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Existence and uniqueness of the motion by curvature
of regular networks

Michael Gößwein, Julia Menzel, and Alessandra Pluda

Abstract. We prove existence and uniqueness of the motion by curvature of networks with triple
junctions in Rd when the initial datum is of class W 2�2=p

p and the unit tangent vectors to the con-
curring curves form angles of 120 degrees. Moreover, we investigate the regularisation effect due
to the parabolic nature of the system. An application of the well-posedness is a new proof and a
generalisation of the long-time behaviour result derived by Mantegazza et al. in 2004. Our study is
motivated by an open question proposed in the 2016 survey from Mantegazza et al.: does there exist
a unique solution of the motion by curvature of networks with initial datum being a regular network
of class C 2? We give a positive answer.

1. Introduction

The mean curvature flow of surfaces in Rd , and in Riemannian manifolds in general, is
one of the most significant examples of geometric evolution equations. This evolution can
be understood as the gradient flow of the area functional: a time-dependent surface evolves
with normal velocity equal to its mean curvature at any point and time.

Since the 1980s the curve shortening flow (mean curvature flow of one-dimensional
objects) has been widely studied by many authors both for closed curves [16–18, 23] and
for curves with fixed end-points [26,45,46]. Also, initial curves forming an angle or a cusp
have been studied, and in this case the singularity disappears immediately [3–5]. When
more than two curves meet at a junction, the description of the motion cannot be reduced
to the case of a single curve and the problem presents additional interesting features. The
simplest example of motion by mean curvature of a set which is essentially singular is the
motion by curvature of networks that are finite unions of curves that meet at junctions.

To find a good definition of the network flow in the framework of classical PDE is
tricky. Because of the variational nature of the flow, it is natural to expect that configura-
tions with multi-points of order greater than three or 3-points with angles different from
120 degrees – being unstable for the length functional – should be present only in the
initial network or that they should appear only at some discrete set of times, during the
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flow. In this paper we consider as initial data regular networks, that is, networks at least
of class C 1 that possess only triple junctions with angles of 120 degrees.

The motion by curvature of regular networks can be expressed as a boundary value
problem (see Definition 2.18). Consider a time-dependent parametrisation of the evolving
network Nt D .


1
t ; : : : ; 


m
t / with 
 it W Œ0; T � � Œ0; 1�! Rd . Suppose that Nt has q triple

junctions O1; : : : ;Oq parametrised by



j1
0 .t; y1/ D 


j2
0 .t; y2/ D 


j3
0 .t; y3/ D Oj .t/ with y1; y2; y3 2 ¹0; 1º (1.1)

for j 2 ¹1; : : : ; qº. Then the evolution of each curve is described at each point and time
by the second order quasilinear PDE

V i .t; x/ D ki .t; x/; (1.2)

where V is the normal velocity and k is the curvature. Apart from the concurrency condi-
tion at the junction (1.1), another condition appears in the system:

�j1.t; y1/C �
j2
0 .t; y2/C �

j3.t; y3/ D 0; (1.3)

with

�.yi / D .�1/
yi

x.yi /

j
x.yi /j
;

for j 2 ¹1; : : : ; qº. This second condition says that the curves form angles of 120 degrees
(at all times).

Since conditions (1.1), (1.2) and (1.3) are purely geometric, additional solutions can
be constructed simply by re-parametrisation. Hence uniqueness has to be understood in
a purely geometric sense, namely, up to re-parametrisations. Moreover, there is a tangen-
tial degree of freedom in the definition of the main equation: the motion by curvature
of networks is described by a parabolic system of degenerate PDEs where only the nor-
mal movements of the curves are prescribed. One can take advantage of this property
by specifying a suitable tangential component of the velocity and turn the problem into
a system of non-degenerate second order quasilinear PDEs, the so-called special flow
(Definition 2.22).

This approach has been proven successful to show existence of solutions. Indeed, the
first attempt to find strong solutions to the network flow was by Bronsard and Reitich [9],
who provided local existence and uniqueness of solutions to the special flow in R2 for
admissible initial regular networks of class C 2C˛ with the sum of the curvature at the
junctions equal to zero. Clearly, it is preferable to remove this additional regularity condi-
tion on the initial datum. When the initial datum is a regular network of class C 2 without
any restriction on the curvature at the junctions, existence has been established in [38].

Uniqueness for solution to the special flow and geometric uniqueness for the original
problem (1.1), (1.2), (1.3) remained open.

Another point that we want to address is the parabolic regularisation of the flow. Bron-
sard and Reitich [9] proved that (under suitable conditions) the regularity of the initial
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datum is preserved in time. However, it is natural to ask whether the regularity of the
evolving network increases, that is, whether the flow is smooth for positive times.

We state our first result:

Theorem 1.1 (Existence, uniqueness and smoothness of the motion by curvature). Let
p 2 .3;1/ and N0 be a regular network in Rd of class W 2�2=p

p . Then there exists a
maximal solution .N .t//t2Œ0;Tmax/

to the motion by curvature with initial datum N0 in the
maximal time interval Œ0; Tmax/ which is geometrically unique and parametrised by curves
of class

W 1
p

�
.0; Tmax/; Lp.0; 1/

�
\ Lp

�
.0; Tmax/;W

2
p .0; 1/

�
:

Furthermore, up to re-parametrisation, the maps 
 i W Œ0; Tmax/ � Œ0; 1�! Rd are smooth
for all positive times.

Theorem 3.7 improves the result by Bronsard and Reitich passing from initial data
in C 2C˛ to W 2�2=p

p . Moreover, it shows geometric uniqueness of solutions. Combining
Theorem 1.1 with [38, Theorem 6.8] we get a fortiori uniqueness for initial regular net-
works of class C 2. This answers in the positive a question asked in [38]. Finally, it also
shows that the flow is smooth for positive times.

Once the well-posedness of the flow is settled, we investigate what happens at the
maximal time of existence. The study of the long-time behaviour of the evolving networks
moving in the plane was undertaken in [39], completed in [37] for trees composed of three
curves and extended to more general cases in [27, 38, 41]. A key element of the analysis
are integral estimates which are quite intricate, due to the presence of the triple junctions.

Our short-time existence result allows us to give a new prove of the following:

Theorem 1.2 (Long-time behaviour). Let p 2 .3;1/, N0 be an admissible initial network
of class W 2�2=p

p and .N .t//t2Œ0;Tmax/
be a maximal solution to the motion by curvature

with initial datum N0 in Œ0; Tmax/ with Tmax > 0. Then at least one of the following hap-
pens:

(i) Tmax D1;

(ii) the inferior limit as t % Tmax of the length of at least one curve of the network
N .t/ is zero;

(iii) the superior limit as t % Tmax of the L2-norm of the curvature of the network
isC1.

Theorem 1.2 was first proven in [39, Theorem 3.18] only for smooth initial data and in
dimension d D 2. Their proof is based on bounding the L2-norm of all derivatives of the
curvature with the L2-norm of the curvature itself, see [39, pages 257–273]. Our proof is
almost effortless compared to the one in [39] due to the fact that, thanks to our improved
short-time existence result, the estimates can be completely avoided.

Furthermore, we stress the fact that our results are valid for every dimension d .
Here is the strategy that allows us to prove Theorem 1.1 and Theorem 1.2. We con-

sider the special flow and linearise it around the initial datum. Then we prove existence
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and uniqueness for the linearised problem in Section 3.1. Well-posedness of the lin-
ear system follows by Solonnikov’s theory [44] provided that the system is parabolic
and that the complementary conditions hold. Solutions to the special flow are obtained
by a contraction argument in Section 3.2. Notice that the choice of the solution space
W 1
p ..0; Tmax/; Lp.0; 1// \ Lp..0; Tmax/;W

2
p .0; 1// is crucial to define the boundary con-

ditions pointwise and to use the theory of [44] to solve the associated linear system.
Moreover, this regularity is needed in the contraction estimates because of the quasilinear
nature of the equations. Clearly the solution to the special flow induces a solution to the
motion by curvature of networks, so we get existence.

To get geometric uniqueness one has to prove that two solutions differ only by a re-
parametrisation as we show in Section 3.3. Existence and uniqueness of maximal solutions
can then be deduced by standard arguments.

In Section 4 we prove that the flow is smooth for all positive times (Theorem 4.8). The
idea of the proof is based on the so-called parameter trick due to Angenent [3]. Although
this strategy has been generalised to several situations [35, 36, 42], it should be pointed
out that our system is not among the cases treated above because of the fully non-linear
boundary condition

3X
iD1

.�1/y

 ix.y/

j
 ix.y/j
D 0 with y 2 ¹0; 1º:

In [22] a strategy has been developed to prove smoothness for positive times of the surface
diffusion flow for triple junction clusters with the same non-linear boundary condition.
We follow that approach and adapt the arguments to our setting to complete the proof of
Theorem 1.1.

Thanks to Theorem 1.1 and the quantification of the existence time of solutions to the
special flow in terms of the initial values as given in Theorem 3.14, we are then also able
to prove Theorem 1.2 by contradiction.

In this last part of the introduction, we describe the existing literature related with the
motion by curvature of networks.

First of all, it is worth mentioning that the problem of the motion by curvature of
networks has been generalised to the anisotropic setting; see [6, 31].

In this paper we describe the evolution until the first singularity and we do not invest-
igate what happens afterwards. Classical solutions “with restarting” have been considered
in [27, 34, 38]. Although uniqueness fails in this context, there exist only finitely many
solutions.

Moreover, apart from classical solutions (with or without restarting) defined in the
framework of classical PDEs, there are several generalised (weak) notions of the flow, see
for instance [2, 8, 14, 24, 28, 32, 47]. In principle the class of admissible solutions could
be much larger, so one may wonder if these weak solutions still resemble classical ones.
A possible answer comes from showing the regularity of weak solutions. An important
progress in this direction has been made by Kim and Tonegawa [28, 29] for an improved
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notion of Brakke’s flow: the evolving varifold is coupled with a finite number of time-
dependent mutually disjoint open sets. In this setting, when the initial datum is a closed 1-
rectifiable set in R2 with (locally) finite measure, then for almost every time the support of
the evolving varifolds consists of embeddedW 2

2 curves whose endpoints meet at junctions
forming angles of 0; 60 or 120 degrees.

Another way to better understand weak solutions are the so-called weak-strong uniqu-
eness results. The first result in this direction is due to Fischer, Hensel, Laux and
Simon [15] proving uniqueness of their “BV solutions” (see also [25]). If there exists a
classical solution to the evolution of networks that does not undergo topological changes,
then the BV solutions coincide with the classical solutions and in particular uniqueness
holds. To this end, they develop a gradient-flow analogue of the notion of calibrations (for
calibrations for minimal networks we refer to [7, 10, 11, 33, 40]). Just like the existence of
a calibration guarantees that one has reached a global minimum in the energy landscape,
the existence of a gradient flow calibration ensures that the route of steepest descent in the
energy landscape is unique and stable.

However, another question remains completely open: could there be more solutions in
the sense of [15], [28] or [47] than the classical solutions “with restarting” that by their
nature go through singularities and topological changes?

We finally describe the structure of the paper. In Section 2 we define the motion by
curvature of networks and we introduce the solution space together with useful properties.
Section 3 is devoted to proving existence of solutions to the motion by curvature and
their geometric uniqueness. Then in Section 4 we explore the regularisation effect of the
flow resulting in the proof of Theorem 1.1. We conclude with the proof of Theorem 1.2
in Section 5, giving a description of the behaviour of solutions at their maximal time of
existence.

2. Solutions to the motion by curvature of networks

2.1. Preliminaries on function spaces

This paper is devoted to show well-posedness of a second order evolution equation. One
natural solution space is given by

W 1;2
p

�
.0; T / � .0; 1/IRd

�
WD W 1

p

�
.0; T /ILp..0; 1/IR

d /
�
\Lp

�
.0; T /IW 2

p ..0; 1/IR
d /
�
;

where T represents the time of existence and d 2 N is any natural number. This space
should be understood as the intersection of two Bochner spaces that are Sobolev spaces
defined on a measure space with values in a Banach space. We give a brief summary in
the case that the measure space is an interval. A detailed introduction on Bochner spaces
can be found in [50].

Let I � R be an open interval and X be a Banach space. A function f W I ! X

is called strongly measurable if it is the pointwise limit a.e. of a sequence of piecewise
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constant functions. If f W I ! X is strongly measurable, then kf kX W I ! R is Lebesgue
measurable. This justifies the following definition:

Definition 2.1 (Lp-spaces). Let I � R be an open interval and X be a Banach space. For
1 � p � 1, we define the Lp-space

Lp.I IX/ WD
®
f W I ! X strongly measurable W kf kLp.I IX/ <1

¯
;

where kf kLp.I IX/ WD kkf .�/kXkLp.I IR/. Furthermore, we let

L1;loc.I IX/ WD
®
f W I ! X strongly measurable W for all K � I compact,

fjK 2 L1.KIX/
¯
:

Let I � R be an open interval, X be a Banach space, f 2 L1;loc.I IX/ and k 2 N0.
The k-th distributional derivative @kxf of f is the functional on C10 .I IR/ given by

h�; @kxf i WD .�1/
k

Z
I

f .x/@kx�.x/dx:

The distribution @kxf is called regular if it is (represented by) a function in L1;loc.

Definition 2.2 (Sobolev spaces). Let m 2 N, I � R be an open interval and X be a
Banach space. For 1 � p � 1 the Sobolev space of order m 2 N is defined as

W m
p .I IX/ WD

®
f 2 Lp.I IX/ W @

k
xf 2 Lp.I IX/ for all 1 � k � m

¯
:

The space W m
p .I IX/ is a Banach space with the norm

kf kW m
p .I IX/ WD

8<:
�P

0�k�mk@
k
xf k

p

Lp.I IX/

� 1
p ; 1 � p <1;

max0�k�mk@kxf kL1.I IX/; p D1:
(2.1)

Elements in the solution space

ET WD W
1
p

�
.0; T /ILp..0; 1/I .R

d /m
�
\ Lp

�
.0; T /IW 2

p

�
.0; 1/I .Rd /m/

�
are thus functions f 2Lp..0;T /ILp..0;1/I .Rd /m/// possessing one distributional deriv-
ative with respect to time, @tf 2 Lp..0; T /ILp..0; 1/I .Rd /m///. Furthermore, for almost
every t 2 .0; T /, the function f .t/ lies in W 2

p ..0; 1/I .R
d /m// and thus has two spacial

derivatives @x.f .t//, @2x.f .t// 2 Lp..0; 1/I .R
d /m//. One easily sees that the functions

t 7! @kx.f .t// for k 2 ¹1; 2º lie in Lp..0; T /ILp..0; 1/I .Rd /m///.
The space ET is often denoted by W 1;2

p ..0; T / � .0; 1/I .Rd /m//. We also use the
notation k�kET

WD k�k
W
1;2
p

where k�k
W
1;2
p

is defined in (2.1).

