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Stability of self-similar solutions to geometric flows
Hengrong Du and Nung Kwan Yip

Abstract. We show that self-similar solutions for the mean curvature flow, surface diffusion, and
Willmore flow of entire graphs are stable upon perturbations of initial data with small Lipschitz
norm. Roughly speaking, the perturbed solutions are asymptotically self-similar as time tends to
infinity. Our results are built upon the global analytic solutions constructed by Koch and Lamm
in 2012, the compactness arguments adapted by Asai and Giga in 2014, and the spatial equi-decay
properties on certain weighted function spaces. The proof for all of the above flows are achieved in
a unified framework by utilizing the estimates of the linearized operator.

1. Introduction

We analyze in this paper the long-time asymptotics of various geometric flows, in particu-
lar the stability of self-similar solutions. From the point of view of calculus of variations,
many geometric flows can be seen as the negative gradient flows of some geometric func-
tionals with respect to a certain underlying metric. Heuristically, the gradient descent
nature of the flows evolves general initial data toward a critical point of the corresponding
functional. These evolutions are often modeled by nonlinear parabolic partial differential
equations. The long-time asymptotics of the solution is one of the key questions to be
investigated. For instance, in the celebrated work [35] of Leon Simon, the asymptotics of
a large class of such geometric evolution equations are studied by an infinite-dimensional
version of the Lojasiewicz inequalities combined with the Liapunov—Schmidt reduction.
It is also worth pointing out that in [13] Eells and Sampson used the long-time limit of
heat flows to construct harmonic mappings between Riemannian manifolds under certain
curvature assumptions.

The geometric flows studied in this paper are of curvature-driven type, which arise
from the energy minimization of the surface area functional. This naturally leads to evol-
utions involving mean curvature which is the first variation of the surface area. These
motions appear often in the modeling of materials science, such as phase transitions and
grain growth [1,30]. It is also used in describing the bending of membranes in red blood
cells [20, 34]. The underlying equations are related to mean curvature flows (MCF), sur-
face diffusion (SD) and Willmore flows (WF), which are the three equations analyzed in
this paper.
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One mathematical point to note is that the equations to be analyzed include fourth-
order flows, which are much harder to handle than their second-order counterparts due
to the lack of maximum or comparison principle. On the other hand, these flows enjoy a
certain invariant property, leading to the existence of self-similar solutions. The main goal
of the current paper is to analyze the stability of these solutions. More precisely, under
fairly general initial conditions, we will show that the solutions to these equations con-
verge to some self-similar form. In order to take advantage of a general unified approach,
we restrict ourselves to entire graph solutions relying very much on linearized analysis.

One can also interpret this phenomena of self-similarity using the renormalization
group method as in [4]. The key idea is that after rescaling or zooming out in the spa-
tial variable, suppose the initial data converges to a scale-invariant function which is
determined by the behavior of the data at infinity; then, the solution will converge to a
scale-invariant solution, or so-called self-similar solution. In other words, the long-time
asymptotics are determined by the rescaling limit of the initial data. Hence, we expect that
if the initial data is perturbed without changing the scaling limit, then the corresponding
solution will increasingly look like the self-similar solution corresponding to the unper-
turbed scale-invariant initial data. There is also huge literature where such phenomena is
proved for semilinear heat equations—see, for example, [6, 19,23,29], to name just a few.
Another technique extensively used in the case of MCF is the monotonicity formula. It
has been used in this case to characterize the form of self-similar solutions and the con-
vergence to them [11,22]. This is also the precursor to the more recent entropy method to
characterize self-similar shrinkers [10].

In this paper, we will investigate the stability of self-similar solutions corresponding
to MCF, SD, and WF. Note that global-in-time existence of classical solutions to these
geometric flows with general initial data does not hold due to the possibility of finite-time
blow-ups. On the other hand, in the case of graph setting, it is possible to have long-time
solutions. For MCEF, this is comprehensively analyzed in [11, 12]. In a very interesting
paper [24], Koch and Lamm have constructed a unique global-in-time solution to these
geometric flows under a small Lipschitz norm assumption on the initial data. This is in
contrast to those existence results of classical solutions making use of the maximal regu-
larity property of elliptic operators where the initial data are required to be C 1* or C %
(depending on the order of the equation)—see [15, 16, 36] for examples of such results.
The main technique of [24], which originated from Koch—Tataru [25] for incompress-
ible Navier—Stokes equations, is a fixed point argument on some scale-invariant function
spaces. Even though it can only handle the case of graphs, all the above geometric flows in
general dimensions can be tackled in a unified framework. In addition, the approach does
not rely on a maximum principle which only works for second-order scalar PDEs. Thus,
it is applicable for PDE systems and higher-order equations.

Another relevant work is Asai—Giga [2], which establishes a stability result for self-
similar solutions to a one-dimensional surface diffusion with bounded initial data. It uses a
compactness argument in some Holder spaces. The earlier work [3] proves a similar result,
but it seems the technique is only applicable to the one-dimensional curve case. From an
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application point of view, these two works touch upon the celebrated model called thermal
grooving, first described by Mullins [30]. Combining the techniques of [24] and [2], we are
able to show a local-in-space stability result (Theorem 2.2) and also a global-in-space res-
ult (Theorem 2.4). The latter is achieved in the setting of some weighted function spaces.
Qualitatively, we have extended the result of [2, 3] to higher dimensions with unbounded
initial data.

This paper is organized as follows: In Section 2, we introduce the geometric flows, the
definition of self-similar solutions, and the statement of our main results. Then, we outline
the strategy of proof. Section 3 is devoted to the proof of Theorem 2.2, which asserts the
local-in-space convergence of the perturbed solution. Next, in Section 4, we prove our
global-in-space convergence result (Theorem 2.4) under a spatial decaying assumption on
the initial perturbation. We make a remark in Section 5 on the generalization to polyhar-
monic flows. The proofs of technical Lemmas 4.4 and 4.7 are put in Appendices A and B,
respectively.

Before getting into the technical details, we introduce one notation to be used through-
out this paper. We write for any two positive quantities that A < B if there is a universal
constant C such that A < CB. The value of the constant is not relevant in the argument
and can change from one line to the other.

2. Geometric flows

Let X be a closed hypersurface in R” !, The area functional of X is given by

A(D) =/ 1dpiy. 2.1)
)

where g is the induced metric from the immersion and du, is the corresponding area
element. The aim of this paper is to investigate the (L?- and H ~!-) negative gradient
flows of (2.1). More precisely, we consider a time-dependent hypersurface ; given by
immersions f : ¥ x R, — R”*! which evolves according to

(1) Mean curvature flow (MCF):
0 f = H :=—V;24, 2.2)
(2) Surface diffusion (SD):
0 f = —AgH =: —Vg-1 4, (2.3)

where J represents the mean curvature vector and A, is the Laplace—Beltrami operator
with respect to the induced metric g. Note that MCF and SD can be recast as the negative
gradient flows of A with respect to the L? and H ! metric, respectively—see [5,41] for
more details about the derivation.
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We will also consider the following Willmore functional for two-dimensional surfaces
(n =2)in R3:

1
W) =7 / |H P dpg. 2.4)
by
The negative L2 gradient flow of (2.4) is then given as follows:
(3) Willmore flow (WF):

1
fr=—Ag¥ — 5,}(3 F2HK =: =V W, (2.5)

where K is the Gauss curvature of . We refer the reader to [26] for details of the deriva-
tion.

As mentioned earlier, in this paper we consider the case that ¥, is given by an entire
graph, that is, there exists a function u : R” x R4 — R such that

T ={(x,u(x,0) | x e R", 1 € Ry }.

For concreteness, we write down the graph equations for (2.2), (2.3), and (2.5):

MCE: 2 — /T ¥ [Val di ( Vu ) (2.6)
T — = ul?2 div( —), )
ot V14 |Vul|?

SD: 8—u=—div|:\/1+|Vu|2(l M)de(L)], 2.7

9 T |Vu? V14 [Vul?
_ ou _ [1 Vu ® Vu 1.5
WEF: i —w d1v|:5<(1 - T)V(we%) - 5% V”)] (2.8)

In the above, we have used the following notations and representation:

w=+1+|Vul? and H = div(%).

