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Fully nonlinear free transmission problems
Edgard A. Pimentel and Makson S. Santos

Abstract. We examine a free transmission problem driven by fully nonlinear elliptic operators.
Since the transmission interface is determined endogenously, our analysis regards this object as a
free boundary. We start by relating our problem with a pair of viscosity inequalities. Then, approx-
imation methods ensure that strong solutions are of class C I’L"g'“p, locally. In addition, under
further conditions on the problem, we prove quadratic growth of the solutions away from branch
points.

1. Introduction

We consider a fully nonlinear transmission problem of the form

Fi(D*u) =1 in Q% (u)N By,
F,(D*u) =1 inQ (u) N By, (1.1)

where Fi, F5 : S(d) — R are (A, A)-elliptic operators, Q7 (u) := {x € B; | u < 0}, and
Qt(u) := {x € By | u > 0}. We examine the local regularity of strong solutions to (1.1)
and study their growth regime at branch points. In particular, we prove that solutions are
locally C l:LosbiP_regular, with estimates. Under further conditions, we prove quadratic
growth of the solutions away from branch points.

We emphasize the operators F; and F, are comparable only locally in S(d). As a con-
sequence, (1.1) differs from the usual obstacle problem. We also stress that discontinuities
arise as solutions change sign.

Transmission problems comprise a class of models aimed at examining a variety of
phenomena in heterogeneous media. The problems under the scope of this formulation
include thermal and electromagnetic conductivity, composite materials, and other diffu-
sion processes driven by discontinuous laws.

A given domain Q C R? gets split into mutually disjoint subregions Q; € Q for
i =1,...,k, for some k € N. The operator governing the problem is smooth within ;,
though discontinuous across d$2;. A paramount, subtle aspect of the theory concerns the
nature of those subregions.
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Either one prescribes (£2 i){'c=1 and the geometry of d€2; a priori, or those structures are
endogenously determined. The latter setting frames the theory in the context of free bound-
ary problems. Both cases differ substantially; consequently, their analysis also requires
distinct techniques. Most former studies on transmission problems presuppose a priori
knowledge of the subregions €2; and their geometric properties. A workhorse of the the-
ory is the divergence-form equation

div(a(x)Du) =0 in , (1.2)
where the matrix-valued function a(-) is defined as
a(x):=a; forx e Q;,

for constant matrices ¢; andi = 1,. .., k. Though smooth within every 2;, the coefficients
of (1.2) can be discontinuous across d€2;. This feature introduces genuine difficulties in
the analysis.

The first formulation of a transmission problem appeared in [31] and addressed a topic
in material sciences, namely, elasticity theory. In that paper, the author proves the unique-
ness of solutions for a model consisting of two subregions known a priori. Although not
examined in detail, the existence of solutions is the subject of [31]; see also [30].

The formulation in [31] motivated many subsequent studies [6, 12—14, 19, 27, 29,
35-37]. Those papers present a wide range of developments. They include the existence
of solutions for the transmission problem in [31] and the analysis of several variants. We
refer the reader to [5] for an account of those results and methods.

Estimates and regularity results for the solutions to transmission problems have also
been treated in the literature. In [26], the authors consider a bounded subdomain 2 C RY,
split into a finite number of subregions €21, 25, ..., Qk, known a priori. The motivation
is in the study of composite materials with closely spaced inclusions. The cross-section of
a fiber-reinforced material is an example in dimension d = 2. The mathematical analysis
amounts to the study of

0 a .
8—x1‘(a(x)§ju) =f inQ, (1.3)
where
a(x) = a;(x) forx e Q;, i =1,...,k,
' Ag41(x) forx € Q\ Uf;l Q;.

Under natural assumptions on the data, the authors establish local Holder continu-
ity for the gradient of the solutions. From the applied perspective, the gradient encodes
information on the stress of the material. Their findings imply bounds on the gradient
independent of the location of the fibers (c.f. [3]).

The vectorial setting is the subject of [25]. The authors extend the developments
reported in [26] to systems in that paper. Moreover, they produce bounds for higher deriva-
tives of the solutions.
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In [1], the authors consider a domain with two subregions, which are supposed to
be ¢ apart, for some ¢ > 0. Within each subregion, the divergence-form equation is gov-
erned by a constant coefficient k. Conversely, outside those subregions, the diffusivity
coefficient is 1. By setting k = +o00, the authors frame the problem in the context of
perfect conductivity.

