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On derivations of evolving surface Navier–Stokes
equations

Philip Brandner, Arnold Reusken, and Paul Schwering

Abstract. In recent literature several derivations of incompressible Navier–Stokes-type equations
that model the dynamics of an evolving fluidic surface have been presented. These derivations differ
in the physical principles used in the modeling approach and in the coordinate systems in which the
resulting equations are represented. This is an overview paper in the sense that we put five different
derivations of surface Navier–Stokes equations into one framework. This then allows a systematic
comparison of the resulting surface Navier–Stokes equations and shows that some, but not all, of
the resulting models are the same. Furthermore, based on a natural splitting approach in tangential
and normal components of the velocity, we show that all five derivations that we consider yield the
same tangential surface Navier–Stokes equations.

1. Introduction

Navier–Stokes-type equations posed on manifolds is a classical topic in analysis—for
example, see [1, 7, 14, 26, 27]. In recent years there has been a strongly growing interest
in surface Navier–Stokes equations, particularly in physical principles related to these
equations and to tailor-made numerical discretization methods (see [3,8–13,15,17,17,19,
20, 25]). One reason for this recent growing interest lies in the fact that these equations
are used in the modeling of biological interfaces; see the overview paper [28] and the
references therein.

In this paper, we focus on derivations of surface Navier–Stokes equations for evolv-
ing surfaces. In the past few years, several derivations have been presented in the literature
[10–12,15,17] which differ in the physical principles used in the modeling approach and in
the coordinate systems in which the resulting equations are represented. In [10, 11], mass
and momentum conservation laws for material surfaces are used as basic physical princi-
ples, whereas in [15, 17] similar conservation laws of mass and momentum for a material
volume are used and combined with a thin film technique. In [12], the derivation is based
on energy minimization principles. Besides these differences in physical principles, there

2020 Mathematics Subject Classification. Primary 37E35; Secondary 35Q30, 35Q35, 53Z05, 76A20,
76D05.
Keywords. Fluids on surfaces, Navier–Stokes equations on manifolds, differential geometry.



534 P. Brandner, A. Reusken, and P. Schwering

is also a difference in the representation of the resulting flow equations. In some papers,
for example, [2, 10, 17, 18], local coordinate systems (curvilinear coordinates) are used,
whereas in other literature [11, 12, 15] the standard Euclidean basis of R3, in which the
evolving surface is embedded, is used. Such different coordinate systems lead to different
representations of surface differential operators such as a covariant derivative or a sur-
face divergence, and one has to be careful when comparing equations formulated in such
different coordinate systems. Both the local curvilinear and the global Cartesian coordi-
nate system have attractive properties. The local coordinate system can be very useful for
modeling of more complex fluid properties, for example, in certain classes of fluid mem-
branes [10,28] or in flows of liquid crystals [17,18]. The representation in global Cartesian
coordinates is very convenient for the development of numerical simulation methods for
these flow equations.

This is an overview paper in the sense that we put the different derivations of surface
Navier–Stokes equations presented in [10–12, 15, 17] into one framework. Besides the
unified survey of derivations, we also present the following (new) results:

(1) Precise relations of certain relevant differential operators, such as covariant deriva-
tives and surface divergence operators, in different coordinate systems are given.
Most of these can be found or are (implicitly) used at different places in the lit-
erature. Here, we put this into one framework and derive precise relations, for
example, as in Theorem 3.8 and Lemma 3.11.

(2) The presentation in a unified framework allows a systematic comparison of the
resulting surface Navier–Stokes equations. We will conclude that some of these
are identical but also some are different.

(3) A splitting approach in tangential and normal components of the velocity is pres-
ented, which shows that all five derivations that we consider yield the same tan-
gential surface Navier–Stokes equations.

Since the (incompressible) surface Navier–Stokes equations play a fundamental role in the
modeling of interfaces or surfaces with fluidic behavior, we consider a good understanding
of several known surface Navier–Stokes systems to be of major importance.

The remainder of this paper is organized as follows: In Section 2, we define evolv-
ing material surfaces. In Section 3, surface differential operators in different coordinate
systems are defined and compared. Five derivations of surface Navier–Stokes equations,
known from the literature, that differ in the underlying physical principles and in the coor-
dinate systems used, are treated in Section 4. In Section 5, we discuss and compare these
equations. In particular, a splitting of these equations in the tangential and the normal
components is derived and it is shown that all five derivations result in the same tangential
surface Navier–Stokes system.
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2. Evolving material surfaces

We outline how evolving material surfaces are defined. A more precise formal descrip-
tion of the notion “material” is given in, for example, [16]. Let � D �.0/ be a smooth
(at least C 2) connected surface embedded in R3. A material point z 2 �.0/ moves in
time along a trajectory with coordinates x.z; t / 2 R3 and a smooth velocity field
v.x.z; t /; t/ 2 R3. For all z 2 �.0/, the solutions of the initial value problem´

x.z; 0/ D z;
d
dt

x.z; t / D v.x.z; t /; t/
(2.1)

define the evolving surface

�.t/ D
®
y 2 R3 j y D x.z; t /; z 2 �.0/

¯
: (2.2)

The flow mapˆt W �.0/! �.t/, 0 � t � T is defined byˆt .z/D x.z; t /. LetˆU W R2 �
U ! �.0/ be a local parametrization. We assume that the mapping ˆU W U ! ˆU .U / is
a diffeomorphism. The coordinates in U are denoted by � D .�1; �2/. Composition of ˆU
and ˆt yields the mapping

R.�; t / WD ˆt .ˆU .�//; (2.3)

which gives the position of the material point y D ˆU .�/ 2 �.t/ � R3 at time t . In
Section 3.1, we use � ! R.�; t / as a (local) parametrization of �.t/. Note that if the flow
field v is not identically zero, this parametrization is non-constant as a function of t , even
if �.t/ D �.0/ for all t .

The outward pointing normal vector on �.t/ is denoted by n D n.y; t /, and P D
P.y; t / D I � nnT is the projection on the tangential plane at y 2 �.t/. Throughout this
paper, we often delete the argument .y; t / in the notation. For a vector field u on �.t/ we
shall use throughout this paper the notation uT D Pu for the tangential component and
uN D u � n for the coordinate in normal direction, so that

u D uT C uNn on �.t/: (2.4)

If in the particle velocity v.�; t / D vT .�; t /C vN .�; t /n.�; t / we have vN .�; t / D 0 on �.t/,
there is no normal velocity of the surface, which means that the geometry of �.t/ is
stationary and there is only a tangential particle flow field.

We assume that on �.t/ there is a continuous strictly positive particle density distri-
bution denoted by �.y; t /, y 2 �.t/.

In Section 4, based on certain physical principles we derive Navier–Stokes-type equa-
tions that determine the particle velocity field v and the density distribution �. As discussed
in the introduction we will compare derivations in different coordinate systems. Therefore,
in the next section we collect results concerning representations of surface differential
operators in different coordinate systems, which will be used in Section 4.
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3. Coordinate systems and surface differential operators

In this section, we introduce surface differential operators in two different coordinate sys-
tems.

3.1. Coordinate systems

We treat representations of vector fields u W � ! R3 and of operator-valued mappings
T W �! L.R3;R3/, where L.R3;R3/ denotes the space of linear mappings R3! R3, in
two different coordinate systems. The first one is the Cartesian coordinate system corre-
sponding to the standard Euclidean basis in R3, denoted by ¹ye1;ye2;ye3º. The second one is
a curvilinear coordinate system, that we introduce below. Most of the results presented in
this section are standard material that can be found in many textbooks, such as [5,23]. We
use tensor notation and the Einstein summation convention in the following way: using
Latin indices (i; j; k; : : :) we sum over 1; 2; 3, and using Greek indices (˛; ˇ; ; : : :) we
sum up over 1; 2. Partial derivatives with respect to the Cartesian coordinates �˛ in the
standard basis of R2 are denoted by @˛ D @

@�˛
.

In the remainder of this section we take a fixed t . The local parametrization of
� D �.t/ is given by R.�/ D R.�; t /, � 2 U . Hence, R.U / � �.t/. We assume that
this parametrization is an immersion, hence the matrix�

@1R.�/ @2R.�/
�
2 R3�2

has rank two for each � 2 U . Each point y 2 R.U / can be unambiguously written as
y D R.�/ with � 2 U . The two coordinates �˛ of � are called curvilinear or local coordi-
nates of yD R.�/. We introduce the covariant basis of the tangent space at yD R.�/ 2 �
given by g˛ D g˛.�/ WD @˛R.�/ 2 R3. The components of the metric tensor (or first
fundamental form) are defined by

g˛ˇ .�/ WD g˛.�/ � gˇ .�/: (3.1)

The metric tensor is symmetric positive definite. The contravariant basis of the tangent
plane gˇ is defined by g˛ � gˇ D ıˇ˛ . Here, ıˇ˛ denotes the Kronecker symbol. The con-
travariant components of the metric tensor are defined by g˛ˇ .�/ WD g˛.�/ � gˇ .�/. The
following relations hold:

g˛ D g˛ˇgˇ ; g˛ D g˛ˇgˇ ; g˛gˇ D ı
˛
ˇ :

In order to have a basis of R3, we add to the covariant and contravariant basis a third
vector, namely the normal vector (at y D R.�/):

g3 D g3 WD n D
g1 � g2
kg1 � g2k

D
g1 � g2

kg1 � g2k
:

Note that, given the first fundamental form, this determines the choice of the orientation
of the normal vector n. The vectors gi and gi for i D 1; 2; 3 each form a basis of R3.



