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Higher integrability of the gradient for
the thermal insulation problem

Camille Labourie and Emmanouil Milakis

Abstract. We prove the higher integrability of the gradient for local minimizers of the thermal
insulation problem: an analogue of De Giorgi’s conjecture for the Mumford–Shah functional. We
deduce that the singular part of the free boundary has Hausdorff dimension strictly less than n � 1.

1. Introduction

We fix a bounded connected set � � Rn. The thermal insulation problem consists in
minimizing the functional

	.A; u/ WD

ˆ
A

jruj2 dLn
C

ˆ
@A

ju�j2 dHn�1
CLn.A/ (1)

among all pairs .A; u/ where A � Rn is an admissible domain and u 2 W 1;2.A/ is a
function such that u D 1 for Ln-a.e. on �. Here, u� is the trace of u on @A.

The problem has been studied by Caffarelli and Kriventsov in [5, 11] and Bucur, Gia-
comini and Luckhaus in [3, 4]. The authors transpose the problem to a slightly different
setting in order to apply the direct method of the calculus of variations. The authors repre-
sent a pair .A; u/ by the function u1A and relax the functional on SBV. The new problem
consists in minimizing the functional

F .u/ WD

ˆ
Rn

jruj2 dLn
C

ˆ
Ju

.u2 C u2/ dHn�1
CLn.¹u > 0º/ (2)

among all functions u 2 SBV.Rn/ such that uD 1Ln-a.e. on�. This new setting is more
suited to a direct minimization since it enjoys the compactness and closure properties
of SBV. In short, there always exist functions u 2 SBV.Rn/ such that uD 1Ln-a.e. on�
and F .u/ < 1. For example, u WD 1B where B is an open ball containing �. In [5,
Theorem 4.2], Caffarelli and Kriventsov prove that the SBV problem has a solution u. A
key property of this solution is that there exists 0 < ı < 1 (depending on n, �) such that
spt.u/ � B.0; ı�1/ and

u 2 ¹0º [ Œı; 1� Ln-a.e. on Rn: (3)
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This property has also been proved in [4]. On another note, some minimality criteria have
been proved by calibrations in [12].

The main goal of the present article is to prove that there exists p > 1 such that
jruj2 2 L

p
loc.R

n n�/ (Theorem 4.1). A parallel property was conjectured by De Giorgi
for minimizers of the Mumford–Shah functional and solved by De Lellis and Focardi in
the planar case [7] and then De Philippis and Figalli [8] in the general case. Our proof
is inspired by the technique of [8] and it relies on three key properties: the Ahlfors-
regularity of the free boundary, the uniform rectifiability of the free boundary and the
"-regularity theorem. In particular, this implies a porosity property which means that the
singular part † of the free boundary has many holes in a quantified way. In contrast to the
Mumford–Shah situation, the "-regularity theorem describes a regular part of the boundary
as a pair of graphs rather than just one graph. The minimizer satisfies an elliptic equa-
tion with a Robin boundary condition at the boundary rather than a Neumann boundary
condition. We present the technique of [8] in a different way by singling out a higher inte-
grability lemma and a covering lemma and by removing the need for [8, Lemma 3.2] (the
existence of good radii). Once we establish the higher integrability of the gradient, we are
also able to conclude that the dimension of† is strictly less than n� 1 (Theorem 5.1). The
link between the higher integrability of the gradient and the dimension of the singular part
has been observed first for the Mumford–Shah functional by Ambrosio, Fusco, Hutchin-
son in [1]. An open question from Caffarelli and Kriventsov hints that for all minimizers
in the planar case, † is empty and the optimal exponent is p D1 (see also Remark 5.2).

2. Generalities about minimizers

2.1. Definition

Notation. Our ambient space is an open set X of Rn. One can think of X as Rn n �.
For x 2 Rn and r > 0, B.x; r/ is the open ball centered in x and of radius r . If there is
no ambiguity, it is simply denoted by Br . Given an open ball B WD B.x; r/ and a scalar
t > 0, the notation tB means B.x; t r/. Given a set A � Rn, the indicator function of A is
denoted by 1A. Given two sets A;B � Rn, the notation A �� B means that there exists
a compact set K � Rn such that A � K � B .

Given u 2 SBVloc.X/, we denote by K the support of the singular part of Du:

K WD spt.ju � ujHn�1 Ju/ (4a)

WD spt.Hn�1 Ju/: (4b)

For x 2 K and r > 0 such that B.x; r/ � X , we define

!2.x; r/ WD r
�.n�1/

ˆ
B.x;r/

jruj2 dLn; (5a)

ˇ2.x; r/ WD
�
r�.nC1/ inf

V

ˆ
K\B.x;r/

d.y; V /2 dHn�1.y/
� 1
2
; (5b)
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where V runs among n � 1 planes V � Rn passing through x. When there is ambiguity,
we will write ˇK;2 instead of ˇ2.

For any open ball B such that B � X , we define a competitor of u in B as a function
v 2 SBVloc.X/ such that v D uLn-a.e. on X nB . We fix a constant ı 2 �0; 1Œ throughout
the paper.

Definition 2.1. We say that u 2 SBVloc.X/ is a local minimizer if

(1) for Ln-a.e. x 2 X , we have u 2 ¹0º [ Œı; ı�1�;

(2) for all open balls B such that B � X and for all competitors v of u in B ,
ˆ
B

jruj2 dLn
C

ˆ
Ju\B

.u2 C u2/ dHn�1
CLn.¹u > 0º \ B/

�

ˆ
B

jrvj2 dLn
C

ˆ
Jv\B

.v2 C v2/ dHn�1
CLn.¹v > 0º \ B/: (6)

As a first consequence, we have that u; u 2 ¹0º [ Œı; ı�1� everywhere in X . In partic-
ular, u � ı everywhere on Su. For all open balls B such that B � X , we have

ˆ
B

jruj2 dLn
C

ˆ
Ju\B

.u2 C u2/ dHn�1 <1: (7)

This shows that jruj2 2 L1loc.X/ and that Su is Hn�1-locally finite in X . In X n Su,
the function u belongs to W 1;2

loc and locally minimizes its Dirichlet energy. Therefore, u is
harmonic (and thus continuous) inX nSu. We conclude that in each connected component
of X n Su, we have either u > ı everywhere or u D 0 everywhere.

2.2. Properties

The next results (Ahlfors-regularity, uniform rectifiability and the "-regularity theorem)
also hold true for the almost-minimizers of [11, Definition 2.1]. We are going to cite [5,
Corollary 3.3 and Theorem 5.1].