In this setting, estimates on the gradient deteriorate as the two subregions approach
each other. The analysis in [1] yields blow-up rates for the gradient bounds as ¢ — O.
The case of multiple inclusions, covering perfect conductivity and insulation (k = 0), is
discussed in [2]; see also [7].

Recently, new developments have been obtained under minimal regularity require-
ments for the transmission interfaces. In [11], the authors consider a smooth and bounded
domain Q and fix Q; € R, defining Q, := Q \ Q. They suppose the boundary of the
transmission interface 992 to be of class C ¢ and prove existence, uniqueness, and
C 1 (Q;)-regularity of the solutions to the problem, for i = 1, 2. Their argument imports
regularity from flat problems through a new stability result; see [11, Theorem 4.2].

Another class of transmission problems concerns models where the subregions of
interest are determined endogenously. For example, given 2 C R4, one would consider

Qr:{xeQu(x) <0} and Q,:{xeQ|u(x)>0},

where u : Q — R solves a prescribed equation. Roughly speaking, knowledge of the
solution is required to determine the subregions of the domain where distinct diffusion
phenomena occur. In this context, a further structure arises, namely, the free interface or
free boundary. Here, in addition to the analysis of the solutions, properties of the free
boundary are also of central interest.

In [15] the authors examine the (p, ¢)-functional

Jpqa(v) i= /Q(|Dv+|p+ |Dv~|?)dx. (1.4)

Heuristically, in the region where v is positive, the functional satisfies a p-growth regime.
In the region where v is negative, a g-growth regime is in force. Though the functional
in (1.4) is discontinuous, and distinct regimes drive the process in distinct subregions of
the domain, such discontinuities depend on the sign of the argument v.

Among the findings in [15], we mention the existence of minimizers for J, 4 and their
Holder continuity. In addition, the authors prove the free boundary is of class C** with
respect to the p-harmonic measure A,u ™. Finally, they conclude that A,u™ is supported
on a set of o-finite (d — 1)-dimensional Hausdorff measure.

We remark that (1.1) relates to (and is very much inspired by) the fully nonlinear obsta-
cle problem literature. To the best of our knowledge, the fully nonlinear obstacle problem
was first examined in [23]; see also [24]. In [16], the authors introduced the unconstrained
free boundary problems. This class of fully nonlinear models accommodates a variety of
distinct formulations, unifying the approach to regularity of the solutions and the analysis
of the free boundary; see also [17,22].
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Also, in the context of the obstacle problem governed by fully nonlinear operators,
we mention the issue of non-transversality; see, for instance, [20, 21]. By examining the
intersection of the fixed and the free boundaries, one can extract geometrical information
on the latter. In addition, the techniques involved in this analysis have important spillovers
on the classification of blow-up limits.

In the present paper, we study W 2-¢-strong solutions to (1.1). We start by noticing that
a W24 _solution to (1.1) is a continuous viscosity solution to

min(F; (D?u), F,(D?*u)) <1 in B, (1.5)

and
max(Fy(D*u), F»(D?u)) > —1 in By. (1.6)

We emphasize the importance of (1.5)—(1.6), even in the context of w2.d -strong solu-
tions. Although it is clear that a solution u € nggd (B1) is a-Holder continuous for every
a € (0, 1), this inclusion does not ensure universal estimates for u. Because our analysis
relies on the precompactness of strong solutions to (1.1), such estimates are critical. By
noticing that strong solutions to (1.1) are viscosity solutions to (1.5)—(1.6), we access a
maximum principle, stability results, and a Krylov—Safonov theory.

By requiring F; and F, to satisfy a near convexity condition, we prove that solutions
to (1.1) are locally of class C Lol with the appropriate estimates. It follows from
approximation methods; see [8, 9]. Our first main result reads as follows:

Theorem 1.1 (Local C !'rogbp_regularity). Letu € ngc’d(B 1) be a strong solution to (1.1).
Suppose Assumptions 1-2 are in force. Then, u € ClléLog"Lip(B 1) and there exists C > 0
such that
sup  |u(x) —u(xe) — Du(xp) - (x — x0)| < Cr?In l
x€B:(xo) 4

forevery xo € Byjp andr € (0,1/4). In addition, C = C(d, A, A, ||ullL=B)))-

Remark 1. We notice the optimal regularity of the solutions to (1.1) is unknown. Of
particular interest is whether or not the end-point W 2-®-regularity is available for strong
solutions to this problem.