On derivations of evolving surface Navier–Stokes equations 537

We can (locally) interpret the basis functions gi and gi as functions defined on the sur-
face: gi .y/ WD gi .R.�//, � 2 U . For presentation purposes, it is convenient to identify the
(contravariant) Euclidean basis in R3 with its covariant one, that is, yei WD yei , i D 1; 2; 3.

For a vector field u W � ! R3 we introduce the representations

u D uigi D uigi D yuiyei :

Note that ui D u � gi , ui D u � gi and yui D u � yei hold. The ui (ui ) are called covariant
(contravariant) components or also local coordinates. The yui are the Cartesian coordinates.

For a representation of an operator-valued mapping T W � ! L.R3;R3/, we use the
tensor calculus format (cf. [5, Section 8.4]):

T D Tij .gi ˝ gj / D T ij .gi ˝ gj / D yTij .yei ˝yej /;

with the outer product given by .u˝ v/w D .v �w/u for all u; v;w 2 R3. These represen-
tations define corresponding matrices that are representations of the same linear operator
in different bases. The matrix entries satisfy identities Tij D gi � .Tgj /; T ij D gi � .Tgj /,
yTij D yei � .T yej /, which are called covariant, contravariant and Cartesian components,
respectively. We define the transposed linear operator TT by the relation Tu �wD u �TTw,
where � denotes the Euclidean scalar product in R3. Tensors can also be represented using
mixed components (cf. [5, Section 8.4]). For a symmetric linear operator T (i.e., one such
that T D TT ), we introduce the mixed (between covariant and contravariant) matrix rep-
resentation

T D T ij .gi ˝ gj / D T ij .g
j
˝ gi /:

The relations T ij D gi � .Tgj / D gj � .Tgi / hold.
For a symmetric linear operator T, the sum of its eigenvalues is denoted by tr.T/. Since

eigenvalues are invariant under basis transformations, we have tr.T/ D Ti i D yTi i D T ii .
The projection operator given by P D I � nnT is defined in local coordinates by

P.cigi / WD c˛g˛ . In local coordinates, the splitting given in (2.4) takes the form
uT WD Pu D u˛g˛ and uN D u � n D u3 D u3.

We recall the second fundamental form BD B.y/, y 2 � , also called Weingarten map-
ping or shape operator, which in terms of the covariant components is defined by (cf.
[5, Theorems 8.13-1 and 8.14-1])

b˛ˇ D g3 � @˛gˇ D �@˛g3 � gˇ D bˇ˛: (3.2)

For this symmetric linear operator we have B D PBP. Hence, it follows that the equation
BD bij .gi ˝ gj /D b˛ˇ .g˛ ˝ gˇ / holds. For the mixed components of the second funda-
mental form, the relation bˇ˛ D gˇ�b�˛ holds. Let �1; �2 and 0 be the eigenvalues of B. We
introduce the (doubled) mean curvature � D tr.B/ D �1 C �2 and the Gaussian curvature
K D �1�2. The mean curvature can be represented in mixed components by � D b˛˛ .
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3.2. Surface differential operators

In this section, we recall several surface differential operators. For a given t , we let
� W � D �.t/ ! R be a scalar function, u W � ! R3 be a (not necessarily tangential)
vector field and T W � ! L.R3;R3/ an operator valued mapping. All are assumed to be at
least C 1-smooth. We will study partial derivatives and gradients of �, u and T and diver-
gence operators for u and T. Representations in different bases of uD u.y/ and TD T.y/,
y 2 � are considered. First, in Section 3.2.1, we recall standard definitions and results for
derivatives in their local coordinates representation. Note that in this case the basis used
in R3 depends on the (base) point y. In Section 3.2.2, we list (standard) definitions for
analogous gradient and divergence operators in case of representation in Cartesian coordi-
nates in R3. In Section 3.2.3, we then derive relations between the corresponding operators
in the different representations. In the last part of this section we introduce the material
derivative in a direction along the moving surface, which can also be formulated both in
curvilinear and Cartesian coordinates.

3.2.1. Surface differential operators in curvilinear coordinates. We recall some basic
differential geometry concepts (e.g., [5, Chapter 8]). Note that we have the following
representations in curvilinear coordinates: u D uigi D uigi and T D T ij .gi ˝ gj / D
Tij .gi ˝ gj /. All component functions are differentiable because the basis vectors gi
and gi are smooth. Because R is an immersion, there exist uniquely defined functions
x� WU !R, xu WU !R3 and xT WU !L.R3;R3/ such that the identities x�.�/D �.R.�//,
xu.�/ D u.R.�// and xT.�/ D T.R.�// hold.

Definition 3.1. The partial derivatives @˛ of the scalar function �, the vector field u and
the linear operator T are defined in terms of the corresponding functions x�, xu and xT by

@˛�.y/ WD @˛ x�.�/; @˛u.y/ WD @˛xu.�/; @˛T.y/ WD @˛xT.�/ with y D R.�/:

We now derive representations of these partial derivatives in terms of a curvilinear
coordinate system, which are used at several places in the remainder of this paper. For this
we use the Christoffel symbols (cf. [5, Theorem 8.13-1])

��˛ˇ WD g� � @˛gˇ D ��ˇ˛:

These symbols can also be formulated in terms of the metric tensor (cf. [5, Theor-
ems 8.13-1 and 8.14-1]):

��˛ˇ D
1

2
g�� .@ˇg˛� C @˛gˇ� � @�g˛ˇ /:

Representations of partial derivatives of vector fields in terms of a curvilinear coordi-
nate system are given in the next theorem, taken from [5, Theorem 8.13-1]. We extend
this theorem with an analogous result (see (3.4)) for partial derivatives of operator-valued
functions T W � ! L.R3; T �/, where T � denotes the tangent bundle of � . A proof of
result (3.4) is given in Appendix A.
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Theorem 3.2. For a vector field u, the partial derivatives have the following representa-
tions:

@˛u D @˛.uigi / D .@˛uˇ � �


˛ˇ
u � b˛ˇu3/gˇ C .@˛u3 C bˇ˛uˇ /g

3

D .uˇ j˛ � b˛ˇu3/gˇ C .u3j˛ C bˇ˛uˇ /g
3

D @˛.u
igi / D .@˛uˇ C �ˇ˛u


� bˇ˛u

3/gˇ C .@˛u3 C b˛ˇuˇ /g3

D .u
ˇ

j˛
� bˇ˛u

3/gˇ C .u3j˛ C bˇ˛u
ˇ /g3;

(3.3)

where we use the abbreviations

uˇ j˛ WD @˛uˇ � �


˛ˇ
u ; u

ˇ

j˛
WD @˛u

ˇ
C �ˇ˛u

 ; u3j˛ D u
3
j˛ WD @˛u3:

Let TD T ˛ˇ .g˛ ˝ gˇ /D T˛ˇ .g˛ ˝ gˇ / be a function with values in L.R3; T �/. For
the partial derivatives we have the representations

@T D T ˛ˇ
j
.g˛ ˝ gˇ /C T ˛ˇb˛.g3 ˝ gˇ /C T ˛ˇbˇ .g˛ ˝ g3/

D T˛ˇ j .g˛ ˝ gˇ /C T˛ˇb˛ .g
3
˝ gˇ /C T˛ˇbˇ .g

˛
˝ g3/; (3.4)

where we use the abbreviations

T
˛ˇ

j
WD @T

˛ˇ
C �˛�T

�ˇ
C �ˇ�T

˛�; T˛ˇ j WD @T˛ˇ � �
�
˛T�ˇ � �

�

ˇ
T˛�:

The relation P@˛uD uˇ j˛gˇ for tangential vector fields u motivates the notation uˇ j˛ .
We now recall standard definitions of surface differential operators in curvilinear coor-

dinates [23, 24].

Definition 3.3. For a scalar function � 2 C 1.�;R/, the surface gradient is defined by

r�� WD @˛� g˛:

For a vector field u 2 C 1.�;R3/ we define the ˛-th partial covariant derivative r˛u and
the covariant derivative r�u by

r˛u WD P@˛u; r�u WD r˛u˝ g˛:

The surface divergence of u 2 C 1.�;R3/ and T 2 C 1.�;L.R3;R3// are defined by

div�u WD @˛u � g˛; div�T WD .@˛T/T g˛: (3.5)

Note that there is a transpose in the definition of div�T. The definitions of the surface
gradient, covariant derivative and surface divergence operators above do not depend on
the choice of the parametrization (cf. [23]).

Remark 3.4. Another surface differential operator for a vector field u 2 C 1.�;R3/ that
plays a natural role in this setting is the surface gradient of u, which is defined by
rSu WD g˛ ˝ @˛u (cf. [23]). Note that it maps into the tangent bundle. It is related to
the covariant derivative via r�u D PrTS u (we use the notation rTS u D .rSu/T ). We use
this surface gradient only in the proof of Theorem 3.8.
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Remark 3.5. In [23, 24], the covariant derivative of tangential vector functions u is
defined by r�u WD r˛u ˝ g˛ . In Definition 3.3 we extended this to general (not nec-
essary tangential) vector fields.