Proposition 2.2 (Ahlfors-regularity). Let u 2 SBVloc.X/ be a local minimizer. There exist
constants 0 < r0 � 1 and C � 1 (both depending on n, ı) such that the following holds
true:

(1) For all x 2 X and for all 0 � r � r0 such that B.x; r/ � X ,
ˆ
B.x;r/

jruj2 dLn
CHn�1.K \ B.x; r// � Crn�1: (8)

(2) For all x 2 Su and for all 0 � r � r0 such that B.x; r/ � X ,

Hn�1.K \ B.x; r// � C�1rn�1: (9)
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Corollary 2.3. Let u 2 SBVloc.X/ be a local minimizer. The following statements hold:

(i) We have K D Su D Ju and Hn�1.K n Ju/ D 0.

(ii) The set Au WD ¹u > 0º nK is open and @Au D K.

Proof. It is straightforward to see by definition that K � Ju � Su. On the other hand,
property (9) shows that Su � K. We shall show that Hn�1.K n Ju/D 0. The jump set Ju
is Borel and Hn�1-locally finite in X , so for Hn�1-a.e. x 2 X n Ju,

lim
r!0

Hn�1.Ju \ B.x; r//

rn�1
D 0 (10)

(see [14, Theorem 6.2]). We draw our claim from the observation that this limit contra-
dicts (9).

Consider the set Au. We recall that the function u is continuous in X n K (since it
coincides with u outside Su) and u 2 ¹0º [ Œı; 1� everywhere inX nK. As a consequence,
the sets

Au WD
®
u > 0

¯
nK; (11)

Bu WD
®
u D 0

¯
nK (12)

are open subsets of X nK and thus of X . The space X is the disjoint union

X D K [ Au [ Bu; (13)

where Au and Bu are open and K is relatively closed, so Au � Au [K.
We show that Su � Au. Let us suppose that there exist x 2 Su and r > 0 such that

Au \ B.x; r/ D ;. Then, B.x; r/ nK � ¹u D 0º, so we have u D 0 Ln-a.e. on B.x; r/
and thus x is a Lebesgue point of u, which is a contradiction. We conclude that Su � Au
and in turn, K � Au so Au D Au [K.

Now, we are going to apply [6] to show that K is locally contained in a uniformly
rectifiable set. We underline that our local minimizers are not quasiminimizers as in [6,
Definition 7.21]. We show in Appendix B that the results of [6] also apply to our local
quasiminimizers (see Remark B.4).

Proposition 2.4 (Uniform rectifiability). Let u 2 SBVloc.X/ be a local minimizer. There
exists 0 < r0 � 1 (depending on n, ı) such that the following holds true: For all x 2K and
0 < r � r0 such that B.x; r/ � X , there is a closed, Ahlfors-regular, uniformly rectifiable
set E of dimension n � 1 such that K \ 1

2
B.x; r/ � E. The constants for the Ahlfors-

regularity and uniform rectifiability depend on n, ı.

Proof. We want to show that .u;K/ satisfies Definition B.1, or rather the alternative Def-
inition given in Remark B.4. Then, the Proposition will follow from Theorem B.3. First,
it is clear that .u; K/ is an admissible pair. Let B be an open ball of radius r > 0 such
that B � X . Let an admissible pair .v;L/ be a competitor of .u;K/ in B . We can assume
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without loss of generality that L is Hn�1-locally finite. Therefore, v 2 SBVloc.X/ and
Hn�1.Jv n L/ D 0. We can now apply the minimality inequality. We haveˆ

B

jruj2 dLn
C

ˆ
Ju\B

.u2 C u2/ dHn�1
CLn.¹u > 0º \ B/

�

ˆ
B

jrvj2 dLn
C

ˆ
Jv\B

.v2 C v2/ dHn�1
CLn.¹v > 0º \ B/; (14)

so ˆ
B

jruj2 dLn
C ı2Hn�1.Ju \ B/CLn.¹u > 0º \ B/

�

ˆ
B

jrvj2 dLn
C ı�2Hn�1.Jv \ B/CLn.¹v > 0º \ B/: (15)

We omit the term Ln.¹u > 0º \ B/ on the left and we bound the term Ln.¹v > 0º \ B/

on the right by !nrn, where !n is the Lebesgue volume of the unit ball. We can rep-
lace Ju by K on the left, since Hn�1.K n Ju/ D 0. We can replace Jv by L on the right,
since Hn�1.Jv n L/ D 0. It follows that

Hn�1.K \ B/ � ı�4Hn�1.L \ B/C ı�2�E C ı�2!nr
n (16)

where
�E WD

ˆ
B

jrvj2 �

ˆ
B

jruj2 dLn: (17)

This completes the proof.

We are going to cite the "-regularity theorem for our problem [11, Theorem 14.1].
Contrary to the "-regularity theorem for the Mumford–Shah problem, it does not
require !2.x; r/ to be small. It says that when K is very close to a plane, K is given
by a pair of smooth graphs. We describe this situation in the next definition.

Given a point x 2 Rn and a vector en 2 Sn�1, we can decompose each point y 2 Rn

under the form y D x C .y0 C ynen/, where y0 2 e?n and yn 2 R. Then, for all functions
f W e?n ! R, we define the graph of f in the coordinate system .x; en/ as

�.x;en/.f / WD
®
y 2 Rn j yn D f .y

0/
¯
: (18)

Definition 2.5. Let u 2 SBVloc.X/ be a local minimizer. Let x 2 K and R > 0 be such
that B.x;R/ � X . Let 0 < ˛ � 1. We say that K is C 1;˛-regular in B WD B.x;R/ � X
if it satisfies the following three conditions:

(i) There exist a vector en 2 Sn�1 and two functions fi W e?n ! R .i D 1; 2/ such that
f1 � f2 and

K \ B D
� [
iD1;2

�.x;en/.fi /
�
\ B: (19)

The functions f1; f2 are C 1;˛ , and

R�1jfi j1 C jrfi j1 CR
˛ Œrfi �˛ �

1

4
: (20)
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(ii) There are two possible cases. The first case is´
u > 0 in

®
y 2 B j yn < f1.y

0/ or yn > f2.y0/
¯
;

u D 0 in
®
y 2 B j f1.y

0/ < yn < f2.y
0/
¯
:

(21)

The second case is f1 D f2 and´
u > 0 in

®
y 2 B j yn > f1.y

0/
¯
;

u D 0 in
®
y 2 B j yn < f1.y

0/
¯
;

(22)

or the inverted versions of either of the above.