After examining the local regularity of solutions, we turn our attention to the so-called
branch points. In brief, such points lie at the interface of Q7 (1), Q7 (u), and {u = 0}.
More rigorously, a point on the free boundary I' () := (dQF (1) U 32~ (1)) N B; can be
of three different types.

First, xo € ' (1) is a one-phase point if

xo € (0QF W)\ QT (1)) N B;.

If this is the case, the local regularity of the solutions and properties of the free bound-
ary follow from the fully nonlinear obstacle problem [23]. Alternatively, xo € I'(u) may
behave as a two-phase point; that is,

Xo € (AQT(u) N IR~ () N By.
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Among two-phase points, branch points are of particular interest, as they are at the inter-
face of the positive and the negative phases with the region where the solutions vanish.
Formally, we say that x* € T"(u) is a branch point if

|B,(x*) N {u = 0}| >0

for every 0 < r < 1. We denote by I'gg(u) C I'(u) the set of branch points. Under a
small-density condition for the negative phase, we prove a result on the quadratic growth
of the solutions away from branch points.

Our argument requires both F; and F, to be convex and supposes they are positively
homogeneous of degree 1. Here, a dyadic analysis builds upon the maximum principle
and a scaling strategy, using the L°-norms of the solutions as a normalization factor.
This machinery first appeared in [10] in the context of an obstacle problem driven by the
Laplacian. In [24], the authors studied the fully nonlinear setting and developed a fairly
complete analysis of the obstacle problem governed by fully nonlinear operators. We also
refer the reader to [23].

We consider the quantity

vol(B,(x*) N Q7 (u))

Ve(x*,u) = pr

by supposing that V;.(x*, u) is controlled for a branch point x* € I'gg(u), we are capable
of proving quadratic growth for the solutions, away from xo. We state our second main
result in the following:

Theorem 1.2 (Quadratic growth away from branch points). Lefu € ngc’d (B1) be a strong
solution to (1.1). Suppose Assumptions 1, 3, and 4, to be detailed further, are in force. Let
x* € I'gr(u) be such that Assumption 5, yet to be presented, holds at x*. Then, there exists
a universal constant C > 0 such that

sup  |u(x)| < Cr?
x€B;(x*)

forevery0 <r < 1.

We note Theorem 1.2 does not require F; and F, to be close, or even comparable, in
any topology.

Remark 2. The small density of the negative phase is critical in establishing Theorem 1.2.
Were it reasonable to suppose it holds for every xo € I'(u) N By/,, the conclusion of
Theorem 1.2 would hold for every such point. Then, a clever scaling argument, as
in [10, 24], would produce local C 1’l-regularity estimates for the solutions. However, to
impose a small-density condition for every free boundary point xo € I'(u) N By, implies
the negative phase does not affect the problem. Ultimately, it turns (1.1) into a one-phase
problem whose theory is currently well understood and documented.
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Remark 3. We notice the formulation in (1.1) includes the free transmission obstacle
problem

Fi(D*u) xquso0 + F2(D*u) X{u<o} = X{uszoy in Bi, (1.7)

in the sense that solutions to (1.7) also solve (1.1).

The remainder of this paper is organized as follows: Section 2 gathers elementary
results and details the main assumptions under which we work. In Section 3, we study the
regularity of the strong solutions to (1.1) and present the proof of Theorem 1.1. Section 4
examines the growth regime of the solutions away from branch points and puts forward
the proof of Theorem 1.2.

2. Preliminaries

This section presents some preliminary material and the main hypotheses we use in the

paper. By S(d), we denote the space of symmetric matrices of order d ; when convenient,
we identify S(d) ~ R %5 We start with the uniform ellipticity of the operators F;.

Assumption 1 (Uniform ellipticity). Fori = 1,2, we suppose the operator F; : S(d) — R
is (A, A)-uniformly elliptic, that is, for 0 < A < A, it holds that

AN < Fi(M + N) — F;(M) < A|N|,
forevery M, N € S(d), N > 0,and i = 1, 2. We also suppose F;(0) = 0.

