nt0Nt0x�
0
C .r � x� 0/xn0/

C .Nt0 � r/z� 0 ˝ Nt0 � �0
x� 0Nt0
Nt0 ˝ x� 0 C .rRxn0/xn

0: (83)

We proceed by comparing formulas (82) and (83). Recalling that we denoted by Vx�
the normal velocity vector field of the triple line, we obtain from (69), the choice of ˛vel

(see (73)), identities (67) and (68), and the zeroth-order compatibility along the triple line
(see (57)), that the first terms in (82) and (83) are identical:

R0Ntx� ˝ .�Hx� C ˛velxn/ D �x� 0 ˝ JVx� D x�
0
˝ .�H 0x� 0 C ˛0velxn

0/ along x�:

Moreover, by compatibility conditions (57), (59) and (61) along the triple line, as well as
R0
Ntx� � x� D R

0
Ntxn � xn and R0

Ntx� � xn D �R
0
Ntxn � x� , we may infer that the second terms agree, too:

R0Ntx� ˝ .�Nt Ntx� C .r � x�/xn/ D x�
0
˝ .�0

Nt0Nt0x�
0
C .r � x� 0/xn0/ along x�:

From the last two identities together with (82), (83), (76), and (39) we therefore obtain
along the triple line x�

r
�
zRxI
z�
�
� rz� 0 D �

�
.R0Ntxn � xn/�x� Nt C .R

0
Ntxn � x�/.r � Nt/

�
Nt˝ x� C �0

x� 0Nt0
Nt˝ x� 0

C .rRxn/R
0
Ntxn � .rRxn0/xn

0: (84)
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In the rotationally symmetric case, the right hand side terms in the first line of (84) actually
vanish. However, there is no reason in general why these terms should vanish without
assuming additional symmetry. This is the motivation for the introduction of the additional
gauge rotation matrices around the normal axis. Their definition is arranged in such a way
so that their contribution in (84) exactly cancels the right hand side terms of the first line.

First, we obtain from definitions (49)–(54) along the triple line

.rRxn/R
0
Ntxn D

�
.x� � r/R

.2/
xn

�
R0Ntxn˝ x� C

�
.xn � r/R.1/

xn

�
R0Ntxn˝ xn: (85)

Let us next compute the two relevant directional derivatives of the gauge rotation matrices.
We first observe that due to (50) and (52),

.xn � r/R.1/
xn D �x� Nt Nt ^ x� (86)

along the interface xI . This in turn entails by R0
Ntx� � xn D �R

0
Ntxn � x��

.xn � r/R.1/
xn

�
R0Ntxn˝ xn D ��x� Nt.R

0
Ntx� � xn/ Nt˝ xn along x�: (87)

Moreover, we may compute based on (51), (53), and (54) on the triple line x�

.x� � r/R
.2/
xn D .r � Nt/ Nt ^ x�;

from which we deduce�
.x� � r/R

.2/
xn

�
R0Ntxn˝ x� D

�
.R0Ntxn � x�/.r � Nt/

�
Nt˝ x� along x�: (88)

A straightforward computation shows that along the triple line x� , it holds that

.rRxn0/xn
0
D r

�
Rxn0xn

0
�
�Rxn0rxn

0
D rxn0 � rxn0 D 0: (89)

Combining (85), (87), (88), and (89) with compatibility conditions (57) and (58) finally
yields the desired cancellation

�
�
.R0Ntxn � xn/�x� Nt C .R

0
Ntxn � x�/.r � Nt/

�
Nt˝ x� C �0

x� 0Nt0
Nt˝ x� 0

C .rRxn/R
0
Ntxn � .rRxn0/xn

0
D 0

along the triple line x� . By (84), this in turn concludes the proof of Lemma 24.

We proceed with the construction of suitable candidate velocity fields.

Construction 25 (Extension of velocity fields close to their associated interfaces). Recall
that Vx� denotes the normal velocity of the triple line x� , and recall definition (65) of the
gauged orthonormal frame .xn; x��; Nt�/. We then define a coefficient function

˛vel W Nr .x�/ \ im.‰/! R; .x; t/ 7! y̨vel.P.x; t/; t/; (90)
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where the coefficient ˛vel is defined by projection onto the interface xI in terms of the
solution of the following family of ODEs, solved along the integral lines of the tangent
vector field x�� with initial condition posed on the triple line x�:´

y̨vel.x; t/ D .x�� � Vx�/.x; t/; .x; t/ 2 x�;

.x�� � r/y̨vel.x; t/ D .H�x��x��/.x; t/; .x; t/ 2 xI \Nr .x�/:
(91)

Note that the choice of the initial value in (91) is consistent with (73). Next, we define
another coefficient function

ˇ W Nr .x�/ \ im.‰/! R; .x; t/ 7! �
�
.x�� � r/H

�
.x; t/ � .˛vel�x��x��/.x; t/: (92)

We now define a preliminary extension zB WNr .x�/\ im.‰/!R3 of the normal veloc-
ity vector field .Hxn/jxI for the interface xI in terms of the gauged expansion ansatz

zB.x; t/ WD H.x; t/xn.x; t/C ˛vel.x; t/ x��.x; t/C ˇ.x; t/s.x; t/ x��.x; t/ (93)

for all .x; t/ 2 Nr .x�/ \ im.‰/.
Analogously, one defines preliminary extensions zB 0 W Nr .x�/ \ im.‰0/! R3 as well

as zB 00 W Nr .x�/ \ im.‰00/ ! R3 of the normal velocity vector fields .H 0xn0/jxI 0 and
.H 00xn00/jxI 00 , respectively. }

Note carefully that even away from the triple line we do not introduce a tangential
velocity in Nt�-direction. As the proof of the next result shows, this will entail that the
gradients of the auxiliary velocities zB , zB 0 and zB 00 do not fully match along the triple line.
However, the only mismatch appears in, at least for our purposes, inessential components.
More precisely, in terms of, say, r zB the only non-matching terms result from its Nt� ˝ x��-
(resp. Nt� ˝ xn-) component. In view of the desired evolution equation (1d) and the fact
that z� ? Nt� due to (74), this specific component of r zB is intrinsically irrelevant for a
gradient flow calibration (this argument turns out to be robust even with respect to the
interpolation construction from Section 4.3).

Lemma 26. Let . zB; zB 0; zB 00/ be the preliminary extensions from Construction 25 of the
normal velocity vector fields ..Hxn/jxI ; .H

0xn0/jxI 0 ; .H
00xn00/jxI 00/.

Then, it holds that zB 2 C 0t C
2
x .Nr .x�/ \ im.‰// with corresponding estimate

j zBj C jr zBj C jr2 zBj � C in Nr .x�/ \ im.‰/; (94)

where the constant C > 0 only depends on the data of the smoothly evolving regular
double bubble .x�1; x�2; x�3/ on Œ0; T �. Analogous claims hold true for zB 0 (resp. zB 00)
throughout Nr .x�/ \ im.‰0/ (resp. Nr .x�/ \ im.‰00/).

Moreover, the constructions are essentially first-order compatible in the sense that
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along the triple line x� , it holds that

zB D zB 0 D zB 00 D Vx� ; (95)

.Id � Nt˝ Nt/.r zB/ D .Id � Nt0 ˝ Nt0/.r zB 0/ D .Id � Nt00 ˝ Nt00/.r zB 00/; (96)

for which one should also recall that Nt D Nt0 D Nt00 along x� (cf. (39)).

Note that here the projection Id � Nt˝ Nt acts on the components of zB , not r.

Proof. Step 1: Regularity estimates. Due to definition (92), regularity estimates (78) for
the gauge rotations, the regularity of the frame .xn; x�; Nt/ (see (17) and (41)), the regularity
of the extended scalar mean curvatures (see (17)), and finally expansion ansatz (93), it
suffices to prove that

j˛velj C j.r;r
2/˛velj � C in Nr .x�/ \ im.‰/; (97)

whereC >0 is a constant which depends only on the data of the smoothly evolving regular
double bubble .x�1; x�2; x�3/ on Œ0; T �.

Estimate (97) in turn follows directly from explicitly integrating (in each time slice)
ODEs (91) along the integral lines of the tangent field x��, and exploiting as before the
regularity of the associated geometric quantities.

Step 2: Zeroth-order compatibility at the triple line. Condition (95) is immediate from
definition (93), identities (69), and the specific choices (see (90)–(91)).

Step 3: First-order compatibility at the triple line. We proceed with the proof of (96).
Observe that we have on the interface xI by direct analogy to the proofs of (42) and (43)
that

rxn D ��x��x�� x�� ˝ x�� � �Nt�Nt� Nt� ˝ Nt� � �x��Nt� .Nt� ˝ x�� C x�� ˝ Nt�/; (98)

rx�� D �x��x�� xn˝ x�� � .r � Nt�/ Nt� ˝ x�� C �x��Nt� xn˝ Nt� C .r � x��/ Nt� ˝ Nt�
C .xn � r/x�� ˝ xn: (99)

It follows directly from definitions (40) and (65) of our orthonormal frames,
definitions (49)–(54) of the gauge rotations, as well as formula (86) being valid along
the interface xI that

.xn � r/x�� D R
.2/
xn

�
.xn � r/R.1/

xn

�
x� D �x� NtRxnNt D �x� NtNt� along xI :

Starting now from definition (93), the previous display, the choices of the coefficient
functions (see (90)–(92)), as well as formulas (98) and (99) directly entail along the inter-
face xI

r zB D ˇ x�� ˝ xnC
�
.x�� � r/H C y̨vel�x��x��

�
xn˝ x��

C
�
.x�� � r/y̨vel �H�x��x��

�
x�� ˝ x�� C

�
.Nt� � r/ zB ˝ Nt�

�
�
�
H�x��Nt� C y̨vel.r � Nt�/

�
Nt� ˝ x�� C �x� NtNt� ˝ xn
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D ˇ x�� ^ xnC .Nt� � r/ zB ˝ Nt�
�
�
H�x��Nt� C y̨vel.r � Nt�/

�
Nt� ˝ x�� C �x� NtNt� ˝ xn: (100)

Hence, the already established zeroth-order condition (95) together with compatibility
conditions (64) and (66) in the form of ˇ D ˇ0 D ˇ00 along x� imply (96).

The following result provides the approximate evolution equations for our auxiliary
constructions .z�; zR0

xI
z�; zR00

xI
z� / in terms of the associated auxiliary velocity zB , which will

eventually lead us to (1d)–(1f):

Lemma 27. Let .z�; z� 0; z� 00/ be the initial extensions from Construction 23 of the nor-
mal vector fields .xnjxI ; xn

0
jxI 0 ; xn

00
jxI 00/. Moreover, let . zR0

xI
; zR00
xI
/, . zRxI 0 ; zR

00
xI 0
/ and . zRxI 00 ; zR

0
xI 00
/

be the gauged Herring rotations as provided by Construction 21, respectively. Finally,
let . zB; zB 0; zB 00/ be the initial extensions from Construction 25 of the normal velocity vec-
tor fields ..Hxn/jxI ; .H

0xn0/jxI 0 ; .H
00xn00/jxI 00/.

Then, there exists a constant C > 0, which depends only on the data of the smoothly
evolving regular double bubble .x�1; x�2; x�3/ on Œ0; T �, such that for each rotation
R 2 ¹Id; zR0

xI
; zR00
xI
º it holds that ˇ̌

1 � jRz�j2
ˇ̌
� C dist4.�; xI /; (101)ˇ̌

rjRz�j2
ˇ̌
� C dist3.�; xI /; (102)ˇ̌

@t jRz�j
2
ˇ̌
� C dist3.�; xI /; (103)

j@tRz� C . zB � r/Rz� C .r zB/
TRz�j � C

´
dist.�; xI / if R D Id;

dist.�; x�/ else;
(104)

jr �Rz� C zB �Rz�j � C

´
dist.�; xI / if R D Id;

dist.�; x�/ else
(105)

throughout the domain Nr .x�/ \ im.‰/.
Analogous estimates hold true throughout the domain Nr .x�/ \ im.‰0/ in terms of

the vector fields .Rz� 0; zB 0/ for each rotation R 2 ¹ zRxI 0 ; Id; zR
00
xI 0
º, as well as throughout

Nr .x�/ \ im.‰00/ in terms of .Rz� 00; zB 00/ for each R 2 ¹ zRxI 00 ;
zR0
xI 00
; Idº.

Proof. Fix a rotation R 2 ¹Id; zR0
xI
; zR00
xI
º, and for the purposes of the proof abbreviate

˛x�.�; t / WD ˛.Px�.�; t /; t/, t 2 Œ0; T �.
Step 1: Proof of (101)–(103). It follows immediately from ansatz (74) and the orthog-

onality x�� � xn D 0 that

jRz�j2 D jz�j2 D
�
1 �

1

2
˛2x�s

2
�2
C ˛2x�s

2
D 1C

1

4
˛4x�s

4:

The previous display of course immediately implies estimates (101)–(103).
Step 2: Proof of (105). By regularity estimates (75) and (94), it suffices to show

that (105) is exact on the interface xI if R D Id, or otherwise that (105) is exact on the
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triple line x� . To this end, let us first assume that RNt D Id. Then, we also have R D Id and
hence, we may directly infer from definitions (74) and (93) of z� and zB , respectively, that
r � z� DH D z� � zB on the interface xI . In the remaining cases, we express R D RxnRNtR

T
xn in

terms of the associated Herring rotation RNt 2 ¹R
0
Nt; R

00
Nt º, and then simply read off

from (80), (81), (85), (87) and (88) that

r �Rz� D �H.RNtxn � xn/C .r � x�/.RNtxn � x�/ � ˛x�.RNtxn � x�/

along the triple line x� . Moreover, definitions (74) and (93) directly imply that

zB �Rz� D H.RNtxn � xn/C ˛vel.RNtxn � x�/

holds true on the interface xI . Hence, estimate (105) follows from the previous two displays
in combination with the choice shown in (72).