Using results from Theorem 3.2 one obtains representations of the ˛-th partial covari-
ant derivative in the covariant basis g˛ in terms of (derivatives of) the contravariant com-
ponents ui in u D uigi :

r˛u D P@˛u D .@˛uˇ C �ˇ˛u

� bˇ˛u

3/gˇ D .u
ˇ

j˛
� bˇ˛u

3/gˇ : (3.6)

This result shows that the notation uˇ
j˛

introduced in Theorem 3.2 is natural, in the
sense that for tangential u we have r˛u D uˇ

j˛
gˇ .

If u is tangential, the relation

r�u D u˛jˇ .g˛ ˝ gˇ / (3.7)

holds, that is, the covariant components of r�u are given by u˛jˇ . This induces an equiv-
alent alternative definition of the covariant derivative that is sometimes used in the litera-
ture. An alternative definition of surface divergence of a vector field can be based on the
relation

div�u D u˛
j˛: (3.8)

In the next lemma, we present an analogous representation result for the divergence of
an operator-valued function. A proof is given in Appendix A.

Lemma 3.6. For T D T ˛ˇ .g˛ ˝ gˇ /, the following holds:

div�T D T ˛ˇ
j˛

gˇ C T ˛ˇb˛ˇg3:

3.2.2. Surface differential operators in Cartesian coordinates. We recall definitions
of surface differential operators in terms of representations in Cartesian coordinates as
in [11]. The partial derivatives with respect to the standard basis ye1;ye2;ye3 in R3, that is,
yD yiyei , are denoted by y@k WD @

@yk
. The gradient of a scalar function f with respect to the

Cartesian coordinates is given by the vector brf WD .y@if /yei . The gradient (Jacobian) of a
vector-valued function u is given bybru WD y@ku˝yek , or in matrix notation .bru/ij Dy@jui .
Note the structural analogy between bru D y@ku˝ yek and the definition of the covariant
derivative r� D P@˛u˝ g˛ (cf. Definition 3.3).

To define Cartesian surface differential operators based on Cartesian representations,
we extend functions defined on the surface to a small open neighborhoodGı.�/ WDGı WD
¹x 2 R3 j dist.x; �/ < ıº with some sufficiently small ı > 0. For a given scalar function �
on � , a smooth extension to a function defined on Gı is denoted by �e . Similar nota-
tion is used for vector fields and operator-valued functions on � . The specific choice of
the extension is not essential; one may use a constant extension along normals. We now
introduce surface differential operators based on the “Cartesian gradient” br, applied to
the extended quantities.
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Definition 3.7. For a scalar function � 2 C 1.�;R/, the surface gradient is defined bybr�� WD Pbr�e:
For a vector field u 2 C 1.�;R3/, we define the covariant derivative br�u bybr�u WD PbrueP:

The surface divergence of u 2 C 1.�;R3/ and T 2 C 1.�;L.R3;R3// is defined bycdiv�u WD tr.PbrueP/; cdiv�T WD cdiv�
�
TTyei

�
yei :

These definitions of the surface differential operators in Cartesian coordinates are
independent of the choice of the extension and only depend on the function values on
the surface. Note that the definition of the surface divergence of the operator-valued func-
tion T in Cartesian coordinates is based on the surface divergence of the vector field TTyei .
In matrix notation, this means that we take the surface divergence of T row-wise, which
agrees with the usual definition in the literature (cf. [3, 8, 11]).

3.2.3. Relations between the surface differential operators in different coordinate
systems. In this section, we derive relations between surface differential operators given
in Definitions 3.3 and 3.7. The results are as expected and have been used (implicitly) at
several places in the literature. We did not find, however, proofs of all these basic results
in the literature. Therefore, we include elementary proofs here.

Theorem 3.8. Let � 2 C 1.�;R/, u 2 C 1.�;R3/ and T 2 C 1.�; L.R3;R3//. For the
surface gradients, covariant derivatives and surface divergence operators defined in Def-
initions 3.3 and 3.7, the following relations hold on �:

r�� D br��; r�u D br�u; div�u D cdiv�u; div�T D cdiv�.TT /: (3.9)

Proof. A proof of the first equality can be found, for example, in [6,23]. For completeness,
we include an elementary proof. Using the chain rule we get, with y D R.�/ 2 � ,

@˛�.y/ D @˛.� ıR/.�/ D @˛.�e ıR/.�/ D y@k�e.R.�//.@˛R.�/ � yek/

D y@k�
e.y/.g˛ � yek/:

Thus, we get

r��.y/ D @˛�.y/g˛ D
�
y@k�

e.y/.g˛ � yek/
�
g˛

D y@k�
e.y/

�
.g˛ � yek/g˛„ ƒ‚ …

Pyek

�
D y@k�

e.y/Pyek D P
�
y@k�

e.y/yek
�
D Pbr�e.y/:

For vector fields, the transposed Jacobian is given bybrT ue D yek ˝ y@kue: (3.10)
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Using the chain rule we get, with y D R.�/ 2 � ,

@˛u.y/ � yei D @˛.u ıR/.�/ � yei

D
�
y@kue.R.�// � yei

��
@˛R.�/ � yek

�
D
�
y@kue.y/ � yei

��
g˛ � yek

�
:

Combining this with (3.10) and using the surface gradient rSu D g˛ ˝ @˛u (cf. Rem-
ark 3.4), we obtain

rSuyei D .g˛ ˝ @˛u/yei D g˛.@˛u � yei / D g˛
�
.y@kue � yei /.g˛ � yek/

�
D .y@kue � yei /Pyek D P.yek ˝ y@kue/yei D PbrT ueyei : (3.11)

Using r�u D PrTS u completes the proof of the relation for the covariant derivative of u.
For the surface divergence of a vector function, we get

div�u D @˛u � g˛ D ı˛ .@˛u � g / D .g˛ � g /.@˛u � g / D Œ.g˛ ˝ @˛u/g � � g

D .rSu g / � g
(3.11)
D .PbrT ueg / � g D .PbrT uePgi / � gi D tr.PbrueP/

D cdiv�u:

For the surface divergence of an operator-valued function T, we have

div�T � yei D ..@˛T/T g˛/ � yei D ı˛ˇyei � ..@˛T/T gˇ / D .g˛ � gˇ /.@˛Tyei / � gˇ

D ..g˛ ˝ @˛Tyei /gˇ / � gˇ D ..g˛ ˝ @˛Tyei /Pgi / � Pgi
D tr

�
P.g˛ ˝ @˛Tyei /P

�
D tr

�
PrS .Tyei /P

�
(3.11)
D tr

�
PbrT .Teyei /P� D tr

�
Pbr.Teyei /P�

D cdiv�.Tyei / D cdiv�.TT / � yei :

Note that in the relation for the surface divergence of T in (3.9), a transpose is needed.
This would vanish if either in Definition 3.3 or in Definition 3.7 one deletes the transpose
in the definition of the surface divergence of T. The results in Theorem 3.8 confirm that
the operators defined in Definition 3.3 indeed do not depend on the parametrization.

The shape operator, given in curvilinear coordinates in (3.2), can be represented in the
Cartesian coordinate system as B D �br�ne (the proof of this is given in Appendix A).

3.2.4. The material derivative. We introduce a derivative in which the time dependence
of the parametrization R.�; t /, � 2 U , is used. Let I D .0; T / be a time interval with
T > 0 small enough so that for all z 2 ˆU .U / � �.0/ the ordinary differential equation
given in (2.1) has a unique solution for t 2 I . We define the (local) evolving surface
�U .t/ D ¹y 2 R3 j y D R.�; t /; � 2 U º, t 2 I . The corresponding space-time manifold
is given by

� D �.U; I / WD
[
t2I

�U .t/ � ¹tº � R4:
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Note that � is parametrized by R W U � I ! � , R.�; t /D .R.�; t /; t/. Given the velocity
v.y; t /, y 2 �U .t/ from (2.1) we define xv.�; t / WD v.R.�; t /; t/, .�; t / 2 U � I . Thus, we
have the relation

xv.�; t / D
@

@t
R.�; t / on U � I: (3.12)

Definition 3.9. Let f 2 C 1.�/ be a scalar or vector function and xf 2 C 1.U � I / be the
function defined by xf .�; t / D f .R.�; t /; t/ for .�; t / 2 U � I . The material derivative
of f on � is defined by

Pf .y; t / WD @t xf .�; t /; y D R.�; t /:

Clearly, this is a definition in terms of the local coordinates � of the surface �.0/.
To obtain a Cartesian representation of the material derivative, we use the same appr-

oach as in the previous section and extend the functions defined on the space-time mani-
fold � to an open neighborhood Gı D Gı.�/, given by Gı D

S
t2I Gı.�U .t// � ¹tº. The

neighborhood Gı.�U .t// of �U .t/ is as defined in the previous section. The next lemma
yields a representation of the material derivative defined above in terms of derivatives with
respect to Cartesian coordinates in R3 � R. The result is well known and easy to prove,
based on application of the chain rule. For completeness, we include an elementary proof.