Theorem 2.6 ("-regularity theorem). Let u 2 SBVloc.X/ be a local minimizer and let
x 2 K. Then, the following holds:

(i) For all " > 0, there exists "1 > 0 (depending on n, ı, ˇ) such that the following
holds true: For r > 0 such that B.x; r/ � X and ˇ2.x; r/C r � "1, we have
!2.x;

r
2
/ � ".

(ii) There exist " > 0, C � 1 and 0 < ˛ < 1 (both depending on n, ı) such that the
following holds true: For r > 0 such that B.x; r/ � X and ˇ2.x; r/C r � ",
the set K is C 1;˛-regular in B.x; C�1R/.

This last result is specific to local minimizers and does not hold true for the general
almost-minimizers of [11, Definition 2.1].

Proposition 2.7. Let u 2 SBVloc.X/ be a local minimizer. Let x 2 K and R > 0 be such
that B.x;R/ � X . We assume that K is regular in B WD B.x;R/ (Definition 2.5) and we
denote by �i the graph of fi in B (i D 1; 2). Then, for each i D 1; 2, ujAi solves the Robin
problem ´

�u D 0 in Ai ;

@�iu � ui D 0 in �i ;
(23)

where

A1 WD
®
y 2 B j yn < f1.y

0/
¯
; (24)

A2 WD
®
y 2 B j yn > f2.y

0/
¯
; (25)

and �i is the inner normal vector to Ai .

Proof. We only provide details for case (21) of Definition 2.5 and we prove the proposi-
tion for i D 2. We partition B into three sets (modulo Ln):

A1 WD
®
z 2 B j yn < f1.y

0/
¯
; (26)

A2 WD
®
z 2 B j yn > f2.y

0/
¯
; (27)

A3 WD
®
z 2 B j f1.y

0/ < xn < f2.y
0/
¯
: (28)
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The first paragraph is devoted to detailing a few generalities about traces and upper/lower
limits. We consider a general v 2 L1.B/\W 1;2

loc .B nK/ such that v D 0 in A3. For each
i D 1; 2, there exists v�i 2 L

1.�i / such that for Hn�1-a.e. x 2 �i ,

lim
r!0

r�n
ˆ
Ai\B.x;r/

jv.y/ � v�i .x/j dLn.y/ D 0: (29)

The boundary �i is C 1, so for all x 2 �i , there is a vector �i .x/ 2 Sn�1 such that

lim
r!0

r�nLn..Ai�H
C

i .x// \ B.x; r// D 0 (30)

where
HCi .x/ WD

®
y 2 Rn j .y � x/ � �i .x/ > 0

¯
: (31)

Therefore, (29) is equivalent to

lim
r!0

r�n
ˆ
HCi .x/\B.x;r/

jv.y/ � v�i .x/j dLn.y/ D 0: (32)

For Hn�1-a.e. x 2 �2, we describe the relationship between v.x/2 C v.x/2 and v�i .x/.
We fix x 2 �2 n �1 such that (32) is satisfied for i D 2. We have v D 0 on A3, and B.x; r/
is disjoint from A1 for small r > 0, so

lim
r!0

r�n
ˆ
.XnA2/\B.x;r/

jvj dLn
D 0; (33)

which is equivalent to

lim
r!0

r�n
ˆ
H�2 .x/\B.x;r/

jvj dLn
D 0: (34)

Combining (32) for i D 2 and (34), we deduce

v.x/2 C v.x/2 D v�2 .x/
2: (35)

Next, we fix x 2 �1 \ �2 such that (32) holds true for i D 1 and i D 2. The surfaces �1
and �2 necessarily have the same tangent plane at x and the vectors �i are opposed.
Combining (32) for i D 1 and i D 2, we deduce

v2 C v2 D .v�1 /
2
C .v�2 /

2: (36)

We come back to our local minimizer u 2 SBVloc.X/. We fix ' 2 C 1c .B/. For " 2 R,
we define v W X ! R by

v WD

´
uC "' in A2;

u in X n A2:
(37)

It is clear that ¹v ¤ uº �� B and that v is C 1 in X n K. As K is Hn�1-locally finite
in X , we have v 2 SBVloc.X/ and Sv � K. Remember that u � ı in A1 [A2, and u D 0
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in A3. We take " small enough so that "j'j1 < ı. As a consequence, v > 0 in A1 [ A2
and v D 0 in A3. Let us check the multiplicities on the discontinuity set. As we have seen
before, Jv \ B � �1 [ �2. We observe that for x 2 �2 such that the trace u�2.x/ exists,
we have

v�2 .x/ D u
�
2.x/C "'.x/; (38)

and for x 2 �1 such the trace u�1.x/ exists, we have

v�1 .x/ D u
�
1.x/: (39)

Using the previous observations, we deduce that for Hn�1-a.e. on �2 n �1,

v2 C v2 D .u�2 C "'/
2

D .u2 C u2/C 2"'u�2 C "
2
j'j2I (40)

for Hn�1-a.e. on �2 \ �1,

v2 C v2 D .u�2 C "'/
2
C .u�1/

2

D .u2 C u2/C 2"'u�2 C "
2
j'j2I (41)

and that for Hn�1-a.e. on �1 n �2,

v2 C v2 D .u�1/
2
D u2 C u2: (42)

Finally, it is clear that
ˆ
B

jrvj2 dLn
D

ˆ
B

jruj2 dLn
C 2"

ˆ
A2

hru;r'i dLn
C "2

ˆ
A2

jr'j2 dLn: (43)

We then plug all this information into the minimality inequality and obtain that

0 � 2"

ˆ
A2

hru;r'i dLn
C 2"

ˆ
�2

'u�2 dHn�1
C C.'/"2: (44)

As this holds true for all small " (positive or negative), we conclude that
ˆ
A2

hru;r'i dLn
C

ˆ
�2

'u�2 dHn�1
D 0: (45)

This completes the proof.

3. Porosity of the singular part

The next result says that the part where K is not regular has many holes in a quantified
way. It also holds true for the almost-minimizers of [11, Definition 2.1]. This result is
simpler to obtain than its Mumford–Shah counterpart (see [15]) because the "-regularity
theorem of [11] only requires us to control the flatness.
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Proposition 3.1 (Porosity). Let u2 SBVloc.X/ be a local minimizer. There exist constants
0 < r0 � 1, C � 2 and 0 < ˛ < 1 (all depending on n,ı) for which the following holds
true: For all x 2 K and all 0 < r � r0 such that B.x; r/ � X , there exists a smaller ball
B.y; C�1r/ � B.x; r/ in which K is C 1;˛-regular.