Step 3: Proof of (104). It suffices again to check that (104) is exact on the interface xI
if R D Id, or otherwise that (104) is exact on the triple line x� . Let us also again express
R D RxnRNtR

T
xn in terms of the associated Herring rotation RNt 2 ¹Id; R0Nt; R

00
Nt º.

Using that the vector field Rxn D RxnRNtxn lies in the .xn; Rxnx�/-plane and has constant
coefficients in this frame, we compute along the interface xI , relying also on (74),

@tRz� C . zB � r/Rz� C .r zB/
TRz� D .RxnRNtxn � xn/

�
@txnC . zB � r/xnC .r zB/Txn

�
C .RxnRNtxn �Rxnx�/

�
@tx�� C . zB � r/x�� C .r zB/

T
x��
�

C ˛x�.@ts C .
zB � r/s/ x��: (106)

The last right hand side term of (106) vanishes due to . zB � r/s D H and (24). Differenti-
ating this equation in space yields, because of rs D xn,

0 D r
�
@ts C . zB � r/s

�
D @txnC . zB � r/xnC .r zB/Txn:

Hence, also the first right hand side term of (106) vanishes. Since RNt D Id if and only
if RD Id, estimate (104) already follows from these arguments in the case RD Id. Hence,
let us restrict to the case R ¤ Id in what follows. Recall from claim (104) that it then
suffices to estimate in terms of the distance to the triple line.

It follows from jx��j D 1 that x�� � .@tx�� C . zB � r/x��/ D 0. Furthermore, the ansatz
for the velocity field zB is arranged such that x�� ˝ x�� W r zB D 0 (cf. identity (100)).
Hence, in the evolution equation for the tangent vector field x�� we may neglect the x��-
component. The xn-component also vanishes as a consequence of the orthogonality given
by x�� � xnD 0, the skew-symmetry x�� ˝xn W r zB D �xn˝ x�� W r zB (cf. again (100)), and the
already established evolution equation for the unit normal vector field xn

xn �
�
@tx�� C . zB � r/x�� C .r zB/

T
x��
�
D �x�� �

�
@txnC . zB � r/xnC .r zB/Txn

�
D 0:

It therefore suffices to check that the velocity field zB correctly captures the translation
and rotation of the tangent vector field x�� in Nt�-direction on the triple line x� , that is,
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Nt� � .@tx�� C . zB � r/x�� C .r zB/Tx��/ D 0, or equivalently, by exploiting the orthogonality
x�� � Nt� D 0 that

x�� �
�
@tNt� C . zB � r/Nt�

�
D Nt� � .r zB/Tx�� (107)

along the triple line x� .
In order to prove (107), we start by noticing that as a consequence of definition (93),

as well as formulas (98) and (99), we have

Nt� � .r zB/Tx�� D x�� � .Nt� � r/ zB D �H�x��Nt� C .Nt� � r/˛vel on xI : (108)

That this expression equals x�� � .@tNt� C . zB � r/Nt�/ on the triple line x� is a consequence
of the following considerations: Let  x�.�; t / W x�

0 � Œ0; T �! x�.t/, t 2 Œ0; T �, be a nor-
mal parametrization of the triple line, that is, we have @t x�.x0; t / D Vx�. x�.x0; t /; t/
for all .x0; t / 2 x�0 � Œ0; T �. Choose, moreover, a C 5 diffeomorphic parametrization
'0 W Œ0;1�! x�

0 of the initial triple line, and define for all t 2 Œ0;T � the dynamic parametri-
zations

' W Œ0; 1� � Œ0; T �! x�.t/; .s; t/ 7!  x�.'0.s/; t/:

Observe then that due to the zeroth-order compatibility condition (95) and the definition
of zB (see (93)), it holds for all .s; t/ 2 Œ0; 1� � Œ0; T � that

@t'.s; t/ D zB.'.s; t/; t/ D .Hxn/.'.s; t/; t/C .˛velx��/.'.s; t/; t/: (109)

Define finally the differential operator @v WD @s
j@s'j

. Note that @v'.�; t / is a unit tangent
vector field along the triple line x�.t/ for all t 2 Œ0; T �, and we may choose the orientation
such that @v'.�; t / D Nt�.'.�; t /; t/ for all t 2 Œ0; T �. A straightforward computation now
yields

@t@v' D @v@t' � .@v@t' � @v'/@v':

In particular, the commutator Œ@t@v; @v@t �' vanishes in x��-direction along the triple line.
Using the chain rule and the first identity in formula (109), we thus obtain for all
.s; t/ 2 Œ0; 1� � Œ0; T �, by the orthogonality of the frame .xn; x��; Nt�/, the second identity
in (109), as well as (98) and (99)�

x�� �
�
@tNt� C . zB � r/Nt�

��
.'.s; t/; t/ D x��.'.s; t/; t/ � @t@v'.s; t/

D x��.'.s; t/; t/ � @v@t'.s; t/

D
�
x�� � .Nt� � r/.HxnC ˛velx��/

�
.'.s; t/; t/

D �.H�x��Nt�/.'.s; t/; t/C
�
.Nt� � r/˛vel

�
.'.s; t/; t/:

Hence, we may obtain (107) by (108), which concludes the proof.

4.3. Global construction by interpolation

Throughout this whole subsection, let the assumptions of Proposition 16 and the notation
of Sections 3, 4.1 and 4.2 be in place. The next results provide the last missing ingredi-
ent for the construction of a local gradient flow calibration at the triple line. We refer to
Definition 17 and Figure 3 to recall the geometric setup.
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Lemma 28. Let i; j; k 2 ¹1; 2; 3º be such that ¹i; j; kº D ¹1; 2; 3º. For each interpolation
wedge Wx�i , there exists a pair of associated interpolation functions

�
xIi;j
x�i
; �
xIk;i
x�i
W

[
t2Œ0;T �

�
Wx�i .t/ n

x�.t/
�
� ¹tº ! Œ0; 1�

of class .C 0t C
1
x \ C

1
t C

0
x /.
S
t2Œ0;T �.Wx�i .t/ n

x�.t// � ¹tº/ such that

�
xIk;i
x�i
D 1 � �

xIi;j
x�i
;

and where �
xIi;j
x�i

is subject to the following additional requirements:

(i) On the boundary of the interpolation wedge Wx�i , the values of �
xIi;j
x�i

and its
derivatives are given by

�
xIi;j
x�i
.�; t / D 0; on

�
@Wx�i .t/ \ @WxIk;i .t/

�
n x�.t/;

�
xIi;j
x�i
.�; t / D 1; on

�
@Wx�i .t/ \ @WxIi;j .t/

�
n x�.t/;

r�
xIi;j
x�i
.�; t / D 0; @t�

xIi;j
x�i
.�; t / D 0; on

�
Br .x�.t// \ @Wx�i .t/

�
n x�.t/;

for all t 2 Œ0; T �.

(ii) There exists a constant C > 0, which depends only on the data of the smoothly
evolving regular double bubble .x�1; x�2; x�3/ on Œ0; T �, such that the estimate

j@t�
xIi;j
x�i
j C jr�

xIi;j
x�i
j � C dist�1.�; x�/ (110)

holds true on
S
t2Œ0;T �.Wx�i .t/ n

x�.t// � ¹tº.

(iii) Denoting again by Vx� the normal velocity vector field of the triple line x� , we
have an improved estimated on the advective derivativeˇ̌

@t�
xIi;j
x�i
.�; t /C

�
Vx�.Px�.�; t /; t/ � r

�
�
xIi;j
x�i
.�; t /

ˇ̌
� C (111)

onWx�i .t/ n
x�.t/ for all t 2 Œ0; T �. The constant C > 0 depends only on the data

of the smoothly evolving regular double bubble .x�1; x�2; x�3/ on Œ0; T �.

Proof. Let i; j; k 2 ¹1; 2; 3º be such that ¹i; j; kº D ¹1; 2; 3º. For the construction of the
interpolation function

�
xIi;j
x�i
DW 1 � �

xIk;i
x�i
;

we first choose a smooth function z� W R! Œ0; 1� such that z� � 0 on Œ2
3
;1/ and z� � 1

on .�1; 1
3
�. Denote next by �i 2 .0; �/ the constant opening angle of the interpol-
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ation wedge Wi (cf. representation (32)). We then define �i W Œ�1; 1� ! Œ0; 1� by
�i .u/ WD z�.

1�u
1�cos.�i /

/, and based on this auxiliary map, an interpolation function

�Ci .x; t/ WD �i

�
XC
x�i

�
Px�.x; t/; t

�
�
x � Px�.x; t/

jx � Px�.x; t/j

�
; t 2 Œ0; T �; x 2 Wx�i .t/ n

x�.t/:

The interpolation function �
xIi;j
x�i

is then either defined by �Ci or by 1 � �Ci , depending on
the right choice of “orientation” to satisfy the first item of (28), which in turn is then an
immediate consequence of the definitions. For the proof of (110) and (111), it anyhow
suffices to work on the level of the interpolation function �Ci .

The qualitative regularity of �Ci and the corresponding regularity estimate (110) fol-
low directly from the chain rule, the definition of �Ci , and the regularity requirements of
Definition 17. For the improved estimate (111) on the advective derivative, we need an
appropriate representation of @tPx� in Nr .x�/. Abbreviating g.x; t/ WD 1

2
dist2.x; x�.t// as

well as gx�.x; t/ WD g.Px�.x; t/; t/ for all .x; t/ 2 Nr .x�/, we obtain by the chain rule

0 D
d
dt

�
rgx�.x; t/

�
D .r@tg/.y; t/jyDPx� .x;t/C.r

2g/.y; t/jyDPx� .x;t/@tPx�.x; t/; .x; t/ 2 Nr .x�/:

However, it is a well-known fact that �r@tg evaluated along x� precisely represents the
normal velocity of x� (cf. [1, Theorem 7 ii), p. 18]). Hence, the previous display updates
to

Vx�
�
Px�.x; t/; t

�
D r

2g.y; t/jyDPx� .x;t/@tPx�.x; t/

for all .x; t/ 2 Nr .x�/. Moreover, r2g.�; t / evaluated along the triple line x�.t/ represents
for all t 2 Œ0; T � the projection onto the normal bundle Tan?x�.t/ for all t 2 Œ0; T � (cf.
[1, Theorem 2 ii), p. 12]). In other words,

Vx�
�
Px�.x; t/; t

�
D .Id � Nt˝ Nt/.y; t/jyDPx� .x;t/@tPx�.x; t/ (112)

for all .x; t/ 2 Nr .x�/.
Abbreviating

uCi WD u
C

i .x; t/ WD X
C

x�i
.Px�.x; t/; t/ �

x � Px�.x; t/

jx � Px�.x; t/j
;

we may now compute by an application of the chain rule

@t�
C

i .x; t/ D �
0
i .u
C

i /X
C

x�i

�
Px�.x; t/; t

�
� @t

x � Px�.x; t/

jx � Px�.x; t/j

C�0i .u
C

i /
x � Px�.x; t/

jx � Px�.x; t/j
�
�
.Nt � r/XC

x�i

�
.y; t/

ˇ̌
yDPx� .x;t/

�
Nt.y; t/jyDPx� .x;t/ � @tPx�.x; t/

�
C �0i .u

C

i /
x � Px�.x; t/

jx � Px�.x; t/j
�
�
@tX

C

x�i

�
.y; t/

ˇ̌
yDPx� .x;t/
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for all .x; t/ 2
S
t2Œ0;T �.Wx�i .t/ n

x�.t// � ¹tº. Observe that the last two right hand side
terms in the previous display are bounded by the regularity of the projection Px� and the
regularity of the vector field XC

x�i
(cf. Definition 17). Next, for all .x; t/ 2 Nr .x�/ n x� ,

@t
x � Px�.x; t/

jx � Px�.x; t/j
D �

1

jx � yj

�
Id �

x � y

jx � yj
˝

x � y

jx � yj

�ˇ̌̌
yDPx� .x;t/

@tPx�.x; t/;

so that together with (112), XC
x�i
.y; t/;Vx�.y; t/ 2 Tan?y x�.t/ for all .y; t/ 2 x� , as well as

rPx�.x; t/ D .Nt.y; t/jyDPx� .x;t/ � r/Px�.x; t/˝ Nt.y; t/jyDPx� .x;t/ for all .x; t/ 2 Nr .x�/,

@t�
C

i .x; t/

D ��0i .u
C

i /
1

jx � yj

�
Id �

x � y

jx � yj
˝
x � y

jx � yj

�
XC
x�i
.y; t/

ˇ̌̌̌
yDPx� .x;t/

� @tPx�.x; t/CO.1/

D ��0i .u
C

i /
1

jx � yj

�
Id �

x � y

jx � yj
˝

x � y

jx � yj

�
XC
x�i
.y; t/ � Vx�.y; t/

ˇ̌̌̌
yDPx� .x;t/

CO.1/

D �
�
Vx�
�
Px�.x; t/; t

�
� r
�
�Ci .x; t/CO.1/

for all .x; t/ 2
S
t2Œ0;T �.Wx�i .t/ n

x�.t// � ¹tº, as asserted.

We may now provide the desired extensions .�i;j /i;j2¹1;2;3º;i¤j for the unit normal
vector fields as well as the desired extension B of the velocity vector field within a space-
time tubular neighborhood Nyr .x�/ of the evolving triple line x� , where the radius yr > 0 has
to be chosen suitably and is potentially smaller than the admissible localization radius r .

Construction 29 (Gradient flow calibration at the triple line). Let .z�; z� 0; z� 00/ be the pre-
liminary extensions from Construction 23 of the normal vector fields .xnjxI ; xn

0
jxI 0 ; xn

00
jxI 00/.

Let . zR0
xI
; zR00
xI
/, . zRxI 0 ; zR

00
xI 0
/ and . zRxI 00 ; zR

0
xI 00
/ be the gauged Herring rotations as provided by

Construction 21, and let . zB; zB 0; zB 00/ be the preliminary extensions of the normal veloc-
ity vector fields from Construction 25. We also introduce the abbreviations x� WD x�1,
x�0 WD x�2 and x�00 WD x�3.