Lemma 3.10. For � 2 C 1.� ; R/ and u 2 C 1.� ; R3/, let �e 2 C 1.Gı ; R/ and ue 2
C 1.Gı ;R

3/ be corresponding smooth extensions. For the material derivatives of � and u,
the following holds:

P�.y; t / D @t�e.y; t /C br�e.y; t / � v.y; t /; Pu.y; t / D @tue.y; t /C brue.y; t /v.y; t /:

Proof. For .y; t / 2 � , we write y D R.�; t /. We use the chain rule for the function
�e.R.�; t /; t/ D .�e ı F /.t/ with the auxiliary function F W I ! R4; t 7! .R.�; t /; t/

and get

P�.y; t / D @t x�.�; t / D
d

dt
�.R.�; t /; t/

D

3X
kD1

y@k�
e.R.�; t /; t/

� @
@t
R.�; t / � yek

�
C @t�

e.R.�; t /; t/ � 1

D @t�
e.R.�; t /; t/C br�e.R.�; t /; t/ � @

@t
R.�; t /: (3.13)

Using y D R.�; t / and relation (3.12), we obtain

P�.y; t / D @t�e.y; t /C br�e.y; t / � yv.y; t /:
The same arguments can be used to derive the relation for u.
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The material derivative is used, for example, in the Leibniz rule or transport theorem
for an arbitrary material subdomain .t/ � �U .t/:

d

dt

Z
.t/

f ds D

Z
.t/

Pf C f div�v ds; (3.14)

for f 2 C 1.� ;R/.

3.3. Time derivative of first fundamental form

In this section, we consider a time derivative of the first fundamental form, which will be
used in the remainder. The local coordinate system introduced in Section 3.1 depends on
the time variable t (cf. (2.3) and Section 3). In particular, for the covariant basis g˛ D @˛R
we have g˛ D g˛.�; t /, � 2U , t 2 I . Hence, the first fundamental form (cf. (3.1)), depends
not only on � but also on the time variable, g˛ˇ D g˛ˇ .�; t /. The change (as function of
time) of the metric tensor is determined by the velocity field v, which determines the time
dependence of the parametrizationRDR.�; t /Dˆt .ˆU .�// via the flow mapˆt . Using
Theorem 3.2, the following relation for the time derivative of the metric tensor is derived
(recall v D vigi D vigi ):

@

@t
g˛ˇ D @tg˛ � gˇ C g˛ � @tgˇ D @t@˛R � gˇ C g˛ � @t@ˇR D @˛v � gˇ C @ˇv � g˛

D
�
.v j˛ � b˛v3/g C .v3j˛ C b˛v /g

3
�
� gˇ

C
�
.v jˇ � bˇv3/g C .v3jˇ C b



ˇ
v /g3

�
� g˛

D vˇ j˛ C v˛jˇ � 2v3b˛ˇ : (3.15)

For this time derivative of the metric tensor, scaled with a factor 1
2

, we introduce the
notation

E˛ˇ WD
1

2

@

@t
g˛ˇ : (3.16)

For a given .�; t / 2 � , a corresponding linear operator ED E.�; t / W R3! R3 is given by
E WD E˛ˇ .g˛ ˝ gˇ /D E˛ˇ .g˛ ˝ gˇ /. This operator can also be expressed in terms of the
covariant derivatives introduced in Definitions 3.3 and 3.7, as shown in the next lemma. A
proof of this lemma is given in Appendix A.

Lemma 3.11. The following relations hold:

E D
1

2
.r�vCrT� v/ D

1

2
.br�vC brT� v/: (3.17)

4. Derivations of surface Navier–Stokes equations

In this section, we outline five different derivations of surface Navier–Stokes equations
known from the literature [10–12,15,17], which use both different physical principles and
representations in different coordinate systems. In the five subsections below we present,
in a unified framework, the following derivations:



On derivations of evolving surface Navier–Stokes equations 545

(1) In [10], the conservation laws of surface mass and momentum quantities are used
as physical principles. Surface Navier–Stokes equations in curvilinear coordinates
are derived.

(2) In [11], the same conservation laws of surface mass and momentum quantities as
in [10] are used and surface Navier–Stokes equations in Cartesian coordinates in
R3 are derived.

(3) In [12], the same surface mass conservation law as in [10,11] is used. Instead of a
surface momentum conservation principle, a variational energy principle is used.
The equations are derived in Cartesian coordinates in R3.

(4) In [15], the conservation laws of volume mass and momentum quantities are used
as physical principles in a thin tubular neighborhood of the (evolving) surface.
Combined with a thin film limit procedure, surface Navier–Stokes equations are
derived in Cartesian coordinates.

(5) In [17], the same physical principles of volume mass and momentum conservation
in a thin tubular neighborhood as in [15] are used. The resulting volume Navier–
Stokes equations are represented in a thin film curvilinear local coordinate system.
A thin film limit procedure is applied to derive tangential surface Navier–Stokes
equations in curvilinear coordinates.

In the approaches (1), (2), (4), and (5), one uses an ansatz for the viscous stress tensor,
namely, the standard Newtonian tensor in (4) and (5) and the Boussinesq–Scriven tensor
in (1) and (2). In (3) an ansatz for the viscous surface dissipation energy is used. Below
we outline only the key ideas of the derivations and refer to the corresponding papers for
more details.

4.1. Surface mass and momentum conservation in curvilinear coordinates

In this section, a derivation of surface Navier–Stokes equations along the same lines as
in [10] is presented. In that paper, the resulting surface Navier–Stokes equations are for-
mulated in tensor calculus without using surface differential operators like r� and div� .
To be able to compare the resulting equations with those obtained in the other approaches,
we rewrite these using the differential operators introduced in Section 3.2.1 and results
derived in Section 3.3.

In the approach outlined in this section, the unknowns are the evolving surface �.t/,
the surface (tangential and normal) velocity v and the surface pressure p.

The derivation is based on conservation laws of mass and momentum. We assume
the surface to be inextensible, that is, d

dt

R
.t/

1 ds D 0 holds for an arbitrary material
subdomain .t/ � �.t/. The Leibniz rule (3.14) and the arbitrariness of .t/ yield

div�v D 0: (4.1)
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Let � denote the surface mass density. Conservation of mass, the Leibniz rule and
div�v D 0 lead to

0 D
d

dt

Z
.t/

� ds D

Z
.t/

P� ds:

Arbitrariness of .t/ and a smoothness assumption on � imply P� D 0. Hence, if � is
constant on �.0/, which we assume here, it follows that the surface mass density � is
constant on the evolving surface �.t/.

As an ansatz for surface momentum conservation, the equation

d

dt

Z
.t/

�v ds D F..t// (4.2)

is used, with a force F decomposed into external area forces acting on .t/ and internal
forces acting on the boundary @.t/.

Remark 4.1. The (surface) integral of a vector-valued function
R
.t/

u ds (cf. (4.2)) is
defined in the usual way. We choose a fixed (not necessarily orthogonal) basis of R3, say
w1;w2;w3. For u.s/ D ui .s/wi , we then define

R
.t/

u.s/ ds D wi
R
.t/

ui .s/ ds. The
results derived below are independent of the choice of w1;w2;w3.

We collect the external forces, consisting of normal and shear stresses, in the force
term f D f ˛g˛ C fNn. For the internal forces the Cauchy ansatz is made, that is, we
assume that these forces are of the form T� with a stress tensor T and � the in-plane unit
normal on @.t/. Using T� D T ˛ˇ�˛gˇ , the total net force on .t/ can be written as

F..t// D
Z
.t/

f ds C
Z
@.t/

T ˛ˇ�˛gˇ ds: (4.3)

As in [10], we apply the Leibniz rule on the left-hand side of (4.2) and Green’s formula
on the boundary integral of the right-hand side of (4.3). Using div�v D 0, this yieldsZ

.t/

� Pv ds D
Z
.t/

fC T ˇ˛
jˇ

g˛ C T ˛ˇb˛ˇn ds:

Due to the arbitrariness of .t/, we obtain the following system of surface partial differ-
ential equations (cf. [10, (31)]):

�.Pv � g˛/ D f ˛ C T ˇ˛
jˇ
; �.Pv � n/ D fN C T ˛ˇb˛ˇ ; (4.4)

which consists of two equations for tangential velocity change Pv � g˛ and one equation
for velocity change in normal direction Pv � n. As an ansatz for the stress tensor T, the
Boussinesq–Scriven form (in curvilinear coordinates)

T ˛ˇ D �pg˛ˇ C 2�0E
˛ˇ (4.5)
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is used, which involves the surface pressure p, the viscosity coefficient �0 and the time
derivative of the metric tensor E˛ˇ (cf. (3.16)). Equations (4.1), (4.4) and (4.5) form
the surface Navier–Stokes system derived in [10]. Note that the evolution of the surface
depends on the unknown velocity v as described in (2.1)–(2.2).