To simplify the above equations, we borrow the contraction operator x from [24] for
all possible contractions between derivatives of u; for example, we use V2u x Vu » Vu
to indicate any expression of the form V;juViuVyu with 1 <i, j, k,I < n. They are all
treated equally in terms of analysis. Moreover, we use Py (Vu) to denote some k-th power
contraction of Vu, that is,

k
Pr(Vu) =Vux---xVu = HViju forsome 1 <i; <n.
~—————

k times j=1

As derived in [24], we can rewrite equations (2.2), (2.3), and (2.5) using the above con-
vention as follows:

MCF:  9,u — Au = w2V?u » P>(Vu), (2.9)
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SD: du + A%u =V, fi[u] + Vij £ [ul. (2.10)
WE:  du + A%u = folu] + Vi fiu] + Vij fo” [ul, (2.11)
where
4
Jolu] = V2u  V2u x VZux Y " w2 Py 5 (Vu), (2.12)
k=1
4
filu] = Vu * Vu * Z w_Zszk_l(Vu), (2.13)
k=1
2
Folu]l = Vu * Z w2k Poy (V). (2.14)
k=1

Under the assumption that |Vu| < 1, the following crude bounds for the nonlinear terms
play crucial roles in our analysis:

|folull < 1V2ul?, | Ailull < V2ul?, and | fo[u]| < [V2ul. (2.15)

Abstractly, we can write (2.9), (2.10), and (2.11) in the following form:

d;u + Au = Nfu], (x,1) € R" x (0, 00), (2.16)
u(x,0) = up(x), xeR", )
where A = —A or A2, and N [u] is the nonlinear term on the right-hand side of equa-

tions (2.9), (2.10), or (2.11). In this paper, we will consider mild solutions u(x,t) to (2.16),
by which we mean that u satisfies the following integral equation:

t
u(x, 1) = e Mug(x) +/ e~ AN (x, s5)ds, (x,1) € R" x (0,00), (2.17)
0

where ¢4

is the semigroup generated by —A. If the Lipschitz norm of u¢ is small,
the global well-posedness of mild solutions to (2.16) is obtained by Koch-Lamm [24].
More specifically, the following result (global well-posedness for initial data with small
Lipschitz norm) for (2.16) and the technique to prove it provide a starting point for our

investigation (the definition of the function space X, will be given in (3.28) and (3.29)):

Theorem 2.1 (Koch—-Lamm [24, Theorems 3.1 and 5.1]). There exist ¢ > 0, C > 0 such
that for every ug with |Vug|leo < € there exists an analytic solution u € Xoo of (2.16)
with u(-,0) = uo which satisfies ||u|x,, < C|[VuollLoom®n). The solution is unique in the
ball ng" 0) :={u € X0 | |ullx,, < Ce}. Moreover, there exist R > 0, ¢ > 0 such that
for every k € Ny and multi-index y € N[}, we have the estimate

sup sup|(te V)" (10,)% Vu(x, 1)| < ¢||Vauo| Lo@n R F*(|y| + k). (2.18)

xeR” t>0

Furthermore, u depends analytically on uy.
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Note that even though the estimate resembles those coming from linear parabolic
equations and is consistent with the parabolic scaling, it is highly nontrivial to estab-
lish for nonlinear equations. The fact that the estimates are expressed in terms of the
Lipschitz norm of the initial data is particularly useful, as self-similar initial data is neces-
sarily only Lipschitz. Furthermore, note that the following gradient bound for the solution
(y = 0,k = 0) implies that the smallness of the Lipschitz norm is preserved in time:

[Vu ()| Lomry < C||Vto | Lo (rr)- (2.19)

This fact is crucial if we want to work in the graph setting because for surface diffusion,
it has been shown by [14] that in general the graph property might not be preserved.

One of the most important features of these equations is their scale-invariant property.
More precisely, for any positive constant A, if we define £ := A~ X, then

Hs, = AHs, Kz, =A*Ks, and Ag, = A*Agy.

In terms of equations, we have the following: let u be a mild solution to (2.16). If we define
uy(x,t) = A 'u(Ax, A%), where« =2if A = —A and @ = 4 if A = A2, then u,, solves
the same PDE but with rescaled initial data, that is,

{ drup + Aup = Nuz],  (x.1) € R" x(0,00), (2.20)

uy(x,0) = A7 tug(Ax), x e R™.

Note that with y = Ax, we have Vyu; = Vyu, Vfu;t = )LVyzu, and so forth. The powers
of V2u in the nonlinear terms f; are such that f;(uy) = A3~ f;i(u) for i = 0,1, 2.
Hence, V! f; (u;) = A3V f; (u). They indeed give the corresponding scale invariance with
a = 4 for SD and WF. For MCF, we only have the term f,(u) ~ VZ2u, corresponding
too = 2.
The above naturally leads to the notion of self-similar solutions v which satisfy
v (x,t) = v(x,1). Setting t = 0, the initial data necessarily has the property that v(x,0) =
A~ lv(Ax, 0). Conversely, let v be the solution of (2.16) with self-similar initial data
vo(x) = |x|1p(‘§—|) for some function ¥ : S”~! — R so that v is indeed self-similar (i.e.,
vo(x) = A7 vg(Ax)). Since v, solves the same equation and initial data, by uniqueness
of solutions, it holds that vy (x,?) = v(x,t). Upon introducing ¥(y) = v(y, 1), we then
have
V(1) = vy (x.0) = tev(xeTe, 1) =t 1E (). 2.21)

The function W is called a self-similar profile and it satisfies the following equation:

1 1
AV (y) + E‘P(y) -y VU(y) = N(¥(»)).

The main objective of this paper is to study the stability of self-similar solutions under
bounded (and small) perturbations of self-similar initial data. Our main results are given
in Theorems 2.2 and 2.4. (Again, see (3.28) and (3.29) for the definition of the function
space Xoo.)
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Theorem 2.2. There exists an ¢ > 0 such that if u(x,t) € Xoo is a global mild solu-
tion to (2.16) with perturbed self-similar initial data uo(x) = vo(x) + p(x) that satisfies
| pllLoorry < 00 and ||[VugllLoomn), [|VpllLeemny < € then for any compact subset K
of R", it holds that

tlln;o}|z—éu(zéx,z) — W) crgy =0. Yk eNT. (2.22)

By Theorem 2.1, u automatically enjoys analytic regularity estimate (2.18).
The next example demonstrates the validity of Theorem 2.2.

Example 2.3. Consider a spatial shift of self-similar initial data v (x) by a vector a € R”,
that is, ug(x) = vo(x — a@). In this case, p(x) = up(x) — vo(x) = vo(x — a) — vo(x),
which satisfies the condition of Theorem 2.2. In fact,

[VvollLoo®ny + IV pll oo ®n)
< [[Vugllpeomny + [IV(vo(- — @) — vo(-)) || Loo(rm)
=< 3|[Vuolloomrn) < 3¢

and

| 2(X) | Loony = lvo(x —a) — vo(x)]Loo(rn)
< Vo |Le@mlal < oco.

By the uniqueness of mild solutions to (2.16), we have
u(x,t) = v(x —a,1) = taW((x —a)t"a).
Then, Theorem 2.2 gives that
. 11 . _1
,IHEOHI ey(tex,t)— \I’(x)||ck(K) = tli)rgoH\Il(x —at”e)— \IJ(x)”Ck(K)
=0, VkeNT.

We also have the following result on the global convergence under perturbation with
spatial decay:

Theorem 2.4 (Global stability with spatial decay). There exists an € > 0 such that if
u(x,t) € Xoo is a global mild solution to (2.16) with perturbed self-similar initial data
uo(x) = vo(x) + p(x) that satisfies || p||Loomnr) < 00 as well as ||Vvo||Loomny + [|(1 +
|X|B)V pllLec®ny < & for some B > 0, then we have

tgrgo||r—éu(tix,t) — W) 1 gy = 0- (2.23)

Again, by Theorem 2.1, u automatically enjoys analytic regularity estimate (2.18).



H. Du and N. K. Yip 162

Remark 2.5. It seems possible to also prove higher-order global-in-space convergence
results. The main technical step is to generalize Lemmas 4.4 and 4.7 to higher-order
estimates. Paper [24] uses the analytic Banach fixed point theorem to obtain higher-order
regularity. For reasons of conciseness and space, we omit this step in this paper.