With these ingredients in place, we first define a scale

yr WD r ^ .2C /�
1
4 ;

where C > 0 denotes the (maximum of the) constant(s) from estimate(s) (101). This
choice of yr 2 .0; r� then entails, due to (101), that

jz�j2 2
�
1
2
; 3
2

�
in Nyr .x�/ \ im.‰/; (113)

jz� 0j2 2
�
1
2
; 3
2

�
in Nyr .x�/ \ im.‰0/; (114)

jz� 00j2 2
�
1
2
; 3
2

�
in Nyr .x�/ \ im.‰00/: (115)

Based on these non-degeneracy conditions and properties (33)–(35) from the wedge deco-



Weak-strong uniqueness for MCF of double bubbles 79

mposition of Nr .x�/, we construct a well-defined set of vector fields

�; � 0; � 00 W Nyr .x�/! B1.0/;

B W Nyr .x�/! R3

by the following procedure: On the closure of the interface wedges we define

.�; � 0; � 00/ WD
ˇ̌
z�
ˇ̌�1�z�; zR0xI z�; zR00xI z� � on WxI ; (116)

.�; � 0; � 00/ WD
ˇ̌
z� 0
ˇ̌�1� zRxI 0 z� 0; z� 0; zR00xI 0 z� 0� on WxI 0 ; (117)

.�; � 0; � 00/ WD
ˇ̌
z� 00
ˇ̌�1� zRxI 00 z� 00; zR0xI 00 z� 00; z� 00� on WxI 00 ; (118)

as well as

B WD zB on WxI ; B WD zB 0 on WxI 0 ; B WD zB 00 on WxI 00 : (119)

On the interpolation wedges, say Wx�, we define

� WD �
xI
x�
jz�j�1z� C �

xI 00

x�
jz� 00j�1 zRxI 00

z� 00; (120)

� 0 WD �
xI
x�
jz�j�1 zR0xI

z� C �
xI 00

x�
jz� 00j�1 zR0xI 00

z� 00; (121)

� 00 WD �
xI
x�
jz�j�1 zR00xI

z� C �
xI 00

x�
jz� 00j�1z� 00; (122)

B WD �
xI
x�
zB C �

xI 00

x�
zB 00: (123)

On the remaining two interpolation wedges, Wx�0 and Wx�00 , one proceeds analogously for
the definition of these vector fields. }

4.4. Proof of Proposition 16

Let .�; � 0; � 00; B/ be the vector fields from Construction 29. We aim to show that this tuple
of vector fields gives rise to a local gradient flow calibration at the triple line x� in the sense
of Proposition 16 after defining

�1;2 WD �; �2;3 WD �
0; �3;1 WD �

00 in Nyr .x�/;

as well as
�j;i WD ��i;j

for the remaining set of distinct phases i; j 2 ¹1; 2; 3º. The proof is now split into several
steps.

In Step 1 of the proof, we will derive the following useful compatibility estimates valid
throughout interpolation wedges and which are needed in all subsequent steps:ˇ̌̌̌

z�

jz�j
�

zRxI 00
z� 00

jz� 00j

ˇ̌̌̌
C

ˇ̌̌̌ zR0
xI
z�

jz�j
�

zR0
xI 00
z� 00

jz� 00j

ˇ̌̌̌
C

ˇ̌̌̌ zR00
xI
z�

jz�j
�

z� 00

jz� 00j

ˇ̌̌̌
� C dist2.�; x�/ (124)
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in Wx� \ Nyr .x�/, with analogous estimates being satisfied in the other two interpolation
wedges. Moreover, the constant C > 0 only depends on the data of the smoothly evolving
regular double bubble .x�1; x�2; x�3/ on Œ0; T �.

Then, in Step 2, we will verify that .�; � 0; � 00; B/ are continuous vector fields
throughout Nyr .x�/; as well as that the constructed extensions of the unit normals .�; � 0; � 00/
are of class .C 0t C

1
x \ C

1
t C

0
x /.Nyr .

x�/ n x�/, whereas the extended velocity B is of class
C 0t C

1
x .Nyr .

x�/ n x�/; and that there exists a constant C > 0 depending only on the data of
the smoothly evolving regular double bubble .x�1; x�2; x�3/ on Œ0;T � such that the estimate

j.@t ;r/.�; �
0; � 00/j C jBj C jrBj � C (125)

holds true throughout Nyr .x�/ n x� . Moreover, we will show that

� D xnjxI along xI \Nyr .x�/; (126)

B D Vx� along x�; (127)

�� C � 0� 0 C � 00� 00 D 0 in Nyr .x�/; (128)

where property (126) is also satisfied in terms of .� 0;xn0jxI 0/ along xI 0 \Nyr .x�/, or in terms
of .� 00;xn00jxI 00/ along xI 00 \Nyr .x�/.

Step 3 of the proof is then devoted to the verification of the approximate evolution
equation

j@t� C .B � r/� C .rB/
T�j � C dist.�; xI / in Nyr .x�/ n x�; (129)

then in Step 4 we will prove the estimate

jr � � C B � �j � C dist.�; xI / in Nyr .x�/ n x�: (130)

We finally conclude in Step 5 by deducing the estimate

.@t C B � r/j�j
2
� C dist2.�; xI / in Nyr .x�/: (131)

We record for completeness that analogous estimates with respect to (129)–(131) are
satisfied for .� 0; B/ (resp. .� 00; B/) in terms of dist.�; xI 0/ (resp. dist.�; xI 00/) and that the
constant C > 0 again only depends on the data of the smoothly evolving regular double
bubble .x�1; x�2; x�3/ on Œ0; T �.

Step 1: Proof of (124). Adding zero, making use of the reverse triangle inequality and
recalling non-degeneracy conditions (113)–(115), we may estimateˇ̌̌̌

z�

jz�j
�

zRxI 00
z� 00

jz� 00j

ˇ̌̌̌
�

1

jz�j

ˇ̌
z� � zRxI 00

z� 00
ˇ̌
C

ˇ̌̌̌
1

jz�j
�

1

j zRxI 00
z� 00j

ˇ̌̌̌ˇ̌
zRxI 00
z� 00
ˇ̌

�
1

jz�j

ˇ̌
z� � zRxI 00

z� 00
ˇ̌
C
1

jz�j

ˇ̌̌ˇ̌
z�
ˇ̌
�
ˇ̌
zRxI 00
z� 00
ˇ̌ˇ̌̌
� 2
p
2
ˇ̌
z� � zRxI 00

z� 00
ˇ̌
:



Weak-strong uniqueness for MCF of double bubbles 81

Due to compatibility conditions (76) and (77) as well as regularity estimates (75), the
previous estimate then easily upgrades toˇ̌̌̌

z�

jz�j
�

zRxI 00
z� 00

jz� 00j

ˇ̌̌̌
� C dist2.�; x�/ in Wx� \Nyr .x�/

by inserting a second-order Taylor expansion with base point located at the unique nearest
point on the triple line x� . The other two terms on the left hand side of (124) are treated
analogously.

Step 2: Proof of (125)–(128). In terms of the asserted qualitative regularity, we observe
that the first item of Lemma 28 together with the definitions from Construction 29 ensure
that the vector fields .�; � 0; � 00; B/ and their required derivatives are continuous across
the boundaries of the interpolation wedges (away from the triple line). Continuity of B
throughout the whole space-time neighborhood Nr .x�/ with the asserted represent-
ation (127) along the triple line x� follows from compatibility condition (95). The unit
normal extensions .�; � 0; � 00/ are continuous throughout Nr .x�/ due to compatibility esti-
mates (124). Representation (126) along the associated interface in turn is a consequence
of expansion ansatz (74) and inclusion (34).

Next, on interface wedges, regularity estimate (125) follows directly from esti-
mates (75) and (94). For the derivation of (125) throughout an interpolation wedge, say
Wx� \ Nyr .x�/, we simply compute by plugging in the definitions from Construction 29
and recalling from Lemma 28 that �xI

00

x�
D 1 � �

xI
x�

:

.@t ;r/� D �
xI
x�
.@t ;r/

z�

jz�j
C �

xI 00

x�
.@t ;r/

zRxI 00
z� 00

jz� 00j
C

� z�
jz�j
�

zRxI 00
z� 00

jz� 00j

�
˝ .@t ;r/�

xI
x�
;

rB D �
xI
x�
r zB C �

xI 00

x�
r zB 00 C . zB � zB 00/˝r�

xI
x�
:

We thus infer (125) from the chain rule in the form of r 1
jf j
D �

.rf /Tf

jf j3
, regularity esti-

mates (75), (94) and (110), and compatibility conditions (124) and (95).
We turn to the proof of (128). Recalling expansion ansatz (74) and definitions (55)

and (56)) of the gauged Herring rotations, we deduce from (48) that

�z� C � 0 zR0xI
z� C � 00 zR00xI

z� D 0 throughout Nr .x�/ \ im.‰/; (132)

and analogously, throughout Nr .x�/\ im.‰0/ in terms of . zRxI 0z�
0; z� 0; zR00

xI 0
z� 0/, or throughout

Nr .x�/\ im.‰00/ in terms of . zRxI 00z�
00; zR0

xI 00
z� 00; z� 00/. Due to inclusion (34) and the definitions

from Construction 29, we thus obtain from (132)

�� C � 0� 0 C � 00� 00 D jz�j�1
�
�z� C � 0 zR0xI

z� C � 00 zR00xI
z�
�
D 0 in WxI \Nyr .x�/:

An analogous argument works in the case of the other two interface wedges.
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On interpolation wedges, sayWx�, the extended Herring angle condition (128) follows
from a linear combination of the previous ingredients. More precisely, the definitions from
Construction 29 and cancellations (132) directly imply

�� C � 0� 0 C � 00� 00

D �
xI
x�
jz�j�1

�
�z� C � 0 zR0xI

z� C � 00 zR00xI
z�
�
C �

xI 00

x�
jz� 00j�1

�
� zRxI 00

z� 00 C � 0 zR0xI 00
z� 00 C � 00z� 00

�
D 0

throughout Wx� \ Nyr .x�/, as desired. This concludes the proof of (128), and thus Step 2
of the proof, since on the other interpolation wedges, (128) follows analogously.

Step 3: Proof of (129). We first claim that for each rotation R 2 ¹Id; zR0
xI
; zR00
xI
º, it holds

throughout Nyr .x�/ \ im.‰/ thatˇ̌̌�
@tC. zB � r/C.r zB/

T� Rz�

jRz�j

ˇ̌̌
� C

´
dist.�; xI / if R D Id;

dist.�; x�/ else;
(133)

ˇ̌̌
zB �

Rz�

jRz�j
C r �

Rz�

jRz�j

ˇ̌̌
� C

´
dist.�; xI / if R D Id;

dist.�; x�/ else;
(134)

for some constant C > 0 which depends only on the smoothly evolving regular dou-
ble bubble .x�1; x�2; x�3/ on Œ0; T �. Moreover, analogous estimates hold true throughout
the domain Nyr .x�/ \ im.‰0/ in terms of the vector fields .Rz� 0; zB 0/ for each rotation
R 2 ¹ zRxI 0 ; Id; zR

00
xI 0
º, as well as throughout Nyr .x�/ \ im.‰00/ in terms of .Rz� 00; zB 00/ for

each R 2 ¹ zRxI 00 ;
zR0
xI 00
; Idº.

Estimate (133) follows from the straightforward computation

�
@tC. zB � r/C.r zB/

T� Rz�

jRz�j
D

1

jRz�j

�
@tC. zB � r/C.r zB/

T�Rz�
�
@t jRz�j

2C. zB � r/jRz�j2

2jRz�j3
Rz�

together with condition (113) and estimates (102), (103) and (104). Estimate (134) in turn
can be deduced from the same ingredients as well as

zB �
Rz�

jRz�j
C r �

Rz�

jRz�j
D

1

jRz�j

�
B �Rz� Cr �Rz�

�
�
.Rz� � r/jRz�j2

2jRz�j3
:

On interface wedges, facilitated by inclusion (34), claim (129) now follows from an
application of estimate (133) and, if needed, a simple post-processing by means of (37).
So, let us directly move on with the verification of (129) throughout interpolation wedges,
say Wx� \ Nyr .x�/. Plugging in definitions (120)–(123) from Construction 29, we may
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compute, based on the product rule, adding zero, and recalling from Lemma 28 that �xI
00

x�
D

1 � �
xI
x�

,�
@tC.B � r/C.rB/

T��
D �

xI
x�

�
@tC. zB � r/C.r zB/

T� z�
jz�j
C
�
1 � �

xI
x�

��
@tC. zB

00
� r/C.r zB 00/T

� zRxI 00z� 00
jz� 00j

C

� z�
jz�j
�

zRxI 00
z� 00

jz� 00j

��
@tC.B � r/

�
�
xI
x�

C �
xI
x�

�
.B � zB/ � r

� z�
jz�j
C
�
1 � �

xI
x�

��
.B � zB 00/ � r

� zRxI 00z� 00
jz� 00j

C �
xI
x�

�
rB � r zB

�T z�
jz�j
C
�
1 � �

xI
x�

��
rB � r zB 00

�T zRxI 00z� 00
jz� 00j

: (135)

The first two right hand side terms of the previous display are at least of order
O.dist.�; x�// due to estimates (133), which in turn are available this time due to inclu-
sion (35). The third, fourth and fifth right hand side terms are of the same order thanks
to compatibility conditions (124) and (95), regularity estimates (75), (94) and (125), esti-
mate (111) on the advective derivative of an interpolation function, and non-degeneracy
conditions (113)–(115).

Regarding the two right hand side terms from the last line of the previous display, we
may argue as follows: Plugging in the definition of B from Construction 29, we com-
pute by the product rule, the identity �xI

x�
C �

xI 00

x�
D 1 and by carefully noting that z� ? Nt�

throughout Nr .x�/ \ im.‰/ due to expansion ansatz (74),

.rB � r zB/Tz� D .1 � �
xI
x�
/.r zB 00 � r zB/T.Id � Nt� ˝ Nt�/z�

C
�
. zB � zB 00/ � .Id � Nt� ˝ Nt�/z�

�
r�
xI
x�
:

Abbreviating Ntx�.x; t/ WD Nt.Px�.x; t/; t/ for all .x; t/ 2 Nr .x�/\ im.‰/ and recalling com-
patibility conditions (65) and (95), as well as regularity estimate (110) for the interpolation
function, we may switch from Nt� to Ntx� in the previous display at the cost of an admissible
error:

.rB � r zB/Tz� D .1 � �
xI
x�
/.r zB 00 � r zB/T.Id � Ntx� ˝ Ntx�/z�

C
�
. zB � zB 00/ � .Id � Ntx� ˝ Ntx�/z�

�
r�
xI
x�
CO.dist.�; x�//:

It then follows from compatibility conditions (39), (95) and (96), and again regularity
estimate (110) for the interpolation function that

.rB � r zB/Tz� D O.dist.�; x�//:

One may argue similarly for the second term after replacing jz� 00j�1 zRxI 00z�
00 by jz�j�1z� using

compatibility estimate (124).
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In summary, the asserted estimate (129) in terms of � now follows from the previously
derived estimates for the right hand side terms of (135) and a subsequent post-processing
of them by means of (36). We finally remark that the argument proceeds analogously for
the other two vector fields � 0 and � 00, respectively.