Definition 2.3 (Sobolev–Slobodeckij spaces). Given d 2 N, p 2 Œ1;1/ and � 2 .0; 1/,
the Slobodeckij semi-norm of an element f 2 Lp..0; 1/IRd / is defined as

Œf ��;p WD
�Z 1

0

Z 1

0

jf .x/ � f .y/jp

jx � yj�pC1
dx dy

� 1
p
:
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Let s 2 .0;1/ be non-integer. The Sobolev–Slobodeckij space W s
p ..0; 1/IR

d / is defined
by

W s
p

�
.0; 1/IRd

�
WD
®
f 2 W bscp

�
.0; 1/IRd

�
W Œ@bscx f �s�bsc;p <1

¯
:

Theorem 2.4. Let T be positive, p 2 .3;1/ and ˛ 2 .0; 1 � 3=p�. We have continuous
embeddings

W 1;2
p

�
.0; T / � .0; 1/

�
,! C

�
Œ0; T �IW 2�2=p

p ..0; 1//
�
,! C

�
Œ0; T �IC 1C˛.Œ0; 1�/

�
:

Proof. The first embedding follows from [12, Lemma 4.4] and the second is an immediate
consequence of the Sobolev Embedding Theorem [48, Theorem 4.6.1.(e)].

Similarly, we can specify the spaces of the boundary values.

Lemma 2.5. Let T be positive, d 2 N and p 2 Œ1;1/. Then the operator

W 1;2
p ..0; T / � .0; 1/IR/! W

1=2�1=2p
p

�
.0; T /IRd

�
;

f 7!
�
fx
�
jxD0

is linear and continuous.

Proof. This follows from [44, Theorem 5.1].

Another important feature of Sobolev–Slobodeckij spaces is their Banach algebra
property.

Proposition 2.6. Let I � R be a bounded open interval, p 2 Œ1;1/ and s 2 .0; 1/ with
s � 1=p > 0. Then for f; g 2 W s

p .I IR/ the product fg lies in W s
p .I IR/ and satisfies

kfgkW s
p .I IR/ � C.s; p/

�
kf kC.I/ kgkW s

p .I IR/ C kgkC.I/ kf kW s
p .I IR/

�
:

Furthermore, given a smooth function F W Rd ! R, a natural number d , and a function
f 2 W s

p .I IR
d /, the function t 7! F.f .t// lies in W s

p .I IR/.

Proof. As W s
p ..0; 1/IR/ ,! C.I IR/ due to the Sobolev Embedding Theorem [48, The-

orem 4.6.1.(e)], we obtain for f; g 2 W s
p .I IR/ the estimate

kfgkLp.I IR/ � kf kC.I/ kgkLp.I IR/ � C.s; p/kf kW s
p .I IR/ kgkW s

p .I IR/

and

Œfg�ps;p D

Z
I

Z
I

j.fg/.x/ � .fg/.y/jp

jx � yjspC1
dx dy

�

Z
I

Z
I

jg.x/jpjf .x/ � f .y/jp C jf .y/jpjg.x/ � g.y/jp

jx � yjspC1
dx dy

� kgk
p

C.I/
Œf �ps;p C kf kC.I/ Œg�

p
s;p � C.s; p/kf kW s

p .I IR/ kgkW s
p .I IR/ :
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Let F W Rd ! R be smooth and f 2 W s
p .I IR

d /. As f lies in C.I IRd /, there exists
R > 0 such that f .I / � BR.0/. Thus we obtain

kF.f /k
p

Lp.I IR/
D

Z
I

jF.f .x//jpdx � max
z2BR.0/

jF.z/jpjI j;

where jI j denotes the length of the interval I . Using

jF.f .x// � F.f .y//j D
ˇ̌̌Z 1

0

.DF /.�f .x/C .1 � �/f .y//d� .f .x/ � f .y//
ˇ̌̌

� max
z2BR.0/

jDF.z/jjf .x/ � f .y/j

we obtain

ŒF .f /�ps;p D

Z
I

Z
I

jF.f .x// � F.f .y//jp

jx � yjspC1
dx dy � Œf �ps;p max

z2BR.0/

jDF.z/jp:

To show well-posedness of evolution equations, it is important to have embeddings
with constants independent of the time interval one is working with. To this end, one
needs to change the norm on the solution space. In the following, we collect the results
that are needed in our specific case:

Lemma 2.7. Let p 2 .3;1/. For every T > 0,

jjjgjjj
W
1;2
p ..0;T /�.0;1//

WD kgk
W
1;2
p ..0;T /�.0;1//

C kg.0/k
W
2�2=p
p ..0;1//

defines a norm on W 1;2
p ..0; T / � .0; 1// that is equivalent to the usual one.

Proof. This is a consequence of Theorem 2.4.

Lemma 2.8 (Extension operator I). Let T0 be positive, T 2 .0; T0/ and p 2 .3;1/. There
exists a linear operator

E W W 1;2
p

�
.0; T / � .0; 1/

�
! W 1;2

p

�
.0; T0/ � .0; 1/

�
such that for all g 2 W 1;2

p ..0; T / � .0; 1//, .Eg/j.0;T / D g and

kEgk
W
1;2
p ..0;T0/�.0;1//

� C
�
kgk

W
1;2
p ..0;T /�.0;1//

C kg.0/k
W
2�2=p
p .0;1/

�
D C jjjgjjj

W
1;2
p ..0;T /�.0;1//

with a constant C D C.p; T0/ depending only on p and T0.

Proof. In the case that g.0/ D 0, the function g can be extended to .0;1/ by reflecting
it with respect to the axis t D T . The general statement can be deduced from this case by
solving a linear parabolic equation of second order and using results on maximal regularity
as given in [42, Proposition 3.4.3].
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Given d 2 N, we obtain an extension operator on the spaceW 1;2
p ..0; T /� .0; 1/IRd /

by applying E to every component.

Lemma 2.9. Let p 2 .1;1/ and ˛ > 1=p. For every positive T ,

jjjbjjjW ˛
p ..0;T /IR/ WD kbkW ˛

p ..0;T /IR/ C jb.0/j

defines a norm on W ˛
p ..0; T /IR/ that is equivalent to the usual one.

Proof. This is an immediate consequence of the Sobolev Embedding Theorem [48, The-
orem 4.6.1.(e)].

Lemma 2.10 (Extension operator II). Let T be positive, p 2 .1;1/ and ˛ > 1=p. There
exists a linear operator

E W W ˛
p

�
.0; T /IR

�
! W ˛

p

�
.0;1/IR

�
such that for all b 2 W ˛

p ..0; T /IR/, .Eb/j.0;T / D b and

kEbkW ˛
p ..0;1/IR/ � Cp

�
kbkW ˛

p ..0;T /IR/ C jb.0/j
�
D CpjjjbjjjW ˛

p ..0;T /IR/

with a constant Cp depending only on p.

Proof. In the case b.0/ D 0, the operator obtained by reflecting the function with respect
to the axis t D T has the desired properties. The general statement can be deduced from
this case using surjectivity of the temporal trace jtD0 W W ˛

p ..0;1/IR/! R:

Theorem 2.11 (Uniform embedding I). Let p 2 .3;1/ and T0 be a positive number.
There exist constants C.p/ and C .T0; p/ such that for all T 2 .0; T0� and all g 2
W
1;2
p ..0; T / � .0; 1//,

kgkC.Œ0;T �IC 1.Œ0;1�// � C.p/kgkC.Œ0;T �IW 2�2=p
p ..0;1///

� C.T0; p/jjjgjjjW 1;2
p ..0;T /�.0;1//

:

Proof. Let T 2 .0; T0� be arbitrary, g 2 W 1;2
p ..0; T / � .0; 1// and Eg be the extension

according to Lemma 2.8. Then Eg lies in W 1;2
p ..0; T0/ � .0; 1// and Theorem 2.4 and

Lemma 2.8 imply

kgk
C.Œ0;T �IW

2�2=p
p ..0;1///

� kEgk
C.Œ0;T0�IW

2�2=p
p ..0;1///

� C.T0; p/kEgkW 1;2
p ..0;T0/�.0;1//

� C.T0; /jjjgjjjW 1;2
p ..0;T /�.0;1//

:

Theorem 2.12 (Uniform embedding II). Let p 2 .3;1/, � 2 .1C1=p=2�2=p; 1/ and let
ı 2 .0; 1 � 1=p/. Let T0 be positive. There exists a constant C .T0; p; �; ı/ > 0 such that
for all T 2 .0; T0� there exists the embedding

W 1;2
p

�
.0; T / � .0; 1/

�
,! C .1��/.1�

1=p�ı/
�
Œ0; T �IC 1 .Œ0; 1�/

�
and all g 2 W 1;2

p ..0; T / � .0; 1// satisfy the uniform estimate

kgk
C .1��/.1�

1=p�ı/.Œ0;T �IC 1.Œ0;1�//
� C .T0; p; �; ı/ jjjgjjjW 1;2

p ..0;T /�.0;1//
:
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Proof. By [43, Corollary 26] there holds for any ı 2 .0;1� 1=p/ the continuous embedding

W 1;2
p

�
.0; T0/ � .0; 1/

�
,! C 1�

1=p�ı
�
Œ0; T0�ILp..0; 1//

�
with operator norm depending on T0. Furthermore, Theorem 2.4 gives

W 1;2
p

�
.0; T0/ � .0; 1/

�
,! C

�
Œ0; T0�IW

2�2=p
p ..0; 1//

�
:

The results in [48] yield that the real interpolation space satisfies

W �.2�2=p/
p

�
.0; 1/

�
D
�
Lp..0; 1//;W

2�2=p
p ..0; 1//

�
�;p

with equivalent norms. In particular, for all f 2W �.2�2=p/
p ..0; 1// there holds the estimate

kf k
W
�.2�2=p/
p ..0;1//

� C kf k1��Lp..0;1//
kf k�

W
2�2=p
p ..0;1//

:

A direct computation using the above estimate shows that for all ˛ 2 .0; 1/,

C
�
Œ0; T0�IW

2�2=p
p ..0; 1//

�
\C ˛

�
Œ0; T0�ILp..0; 1//

�
,! C .1��/˛

�
Œ0; T0�IW

�.2�2=p/
p ..0; 1//

�
which yields for all ı 2 .0; 1 � 1=p) the continuous embedding

W 1;2
p

�
.0; T0/ � .0; 1/

�
,! C .1��/.1�

1=p�ı/
�
Œ0; T0�IW

�.2�2=p/
p ..0; 1//

�
:

Since �.2 � 2=p/ � 1=p > 1 the Sobolev Embedding Theorem yields

W 1;2
p

�
.0; T0/ � .0; 1/

�
,! C .1��/.1�

1=p�ı/
�
Œ0; T0�IC

1.Œ0; 1�/
�
:

The claim now follows using the extension operator E constructed in Lemma 2.8 with
similar arguments as in the proof of Theorem 2.11.

2.2. Motion by curvature of networks

Let d 2 N; d � 2. Consider a curve 
 W Œ0; 1�! Rd of class C 1. A curve is said to be
regular if j
x.x/j ¤ 0 for every x 2 Œ0; 1�. Let us denote by s the arclength parameter. We
recall that @s D @x=j
x j. If a curve 
 is of class C 1 and regular, its unit tangent vector is
given by � D 
s D 
x=j
x j. The curvature vector of a regular C 2-curve 
 is defined by

� WD 
ss D �s D

xx

j
xj2
�
h
xx ; 
xi
x

j
xj4
:

The curvature is given by � D j�sj.

Definition 2.13. A network N is a connected set in Rd consisting of a finite union of
regular curves N i that meet at their endpoints in junctions. Each curve N i admits a regular
C 1-parametrisation, namely a map 
 i W Œ0; 1�! Rd of class C 1 with j
 ixj ¤ 0 on Œ0; 1�
and 
 i .Œ0; 1�/ D N i .
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Although a network is a set by definition, we will mainly deal with its parametrisa-
tions. It is then natural to speak about the regularity of these maps.

Definition 2.14. Let k 2 N, k � 2, and 1 � p � 1 with p > 1=k�1. A network N is of
class C k (or W k

p , respectively) if it admits a regular parametrisation of class C k (or W k
p ,

respectively).

In this paper we restrict to the class of regular networks.

Definition 2.15. A network is called regular if its curves meet at triple junctions forming
equal angles.

Notice that this notion is geometric in the sense that it does not depend on the choice
of the parametrisations of the curves of the network N .

Definition 2.16 (Geometrically admissible initial datum). Let p 2 .3;1/. We say that a
network N0 D

Sm
iD1 �

i .Œ0; 1�/ is a geometrically admissible initial datum for the motion
by curvature if it is regular and each of its curves can be parametrised by a regular
curve � i 2 W 2�2=p

p .Œ0; 1�;Rd /.

Remark 2.17. For p 2 .3;1/ the Sobolev Embedding Theorem [48, Theorem 4.6.1.(e)]
implies

W 2�2=p
p

�
.0; 1/IRd

�
,! C 1C˛

�
Œ0; 1�IRd

�
for ˛ 2 .0; 1 � 3=p/. In particular, any admissible initial network is of class C 1 and the
angle condition at the boundary is well-defined.

We define now the motion by curvature of regular networks: a time-dependent family
of regular networks evolves with normal velocity V i equal to the curvature vector at any
point and any time, namely

V i D �i :

To be more precise, given a time-dependent family of curves 
 i , we write P i W Rd ! Rd

for the projection onto the normal space to 
 i , that is, P i WD Id � 
 is ˝ 

i
s . The motion

equation reads as
P i
 it D �

i :

To write the precise system of equations that describe the motion by curvature of a
time-dependent family of networks, it is convenient to describe more in detail the struc-
ture/topology of the initial datum, and thus the structure/topology of the evolving network.

Let m; `; q 2 N and suppose that we consider a regular network N0 composed of m
curves with ` endpoints P 1; : : : ; P ` and with q triple junctions O1; : : : ;Oq . We para-
metrise the curves of the network in such a way that if P i is an endpoint of order one
of a curve N i

0 and � i is its parametrisation, then � i .1/ D P i . Consider now one of the
triple junctions, say Oj , where the curves N

j1
0 ;N

j2
0 and N

j3
0 meet (with j1; j2; j3 not

all equal). If �j1 ; �j2 and �j3 are the parametrisations of N
j1
0 ;N

j2
0 and N

j3
0 we cannot
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P 2

P 3

P 4

P 1

N 2
0

N 1
0

N 3
0

N 4
0

N 5
0

O1

O2
P 1

N 1
0

N 2
0

O1

Figure 1. A network composed of five curves and another composed of two.

impose that �j1.0/ D �j2.0/ D �j3.0/ D Oj whatever j is, because both endpoints of a
curve can be part of a triple junction (see, for instance, the networks composed of five or
two curves in Figure 1).