For the rest of this section, we outline the strategy of the proof of Theorem 2.2. Such
an approach is also described in [18, Chapter 1] by M.-H. Giga, Y. Giga, and J. Saal.
. . 1 1 1
First, note that upon setting A = t«, we have uy(x, 1) = uté(x, 1) = t"eu(xte,t).
Hence, (2.22) is equivalent to

lim [[u(x, 1) —va(x, Dlcexy = lim lua(x, 1) —v(x, Dllck k)
A—>00 A—>00
=0, VkeNT. (2.24)

Thus, all we need is to estimate at time ¢ = 1 the difference between the two solutions u,
and v) = v. Now, let ®, := u) — v. Then, it satisfies

Dy (x,1) = e pi(x) + / t e CTIAN Y + @;] — N[v])(x, s)ds, (2.25)
0

where we have used the fact that the difference between the two initial data is given by

ua(x,0) = v(x,0) = 3 p(Ax) 1= pa(x).
Next, the following estimate from Theorem 2.1 is applicable to both u; and v:

vl
V7 3 Vu(x.0)] < Ct~E+) | o]l Loogar. (2.26)

Putting (2.26) and (2.25) together, we can apply the Arzela—Ascoli compactness theorem
to show that there is a subsequence {®,, }, Ax — oo and &, € C*®(R” x (0, 1]) such
that the following statements hold:

(i) (Convergence.) For any compact subset K of R”,

lim [ @y, (x,1) — Pool(x. 1)||Ck(K) =0, VkeN. (2.27)
Ar—00
(i) (Regularity.) For any ¢t € (0, 1],

|97 0V oo 1) oeny < €~ 80 (1900 oo ny + 19 Pl o).
(2.28)

(iii) (Integral equation.) The function ® (x,?) solves the following integral equation:

Do (x, 1) = /t e AN + Poo] — N[v])(x,8)ds,  (x,1) € R" x (0, 1].
0
(2.29)

As the last step, we conclude the proof of (2.24) by showing that every solution @,
of (2.29) satisfying the property ||V ® | Lo®r) < 1 and regularity estimate (2.28) must
be equal to 0.
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We would like to emphasize that the above strategy is very simple and robust. See
again [18] for a general exposition of this strategy. Despite the fact that the results are
restricted to the graph setting, it is applicable to all the geometric evolutions under con-
sideration here. Another advantage is that neither maximum nor comparison principle is
used in the current approach; see, for example, the results for MCF [7,9,39] that do rely
on such principle.

It is worth mentioning that our strategy is also applicable to graphical MCF in
arbitrary codimension to obtain the stability of self-similar solutions. In the case of Euclid-
ean space, the dynamical equation is given by a system of equations for a function
f i R" x[0,00) - R™:

o 2 fa
% =gV Eicing’ a=1,...m, (2.30)

where g/ = (g;j)~" and

m afﬂ afﬂ

=8 E A
&ij / ox; 0x;
B=1 J

(Equation (2.30) becomes (2.6) when m = 1; this is the hypersurface case.) Note
that (2.30) also satisfies the structural form in (2.9). Compared with the celebrated res-
ult of Ecker—Huisken [11] for MCF of a hypersurface given by an entire graph on R”,
in order to have existence and convergence of a global-in-time solution for graphical
MCF, the initial map is required to satisfy some area decreasing property. We refer to
[27,28,32,33,38,42-44] for a sample of results. For more comprehensive surveys, please
see [31,37,45].

As a last remark before presenting the proof, note that WF has one more term
than SD, namely, fo[u]. Thus, in the current work, we will only consider MCF and WF
for simplicity.

3. Stability result — local version

In this section, we will prove Theorem 2.2. As outlined above, we will first establish
uniform estimates and compactness of @, . In all of the following results, we are working
in the regime of the small Lipschitz norm; more precisely, there exists an ¢ < 1 such that

||Vu0||Loo(Rn), ||VU0||Loo(]Rn) K €

3.1. The mean curvature flow (MCF) case

In this case, we have A = —A, a = 2. Thus, equation (2.25) for ®, becomes

Dy (x,1) = e pr(x) + [0 t U™ (Nu] — N[v])(x, s)ds. (3.1)
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The nonlinear term N [u] can be estimated as
IN[u]] = (1 + |Vu?)"'Vu » Vu » VZu < |Vul?|V2u| < |V2ul. (3.2)
We also recall the heat kernel and its associated semigroup:

|x|?

exp(~0) and e ()= fR =0 f0dy. 33

hx,t) =

(4nt)? 4t

3.1.1. Uniform estimates and compactness for ®,. We first note several useful facts.
By the L! bound of the heat kernel, we get

sup sup|le® pa(x) || Loo®ny < sup|l pa(x)||Loe®n) < 0. (3.4)
A>11>0 A>1

Furthermore, the Lipschitz norm is invariant under the rescaling:

IVoallLo@n = [IVPllLe@n. (3.5)

From regularity estimate (2.26), we have

_lyl
iup |05V Vs, l)HLoo(Rn) StT2 kiupllv(vo + p)llLo®n)
>1 >1

_vl_
<172 7 ([Vvollzoeny + IV pllec@n)) (3.6)
and similarly for vy = v,
_lvl_
iup”@’,‘V"Vvk(.,t)||Lm(R,,) <72 7R Vgl oo ). (3.7)
>1

Now we estimate

sup | (-, )|l Loo(rr)
A>1

t
= sup 2 p, O llmian + sup] [ e IR (Wlats] = NI o)

A>1 L (R")
< sup [[e pa ()| Loomy
A>1 ,

sl [ [ W= yor = 10Nl + NG 9)dvds|

A>11Jo JR” Lo (R™)

< sup || pallLeo®m)
A>1

t
+ (10l + 1V pllmo)| [ [ =yt =0~ dayas|

< iup I Pallzoo®ny + (I VvollLoony + IV pllLoo®n))
>1

< 00. (3.8)

L>°(R")
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In the above, we have used the estimate

_1
IN A G 9)]lzoo@ny S 1VUAC ST oo ey | V2UAC,8) | Loorny < 572 (3.9
By higher-order regularity estimates (3.6) and (3.7), we have for any k € N, y € N,

sup [|[VY V@, (-, 1) | Loowny S sup [V 5V, (1) | Loowny 4 |V 0¥V, 1)|| Loomr)
A>1 A>1

—%—k.

< (IIVvollzeeny + IV plloemny )t

With the above uniform estimates for ®,, we can apply the Arzela—Ascoli theorem to
extract a subsequence {®,, } and @ (x, 1) € C*®(R" x (0, 1]) such that for any § > 0,
compact subset K C R”, and k € N, we have

lim  sup ||y, — Poollck(x) = 0. (3.10)

Ak =0 §<r<1
Then, (2.27) and (2.28) follow.

3.1.2. Equation for ®.,. Here we verify (2.29) by passing the limit Ay — oo in (3.1).
First note that

. . .1
lim sup ||€Azp,1(')||Loo(]Rn) < lim |pallpee®ry = lim —|[pllreowry =0. (3.11)
A—>00 >0 A—>00 A—00 A

Second, from (3.10), we know that for any § > 0 and any compact subset K C R”,

lim sup [N[v+ ®@;,]— N[v + Poo]llcr (k) = 0. (3.12)

Ak—>oo 851‘51

Now note that
t
‘/ e(t—s)A(N[cDA +v] = N[Po + v])(x,s)ds)
0

< / h(t —s,x — y)[|N[<I>)L + V]| + |N[Poo + v]|](y,s) dyds.
0 JR»

By the formula of the heat kernel (see (3.3)) and the estimate for the nonlinear term given
in (3.9), the integrand can be estimated as
|x =y

h(t —s,x = y)[IN[®x + v]| + [N [P0 + V]|](y.5) S (¢ —5)72 exp(— 4(t — 5) )S_ ’

=

which is integrable:

D=

t 2
_n [x —y|*\ _1
t— 2 - 2dyvds <t2.
/0 R"( ) exp( 4(f—S))s yans

Hence, (2.29) follows by the Lebesgue dominated convergence theorem.
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3.2. The Willmore flow (WF) case
In this case, we have A = A2, o = 4, and
N[l = folul + Vi £ 1] + V7 £, [u].

First, we introduce the heat kernel of biharmonic operator b(x, ¢):
b(x,t) = t_%g(il), where g(§) = (271)_% / eig'k_|k|4dk, £ e R".
14 R?