Step 4: Proof of (130). Thanks to inclusion (34), estimate (134), and, if needed, esti-
mate (37), it again suffices to provide additional details only for the argument for (130) on
interpolation wedges, say Wx� \ Nyr .x�/. Plugging in definitions (120)–(123) from Con-
struction 29, applying the product rule, recalling from Lemma 28 that �xI

00

x�
D 1� �

xI
x�

, and
adding zero yields

B � � Cr � � D �
xI
x�

�
zB �
z�

jz�j
C r �

z�

jz�j

�
C
�
1 � �

xI
x�

��
zB 00 �
zRxI 00
z� 00

jz� 00j
C r �

zRxI 00
z� 00

jz� 00j

�
C �

xI
x�
.B � zB/ �

z�

jz�j
C
�
1 � �

xI
x�

�
.B � zB 00/ �

zRxI 00
z� 00

jz� 00j

C

� z�
jz�j
�

zRxI 00
z� 00

jz� 00j

�
� r�

xI
x�
:

The right hand side terms of the previous display are all at least of order O.dist.�; x�//
—and thus of required order, due to (36)—by an application of inclusion (35), esti-
mates (134), compatibility conditions (95) and (124), as well as regularity estimate (110)
for the interpolation function.

This proves (130) in terms of � . The argument proceeds again analogously for the
other two vector fields � 0 and � 00.

Step 5: Proof of (131). There is nothing to prove throughout interface wedges since
the unit normal extensions .�; � 0; � 00/ are unit-length vectors (cf. the definitions from Con-
struction 29). On interpolation wedges, say Wx� \Nyr .x�/, we may compute by definition
(120) from Construction 29

j�j2 D 1 � �
xI
x�
�
xI 00

x�

ˇ̌̌̌
z�

jz�j
�

zRxI 00
z� 00

jz� 00j

ˇ̌̌̌2
: (136)

Estimate (131) is thus a consequence of (124), (110), (125) and (36). One may argue
analogously for the other two vector fields � 0 and � 00.

4.5. Compatibility of local gradient flow calibrations

A regular double bubble is built out of two distinct topological features: the three two-
phase interfaces and the triple line. For each of these topological features, we so far
constructed a tuple of vector fields living in a space-time neighborhood of the feature and
locally mimicking the requirements of a gradient flow calibration. The remaining step in
the construction consists of pasting together these local vector fields into globally defined
ones. This task will be carried out in Section 5. The key issue is to transfer properties
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from the local to the global level, which turns out to be possible because, among other
things, the local constructions for the two distinct topological features can be arranged to
be sufficiently compatible. We formalize this as follows:

Proposition 30. Let .x�1; x�2; x�3/ be a regular double bubble smoothly evolving by MCF
in the sense of Definition 10 on a time interval Œ0; T �. Let yr 2 .0; 1� be the localiza-
tion scale of Proposition 16, and for each pair of distinct phases i; j 2 ¹1; 2; 3º, denote
by .�

xIi;j
i;j ; B

xIi;j / the local gradient flow calibration for the interface xIi;j from Construc-
tion 14.

For all i; j 2 ¹1; 2; 3º with i ¤ j , there exist a choice of the tangential component Yi;j

of B xIi;j and a local gradient flow calibration ..� x�i;j /i;j2¹1;2;3º;i¤j ; B
x�/ at the triple line

in the sense of Proposition 16 such that in addition the following compatibility estimates
hold true: ˇ̌

�
xIi;j
i;j � �

x�
i;j

ˇ̌
C
ˇ̌
.r�

xIi;j
i;j /

T�
x�
i;j

ˇ̌
C
ˇ̌
.r�

x�
i;j /

T�
xIi;j
i;j

ˇ̌
� C dist.�; xIi;j /; (137)ˇ̌

.�
xIi;j
i;j � �

x�
i;j / � �

xIi;j
i;j

ˇ̌
� C dist2.�; xIi;j /; (138)ˇ̌

B
xIi;j � B

x�
ˇ̌
� C dist.�; xIi;j /; (139)ˇ̌

.rB
xIi;j � rB

x�/T�
xIi;j
i;j

ˇ̌
� C dist.�; xIi;j / (140)

throughout N yr
2
.x�/ \ .WxIi;j [Wx�i [Wx�j /, where C > 0 is a constant which depends

only on the smoothly evolving regular double bubble .x�1; x�2; x�3/ on Œ0; T �.

Proof. Let ..� x�i;j /i;j2¹1;2;3º;i¤j ; B
x�/ be the local gradient flow calibration at the triple

line x� as constructed in the proof of Proposition 16, and let i; j 2 ¹1; 2; 3º be distinct
phases.

Step 1: Proof of (137). The estimate j�
xIi;j
i;j � �

x�
i;j j � C dist.�; xIi;j / is an immediate

consequence of regularity estimates (19) and (25), inclusions (34)–(35), as well as the
extension property �

xIi;j
i;j D xni;j D �

x�
i;j along xIi;j \Nyr .x�/.

The estimate j.r�
xIi;j
i;j /

T�
x�
i;j j � C dist.�; xIi;j / follows from adding zero, the already

established estimate for the first left hand side term of (137), and �
xIi;j
i;j being a unit-length

vector field due to (18).
For the remaining part of (137), it suffices to estimate 1

2
rj�

x�
i;j j

2 due to (25) and the
already established estimate for the first left hand side term of (137). Throughout the
interpolation wedgeWxIi;j \Nyr .x�/, we have j� x�i;j j � 1 in view of definitions (116)–(118),
so that the desired estimate is satisfied for trivial reasons. Within the relevant interpolation
wedges, one may use representation (136) and then deduce j1

2
rj�

x�
i;j j

2j � C dist.�; xIi;j /
from (124), (110) and (36).

Step 2: Proof of (138). Denote by z� xIi;j the auxiliary extension of the unit nor-
mal xni;j jxIi;j from Construction 23. Due to (116)–(118), (120)–(122), and compatibility
estimates (124), it holds that

�
x�
i;j D j

z�
xIi;j j
�1z�

xIi;j CO.dist2.�; xIi;j // in Nyr .x�/ \ .WxIi;j [Wx�i [Wx�j /:
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Making use of non-degeneracy conditions (113)–(115) and estimate (101), we also obtain

jz�
xIi;j j
�1
� 1 D

1 � jz�
xIi;j j2

jz�
xIi;j j

�
1Cjz�

xIi;j j
� D O.dist2.�; xIi;j // in Nyr .x�/ \ im.‰i;j /:

Recalling precise representations (18) and (74), we thus infer from the previous two dis-
plays thatˇ̌

.�
xIi;j
i;j � �

x�
i;j / � �

xIi;j
i;j

ˇ̌
�
ˇ̌
1 � jz�

xIi;j j
�1
ˇ̌
CO.dist2.�; xIi;j // D O.dist2.�; xIi;j //

throughout Nyr .x�/ \ .WxIi;j [Wx�i [Wx�j /, as asserted.

Step 3: Construction of the tangential component Yi;j of B xIi;j . Let � be a smooth and
even cutoff function with �.r/ D 1 for jr j � 1

2
and �.r/ D 0 for jr j � 1. Denote by zB xIi;j

the auxiliary local velocity field from Construction 25 with respect to the interface xIi;j .
The tangential component Yi;j of B xIi;j is then simply defined by

Yi;j WD �
�dist.�; x�/

yr

�
.Id � xni;j ˝ xni;j / zB

xIi;j in im.‰i;j /: (141)

Note that Yi;j 2 C
0
t C

1
x .im.‰i;j // as required by Construction 14 due to the regularity of

the normal xni;j (see (17)) and regularity estimate (94) for zB xIi;j .
Step 4: Proof of (139)–(140). It follows from expansion ansatz (93), definitions (119)

and (18), the choice of the tangential component (see (141)), as well as the choice of the
cutoff � from the previous step that

B
xIi;j D B

x� throughout WxIi;j \N yr
2
.x�/: (142)

More precisely, denoting by zB xIi;j the auxiliary local velocity field from Construction 25
with respect to the interface xIi;j , we in fact have

B
xIi;j D zB

xIi;j throughout .WxIi;j [Wx�i [Wx�j / \N yr
2
.x�/: (143)

Now, (139) follows directly from a Taylor expansion argument exploiting regularity esti-
mates (20) and (26), as well as inclusions (34)–(35).

In view of (142), estimate (140) is satisfied for trivial reasons throughout the inter-
face wedge N yr

2
.x�/ \WxIi;j . Within the relevant interpolation wedges, say for concrete-

ness N yr
2
.x�/ \Wx�i , we make use of (143). Let k 2 ¹1; 2; 3º n ¹i; j º denote the third

phase. It then follows from (143) and expressing definition (123) in the form of

B
x�
D �

xIi;j
x�i
zB
xIi;j C

�
1 � �

xIi;j
x�i

�
zB
xIk;i

that

rB
xIi;j � rB

x�
D
�
1 � �

xIi;j
x�i

�
.r zB

xIi;j � r zB
xIk;i / � . zB

xIi;j � zB
xIk;i /˝r�

xIi;j
x�i
:



Weak-strong uniqueness for MCF of double bubbles 87

Since �
xIi;j
i;j D xni;j due to (18), estimate (140) now follows throughout the interpolation

wedge N yr
2
.x�/\Wx�i by the same argument which deals with estimating the last two right

hand side terms of (135). We recall for convenience that the essential input for the latter
is given by compatibility conditions (95) and (96) for the auxiliary velocity fields zB xIi;j

and zB xIk;i .

5. Gradient flow calibrations for double bubbles

5.1. Localization of topological features

We start by introducing a family of suitable cutoff functions localizing around the inter-
faces and the triple line in a smoothly evolving regular double bubble. This family will be
used to provide the construction of a gradient flow calibration by means of gluing together
the local constructions from the previous two sections.

Lemma 31. Let .x�1; x�2; x�3/ be a regular double bubble smoothly evolving by MCF in
the sense of Definition 10 on a time interval Œ0; T �. Let the notation of Definition 13 (and
Definition 17) be in place, and let yr 2 .0; 1� be the radius of Proposition 16. In particular,
let .ri;j /i;j2¹1;2;3º;i¤j be admissible localization radii for the interfaces in the sense of
Definition 13 such that yr � r1;2 ^ r2;3 ^ r3;1. We next define for each pair i; j 2 ¹1; 2; 3º
with i ¤ j a scale

3`i;j WD min
t2Œ0;T �

min
k;l2¹1;2;3º; k¤l;
.k;l/…¹.i;j /;.j;i/º

dist
�
xIi;j .t/ n Byr .x�.t//; xIk;l .t/

�
> 0;

and based on these a localization scale xr 2 .0; r1;2 ^ r2;3 ^ r3;1� by

2xr WD yr ^ min
i;j2¹1;2;3º; i¤j

`i;j : (144)

There then exists a collection of continuous cutoff functions

�x� ; �xI1;2 ; �xI2;3 ; �xI3;1 W R
3
� Œ0; T �! Œ0; 1�

satisfying the following properties:

(i) The cutoff functions are of class .C 0t C
1
x \ C

1
t C

0
x /.R

3 � Œ0; T � n x�/ with corre-
sponding regularity estimates

j.@t ;r/.�x� ; �xI1;2 ; �xI2;3 ; �xI3;1/j � C in R3 � Œ0; T � n x� (145)

for some constant C > 0 depending only on the data of the smoothly evolving
regular double bubble .x�1; x�2; x�3/ on Œ0; T �.

(ii) The family .�x� ; .�xIi;j /i;j2¹1;2;3º;i¤j / is a partition of unity for the evolving sur-
face cluster in the sense that �x� C �xI1;2 C �xI2;3 C �xI3;1 � 1 holds true on the
surface cluster 	 WD

S
i;j2¹1;2;3º;i¤j

xIi;j .
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Moreover, for all pairwise distinct i; j; k 2 ¹1; 2; 3º, it holds that

�xIk;i � C.dist2.�; xIi;j / ^ 1/ in R3 � Œ0; T �; (146)

jr�xIk;i j � C.dist.�; xIi;j / ^ 1/ in R3 � Œ0; T � n x�; (147)

j@t�xIk;i j � C.dist.�; xIi;j / ^ 1/ in R3 � Œ0; T � n x�: (148)

Defining
�bulk WD 1 � �x� � �xI1;2 � �xI2;3 � �xI3;1 ;

we have �bulk 2 Œ0; 1� on R3 � Œ0;T �, and the bulk cutoff is subject to the estimates

1

C
.dist2.�;	/ ^ 1/ � �bulk � C.dist2.�;	/ ^ 1/ in R3 � Œ0; T �; (149)

jr�bulkj � C.dist.�;	/ ^ 1/ in R3 � Œ0; T � n x�; (150)

j@t�bulkj � C.dist.�;	/ ^ 1/ in R3 � Œ0; T � n x�: (151)

The constant C � 1 in estimates (146)–(151) depends only on the data of the
smoothly evolving regular double bubble .x�1; x�2; x�3/ on Œ0; T �.