We will instead have that

�j1.y1/ D �
j2.y2/ D �

j3.y3/ D Oj with j 2 ¹1; : : : ; qº; y1; y2; y3 2 ¹0; 1º:

The fact that y1; y2; y3 could be either 0 or 1 affects how the angle condition reads, that
is,

.�1/y1�
j1
0 .y1/C .�1/

y2�
j2
0 .y2/C .�1/

y3�
j3
0 .y3/ D 0;

where �0 D �s .

Definition 2.18 (Solutions to the motion by curvature). Let m; `; q 2 N, p 2 .3;1/
and T > 0. Let N0 be a geometrically admissible initial datum composed of m curves,
possibly with endpoints P 1; : : : ;P ` and with triple junctions O1; : : : ;Oq , parametrised as
described above. A time-dependent family of networks .N .t// is a solution to the motion
by curvature in Œ0; T � with initial datum N0 if there exists a collection of time-dependent
parametrisations


 in 2 W
1
p

�
InILp..0; 1/IR

d /
�
\ Lp

�
InIW

2
p ..0; 1/IR

d /
�
;

with n 2 ¹0; : : : ; N º for some N 2 N, In WD .an; bn/ � R, an � anC1, bn � bnC1,
an < bn and

S
n.an; bn/ D .0; T / such that for all n 2 ¹0; : : : ; N º and t 2 In, 
n.t/ D

.
1.t/; : : : ; 
m.t// is a regular parametrisation of N .t/. Moreover, each 
n needs to sat-
isfy the system8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

P i
 it .t; x/ D �
i .t; x/ motion by curvature,


k.t; 1/ D P k fixed endpoints,


j1.t; y1/ D 

j2.t; y2/ D 


j3.t; y3/ concurrency condition,

0 D .�1/y1�j1.t; y1/C .�1/
y2�j2.t; y2/

C .�1/y3�j3.t; y3/ angle condition

(2.2)
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for almost every t 2 In; x 2 .0; 1/ and for all i 2 ¹1; : : : ;mº, k 2 ¹1; : : : ; `º; j 2 ¹1; : : : ; qº.
Finally, we ask that 
n.an; Œ0; 1�/ parametrises N0 when an D 0.

Remark 2.19. In the motion by curvature equation, only the normal component of the
velocity 
 it is prescribed. This does not mean that there is no tangential motion. Indeed, a
non-trivial tangential velocity is generally needed to allow for motion of the triple junc-
tions.

Remark 2.20. We are interested in finding a time-dependent family of networks .N .t//

solving the motion by curvature. Our notion of solution allows the network to be paramet-
rised by different sets of functions in different (but overlapping) time intervals, namely, a
solution can be parametrised by 
 D .
1; : : : ; 
m/ with 
 i W .a0; b0/ � Œ0; 1�! Rd and
�D .�1; : : : ; �m/ with �i W .a1; b1/� Œ0; 1�! Rd if a0 � a1 < b0 � b1 and 
 i ..a1; b0/�
Œ0; 1�/ D �i ..a1; b0/ � Œ0; 1�/. Requiring that the family of networks .N .t// is paramet-
rised by one map 
.t/ D .
1.t/; : : : ; 
m.t// in the whole time interval of existence Œ0; T �
as in [38] gives a slightly stronger definition of the motion by curvature in comparison
to Definition 2.18. This difference does not affect the proof of the short-time existence
result, but in principle, using our definition, the maximal time interval of existence could
be longer.

The first step to find solutions to the motion by curvature is to turn system (2.2) into
a system of quasilinear parabolic PDEs by choosing a suitable tangential velocity T . We
choose T such that


 it .t; x/ D P
i
 it .t; x/C h


i
t .t; x/; �

i .t; x/i� i .t; x/ D �i .t; x/C T i .t; x/� i .t; x/

D

 ixx.t; x/

j
 ix.t; x/j
2
:

Since the expression of the curvature reads as

�i .t; x/ D

 ixx.t; x/

j
 ix.t; x/j
2
�

D 
 ixx.t; x/
j
 ix.t; x/j

2
; � i .t; x/

E
� i .t; x/;

we choose

T i .t; x/ D
D 
 ixx.t; x/
j
 ix.t; x/j

2
; � i .t; x/

E
:

The equation


 it D

 ixx
j
 ixj

2

is called special flow.

Definition 2.21 (Admissible initial parametrisation). Let p 2 .3;1/. An admissible ini-
tial parametrisation for a network N0 composed of m curves, possibly with endpoints
P 1; : : : ; P ` and with q triple junctions O1; : : : ;Oq , is a tuple

� D .�1; : : : ; �m/
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where
S
i �
i .Œ0;1�/DN0, with � i regular and of classW 2�2=p

p ..0;1/;Rd /. The endpoints
are parametrised by �k.t/DP k with k 2 ¹1; : : : ; `º, and the triple junctions by �j1.y1/D
�j2.y2/ D �

j3.y3/ with j 2 ¹1; : : : ; qº; y1; y2; y3 2 ¹0; 1º. Moreover, at the junctions it
holds that .�1/y1�j10 .y1/C .�1/

y2�
j2
0 .y2/C .�1/

y3�
j3
0 .y3/ D 0.

Notice that it follows by the very definition that a geometrically admissible network
admits an admissible parametrisation.

Definition 2.22 (Solution of the special flow). Let T > 0 and p 2 .3;1/. Consider an
admissible initial parametrisation � D .�1; : : : ; �m/ for a network N0 composed of m
curves in Rd with ` endpoints P 1; : : : ; P ` 2 Rd parametrised by 
k.1/ D P k and q
triple junctions O1; : : : ;Oq parametrised by �j1.y1/ D �j2.y2/ D �j3.y3/. Then we say
that 
 D .
1; : : : ; 
m/ is a solution of the special flow in the time interval Œ0;T � with initial
datum � if


 D .
1; : : : ; 
m/ 2 ET D W
1
p

�
.0; T /ILp..0; 1/I .R

d /m/
�

\ Lp
�
.0; T /IW 2

p ..0; 1/I .R
d /m/

�
;

j
 ix.t; x/j ¤ 0 for all .t; x/ 2 Œ0;T �� Œ0; 1�, and the following system is satisfied for almost
every x 2 .0; 1/, t 2 .0; T /, for every i 2 ¹1; : : : ; mº, k 2 ¹1; : : : ; `º; j 2 ¹1; : : : ; qº:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:


 it .t; x/ D

 ixx.t; x/

j
 ix.t; x/j
2

special flow,


k.t; 1/ D P k fixed endpoints,


j1.t; y1/ D 

j2.t; y2/ D 


j3.t; y3/ concurrency condition,

0 D .�1/y1


j1
x .t; y1/

j

j1
x .t; yi /j

C .�1/y2


i2
x .t; y2/

j

i2
x .t; y2/j

C .�1/y3


j3
x .t; y3/

j

j3
x .t; y3/j

angle condition,


 i .0; x/ D � i .x/ initial datum.

(2.3)

Remark 2.23. Both in [9] and in [39] the authors define the motion by curvature by
introducing directly the special flow. This is not restrictive to get a short-time existence
result because a solution of the special flow as defined in Definition 2.22 induces a solution
of the motion by curvature in the sense of Definition 2.18, as shown in Theorem 3.16
below. However, we will see that it is not easy to deduce geometric uniqueness of solutions
to the motion by curvature from uniqueness of solutions to the special flow.

For the sake of presentation, we will often restrict to the motion by curvature of a
Triod and we give the proofs in full details for this simple configuration. The adaptation
to more general situations is easy; nevertheless, we will carefully explain how to deal
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with it in Appendix A. To fix the precise notation we will now write Definition 2.18 and
Definitions 2.21–2.22 in the specific case of Triods.

Definition 2.24. A Triod T D
S3
iD1 


i .Œ0; 1�/ is a network composed of three regular
C 1-curves 
 i W Œ0; 1�! Rd that intersect each other at the triple junction O WD 
1.0/ D

2.0/ D 
3.0/. For example, see Figure 2. The other three endpoints of the curves 
 i .1/
with i 2 ¹1; 2; 3º coincide with three points P i 2 Rd , that is, P i WD 
 i .1/. The Triod is
called regular if it is a regular network.

P 1
� 1

�3

� 2

O

P 3

P 2

Figure 2. A regular Triod in R2.

Definition 2.25 (Solutions to the motion by curvature of a Triod). Let p 2 .3;1/ and
T > 0. Let T0 be a geometrically admissible initial Triod with endpoints P 1, P 2, P 3. A
time-dependent family of Triods .T .t// is a solution to the motion by curvature in Œ0; T �
with initial datum T0 if there exists a collection of time-dependent parametrisations


 in 2 W
1
p

�
Ij ILp..0; 1/IR

d /
�
\ Lp

�
Ij IW

2
p ..0; 1/IR

d /
�
;

with n 2 ¹0; : : : ; N º for some N 2 N, In WD .an; bn/ � R, an � anC1, bn � bnC1,
an < bn and

S
n.an; bn/ D .0; T / such that for all n 2 ¹0; : : : ; N º and t 2 In, 
n.t/ D

.
1.t/; 
2.t/; 
3.t// is a regular parametrisation of T .t/. Moreover, each 
n needs to
satisfy the system8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

P i
 it .t; x/ D �
i .t; x/ motion by curvature,


 i .t; 1/ D P i fixed endpoints,


1.t; 0/ D 
2.t; 0/ D 
3.t; 0/ concurrency condition,
3X
iD1

� i .t; 0/ D 0 angle condition

(2.4)

for almost every t 2 In; x 2 .0; 1/ and for i 2 ¹1; 2; 3º. Finally, we ask that the condition

n.an; Œ0; 1�/ D T0 is satisfied whenever an D 0.
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Definition 2.26 (Admissible initial parametrisation). Let p 2 .3;1/. An admissible ini-
tial parametrisation for a Triod T0 is a triple � D .�1; �2; �3/ where

S
i �

i .Œ0; 1�/D T0,
�1.0/ D �2.0/ D �3.0/ and

3X
iD1

� ix.0/

j� ix.0/j
D 0;

with � i regular and of class W 2�2=p
p ..0; 1/;Rd /.

Definition 2.27 (Solution of the special flow). Let T > 0 and p 2 .3;1/. Consider an
admissible initial parametrisation � D .�1; �2; �3/ for a Triod T0 in Rd with � i .1/ D
P i 2 Rd . Then we say that 
 D .
1; 
2; 
3/ is a solution of the special flow in the time
interval Œ0; T � with initial datum � if


 D .
1; 
2; 
3/ 2 ET D W
1
p

�
.0; T /ILp..0; 1/I .R

d /3/
�

\ Lp
�
.0; T /IW 2

p ..0; 1/I .R
d /3/

�
;

j
 ix.t; x/j ¤ 0 for all .t; x/ 2 Œ0; T � � Œ0; 1�, and the following system is satisfied for
i 2 ¹1; 2; 3º and for almost every x 2 .0; 1/, t 2 .0; T /:8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:


 it .t; x/ D

 ixx.t; x/

j
 ix.t; x/j
2

special flow,


 i .t; 1/ D P i fixed endpoints,


1.t; 0/ D 
2.t; 0/ D 
3.t; 0/ concurrency condition,
3X
iD1


 ix.t; 0/

j
 ix.t; 0/j
D 0 angle condition,


 i .0; x/ D � i .x/ initial datum.

(2.5)

3. Existence and uniqueness of the motion by curvature

3.1. Existence and uniqueness of the linearised special flow

For the moment we restrict to Triods. We refer to Appendix A for the generalisations
needed in the case of more general networks.

We fix an admissible initial parametrisation � D .�1; �2; �3/ of a triod. Linearising
the main equation of system (2.5) and the angle condition at xD 0 around the initial datum
and considering the principal part of the respective linearisation, we obtain


 it .t; x/ �
1

j� ix.x/j
2

 ixx.t; x/ D

� 1

j
 ix.t; x/j
2
�

1

j� ix.x/j
2

�

 ixx.t; x/ (3.1)

and

�

3X
iD1

� 
 ix
j� ixj
�
� ixh


i
x ; �

i
xi

j� ixj
3

�
D

3X
iD1

�� 1

j
 ixj
�

1

j� ixj

�

 ix C

� ixh

i
x ; �

i
xi

j� ixj
3

�
; (3.2)
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where in (3.2) we have omitted the dependence of � ix and 
 ix on 0 and .t; 0/, respect-
ively. The concurrency and the fixed endpoints conditions are already linear and affine.
We obtain the following linearised system for a general right hand side .f; �; b;  /:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

f i .t; x/ D 
 it .t; x/ �
1

j� ix.x/j
2

 ixx.t; x/; t 2 .0; T /; x 2 .0; 1/; i 2 ¹1; 2; 3º;


.t; 1/ D �.t/; t 2 Œ0; T �;

0 D 
1.t; 0/ � 
2.t; 0/; t 2 Œ0; T �;

0 D 
2.t; 0/ � 
3.t; 0/; t 2 Œ0; T �;

b.t/ D �

3X
iD1

�
 ix.t; 0/
j� ix.0/j

�
� ix.0/h


i
x.t; 0/; �

i
x.0/i

j� ix.0/j
3

�
; t 2 Œ0; T �;


.0; x/ D  .x/; x 2 Œ0; 1�:

(3.3)

Definition 3.1 (Linear compatibility conditions). Let p 2 .3;1/. Let  D . 1;  2;  3/
be a function of class W 2�2=p

p ..0; 1/I .Rd /3/. The function  satisfies the linear com-
patibility conditions for system (3.3) with respect to given functions � 2 W 1�1=2p

p ..0; T /I

.Rd /3/, b 2 W
1=2�1=2p
p ..0; T /IRd / if for i; j 2 ¹1; 2; 3º it holds that  i .0/ D  j .0/,

 i .1/ D �i .0/ and

�

3X
iD1

�  ix.0/
j� ix.0/j

�
� ix.0/h 

i
x.0/; �

i
x.0/i

j� ix.0/j
3

�
D b.0/:

We want to show that system (3.3) admits a unique solution 
 D .
1; 
2; 
3/ in ET .
The result follows from the classical theory for linear parabolic systems by Solonnikov
(see [44]) provided that the system is parabolic and that the complementary conditions
hold (see [44, page 11]). Both the parabolicity and the complementary (initial and bound-
ary) conditions have been proven in [9] when the ambient space is R2. Parabolicity does
not depend on the dimension of the ambient space. We underline the fact that to prove the
complementary conditions we follow a different and simpler strategy with respect to [9].
Our proof is based on the fact that the complementary conditions at the boundary follow
from the Lopatinskij–Shapiro condition (see for instance [13, pages 11–15]).