Uniform ellipticity relates closely to extremal operators

eM;CA(M) ::AZei—i-)LZei

e;>0 e; <0
and
MyA(M) =2 ei+AD e
e;>0 e; <0
where (eq, ..., eq) are the eigenvalues of the matrix M. In fact, Assumption | can be

rephrased as
M A(M = N) < F;(M) = Fi(N) < M} ,(M = N),

forevery M, N € S(d) andi = 1, 2. For completeness, we recall the definition of viscosity
solutions; next, we denote by USC(B;) the set of upper semi-continuous functions defined
on Bj. Similarly, LSC(B;) denotes the set of lower semi-continuous functions on Bj.

Definition 1 (C -viscosity solution). Let G : S(d) — R be a (A, A)-elliptic operator. We
say that u € USC(B) is a C-viscosity subsolution to

G(D*u) =0 in B, .1



Fully nonlinear free transmission problems 331

if, for every ¢ € C?2

=c(B1) and x¢ € By such that ¥ — ¢ attains a local maximum at xo, we

have
G(D?p(x0)) < 0.
Similarly, we say that u € LSC(B;) is a C-viscosity supersolution to (2.1) if, for every

/NS C]gc (B1) and x¢ € B; such that u — ¢ attains a local minimum at x¢, we have

G(D?¢(x0)) = 0.

If u € C(By) is simultaneously a subsolution and a supersolution to (2.1), we say it is a
viscosity solution to the equation.

For0 <A <A and f € C(B;), wedefine S(A, A, f) as the set of functions u € C(B;)
satisfying
My A(D?u) < f

in Bjp, in the viscosity sense. Similarly, S(A, A, f) is the set of functions u € C(B)
satisfying
M A (D2) = .

Finally, we set

SA.A, f):=SAA f)NSA A, f)

and

S*A A f) = SA A=) NSAL AL

For a comprehensive account of the theory of C-viscosity solutions, we refer the
reader to [9]. We proceed with the definition of a W 2-¢-strong solution.

Definition 2 (W29 -strong solution). We say that u € ngc’d (B,) is a strong solution to
G(D*u(x)) =0 in B,

if u satisfies the equation at almost every x € Bj.

We refer the reader to [18, Chapter 9] for further details on this class of solutions and
their properties. In the remainder of the paper, we put forward two assumptions concerning
the convexity of the operators F; and F,. We start with a near-convexity condition used
in local C 1'ogliP_regularity.

Assumption 2 (Near-convexity condition). For i = 1,2, we suppose that the operator
F; : S(d) — R satisfies a near-convexity condition, that is, there exists a convex (A, A)-
elliptic operator F : S(d) — R such that

|F;(M)— F(M)| < t(1 + |M]),

for some small constant 7 > 0, yet to be determined.
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For a class of operators satisfying Assumption 2, one may consider small perturba-
tions of a convex operator F. A source of such examples is the class of Isaacs operators.
Indeed, if the matrix governing the equation is uniformly close to a constant matrix,
Assumption 2 is satisfied (see, for instance, [32]). For the use of this assumption in the
study of strong solutions for (1.1), see [33].

When it comes to the analysis of branching points, we require F; and F; to be convex
operators.

Assumption 3 (Convexity). For i = 1,2, we suppose the operator F; : S(d) — R
is convex.

The next assumption concerns homogeneity of degree 1 and plays a major role in the
quadratic growth of the solutions. The argument towards quadratic growth in [10] uses the
linearity of the Laplacian operator. In [24], the authors notice that, in the fully nonlinear
case, the condition that parallels linearity is the homogeneity of degree 1.

Assumption 4 (Homogeneity of degree 1). We suppose F; and F, to be homogeneous of
degree 1, that is, for every T € R and M € S(d), we have

Fi(tM) = tFi(M)

foreveryi =1, 2.

Before further assumptions, we gather some notation used throughout the paper. We
denote by Q1 (u) the subset of the unit ball where u > 0, whereas Q~(u) stands for the
set where u < 0, that is,

Qtw) = {x € By | u(x) > O} and Q (u):= {x € By |ulx) < O}.