(iii) For all pairwise distinct i; j; k 2 ¹1; 2; 3º and all t 2 Œ0; T �, it holds that

supp �xIi;j .�; t / � ‰i;j .
xIi;j .t/ � ¹tº � Œ�xr; xr�/; (152)

Byr .x�.t// \ supp �xIi;j .�; t / � Byr .
x�.t// \

�
WxIi;j .t/ [Wx�i .t/ [Wx�j .t/

�
;

(153)

supp �xIi;j .�; t / \ supp �xIj;k .�; t / � Byr .
x�.t// \Wx�j .t/; (154)

supp �x�.�; t / � Byr=2.x�.t//: (155)

Proof. The proof is split into several steps.
Step 1: Definition of building blocks. Let � be a smooth and even cutoff function

with �.r/ D 1 for jr j � 1
2

and �.r/ D 0 for jr j � 1. Then, define a smooth quadratic
profile � W R! Œ0; 1� by

�.r/ D .1 � r2/�.r2/; r 2 R: (156)

Let ı 2 .0; 1� be a constant whose value will be determined in subsequent steps of the
proof. For all distinct i; j 2 ¹1; 2; 3º, we define auxiliary cutoff functions

�xIi;j WD �
�si;j
ıxr

�
in im.‰i;j /; (157)

�x� WD �
�dist.�; x�/
yr=2

�
in R3 � Œ0; T �: (158)

Note that as a consequence of the regularity of the signed distance (see (14)), expressing
dist.x; x�.t//D jx � Px�.x; t/j for all x 2 Byr .x�.t// and all t 2 Œ0; T �, the regularity of the
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projection Px� onto the triple line x� from Definition 17, and (156), it holds that

j.@t ;r/�xIi;j j � C dist.�; xIi;j / in im.‰i;j /; (159)

j.@t ;r/�x� j � C dist.�; x�/ in R3 � Œ0; T �: (160)

Step 2: Definition of interface cutoffs. Fix distinct i; j 2 ¹1; 2; 3º. We define the cut-
off �xIi;j W R

3 � Œ0; T �! Œ0; 1� for the two-phase interface xIi;j by

�xIi;j .�; t / WD �xIi;j .�; t / in im.‰i;j .t// n Byr .x�.t//; (161)

�xIi;j .�; t / WD .1 � �x�.�; t //�xIi;j .�; t / in Byr .x�.t// \WxIi;j .t/; (162)

�xIi;j .�; t / WD �
xIi;j
x�i
.�; t /.1 � �x�.�; t //�xIi;j .�; t / in Byr .x�.t// \Wx�i .t/; (163)

�xIi;j .�; t / WD �
xIi;j
x�j
.�; t /.1 � �x�.�; t //�xIi;j .�; t / in Byr .x�.t// \Wx�j .t/; (164)

�xIi;j .�; t / WD 0 elsewhere (165)

for all t 2 Œ0; T �. Here, the maps �
xIi;j
x�i

(resp. �
xIi;j
x�j

) are the interpolation functions of
Lemma 28 on the interpolation wedges Wx�i (resp. Wx�j ). Observe that (162) is well-
defined because of (34), and that (163) (resp. (164)) are well-defined as a consequence
of (35). In particular, properties (152)–(154) are immediate consequences of definit-
ions (161)–(165) and the choice of the localization scale xr (see (144)). Finally, in order
to ensure continuity of �xIi;j throughout R3 � Œ0; T � (i.e., compatibility of definition (161)
resp. definition (165) with definitions (162)–(164)), we choose the constant ı 2 .0; 1

2
�

small enough such that for all t 2 Œ0; T � and all distinct i; j 2 ¹1; 2; 3º, it holds that

@Byr .x�.t// \‰i;j .xIi;j .t/ � ¹tº � Œ�ıyr; ıyr�/ �� WxIi;j .t/: (166)

Step 3: Definition of triple line cutoff. We construct a cutoff for the triple line
�x� W R

3 � Œ0; T �! Œ0; 1� as follows: for all distinct i; j; k 2 ¹1; 2; 3º and all t 2 Œ0; T �, we
define

�x�.�; t / WD �x�.�; t /�xIi;j .�; t / in Byr .x�.t// \WxIi;j .t/; (167)

�x�.�; t / WD �
xIi;j
x�i
.�; t /�x�.�; t /�xIi;j .�; t /

C �
xIk;i
x�i
.�; t /�x�.�; t /�xIk;i .�; t / in Byr .x�.t// \Wx�i .t/; (168)

�x�.�; t / WD 0 in R3 n Byr .x�.t//: (169)

Because of (33), definitions (167)–(169) provide a definition of �x� on the whole space-
time domain R3 � Œ0; T �. Property (155) is obviously satisfied in view of (169). Since

�
xIi;k
x�i
D 1 � �

xIi;j
x�i

on interpolation wedgesWx�i , we indeed have �x�.x; t/ 2 Œ0; 1� for all .x; t/ 2 R3 � Œ0; T �.



S. Hensel and T. Laux 90

Step 4: Partition of unity property along the surface cluster. Define the bulk cutoff
�bulk WD 1 � �x� � �xI1;2 � �xI2;3 � �xI3;1 . We claim that

�bulk D 0 along 	 D
[

i;j2¹1;2;3º; i¤j

xIi;j : (170)

Fix t 2 Œ0; T � and a point x 2 	.t/ n Byr .x�.t//. There exists a unique pair of distinct
phases i; j 2 ¹1; 2; 3º such that x 2 xIi;j .t/ and, because of localization properties (154)
and (155), �bulk.x; t/ D 1 � �xIi;j .x; t/. It then follows from definitions (161) and (157)
that �bulk.x; t/ D 0.

Now fix t 2 Œ0; T � and consider a point x 2 	.t/\Byr .x�.t//. Let i; j 2 ¹1; 2; 3º be the
unique pair of distinct phases such that x 2 xIi;j .t/. As a consequence of (34), localization
properties (153)–(155), and definitions (162) and (167), we obtain that �bulk.x; t/ D 1 �

�x�.x; t/� �xIi;j .x; t/D 1� �xIi;j .x; t/. Hence, �bulk.x; t/D 0 due to definition (157). This
concludes the proof of (170).

Step 5: Regularity of cutoff functions. Fix i; j 2 ¹1; 2; 3º such that i ¤ j . The required
derivatives of �xIi;j exist in R3 n Byr .x�.t// (resp. in Byr .x�.t// n x�.t/) in a pointwise sense
for all t 2 Œ0; T � due to the definition of �xIi;j from Step 2 of this proof, definitions (157)
and (158), the properties of the interpolation functions from Lemma 28, and the regularity
of the auxiliary cutoff functions (see (159) and (160)). By the choice of the scale ı 2 .0; 1�
(see (166)), these derivatives do not jump across the boundary of Byr .x�.t//. Hence, @t�xIi;j
and r�xIi;j exist in a pointwise sense in R3 � Œ0; T � n x� .

In terms of the required bounds for these derivatives (see (145)), the only possibly
critical cases are those for which at least one derivative hits an interpolation function
present in definitions (163) and (164). The blow-up of these derivatives (see Lemma 28),
however, is always cured by the presence of the term 1� �x� . In summary, �xIi;j 2 .C

0
t C

1
x\

C 1t C
0
x /.R

3 � Œ0; T � n x�/ and (145) holds true.
Along similar lines, one checks that @t�x� and r�x� exist in a pointwise sense in

R3 � Œ0; T � n x� . The required cancellations to counteract the blow-up of derivatives of
the interpolation parameter in interpolation wedges this time comes from recalling

�
xIk;i
x�i
D 1 � �

xIi;j
x�i
;

which in turn ensures that potentially critical terms always involve the term �xIi;j � �xIk;i .
As the latter vanishes to first-order at the triple line and has a bounded second-order spa-
tial derivative within interpolation wedges, it follows that �x� 2 .C

0
t C

1
x \ C

1
t C

0
x /.R

3 �

Œ0; T � n x�/, and that (145) holds true.
Step 6: Estimates for the bulk cutoff. By construction, it holds that �bulk.�; t / � 1 out-

side of the space-time domainByr .x�.t//[
S
i;j2¹1;2;3º;i¤j ‰i;j .

xIi;j .t/� ¹tº � Œ�xr;xr�/ for
all t 2 Œ0;T �. Hence, for a proof of �bulk 2 Œ0; 1� and estimates (149)–(151), we may restrict
our attention to

S
i;j2¹1;2;3º;i¤j ‰i;j .

xIi;j .t/� ¹tº � Œ�xr;xr�/ nByr .x�.t// and Byr .x�.t// for
all t 2 Œ0; T �.
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In view of the choice of the localization scale xr (see (144)), one may argue separately
on ‰i;j .xIi;j .t/ � ¹tº � Œ�xr; xr�/ n Byr .x�.t// for each pair of distinct phases i; j 2 ¹1; 2; 3º
and all t 2 Œ0; T �. Because of localization properties (154) and (155), it holds that

�bulk.�; t / D 1 � �xIi;j .�; t /

D 1 � �xIi;j .�; t / in ‰i;j .xIi;j .t/ � ¹tº � Œ�xr; xr�/ n Byr .x�.t// (171)

for all t 2 Œ0; T �. Hence, �bulk 2 Œ0; 1� and estimates (149)–(151) follow from defini-
tions (161) and (157) in combination with the quadratic behavior around the origin of pro-
file (156). Note in this context that (144) precisely ensures that the error can be expressed
in terms of dist.�;	/, as required.

We move on to the argument in the ball Byr .x�.t// for all t 2 Œ0; T �. On interface
wedges, we infer from localization properties (153) and (154) as well as definitions (162)
and (167) that

�bulk.�; t / D 1 � �x�.�; t / � �xIi;j .�; t /

D 1 � �xIi;j .�; t / in Byr .x�.t// \WxIi;j .t/ (172)

for all t 2 Œ0; T �, so that the asserted bounds follow as in the previous case together with
bound (38) to express the error in terms of dist.�;	/.

On interpolation wedges, we may compute based on (153) and (154) as well as (163)

and (168) that (recall the relation �
xIk;i
x�i
D 1 � �

xIi;j
x�i

)

�bulk.�; t / D 1 � �x�.�; t / � �xIi;j .�; t / � �xIk;i .�; t /

D �
xIi;j
x�i
.1��xIi;j /.�; t /C.1��

xIi;j
x�i
/.1��xIk;i /.�; t / in Byr .x�.t// \Wx�i .t/ (173)

for all t 2 Œ0; T �. It follows immediately that �bulk.�; t / 2 Œ0; 1�. Moreover, definition (157),
the quadratic behavior around the origin of profile (156), and estimate (36) directly imp-
ly (149). Finally, since

r�bulk.�; t / D ��
xIi;j
x�i
.�; t /r�xIi;j .�; t / � .1 � �

xIi;j
x�i
/.�; t /r�xIk;i .�; t /

� .�xIi;j � �xIk;i /.�; t /r�
xIi;j
i .�; t / in Byr .x�.t// \Wx�i .t/

for all t 2 Œ0;T �, we obtain (150) and (151) because the blow-up ofr�
xIi;j
x�i

(see Lemma 28)
is canceled to the required order by the term �xIi;j � �xIk;i . Indeed, the latter vanishes to
first-order at the triple line and has a bounded second-order spatial derivative within inter-
polation wedges.

Step 7: Error estimates for interface cutoffs. Bounds (146)–(148) are trivially fulfilled
outside of Byr .x�.t// for all t 2 Œ0; T � by construction and the choice of the localization
scale xr (see (144)). In view of definitions (162)–(164) and definition (158), we also have
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�xIk;i .�; t / � 1 � �x�.�; t / � C dist2.�; x�.t// in Byr .x�.t// \ .WxIk;i .t/ [Wx�i .t/ [Wx�k .t//
for all t 2 Œ0; T �. Recalling bounds (36) and (37), this in turn implies (146) through-
out Byr .x�.t// for all t 2 Œ0; T �.

For a proof of (147) and (148), note that

j.@t ;r/�xIk;i .�; t /j � C.1 � �x�.�; t //C C j.@t ;r/ dist.�; x�.t//j dist.�; x�.t//

in Byr .x�.t// \ .WxIk;i .t/ [Wx�i .t/ [Wx�k .t// for all t 2 Œ0; T �. The first right hand side
term is estimated as before, while the second one is of required order due to bounds (36)
and (37) and the regularity of the projection onto the triple line x� (see Definit-
ion 17), which in turn one may employ throughout Byr .x�.t// based on the representation
jx � Px�.x; t/j D dist.x; x�.t//.

5.2. Construction of a gradient flow calibration

We have everything in place to provide the construction of a gradient flow calibration
for a regular double bubble smoothly evolving by MCF. We first introduce a global def-
inition for the vector fields �i;j extending the unit normal vector fields xni;j jxIi;j of the
interfaces xIi;j .

Construction 32 (Global extensions of the unit normal vector fields). Let .x�1; x�2; x�3/
be a regular double bubble smoothly evolving by MCF in the sense of Definition 10 on a
time interval Œ0; T �. Let .�x� ; .�xIi;j /i;j2¹1;2;3º;i¤j / be the partition of unity from the proof
of Lemma 31. Fix i; j 2 ¹1; 2; 3º with i ¤ j . We then define a family of vector fields

�
xIk;l
i;j W

[
t2Œ0;T �

supp �xIk;l .�; t / � ¹tº ! B1.0/; k; l 2 ¹1; 2; 3º; k ¤ l; (174)

�
x�
i;j W

[
t2Œ0;T �

supp �x�.�; t / � ¹tº ! B1.0/ (175)

by means of the following procedure:

For k; l 2 ¹1; 2; 3º with .k; l/ 2 ¹.i; j /; .j; i/º, we let �
xIk;l
i;j be the corresponding vec-

tor field from Construction 14 for the interface xIk;l . For k; l 2 ¹1; 2; 3º with .k; l/ …
¹.i; j /; .j; i/º and k ¤ l , we define

�
xIk;l
i;j WD

1

2

��l;i � �l;j
�i;j

�
xIk;l
k;l
C
�k;i � �k;j

�i;j
�
xIk;l
l;k

�
;

which is well-defined when reversing the roles of i; j and k; l in the previous step. Finally,
we denote by � x�i;j the corresponding vector field from the proof of Proposition 30.

With this family of local vector fields in place, we now define a global vector field
�i;j W R3 � Œ0; T �! R3 by

�i;j WD �x��
x�
i;j C �xI1;2�

xI1;2
i;j C �xI2;3�

xI2;3
i;j C �xI3;1�

xI3;1
i;j (176)

for all distinct pairs of phases i; j 2 ¹1; 2; 3º. }
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We proceed by showing that the vector fields from the previous construction satisfy
structural assumption (1a) and coercivity estimate (1c) of a gradient flow calibration.