Definition 3.2 (Lopatinskij–Shapiro condition). Let � 2 C with <.�/ > 0 be arbitrary.
The Lopatinskij–Shapiro condition for system (3.3) is satisfied at the triple junction if
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every solution % D .%1; %2; %3/ 2 C 2.Œ0;1/; .C2/3/ to8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�%i .x/ �
1

j� ix.0/j
2
%ixx.x/ D 0; x 2 Œ0;1/; i 2 ¹1; 2; 3º;

%1.0/ � %2.0/ D 0;

%2.0/ � %3.0/ D 0;

3X
iD1

� %ix.0/
j� ix.0/j

�
� ix.0/h%

i
x.0/; �

i
x.0/i

j� ix.0/j
3

�
D 0

(3.4)

which satisfies limx!1j%
i .x/j D 0 is the trivial solution.

Similarly, the Lopatinskij–Shapiro condition for system (3.3) is satisfied at the fixed
endpoints if every solution % D .%1; %2; %3/ 2 C 2.Œ0;1/; .C2/3/ to8̂<̂

:�%
i .x/ �

1

j� ix.0/j
2
%ixx.x/ D 0; x 2 Œ0;1/; i 2 ¹1; 2; 3º;

%i .0/ D 0; i 2 ¹1; 2; 3º

which satisfies limx!1j%
i .x/j D 0 is the trivial solution.

Lemma 3.3. The Lopatinskij–Shapiro condition is satisfied.

Proof. We first check the condition at the triple junction. Let % be a solution to (3.4)
satisfying limx!1j%

i .x/j D 0. Due to the specific exponential representation of solutions
to the linear system (3.4), one observes that also the derivatives of %i up to order two
decay to zero as x tends to infinity. We multiply

�%i .x/ �
1

j� ix.0/j
2
%ixx.x/ D 0

by j� ix.0/jP
i%i .x/ with P i WD Id � � is .0/˝ �

i
s .0/, then we integrate and sum. Note that

in P i we only want to project the real part of a function. So, P i is the identity on the
complex part and as a consequence, we get that

P i%i D P i%i ; P i%ix D P
i%ix ;

and with the fact that � is .0/ �P
i�i D 0 D � is .0/ �P

i�ix , it follows that

%i �P i%i D P i%i �P i%i D jP i%i j2; %ix �P
i%ix D P

i%ix �P
i%ix D jP

i%ixj
2:

Using that the boundary conditions can be written as %1.0/ D %2.0/ D %3.0/ and

3X
iD1

P i
� %ix.0/
j� ix.0/j

�
D

3X
iD1

%ix.0/

j� ix.0/j
�
� ix.0/h%

i
x.0/; �

i
x.0/i

j� ix.0/j
3

D 0;
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we obtain

0 D

3X
iD1

Z 1
0

�j� ix.0/jjP
i .%i .x//j2 �

1

j� ix.0/j
h%ixx.x/;P

i%i .x/i dx

D

3X
iD1

Z 1
0

�j� ix.0/jjP
i .%i .x//j2 C

jP i .%ix.x//j
2

j� ix.0/j
dx �

3X
iD1

1

j� ix.0/j
hP i%ix.0/; %

i .0/i

D

3X
iD1

Z 1
0

�j� ix.0/jjP
i .%i .x//j2 C

jP i .%ix.x//j
2

j� ix.0/j
dx �

D
%1.0/;

3X
iD1

P i
� %ix.0/
j� ix.0/j

�E
D

3X
iD1

Z 1
0

�j� ix.0/jjP
i .%i .x//j2 C

jP i .%ix.x//j
2

j� ix.0/j
dx:

As a consequence, we get that P i .%i .x// D 0 for all x 2 Œ0;1/ and i 2 ¹1; 2; 3º and in
particular P i .%1.0// D 0 for all i 2 ¹1; 2; 3º. As the orthogonal complements of � ix.0/
with i 2 ¹1;2;3º span all Rd , we conclude that %i .0/D 0 for all i 2 ¹1;2;3º. Repeating the
argument and testing the motion equation by j� ix.0/jh%

i .x/; � is .0/i�
i
s .0/, we can conclude

that %i .x/ D 0 for every x 2 Œ0;1/. Indeed, we obtain

3X
iD1

�j� ix.0/j

Z 1
0

jh%i .x/; � is .0/ij
2 dx C

3X
iD1

1

j� ix.0/j

Z 1
0

jh%ix.x/; �
i
s .0/ij

2 dx

C

3X
iD1

1

j� ix.0/j
h%i .0/; � is .0/ih%

i
x.0/; �

i
s .0/i D 0: (3.5)

This time the boundary condition vanishes, since we get %i .0/ D 0 from the previous
step. Taking again the real part of (3.5), we can conclude that h%i .x/; � is .0/i D 0 for all
x 2 Œ0;1/. Hence, %i .x/ D 0 for every x 2 Œ0;1/ as desired.

The condition at the fixed endpoints follows in exactly the same way using the bound-
ary condition %i .0/ D 0.

Given T > 0, we introduce the spaces

ET WD
®

 2 ET ; 


1.t; 0/ D 
2.t; 0/ D 
3.t; 0/ for i 2 ¹1; 2; 3º; t 2 Œ0; T �
¯
;

FT WD
®
.f; �; 0; b;  / Wf 2 Lp

�
.0; T /ILp..0; 1/I .R

d /3/
�
; � 2 W 1�1=2p

p

�
.0; T /I .Rd /3

�
;

0 2 W 1�1=2p
p

�
.0; T /IR2n

�
; b 2 W

1=2�1=2p
p

�
.0; T /IRd

�
;

 2 W 2�2=p
p

�
.0; 1/I .Rd /3

�
such that the linear compatibility

conditions in Definition 3.1 hold
¯
:

Theorem 3.4. Let p 2 .3;1/. For every T > 0 system (3.3) has a unique solution

 2 ET provided that f 2 Lp..0; T /ILp..0; 1/I .Rd /3//, � 2 W

1�1=2p
p ..0; T /I .Rd /3/,

b 2 W
1=2�1=2p
p ..0; T /IRd / and  2 W 2�2=p

p ..0; 1/I .Rd /3/ fulfil the linear compatibility
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conditions given in Definition 3.1. Moreover, there exists a constant C D C.T / > 0 such
that the following estimate holds:

k
kET
� C

�
kf kLp..0;T /ILp..0;1/// C k�kW 1�1=2p

p ..0;T //
C kbk

W
1=2�1=2p
p ..0;T //

C k k
W
2�2=p
p ..0;1//

�
:

Proof. This follows from [44, Theorem 5.4].

As explained in Appendix A, repeating the previous arguments and applying again
[44, Theorem 5.4], one gets the following more general result:

Theorem 3.5. Let p 2 .3;1/. For every T > 0 system (A.3) has a unique solution

 2 ET provided that f 2 Lp..0; T /ILp..0; 1/I .Rd /m//, � 2 W

1�1=2p
p ..0; T /I .Rd /`/,

b 2 W
1=2�1=2p
p ..0; T /I .Rd /q/ and  2 W 2�2=p

p ..0; 1/I .Rd /m/ fulfil the linear compatib-
ility conditions given in Definition A.1. Moreover, there exists a constant C D C.T / > 0
such that the following estimate holds:

k
kET
� C

�
kf kLp..0;T /ILp..0;1/// C k�kW 1�1=2p

p ..0;T //
C kbk

W
1=2�1=2p
p ..0;T //

C k k
W
2�2=p
p ..0;1//

�
:

Theorem 3.5 implies in particular that the linear operator LT W ET ! FT defined by

LT .
/ D

0BBBBBBBB@

�

 it �


 ixx
j� ix j2

�
i2¹1;2;3º


jxD1�

1
jxD0
� 
2
jxD0

; 
2
jxD0
� 
3
jxD0

�
�
P3
iD1

�

 ix
j� ix j
�
� ixh


i
x ;�

i
xi

j� ix j3

�
jxD0


jtD0

1CCCCCCCCA
is a continuous isomorphism.

Corollary 2.7 and Lemma 2.9 imply that for every positive T the spaces ET and FT
endowed with the norms

jjj
 jjjET
WD jjj
 jjj

W
1;2
p ..0;T /�.0;1/I.Rd /3/

D k
k
W
1;2
p ..0;T /�.0;1/I.Rd /3/

C k
.0/k
W
2�2=p
p ..0;1/I.Rd /3/

and

jjj.f; �; 0; b;  /jjjFT WD kf kLp..0;T /ILp..0;1/I.Rd /3// C jjj�jjjW 1�1=2p
p ..0;T /I.Rd /3/

C jjjbjjj
W
1=2�1=2p
p ..0;T /IRd /

C k k
W
2�2=p
p ..0;1/I.Rd /3/

;

respectively, are Banach spaces. Given a linear operator A W FT ! ET , we let

jjjAjjjL.FT ;ET / WD sup
®
jjjA.f; �; 0; b;  /jjjET

W.f;�;0;b; /2FT ; jjj.f; �; 0; b;  /jjjFT � 1
¯
:
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Lemma 3.6. Let p 2 .3;1/. For all T0 > 0 there exists a constant c.T0; p/ such that

sup
T2.0;T0�

jjjL�1T jjjL.FT ;ET / � c.T0; p/:

Proof. Let T 2 .0;T0� be arbitrary, .f; �; 0; b;  / 2 FT andET0b WD .Eb/j.0;T0/,ET0� WD
.E�/j.0;T0/ where E is the extension operator defined in Lemma 2.10. Extending f by 0
to ET0f 2 Lp..0; T0/ILp..0; 1/I .R

d /3//, we observe that .ET0f;ET0�; 0;ET0b; / lies
in FT0 . As LT and LT0 are isomorphisms, there exist unique 
 2 ET and z
 2 ET0 such
that LT 
 D .f; �; 0; b;  / and LT0 z
 D .ET0f;ET0�; 0;ET0b;  / satisfy

LT 
 D .f; �; 0; b;  / D .ET0f;ET0�; 0;ET0b;  /j.0;T / D .LT0 z
/j.0;T / D LT .z
j.0;T //

and thus 
 D z
j.0;T /. Using Theorem 3.5, Lemma 2.10 and the equivalence of norms
on ET0 , this impliesˇ̌̌̌ ˇ̌

L�1T .f; �; 0; b;  /
ˇ̌̌̌ ˇ̌

ET
D
ˇ̌̌̌ ˇ̌
.L�1T0 .ET0f;ET0�; 0;ET0b;  //j.0;T /

ˇ̌̌̌ ˇ̌
ET

�
ˇ̌̌̌ ˇ̌
L�1T0 .ET0f;ET0�; 0;ET0b;  /

ˇ̌̌̌ ˇ̌
ET0

� c.T0; p/kL
�1
T0
.ET0f;ET0�; 0;ET0b;  /kET0

� c.T0; p/k.ET0f;ET0�; 0;ET0b;  /kFT0

� c.T0; p/jjj.f; �; 0; b;  /jjjFT :

3.2. Existence and uniqueness of the special flow

Given positive M , we introduce the notation

BM WD
®

 2 ET W jjj
 jjjET

�M
¯
:

This section is devoted to the proof of the following:

Theorem 3.7. Let p 2 .3;1/ and let � D .�1; : : : ; �m/ be an admissible initial paramet-
risation. There exists a positive radius M and a positive time T such that the system (2.3)
has a unique solution E� in ET \ BM :

We prove the theorem for a Triod; in particular, we have an admissible parametrisation
� D .�1; �2; �3/ and we consider system (2.5). See Appendix A for the generalisation to
networks with more complicated structure.

Given an admissible initial parametrisation � and T > 0, we consider the complete
metric spaces

E�T WD
®

 2 ET such that 
jtD0 D � and 
jxD1 D �.1/

¯
;

F�T WD FT \
�
Lp
�
.0; T /ILp..0; 1/I .R

d /3/
�
� ¹�.1/º � ¹0º�

W
1=2�1=2p
p

�
.0; T /IRd

�
� ¹�º

�
:
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Lemma 3.8. Let p 2 .3;1/, T > 0 and � D .�1; �2; �3/ be an admissible initial para-
metrisation. Then the space E�T is non-empty.

Proof. As � is an admissible initial parametrisation, one easily checks that f � 0,
� � �.1/, b � 0 and  � � is an admissible right hand side for system (3.3). In other
words, .0; �.1/; 0; 0; �/ 2 FT and hence Theorem 3.5 yields the existence of % 2 ET
with LT % D .0; �.1/; 0; 0; �/. In particular, %jtD0 D � and %jxD1 D �.1/, which gives
% 2 E�T .

Lemma 3.9. Let p 2 .3;1/ and

c WD
1

2
min

i2¹1;2;3º; x2Œ0;1�
j� ix.x/j:

Given T0 > 0 and M > 0, there exists a time zT .c; M/ 2 .0; T0� such that for all 
 2
E�T \ BM with T 2 Œ0; zT .c;M/�, it holds that

inf
x2Œ0;1�; t2Œ0;T �; i2¹1;2;3º

j
 ix.t; x/j � c:

In particular, the curves 
 i .t/ are regular for all t 2 Œ0; T �.

Proof. Let p 2 .3;1/, � 2 .1C1=p=2�2=p; 1/ and ı 2 .0; 1 � 1=p/. By Theorem 2.12, there
exists a constant C.T0; p; �; ı/ > 0 such that for all T 2 .0; T0� and all 
 2 E�T \ BM
with ˛ WD .1 � �/.1 � 1=p � ı/, it holds that

k
kC˛.Œ0;T �IC 1.Œ0;1�I.Rd /3// � C.T0; p; �; ı/jjj
 jjjET
� C.T0; p; �; ı/M;

which implies in particular for all t 2 Œ0; T �

k
.t/ � �kC 1.Œ0;1�I.Rd /3/ � T
˛C.T0; p; �; ı/M:

We let zT .c; M/ be so small that zT .c; M/˛C.T0; p; �; ı/M � c. Then it follows for all

 2 E�T with T 2 .0; zT .c;M// that

inf
t2Œ0;T �; x2Œ0;1�

j
 ix.t; x/j � inf
x2Œ0;1�

j� ix.x/j � sup
t2Œ0;T �; x2Œ0;1�

j
 ix.t; x/ � 

i
x.0; x/j � c:

Let us now define the operator NT that encodes the non-linearity of our problem. The
map NT W E�T ! F�T is given by 
 7! .N 1

T .
/; 
jxD1; 0; N
2
T .
/; 
jtD0/, where the two

components N 1
T ; N

2
T are defined as

N 1
T W

´
E�T ! Lp

�
.0; T /ILp..0; 1/I .Rd /3/

�
;


 7! f .
/;

N 2
T W

´
E�T ! W

1=2�1=2p
p

�
.0; T /IRd

�
;


 7! b.
/
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where we have

f .
/i .t; x/ WD
� 1

j
 ix.t; x/j
2
�

1

j� ix.x/j
2

�

 ixx.t; x/;

b.
/.t/ WD

3X
iD1

�� 1

j
 ix.t; 0/j
�

1

j� ix.0/j

�

 ix.t; 0/C

� ix.0/h

i
x.t; 0/; �

i
x.0/i

j� ix.0/j
3

�
;

defined by the right hand side of (3.1) and (3.2), respectively.