To be able to compare this surface Navier–Stokes system, which is formulated in terms
of curvilinear coordinates, to equations derived in the sections below, we rewrite these
equations using surface differential operators (cf. Definition 3.3). From Lemma 3.11, we
obtain for the rate of strain tensor E D E˛ˇ .g˛ ˝ gˇ / the representation

E D E.v/ D
1

2
.r�vCrT� v/;

and thus the operator representation

T D �pPC 2�0E (4.6)

for the stress tensor. From Lemma 3.6, we get that the equations in (4.4) can be rewritten
as

� Pv D fC div�.T/:

Using this and the identity div�.pP/ D r�p C p�n, we obtain the following repre-
sentation of the surface Navier–Stokes system (4.1), (4.4)–(4.5) in terms of the surface
differential operators as in Definition 3.3. For a given initial surface �.0/, viscosity �0,
force term f and a constant surface mass density �, find v, p and �.t/, parametrized
by x.z; t / (cf. (2.2)), such that8̂̂<̂

:̂
� Pv D f � r�p � p�nC 2�0 div�E.v/ on �.t/;

div�v D 0 on �.t/;
d

dt
x.z; t / D v.x.z; t /; t/; x.z; 0/ D z 2 �.0/:

(4.7)

4.2. Surface mass and momentum conservation in Cartesian coordinates

We recall the model derived in [11]. It is based on the same fundamental laws of sur-
face continuum mechanics as in the previous section. The formulation of the equations,
however, is in Cartesian coordinates in R3. Hence, the surface differential operators (br�
and cdiv� ) used are as in Definition 3.7. The material derivative Pv is defined in Cartesian
coordinates as formulated in Lemma 3.10.

As in the previous section, the unknowns are the evolving surface �.t/, the surface
(tangential and normal) velocity v and the surface pressure p.

Using the Leibniz rule, the inextensibility condition d
dt

R
.t/

1 ds D 0 yields

cdiv�v D 0: (4.8)

From mass conservation d
dt

R
.t/

� ds D 0 we obtain, with the same arguments as in the
previous section, that � remains constant on �.t/ if it is constant on �.0/. We now consider
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the conservation of surface momentum, expressed by the equation

d

dt

Z
.t/

�v ds D
Z
.t/

f ds C
Z
@.t/

f� ds; (4.9)

with a contact force term f� on @.t/ and an area force term f. The integrals are defined
as in Remark 4.1. As in the previous section, for the contact force term we use a Cauchy
ansatz and Boussinesq–Scriven ansatz:

f� D T�; T D �pPC 2�0E.v/; E.v/ D
1

2
.br�vC brT� v/: (4.10)

Lemma 3.11 shows that the definition of the rate of strain tensor E equals the one from [10]
(cf. equation (4.6)). From Stokes’ theorem and the identity cdiv�.pP/ D br�p C p�n, we
obtain the momentum balance for .t/:

d

dt

Z
.t/

�v ds D
Z
.t/

f � br�p � p�nC 2�0cdiv�E.v/ ds:

Using the Leibniz rule and combining the result with (4.8), we obtain the following surface
Navier–Stokes system: For a given initial surface �.0/, viscosity �0, force term f and a
constant surface mass density �, find v, p and �.t/, parametrized by x.z; t / (cf. (2.2)) such
that 8̂̂̂<̂

ˆ̂:
� Pv D f � br�p � p�nC 2�0cdiv�E.v/ on �.t/;cdiv�v D 0 on �.t/;

d

dt
x.z; t / D v.x.z; t /; t/; x.z; 0/ D z 2 �.0/:

(4.11)

Based on Theorem 3.8, we conclude that this PDE system is exactly the same as in (4.7).
This is not surprising, since the derivations of the two systems start from exactly the same
physical principles.

4.3. Energetic variational principle in Cartesian coordinates

In this section, we summarize the variational approach presented in [12] to derive a surface
Navier–Stokes system. This derivation is performed in Cartesian coordinates in R3.

It is assumed that �.t/ is a closed surface and that the geometric evolution in terms of
the normal velocity V� of �.t/ is given, that is,

v � n D V� : (4.12)

Hence, in this approach the unknowns are the tangential component of the velocity v and
the surface pressure p.

First, in exactly the same way as in the sections above, inextensibility and mass con-
servation lead to the equation cdiv�v D 0 (4.13)
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(in Cartesian coordinates) and the fact that � is constant on � . Instead of a momentum
conservation ansatz as in [10, 11] (cf. equations (4.2) and (4.9)), an energetic variational
approach based on the so-called Least Action and Minimum Dissipation Principles is
used. We outline the key steps.

The so-called action integral (“kinetic energy”) is defined by

A.x/ WD
Z T

0

Z
�.t/

1

2
�jv.x; t /j2 dx dt:

Recall that x D x.z; t / 2 �.t/, z 2 �.0/, are the particle trajectories and v.x; t / the cor-
responding velocity fields (cf. (2.1)). Note that �.t/ and v are uniquely determined by
the trajectories x.z; t /. The variation of the action integral with respect to x.z; t / can be
formally written as

DxA.x/.w/ D
Z T

0

Z
�.t/

Fcons � w ds dt DW hFcons;wi

for a “suitable” class of admissible velocities w. This relation defines a conservative
force Fcons (cf. [29]). In [12, Theorem 1.5], it is shown that under reasonable assump-
tions,

Fcons D �� Pv (4.14)

holds. Another force, the so-called dissipation force, is derived from variation of “surface
viscosity” energy, which is modeled by the functional

Ediss.v/ D �
Z T

0

Z
�.t/

�0jE.v/j2 ds dt; (4.15)

with viscosity coefficient �0 and a rate of strain tensor E as in (4.10) (cf. [12]). Variation
with respect to the velocity field v leads to the dissipation force

DvEdiss.v/.w/ D hFdiss;wi;

for a “suitable” class of admissible velocities w (cf. [29]). In [12, Theorem 1.6], the rela-
tion

Fdiss D 2�0cdiv�E.v/ (4.16)

is derived. The Onsager principle (cf. [21, 22, 29]) states that the dynamic of a system
is determined by a competition between internal energy (here, the kinetic energy) and
dissipation. In our setting, the corresponding equation is formally given by

DxA D �DvEdiss (4.17)

(cf. [12, p. 385]). This implies hFcons C Fdiss;wi D 0 for all admissible velocity fields w.
Due to the fact that we consider incompressible surface flows, we restrict to velocity
fields w with cdiv�w D 0. The following corollary is based on [12, Lemma 2.7]:
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Corollary 4.2. Let g 2 C.�/3 be such that hg;wi D 0 for all w 2 C1.�/ with cdiv�wD 0.
Then, there exists p 2 C 1.�/ such that

g D br�p C p�n:

Applying this corollary, we obtain Fcons C Fdiss D br�p C p�n for a suitable (pres-
sure) function p. By combining this with (4.12), (4.13), (4.14) and (4.16), one obtains the
following surface Navier–Stokes equations (with given normal velocity V� , viscosity �0
and a constant surface mass density �):8̂̂<̂

:̂
v � n D V� on �.t/;

� Pv � 2�0cdiv�E.v/ D �br�p � p�n on �.t/;cdiv�v D 0 on �.t/:

(4.18)

There is the following subtle issue, also discussed in [12]: Due to the fact that the surface
normal velocity is given, system (4.18) in general is an overdetermined system. In fact,
in (4.18) there are four unknowns: the velocity (having essentially three unknowns) and the
pressure. There are, however, five equations including incompressibility and the redundant
first equation. To obtain a closed system, the equations can be “projected” to get a system
for the tangential velocity and the pressure. This is further explained in Section 5.

4.4. Thin film approach in Cartesian coordinates

A different approach for deriving surface Navier–Stokes equations, based on a thin film
limit procedure, is introduced in [15].

As in the previous section, it is assumed that �.t/ is a closed surface and that the
geometric evolution in terms of the normal velocity V� of �.t/ is given. Hence, in this
approach the unknowns are the tangential component of the velocity and the surface pres-
sure.

Around this surface, a thin film domain �".t/ WD ¹x 2 R3 j dist.x; �.t// < "º with
a sufficiently small " > 0 is defined, which evolves with constant thickness and such
that the surface remains located in the middle of this domain. In this evolving thin film,
the incompressible three-dimensional Navier–Stokes equations with appropriate boundary
conditions on @�".t/ are given. These equations describe mass and momentum conserva-
tion in the volume domain�".t/. One then studies the limit of the thickness going to zero
and the resulting surface equations. In [15], these limit equations are derived using formal
asymptotic expansions (in the parameter "). We outline a few key steps in the derivation
and refer to [15] for further explanations.

The signed distance function to �.t/ is denoted by d.�; t /. For " sufficiently small, the
closest point projection of x 2 �".t/ is given by �.x; t / D x � d.x; t /n.x; t /. We define
the space-time domain Q";I and its boundary @Q";I by

Q";I WD
[
t2I

�".t/ � ¹tº; @Q";I WD
[
t2I

@�".t/ � ¹tº: (4.19)



On derivations of evolving surface Navier–Stokes equations 551

The unit outward normal vector n".x; t / and outward normal velocity V".x; t / on @�" are
given by

n".x; t / D

´
n.�; t/; if d.x; t / D ";
�n.�; t/; if d.x; t / D �";

V".x; t / D

´
V�.�; t/; if d.x; t / D ";
�V�.�; t/; if d.x; t / D �";

with � D �.x; t / and where V� is the normal velocity of the surface �.t/.
We consider an incompressible Navier–Stokes system in Q";I with (perfect slip)

Navier boundary conditions:

@tv" C .v" � br/v" C brp" D �0cdiv.brv"/ in Q";I ;cdiv v" D 0 in Q";I ;

v" � n" D V" on @Q";I ;

ŒE3.v"/n"�tan D 0 on @Q";I ;

(4.20)

where Œa�tan denotes the tangential component to @�".t/ of a vector a 2 R3 and E3.v/ WD
1
2
.brvCbrT v/ the rate of strain tensor. We use the notation E3.�/ to distinguish this three-

dimensional rate of strain tensor from the surface rate of strain tensor E.�/ used in the
previous sections. The differential operators cdiv, br (cf. Section 3.2.2) are the usual ones
in R3 and @t is the usual time derivative. Note that here (following the presentation in [15])
the density is scaled to � D 1, but this is not essential.