Proof. The letter C is a constant greater than or equal to 1 that depends on n, ı. The
letter ˛ is the constant from Theorem 2.6. For y 2 K and t > 0 such that B.y; t/ � X ,
we define the L1 flatness as

ˇK.y; t/ WD inf
V

sup
z2K\B.y;t/

t�1 d.z; V /; (46)

where the infimum is taken over the affine hyperplanes V of Rn passing through y. Note
that in [6, (41.2)], the infimum is taken over all affine hyperplanes V of Rn (not necessarily
passing through y); this would decrease our number ˇ, but by no more than a factor of 1

2
.

Indeed, if V is any hyperplane of Rn and y0 is the orthogonal projection of y onto V , then
the hyperplane V � .y0 � y/ is passing through y, so we have

ˇK.y; t/ � sup
z2K\B.y;t/

d.z; V � .y0 � y//

� jy0 � yj C sup
z2K\B.y;t/

d.z; V /

� 2 sup
z2K\B.y;t/

d.z; V /: (47)

We also observe that

ˇK;2.y; t/
2
� t�.n�1/Hn�1.K \ B.y; t//ˇK.y; t/

2; (48)

so as soon as t is small enough for the Ahlfors-regularity to hold, the inequality
ˇK;2.y; t/ � CˇK.y; t/ is satisfied.

Let r0 be the minimum between the radius of Proposition 2.2 (Ahlfors-regularity) and
the radius of Proposition 2.4 (uniform rectifiability). We fix x 2K and 0< r � r0 such that
B.x; r/ � X . According to Proposition 2.4, there exists an Ahlfors-regular and uniformly
rectifiable set E such that K \ 1

2
B.x; r/ � E. Moreover, the constants for the Ahlfors-

regularity and uniform rectifiability depend on n, ı. For y 2 E and t > 0, we define as
before

ˇE .y; t/ WD inf
V

sup
z2E\B.y;t/

t�1 d.z; V /; (49)

where the infimum is taken on the set of all affine hyperplanes V of Rn passing through x.
As E is Ahlfors-regular and uniformly rectifiable, the Weak Geometric Lemma (see
[6, (73.13)]) states that for all " > 0, the set®

.y; t/ j y 2 E; 0 < t < diam.E/; ˇE .y; t/ > "
¯

(50)
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is a Carleson set. This means that for all "> 0, there existsC0."/� 1 (depending on n, ı, ")
such that for all y 2 E and all 0 < t < diam.E/,

ˆ t

0

ˆ
E\B.y;t/

1¹ˇE .z;s/>"º.z/ dHn�1.z/
ds
s
� C0."/t

n�1: (51)

We only apply this property with y WD x. We observe that for all z 2 K \ B.x; 1
4
r/ and

for all 0 < s � 1
4
r , we have K \ B.z; s/ � E \ B.z; s/, so ˇK.z; s/ � ˇE .z; s/. Thus,

for all 0 < t < diam.K \ 1
2
B.x; r// such that t � 1

4
r , we have

ˆ t

0

ˆ
K\B.x;t/

1¹ˇK .z;s/>"º.z/ dHn�1.z/
ds
s
� C0."/t

n�1: (52)

We only apply this property with t WD 1
4

diam.K \ B.x; r//. Note that C�1r � t � 1
4
r ,

where the first inequality comes from the Ahlfors-regularity ofK. We are going to deduce
from (52) that for all " > 0, there exist C."/ � 1, a point z 2 K \ B.x; t/ and a radius s
such that C."/�1t � s � t and ˇK.z; s/ � ". We proceed by contradiction for some C."/
to be determined. We therefore have

ˆ t

0

ˆ
K\B.x;t/

1¹ˇK .z;s/>"º.z/ dHn�1.z/
ds
s
� Hn�1.K \ B.x; t//

ˆ t

C."/�1t

ds
s

� Hn�1.K \ B.x; t// ln.C."//

� C�1tn�1 ln.C."//: (53)

This contradicts (52) if C."/ is too big compared to C0."/.
We fix " > 0 (to be determined soon) and we assume that we have a corresponding

pair .z; s/ as above. In particular, ˇK;2.z; s/ � CˇK.z; s/ � C". According to the second
statement of Theorem 2.6, we can fix " (depending on n, ı) so that if r0 � ", then K is
C 1;˛-regular in B.z; C�1s/.

4. Higher integrability of the gradient

Theorem 4.1. Let u 2 SBVloc.X/ be minimal. There exist 0 < r0 � 1, C � 1 and p > 1
(depending on n, ı) such that the following holds true: For all x 2 X and all 0 � r � r0
such that B.x; r/ � X ,

ˆ
1
2
B.x;r/

jruj2p dLn
� Crn�p: (54)

The higher integrability is well known for weak solutions of elliptic systems ([9, The-
orem 2.1]). In this case, the proof consists in combining the Caccioppoli–Leray inequality
and the Sobolev–Poincaré inequality to deduce that jruj

2n
nC2 satisfies a reverse Hölder

inequality. The higher integrability is then an immediate consequence of the Gehring
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Lemma. In our case, u is still a weak solution of an elliptic system, but we lack infor-
mation about the regularity of K to carry out this method.

We draw inspiration from [8], but we simplify the proof by singling out a higher inte-
grability lemma (Lemma 4.2 below) and a covering lemma (Lemma 4.3 below) and by
removing the need of [8, Lemma 3.2] (the existence of good radii).

Proof of Theorem 4.1. There exists 0 < r0 � 1 such that for all x 2 X and for all
0 � R � r0 such that B.x;R/ � X , one can apply Lemma 4.2 below in the ball B.x;R/
to the function v WD Rjruj2. Assumption (i) follows from the Ahlfors-regularity of K
(Proposition 2.2). Assumption (ii) follows from the porosity (Proposition 3.1). Assump-
tion (iii) follows from interior/boundary gradient estimates for the Robin problem and
from the Ahlfors-regularity. In particular, the interior estimate can be derived from the
subharmonicity of jruj2 in X nK and the boundary estimate is detailed in Lemma A.1
in Appendix A.

Lemma 4.2. We fix a radius R > 0 and an open ball BR of radius R. Let K be a closed
subset of BR and v W BR ! RC be a non-negative Borel function. We assume that there
exist C0 � 1 and 0 < ˛ � 1 such that the following holds true:

(i) For all balls B.x; r/ � BR,

C0r
n�1
� Hn�1.K \ B.x; r// � C0r

n�1: (55)

(ii) For all balls B.x; r/ � BR centered inK, there exists a smaller ball B.y;C�10 r/

� B.x; r/ in which K is C 1;˛-regular (Definition 2.5).