Proposition 3.10. Let p 2 .3;1/ and M be positive. Then for all T 2 .0; zT .c;M/� the
map

NT W E
�
T \ BM ! F�T ; NT .
/ WD

�
N 1
T .
/; 
jxD1; 0; N

2
T .
/; 
jtD0

�
is well-defined.

Proof. Let T 2 .0; zT .c;M/� and 
 2 E�T \ BM be given. Lemma 3.9 implies


� 1

j
 ixj
2
�

1

j� ixj
2

�

 ixx




p
Lp..0;T /ILp..0;1/IRd //

D

Z T

0

Z 1

0

ˇ̌̌ 1

j
 ixj
2
�

1

j� ixj
2

ˇ̌̌p
j
 ixxj

p dx dt

� C
�

sup
x2Œ0;1�;t2Œ0;T �

1

j
 ixj
2p
C sup
x2Œ0;1�

1

j� ixj
2p

� Z T

0

Z 1

0

j
 ixxj
p dx dt

� C.c/k
 ixxk
p

Lp..0;T /ILp..0;1/IRd //
� C.c;M/ <1:

We now show thatN 2
T .
/ lies inW

1=2�1=2p
p ..0;T /IRd /. Let h WRd !Rd be a smooth

function such that h.p/ D p=jpj for all p 2 Rd n Bc=2.0/. Then one observes that for all
t 2 Œ0; T �,

b.
/.t/ D

3X
iD1

h.
 ix.t// � .Dh/.�
i
x/


i
x.t/; (3.6)

where we omitted the evaluation in x D 0 to ease notation. Each term in the sum can be
expressed as

h.
 ix.t// � .Dh/.�
i
x/


i
x.t/ D

Z 1

0

.Dh/
�
�
 ix.t/C .1 � �/�

i
x

�
d� .
 ix.t/ � �

i
x/

� .Dh/.� ix/.

i
x.t/ � �

i
x/C h.�

i
x/ �Dh.�

i
x/�

i
x :

All terms that are constant in t are smooth in t , and by Lemma 2.5 we have

t 7! 
 ix.t; 0/ 2 W
1=2�1=2p
p

�
.0; T /IRd

�
:

As W
1=2�1=2p
p ..0; T /IR/ is a Banach algebra according to Proposition 2.6, it only remains

to show

t 7!

Z 1

0

.Dh/
�
�
 ix.t; 0/C .1 � �/�

i
x.0/

�
d� 2 W 1=2�1=2p

p

�
.0; T /IRn�n

�
;
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which follows from the second assertion in Proposition 2.6. Observe that 
jxD1 D �.1/
and 
jtD0 D � by definition of E�T . As

N 2
T .
/jtD0 D

3X
iD1

� ix.0/

j� ix.0/j
D 0 D �

3X
iD1

� � ix.0/
j� ix.0/j

�
� ix.0/h�

i
x.0/; �

i
x.0/i

j� ix.0/j
3

�
and as � i .0/ D �j .0/ and � i .1/ D 
 i .0; 1/, we may conclude that�

N 1
T .
/; 
jxD1; 0; N

2
T .
/; 
jtD0

�
D
�
N 1
T .
/; �.1/; 0;N

2
T .
/; �

�
2 F�T :

Corollary 3.11. Let p 2 .3;1/ and M be positive. Then for all T 2 .0; zT .c; M/� the
map

KT W E
�
T \ BM ! E�T ; KT WD L

�1
T NT

is well-defined.

Proof. Let T 2 .0; zT .c;M/� and 
 2 E�T \ BM . By the previous proof, we have

NT .
/ D
�
N 1
T .
/; 
jxD1; 0; N

2
T .
/; 
jtD0

�
2 F�T � FT

and thus, in particular,
KT .
/ D L

�1
T .NT .
// 2 ET :

To verify that KT .
/ lies in E�T , we observe that

KT .
/jtD0 D NT .
/5 D 
jtD0 D �;

KT .
/jxD1 D NT .
/2 D 
jxD1 D �.1/:

Proposition 3.12. Let p 2 .3;1/ andM be positive. There exists T .c;M/2 .0; zT .c;M/�

such that for all T 2 .0; T .c;M/�, the map KT W E�T \ BM ! E�T is a contraction.

Proof. Let T 2 .0; zT .c;M/� and 
; z
 2 E�T \ BM be fixed. We begin by estimating

kN 1
T .
/ �N

1
T .z
/kLp..0;T /ILp..0;1/I.Rd /3// D kf .
/ � f .z
/kLp..0;T /ILp..0;1/I.Rd /3//:

The i -th component of f .
/ � f .z
/ is given by� 1

j
 ixj
2
�

1

j� ixj
2

�
.
 ixx � z


i
xx/C

� 1

j
 ixj
2
�

1

jz
 ixj
2

�
z
 ixx

D

� 1

j
 ixj
2j� ixj

C
1

j
 ixjj�
i
xj
2

��
j� ixj � j


i
xj
�
.
 ixx � z


i
xx/

C

� 1

j
 ixj
2jz
 ixj

C
1

j
 ixjjz

i
xj
2

��
jz
 ixj � j


i
xj
�
z
 ixx :
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Lemma 3.9 implies

sup
t2Œ0;T �; x2Œ0;1�

ˇ̌̌ 1

j
 ixj
2j� ixj

C
1

j
 ixjj�
i
xj
2

ˇ̌̌
� C.c/ <1;

and

sup
t2Œ0;T �; x2Œ0;1�

ˇ̌̌ 1

j
 ixj
2jz
 ixj

C
1

j
 ixjjz

i
xj
2

ˇ̌̌
� C.c/ <1:

Hence, we obtain

kf .
/i � f .z
/ikLp.0;T ILp..0;1/I.Rd /3//

� C.c/
�

.j� ixj � j
 ixj/.
 ixx � z
 ixx/

Lp..0;T /ILp.0;1/IRd /

C k.jz
 ixj � j

i
xj/z


i
xxkLp..0;T /ILp.0;1/IRd /

�
� C.c/

�
sup

t2Œ0;T �; x2Œ0;1�

ˇ̌
j� ix.x/j � j


i
x.t; x/j

ˇ̌
k
 ixx � z


i
xxkLp..0;T /ILp.0;1/IRd //

C sup
t2Œ0;T �; x2Œ0;1�

ˇ̌
jz
 ix.t; x/j � j


i
x.t; x/j

ˇ̌
kz
 ixxkLp..0;T /ILp..0;1/IRd //

�
� C.c/ sup

t2Œ0;T �; x2Œ0;1�

j� ix.x/ � 

i
x.t; x/jjjj
 � z
 jjjET

C C.c/ sup
t2Œ0;T �; x2Œ0;1�

jz
 ix.t; x/ � 

i
x.t; x/jjjjz
 jjjET

:

Let � 2 .1C1=p=2�2=p; 1/, ı 2 .0; 1 � 1=p/ be fixed and define ˛ WD .1 � �/.1 � 1=p � ı/.
Theorem 2.12 implies

sup
t2Œ0;T �; x2Œ0;1�

j� ix.x/ � 

i
x.t; x/j D sup

t2Œ0;T �

k
 ix.0/ � 

i
x.t/kC.Œ0;1�IRd /

� sup
t2Œ0;T �

k
 i .t/ � 
 i .0/kC 1.Œ0;1�IRd /

� sup
t2Œ0;T �

t˛k
 ikC˛.Œ0;T �IC 1.Œ0;1�IRd //

� T ˛k
 ikC˛.Œ0;T �IC 1.Œ0;1�IRd //

� T ˛C.T0; p; �; ı/jjj
 jjjET
� C.M/T ˛:

Similarly, we obtain

sup
t2Œ0;T �; x2Œ0;1�

jz
 ix.t; x/ � 

i
x.t; x/j D sup

t2Œ0;T �; x2Œ0;1�

j.z
 ix � 

i
x/.t; x/ � .z


i
x � 


i
x/.0; x/j

� sup
t2Œ0;T �

k.z
 i � 
 i /.t/ � .z
 i � 
 i /.0/kC 1.Œ0;1�IRd /

� sup
t2Œ0;T �

t˛kz
 i � 
 ikC˛.Œ0;T �IC 1.Œ0;1�IRd //

� CT ˛jjjz
 � 
 jjjET
:
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This allows us to conclude

kf .
/ � f .z
/kLp..0;T /ILp..0;1/I.Rd /3// � C.c;M/T ˛jjj
 � z
 jjjET
:

We proceed by estimating

kN 2
T .
/ �N

2
T .z
/kW

1=2�1=2p
p ..0;T /IRd /

D kb.
/ � b.z
/k
W
1=2�1=2p
p ..0;T /IRd /

:

Let T 2 .0; zT .c; M/� be fixed and h W Rd ! Rd be a smooth function such that
h.p/ D p=jpj on Rd n Bc=2.0/. As for all t 2 Œ0; T � and � 2 E�T \ BM ,

j�ix.t; 0/j � c;

so we may conclude that for all 
; z
 2 E�T \ BM , the function

t 7! gi .t/ WD

Z 1

0

.Dh/
�
�
 ix.t; 0/C .1 � �/z


i
x.t; 0/

�
d�

lies in W
1=2�1=2p
p .0; T I Rn�n/. To ease notation we let s WD 1=2 � 1=2p. Observe that

gi .0/ D .Dh/.� ix.0// and thus, using identity (3.6), we obtain

b.
/.t/ � b.z
/.t/ D

3X
iD1

.gi .t/ � gi .0//
�

 ix.t; 0/ � z


i
x.t; 0/

�
:

Using the product estimate in Proposition 2.6, we obtain

kb.
/ � b.z
/kW s
p ..0;T /IRd /

�

3X
iD1



.gi � gi .0//�
 ix.�; 0/ � z
 ix.�; 0/�

W s
p ..0;T /IRd /

�

3X
iD1

kgi � gi .0/kC.Œ0;T �IRn�n/k

i
x.�; 0/ � z


i
x.�; 0/kW s

p .0;T IRd t/

C kgi � gi .0/kW s
p .0;T IRn�n/k


i
x.�; 0/ � z


i
x.�; 0/kC.Œ0;T �IRd /:

As s � 1=p > 0 due to p 2 .3;1/, there exists ˇ 2 .0; 1/ such that

W s
p

�
0; T IRd

�
,! C ˇ

�
Œ0; T �IRd

�
with embedding constant C.s; p/. This implies, in particular,

sup
t2Œ0;T �

jgi .t/ � gi .0/j � T ˇkgikCˇ .Œ0;T �IRn�n/ � T
ˇC.s; p/kgikW s

p ..0;T /IRn�n/:

Reading carefully through the estimates in Proposition 2.6, we observe that

gi


W s
p ..0;T /IRn�n/

� C.T0; c;M/:
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Furthermore, given � 2 .1C1=p=2�2=p; 1/ and ı 2 .0; 1 � 1=p/, Theorem 2.12 implies with
˛ WD .1 � �/ .1 � 1=p � ı/ > 0 the estimate

sup
t2Œ0;T �

j
 ix.t; 0/ � z

i
x.t; 0/j D sup

t2Œ0;T �

j.
 ix � z

i
x/.t; 0/ � .


i
x � z


i
x/.0; 0/j

� sup
t2Œ0;T �

k.
 i � z
 i /.t/ � .
 i � z
 i /.0/kC 1.Œ0;1�IRd /

� T ˛k
 i � z
 ikC˛.Œ0;T �IC 1.Œ0;1�;Rd // � T
˛
jjj
 � z
 jjjET

:

This allows us to conclude

kb.
/ � b.z
/k
W
1=2�1=2p
p .0;T IRd /

� C.s; p; T0; c;M/T ˛jjj
 � z
 jjjET
:

Finally, Lemma 3.6 implies for all T 2 .0; zT .c;M/�,

jjjKT .
/ �KT .z
/jjjET
D jjjL�1T .NT .
/ �NT .z
//jjjET

� c.T0; p/jjjNT .
/ �NT .z
/jjjFT

D c.T0; p/
�
kf .
/ � f .z
/kLp..0;T /ILp..0;1/I.Rd /3//

C kb.
/ � b.z
/k
W
1=2�1=2p
p .0;T IRd /

�
� C.T0; p; c;M/T min¹˛;ˇº

jjj
 � z
 jjjET
:

This completes the proof.

To conclude the existence of a solution with the Banach Fixed Point Theorem, we have
to show that there exists a radius M > 0 such that KT is a self-mapping of E�T \ BM .

Proposition 3.13. Let p 2 .3;1/. There exist a positive radius M depending on c and
the norm of � in W 2�2=p

p ..0; 1/I .Rd /3/ and a positive time yT .c; M/ such that for all
T 2 .0; yT .c;M/� the map

KT W E
�
T \ BM ! E�T \ BM

is well-defined.