The system defines the velocity v" and pressure p" of a fluid in Q";I . To derive equa-
tions defining the velocity of the fluid on �.t/ only, consistent with (4.20) and depending
only on values of functions on �.t/, formal asymptotic expansions are assumed. More
precisely, it is assumed that for the solution pair .v"; p"/, there exist vector fields v, v1, v2

and scalar functions p, p1 such that

v".x; t / D v.�; t/C d.x; t /v1.�; t/C d.x; t /2v2.�; t/C r.d3/; (4.21a)

p".x; t / D p.�; t/C d.x; t /p1.�; t/C r.d2/: (4.21b)

Here, r.dk/ D r.d.x; t /k/ denotes a higher-order term (cf. [15]). The analysis in [15]
is not rigorous in the sense that it is not clear under which assumptions, if any, such
expansions exist. These expansions are substituted in (4.20) to derive equations for the
zero-order terms v and p.

A key ingredient to obtain surface Navier–Stokes equations from the Navier–Stokes
system in the thin film domain Q";I is the following lemma (cf. [15, Lemma 2.7]):

Lemma 4.3. Let � be a scalar and u a vector-valued function on � . The derivatives of
the composite functions �.�.x; t /; t/ and u.�.x; t /; t/ with respect to x and t are of the
form br�.�; t/ D .br��/.�; t/C d.x; t /ŒBbr���.�; t/C r.d.x; t /2/;

@t�.�; t/ D
d

dt
�.�.x; t /; t/C d.x; t /.br�V� � br��/.�; t/C r.d.x; t /2/;
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and

bru.�; t/ D .bruP/.�; t/C d.x; t /ŒbruB�.�; t/C r.d.x; t /2/;

@tu.�; t/ D
d

dt
u.�.x; t /; t/C d.x; t /Œbrubr�V� �.�; t/C r.d.x; t /2/;

for .x; t / 2 Q";I and with � D �.x; t /.

Substituting expansions (4.21) into the Navier–Stokes equations, collecting zero- and
first-order (in ") terms and using Lemma 4.3, the following result is derived in [15, Sect-
ion 4]:

Theorem 4.4. Let v" and p" satisfy the Navier–Stokes equations (see (4.20)) in the mov-
ing domain �".t/ with given normal velocity V� . Then, the zeroth-order velocity field v
and the zeroth- and first-order terms p and p1 satisfy the following equations on �.t/:8̂̂<̂

:̂
v � n D V� ;
Pv D �br�p � p1nC 2�0cdiv�E.v/;cdiv�v D 0:

(4.22)

Here, the surface rate of strain tensor E is as in (4.10).

We briefly discuss the result of Theorem 4.4. Comparing (4.22) with (4.18), we see that
instead of �p�n in (4.18) we now have p1n and an additional equation v � nD V� , with a
given V� . In (4.22) we then have a closed system for the unknowns v;p;p1. The redundant
equation v � nD V� can be eliminated and a “projected” system for the tangential velocity
and surface pressure p can be derived. This is further discussed in Section 5.

We now indicate why in (4.22) the first-order term p1 arises. From differentiation of
expansion (4.21b), we get for a fixed t 2 I :

brp".x; t / D brŒp.�; t/�C brŒd.x; t /p1.�; t/�C r.d/
D br�pe C brd.x; t / p1.�; t/C d.x; t /brŒp1.�; t/�C r.d/
D br�pe C n.x; t /p1.�; t/C r.d/; (4.23)

with � D �.x; t / and d D d.x; t /. For " ! 0 we obtain the relation brp" D br�p C
p1n. Hence, we expect br�p C p1n, and not only br�p, to occur in (4.22). Analogous
to (4.23) we get, for "! 0, expressions for brv" and cdiv.brv"/ that containv1 and v2. The
functions v1 and v2, however, do not occur in the surface Navier–Stokes system (4.22).
This is based on the relations

v1 D �.r�v/n; v2 D �
1

2

�
Br�vCr�v1

�
n D 0

(cf. [15, Remark 4.5]). Therefore, the resulting system of equations (see (4.22)) has (only)
the unknowns v, p and p1.
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4.5. Thin film approach in curvilinear coordinates

Similar to the modeling approach outlined in the previous subsection, the authors of [17]
derive tangential surface Navier–Stokes equations based on a thin film limit procedure.
Instead of using Cartesian coordinates, a three-dimensional curvilinear thin film coordi-
nate system is used. In the subsections below, we outline this approach and the resulting
surface Navier–Stokes equations.

As in the previous section, it is assumed that the evolution of �.t/ is known a priori
through a given normal velocity V� . Furthermore, an evolving thin film domain �".t/ is
given, which has constant thickness with the surface located in the middle of this domain.

4.5.1. Thin film curvilinear coordinate system. We introduce a surface parametriza-
tion, different from the one in (2.1)–(2.2), based on the normal velocity field [4]. More
precisely, we consider the initial value problems given in (2.1) with the velocity field v
replaced by V�n and a corresponding flow map (cf. Section 2) denoted by ˆnt . Instead of
the parametrization in (2.3), we use Rn.�; t / WD ˆnt .ˆU .�//. A natural parametrization
of the thin film domain �".t/ is given by

zRn.�; �; t/ WD Rn.�; t /C �n.�; t /; (4.24)

with � 2U , � 2 .�"; "/. Based on this thin film parametrization, we introduce—analogous
to Section 3—curvilinear coordinates and representations of differential operators in these
coordinates. Note that in Section 3 we used a two-dimensional surface parametrization
with first fundamental form denoted by g˛ˇ , whereas in this section we have a three-
dimensional parametrization of the tubular domain �".t/. As in the previous sections, we
use Greek letters to sum over 1; 2 and Latin letters to sum over 1; 2; 3. Partial derivatives
are denoted by @i , that is, @i D @

@�i
, i D 1; 2, @3 D @

@�
. We introduce the covariant basis

Gi D @i zRn, the corresponding contravariant basis Gi , the metric tensor Gij WD Gi � Gj
and the Christoffel symbols �kij WD

1
2
Gkl .@iGjl C @jGil � @lGij /. Derivatives in curvi-

linear coordinates .�; �/ can be defined completely by analogy with Section 3.2.1. For a
scalar function �, we define the gradient r� WD @i�Gi ; for a vector field u, we define the
(covariant) derivative ru D @iu ˝ Gi and the divergence div u WD @iu � Gi ; and for an
operator-valued function T, the divergence div T D .@iT/TGi . Using the fact that these
operators do not depend on the choice of the parametrization (cf. [5]), one obtains the
following relations with differential operators in Euclidean three-dimensional space, for
which we used the b notation (cf. Section 3.2.2):

r� D br�; ru D bru; divu D cdivu; divT D cdiv.TT /; (4.25)

where cdivT WD cdiv.TTyei /yei is the usual row-wise divergence of a tensor. Below, we use
the notation without b . Analogous to Theorem 3.2 (cf. also equations (3.6)–(3.8)), one
can represent these operators in terms of local components, for example:

.ru/ij D ui jj .Gi
˝Gj /; divu D ui

ji ; divT D T j

i jj
Gi ;
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with

ui jj WD @jui � �
k
ijuk ; u

j

ji
WD @iu

j
C �

j

ki
uk ; T

j

i jk
WD GjlTiljk ;

T
ij

jk
WD @kT

ij
C T lj� ilk C T

il�
j

lk
; Tij jk WD @kTij � Tlj�

l
ik � Til�

l
jk :

When deriving a limit equation in Section 4.5.3 below, it is convenient to relate the
three-dimensional metric tensorGij to a suitable surface metric on �.t/. For the latter, we
use the one induced by the parametrization Rn. With a slight abuse of notation, we use the
same symbols as in Section 3.1; for example, g˛ˇ for the metric tensor induced by Rn.
One can derive the following useful results for these metric tensors [17]:

G˛ˇ D g˛ˇ � 2�b˛ˇ C �
2b˛b



ˇ
; G�� D 1; G�˛ D G˛� D 0;

G˛ˇ D g˛ˇ CO.�/; G�� D 1; G�˛ D G˛� D 0; �


˛ˇ
D �



˛ˇ
CO.�/;

�
�

˛ˇ
D b˛ˇ CO.�/; �

ˇ

˛�
D �

ˇ

�˛
D �bˇ˛ CO.�/; �

�

i�
D �

�

� i
D �

j

��
D 0:

(4.26)

The material derivative is defined as in Section 3.2.4, but now with respect to the
parametrization zRn.�; �; t/:

Pf .y; t / WD @t xf .�; �; t/ D @tf . zRn.�; �; t/; t/; y D zRn.�; �; t/ 2 �".t/: (4.27)

For the velocity field corresponding to the parametrization zRn, we use the notation

wR.y; t / WD
@

@t
zRn.�; �; t/; y D zRn.�; �; t/ 2 �".t/: (4.28)

Using @
@t
Rn.�; t / D .V�n/.Rn.�; t /; t/, it follows that wR D V�n C O.�/ holds. The

material derivative can be reformulated in Cartesian coordinates as

Pf .y; t / D @tf .y; t /Crf .y; t / � wR.y; t /; y 2 �".t/: (4.29)

4.5.2. Navier–Stokes equation in thin film. In [17], the authors derive a surface
Ericksen–Leslie model, starting from a simplified local three-dimensional Ericksen–Leslie
model (cf. [17, (B1)–(B3)]) in the given evolving thin film domain �".t/. We simplify
these equations by taking � D 0 in equation (B1). The resulting surface Navier–Stokes
equations are similar to the ones in Section 4.4. Note, however, that in that section we
used Cartesian coordinates, whereas in this section curvilinear thin film coordinates are
used. The space-time domain is as defined in (4.19). The thin film Navier–Stokes system
from [17] is given by

@txv" Cruv" D �rp" C �0�v" in Q";I ;

div v" D 0 in Q";I ;

v" � n" D ˙V� on @Q";I ;

ŒE3.v"/n"�tan D 0 on @Q";I ;

(4.30)
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with V� the given normal velocity of �.t/, the Laplace operator�v" WD divrv"Crdivv",
the tangential component to @�".t/ denoted by Œ��tan as in (4.20), and the rate of strain
tensor E3.v"/ WD 1

2
.rv" CrT v"/. In [17], this rate of strain tensor is denoted by the Lie

derivative of the metric tensor, Lv"G D rv" CrT v". The time derivative @txv" is defined
in curvilinear coordinates as in (4.27). The direction u used in the directional derivative
ruv" Drv" u is the relative fluid velocity defined by u WD v" �wR, with wR as in (4.28).
Using (4.29) and (4.25), we obtain

@txv" Cruv" D @tv" Crv" wR Crv".v" � wR/ D @tv" Crv"v";

and thus, this is the usual material derivative in Cartesian coordinates; in particular, it is
the same as in (4.20). We conclude that the two volume Navier–Stokes systems, (4.30)
and (4.20), are equal.

4.5.3. Tangential surface Navier–Stokes system. Using the curvilinear coordinate sys-
tem, a tangential limit system (" # 0) of (4.30) is derived in [17]. We sketch the key
ingredients of the derivation.

To simplify the notation, we write v instead of v" for the velocity in the thin film
domain �".t/. Hence, different from the notation used in the previous sections, v now
denotes a velocity defined in the volume instead of on the surface. In this section, we
use vT to denote a tangential velocity defined only on the surface.

The covariant components of the rate of strain tensor are given by 1
2
.vj ji C vi jj /. The

homogeneous Navier boundary condition can be rewritten as

v˛j� C v� j˛ D 0 on @�".t/: (4.31)

Using this, Taylor expansions, and the results in (4.26), the following relations can be
derived:

v� j� j� D O."2/; .E3.v//˛� j� D O."2/;

@� .E3.v//˛� j� D O."2/; .E3.v//˛� j� j� D O."2/
(4.32)

(cf. [17, (B9)–(B11), (B13)]). On � , we denote the tangential component of the velocity
by vT , that is,

vT D .vT /˛g˛ D .v˛g˛/j� D Pvj� 2 T 1�:

The following identity holds (cf. [17, (B18)]):

v˛jˇ j� D .vT /˛jˇ � vN b˛ˇ : (4.33)

We aim to derive equations for vT and p D p"j� on the surface. We first consider the
second equation of (4.30). Using (4.32) and (4.33), the following relation can be derived
(cf. [17, (B22)]):

0 D .divv/j� D div�vT � vN � CO."2/: (4.34)
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We now treat the projection of the material derivative in the first equation of (4.30). Using
uj� D Pvj� , (4.33) and .vT /ˇ .vT /˛jˇg˛ D .r�vT /vT DW rvT

� vT , we obtain for the tan-
gential part of the directional derivative ruv

Œruv�˛j� D uiv˛ji j� D vˇv˛jˇ j�
D .vT /

ˇ
�
.vT /˛jˇ � vN b˛ˇ

�
D Œr

vT
� vT � vNBvT �˛: (4.35)

Using @t zRnj� D vNn and the splitting vD v˛@˛ zRnC v�n", the following relation for the
tangential component of the time derivative can be derived (cf. [17, (B24)]):

Œ@txv�˛j� D g˛ˇ@t .xvT /ˇ � vN .b˛ˇ .vT /ˇ C @˛vN /: (4.36)

From (4.35) and (4.36), we obtain (cf. [17, (B26)]):

P.@txvCruv/j� D .@t .xvT /˛/g˛ CrvT
� vT � vN .2BvT Cr�vN /: (4.37)

For the pressure term p D p"j� in (4.30), we get:

P.rp"/j� D r�p: (4.38)

Finally, we consider the projection of the Laplacian in the first equation in (4.30). For a
solenoidal vector field we have

P.�v/j� D ..�v/˛g˛/j� D 2
�
.divE3.v//˛g˛

�
j� :

Using (4.32), the following relation can be derived (cf. [17, (B17)]):

.divE3.v//˛j� D gˇ
�
..E3.v//˛ j�/jˇ � b˛ˇ .E3.v//� j�

�
CO."2/

D gˇ
�
.E3.v//˛ j�

�
jˇ
CO."2/:

Using .E.vT //˛ D 1
2
..vT /˛j C .vT / j˛/, we get

.E3.v//˛ j� D
1

2
.v˛j C v j˛/j� D

1

2
..vT /˛j C .vT / j˛/ � vN b˛

D .E.vT / � vNB/˛ :

Combining these results, we obtain

P.�v/j� D 2
�
.divE3.v//˛g˛

�
j�

D 2gˇ
�
.E3.v//˛ j�

�
jˇ

g˛ CO."2/

D 2gˇ .E.vT / � vNB/˛ jˇg˛ CO."2/

D 2.E.vT / � vNB/ˇ�
jˇ
g˛�g˛ CO."2/

D 2.E.vT / � vNB/ˇ�
jˇ

g� CO."2/

D 2P div�.E.vT / � vNB/CO."2/: (4.39)

Here, we used Lemma 3.6 in the last equation.
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Remark 4.5. Note that (4.39) seems to differ from the first equation of (B21) in [17].
However, different definitions of the surface divergence operators for operator-valued
functions are involved. Let fdiv� be the surface divergence operator used in [17]. For an
operator-valued function T, the relation

fdiv�T D P div�T

holds. Using this and 2E.vT / D r�vT C rT� vT , it follows that the first identity
in [17, (B21)] and equation (4.39) coincide.

Combining results (4.37), (4.38), (4.39), (4.34) and considering the thin film limit
" ! 0, we obtain the tangential Navier–Stokes equations on the surface �.t/ in local
coordinates (cf. [17, (B27)–(B28)]):´
.@t .xvT /

˛/g˛ CrvT
� vT � vN .2BvT Cr�vN / D �r�p C 2�0P div�.E.vT /�vNB/;

div�vT D vN �:
(4.40)

Using @txvT D .@t .xvT /˛/@˛Rn C .vT /˛@˛@tRn, we obtain for the tangential part of the
time derivative

.@txvT /˛ D @txvT � @˛Rn D g˛ˇ@t .xvT /ˇ � vN b˛ˇ .vT /ˇ :

Hence, the tangential surface Navier–Stokes equations in (4.40) posed on the surface �.t/
can be rewritten as (cf. [17, (B30)–(B31)]):´

P@txvTCrvT
� vT � vN .BvT Cr�vN / D�r�p C 2�0P div�.E.vT /�vNB/;

div�vT D vN �:
(4.41)

5. Discussion of surface Navier–Stokes equations

In this section, we compare the different equations and discuss a directional splitting in
tangential and normal components. For the surface differential operators, we use the ones
withoutb, but this is irrelevant (cf. Theorem 3.8). As already mentioned above, appro-
aches (1) and (2) result in the same system of surface Navier–Stokes equations. We recall
the resulting equations (cf. (4.7), (4.11)), where for convenience we put � D 1:8̂̂<̂

:̂
Pv D f � r�p � p�nC 2�0 div�E.v/ on �.t/;

div�v D 0 on �.t/;
d

dt
x.z; t / D v.x.z; t /; t/; x.z; 0/ D z 2 �.0/:

(5.1)

In approaches (3), (4) and (5), the evolution of the evolving surface is assumed to be
given, and thus the surface parametrization, which is an unknown in (5.1), is a known
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quantity. Approach (3) yields (4.18), which coincides with the first two equations in (5.1),
with f D 0. Due to the fact that the normal velocity is known, this is an overdetermined
system. Below, we derive a (closed) projected system for the tangential velocity (cf. (5.5)).