When referring to the set where u # 0, it is convenient to use the notation Q(u) :=
Q*(u) U Q (u). By I'(1), we denote the union of the topological boundaries of Q%
and Q7, that is,

I'(u) ;= Q1 (1) U~ (1)) N By.

We say that x* € I"(u) is a branch point if
|B,(x*) N )| >0

for every 0 < r < 1. We denote the set of branch points by I'gg (). In addition, we denote
by X (u) the set where u vanishes:

(u) = {x € By | u(x) = 0}.

A further condition regards the subregion Q7 (u); it is critical to prove the quadratic
growth of the solutions through the set of methods used in the paper. For x* € 92 and
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0 < r « 1, we consider the quantity

vol(B, (x*) N Q7 (u))

Ve(x*,u) = pr

2.2)
For ease of notation, we set V. (0, u) =: V, (u).

Assumption 5 (Normalized volume of 27 (u)). Let x* € I'gr(u) be fixed. We suppose
there exists Cy > 0, to be determined later, such that

Vr(X*’u) = CO
for every r € (0,1/2).

The former assumption imposes a control on the size of the subregion where u is
negative, in a vicinity of x* € I'gg (). It resonates with the geometry of the free boundary.
In the next section, we examine the regularity of strong solutions to (1.1). In particular,
we present the proof of Theorem 1.1.

3. Local regularity of solutions

In this section, we detail the proof of Theorem 1.1. We start by relating (1.1) with viscosity
inequalities of the form

min(F; (D?u), F,(D?u)) <1 in By (3.1)

and
max(Fy(D?u), F»(D*u)) > —1 in By. (3.2)

locd (B1) be a strong solution to (1.1). Suppose Assumption 1 holds
true. Then, u is a C-viscosity solution to inequalities (3.1)—(3.2).

Lemma 1. Letu € W>

The proof of Lemma 1 follows from standard computations and the maximum prin-
ciple for W24 functions; see [28, Corollary 3] and [4]. In addition, if u is a continuous
viscosity solution to (3.1)—(3.2) we also have u € S*(A, A, 1). In fact, because

My (M) < Fi(M) < M\ (M)
holds fori = 1,2, we have
M A (D?u) < min(Fy(D%u), F(D*u)) < 1

and
eA/{;{',A(Dzu) > max(F;(D*u), F,(D?*u)) > —1.

As a consequence of u € S*(A, A, 1), we derive the Holder continuity for the strong
solutions to (1.1), with universal estimates.

Lemma 2 (Holder continuity). Let u € Wlfc’d (B1) be a strong solution to (1.1) and sup-
pose Assumption 1 holds. Then, uw € C2 (B1), for some o € (0, 1), and there exists C > 0

oc
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such that
lullcas,),) < ClullLo,) + 11/ Laca,))-
In addition, « = a(A,A,d)and C = C(A, A, d).

For a proof of Lemma 2, see [9, Lemma 4.10]. In the following, we prove that solutions
to (1.1) satisfy a quadratic growth away from branch points:

3.1. Proof of Theorem 1.1
We continue with an approximation lemma.

Proposition 1. Letu € Wigc’d (B1) be a W24 _strong solution to (1.1). Suppose Assump-
tions 1 and 2 hold true. Given § > 0, there exists 0 < 19 < 1 such that, if the parameter

T > 0 in Assumption 2 satisfies T < To, there exists h € Cliéa (Bg/10) with

e — hllLo(Bge) <6
and
7]l c2e(By5) = C,
for some universal constant C > 0 and some universal exponent o € (0, 1).

Proof. For ease of presentation, we split the proof into three main steps.

Step 1 - We argue by contradiction; suppose the statement of the proposition is false.
Then, there exist sequences (U5 )neN, (F{')neN, and (F}')nen such that:

(1) F} satisfies Assumption 1 for i = 1,2 and every n € N. Moreover,
— 1
|F' (M) — F(M)| < S (LMD (3.3)
foreveryi = 1,2,n € N,and M € S(d);

(2) uy is a viscosity solution to

1

min(F"(D%u,), F}(D%u,)) < - (3.4)

and 1
max(FJ'(D*uy), F3(D*uy)) > —— (3.5)
n

in Bg/19, With u,, = u on 9By, for every n € N;