Lemma 33. Let the assumptions and notation of Construction 32 be in place. Fix i; j 2
¹1; 2; 3º such that i ¤ j . The vector field �i;j is then subject to the following list of prop-
erties:

(i) It holds that �i;j 2 .C 0t C
1
x \ C

1
t C

0
x /.R

3 � Œ0; T � n x�/, and there exists a con-
stant C > 0 which depends only on the data of the smoothly evolving regular
double bubble .x�1; x�2; x�3/ on Œ0; T � such that

j.@t ;r/�i;j j � C in R3 � Œ0; T � n x�: (177)

Moreover, it holds that �i;j D xni;j along xIi;j .

(ii) For each phase i 2 ¹1; 2; 3º, there exists a vector field �i W R3 � Œ0; T �! R3 of
class .C 0t C

1
x \ C

1
t C

0
x /.R

3 � Œ0; T � n x�/ such that �i;j �i;j D �i � �j holds true
on R3 � Œ0; T �.

(iii) There exists a constant c 2 .0; 1/, which depends only on the data of the smoothly
evolving regular double bubble .x�1; x�2; x�3/ on Œ0; T �, such that

c.dist2.�; xIi;j / ^ 1/ � 1 � j�i;j j in R3 � Œ0; T �: (178)

Proof. The proof is performed in three steps.
Step 1: Regularity and structural properties. The asserted qualitative regularity of the

vector fields �i;j together with estimate (177) follows from definition (176), the regularity
of the cutoff functions (see (145)), as well as the regularity of the local building blocks
(see (174) and (175)) in the form ofˇ̌

.@t ;r/.�
xIk;l
i;j ; �

x�
i;j /
ˇ̌
� C in R3 � Œ0; T �; (179)

which in turn is a consequence of the definitions from Construction 32 and regularity
estimates (19) and (25). The property �i;j jxIi;j � xni;j is immediate from definition (176),
the fact that .�x� ; .�xIi;j /i;j2¹1;2;3º;i¤j / constitutes a partition of unity along the network 	,
and the corresponding property in terms of the local constructions from Lemma 15 and
Proposition 16.

The existence of vector fields .�i /i2¹1;2;3º of class .C 0t C
1
x \ C

1
t C

0
x /.R

3�Œ0; T �nx�/

such that �i;j �i;j D �i � �j holds true on R3 � Œ0; T � follows from the following consider-
ations: Let i; j; k 2 ¹1; 2; 3º be pairwise distinct. We define � x�i WD

1
3
.�i;j �

x�
i;j C �i;k�

x�
i;k
/.

Since �1;2�
x�
1;2 C �2;3�

x�
2;3 C �3;1�

x�
3;1 D 0 holds true in the support of �x� (see Proposi-

tion 16), we indeed obtain �i;j �
x�
i;j D �

x�
i � �

x�
j . Next, fix k; l 2 ¹1; 2; 3º with k ¤ l , and

let i 2 ¹1; 2; 3º. We may then define

�
xIk;l
i WD

1

2
.�l;i�

xIk;l
k;l
C �k;i�

xIk;l
l;k
/:
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Again, plugging in the definitions immediately shows �i;j �
xIk;l
i;j D �

xIk;l
i � �

xIk;l
j for all i; j 2

¹1; 2; 3º such that i ¤ j . Defining

�i WD �x��
x�
i C �xI1;2�

xI1;2
i C �xI2;3�

xI2;3
i C �xI3;1�

xI3;1
i

therefore entails the desired conclusion.
Step 2: A coercivity condition. As a preparation for the proof of (178), we claim that

there exists a constant " D ".�/ 2 .0; 1/ such that for all i; j 2 ¹1; 2; 3º with i ¤ j , as
well as all k; l 2 ¹1; 2; 3º with .k; l/ … ¹.i; j /; .j; i/º and k ¤ l , it holds thatˇ̌

�
xIk;l
i;j

ˇ̌
� " < 1: (180)

Indeed, estimate (180) is an immediate consequence of the definition of the vector field

�
xIk;l
i;j D

1

2

��l;i � �l;j
�i;j

�
xIk;l
k;l
C
�k;i � �k;j

�i;j
�
xIk;l
l;k

�
(see Construction 32), and the facts that j�l;i��l;j

�i;j
j<1 and j�k;i��k;j

�i;j
j<1, which in turn are

true since the matrix of surface tensions satisfies the strict triangle inequality by assump-
tion.

Step 3: Proof of estimate (178). Fix i; j 2 ¹1; 2; 3º such that i ¤ j . By localization
properties (152)–(155) and the choice of the localization scale xr (see (144)), it suffices to
establish the desired estimate throughout supp �xIk;l .�; t / n Byr .

x�.t//, Byr .x�.t// \WxIk;l .t/

or Byr .x�.t// \Wx�l .t/ for all distinct phases k; l 2 ¹1; 2; 3º and all t 2 Œ0; T �. Hence, fix
such k; l 2 ¹1; 2; 3º with k ¤ l and t 2 Œ0; T �, and then observe that due to definition (176)
and localization properties (152)–(155), it holds that

�i;j D

8̂̂̂<̂
ˆ̂:
�xIk;l �

xIk;l
i;j on supp �xIk;l .�; t / n Byr .

x�.t//;

�x��
x�
i;j C �xIk;l �

xIk;l
i;j on Byr .x�.t// \WxIk;l .t/;

�x��
x�
i;j C �xIk;l �

xIk;l
i;j C �xIl;m�

xIl;m
i;j on Byr .x�.t// \Wx�l .t/; m 2 ¹1; 2; 3º n ¹k; lº:

(181)

Based on (181), we now distinguish between two cases.
Substep 3.1: Assume that .k; l/ 2 ¹.i; j /; .j; i/º. In other words, both the phases k

and l are present at the interface xIi;j . In this case, observe first that throughout the three
domains represented in (181) it holds due to (36), (38) and (144) that the distance to 	

is comparable to the distance to xIi;j : 1
C

dist.�; xIi;j / � dist.�;	/ � C dist.�; xIi;j / for some
constant C � 1. Furthermore, it follows from (181) and the triangle inequality that j�i;j j �
1 � �bulk throughout the three domains represented in (181). Hence, bound (178) follows
from the lower bound in (149).

Substep 3.2: Assume that .k; l/ … ¹.i; j /; .j; i/º. In the first case of equation (181),
estimate (178) follows immediately from coercivity condition (180). In the third case
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of (181), we may additionally assume that .l; m/ … ¹.i; j /; .j; i/º; otherwise, we are
again in the setting of the argument from Substep 3.1 above. Plugging in definit-
ions (163), (164) and (168), as well as exploiting coercivity condition (180) for both the

vector fields �
xIk;l
i;j and �

xIl;m
i;j (which is applicable due to our assumptions), we may estimate

from below

1 � j�i;j j � 1 � .�x� C "�xIk;l C "�xIl;m/ � .1 � "/.1 � �x�/ � .1 � "/.dist2.�; x�/ ^ 1/

on Byr .x�.t// \Wx�l .t/ for all t 2 Œ0; T �, so that (178) follows again. Since the argument
proceeds similarly in the second case of (181), we may conclude the proof.

The next step consists of providing the global definition of a suitable velocity field
along which a smoothly evolving regular double bubble and our associated constructions
are transported.

Construction 34 (Global extension of velocity vector field). Let .x�1; x�2; x�3/ be a reg-
ular double bubble smoothly evolving by MCF in the sense of Definition 10 on a time
interval Œ0; T �. Let .�x� ; .�xIi;j /i;j2¹1;2;3º;i¤j / be the partition of unity from the proof of
Lemma 31. We then introduce a family of vector fields

B
xIi;j W

[
t2Œ0;T �

supp �xIi;j .�; t / � ¹tº ! R3 for all i; j 2 ¹1; 2; 3º; i ¤ j; (182)

B
x�
W

[
t2Œ0;T �

supp �x�.�; t / � ¹tº ! R3 (183)

as follows: the velocity field B x� denotes the corresponding vector field from the proof of
Proposition 30, whereas B xIi;j is the velocity field from Construction 14 with tangential
component chosen as in the proof of Proposition 30.

With this family of local vector fields in place, we now define a global velocity field

B WD �x�B
x�
C �xI1;2B

xI1;2 C �xI2;3B
xI2;3 C �xI3;1B

xI3;1 (184)

throughout R3 � Œ0; T �. }

A crucial ingredient for the proof of estimates (1d) and (1e) are the following bounds
on the advective derivatives of the partition of unity from Lemma 31:

Lemma 35. Let the assumptions and notation of Construction 34 be in place. In particu-
lar, .�x� ; .�xIi;j /i;j2¹1;2;3º;i¤j / denotes the partition of unity from the proof of Lemma 31.

Then, B 2 C 0t C
1
x .R

3 � Œ0; T � n x�/ with corresponding estimate

jBj C jrBj � C in R3 � Œ0; T � n x�: (185)

Moreover, the velocity field B gives rise to an improved estimate on the advective deriva-
tive of the bulk cutoff in the form of

j@t�bulk C .B � r/�bulkj � C.dist2.�;	/ ^ 1/ in R3 � Œ0; T �; (186)
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and similarly, for all pairwise distinct phases i; j; k 2 ¹1; 2; 3º we have

j@t�xIk;i C .B � r/�xIk;i j � C.dist2.�; xIi;j / ^ 1/ in R3 � Œ0; T �: (187)

The constant C > 0 in estimates (185)–(187) depends only on the data of the smoothly
evolving regular double bubble .x�1; x�2; x�3/ on Œ0; T �.

Proof. The proof is decomposed into three steps.
Step 1: Regularity estimates. The asserted qualitative regularity of the velocity field B

together with the associated estimate (185) follow from its definition (see (184)), the reg-
ularity of the cutoff functions (see (145)), as well as the regularity of the local building
blocks (see (182) and (183)) in the form ofˇ̌

.B
x� ; B

xIi;j /
ˇ̌
C
ˇ̌
r.B

x� ; B
xIi;j /

ˇ̌
� C (188)

which is a consequence of (20) and (26).
Step 2: Proof of (186). It holds that �bulk.�; t / � 1 outside of the space-time

domain Byr .x�.t// [
S
i;j2¹1;2;3º;i¤j ‰i;j .

xIi;j .t/ � ¹tº � Œ�xr; xr�/ for all t 2 Œ0; T �, by
construction. Hence, for a proof of estimate (186), we may restrict our attention toS
i;j2¹1;2;3º;i¤j ‰i;j .

xIi;j .t/ � ¹tº � Œ�xr; xr�/ n Byr .x�.t// and Byr .x�.t// for all t 2 Œ0; T �.
By the choice of the localization scale xr (see (144)), one may even argue separately on
‰i;j .xIi;j .t/� ¹tº � Œ�xr;xr�/ nByr .x�.t// for each pair of distinct phases i; j 2 ¹1; 2; 3º and
all t 2 Œ0; T �.

Substep 2.1: Proof of (186) on ‰i;j .xIi;j .t/ � ¹tº � Œ�xr; xr�/ n Byr .x�.t//. It follows
from representation (171) and definition (184) that B D �xIi;jB

xIi;j and

j@t�bulk C .B � r/�bulkj �
ˇ̌
@t�xIi;j C .B

xIi;j � r/�xIi;j

ˇ̌
C�bulk

ˇ̌
.B
xIi;j � r/�xIi;j

ˇ̌
(189)

throughout ‰i;j .xIi;j .t/ � ¹tº � Œ�xr; xr�/ n Byr .x�.t// for all t 2 Œ0; T �.
Recall that the signed distance si;j satisfies

@tsi;j C .B
xIi;j � r/si;j D 0 in im.‰i;j /; (190)

as a consequence of the choice of the local velocity B xIi;j (cf. Construction 34, Construc-
tion 14 and (24)). Hence, we infer from definition (157) and an application of the chain
rule that

@t�xIi;j C .B
xIi;j � r/�xIi;j D 0 in im.‰i;j /: (191)

For an estimate of the second right hand side term of (189), we simply make use of the
upper bound for the bulk cutoff (see (149)) as well as regularity estimates (188) and (159)
of B xIi;j and �xIi;j , respectively.

Substep 2.2: Proof of (186) on Byr .x�.t// \WxIi;j .t/. Throughout the interface wedge
WxIi;j .t/ \ Byr .

x�.t//, it holds that B D �x�B
x� C �xIi;jB

xIi;j , thanks to representation (172)
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and definition (184). We may then estimate, making use again of (172),

j@t�bulk C .B � r/�bulkj �
ˇ̌
@t�xIi;j C .B

xIi;j � r/�xIi;j

ˇ̌
C �bulk

ˇ̌
.B
xIi;j � r/�xIi;j

ˇ̌
C�x�

ˇ̌
B
x�
� B

xIi;j
ˇ̌
jr�xIi;j j (192)

on WxIi;j .t/ \ Byr .
x�.t// for all t 2 Œ0; T �. Thanks to (34), identity (191) is still applicable

on an interface wedge. In particular, the first two right hand side terms of (192) can be esti-
mated along the same lines as in Substep 2.1. The third right hand side term is of required
order due to compatibility estimate (139), bound (38), and regularity estimate (159).