(iii) For all balls B.x; r/ � BR such that K is disjoint from B.x; r/ or K is C 1;˛-
regular in B.x; r/ (Definition 2.5), we have

sup
1
2
B.x;r/

v.x/ � C0

�R
r

�
: (56)

Then, there exist p > 1 and C � 1 (depending on n, C0) such that
 
1
2
BR

vp � C: (57)

The proof of Lemma 4.2 takes advantage of a covering lemma, which we discuss next.
We use the notation �.x;en/ defined by (18). Assumption (ii) says that in each double ball
2Bk , the set E is a union of Lipschitz graphs which are close to a hyperplane.
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Lemma 4.3 (Covering lemma). Let E � Rn be a bounded set. Let .Bk/ be a family of
open balls with center xk 2 Rn and radius Rk > 0. We assume that

(i) for all k ¤ l , 2Bk \ Bl D ;;

(ii) for all k and all x 2 E \ 2Bk , there exist a vector en 2 Sn�1 and a 1
2

-Lipschitz
function f W e?n ! R such that jf j � 1

2
Rk and

x 2 �.xk ;en/.f / \ 2Bk � E: (58)

Let 0< r � infkRk . There exists a sequence of open balls .Di /i2I of radius r and centered
in E n

S
k Bk such that

E n
[
k

Bk �
[
i2I

Di (59)

and the balls .20�1Di /i2I are pairwise disjoint and disjoint from
S
k Bk .

Proof. Let 0 < r0 � infk Rk . We introduce the set

F WD E n
[
k

Bk : (60)

The goal is to cover F with a controlled number of balls of radius r0. Let r be a radius
0 < r � r0 which will be determined during the proof. As F is bounded, there exists a
maximal sequence of points .xi / 2 F such that B.xi ; r/�Rn n

S
k Bk and jxi � xj j � r .

For i ¤ j , we have jxi � xj j � r , so the balls .B.xi ; 12r//i are disjoint. Next, we show
that

F �
[
i

B.xi ; 10r/: (61)

Let x 2 F . If B.x; r/ � Rn n
S
k Bk , then by maximality of .xi /, there exists i such that

x 2 B.xi ; r/ � B.xi ; 10r/. Now we focus on the case where there exists an index k0 such
that B.x; r/\Bk0 ¤ ;. The radius of Bk0 is denoted by R and we assume without loss of
generality that its center is 0. As x 2 F DE n

S
k Bk andB.x; r/\B.0;R/¤;, we have

R < jxj < RC r . We are going to build a point y 2 E such that RC r < jyj < RC 7r
and jx � yj < 9r .

Since r � R, we observe that x 2 B.0; 2R/. According to the assumptions of the
lemma, there exist two scalars 0 < "; L � 1

2
, a vector en 2 Sn�1 and an L-Lipschitz

function f W e?n ! R such that jf j � "R and

x 2
®
y 2 B.0; 2R/ j yn D f .y

0/
¯
� E: (62)

Here, we have decomposed each point y 2 Rn under the form y D y0 C ynen, where
y0 2 n? and yn 2 R. The estimate R < jxj < RC r can be rewritten as

R < jx0 C f .x0/enj < RC r: (63)
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We consider t � 1 such that jtx0 C f .x0/enj D RC 4r and we estimate how close tx0 is
to x0. We have

jx0j �
p
R2 � jf .x0/j2; (64)

jtx0j �
p
.RC 4r/2 � jf .x0/j2; (65)

so

jtx0 � x0j �
p
.RC 4r/2 � jf .x0/j2 �

p
R2 � jf .x0/j2

�
4Rr C 8r2p
R2 � jf .x0/j2

: (66)

We assume r � 1
8
R and we recall that jf .x0/j � "R with " � 1

2
, so this simplifies to

jtx0 � x0j �
5r

p
1 � "2

< 6r: (67)

Next, we define y WD tx0 C f .tx0/en and we recall that f is L-Lipschitz with L � 1
2

to
estimate

jy � Œtx0 C f .x0/en�j D jf .tx
0/ � f .x0/j < 3r: (68)

Since jtx0 C f .x0/enj D RC 4r , this yields

RC r < jyj < RC 7r: (69)

We also estimate

jy � xj � jtx0 � x0j C jf .tx0/ � f .x0/j < 9r: (70)

As r � 1
8
R, inequalities (69) imply y 2 B.0; 2R/ and thus y 2 E. We are going to show

that B.y; r/ � Rn n
S
k Bk . We recall that B.0; 2R/ is disjoint from all the other balls of

the family .Bk/. By (69), we observe that

B.y; r/ � B.0;RC 8r/ n B.0;R/

� B.0; 2R/ n B.0;R/; (71)

and our claim follows. By maximality of the family .xi /, there exists i such that the
inequality jy � xi j < r holds, and in turn by (70), jx � xi j < 10r . We finally choose
r WD 1

10
r0. The balls .Di / are given by Di WD B.xi ; 10r/ D B.xi ; r0/.

Proof of Lemma 4.2. We observe that for any ball B � BR and for p � 1,
ˆ
B

vp dLn
D

ˆ 1
0

Ln.B \ ¹vp > tº/ dt

D p

ˆ 1
0

sp�1Ln.B \ ¹v > sº/ ds (72)
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and for M � 1,

p

ˆ 1
1

sp�1Ln.B \ ¹v > sº/ ds � p
1X
hD0

ˆ MhC1

Mh

sp�1Ln.B \ ¹v > sº/ ds

� p

1X
hD0

�ˆ MhC1

Mh

sp�1 ds
�
Ln.B \ ¹v > M h

º/

� .Mp
� 1/

1X
hDh

M hpLn.B \ ¹v > M h
º/: (73)

Thus, it suffices to prove that there exist N > M � 1, C � 1 (depending on n, C0) such
that for all h � 0,

Ln.1
2
BR \ ¹v > M

h
º/ � CRnN�h; (74)

and then take p > 1 such that MpN�1 < 1.
To simplify the notation, we change the constant C0 so that property (ii) yields that

40B.y; C�10 r/ � B.x; r/ and that K is C 1;˛-regular in 4B.y; C�10 r/.
Let M WD max¹4C0; 14C

2
0 º � 4. We define for h � 1

Ah WD
®
x 2 1

2
BR nK j v > M

h
¯
: (75)

The proof is based on the fact that Ah is at distance�M�hR fromK and has many holes
of size �M�hR near K. We explain more precisely these observations. For the first one,
let h � 1, let x 2 Ah and assume that B.x; C0M�hR/ is disjoint from K. Then, we use
property (ii) to estimate

v.x/ �M h: (76)

This contradicts the definition of Ah. We deduce that there exists y 2 K such that the
inequality jx � yj < C0M

�hR holds. For the second observation, let h � 2, let x 2
K \ 15

16
BR and apply the porosity property to the ball B.x;M�hR/.

We obtain an open ball B � X centered in K, of radius C�10 M�hR and such that K
is C 1;˛-regular in 4B . Then, by property (iii) and since M � 1

4
C 20 ,

sup
2B

v � 1
4
C 20M

h
�M hC1: (77)

In particular, 2B is disjoint from AhC1.
We start the proof by defining for h � 1,

r.h/ WDM�hR; (78)

R.h/ WD
�3
4
CM�hC1

�
R: (79)

The sequence .R.h// is decreasing, limh!1 R.h/ D
3
4
R and R.hC 1/C r.h/ � R.h/.