It satisfies the following decaying estimates (see [17, Chapter 9, Theorem 7], [24]) which
play a very important role in this paper:

4
b(x, 1) <174 exp(—C |x|; ) (3.13)
t3
|ka(x,t)| < t*#exp(—ck |x|13 ), Vk > 1, (3.14)
3

The integral equation for mild solutions u(x, ) to (2.11) now reads
t
ur.) = [ b6 =yeomomdy + [ [ b=yt =5 v dyds
n 0 n
t
[ [ vibtr =y =9 £l )avds
0 n

t ..
+ / / Vib(x —y.t —s) fy’ [ul(y.s)dyds. (3.15)
o Jrn

Given the uniform bound for ||Vu||zo @) < 1, we note here the estimates for the nonlin-
ear structures:

Lfolull S V2 S 73, AN S VP <73, | A S V2] S5 (3.16)

Note also that in order to take advantage of the kernel decay, we perform integration by
parts to eliminate the derivatives on f] and f,. With this, we use the following L' bound
for b:

k
4

IVEbC )l imn S5 fork =0,1,2. (3.17)

3.2.1. Uniform estimates and convergence for ®,. Using the estimates for b, we first
establish an L*° bound for ®,. For P P, we have

—A?%t
sup sup|le ™A% p; | oo = sup sup|
A>11t>0 A>1t>0"JR"”

sup sup|| pallLe [6C, ) L1

A>11>0

b(-—y.)pr(y)dy HLOO

IA

< sup||pallre < oo. (3.18)

A>1
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From regularity estimate (2.26), we have

sup || BlnyVu,l(g [)“LOO N
A>1

vl _
*supl|V (vo + pa) L
A>1

bl
<174 (| V| ooy + iup IV pallLeomny)
>1

St

vl
<t7 5 (JlvollLeegny + 1V PllLo®m) (3.19)

and similarly for v; = v,

sup||akvyvm( Do S 175 w0l oo n)- (3.20)

For the L estimate for @, we combine (3.13), (3.14), (3.19), and (2.15) to give

sup[[ P, 1) |lLoowr) < SUP”€

A>1

+ sup
A>1

+ sup
A>1

+ sup
A>1

< sup ||e_A
A>1

+ sup
A>1

+ sup
A>1

+ sup

tpk (') HLoo(Rn)

| [ b=y =) (folual = fool) - srays|

Lo (R")

Loo(RM)

[ [ wibte= vt =i - A s1avs|
0 JR"

/ / V,’jb(-—y,l—s)(fzij[uk]_
0 JR~

o)) dyds HLOO(W)

ZtPA () HLoo(Rn)

[ [ 66— 3= 910 atusll + Lol 0 rves]

(oS} (Rn

[e<) (Rn

// ik = vt = ()l + LA D) G dyds|

supl [ [ 1906 =y =912 wall + L LI pras|

Now we make use of the structure for nonlinear terms (3.16) together with kernel and
regularity estimates (3.17), (3.19), and (3.20) to obtain

Uff bC = .t =|(1folua]l + | folo) (v, )dyds|

Loo(R™)
/ / b(y,t —s)|s™ 4dyds</ s 4ds<t% (3.21)
0
[ [ 1wibe = vt =9l Tl + )0 drs]
s/ / Vb(y.t — )]s~ dy ds
0 JR7
t 1
5/ (t—s)_%s_% ds:t%/ (l—s)_%s_% dsSt%; (3.22)
0 0
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U fo /R IVisb(-— y.t = )I(1f [ua]l + 115 [v]l) (v, s)dyds U

Lo (R")

t
g/[ IV2b(y,t —s)|s~% dy ds
0 JR7
t

1

1
< / (t —s)_%s_% ds =14 / (1 —s)_%s_% ds <t+. (3.23)
0 0
Hence, we have
1
sup|| @4 (-, ) [[Loowny < supl|pallzee + 1% ([|VvollLoe@ny + |Vl Lwo®n) < oo
A>1 A>1
For higher-order regularity estimates, by (3.19), we have
¥ ak ~x
iuPHV dy Vq’x(wl)HLw(Rn) < Ctm a7 (|VuollLo@ny + IVPllLowm).  (3.24)
>1

As in the MCF case, we apply the Arzela—Ascoli theorem to extract a subsequ-
ence {®,, } and Poo(x, 1) € C°(R” x (0, 1]) such that for any § > 0 and any compact
subset K of R”,

lim  sup @3, (1) — Poo . D)llckxy =0. Vk e NT, (3.25)

Ak—>00 §<r<1
and P, satisfies regularity estimate (2.28).

3.2.2. Equation for ®,,. Here we check that @, satisfies (2.29). The strategy is similar
to the MCF case.
Recall that ®, satisfies the following identity:

@, (x,1) = e A py(x) + /Ot /R b(x —y,t —s)(fol®a + v] — fo[v])(y.s)dyds

- /ot / Vib(x = y.t =$)(f{[®x + v] = f{ V) (v 5)dyds

" /0 /]Rn Vib(x =yt =)(f) (@1 + 0] = £’ ])dyds. (3.26)
First, by the L' bound of b(-, 1), similar to (3.11), we have

. A2 o1
lim [le™ pa()leo@ny < lim | paloo®ny < lim ~||pllreo@ny = 0.  (3.27)
A—00 A—oo A

lim
A—o00
Second, similar to the previous computations—in particular, the derivations of estim-
ates (3.21), (3.22), and (3.23)—the integrals of the nonlinear terms are all bounded by
integrands that are integrable with bounds independent of A. Hence, (2.29) follows from
the Lebesgue dominated convergence theorem. We emphasize here again the crucial use
of estimates (3.16) for the nonlinear terms and L' bounds (3.17) for the derivatives of the
biharmonic heat kernel.
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3.3. Proofof &, =0

In this section, we will show that integral equation (2.29) only admits the zero solution
among the class of functions with small Lipschitz norm. This follows from a fixed point-
type argument.

Motivated by the translation and scaling invariance of the equation, the following func-
tion space was introduced in [24] for 0 < T < oo:

(1) For MCF with o = 2,

Xr = {f(x.0):R"x(0.T) > R ||| fllx; := SUPT“Vf('»t)”L‘”(R")

o<t<

2
+ sup  sup RV £ nra(ppnx(R2/2,R2) < 00} (3.28)
x€R” 0<R2<T

(2) For WF with a = 4,
X ={f(x.t):R"x(0,T) > R ||| fllx; = OSUPT||Vf('J)||L°°(Rn)
<t<

2
+ sup sup Rn+s6 ”sz||L"+6(BR(x)><(R4/2,R4)) < OO} (3.29)
x€R" 0<R4<T

Note that the above norms are scale invariant:

I fullxr = 1/ lxpar  and | fallxe = 1/ lxe-

We then have the following estimate:

Lemma 3.1 ([24, Lemmas 3.10 and 5.2]). Forany 0 < T < oo and 0 < § < 1 there exists
C(8) > 0 such that for every g1, g2 € BBXT(O) ={g € X7 | lIgllx; <8}, we have

T T
H / TN [g1](x. 5)ds — / TN [g3](x, 5)ds |
0 0 Xr
<CO)(lgllxs + llg2lxz) g1 — g2llx7- (3.30)

The above is established through the linearized estimate

T
|[ e mtgas|, <lely
0 X7

for some appropriate spatial-temporal function space Yr; see [24, Lemmas 3.11 and 5.3].
We will in fact present the proof of the above result in the setting of weighted function
spaces Xﬁ and YB; see Lemmas 4.4 and 4.7.

We apply the above lemma with T =1, g; = ®, + v, and g» = v. Suppose we can
show that [|g1lx;. [|g2[lx; < 1; then, we would have

T
[Pl = | [ e TN @ + 0] - NiD (. 5)ds] < [0l
0 T
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which implies || oo || x, = 0. Hence, V®os = 0, which leads to N[Pos + v] = N[v],
as N(-) only involves the derivatives of ®,. From (2.29), we conclude that ®,, = 0.
Hence, we are led to compute the X7 norm of g; and g, under the regularity estimates
given by (2.18) and (2.28).
For MCF, we have

[@nolly, + Ivlxr

< (IVvollzoe®ny + IV pllLoern))

1

. (1 + sup Rﬁ(/ (t_%)”+4dtdy) n+4)
0<R2<T Br(x)x(R?/2,R?)

A

R2 1
(IVv0llzoo@n + IV plloen)(1+ sup R (R” / ' ar)™)
0<R2<T R2/2

A

2 oy
V(I Vvollzoemn + IV plrmgn)(1+ sup  R#(RTR™72)77)
0<R2<T

A

[VvollLeo®ny + IV pllLoo®ny-
For WE, we have,

[ ®oollx7 + llvllxr

< (IVvollzeeny + IV pllLoo®rny)

1

. (1 + sup Rﬁ([ (t_%)"+6dtdy> "+6)
0<R4<T BRr(x)x(R*/2,R*)

R* 1

_2 _n+6 n+6

< (IVvollL=n + [Vpllon) (1+ sup R (R / )
0<R4<T R4/2

2 o
< (IIVvollzeo®ny + ||VP||L0<>(Rn))<1 + sup R#&(R'R™" 2)”+6)
0<R4<T
< IVvollLeo®ny + IV pllLoo ).
The above show that in order to obtain the desired result, we just need to take the

Lipschitz norms of vg and p to be sufficiently small, which is indeed assumed to be the
case under the current setting.