Proof. We let T0 D 1 and define

M WD 2max
®

sup
T2.0;1�

jjjL�1T jjjL.FT ;ET /; 1
¯

�max
®
jjjL� jjjE 1

; jjj
�
N 1
1 .L�/; �.1/; 0;N

2
1 .L�/; �

�
jjj

F1

¯
;

where L� WD L�11 .0; �.1/; 0; 0; �/ denotes the extension defined in Lemma 3.8 with
T D 1. In particular, L� lies in E�T \ BM for all T 2 .0; 1�. Moreover, for all T 2 .0; 1�
we have

jjjKT .L�/jjjET
� sup
T2.0;1�

jjjL�1T jjjL.FT ;ET /
ˇ̌̌̌ ˇ̌�
N 1
1 .L�/; �.1/; 0;N

2
1 .L�/; �

�ˇ̌̌̌ ˇ̌
FT
�
M

2
:
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Let T .c;M/ be the time as in Proposition 3.12. Let T 2 .0; T .c;M/� and 
 2 E�T \BM
be given. We observe that for some ˇ 2 .0; 1/,

jjjKT .
/ �KT .L�/jjjET
� C.c;M/T ˇ jjj
 �L� jjjET

� C.c;M/T ˇ2M:

We choose a time yT .c;M/ 2 .0; T .c;M/� so small that for all T 2 .0; yT .c;M/� it holds
that C .c;M/T ˇ2M � M=2. Finally, we conclude for all T 2 .0; yT .c;M/� and 
 2 E�T \
BM ,

jjjKT .
/jjjET � jjjKT .
/ �KT .L�/jjjET C jjjKT .L�/jjjET �
M

2
C
M

2
DM:

Theorem 3.14. Let p 2 .3;1/ and � be an admissible initial parametrisation of a
Triod. There exists a positive time zT .�/ depending on mini2¹1;2;3º;x2Œ0;1� j� ix.x/j and
k�k

W
2�2=p
p ..0;1/I.Rd /3/

such that for all T 2 .0; zT .�/�, the system (2.3) has a solution E�

in the space

ET D W
1
p

�
.0;T /ILp

�
.0; 1/I .Rd /3/

�
\ Lp

�
.0;T /IW 2

p ..0; 1/I .R
d /3/

�
which is unique in ET \ BM with

M WD 2max
®

sup
T2.0;1�

jjjL�1T jjjL.FT ;ET /; 1
¯

�max
®
jjjL� jjjE 1

; jjj.N 1
1 .L�/; �.1/; 0;N

2
1 .L�/; �/jjjF1

¯
;

where L� WD L�11 .0; �.1/; 0; 0; �/ denotes the extension defined in Lemma 3.8 with
T D 1.

Proof. LetM and yT .c;M/ be as in Proposition 3.13 and let T 2 .0; yT .c;M/�. The fixed
points of the mapping KT in E�

T
\ BM are precisely the solutions of the system (2.3)

in the space ET \ BM . As KT is a contraction of the complete metric space E�
T
\ BM ,

existence and uniqueness of a solution follow from the Contraction Mapping Principle.

Remark 3.15. If we replace � D .�1; �2; �3/, an admissible initial parametrisation of
a Triod, with � D .�1; : : : ; �m/, an admissible initial parametrisation of a network com-
posed of m curves, then the time zT .�/ depends on mini2¹1;:::;mº; x2Œ0;1� j� ix.x/j and
k�k

W
2�2=p
p ..0;1/I.Rd /m/

.

Proof of Theorem 3.7. This follows from Theorem 3.14 where the appropriate time T and
radius M are specified.

3.3. Existence and uniqueness of solutions to the motion by curvature

Now that we obtained existence and uniqueness of solutions to the special flow (2.3), we
can come back to our geometric problem.
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Theorem 3.16 (Local existence of the motion by curvature). Let p 2 .3;1/ and N0

be a geometrically admissible initial network. Then there exists T > 0 such that there
exists a solution to the motion by curvature in Œ0; T � with initial datum N0 as defined
in Definition 2.18 which can be described by one parametrisation in the whole time
interval Œ0; T �.

Proof. By Definition 2.16, the geometrically admissible initial datum N0 admits a para-
metrisation � D .�1; : : : ; �m/ that is an admissible initial parametrisation for the
special flow. Theorem 3.7 implies that there exist T > 0 and a solution E� 2 ET

to the special flow (2.3) in Œ0; T � with .E�/i .0/ D � i . Then, by Definition 2.18,
N D

Sm
iD1.E�/

i .Œ0; T � � Œ0; 1�/ is a solution to the motion by curvature in Œ0; T � with
initial datum T0.

Lemma 3.17 (A composition property). Let p 2 .3;1/, T be positive and

f; g 2 Lp
�
.0; T /IW 2

p ..0; 1//
�
\W 1

p

�
.0; T /ILp..0; 1//

�
be such that for every t 2 Œ0; T � the map g.t; �/ W Œ0; 1�! Œ0; 1� is a C 1-diffeomorphism.
Then the map h.t; x/ WD f .t; g.t; x// lies in Lp..0; T /I W

2
p ..0; 1/// \ W

1
p ..0; T /I

Lp..0; 1/// and all derivatives can be calculated by the chain rule.

Proof. This can be shown with similar arguments as in [21, Lemma 5.3] using the embed-
ding in Theorem 2.4.

Theorem 3.18 (Local uniqueness of the motion by curvature). Let p 2 .3;1/, T > 0,
zT > 0, N0 be a geometrically admissible initial network and .N .t//, . zN .t// be two
solutions to the motion by curvature with initial datum N0 in Œ0;T � and Œ0; zT �, respectively,
as defined in Definition 2.18. Then there exists a positive time yT � min¹T; zT º such that
N .t/ D zN .t/ for all t 2 Œ0; yT �.

Proof. For the sake of notation we restrict to the case of Triods. Let T0 be a geomet-
rically admissible initial Triod with regular parametrisation � 2 W 2�2=p

p ..0; 1/I .Rd /3/.
Then � is an admissible initial value for the special flow (2.3) and Theorem 3.7 yields
that there exist T > 0 and a solution E� D ..E�/1; .E�/2; .E�/3/ 2 ET of (2.3) with
initial datum � which is unique in ET \ BM with M as in Theorem 3.14. In particular,
T .t/ WD .E�/ .t; Œ0; 1�/ defines a solution to the motion by curvature (2.4) in Œ0;T � with
initial datum T0. Suppose that there is another solution .zT .t// to the motion by curvature
in the sense of Definition 2.25 with initial datum T0 in a time interval Œ0; zT � for some pos-
itive zT . By possibly decreasing the time of existence zT , we may assume that there exists
one parametrisation z
 2 E zT for the evolution .zT .t// in the whole time interval Œ0; zT �.

We shall show that there exists a family of time-dependent diffeomorphisms  i .t/ W
Œ0; 1�! Œ0; 1� with t 2 Œ0; yT � for some yT � min¹ zT ;T º such that the equality

z
 i .t;  i .t; x// D .E�/i .t; x/
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holds in the space E yT . In order to make use of the uniqueness assertion in Theorem 3.7,
we construct the re-parametrisations  D . 1;  2;  3/ in such a way that the functions
.t; x/ 7! z
 i .t;  i .t; x// are a solution to the special flow in E yT with initial datum � .

One easily shows that there exist unique diffeomorphisms  i0 W Œ0; 1� ! Œ0; 1�,
i 2 ¹1; 2; 3º, of regularity  i0 2 W

2�2=p
p ..0; 1/IR/ such that  i0.0/ D 0,  i0.1/ D 1 and

z
 i .0; i0.x//D �
i .x/. Taking into account the special tangential velocity in (2.3), (formal)

differentiation shows that the re-parametrisations  i need to satisfy the following bound-
ary value problem:8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

 it .t; x/ D
 ixx.t; x/

jz
 ix.t;  
i .t; x//j2j ix.t; x/

2j
�
hz
 it .t;  

i .t; x//; z
 ix.t;  
i .t; x//i

jz
 ix.t;  
i .t; x//j2

C
1

jz
 ix.t;  
i .t; x//j

D
z
 ixx.t;  

i .t; x//

jz
 ix.t;  
i .t; x//j2

;
z
 ix.t;  

i .t; x//

jz
 ix.t;  
i .t; x//j

E
;

 i .t; 0/ D 0;

 i .t; 1/ D 1;

 i .0; x/ D  i0.x/:

(3.7)

Lemma 3.19 yields that there exists a solution

 D . 1;  2;  3/ 2 W 1
p

�
.0; yT /ILp..0; 1/IR

3/
�
\ Lp

�
.0; yT /IW 2

p ..0; 1/IR
3/
�

to system (3.7) for some yT � min¹ zT ; T º such that  i .t/ W Œ0; 1� ! Œ0; 1� is a diffeo-
morphism for every t 2 Œ0; yT �. Then Lemma 3.17 implies that the composition .t; x/ 7!
z
 i .t;  i .t; x// lies in E yT and by construction, it is a solution to the special flow. We
may now argue as in the proof of [21, Theorem 5.4] to obtain that .t; x/ 7! .E�/i .t; x/

and .t; x/ 7! z
 i .t;  i .t; x// coincide in E yT . In particular, the networks T .t/ and zT .t/
coincide for all t 2 Œ0; yT �.

Lemma 3.19. Let p 2 .3;1/ and let  0 D . 10 ;  
2
0 ;  

3
0 / 2 W

2�2=p
p ..0; 1/IR3/ with

 i0 W Œ0; 1� ! Œ0; 1� a diffeomorphism with  i0.0/ D 0,  i0.1/ D 1. Also let zT > 0 and
z
 2 E zT be such that z
 ix.x; t/ � c for some c > 0, for all t 2 Œ0; zT �, all x 2 Œ0; 1� and
i 2 ¹1; 2; 3º. Then there exist a time yT 2 .0; zT � and a solution

 D . 1;  2;  3/ 2 W 1
p

�
.0; yT /ILp..0; 1/IR

3/
�
\ Lp

�
.0; yT /IW 2

p ..0; 1/IR
3/
�

to system (3.7) such that  i .t/ W Œ0; 1�! Œ0; 1� is a diffeomorphism for every t 2 Œ0; yT �.

Proof. We observe that the right hand side of the motion equation in system (3.7) con-
tains terms of the form f i .t;  i .t; x// with f i 2 Lp..0; T /ILp..0; 1///. To remove this
dependence, it is convenient to consider the associated problem for the inverse diffeo-
morphisms � D .�1; �2; �3/ given by � i .t/ WD  i .t/�1. Indeed, suppose that the function
 2 W

1;2
p ..0; zT / � .0; 1/IR3/ is a solution to (3.7) with  i .t/ W Œ0; 1� ! Œ0; 1� a C 1-

diffeomorphism. Similar arguments as in [21, Lemma 5.3] show also that � is of class
W
1;2
p ..0; zT / � .0; 1/IR3/. Moreover, the differentiation rules

� iy.t; y/ D  
i
x.t; �

i .t; y//�1
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and
� iyy.t; y/ D ��

i
y.t; y/

3 ixx.t; �
i .t; y//

yield the evolution equation

� it .t; y/ D � 
i
t .t; �

i .t; y//� iy.t; y/

D �
 ixx.t; �

i .t; y//

jz
 ix.t; y/j
2

� iy.t; y/
3
C
hz
 it .t; y/; z


i
x.t; y/i

jz
 ix.t; y/j
2

� iy.t; y/

�
� iy.t; y/

jz
 ix.t; y/j

D
z
 ixx.t; y/

jz
 ix.t; y/j
2
;
z
 ix.t; y/

jz
 ix.t; y/j

E
;

and in conclusion, the system for �8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

� it .t; y/ D
� iyy.t; y/

jz
 ix.t; y/j
2
C
hz
 it .t; y/; z


i
x.t; y/i

jz
 ix.t; y/j
2

� iy.t; y/

�
� iy.t; y/

jz
 ix.t; y/j

D
z
 ixx.t; y/

jz
 ix.t; y/j
2
;
z
 ix.t; y/

jz
 ix.t; y/j

E
;

� i .t; 0/ D 0;

� i .t; 1/ D 1;

� i .0; y/ D . i0/
�1.y/

(3.8)

for all t 2 Œ0; zT �, y 2 Œ0; 1�. We observe that the boundary value problem (3.8) has a
very similar structure as the special flow. Analogous arguments as in the proof of The-
orem 3.7 allow us to conclude that there exists a solution � 2W 1;2

p ..0; yT /� .0; 1/I .R2/3/
to (3.8) with yT 2 .0; zT � such that for t 2 Œ0; yT � the map � i .t/ W Œ0; 1� ! Œ0; 1� is a
C 1-diffeomorphism. Indeed, the resulting system for � i has a very similar structure as
Problem 2.3 studied before: one linearises system (3.8) and applies the linear theory
developed by Solonnikov [44] to get well-posedness. Contraction estimates similar to
our previous one allows to conclude the existence and uniqueness of solution with a
fixed point argument. Reversing the above argumentation yields that the inverse functions
 i .t/ WD � i .t/�1 solve (3.7) and possess the desired properties.

Theorem 3.20 (Geometric uniqueness of the motion by curvature). Let p 2 .3;1/ and
let N0 be a geometrically admissible initial network and T be positive. Solutions to the
motion by curvature in Œ0; T � with initial datum N0 are geometrically unique in the
sense that, given any two solutions .N .t// and . zN .t// to the motion by curvature in
the time interval Œ0; T � with initial datum N0, the networks N .t/ and zN .t/ coincide for
all t 2 Œ0; T �.

Proof. Let .N .t// and . zN .t// be two solutions to the motion by curvature in Œ0; T � with
initial datum N0. Suppose by contradiction that the set

� WD
®
t 2 Œ0; T � W N .t/ ¤ zN .t/

¯
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is non-empty and let t� WD inf � . As � is an open subset of Œ0; T �, we have t� 2 Œ0; T / and
N .t�/ D zN .t�/. The Triod N .t�/ is geometrically admissible and both t 7! N .t� C t /

and t 7! zN .t�C t / are solutions to the motion by curvature in the time interval Œ0;T � t��
with initial datum N .t�/. Theorem 3.18 yields that there exists a time yT 2 .0;T � t�� such
that for all t 2 Œ0; yT �, we have N .t� C t / D zN .t� C t /, which contradicts the definition
of t�.

Definition 3.21 (Maximal solutions to the motion by curvature). Let p 2 .3;1/ and N0

be a geometrically admissible initial network. A time-dependent family of networks
.N .t//t2Œ0;T / with T 2 .0;1/ [ ¹1º is a maximal solution to the motion by curvature
in Œ0; T / with initial datum N0 if it is a solution (in the sense of Definition 2.18) in Œ0; OT �
for all OT < T and if there does not exist a solution . zN .�// to the motion by curvature in
the sense of Definition 2.18 in Œ0; zT � with zT � T and such that N D zN in Œ0; T /. In this
case, the time T is called a maximal time of existence and is denoted by Tmax.

Proposition 3.22 (Existence and uniqueness of maximal solutions). Let p 2 .3;1/ and
N0 be a geometrically admissible initial network. There exists a maximal solution to the
motion by curvature with initial datum N0 which is geometrically unique.

Proof. Given an admissible network N0, we let

Tmax WD sup
®
T > 0 W there exists a solution .N T .t// to the motion by curvature

in Œ0; T � with initial datum T0
¯
:

Theorem 3.16 yields Tmax 2 .0;1/ [ ¹1º. Given any t 2 Œ0; Tmax/, we may consider a
solution N T with T 2 .t; Tmax/ to the motion by curvature in Œ0; T � with initial datum N0

and set
N .t/ WD N T .t/:

We note that N is well-defined on Œ0; Tmax/ as any two solutions N T1 and N T2 with T1,
T2 2 Œ0; Tmax/ to the motion by curvature with initial datum N0 coincide on their common
interval of existence by Theorem 3.20. One easily verifies that .N .t//t2Œ0;Tmax/ satisfies
the properties of a maximal solution stated in Definition 3.21. Indeed, if there existed a
solution zN .�/ to the motion by curvature in Œ0; zT � for zT � Tmax, Theorem 3.16 would
imply the existence of a solution with initial datum zN . zT / in a time interval Œ0; ı�, ı > 0.
This would yield the existence of a solution in the time interval Œ0; zT C ı� with initial
datum N0 contradicting the definition of Tmax. The uniqueness assertion follows from
Theorem 3.20.