For each h� 1, we build an index set I.h/ and a family of balls .Bi /i2I.h/ as follows: First
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we define I.1/ WD ;, .Bi /i2I.1/ WD ;. Let h � 2 be such that .Bi /i2I.1/; : : : ; .Bi /i2I.h�1/
have been built. We assume that the index sets I.g/, where g D 1; : : : ; h� 1, are pairwise
disjoint. We assume that for all i 2 Ig , the balls Bi have radius C�10 r.g/ D C�10 M�gR.
We assume that for all indices i; j 2

Sh�1
gD1 I.g/ with i ¤ j , we have that 2Bi \ Bj D ;

and that K is C 1;˛-regular in 2Bi . Then, we introduce the sets

Kh WD K \ BR.h/ n

h�1[
gD1

[
i2I.g/

Bi ; (80)

K�h WD K \ BR.hC1/ n

h�1[
gD1

[
i2I.g/

Bi : (81)

According to Lemma 4.3, there exists a sequence of open balls .Di /i2I.h/ centered in K�
h

of radius r.h/ DM�hR such that

K�h �
[
i2I.h/

Di ; (82)

and such that the balls .20�1Di / are pairwise disjoint and disjoint from
Sh�1
gD1

S
i2I.g/Bi .

We can assume that the index set I.h/ is disjoint from the sets I.g/, g D 1; : : : ; h � 1.
Since R.hC 1/C r.h/ � R.h/, we observe that the balls .20�1Di / are included in

BR.h/ n

h�1[
gD1

[
i2I.g/

Bi : (83)

Next, we apply the porosity to the balls .Di /. For each i 2 I.h/, there exists an open
ball Bi centered in K, of radius C�10 M�hR such that Bi � 40�1Di , K is C 1;˛-regular
in 4 Bi and by property (iii),

sup
2Bi

v � 1
4
C 20M

h
�M hC1: (84)

We should not forget to mention that for all i 2 I.h/, we have 2Bi � 20�1Di , so 2Bi is
disjoint from all the other balls we have built so far.

Now, we estimate Ln.Ah/ for h � 1. We show first that the points of Ah cannot
be too far from K�

h
. Let x 2 Ah. We have seen earlier that there exists y 2 K such

that jx � yj < C0M
�hR. We are going to show that y 2 K�

h
. Since jxj � 1

2
R and

M � 4C0, we have
jyj � 1

2
RC C0M

�hR � 3
4
R: (85)

Let us assume that there exist g D 1; : : : ; h� 1 and i 2 I.g/ such that y 2 Bi . The radius
of Bi is C�10 M�.h�1/R and since jx � yj < C0M�hR, we have x 2 2Bi . However 2Bi
is disjoint from Ah by construction. We have shown that y 2 K�

h
. As a consequence,

there exists i 2 I.h/ such that y 2 Di . The radius of Di is r.h/ D M�hR and we have
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that jx � yj < C0M�hR, so

Ah �
[
i2I.h/

.1C C0/Di : (86)

This allows us to estimate

Ln.Ah/ � !n.1C C0/
n
jI.h/jr.h/n; (87)

where !n is the Lebesgue measure of the unit ball.
Next, we want to control jI.h/j. The balls .20�1Di /i2I.h/ are disjoint and included in

the set B.R.h// n
Sh�1
gD2

S
i2I.g/ Bi , so by Ahlfors-regularity,

C�10 20�.n�1/r.h/.n�1/jI.h/j �
X
i2I.h/

Hn�1.K \ 12�1Di /

� Hn�1.Kh/: (88)

We are going to see that Hn�1.Kh/ is bounded from above by a decreasing geometric
sequence. We have

Hn�1.K�h / �
X
i2I.h/

Hn�1.K \Di /

� C0
X
i2I.h/

r.h/n�1

� C nC10

X
i2I.h/

.C�10 r.h//n�1

� C nC10

X
i2I.h/

Hn�1.K \ Bi /

� C nC10 Hn�1.Kh nKhC1/: (89)

We deduce

Hn�1.Kh/ � C
nC1
0 Hn�1.Kh nKhC1/CHn�1.K \ BR.h/ n BR.hC1//: (90)

We rewrite this inequality as

Hn�1.KhC1/ � �
�1Hn�1.Kh/C C

�.nC1/
0 Hn�1.K \ BR.h/ n BR.hC1//; (91)

where � WD C nC10 .C nC10 � 1/�1 > 1. Then, we multiply both sides of the inequality
by �hC1:

�hC1Hn�1.KhC1/

� �hHn�1.Kh/C C
�.nC1/
0 ��hHn�1.K \ BR.h/ n BR.hC1//

� �hHn�1.Kh/CHn�1.K \ BR.h/ n BR.hC1//: (92)
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Summing this telescopic inequality, we obtain that for all h � 1,

�hHn�1.Kh/ � 2H
n�1.K \ BR/

� 2C0R
n�1: (93)

In summary, we have proved that for some constant C � 1, � > 1 (depending on n, C0)
and for h � 1,

Ln.Ah/ � CR
n.�M/�h: (94)

This concludes the proof.

5. Dimension of the singular part

Notation. The Hausdorff dimension of a set A � Rn is defined by

dimH .A/ WD inf
®
s � 0 j H s.A/ D 0

¯
: (95)

We take the convention that for s < 0, the term H s-a-e. means everywhere and the inequal-
ity dimH .A/ < 0 means A D ;.

The goal of this section is to explain the link between the integrability exponent of
the gradient and the dimension of the singular part. It has been first observed for the
Mumford–Shah functional by Ambrosio, Fusco and Hutchinson in [1].