4. Equi-decay and global uniform convergence

Here we will tackle Theorem 2.4. In essence, if the gradient of the initial perturbation is
assumed to have some spatial decay, then we can obtain a global-in-space convergence
result. The idea is to establish the equi-decay property of {®, } -1 via a contraction prop-
erty of the nonlinear operators in some weighted spaces. For convenience, we recall here
the weighted Lipschitz seminorm used in Theorem 2.4:

[plp = (1 + [x[P)V p(x)]| oo mrny.- (4.1)
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4.1. The mean curvature flow (MCF) case

For the mean curvature flow case, we introduce the following function space which is the
spatially weighted version of X7:

Definition 4.1. For every 0 < T < oo, we define the function space X ﬁ by

X§ = {u hellyp = ,Sup_sup (1 + [x[#)|Vu(t, x)|
X n
2
+ sup sup (1 + [x[P) R [ V2u Lrss o < 00}, (42)
xeR” 0<R2<T
where

Qr(x) := Br(x) x (R*/2, R?).
Then, we have the following linear estimate:

Lemmad4.2. Fork >0and0 <t < T,

Ht%VketAp(x)ng < [plg. 4.3)

For the analysis of the nonlinear part, we introduce the weighted function spaces Yzé
as follows:

Definition 4.3. For every 0 < T < oo, we define the function space YY’? by

2
vE={g|llglf, = sup sup (1+[x[F)R73|gl|pmes(gp(ry < 00}
x€R” 0<R2<T

Now we define

t
Sg(x,t):= / / h(x —y,.t —s)g(y,s)dyds. 4.4
o JR»
The following is the key technical estimate concerning S':

Lemmad44. ForO <t < T < oo,

sup [[(1+ |x[F)Sg(x.0)[[Loo@n + 1Sglle < gl e-
0<t<T T T

With the above, we then have the following result for the nonlinear functional:

Lemma 4.5. Forevery ) < T < oo,
[N [u] — N[v]IIYﬁ < (lell, + iz, ) e — vIIX;. 4.5)

In particular, there exist ¢ > 0 and g < 1 such that for all [vo] + [plg < &,

HAQU”HNM—Nmenwkgswu—wﬁ. (4.6)
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We will give the proofs of Lemmas 4.2 and 4.5 here, but the proof of Lemma 4.4 is
given in Appendix A due to its length and technical nature.

Proof of Lemma 4.2. 1t suffices to show that there exists a C > 0 depending only
on T, n, B, and k such that if [p]g < 1, then ||e’Ap(x)|| s < C. From the definition
of || - | xf- Ve need to estimate two terms.

Flrst, consider

‘I%VkVe’Ap(x)‘
1 Ix=yI?
:W Anfgvaxe_ W P(y)dy‘
1 lx—y[2
" )t L s v 0]

kg _lxy?
5 VEe™ |19, p(v)ldy

IA

o

1 / / ) X—=Y\| _l=? 1
— + e(/)k( ‘e @ ———\dy
(4m)7< {rly—xl=sixl} - Hyiy—xi= 2L 1} Vi ) 1+Iy|ﬂ>

I4+10,

IA

where P is some polynomial of degree k. For I, |y — x| < |x| implies that |y| > %‘

for0 <t < T. Hence,
1 1 28 28
< = < ,
L+ [p]8 ~ 1+ x/21F 28 +|x|8 ~— 1+ x|

so that

1 / 1 X =Y\, _lx=yl
o RPNEETI RSN
L x18 Jyay- x|l lxl) (4ri)2 | NG |

w7 )
< — Pr(z e 173 < —F,
1+ |x|8 Rn| ()] 1+ |x|8
: Vi
— > N
while for II, when |y — x| > 2\/T|x|, we have
_lx—yI? _lx=y2 _x—yl? _x2 _x—y?
e 4t =e 8t ¢ 817 <e 3%2Te 8t
so that
\7 1 _lx—y2
S 32T 8t

X—Yy
2(5 )|
1
< —

1+ |x|8

{ily—xlz Y% IX\} (47U)2

S}

| x|

<e */ Pe@)e T dz <5

\1
~
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Combining I and II, we have

koko tA
t2V*Ve X)) < —7". 4.7
| p(x)| R 4.7)
Second, we estimate
2N Egkg2 A
sup  sup (1+|x|ﬁ)Rn+4 t2VEVZe 2 p(x)|, » . 4.8)
CeRM 0<R? T “ “L T4(QRr(X))
Note that
Egky2 tA n+4
[£2VEV2e S p () [ Lva 0 oy
R? _
1 —z|2 n+4
=/ / z%kaZ/ ,,e_‘y“l p(z)dz] dy dt
R2/2 JBro) b (4rt)2
R? _
1 —z2 n+4
:/ / t§/ ,leHe_lyM‘ Vp(z)dz] dy dt
R2/2 JBr(x)L (4met)2
R? _
1 —z|2 — 1 n+4
5[ / z%/ e IPk_H(u)—dz] dy di
R2/2 JBrx)L (4m1)2 Vi 1+]z|f
R? _
1 ly—z[? - 1 n+4
5[ / l_%/—ne_ “a J’kH(u)—ﬁ a’z] dy dt
R2/2 JBr(o)L (4m1)2 Vi 14z
R? 1_% n+4
T
R2/2 JBrx)L 1+ [y]
e 5(n+4) 1
< 2% dt[ ————dy
R?/2 Brx) (14 |y[B)nt4
1
< R Bp(x)|——————
S RO
R—Z
S
(14 |x|Bynt4
which leads to (4.8) < 1.
The above two parts combined give
% Vke'® p)llys < C. .
T

Proof of Lemma 4.5. Recall form (2.9) for the nonlinear term N (). First note that

2\—1 2\—1 (IVul + [Vu )|V (u —v)|
(1) = 4 9o = e e

Then, we have
|N[u] = N[v]|
= |(1 + |[Vu®)"'Vu « Vu » VZu — (1 + |[Vv|?>) "1V « Vo » V2]
S (IVul + [VoD(IV2ul + [V20)) [V = v)| 4+ (Vu| + [Vo])* [V (u — ).
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Then, estimate (4.5) follows from

INTul = Nlllys

2
= sup sup (1+ |x|/")R#[|N[u] = N[v]llzn+s(0 0o
x€R” 0<R2<T

sup ([[Vullpeo®ny + [|VV| Lo (rn))

0<t<T

A

(sup sup R (| V2l pars(opey + V20l nvs(0ren))

x€R" 0<R2<T
~(sup_sup (1+ [x1P)|V (@ —v)])

0<t<T xeR”

2
+ sup ([IVullromny + [V|lLo@n))

0<t<T

2
~(sup sup (14 |xP)R# | V2 (u = v) | Lr+a(0pcx)
x€R" 0<R2<T

< (lullxr + ollr)* e = vl o
For (4.6), using Lemma 4.4, we have that
IS(NTul = N[vDllys < IN[u] = Nv]lyp
< (el + vl )l — vliys

< (PP + ol = vllyg < &2l — vl -

Note that we have used Theorem 2.1, which deals with the unweighted case, to estimate
the || - ||x, norms by the initial data. Hence, (4.6) holds if we take ¢ to be sufficiently

small.

4.2. The Willmore flow (WF) case

The strategy here is similar to the MCF case. We again introduce the following weighted

function space:

X7 = {ulllullys = sup_sup (14 [x|")|Vu(x.0)|
0<t<T xeR”

+ sup sup (14 |x|P)R756 | V2ul| Lo o < 00},

xe€R” 0<R4<T
where Qr(x) := Br(x) x (R*/2, R*).
Lemma 4.6. Fork > 0,
k 2
tzvk —tA < .
[£4 V5 e p(x) | s < [Pl

Anticipating the forms of the nonlinear terms in (2.11), we introduce the weighted

function spaces Yoﬂ T Ylﬂ rand Y, 2 r» Where

Igollyp, = sup sup (1+|x|ﬂ)Rn+6||go||
Y XER" 0<R4<T (Q (X))
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4
= su su 1+ |x By Ri+s n+6 ,
lailyg, = sup sup (4 RS gl e

2
sup  sup (1 + |x|P)R75 || gal| Lvs (0 o)
X€ER" 0<R4<T

lgallys.