We recall the system of equations posed on the surface �.t/ resulting from ansatz (4)
(cf. (4.22)): 8̂̂<̂

:̂
v � n D V� ;
Pv D �r�p � p1nC 2�0 div�E.v/;
div�v D 0:

(5.2)

In this system an additional unknown scalar function p1 appears.
In approach (5), (only) a tangential surface Navier–Stokes system on the surface �.t/

is derived, given in (4.41), which we repeat here:´
P@txvTCr�vT vT D�r�pC2�0P div�.E.vT / � vNB/CvN .BvT Cr�vN /;
div�vT D vN �:

(5.3)

In the following, for (5.1) and (5.2) we consider a splitting of the equations for v D vT C
vNn and p in coupled equations for vT , p (“tangential surface Navier–Stokes”) and for
vN (normal velocity); In [11], the relations

PPv D PvT C . Pn � vT /nC vN Pn; Pv � n D PvN � vT � Pn;
n � div�E.v/ D tr.Br�vT / � vN tr.B2/

(5.4)

(cf. [11, Lemma 2.1, (3.9)]) are derived. Using these, we obtain the splitting of the surface
Navier–Stokes equations given in (5.1) into (coupled) equations

PvT D fT � r�p C 2�0P div�E.v/ � .. Pn � vT /nC vN Pn/;
div�vT D vN �;

(5.5)

for the surface pressure p and tangential velocity vT and

PvN D fN C 2�0n � div�E.v/ � p� C Pn � vT
D fN C 2�0

�
tr.Br�vT / � vN tr.B2/

�
� p� C Pn � vT ; (5.6)

for the normal velocity vN . We used the splitting fD fT C fNn. Note that PvT denotes the
material derivative (along v) of vT and not .Pv/T ; similarly for PvN . We call system (5.5)
tangential surface Navier–Stokes equations. Note that in these equations the normal veloc-
ity vN occurs.

Remark 5.1. The variational principle used in [12] to derive system (4.18) (with f D 0)
also directly leads to a tangential surface Navier–Stokes system if the class of “admissible”
velocities w in the defining relations for the force terms Fcons and Fdiss is restricted to
tangential ones, that is, Pw D w. This yields tangential force terms Fcons D ��PPv and
Fdiss D 2�0P div�E.v/ and a tangential momentum equation that is the same as the first
equation in (5.5) with fT D 0.
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From the relation
Pn D �BvT � r�vN (5.7)

(cf. [11, Lemma 2.2]), it follows that no @
@t

is involved in Pn, which indicates that equa-
tion (5.6) determines the time dynamics of the normal velocity vN .�; t /, and thus of the
surface �.t/, whereas the tangential surface Navier–Stokes equations in (5.5) determine
the time dynamics of the tangential velocity vT .�; t /.

We now consider the splitting of the Navier–Stokes system (5.2). Applying the projec-
tion P to the second equation in (5.2), the term p1Pn vanishes and the remaining terms are
the same as in the projected version of the first equation in (5.1). This implies that (5.2)
results in the same tangential surface Navier–Stokes equations as in (5.5) (with fT D 0).
Taking the scalar product of the second equation in (5.2) with n and using the results
in (5.4), one obtains

PvN D 2�0.tr.Br�vT / � vN tr.B2// � p1 C Pn � vT ; (5.8)

that is, similar to the normal velocity equation (5.6), but with p� replaced by the first-order
unknown pressure function p1 (and with fN D 0). From the first equation in (5.2), with
given V� , one obtains the normal velocity vN , which can be substituted in the tangential
surface Navier–Stokes equations, which then determine vT and p. Given vN and vT , the
unknown p1 is determined by (5.8).

Finally, we compare the tangential Navier–Stokes equations in (5.5) with the tangential
equations in (5.3) that result from ansatz (5). Both systems contain the same equation
div�vT D vN �, which results from the inextensibility condition. We now show that the
two tangential momentum equations in (5.5) and (5.3) are also the same if fT D 0. This
can be done as follows: First, note that the material derivative PvT in (5.5) is in general not
tangential. Its normal component is balanced by the term . Pn � vT /n on the right-hand side
in (5.5). This normal component can be eliminated by using the relations n � PvT D�Pn � vT ,
which follows from n � vT D 0, and

PvT D PPvT C .n � PvT /n D PPvT � . Pn � vT /n:

Using this, (5.7) and E.v/ D E.vT / � vNB, the tangential momentum equation in (5.5),
with fT D 0, can be rewritten as

PPvT D �r�p C 2�0P div�E.v/ � vN Pn
D �r�p C 2�0P div�.E.vT / � vNB/C vN .BvT Cr�vN /: (5.9)

The right-hand side of this equation is the same as the right-hand side in (5.3). We now
compare the material derivatives on the left-hand sides. Applying Lemma 3.10, the left-
hand side of (5.9) yields

PPvT D P.@tveT CrveT v/: (5.10)
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For the left-hand side in (5.3) we obtain, using (4.27) and (4.29),

P@txvT Cr�vT vT D P.@txvT CrveT vT /
D P.@tveT C vNrveT nCrveT vT /
D P.@tveT CrveT v/;

and comparing this with (5.10), we observe that the material derivatives also coincide.
Hence, we conclude that the two tangential momentum equations in (5.5) and (5.3) are
the same (for fT D 0).

In summary, we have shown that all five derivations ((1)–(5)) lead to the same tan-
gential surface Navier–Stokes equations (see (5.5)). Derivations (1)–(3) result in the same
equation for the normal velocity, namely, the one in (5.6).

A. Appendix

We give a proof of the second equality in (3.4). The first equality can be derived in the
same way.

Proof of (3.4). The product rule, (3.3), and the symmetry of the Christoffel symbols yield

@T D @T˛ˇ .g˛ ˝ gˇ /C T˛ˇ
�
.@g˛ ˝ gˇ /C .g˛ ˝ @gˇ /

�
D @T˛ˇ .g˛˝gˇ /CT˛ˇ

�
.��˛�g�C b˛ g3/˝gˇ C g˛˝.��ˇ�g� C bˇ g3/

�
D
�
@T˛ˇ � �

�
˛T�ˇ � �

�

ˇ
T˛�

�
.g˛ ˝ gˇ /C T˛ˇb˛ .g

3
˝ gˇ /

C T˛ˇb
ˇ
 .g

˛
˝ g3/

D T˛ˇ j .g˛ ˝ gˇ /C T˛ˇb˛ .g
3
˝ gˇ /C T˛ˇbˇ .g

˛
˝ g3/:

Proof of Lemma 3.6. We represent T in local coordinates as T D T ˛ˇ .g˛ ˝ gˇ /. From
the definition of the divergence and Theorem 3.2, we get

div�T D.@˛T/T g˛D
�
T
ˇ

j˛
.g ˝ gˇ /CT ˇb˛ .g3 ˝ gˇ /CT ˇb˛ˇ .g ˝ g3/

�T g˛

D
�
T
ˇ

j˛
.gˇ ˝ g /C T ˇb˛ .gˇ ˝ g3/C T ˇb˛ˇ .g3 ˝ g /

�
g˛

D T
ˇ

j˛
gˇ .g � g˛„ƒ‚…

ı˛

/C T ˇb˛gˇ .g3 � g˛„ƒ‚…
D0

/C T ˇb˛ˇg3.g � g˛„ƒ‚…
Dı˛

/

D T
˛ˇ

j˛
gˇ C T ˛ˇb˛ˇg3:

Lemma A.1. The shape operator can be represented in Cartesian coordinates by the
matrix B D �br�ne .

Proof. We use Theorem 3.8, Theorem 3.2 and the symmetry of b˛ˇ to derive

�br�ne D �r�n D �r˛n˝ g˛ D �.P@˛n/˝ g˛ D .Pb˛ˇgˇ /˝ g˛ D B:
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Proof of Lemma 3.11. The second equality follows from the equality of the covariant gra-
dients (cf. Theorem 3.8). We prove the first equality. Using (3.7) and (3.3), we get

r�vT CrT� vT D .@˛vˇ � ��˛ˇv� /.g
ˇ
˝ g˛/C .@˛vˇ � ��˛ˇv� /.g

˛
˝ gˇ /:

A direct calculation using (3.3) yields

1

2
.r�.vNn/CrT� .vNn/ D

1

2
.g˛ ˝ P@˛.vNn/C P@˛.vNn/˝ g˛/

D
1

2

�
�vN b˛ˇ .g˛ ˝ gˇ / � vN b˛ˇ .gˇ ˝ g˛/

�
D �vN b˛ˇ .g˛ ˝ gˇ /:

Using these results and (3.15), we obtain

E.v/ D E˛ˇ .g˛ ˝ gˇ / D
�1
2
.v˛jˇ C vˇ j˛/ � vN b˛ˇ

�
.g˛ ˝ gˇ /

D

�1
2
.@ˇv˛ � �

�
˛ˇv� C @˛vˇ � �

�
˛ˇv� / � vN b˛ˇ

�
.g˛ ˝ gˇ /

D
1

2
.@˛vˇ��

�
˛ˇv� /.g

ˇ
˝g˛/C

1

2
.@˛vˇ��

�
˛ˇv� /.g

˛
˝gˇ /�vN b˛ˇ .g˛˝gˇ /

D
1

2
.r�vT CrT� vT /C

1

2
.r�.vNn/CrT� .vNn// D

1

2
.r�vCrT� v/:
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