4. Smoothness of the special flow

This section is devoted to proving that solutions to the special flow are smooth for positive
times. Heuristically, this regularisation effect is due to the parabolic nature of the problem.
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The basic idea of the proof is based on the so-called parameter trick which is due to
Angenent [3] and has been generalised to several situations [35, 36, 42]. However, due to
the fully non-linear boundary condition

3X
iD1


 ix.t; 0/

j
 ix.t; 0/j
D 0;

the special flow is not treated in the above mentioned results. An adaptation of the para-
meter trick that allows us to treat fully non-linear boundary terms is presented in [22].
We follow [22, Chapter 6.6], modifying the arguments for the application in our Sobolev
setting.

In the following, we let E� 2 ET be a solution to the special flow on Œ0; T �, T > 0,
with initial datum � 2 W

2�2=p
p ..0; 1/I .Rd /3/.

The key idea to apply Angenent’s parameter trick lies in an implicit function type
argument which itself relies on the invertibility of the linearisation of the special flow in
the solution E� . Thus, the linear analysis from Section 3.1 will not be enough to apply
this method. So, before we can actually start, we have to generalise Theorem 3.5.

Definition 4.1. We consider the full linearisation of system (2.3) around E� which gives8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:


 it .t; x/ �
1

j.E�/ix.t; x/j
2

 ixx.t; x/

C 2
.E�/ixx.t; x/h


i
x.t; x/; .E�/

i
x.t; x/i

j.E�/ix.t; x/j
4

D f i .t; x/;


.t; 1/ D �.t/;


1.t; 0/ � 
2.t; 0/ D 0;


2.t; 0/ � 
3.t; 0/ D 0;

�

3X
iD1

� 
 ix.t; 0/

j.E�/ix.t; 0/j
�
.E�/ix.t; 0/h


i
x.t; 0/; .E�/

i
x.t; 0/i

j.E�/ix.t; 0/j
3

�
D b.t/;


.0; x/ D  .x/:

(4.1)

Here  is an admissible initial value with respect to the given right hand side � and b.
For 
 2 ET , we define AT;E.
/ 2 Lp..0; T /ILp..0; 1/I .Rd /3// by

�
AT;E.
/

�i
WD

1

j.E�/ix.t; x/j
2

 ixx.t; x/ � 2

.E�/ixx.t; x/h

i
x.t; x/; .E�/

i
x.t; x/i

j.E�/ix.t; x/j
4

:

Definition 4.2 (Linearised boundary operator). Let T > 0 and

BT;E W ET ! W 1�1=2p
p

�
.0; T /I .Rd /5

�
�W

1=2�1=2p
p

�
.0; T /IRd

�
;
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where ET D W
1;2
p ..0; T / � .0; 1/I .Rd /3/, be the linearised boundary operator induced

by the linearisation in E� , i.e.,

BT;E.
/ D

0BBB@

.�; 1/


1.�; 0/ � 
2.�; 0/


2.�; 0/ � 
3.�; 0/

�
P3
iD1

�

 ix.�;0/

j.E�/ix.�;0/j
�
.E�/ix.�;0/h


i
x.�;0/;.E�/

i
x.�;0/i

j.E�/ix.�;0/j3

�
1CCCA :

Moreover, we let

XT WD ker.BT;E/:

As BT;E is continuous, the space XT is a closed subspace of ET and thus a Banach
space.

Remark 4.3 (Existence analysis for (4.1)). Note that the compatibility conditions in
Definition 3.1 for system (3.3) are precisely the same as the ones for (4.1), due to the
fact that BT;E jtD0 equals the original linearisation. Also, with the same arguments as
in the proof of Lemma 3.3, we can derive the Lopatinskij–Shapiro conditions for BT;E .
Therefore, the result from Theorem 3.5 holds also for problem (4.1). For 
 2 ET , we
write

LT;E.
/ WD

0@
t � AT;E.
/BT;E.
/


jtD0

1A :
With the previous considerations we have the basics to start the work on the parameter

trick. As a first step we have to construct a parametrisation of the non-linear boundary
conditions over the linear boundary conditions. We need to do this as we cannot have the
non-linear boundary operator as part of the operator used in the parameter trick due to
technical reasons regarding the compatibility conditions.

In the following lemma, we shall construct a partition of the solution space ET D
XT ˚ZT :

Lemma 4.4. Let T > 0. There exists a closed subspace ZT of ET such that ET D
XT ˚ZT .

Proof. Firstly, we consider the space

Z
1

T WD
®
b 2 W 1�1=2p

p

�
.0; T /I .Rd /5

�
�W

1=2�1=2p
p

�
.0; T /IRd

�
W bjtD0 D 0

¯
:

We notice that f D 0, b 2 Z
1

T ,  D 0 is a suitable right hand side for problem (4.1).
Hence, for every b 2 Z

1

T there exists a unique solution L�1
T;E

.0;b; 0/ 2 ET to (4.1) and
the space Z1T WD L

�1
T;E
..0;Z

1

T ; 0// is a closed subspace of ET .
Next, we define the space

Z
2
WD .Rd /5 �Rd :
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Given zb 2 Z
2
, the elliptic system zL� D .0; zb/ defined by8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

�
1ˇ̌

� ix.x/
ˇ̌2 �ixx.x/ D 0; x 2 .0; 1/; i 2 ¹1; 2; 3º;

�1.1/ D zb1;

�2.1/ D zb2;

�3.1/ D zb3;

�1.0/ � �2.0/ D zb4;

�2.0/ � �3.0/ D zb5;

�

3X
iD1

� �ix.0/
j� ix.0/j

�
� ix.0/h�

i
x.0/; �

i
x.0/i

j� ix.0/j
3

�
D zb6

(4.2)

has a unique solution � 2 W 2
p ..0; 1/I .R

d /3/ which we denote by zL�1.0; zb/. This is
guaranteed due to the results in [1] and the fact that the boundary operator fulfils the
Lopatinskij–Shapiro conditions according to Lemma 3.3. The space zL�1.0;Z

2
/ is a

closed subspace of W 2
p ..0; 1/I .R

d /3/ due to continuity of the solution operator which
is guaranteed by the energy estimates in [1]. Extending every function in zL�1.0;Z

2
/ con-

stantly in time, we can view zL�1.0;Z
2
/ as a closed subspace of ET . This space will be

denoted by Z2T . It is straightforward to check that Z1T \ Z
2
T D ¹0º, which allows us to

define ZT as the subspace of ET given by

ZT WD Z
1
T ˚Z

2
T :

Note that ZT is indeed a closed subspace, which one sees as follows: Suppose that

.zn/n2N D .z
1
n C z

2
n/n2N � ZT

is a convergent sequence in ET .
Due to ET ,! C.Œ0; T �IC 1C˛.Œ0; 1�I .Rn/3// for ˛ 2 .0; 1 � 3=p� according to The-

orem 2.4, we may conclude that the sequence .znjtD0/n2N D .z
2
njtD0/n2N converges in

C 1C˛.Œ0;1�I .Rn/3/. In particular, this yields the convergence of the boundary data needed
for the elliptic system we used to construct z2n. Continuity of the elliptic solution operator
then implies that .z2njtD0/n2N converges in W 2

p ..0; 1/I .R
n/3/. Due to its constant exten-

sion in time we see that .z2n/n2N converges inET to a limit z2 which is also inZ2T , due to
the latter being a closed subspace of ET . Then .z1n/n2N D .zn/n2N � .z

2
n/n2N converges

in ET as sum of two convergent sequences to an element z1 of the closed space Z1T .
We conclude that .zn/n2N converges to z1 C z2 2 ZT , which shows that ZT is closed.
It remains to prove that XT \ ZT D ¹0º and ET D XT C ZT . To this end, let 
 2
XT \ ZT . By definition of XT we have BT;E.
/ D 0, which implies in particular
BT;E.
/jtD0 D 0. As 
 lies in ZT , there exist z1 2 Z1T , z2 2 Z2T with 
 D z1 C z2.
Using that BT;E.z1/ lies in Z

1

T , we observe

0 D BT;E.z1 C z2/jtD0 D BT;E.z1/jtD0 CBT;E.z2/jtD0 D BT;E.z2/jtD0:
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Due to the uniqueness of the elliptic system (4.2), this shows .z2/jtD0 D 0. By definition
of Z2T , we obtain z2 D 0. This implies 0 D BT;E.
/ D BT;E.z1/, which gives z1 D
L�1
T;E
.0; 0; 0/ D 0.

To prove that ET D XT CZT , we let 
 2 ET . We define

z2 WD zL
�1.0;BT;E.
/jtD0/ 2 Z

2
T ;

viewing z2 as an element of ET by extending it constantly in time. By definition of the
boundary operator in the elliptic system (4.2) and due to .E�/jtD0 D � , we have

BT;E.z2/jtD0 D BT;E.
/jtD0:

In particular, BT;E.
/ �BT;E.z2/ lies in Z
1

T and we may define

z1 WD L
�1
T;E

�
0;BT;E.
/ �BT;E.z2/; 0

�
2 Z1T :

It remains to show that 
 � z1 � z2 lies in XT , or equivalently BT;E.
 � z1 � z2/ D 0,
which follows by construction.

Lemma 4.5 (Parametrisation of the non-linear boundary conditions). Let T > 0. There
exist a neighbourhood U of 0 in XT , a function % W U ! ZT and a neighbourhood V
of E� in ET such that®

E� C uC %.u/ W u 2 U
¯
D
®

 2 V W G .
/ D 0

¯
;

where G denotes the operator


 7! G .
/ WD

0BBBBBBB@


1.�; 1/ � �1.1/


2.�; 1/ � �2.1/


3.�; 1/ � �3.1/


1.�; 0/ � 
2.�; 0/


2.�; 0/ � 
3.�; 0/P3
iD1


 ix.�;0/

j
 ix.�;0/j

1CCCCCCCA :

Furthermore, it holds that .D%/j0 � 0.

Proof. We let

Y T WD W
1�1=2p
p

�
.0; T /I .Rd /5

�
�W

1=2�1=2p
p

�
.0; T /IRd

�
and consider the operator

F W XT ˚ZT ! Y T ;

.x; z/ 7! G .E� C x C z/:
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By definition of E� we have that F.0; 0/ D 0. We observe that .@2F.0; 0//z D BT;E.z/.
To apply the implicit function theorem, we have to show that

BT;E W ZT ! Y T

is an isomorphism. The map is injective as ker BT;E \ ZT D XT \ ZT D ¹0º. Given
b 2 Y T , we let z2 WD zL�1.0; bjtD0/ 2 Z2T and z1 WD L�1T;E.0; b �BT;E.z2// 2 Z

1
T and

observe that z1 C z2 2 ZT satisfies

BT;E.z1 C z2/ D BT;E.z1/CBT;E.z2/ D b �BT;E.z2/CBT;E.z2/ D b:

The implicit function theorem implies that there exist neighbourhoods U and W of 0
in XT and ZT , respectively, and a function % W U ! W with %.0/ D 0 such that for a
neighbourhood zV of 0 in ET , it holds that®

uC %.u/ W u 2 U
¯
D
®
x C z 2 ET W F.x; z/ D 0

¯
\ zV :

To show that .D%/j0 D 0 we let u 2 XT be arbitrary. Since we have .D%/j0 W XT ! ZT ,
we obtain .D%/j0u 2 ZT . Hence, it is enough to show that .D%/j0u lies also in XT . To
this end, we differentiate the identity

0 D F.ıu; %.ıu// D G .E� C ıuC %.ıu//

with respect to ı and obtain

0 D
d
dı

G .E� C ıuC %.ıu//jıD0 D .DG /.E�/.uC .D%/j0u/ D BT;E.uC .D%/j0u/:

This implies uC .D%/j0u 2 ker BT;E D XT and thus, .D%/j0u 2 XT .

With this result we can finally start the proof of the parabolic smoothing. We will first
derive higher time regularity of the solution (this is actually the classical parameter trick
argument by Angenent), and we will then get from this higher regularity in space using
the parabolic problem and finally start a bootstrap procedure.

Proposition 4.6 (Higher time regularity of solutions to the special flow). Let E� 2 ET
be a solution to the special flow in Œ0; T � with T > 0 and initial value � 2 W 2�2=p

p ..0; 1/I

.Rd /3/. Then, we have for all zt 2 .0; T � the increased time regularity

@t .E�/ 2 ET jŒzt ;T �: (4.3)

Proof. We consider the space

I WD
°
 2 W 2�2=p

p

�
.0; 1/I .Rd /3

�
W  .1/ D 0;  1.0/ D  2.0/ D  3.0/;

3X
iD1

�  ix.0/
j� ix.0/j

�
� ix.0/h 

i
x.0/; �

i
x.0/i

j� ix.0/j
3

�
D 0

±
:
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We let U , V and % be as in the previous lemma and define %.u/ WD E� C uC %.u/. For
some small " 2 .0; 1/, we consider the map

G W .1 � "; 1C "/ � I �XT ! I � Lp
�
.0; T / � .0; 1/I .Rd /3

�
;

.�;  ;u/ 7!
�
ujtD0 �  ; @t%.u/ � �

%.u/xx

j%.u/xj2

�
:

Notice that G.1; 0; 0/ D 0. Due to .D%/j0 D 0, the Fréchet derivative

@3G.1; 0; 0/ W XT ! I � Lp
�
.0; T / � .0; 1/I .Rd /3

�
is given by

@3G.1; 0; 0/u D
�
ujtD0; @tu �AT;E.u/

�
:

As explained in Remark 4.3, we have that .DG/j.1;0;0/.0; 0; �/ is an isomorphism. Hence,
the implicit function theorem implies the existence of neighbourhoods U of .1; 0/ in
.1 � "; 1C "/ � I and V of 0 in XT and a function � W U! V with �..1; 0// D 0 and®

.�;  ;u/ 2 U � V W G.�; ;u/ D 0
¯
D
®
.�;  ; �.�;  // W .�;  / 2 U

¯
:

Consider now the map P WET !XT given by P.
/ WD PXT
.
 � E�/with PXT

.�/D u

for the unique partition � D uC u 2 XT ˚ ZT . Clearly, we have that %.P.
// D 
 for
all 
 in the neighbourhood V constructed in Lemma 4.5. Given � close to 1, we consider
the time-scaled function

.E�/�.t; x/ WD .E�/.�t; x/:

By definition, this satisfies for  WD P..E�/�/jtD0

G.�; ; P..E�/�// D 0:

By uniqueness, we conclude that

P..E�/�/ D �.�;  /

and therefore
.E�/� D N%.�.�;  //:

As both � and N% are smooth, this shows that .E�/� is a smooth function in � with values
in ET . Now, this implies

t@t .E�/ D @�..E�/�/j�D1 2 ET ;

from which we directly conclude (4.3).