Now consider the following operator:

t t
Sg(x,t) = f e_(t_s)Azg ds = / / b(x—y,t —s)g(y,s)dyds. (4.10)
0 0 JRn
The key estimate is the following lemma:
Lemma 4.7. Forevery0) <t <T < oo,

2 2
Y (sup [(1+ 1xIP)V! g0 ooy + IV S&illgs) D llerllys - (1D
1=0 0<t<T T I—0 LT

Lemma 4.8. Forevery 0 < T < oo,

2
SN = filoDllyp 5 (luller + ol )l = vl . @“.12)

1=0

(Recall forms (2.12)—(2.14) for the f;’s.) In particular, there exist ¢ > 0 and g < 1 such
that for all [ve] + [p] < &,

2 t
ZH/O e~ =98 (V! ) — V! i (v)) ds Hxﬂ < gllu = vll,. (4.13)
1=0 r r

Proof of Lemma 4.6. 1t suffices to show that there exists a C > 0 depending only on
T,n, B, and k such thatif [p]g < 1, then ||e_’A2p(x) ||X£ < C. Again, we need to estimate
two terms.

First, by estimate (3.14) for the biharmonic kernel b, for any k € N, there exists
¢ > 0 such that

|1 5VE Ve p(x)| = ‘/R (VAL x - y)p(y)dy(

< [ 1F49Ebt =50l [V p )]y

. s
Y S s s s
{yily—xl=rixl) S {pily—xl= 2 1xl} 1+ [yl?

2T 4 2T 4

=141
where, similar to the MCF case, we have

_1 4
L hemalGenTEE

I< ;/ 1 S—=
1+ |X|ﬂ {y:ly—xls HL |x|} 1+ |X|ﬂ
2T 4
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~Clxl3 P (G IR !
I<e €k / PR P LSt dy  ——=.
{yily—xl= L2 1x1} 1+ |x]
2T 4
so that .
2
sup sup (1 + |x|?)|t4VEVe ™2 p(x)| < 1. (4.14)

0<t<T xeR2

Second, we compute

||z%vkv2e*‘“p(x) lnssconcen

:f / [(5VF T b(y — 2,0V p(z) dz]"*C dy dt
R*/2 JBR(x)

R4
< [ / t_%t_%e_ck‘(y_z)t_zlj—l a’z]n+6 dy dt
R4 2 JBr(x) 1+ |z|p

—a

dz ]"+6 dy dt

A

—
-2 %2
I\J

BR(x) 1+ T+1yl#

R 1
< " dt/ &
R4/2 Br(x) (1 +|y|B)n+e
I N
(1 + |x|B)n+e’

which implies that

<. (4.15)

2 .k _tA2
sup  sup (1 + |x|P)R7+e ||t4VkV26 1A p”L"+6(QR(x))~

x€R” 0<R4<T

Combining (4.14) and (4.15) then gives Lemma 4.6. [

Proof of Lemma 4.8. The proof is similar to that of Lemma 4.5. We will just highlight
some key computations, though mostly at the symbolic level.
Recall that the form of fj is fo(u) = (VZu)3>P (Vu), for some polynomial . Then,

fow) — fo(v) = ((V2u)® = (Vv)*) P (Vu) + (V?0)* (P (Vu) — P(Vv))
P(Vu)((Vu)? + (Vo)*) (V2 (u — v)) + (VZ0)’ 2" (Vu) (V(u — v)),

so that

1/0G) = JoII nge o)
S NPVl | (V0)* + (V0)?) V2 = v) | nge
(Qr(x)
+ 1(V20)? 1785 01T Vil @) IV (1t = 0) | Loy
S NP V)o@ (1V2 U E s (g iy T 1 V20 Ents(0 o) I V2 = 0) [ Lrt6(0 (0

- 1V2ul 60 o 12 (V) oo ) 9.t — 0) oo,
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and hence,
[l fo(u) — fo(v)lly(fr < (lullzy + ol )l — Vlixs-

Similarly, for fi(u) = (V2u)?P(Vu) and f>(u) = (V2u)P(Vu), we have

/1) — fa (U)”Lnlj(QR(x))

S NP (V)| Loony (V2| Lo+6(0 g (y) IV 2V L+ (0 e | V2t = 0) | Lo+6(0 g ()
+1V2ulZnv60 g en |19 (VO oo @y [V (1 = ) || oo )

and
I f2(u) = f20) | Lr+60rxy) S 1P (V)| Loo@ny [V (1 — V)| Lo+6(0 (x))
+ 11Vl (0 on [P (V) [ Loo @) IV (1 = ) | oo ey
so that
Il f1(u) — fl(v)”Y{fT’ Il f2(u) — fz(v)||Y£T < (lullzy + ol ) e — Vliys.

thus completing the proof of (4.12). [ ]

Again, we postpone the proof of Lemma 4.7 to Appendix B due to its technicality.

4.3. Conclusion of the proof of Theorem 2.4

For simplicity, we just write down the steps for WF as it involves more terms. Recall the
equation for @ :

2
Oy = A py+ Y (Mv + @3] — M[v). (4.16)
1=0
where

t
Ni(g) = / NIV £ () ds.
0

First, taking the X g norm of both sides of the equation, by Lemma 4.7 and (4.13) of
Lemma 4.8, we get

2
192lgs < 7 pallye + D IMi[®r + v] = Milvlllys
=0

2
< ™ pafl s + 1A (@2 +v) = fild]llyg.
1=0 ’

< ||e—A2tpA ||X£ + q||<I>A||X7§.
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Hence, upon choosing [vg], [p] small enough, we will have ¢ < 1, which implies a uniform
bound for @, in X g More precisely,

[@allxs < Je palys < lpals. (4.17)

Second, from Lemmas 4.7 and 4.8 again, we have that

2

> sup [[(1+ [xP) (N [@x + v] = M)l Loo@my
l:00<t<T

2
S Y Nfi(@x+v) = JiWllys < 1P2llys < [pals-
1=0 '

When A > 1, we have [p;]g < [p]g. Hence,

2

suan(l + [x[PY (M [ @5 + v] = M D, T) | Lowny < [Plp- (4.18)
Zli=0

With the above, we can prove the global C!-convergence. Upon setting T = 1 in equa-
tion (4.18), we have that the set {®; (-, 1) — e pi() = le=0 N (D) 4+ v) — N ()} r>1
satisfies the equi-decay property, that is,

lim sup sup |d>x(x, 1) — eiAzp)L(x, 1)| =0.

R—00 350 |x|<R

From (3.24) (with y = k = 0) and (3.18) (with the latter applied to V p;), we have

[V(®16 1) =™ pat D) | oo ey
< IVOL(, Dllzoony + e ™27V pac., Dl ooy < 00

Finally, recall estimate (3.27). By the Arzela—Ascoli theorem, we can then conclude that
®;, — P in CO(R"™) for a subsequence A; — 0o. The proof of @, = 0 is the same as
in Section 3.3 for the spatially unweighted case.
For the convergence of V®,, by (4.17), we have that V®, has the equi-decay property,
that is,
lim sup sup \Vd))k(x, 1)| =0.

R—00 )50 |x|<R

From (3.24) (with y = 1,k = 0), we further have
sup|| V2@, (-, 1)||L°°(]R") < 00.
A>0

Hence, we deduce that V®,; — V®s = 0 uniformly in R".
The overall C'-convergence of u; = ®; + v to v is thus established.
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5. Generalization to polyharmonic flows

As a future perspective and direction, we use this section to illustrate the robustness of
the current approach and outline an abstract framework for the stability of self-similar
solutions to possible higher-order polyharmonic flows. Suppose the polyharmonic flow, in
the graphical setting, takes the following form:

{ d;u + Au = N[u] onR”" x (0, 00), (5.1)

u(x,0) = up(x) in R",

where A = (—A)™, m > 2, and N [u] is the nonlinear term—see [21] for an example of
the form of N. Furthermore, assume that (5.1) is invariant under the rescaling

1
uy = Iu(kx,kzmt). (5.2)

Then, for the self-similar initial data vo(x) = A~ vg(Ax) with small Lipschitz norm, we
expect the existence of a self-similar solution v(x, ¢) to (5.1), that is,

1
v(x,t) = VoL (x,t) = tﬁv(xt_ﬁ, 1) =: IW\IJ(xt_ﬁ).