Substep 2.3: Proof of (186) on Byr .x�.t// \Wx�i .t/. Throughout Wx�i .t/ \ Byr .
x�.t//,

we may represent, as a consequence of identity (173), the global velocity defined by (184)
in the form of B D �x�B

x� C �xIi;jB
xIi;j C �xIk;iB

xIk;i . Plugging in (173) and adding zero
twice then entails

j@t�bulkC.B � r/�bulkj �
ˇ̌
@t�
xIi;j
x�i
C.B � r/�

xIi;j
x�i

ˇ̌
j�xIi;j � �xIk;i j

C �
xIi;j
x�i

ˇ̌
@t�xIi;jC.B

xIi;j � r/�xIi;j

ˇ̌
C.1 � �

xIi;j
x�i
/
ˇ̌
@t�xIi;kC.B

xIk;i � r/�xIk;i

ˇ̌
C �

xIi;j
x�i
�x�
ˇ̌
B
xIi;j � B

x�
ˇ̌
jr�xIi;j j C .1 � �

xIi;j
x�i
/�x�

ˇ̌
B
xIk;i � B

x�
ˇ̌
jr�xIk;i j

C �
xIi;j
x�i
�xIk;i

ˇ̌
B
xIi;j � B

xIk;i
ˇ̌
jr�xIi;j j C .1 � �

xIi;j
x�i
/�xIi;j

ˇ̌
B
xIk;i � B

xIi;j
ˇ̌
jr�xIk;i j

C �
xIi;j
x�i
�bulk

ˇ̌
.B
xIi;j � r/�xIi;j

ˇ̌
C.1 � �

xIi;j
x�i
/�bulk

ˇ̌
.B
xIk;i � r/�xIk;i

ˇ̌
: (193)

The last eight right hand side terms of (193) can be estimated by means of the same ingre-
dients as in the previous two substeps, relying in the process also on (35) and (36). Hence,
we focus only on the first right hand side term of (193). Since the difference �xIi;j � �xIk;i
vanishes to first-order at the triple line and has a bounded second-order spatial derivative
within interpolation wedges, we have the bound

j�xIi;j � �xIk;i j � C dist2.�; x�/ (194)

onWx�i .t/\Byr .
x�.t// for all t 2 Œ0; T �. Since the advective derivative of the interpolation

parameter is bounded within interpolation wedges in the form of (111), we may add zero
and exploit property (27) as well as regularity estimates (185) and (110) to obtainˇ̌

@t�
xIi;j
x�i
C.B � r/�

xIi;j
x�i

ˇ̌
� C (195)

throughout Wx�i .t/ \ Byr .
x�.t// for all t 2 Œ0; T �. Post-processing (194) by means of (36)

thus entails (186) on Wx�i .t/ \ Byr .
x�.t// for all t 2 Œ0; T �.

Step 3: Proof of (187). Fix i; j; k 2 ¹1; 2; 3º such that ¹i; j; kº D ¹1; 2; 3º. Due to
localization properties (152)–(154), the choice of the localization scale xr (see (144)), and
regularity estimates (145) and (185), estimate (187) is satisfied for trivial reasons outside
of Byr .x�.t// \ .Wx�k .t/ [Wx�i .t/ [WxIk;i .t// for all t 2 Œ0; T �.
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Substep 3.1: Proof of (187) on Byr .x�.t// \WxIk;i .t/. Based on representation (172) as
well as definition (162), it holds that �xIk;i D .1 � �x�/.1 � �bulk/ on Byr .x�.t// \WxIk;i .t/
for all t 2 Œ0; T �. By an application of the product rule and the already established esti-
mate (186) for the advective derivative of the bulk cutoff, we thus inferˇ̌

@t�xIk;i C .B � r/�xIk;i

ˇ̌
� j@t�x� C .B � r/�x� j C C.dist2.�; xIi;j / ^ 1/

on Byr .x�.t// \WxIk;i .t/ for all t 2 Œ0; T �. Expressing dist.x; x�.t// D jx � Px�.x; t/j for

all x 2 Byr .x�.t// and all t 2 Œ0; T �, as well as recalling relations (112) and (27), we may
compute

@t dist.x; x�.t// D �
x � Px�.x; t/

jx � Px�.x; t/j
� B.Px�.x; t/; t/

D �
�
B.Px�.x; t/; t/ � r

�
dist.x; x�.t// (196)

for all x 2 Byr .x�.t// n x�.t/ and all t 2 Œ0; T �. It is now a consequence of the chain rule
and regularity estimates (185) and (160) that

j@t�x� C .B � r/�x� j � C.dist2.�; x�/ ^ 1/ (197)

throughout Byr .x�.t// n x�.t/ for all t 2 Œ0; T �. Post-processing the previous display by
means of (37) then yields (187) on Byr .x�.t// \WxIk;i .t/ for all t 2 Œ0; T �.

Substep 3.2: Proof of (187) on Byr .x�.t// \Wx�i .t/. Recall (163)–(164), that is,

�xIk;i D �
xIk;i
x�i
.1 � �x�/�xIk;i on Byr .x�.t// \ Wx�i .t/ for all t 2 Œ0; T �. It then directly fol-

lows from the product rule, the trivial estimate 1� �x� � C.dist2.�; x�/^ 1/, estimate (195)
on the advective derivative of the interpolation function

�
xIk;i
x�i
D 1 � �

xIi;j
x�i
;

regularity estimates (159) and (185), estimate (197), and finally bound (36) that (187)
holds true on Byr .x�.t// \Wx�i .t/ for all t 2 Œ0; T �.

This concludes the proof of Lemma 35, since the argument on the other relevant inter-
polation wedge proceeds analogously.

5.3. Approximate transport equations and motion by mean curvature

We shall now establish the validity of estimates (1d)–(1f) in terms of the global
extensions .�i;j /i;j2¹1;2;3º;i¤j of the unit normal vector fields from Construction 32 and
the global extension B of the velocity field from Construction 34.

Lemma 36. Let the assumptions and notation from Construction 32 and Construction 34
be in place. There exists a constant C > 0, which depends only on the data of the smoothly
evolving regular double bubble .x�1; x�2; x�3/ on Œ0; T �, such that for all i; j 2 ¹1; 2; 3º
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with i ¤ j , it holds throughout R3 � Œ0; T � that

j@t�i;j C .B � r/�i;j C .rB/
T�i;j j � C.dist.�; xIi;j / ^ 1/; (198)

jB � �i;j Cr � �i;j j � C.dist.�; xIi;j / ^ 1/; (199)

j�i;j � .@t�i;j C .B � r/�i;j /j � C.dist2.�; xIi;j / ^ 1/: (200)

Proof. The main point of the proof is the reduction to the corresponding assertions on
the level of the local constructions .�

xIi;j
i;j ; B

xIi;j / at two-phase interfaces (see Lemma 15)
and the local construction .� x� ; B x�/ at a triple line (see Proposition 16). The reduction
argument is facilitated by an interplay of estimates (146)–(151) (resp. (186) and (187))
with sufficient compatibility of the local and global constructions. We list and prove
the required compatibility estimates in a first step before starting with the proof of
bounds (198)–(200).

Step 1: Compatibility estimates. We claim that for all i; j 2 ¹1; 2; 3º with i ¤ j it
holds on R3 � Œ0; T � that

1supp�xIi;j

ˇ̌
�i;j � �

xIi;j
i;j

ˇ̌
C1supp�x�

ˇ̌
�i;j � �

x�
i;j

ˇ̌
� C.dist.�; xIi;j / ^ 1/; (201)

1supp�xIi;j

ˇ̌
B � B

xIi;j
ˇ̌
C1supp�x�

ˇ̌
B � B

x�
ˇ̌
� C.dist.�; xIi;j / ^ 1/; (202)

1supp�xIi;j

ˇ̌
.rB � rB

xIi;j /T�
xIi;j
i;j

ˇ̌
C1supp�x�

ˇ̌
.rB � rB

x�/T�
x�
i;j

ˇ̌
� C.dist.�; xIi;j / ^ 1/; (203)

1supp�xIi;j

ˇ̌�
�i;j � �

xIi;j
i;j

�
� �
xIi;j
i;j

ˇ̌
C1supp�x�

ˇ̌�
�i;j � �

x�
i;j

�
� �
x�
i;j

ˇ̌
� C.dist2.�; xIi;j / ^ 1/; (204)

1supp�xIi;j

ˇ̌
�
xIi;j
i;j �

�
.B � B

xIi;j / � r
�
�
xIi;j
i;j

ˇ̌
C1supp�x�

ˇ̌
�
x�
i;j �

�
.B � B

x�/ � r
�
�
x�
i;j

ˇ̌
� C.dist2.�; xIi;j / ^ 1/: (205)

For a proof of these compatibility estimates, we only focus on the respective first left hand
side terms. The proof for the second left hand side terms follows along the same lines
while switching the roles of xIi;j and x� in the process.

Inserting definition (176) and exploiting estimate (146) yields

�i;j � �
xIi;j
i;j D �x�.�

x�
i;j � �

xIi;j
i;j / � �bulk�

xIi;j
i;j CO.dist2.�; xIi;j / ^ 1/

on supp �xIi;j . Hence, we obtain the asserted bound (201) thanks to estimates (137)
and (149).

Next, definition (184) together with estimates (139), (146), (149) and (188) implies

B � B
xIi;j D �x�.B

x�
� B

xIi;j / � �bulkB
xIi;jCO.dist.�; xIi;j / ^ 1/ D O.dist.�; xIi;j / ^ 1/

on supp �xIi;j , as required.
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Moreover, it holds on supp�xIi;j as a consequence of definition (184), the product rule,
the already established compatibility estimate (202), as well as estimates (146), (147)
and (188) that

.rB � rB
xIi;j /T�

xIi;j
i;j D �x�.rB

x�
� rB

xIi;j /T�
xIi;j
i;j � �bulk.rB

xIi;j /T�
xIi;j
i;j

C .B
x�
� �
xIi;j
i;j /r�x� C .B

xIi;j � �
xIi;j
i;j /r�xIi;j CO.dist.�; xIi;j / ^ 1/

D �x�.rB
x�
� rB

xIi;j /T�
xIi;j
i;j

� .B � �
xIi;j
i;j /r�bulk � �bulk.rB

xIi;j /T�
xIi;j
i;j CO.dist.�; xIi;j / ^ 1/:

The previous display in turn implies (203) in view of bounds (140), (149), (150), (188)
and (185).

By the argument for (201), we also have

.�i;j � �
xIi;j
i;j / � �

xIi;j
i;j D �x�.�

x�
i;j � �

xIi;j
i;j / � �

xIi;j
i;j � �bulkj�

xIi;j
i;j j

2
CO.dist2.�; xIi;j / ^ 1/

on supp �xIi;j . Hence, we deduce from (138) and (149) that (204) holds true.
Finally, based on definition (184) and estimates (146), (179) and (188), we may bound

on supp �xIi;j

�
xIi;j
i;j �

�
.B � B

xIi;j / � r
�
�
xIi;j
i;j

D �x�
�
�
xIi;j
i;j � �

x�
i;j

�
�
�
.B
x�
� B

xIi;j / � r
�
�
xIi;j
i;j C �x��

x�
i;j �

�
.B
x�
� B

xIi;j / � r
�
�
xIi;j
i;j

� �bulk�
xIi;j
i;j � .B

xIi;j � r/�
xIi;j
i;j CO.dist2.�; xIi;j / ^ 1/;

so that (137), (139), (149), (179) and (188) entail the desired estimate (205).
Step 2: Proof of (198). For the sake of brevity, from now on we refrain from explicitly

spelling out the application of regularity estimates (177), (179), (185) or (188), and thus
solely concentrate on the error contributions in terms of the distance to the interface xIi;j .

We start estimating based on definition (176), the product rule, as well as bounds (146)
and (148)

@t�i;j D �x�@t�
x�
i;j C �xIi;j @t�

xIi;j
i;j C �

x�
i;j @t�x� C �

xIi;j
i;j @t�xIi;j CO.dist.�; xIi;j / ^ 1/:

As a consequence of compatibility estimate (201) and bounds (148), we may add zero
twice and obtain

�
x�
i;j @t�x� C �

xIi;j
i;j @t�xIi;j D �i;j .@t�x�C@t�xIi;j /CO.dist.�; xIi;j / ^ 1/

D ��i;j @t�bulk CO.dist.�; xIi;j / ^ 1/:

The previous two displays combine to give

@t�i;j D �x�@t�
x�
i;j C �xIi;j @t�

xIi;j
i;j � �i;j @t�bulk CO.dist.�; xIi;j / ^ 1/: (206)
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Replacing the differential operator @t by .B � r/ in the previous argument entails

.B � r/�i;j D �x�.B � r/�
x�
i;j C �xIi;j .B � r/�

xIi;j
i;j

� �i;j .B � r/�bulk CO.dist.�; xIi;j / ^ 1/:

Making use of compatibility estimate (202) updates the previous display to

.B � r/�i;j D �x�.B
x�
� r/�

x�
i;j C �xIi;j .B

xIi;j � r/�
xIi;j
i;j

� �i;j .B � r/�bulk CO.dist.�; xIi;j / ^ 1/: (207)

Furthermore, inserting definition (176), recalling estimate (146), and adding zero based
on compatibility estimate (203) allows to estimate

.rB/T�i;j D �x�.rB/
T�
x�
i;j C �xIi;j .rB/

T�
xIi;j
i;j CO.dist.�; xIi;j / ^ 1/

D �x�.rB
x�/T�

x�
i;j C �xIi;j .rB

xIi;j /T�
xIi;j
i;j CO.dist.�; xIi;j / ^ 1/: (208)

The desired estimate (198) thus follows from (206)–(208), estimate (186) of the advec-
tive derivative of the bulk cutoff, as well as the local versions (21) and (28) of (198),
respectively.

Step 3: Proof of (199). We compute as a consequence of definition (176), esti-
mate (146), and compatibility estimate (202)

B � �i;j D �x�B � �
x�
i;j C �xIi;jB � �

xIi;j
i;j CO.dist.�; xIi;j / ^ 1/

D �x�B
x�
� �
x�
i;j C �xIi;jB

xIi;j � �
xIi;j
i;j CO.dist.�; xIi;j / ^ 1/: (209)

We also directly estimate by means of definition (176), estimate (147), as well as compat-
ibility estimate (201)

r � �i;j D �x�r � �
x�
i;jC�xIi;jr � �

xIi;j
i;j C.�

x�
i;j � r/�x�C.�

xIi;j
i;j � r/�xIi;jCO.dist.�; xIi;j / ^ 1/

D �x�r � �
x�
i;j C �xIi;jr � �

xIi;j
i;j � .�i;j � r/�bulk CO.dist.�; xIi;j / ^ 1/: (210)

Hence, estimate (199) follows by combining (209)–(210), estimate (150) for the bulk cut-
off, and the local versions of (199) given by (22) and (29), respectively.