Theorem 5.1. Let u 2 SBVloc.X/ be a local minimizer. We define

† WD
®
x 2 K j K is not regular at x

¯
: (96)

For p > 1 such that jruj2 2 Lploc.X/, we have

dimH .†/ � max
®
n � p; n � 8

¯
< n � 1: (97)

Remark 5.2. In dimension n � 7, Caffarelli and Kriventsov have shown that if a point
x 2 K is at the boundary of two local connected components where u > 0 or if it is a 0-
density point of ¹uD 0º, then x is a regular point ([5, Theorem 8.2]). In dimension nD 2,
they show furthermore that if x is at the boundary of a connected component of ¹u D 0º,
then it is a regular point ([5, Corollary 9.2]). Thus, in the planar case, a point of†must be
an accumulation point of connected components of ¹uD 0º. There is, however, no known
example of such a situation.

Theorem 5.1 will be proved very easily with the help of [5, Theorem 8.2] and the
following well-known result:

Lemma 5.3. Let v 2 Lploc.X/ for some p � 1 and let s < n. Then, for Hn�p.n�s/-a.e.
x 2 X ,

lim
r!0

r�s
ˆ
B.x;r/

v dLn
D 0: (98)
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Proof. Without loss of generality, we assume v � 0. We start with the case p D 1. We
define � as the measure vLn and we want to show that for H s-a.e. x 2 X , we have

lim
r!0

r�s�.B.x; r// D 0: (99)

If s < 0, the limit is indeed 0 for every x 2 X . In the case 0 � s < n, we fix a closed ball
B � X , a scalar � > 0 and a set

A WD
®
x 2 B j lim sup

r!0

r�s�.B.x; r// > �
¯
: (100)

According to [2, Theorem 2.56],

�.A/ � �H s.A/: (101)

As A� B and � is a Radon measure, we have �.A/ <1. Then, (101) givesH s.A/ <1

and since s < n, Ln.A/ D 0. The measure � is dominated by Ln, so �.A/ D 0 and
now (101) gives H s.A/ D 0. We can take a sequence of scalars �k ! 0 to deduce

H s
�®
x 2 B j lim sup

r!0

r�s�.B.x; r// > 0
¯�
D 0: (102)

We can then conclude that

H s
�®
x 2 X j lim sup

r!0

r�s�.B.x; r// > 0
¯�
D 0; (103)

by covering X with a sequence of closed balls Bk � X .
Now we come to the general case p � 1. Let us fix t < n. For x 2 X and for r > 0,

the Hölder inequality shows that

r
�.n� np /

ˆ
B.x;r/

v dLn
�

�ˆ
B.x;r/

vp dLn
� 1
p
; (104)

so

r
�.nC t

p�
n
p /

ˆ
B.x;r/

v dLn
�

�
r�t

ˆ
B.x;r/

vp dLn
� 1
p
: (105)

We apply the first part to see that for H t -a.e. x 2 X ,

lim
r!0

r
�.nC t

p�
n
p /

ˆ
B.x;r/

v dLn
D 0: (106)

The scalar t such that s D nC t
p
�
n
p

is given by t WD n � p.n � s/ < n.

Proof of Theorem 5.1. According to Lemma 5.3, we have for Hn�p-a.e. x 2 X ,

lim
r!0

!2.x; r/ D 0 (107)

and according to [5, Theorem 8.2], the set®
x 2 X \† j lim

r!0
!2.x; r/ D 0

¯
(108)

has Hausdorff dimension less than or equal to n � 8.
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A. A Robin problem

A.1. Statement

We work in the Euclidean space Rn (n � 2). For r > 0, Br denotes the ball of radius r
centered at 0. We fix a radius 0 < R � 1, an exponent 0 < ˛ � 1, a constant A > 0 and a
C 1;˛ function f W Rn�1 \BR ! R such that f .0/ D 0, rf .0/ D 0 and R˛ Œrf �˛ � A.
We introduce

VR WD
®
x 2 BR j xn > f .x

0/
¯
; (109)

�R WD
®
x 2 BR j xn D f .x

0/
¯
: (110)

We denote by � the normal vector field to �R going upward. For 0 < t � 1, we write tVR
for VR \ Bt and t�R for �R \ Bt . For u 2 W 1;2.VR/, we denote by u� the trace of u
in L1.@VR/. It is characterized by the property that for Hn�1-a.e. x 2 @VR,

lim
r!0

r�n
ˆ
VR\B.x;r/

ju � u�.x/j dLn
D 0: (111)

We denote by W 1;2
0 .VR [ �R/ the space of functions v 2 W 1;2.VR/ such that v� D 0

on @VR n �R. Our objects of study are the functions u 2 W 1;2.VR/ \ L
1.VR/ which are

weak solutions of ´
�u D 0 in VR;

@�u � u D 0 in �R;
(112)

that is, for all v 2 W 1;2
0 .VR [ �R/,
ˆ
VR

hru;rvi dLn
C

ˆ
�R

u�v� dHn�1
D 0: (113)

According to Weyl’s lemma, u coincides almost-everywhere in VR with harmonic
functions. We replace u by this harmonic representative so that u is pointwise defined and
smooth in VR. Our goal is to prove the following estimate:

Lemma A.1. There exists C � 1 (depending on n, ˛, A) such that

jruj1 � C
� 
VR

jruj2 dLn
� 1
2
C C juj1; (114)

where the left-hand side is computed on 1
2
VR.

Although well known to experts, we present the steps of the proof because we have
not found a satisfactory reference with the estimate as asserted. Lemma A.1 will be an
immediate consequence of Lemma A.5 and Lemma A.6.

Viscosity solutions of such problems have been studied in [13]. The viscosity
approach is based on the maximum principle, but in our case, we also have a maximum
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principle for weak solutions. Thus, we can follow the ideas of [13]. Once we get that u
is C ˛ up to the boundary, the Robin boundary condition can be written as a Neumann
boundary condition with a C ˛ right-hand side and we will apply the usual estimates for
Neumann problems ([10]). We are going to write the key lemmas and steps below and
make short comments for the proof.

Lemma A.2 (Maximum principle). Let u 2 W 1;2.VR/ be a weak solution of´
�u � 0 in VR;

@�u � u � 0 in �R;
(115)

that is, for all non-negative functions v 2 W 1;2
0 .VR [ �R/,ˆ

VR

hru;rvi dLn
C

ˆ
�R

u�v� dHn�1
� 0: (116)

If u� � 0 on @VR n �R, then u � 0 on VR.