Next, we want to derive higher regularity in space for our solution. But, this follows
almost immediately from the associated ODE we have at a fixed time.
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Corollary 4.7 (Higher space regularity of solutions to the special flow). Let E� 2 ET be
a solution to the special flow in Œ0; T � with T > 0 and initial value � 2 W 2�2=p

p ..0; 1/I

.Rd /3/. Given zt 2 .0; T �, we have for all t 2 Œzt ; T � that

.E�/.t/ 2 C 3
�
Œ0; 1�I .Rn/3

�
:

Additionally, all derivatives in space up to order two are smooth in time.

Proof. Considering @t ..E�/
i /.t/ as given functions f i 2 C 1.Œ0; 1�I Rn/, we see that

.E�/i .t; �/ solves

.E�/ixx.t; �/

j.E�/ix.t; �/j
2
D f i :

As we already constructed E� , we may include independent boundary conditions at x D 0
for the values of E� and @xE� . On this problem one may again apply the implicit function
theorem together with standard well-posedness results for ODEs to get that E� is indeed
in C 2 and depends smoothly on the data. Then the smoothness of the space derivatives in
time follows from the smoothness of @tE� and the smooth dependence of the data.

With the two previous results we are now able to start a bootstrap procedure.

Theorem 4.8 (Smoothness of solutions to the special flow). Let E� 2 ET be a solution
to the special flow in Œ0; T � with T > 0 and initial value � 2 W 2�2=p

p ..0; 1/I .Rd /3/.
Then E� is smooth on Œzt ; T � � Œ0; 1� for all zt 2 .0; T /.

Proof. Due to Corollary 4.7 we can use .E�/.t/ for almost all t > 0 as initial data for a reg-
ularity result in parabolic Hölder space, cf. [20] for such a result for the Willmore flow. As
we checked that the Lopatinskij–Shapiro conditions are still valid in higher co-dimensions,
the analysis works as in the planar case. Additionally, the needed compatibility conditions
due to the zero order boundary conditions are guaranteed by the fact that @t .E�/ lies
in C.Œzt ; T �IC.Œ0; 1�I .Rn/3/. With this new maximal regularity result, which is the key
argument in the proof of Proposition 4.6, we can repeat the whole procedure to derive
C 3C˛;.3C˛/=2-regularity. Note that in this situation of higher regularity we have to include
compatibility conditions in XT . But, this makes the construction of ZT in Lemma 4.4
very difficult. Thus, a modification is necessary: moving the boundary conditions in the
operator itself. For details we refer to [19, Section 4]. This now starts the bootstrapping,
yielding the desired smoothness result. Note that in every step, the needed compatibility
conditions are guaranteed by the fact that our flow already has the regularity related to
these compatibility conditions (see, for instance, [39, Theorem 3.1]).

In analogy to [21], we may now use smoothness of the special flow to prove The-
orem 1.1.
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Proof of Theorem 1.1. The existence of maximal solutions and their geometric uniqu-
eness is shown in Proposition 3.22. Using smoothness of the special flow shown in The-
orem 4.8, one may argue analogously to [21, Section 5.2, Section 7.2] to show that
parametrising each curve T i .t/ with constant speed equal to the length of T i .t/ yields
a global parametrisation 
 W Œ0; Tmax/� Œ0; 1�! .Rd /m of the evolution that is smooth for
positive times.

5. Long-time behaviour of the motion by curvature

Proof of Theorem 1.2. Let p 2 .3;1/ and N .t/ be the maximal solution. Thanks to
uniqueness and regularity, we can consider p 2 .3; 6/. Let " 2 .0; Tmax=1000/ be fixed.
Suppose that Tmax is finite and that the two assertions (i) and (ii) are not fulfilled. Let

 D .
1; : : : ; 
m/ W Œ0;Tmax/� Œ0;1�! .Rd /m be the parametrisation of the evolution such
that each curve N i .t/ is parametrised with constant speed equal to its length L.N i .t//.
As 
 is smooth on Œ"; T � for all positive " and all T 2 ."; Tmax/, hypothesis (ii) yields

�i 2 L1
�
."; Tmax/IL

2..0; 1/IRd /
�
:

As ET embeds continuously into C.Œ0; T �I C 1.Œ0; 1�I .Rd /m//, hypothesis (i) implies
that the lengths L.T i / of all three curves composing the network are uniformly bounded
away from zero in Œ0; Tmax/. Moreover, thanks to the gradient flow structure of the motion
by curvature, the single lengths of the networks satisfy L.N i .t// � L.N0/ for all
t 2 Œ0; Tmax/. In particular, we obtain for all t 2 Œ0; Tmax/, x 2 Œ0; 1�,

0 < c � j
 ix.t; x/j D L.N
i .t// � C <1: (5.1)

With our choice of parametrisation, the curvature can be expressed as

�i D

 ixx

L.N i /2
;

from which we can infer for all t 2 Œ0; Tmax/,Z 1

0

j
 ixxj
2 dx D

�
L.N i /

�3 Z
T
j�i j2 ds � C <1:

As the endpoints P 1; : : : ; P ` are fixed and as the single lengths L.N i .t// are uniformly
bounded from above in Œ0; Tmax/, there exists a constant R > 0 such that for every
t 2 Œ0; Tmax/ it holds that N .t/ � BR.0/. With the above arguments we conclude that


 i 2 L1
�
."; Tmax/IW

2
2 ..0; 1/IR

d /
�
:

The Sobolev Embedding Theorem implies for all p 2 .3; 6� the estimate

sup
t2.";Tmax/




 i .t/


W
2�2=p
p ..0;1/IRd /

� C (5.2)
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for a uniform constant C > 0. We note further that for all ı 2 .0; Tmax=4/, the paramet-
risation 
.Tmax � ı/ is an admissible initial value for the special flow (2.3). Due to (5.1)
and (5.2), Theorem 3.14 yields that there exists a uniform time T of existence of solutions
to the special flow (2.3) for all initial values 
.Tmax � ı/ depending on C and c. Let ı WD
min ¹T=2; Tmax=4º. Then Theorem 3.14 implies the existence of a solution � D .�1; : : : ; �`/
with �i regular and

�i 2 W 1
p

�
.Tmax � ı; Tmax C ı/ILp..0; 1/IR

d /
�

\ Lp
�
.Tmax � ı; Tmax C ı/IW

2
p ..0; 1/IR

d /
�

to system (2.3) with �.Tmax � ı/D 
 .Tmax � ı/. The two parametrisations 
 and � defined
on .0; Tmax � ı=3/ and .Tmax � ı=2; Tmax C ı/, respectively, define a solution . zN .t// to the
motion by curvature on the time interval .0; Tmax C ı� with initial datum N0 coinciding
with N on .0; Tmax/. This contradicts the maximality of Tmax.

A. Appendix

We explain here how to pass from the analysis of the evolution of a single Triod to
networks with more complicated topologies. Naturally, it is not the first time that this
generalisation has been considered, and there is more than one way to deal with it. We
will follow the method outlined in [30] that is extensively based on the work for linear
systems done in [49].

We consider an initial network composed of m curves, with ` endpoints where

k.t; 1/D P k for P k 2Rn, k 2 ¹1; : : : ; `º, and with q triple junctions �j1.y1/D �j2.y2/
D �j3.y3/ D Oj with j 2 ¹1; : : : ; qº; y1; y2; y3 2 ¹0; 1º.

Let us start from Section 3.1. The motion equations of the linearised special flow will
not differ too much from the version for three curves. Formula (3.1) holds for each curve
of the network:


 it .t; x/ �
1

j� ix.x/j
2

 ixx.t; x/ D

� 1

j
 ix.t; x/j
2
�

1

j� ix.x/j
2

 ixx.t; x/

�
: (A.1)

Then one has to write formula (3.2) at each triple junction; 
ji is evaluated at .t; yi / with
yi 2 ¹0; 1º, taking care of the fact that if yi D 1 there is a change of sign with respect
to (3.2). So, for j 2 ¹1; : : : ; qº,

�

3X
iD1

�
.�1/yi

� 
jix
j�
ji
x j
�
�
ji
x h


ji
x ; �

ji
x i

j�
ji
x j
3

��
D

3X
iD1

�
.�1/yi

�� 1

j

ji
x j
�

1

j�
ji
x j

�

jix C

�
ji
x h


ji
x ; �

ji
x i

j�
ji
x j
3

��
; (A.2)

where we have omitted the dependence on t and on y1; y2; y3 2 ¹0; 1º.
In the system (3.3), instead of three evolution equations, m equations should appear,

together with the compatibility condition and the linearised angle condition for each junc-
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tion. Indeed, in place of (3.3) one gets8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:


 it .t; x/ �
1

j� ix.x/j
2

 ixx.t; x/ D f

i .t; x/; t 2 .0; T /; x 2 .0; 1/;


k.t; 1/ D �k.t/; t 2 Œ0; T �; k 2 ¹1; : : : ; `º;


j1.t; y1/ � 

j2.t; y2/ D 0; t 2 Œ0; T �; j 2 ¹1; : : : ; qº;


j2.t; y2/ � 

j3.t; y3/ D 0; t 2 Œ0; T �; j 2 ¹1; : : : ; qº;

�

3X
iD1

.�1/yi
�
jix .t; yi /
j�
ji
x .yi /j

�
�
ji
x .yi /h


ji
x .t; yi /; �

ji
x .yi /i

j�
ji
x .yi /j3

� D bj .t/; t 2 Œ0; T �; j 2 ¹1; : : : ; qº;


.0; x/ D  .x/; x 2 Œ0; 1�

(A.3)

for i 2 ¹1; : : : ;mº and for a general right hand side .f; �; b; / with � D .�1; : : : ; �`/ and
b D .b1; : : : ; bq/.

One needs to adapt also Definition 3.1.

Definition A.1. Let p 2 .3;1/. A function  D . 1; : : : ;  m/ of class W 2�2=p
p ..0; 1/I

.Rd /m/ satisfies the linear compatibility conditions for system (A.3) with respect to given
functions � 2W 1�1=2p

p ..0; T /I .Rd /k/, b 2W
1=2�1=2p
p ..0; T /I .Rd /q/ if for k 2 ¹1; : : : ; `º;

j 2 ¹1; : : : ; qº it holds that  k.1/ D �k.0/,  j1.0/ D  j2.0/ D  j3.0/, and

�

3X
iD1

.�1/yi
�  jix .yi /
j�
ji
x .yi /j

�
�
ji
x .yi /h 

ji
x .yi /; �

ji
x .yi /i

j�
ji
x .yi /j3

�
D bj .0/:

At this point, one wants to apply Solonnikov’s theory [44] to get Theorem 3.5. As
usual, the difficulty concerns the boundary conditions. The result [44, Theorem 5.4]
requires the fulfilment of the complementary conditions at the boundary: basically, the two
matrices B.0; t; @x ; @t / and B.1; t; @x ; @t /must be invertible. However, we have paramet-
rised the curves in such a way that the conditions at x D 0 and x D 1 are entangled and we
cannot write two separate invertible matrices. One has to write a new system, equivalent
to (A.3), that has a suitable structure to directly use Solonnikov’s theory [44]. Namely,
one has to arrange that a given triple junction is the image of either x D 0 under the three
curves or x D 1 under the three curves. It is necessary to break some curves imposing
artificial Cauchy conditions at the intermediate breaking points, as explained in [30, Sec-
tion 5]. In [49] the author carries on with this procedure in full detail. The great advantage
is that von Below not only gets to separate matrices, but each one is a block matrix and
to show their invertibility, it is enough to prove that the determinant of each block is dif-
ferent from zero. Every block describes one single triple junction, and the invertibility
of the block is equivalent to the Lopatinskij–Shapiro condition, which we have already
shown in Lemma 3.3. Hence, thanks to [49] we have existence and uniqueness and suit-
able estimates for the new system and then for system (A.3) as well. So, Theorem 3.5 is
valid.
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Then, one will have new spaces ET and FT properly defined and as a consequence of
Theorem 3.5, the operator LT .
/ W ET ! FT given by

LT .
/ D

0BBBBBBBBBB@

�

 it �


 ixx
j� ix j2

�
i2¹1;:::;mº�


k
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j2
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j3
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�
j2¹1;:::;qº�

�
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iD1

�


ji
x

j�
ji
x j
�
�
ji
x h


ji
x ;�

ji
x i

j�
ji
x j

3

�
jxD0

�
j2¹1;:::;qº


jtD0

1CCCCCCCCCCA
is still a continuous isomorphism. So, Section 3.1 does not need any other alteration and
one gets also Lemma 3.6.

It is straightforward to adapt the arguments of Section 3.2 to the case of general
networks. Indeed, this is just a matter of suitably redefining the operators and spaces
appearing in the proofs. With a careful look, one realises that no additional estimates
are needed.

In particular, the constant c in Lemma 3.9 becomes

c WD
1

2
min

i2¹1;:::;mº; x2Œ0;1�
j� ix.x/j

and the proof does not undergo changes. The two componentsN 1
T ;N

2
T of the operatorNT

are defined as

N 1
T W

´
E�T ! Lp

�
.0; T /ILp..0; 1/I .R

d /m/
�
;


 7! f .
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N 2
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1=2�1=2p
p

�
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�
;
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/
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f .
/i .t; x/ WD
� 1

j
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2
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/j .t/ WD
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j
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�
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ji
x .yj /j

�

jix .t; yj /

C
�
ji
x .yj /h


ji
x .t; yj /; �

ji
x .yj /i

j�
ji
x .yj /j3

�
;

this time defined by the right hand side of (A.1) and (A.2), respectively.
As the estimates concerningN 1

T are done for each i 2 ¹1; : : : ;mº instead of i 2 ¹1;2;3º
and the estimate related to N 2

T can be done component-wise, for j 2 ¹1; : : : ; qº, it is
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possible to obtain again Proposition 3.10 and Proposition 3.12. Instead, Corollary 3.11
and Proposition 3.13 are more abstract and do not need to be modified.

In the same spirit, one also adapts the whole of Section 3.3. Indeed, the only case in
which we restricted our analysis to Triods is the proof of Theorem 3.18, which is entirely
based on the resolution with a very similar structure to the special flow.
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