Step 4: Proof of (200). Plugging in definition (176), recalling estimate (146), and
denoting by k 2 ¹1; 2; 3º n ¹i; j º the remaining phase yields

�i;j � @t�i;j D �x��
x�
i;j � @t�i;j C �xIi;j �

xIi;j
i;j � @t�i;j CO.dist2.�; xIi;j / ^ 1/

D �2x��
x�
i;j � @t�

x�
i;j C �

2
xIi;j
�
xIi;j
i;j � @t�

xIi;j
i;j

C �x��xIi;j �
x�
i;j � @t�

xIi;j
i;j C �x��xIi;j �

xIi;j
i;j � @t�

x�
i;j
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C �x��
x�
i;j �

�
�
x�
i;j @t�x� C �

xIi;j
i;j @t�xIi;j C �

xIj;k
j;k
@t�xIj;k C �

xIk;i
k;i
@t�xIk;i

�
C �xIi;j �

xIi;j
i;j �

�
�
x�
i;j @t�x� C �

xIi;j
i;j @t�xIi;j C �

xIj;k
j;k
@t�xIj;k C �

xIk;i
k;i
@t�xIk;i

�
CO.dist2.�; xIi;j / ^ 1/:

Compatibility estimates (201) and (204) in combination with bounds (146), and (149)
provide an upgrade of the previous display in the form of

�i;j � @t�i;j D �
2
x�
�
x�
i;j � @t�

x�
i;j C �

2
xIi;j
�
xIi;j
i;j � @t�

xIi;j
i;j

C �x��xIi;j �
x�
i;j � @t�

xIi;j
i;j C �x��xIi;j �

xIi;j
i;j � @t�

x�
i;j

C �x�.�
x�
i;j � �i;j /@t .�x�C�xIi;j /

C �xIi;j .�
xIi;j
i;j � �i;j /@t .�x�C�xIi;j /

C �x��
x�
i;j �

�
�
xIj;k
j;k
@t�xIj;k C �

xIk;i
k;i
@t�xIk;i

�
C �xIi;j �

xIi;j
i;j �

�
�
xIj;k
j;k
@t�xIj;k C �

xIk;i
k;i
@t�xIk;i

�
CO.dist2.�; xIi;j / ^ 1/:

Substituting the differential operator .B � r/ for @t in the previous argument, making use
of compatibility estimates (205), (201) and (202), and exploiting twice estimate (187) then
shows that

�i;j � .@tCB � r/�i;j D �
2
x�
�
x�
i;j � .@tCB

x�
� r/�

x�
i;j C �

2
xIi;j
�
xIi;j
i;j � .@tCB

xIi;j � r/�
xIi;j
i;j

C �x��xIi;j �
x�
i;j � .@tCB

xIi;j � r/�
xIi;j
i;j C �x��xIi;j �

xIi;j
i;j � .@tCB

x�
� r/�

x�
i;j

� �x�.�
x�
i;j � �i;j /.@tCB � r/�bulk � �xIi;j .�

xIi;j
i;j � �i;j /.@tCB � r/�bulk

CO.dist2.�; xIi;j / ^ 1/:

Hence, employing the local versions (23) and (30) of (200) and making use of esti-
mate (186) for the bulk cutoff shows that

�i;j � .@tCB � r/�i;j D �x��xIi;j �
x�
i;j � .@tCB

xIi;j � r/�
xIi;j
i;j C �x��xIi;j �

xIi;j
i;j � .@tCB

x�
� r/�

x�
i;j

CO.dist2.�; xIi;j / ^ 1/: (211)

Adding zero, making use of the local evolution equations (21) and (23), and exploiting
compatibility estimates (201) and (203) further implies that

�x��xIi;j �
x�
i;j �

�
@t�
xIi;j
i;j C.B

xIi;j � r/�
xIi;j
i;j

�
D�x��xIi;j �

x�
i;j �

�
@t�
xIi;j
i;j C.B

xIi;j � r/�
xIi;j
i;j C.rB

xIi;j /T�
xIi;j
i;j

�
� �x��xIi;j �

x�
i;j � .rB

xIi;j /T�
xIi;j
i;j

D ��x��xIi;j

�
�
xIi;j
i;j � �

x�
i;j

�
.rB/T�

xIi;j
i;j CO.dist2.�; xIi;j / ^ 1/:
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Switching the roles of x� and xIi;j in the argument leading to the previous display, relying
in the process on the local evolution equations (28) and (30), we then in summary obtain
together with (201) that

�x��xIi;j �
x�
i;j �

�
@t�
xIi;j
i;j C.B

xIi;j � r/�
xIi;j
i;j

�
C �x��xIi;j �

xIi;j
i;j �

�
@t�
x�
i;jC.B

x�
� r/�

x�
i;j

�
D ��x��xIi;j

�
�
xIi;j
i;j � �

x�
i;j

�
.rB/T

�
�
xIi;j
i;j � �

x�
i;j

�
CO.dist2.�; xIi;j / ^ 1/

D O.dist2.�; xIi;j / ^ 1/: (212)

The combination of estimates (211) and (212) thus entails bound (200).

5.4. Existence of a gradient flow calibration: Proof of Theorem 3

This is only a matter of collecting already established facts. More precisely, the required
regularity for ..�i;j /i;j2¹1;2;3º;i¤j ; B/ is part of Lemma 33 and Lemma 35, respectively.
The calibration (resp. extension) property (1a) as well as the coercivity estimate (1c) for
the extensions of the unit normal vector fields follow from Lemma 33. Finally, we note
that estimates (1d)–(1f) are the content of Lemma 36.

6. Existence of transported weights: Proof of Proposition 5

Proof of Proposition 5. The proof proceeds in several steps.
Step 1: Construction of an auxiliary family of transported weights. We first fix a

smooth truncation of the identity. More precisely, let # W R ! R be a smooth and non-
decreasing map such that #.r/ D r for jr j � 1

2
, #.r/ D 1 for r � 1 and #.r/ D �1 for

r � �1. Let yr 2 .0; 1� be the localization scale of Proposition 16, let xr 2 .0; 1� be the
localization scale defined by (144), and let finally ı 2 .0; 1� be the constant from Step 2 of
the proof of Lemma 31 (cf. the defining property (166) for all i; j 2 ¹1; 2; 3º, i ¤ j ). We
then define building blocks

#i;j WD #
�si;j
ıxr

�
in im.‰i;j /; (213)

#ext WD #
�dist.�; x�/

yr

�
in R3 � Œ0; T �: (214)

Note that by definition (144) of the localization scale xr , we have for all phases i 2 ¹1; 2; 3º
a covering of @x�i in the form of

@x�i � Byr .x�.t// [
[

j2¹1;2;3º;j¤i

imxr .‰i;j /.t/ n Byr .x�.t// DW N
@x�i
yr;xr

.t/; (215)

for all t 2 Œ0; T �, and where we abbreviated

imxr .‰i;j /.t/ WD ‰i;j .xIi;j .t/ � ¹tº � Œ�xr; xr�/; t 2 Œ0; T �:



S. Hensel and T. Laux 104

Note that this also implies a disjoint covering of R3 by means of

R3 D N
@x�i
yr;xr

.t/ [
�
x�i .t/ nN

@x�i
yr;xr

.t/
�
[
�
.R3 n x�i .t// nN

@x�i
yr;xr

.t/
�

(216)

for all t 2 Œ0; T �.
For each phase i 2 ¹1; 2; 3º, denote by j; k 2 ¹1; 2; 3º n ¹iº the remaining two

phases. We then define, based on building blocks (213) and (214), an auxiliary weight
y#i W R3 � Œ0; T �! Œ�1; 1� by

y#i .�; t / WD #i;`.�; t / in imxr .‰i;j /.t/ n Byr .x�.t//; ` ¤ i; (217)

y#i .�; t / WD #i;`.�; t / in WxIi;j .t/ \ Byr .
x�.t//; ` ¤ i; (218)

y#i .�; t / WD �
xIi;j
x�i
.�; t /#i;j .�; t /

C �
xIk;i
x�i
.�; t /#i;k.�; t / in Wx�i .t/ \ Byr .

x�.t//; (219)

y#i .�; t / WD #ext.�; t / in WxIj;k .t/ \ Byr .
x�.t//; (220)

y#i .�; t / WD �
xIi;j
x�j
.�; t /#i;j .�; t /

C �
xIj;k
x�j
.�; t /#ext.�; t / in Wx�j .t/ \ Byr .

x�.t//; (221)

y#i .�; t / WD �
xIk;i
x�k
.�; t /#i;k.�; t /

C �
xIj;k
x�k
.�; t /#ext.�; t / in Wx�k .t/ \ Byr .

x�.t//; (222)

y#i .�; t / WD �1 in x�i .t/ nN
@x�i
yr;xr

.t/; (223)

y#i .�; t / WD 1 elsewhere (224)

for all t 2 Œ0;T �. For the construction and properties of the interpolation functions, we refer
to Lemma 31. Note that y#i is well-defined in view of (215), (216) and (33). Moreover, due
to the defining property (166) of the constant ı 2 .0; 1�, we infer that y#i is continuous
throughout R3 � Œ0; T �.

Step 2: Properties of the auxiliary family of transported weights. In this step, we
verify that the auxiliary family y# D .y#i /i2¹1;2;3º satisfies all the requirements of Defi-
nition 4 with the (obvious) exception that y#i 2 L1.R3 � Œ0; T �/. The W 1;1-regularity on
R3 � Œ0; T � as well as the required conditions from item (ii) of Definition 4 are immedi-
ate from definitions (217)–(224). Hence, we focus in the following on the deduction of
advection estimate (2):

Substep 2.1: Preliminary estimates. We first claim that for all i; j 2 ¹1;2;3ºwith i ¤ j
and all t 2 Œ0; T �, it holds that

j@t#i;jC.B � r/#i;j j.�; t / � C dist.�; @x�i .t// in imxr .‰i;j /.t/ n Byr .x�.t//; (225)

j@t#i;jC.B � r/#i;j j.�; t / � C dist.�; @x�i .t//

in Byr .x�.t// \
�
WxIi;j .t/ [Wx�i .t/ [Wx�j .t/

�
; (226)
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j@t#extC.B � r/#extj.�; t / � C dist.�; x�.t// in Byr .x�.t// n x�.t/: (227)

We start with a proof of (225). It follows from representation (171) and definition (184)
that B D �xIi;jB

xIi;j in imxr .‰i;j /.t/ n Byr .x�.t// for all t 2 Œ0; T �. We may then estimate
by the chain rule, definition (213), identity (190), representation (171), as well as esti-
mate (149)

j@t#i;jC.B � r/#i;j j � �bulkj.B
xIi;j � r/#i;j j � C dist.�; x�i /

throughout imxr .‰i;j /.t/ n Byr .x�.t// for all t 2 Œ0; T �.
We next prove (226). Throughout the interface wedge WxIi;j .t/ \ Byr .

x�.t//, it holds
that B D �x�B

x� C �xIi;jB
xIi;j thanks to representation (172) and definition (184). Employ-

ing (172) once more, we then estimate making also use of the chain rule, definition (213)
and identity (190)

j@t#i;jC.B � r/#i;j j � �bulkj.B
xIi;j � r/#i;j j C �x�

ˇ̌�
.B
x�
� B

xIi;j / � r
�
#i;j

ˇ̌
on WxIi;j .t/ \ Byr .

x�.t// for all t 2 Œ0; T �. Post-processing the previous display by means
of (149), (139) and (38) thus yields (226) on WxIi;j .t/ \ Byr .

x�.t//, t 2 Œ0; T �.
Throughout Wx�i .t/ \ Byr .

x�.t//, we may write, as a consequence of represent-
ation (173), the global velocity defined by (184) in the form of B D �x�B

x� C �xIi;jB
xIi;j

C�xIk;iB
xIk;i . Hence, based on the same ingredients as in the case of interface wedges, we

may estimate

j@t#i;jC.B � r/#i;j j

� �bulkj.B
xIi;j � r/#i;j j C�x�

ˇ̌�
.B
x�
� B

xIi;j / � r
�
#i;j

ˇ̌
C�xIk;i

ˇ̌�
.B
xIk;i � B

xIi;j / � r
�
#i;j

ˇ̌
on Wx�i .t/ \ Byr .

x�.t// for all t 2 Œ0; T �. The previous display in turn upgrades to the
desired estimate (226), thanks to (149), (139) and (36).

Finally, estimate (227) is a direct consequence of the chain rule, definition (214), iden-
tity (196) and regularity estimate (185).

Substep 2.2: Proof of (2) in terms of .y#i /i2¹1;2;3º. We first observe that as a conse-
quence of definitions (217)–(224), there exists C � 1 such that

1

C
jy#i j � dist.�; @x�i / � C jy#i j in R3 � Œ0; T �:

Modulo this post-processing, claim (2) in terms of y#i is then directly implied for reg-
ions (217), (218) and (220) by estimates (225)–(227) and (37). Furthermore, the only
additional ingredients needed in the interpolation regions (219), (221) and (222) are given
by estimate (195) for the interpolation functions as well as bound (36). Since there is
nothing to prove for the regions (223) and (224), this in turn concludes the proof of (2) in
terms of .y#i /i2¹1;2;3º.
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Step 3: Enforcing integrability of the weights. We slightly modify the construction
from the previous step to take care of the integrability issue. To this end, we first choose a
smooth and concave function � W Œ0;1/! Œ0; 1� such that �.0/ D 0 as well as �.r/ D 1
for r � 1, which we think of as an upper concave approximation of the map r 7! r ^ 1 on
the interval Œ0;1/. Choose a sufficiently large radius R > 0 such that[

t2Œ0;T �

[
i;j2¹1;2;3º;i¤j

Byr .xIi;j .t// � ¹tº �� BR.0/:

We then define a weight �R 2 W 1;1.R3/ \W 1;1.R3/ by

�R.x/ WD �.exp.R � jxj//; x 2 R3;

with its spatial gradient being bounded in the form of

jr�Rj � C j�Rj in R3:

With all of these ingredients in place, we may finally define #i WD �Ry#i for all phases i 2
¹1; 2; 3º. Note that #i 2 W 1;1.R3 � Œ0; T �I Œ�1; 1�/, as desired. Moreover, the weights #i
directly inherit all the other required properties of Definition 4 from the auxiliary
weights y#i of the previous step, as can be seen from the definitions.
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