A.2. Hölder continuity up to the boundary

Lemma A.3 (Hölder continuity). Let u 2 W 1;2.VR/ \ L
1.VR/ be a weak solution

of (112). There exist constants C � 1 (depending on n, ˛, A) and 0 < � < 1 (depending
on n) such that for all x; y 2 VR,

ju.x/ � u.y/j � C juj1

�
jx � yj

r

��
; (117)

where r WD max¹d.x;Rn n BR/; d.y;Rn n BR/º.

Lemma A.3 is a standard consequence of a weak Harnack inequality at the boundary.
We temporarily redefine the notation VR, �R in the next statement because it is more
convenient to work with cylinders than with balls.

Lemma A.4 (Weak Harnack inequality). We fix a radius 0 < R � 1. We fix a vector
en 2 Sn�1 and we decompose each point x 2 Rn as x D x0 C xnen, where x0 2 e?n
and xn 2 R. We fix a 1-Lipschitz function f W e?n ! R and assume that 0 � f � ıR
for a certain 0 < ı � 1

2
small enough (depending on n). Finally, we define

VR WD
®
x 2 Rn j jx0j < R; f .x0/ < xn < 2R

¯
; (118)

�R WD
®
x 2 Rn j jx0j < R; xn D f .x

0/
¯
: (119)

Let u 2 W 1;2.VR/ be a non-negative weak solution of´
�u D 0 in VR;

@�u � u D 0 in �R:
(120)

Then, there exists a constant C � 1 (depending on n) such that

sup
®
u.x/ j jx0j � 1

2
R; 2ıR � xn �

3
2
R
¯

� C inf
®
u.x/ j jx0j � 1

2
R; f .x0/ < xn �

3
2
R
¯
: (121)
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Lemma A.4 is proved by building an appropriate barrier function as in [13, Theo-
rem 2.2].

A.3. Gradient estimates

Theorem 1.2 in [13] states that viscosity solutions are pointwise C 1;˛ up to the boundary
with Schauder estimates. Although we use a weak formulation, their proof applies in our
case because it relies on the maximum principle (Lemma A.2), the Hölder continuity
(Lemma A.3) and regularity results for solutions of the Neumann problem in a spherical
cap. We derive the following estimate:

Lemma A.5 (Schauder estimate). Let u 2 W 1;2.VR/ \ L
1.VR/ be a weak solution

of (112). Then, there exist C � 1 and 0 < � < 1 (depending on n, ˛, A) such that

jruj1 CR
� Œru�� � CR

�1 osc.u/C C juj1; (122)

where the left-hand side is computed on 1
2
VR and the symbol osc.u/ is given by the value

sup¹ju.x/ � u.y/j j x; y 2 VRº.

Finally, we control the oscillations of u using a local boundedness estimate for weak
solutions of Neumann problems [10, Theorem 1.6 and Remark 1.12].

Lemma A.6 (Oscillations estimate). Let u 2 W 1;2.VR/ \ L
1.VR/ be a weak solution

of (112). Then, there exists C � 1 (depending on n, ˛, A) such that

osc.u/ � CR
� 
VR

jruj2 dLn
� 1
2
C CRjuj1; (123)

where osc.u/ WD sup¹ju.x/ � u.y/j j x; y 2 1
2
VRº.

B. Uniform rectifiability of quasiminimizers

In this section, we recall the definition of quasiminimizers in [6] and their uniform rectifi-
ability property. Our local minimizers are not quasiminimizers as in [6], but we will show
that the proof from [6] works in our case.

We work in an open set X of the Euclidean space Rn (n � 2) and we fix a triple of
parameters P WD .r0; a;M/ composed of r0 > 0, a � 0 and M � 1.

Definition B.1. The set of admissible pairs A is the set of all pairs .u;K/ where K � X
is relatively closed inX and u 2W 1;2

loc .X nK/. Let .u;K/ be an admissible pair and let B
be an open ball such that B � X . A competitor of .u;K/ in B is a pair .v; L/ 2 A such
that K n B D L n B and u D v Ln-a.e. on X n .K [ B/. In this case, we set

E.u/ WD

ˆ
B

jruj2 dLn; E.v/ WD

ˆ
B

jrvj2 (124)
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and
�E WD max

®
E.v/ �E.u/;M.E.v/ �E.u//

¯
: (125)

We say that .u; K/ is a local P -quasiminimizer in X if for all open balls B of radius
0 < r � r0 such that B � X , and for all competitors .v; L/ of .u;K/ in B , we have

Hn�1.K n L/ �MHn�1.L nK/C�E C arn�1: (126)

In addition, we say that .u;K/ is coral if K D spt.Hn�1 K/ in X . This means that for
all x 2 K and all r > 0, Hn�1.K \ B.x; r// > 0.

We don’t give a definition of uniform rectifiability because there are too many, but
we underline that they are equivalent for closed, Ahlfors-regular sets. The reader can find
a survey of uniform rectifiability in [6, Section 73] and also on Guy David’s webpage
(Notes-Parkcity.dvi).

Definition B.2 (Ahlfors-regularity). A closed set E � Rn is Ahlfors-regular of dimen-
sion n � 1 if there exists a constant C � 1 such that for all x 2 E and for all
0 < r < diam.E/,

C�1rn�1 � Hn�1.E \ B.x; r// � Crn�1: (127)

Theorem B.3. Let P WD .r0; a;M/ be a triple of parameters composed of r0 > 0, a � 0
and M � 1. Assume that a (depending on n, M ) is small enough. Let .u; K/ be a coral
and local P -quasiminimizer in X . For all x 2 K and 0 < r < r0 such that B.x; r/ � X ,
there is a closed, Ahlfors-regular, uniformly rectifiable set E of dimension n� 1 such that
K \ 1

2
B.x; r/ � E. The constants for the Ahlfors-regularity and uniform rectifiability

depend on n, M and a.

Remark B.4. One can observe that (126) implies

Hn�1.K \ B/ �MHn�1.L \ B/C�E C arn�1: (128)

This is equivalent when M D 1, but is strictly weaker when M > 1.
We claim that Theorem B.3 still holds true with (128) in place of (126). In [6, Sect-

ion 74], David builds a suitable competitor .w; G/ of .u; K/ in a ball B . The set G is
of the form G D .K n B/ [ Z, where Z is a special subset of @B containing K \ @B .
The quasi-minimality condition (126) is used only once at [6, Section 74, line 22]. Then,
David uses the inequalities

Hn�1.K nG/ � Hn�1.K \ B/; (129)

Hn�1.G nK/ � Hn�1.Z/; (130)

but we also have

Hn�1.K \ B/ � Hn�1.K \ B/; (131)

Hn�1.G \ B/ � Hn�1.Z/: (132)
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