One could follow Koch-Lamm’s method to find a unique analytic solution to (5.1)
with initial data of small Lipschitz norm in the following scale-invariant function space:

m—2

k_
Xr = {f(x,t):R” X (0.T) > R ||| fllx; := Y sup t2[|VEV f(x.0)l| o)
k=0 0<t<T
(m—1)p—n—2m m
+sup  sup R 7 [V flLeBreox®r2m/2,R2m)) < OO} (5.3)

xe€R” g<R2m<T

for some p > n + 2m. We anticipate that an approach similar to this paper can show
the stability of the self-similar solution v under bounded (and small) perturbations; more
specifically, for ug = vo(x) + p(x) with || p||Leo®n) < 00 and ||V p||Leo®nr) < €, it holds
that
1 1
i “amy(t2m — = +
Jim 722w, 1) = W) | ok gy =0 Vhk €NT. (5.4)

Moreover, by putting the difference ¥ — v in the weighted space

Xg = {f(x,t) R"x(0,T) > R |
m—2 .
I fllys ==Y sup 27 [|(1 + |x[P)VEV f£(x.0) ]| oo my
T k=0 0<t<T

(m—1)p—n—2m
+sup sup (L xR IV f o (8geyecrom oy < 00,
xeR” 0<R2M<T

(5.5)
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we can similarly gain the equi-decay property which leads to the global convergence
. L L
tll)n;oHt my(tzm x,t) — W(x) Hck(Rn) =0, (5.6)

provided the initial perturbation is small in some appropriate weighted space, for example,
1L+ 1x1P)V pllzooerny < 1.

A. Proof of Lemma 4.4

Before the proof, we first recall some L? estimates concerning the heat kernel i (x, t)
given in (3.3): for 0 < ¢ < oo,

(n+2)—pn n—+ 2

IAllLr®rx(0,0)) St 27 forl < p< . (A1)
(n+2)—(+1)p n+2

IVhllLr@®rx©,u) St 27 forl < p< PR (A2)

and

Lr(R*xR™)

t
|[ [ vyt =9g9dvds
0 n
Slglierxr+y forl < p < oo, (A.3)

where the last is from the theory of singular integrals [40]. The following pointwise estim-
ate will also be used: for all (z,s) € R" x (0,7) \ B ;(0) x (0, %), it holds that

|h(z,5)| + V1|Vh(z, )| +1|V?h(z,5)] < Ct™2 exp(—c%), (A.4)

which follows from the scaling property of the heat kernel.

Proof of Lemma 4.4. 1t suffices to show that if || g, s < 1, then
T

sup [[(1+ [x[P)Sg(x.0) [l Loemny + 1Sgllye S 1.
0<t<T T

For this purpose, we need to estimate |Sg(x,?)|, |VSg(x, )|, and ||V2Sg||Ln+4(QR(x)).
We recall the notation Qr(x) = Br(x) X (RTZ, R?) and further define QRr(x) =
Bgr(x) x (0, RTZ). Without loss of generality, we fix T = 1.

Estimate for Sg. We decompose

sl =[ [ [ =it — (v ndvas

< / + f h(x = y.1 — $)g(y.5)|dyds
0 ;i (x) R”x(0,)\Q 7 (x)
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=L+ 5.
For 1, by the Holder inequality and heat kernel estimate (A.1) with p = % < nniz*
we have
= g 0 g I8040 ) S I, 328 o I 2740 )
6t 1.3

S 1572 | gllLnrsco rooy = 1207 [IgllLraco sy
12 (A.5)
Y1+ x| |

‘We estimate [, as follows:

L= / Ih(x — y.1 — $)g(y.5)|dyds
R x(0,0\Q (%)
° 27" n o —e Xyl
< Y f f 3R |g(y.5)|dyds
— 27m=1t JB _m (z2)
m=0 ,e2-% Jizn 22 i

e
M

ad n e lx=yl
LIS ) / RV g (v, s)ldyds
m=0 e>=% Jizr M=0,e2"% Jrzn Q2
4 Ll

lz—x|=*5 |z—x|>

= I + 1.

To estimate /1, we compute

ad o lx=zl n
msy Yoo (4 1g(y, 9)ldvds
m=0 ;e2~% Jiz" 24 ;i

Vx|
2

lz—x|<

o0
SZ( sup /Qm (Z)t_glg(y,S)ldde)( > e_cﬁ),
i

m=0 \z€2 2on 272 i 2627%«/72'1
f|x| f\x|

lz—x|=5~ l[z—x|<¥5>

where we have used the estimate | Y, a(z)b(z)| < sup, |a(z)| Y_, |b(z)|. Note that

lz—x] lz| m Lo_m
—c —c 2 - 2 ~ mn
E e ‘vt < § e Vi = E:ec\ZIZ N/ e—ClZI2 d": ~ 2%,
n
ze2% Jizn ze2™% Jizn zez"
f\XI

lz—x|<
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while
sup [ 172 |g(y.)|dyds
ze2™ % J1z" -2 f(z)
|z— x|<J|x|
<15 I, lgl
< sup n+4 glLr+4(Q _m  (2)
m n+3
€272 J1Z" @ ‘*I( 2 22V
‘Z x|<xf\x\
| m@=(1+2)(+3) _m 2
<722 26+ sup (272 V)™ glinrae (o))
ze2™ % J1Z" PV
|Z x‘<«[\x\
1 m@=(142)(n+3)

;ZW 1 122 20FH
<t2 n sup
= B~ B

zez_%ﬁZ" I+ |Z| b+ |X|
|z —x|= /2
Hence,
C—(n+2)(n+3)) t2 > 12
121 < T 2m+H 2”’2” = — 2_% s S (A6)
1—|—|X|’3 Z 1+|X|Br;) 1+ |x|f

We estimate /5, as

N\ﬁ

Ig(y s)|dyds

sy oy f

m=0,c,-% sizn’ % i
o

|[z—x|>

<e” glx] Z( sup / ()t_g|g(y,s)|dyds)(
2’%~ﬁz

m=0 \ze2~ 2fZ” “
|z— x|>f|x| |Z—x|>ﬁ|x|

® |
[S1ioY
N
st
v

Then, similar to the computation for /5, we arrive at
> 1
I Se” iy sup —— |2 <eiliz <~ (A7)
“m 1+|z|P 1+ |x|?
m=0 \ze2™ 2 /tZn

Combining (A.5), (A.6), and (A.7), we obtain

sup (1 +|x|?)Sg(x,0)|Loomny S22 < 1. (A.8)
0<t<T



Stability of self-similar solutions to geometric flows 183

We restate the estimate I, here for future usage:

I = / h(x — .1 —$)g(y.)ldyds
R"x(0,0\Q ()

1

n —clx=ol t2
5/ 72V gy s)ldyds £ ———. (A.9)
R x(0,0\Q /;(x) 1+ [x]|
Estimate for VSg.
t
|VSg(x,t)| = ‘[ / Vh(x —y,t —s)g(y,s)dyds
0 JR"
<[ +f [Vhx — y.t = $)g(y.)\dyds
0 ;i(x)  JR™(0,0)\Q f(x)
= J1 + Jz.
For J1, by the Holder inequality, using heat kernel estimate (A.2) with p = Zi‘; < %

we can derive

J1 = ”Vh”L%(Q,ﬁ(O))”g“L"“(Qﬁ(x)) S VA 2t o0 2 18 11E7 400 o0

1

W' (A.10)

2
<V lgllzr+ao sxp =

For J,, we can follow the derivation of (A.9) exactly. The only change is the appearance
of t=% due to the pointwise estimate of VZ in (A.4):

Iy = / Vh(x — y.t — 5)g(v.5)|dyds
R x(0,0\0 ;(x)

n e lx=yl
</ T Jg(ys)ldyds £ ———. (AdD
R7x(0,0\Q ;7 (x) 1+ |x]
Combining (A.10) and (A.11), we have
sup sup (1 + |x|?)|VSg(x.0)| < 1. (A.12)
0<t<1 xeR”
Estimate for V2 Sg. For this, we need to show
2 1
sup R+ ||V2Sg|pn+a < —. A.13)
o IVESeliLrsconen S 7 P (
For this purpose, we compute
2
R (| V2Sg (2, 1) | Lr+4(0 g (x))
5 t
= Rn+a V2h(z—y,t—s ,8)dyds
/0 / (z—y )8g(y,s)dy LA+ n()
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2

—= Rn+a

/1;”X(O,t)\BzR(X)X(R2/4,R2)
Vih(z —y,t — s)g(y,s)dyds‘

)
Byr(x)x(R?/4,R?) Lr+4(Qr(x))

2

= Rw+a / V2h(z — y,t —5)g(y.s)dyds
R"x(0,6)\ Bag (x)x(R2/4,R2) Lr+4(QR(x))
2
+ R+ / V2h(z — y.t —5)g(y.s)dyds
Baor(x)x(R2/4,R2) Lr+4(QR(x))
=K1 + K>.
For K, we have
2
K, = Rw+a / Vzh(z—y,t—s)g(y,s)dyds‘
R7x(0,6)\ Bag (x)x(R2/4,R?) Lr+4(QR(x))
< R o < ! (A.14)
~ 1+ |z|P lLn+sQra ™~ 14 |x|8° :

where we have used again estimate (A.9) for I, but with & replaced by V2h. The 2
factor is due to the pointwise estimate for V2h from (A.4). Note also that R; <t < R2
For K>,

2
K, ;= R+ / V2h(z —y,t —s)g(y,s)dyds‘
Byr(x)x(R?/4,R?) Ln+4(QR(x))
2
S R4 xByrox(R2/4,82) & (2, D | Lr+amaxr,)
2 1
< R\ gl Lo+ (Bog (x)x(R2/4.R2)) < TP (A.15)
where the second inequality is due to (A.3).
Hence, (A.13) holds upon combining (A.14) and (A.15). ]

B. Proof of Lemma 4.7

The strategy here is very similar to Lemma 4.4. The main difference is the usage of
the estimates of the biharmonic kernel b and also the fact that we need to deal with g;
for/ =0,1,2.ForO <k <3andt > 0, we have from (3.14) that

1+ p(r+k) n+4

IV¥bllLr@®rxq.y < Ct forl1<p<- e (B.1)
while for k = 4, the following comes from the theory of singular integrals [40]:
t
|| [ vt —ya—evasds] o o S leligom. B2
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Furthermore, from the scaling property of the kernel, the following pointwise estimate
holds:

4
4 k —% |Z| n /
MO oxp(-cgp): V0.9 ERT X 0.0\ 0100, B

where we recall the notation Q g(x) = Br(x) x (82, R*) and Q' (x) = Br(x) x (0, &)

Proof of Lemma 4.7. The proof is similar to the one given in the previous section. It suf-
fices to show that there exists a C > 0 such that if Z,Z=0 lg:llys =1, then
1,T

2

Y sup (14 x1P) V! Sgr(x. )o@ + V' Sgillys < C.
l=00<t<T T

Without loss of generality, we fix 7 = 1. Note also that Q 4/(x) := B4/;(x) x (1/2.1)
and Q’%(x) = BM(x) x (0,1/2). Now we estimate the relevant quantities.
Estimate for Sg; (I = 0, 1,2). We compute

t
Visaol = |[ [ b=y omidyas
O n

< (/, +/ )V b =yt = s)g1(v.5)ldyds
0 M(O) R”?x(0,1)\Q ‘M(x)

=11+ I».
For I, by the Holder inequality, using kernel estimate (B.1) with p = ni—;j— 7 < %,
we arrive at

I [\ 0] RN ] e =Y\l e g1l 5o

Ln+3+l(Q %(0)) L371(Q 4/,(x) Ln+3+1 (R"x(0,1)) L371(Q 4/,(x)
1
tn+4j4([r)t+l)p t*%(i:rzsl) (1%% ||g1 ” e ) < r4 . B.4)
L3771 (Q 47(x)) 1+ |x|A

For I, we make use of (B.3) and compute

L < [ VIb(x = y.1 — $)gi (. 5)|dyds
R7x(0,0\Q 4/7(x)

lx—

n _ |
< > T iy, 5)ldyds

_lx=yl

o0 o0
s (Z >t )/Q =" e gy (v, 9)|dyds
7" a

P %(x)
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= I + Iz

Again, similar to the previous section, we have

o0
_n+l —cx 2l
In=3% ) e gy (v, 5)|dyds
m=0,,-% Yizn Qz_% ‘%(z)
|z—x|< il

lx=z]

oo
< Z( 3 e”v)( sup /Q ()Igz(y,S)Idde)

cer ¥ Yz zea”® iz 10, g

|z—x|< Yl jo—x|< 4
J o0
ST ) 2( sup 111 ase gl es )
m=0 ser % Yign Ln+3+ (QZ_% %(z)) L3 (QZ_% %(z))
IZ—xIsL;'X‘
o0 m( 1 1
1 2~ r4
5 ’ B.5
X_: 1+ x|~ 1+|x|ﬂ (B.5)
m=0
while for /55,
.- _ntl —c@
EED DY 1T e Vigi(y,s)ldyds
m=0,,-% Yizn Qz_% ‘%(Z)
\z—x|>m

| M

_lx—z|
( > oew )( swp [ |gz(y,s>|dyds)
i - 0 _n, @

ze2 4 %Z" 274 4

Y ze2 %

|z—x|> i@"‘ |z—x|>@

o0
< =" el Z 2% sup +6 gzl n+s )
= e Yign T34 (Qz_% %(z)) L3 (QZ_T ‘%(Z))

1

ket 3R g Lo " (B.6)
= et iz 14+ z|B ~ 1+ |x|8

Combining (B.4), (B.5), and (B.6) leads to

0<t<1 xeRn

2 2
1
sup_sup (1+ x1) Y IV Sgix.0 £ 14 Y Mgl S anlnyﬂ
1=0 =0 b
Estimate for VSg; (I = 0,1, 2). The same computation leads to

sup sup (1 + |x|ﬂ)2|v VSgi(x.1)| S Zugzny,s
0<t<l xeR® 1=0 1=0
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This is essentially the same as going from (A.8) to (A.12). Hence, we just outline the key
computation:

t
VYl Sgi (e )] = | / /R VVb(x — y.1 =)y s)dyds|
0 n

([ +f )IVVb(x — .t = $)g1(y.5)ldyds
Q'%(O) R*x(0,0\Q 4/7(x)

=J1 + Jo.

To estimate J;, by applying the Holder inequality, we use kernel estimate (B.1) with

_ _nt6 n+4
P =547 < a1 ! =0, 1,2, to derive

Vl+1b N
U I N = o
Vl+lb n
=l ||L =5 (R x(0, t))”gl”Lﬁ(Q%(x))
1

< \/_n+6 -
&t L5 (0 4,0 S TF P

For J,, the computation is similar. The extra factor (4 coming from VIH+1p is absorbed
by the 74 in (B.4), (B.5), and (B.6).
Estimate for V?Sg; (I = 0, 1,2). For this, we need to show

1
sup R [|V2H Sg) (2, 1)l oo piyy S —— forl=0,12. (B
0<R4<1 I+ |x|

We first compute

!
IV S g1l L+ (0 p )

a H/R”X(O,t)\BzR(x)X(R4/4,R4)

+/ V2Hip(z — =g (y,s)dyds
Byr(x)<(R*/4,R%) ( Y 81(y.$)dy L"+6(Q r(x))

V2 b(z =yt —5)g1(y, s)dyds

<[/
R %(0,)\B2g(x) X (R*/4,R%) Lm+6(QRr(x))

V2 b(z — y,t —5)gi(y, s)dyds

+|

/1;2R(x)X(R4/4,R4) Lrt6(QR(x))

= K; + K>.

For K, using the same arguments as those for K in the previous section, we get the
pointwise bound

t
14 |z|f’

A=

/ V2Hb(z = y.1 — $)g(y.)|dyds <
R~ X(O,t)\BzR(x)X(R4/4,R4)
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so that

._.
A=

(R'R)™ ~ — (B3
T+ xf '

< Rirs _rr
LF6(QR(x)) 1+ |x|A

-3
H 1+|z|A

where we have used the fact that R74 <t < R*.
For K,, we can focus on the " estimate for V2*! Sg; with g; supported in Qg (x).

First, we recall the Young inequality:

If * gllem@exr+y < ClfllLr@rxr+)I€llLa®r xR+

where 0 < p,g.m <ocand p~! +¢~! = 1 +m~!. Applying the inequality with m =
n+t6 n+4 n+6

n+6p=113 < i a="5%adm=n+6p=172 < 55,9 ="3°, we get
IV2SgollLrtemnx.1)) < = lgoll, »
and [|[V3Sg1||Lrto@nx(0,1)) < = lgll, »
respectively. Hence,
R |V2Sgollprts@ixo,ny.  R7EIVVSgr | ato@ax(o,ny) < m (B.9)

For the L"*® norm of V*4Sg,, by singular integral estimate (B.2) with p = n + 6, we
have that

2
Ri+s / V4b(z —y,t —s5)g (y,s)dyds‘
Byr(x)xX(R*/4,R%) 2 Lr+6(Qr(x))
2 1
< R7¥6 || g2l Ln+o(Byp(x)x (R4 /4,R%)) S TP (B.10)
Combining (B.8), (B.9), and (B.10) gives (B.7), thus completing the proof. [
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