(3) there exists 5o > 0 for which

n — hllLoo(Bg0) > o

for every h € C%*(Bg/10) with ||h||c2,a(Bs/9) < C,andevery n € N.
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Step 2 - Because of (3.4)—(3.5) and Lemma 2, we learn that |[uy, ||Cﬂ(39/10) < C for
every n € N, for some universal constant C > 0. Consequently, it converges locally uni-
formly, through a subsequence if necessary, to a function u, € Cloc/ 2(39 /10)- Also, (3.3)
ensures that F]' and F}' converge locally uniformly on S(d) to the convex operator F
from Assumption 2. The stability of viscosity subsolutions and supersolutions implies

F(D*us) =0 in By/1o.

Step 3 - Because F is convex, we infer 1o, € Cliéa (Bg/10), With [luso ||Cz,a(38/9) <C,
for some universal constant C > 0 and some universal exponent « € (0, 1). Set & := U
to get a contradiction and thus complete the proof. ]

Proposition 2. Letu € ngcd (B1) be a W _strong solution to (1.1). Suppose Assump-
tions 1 and 2 hold true. There exists 0 < 19 < 1 such that, if the parameter t > 0 in
Assumption 2 satisfies T < 1, one can find 0 < p K 1 and a sequence of quadratic poly-
nomials (Pp)neN with

Py(x):=a, +by,-x+ x-gnx
such that
lu — PullLooBny < 07", (3.6)
F(Ca) =0, 3.7)
and

lan — an—1| + p" by — bucy| + 2" V|C, — Cumy| < CP*TD, (3.8)
for everyn € N.

Proof. We resort to an induction argument; we split the proof into four steps for the
reader’s convenience.

Step 1 - We consider the base case. Set Py := 0; let i € C2*(Bo/10) be the §-
approximating function whose existence follows from Proposition | and define

x - D2h(0)x

Py (x) := h(0) + Dh(0) - x + 5

We verify (3.6)—(3.8) for the case n = 1. Notice that

sup |u(x) = Pr(x)| = sup [u(x) —h(x)[+ sup [h(x) = Pi(x)| =&+ Cp**™.

X€B, XEB,n XEB,n
By choosing
1 \a
§:== and p =(—) ,
2C

one ensures (3.6) holds. Because / is the approximating function from Proposition 1, we
have (3.7). Finally, (3.8) follows from the C 2,%_estimates available for /.
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Step 2 - Now, we formulate the induction hypothesis: suppose (3.6)—(3.8) have been
verified for n = k. We examine the case n = k + 1. Let vi : By — R be defined as

u(pkx) — P (p*x)
ka :

It is clear from the induction hypothesis that v is a normalized viscosity solution to

v (x) =

min(Fy (D?vg 4+ Cr), F(D%vx + C)) <1 in B,
and
max(F;(D?vg + Cx), F>(D?v + Cx)) = —1 in Bj.

Also, Assumption 2 implies

sup |Fi(M + Ci) — Fr(M)| < t(1 + [ M]),
MeS(d)
where Fj is the convex operator defined as Fy(M) := F(M + Cy). Because of the
induction hypothesis, F (Cy) = 0; hence, F(D?w) = 0 and F(D?w) = 0 have the same
estimates.
Consequently, if 0 < t < g, Proposition 1 ensures the existence of he Ckz,;“ (Bo/10),
with ||}7||C2,a(38/9) < C satisfying

[ve = 1l Loo(Bg ) < 8-
Arguing as in the former step, one concludes with the existence of
x-Cx
2

P(x):=@+b-x+

such that
sup |vg(x) — P(x)| < p*.

X€B,
The induction assumption and the definition of vy yield

sup  |u(x) = Py (x)] < p>*+D,
X€B k41

where Py is given by

x-(Ck—i-é)x

Prs1(x) := ag + p**ad + (b + p*b) - x + >

(3.9
Because C = Dzﬁ(O), it follows that F(Cgyq) = 0. Defining ag 41, bxs1, and Cx 4 as
in (3.9), one ensures that (3.8) is also satisfied at the (k 4 1)-level, and thus the proof is
complete. ]

Proof of Theorem 1.1. Once Proposition 2 is available, the proof of Theorem 1.1 follows
from (by now) standard computations (see, e.g., [34, proof of Theorem 2.6, p. 1398]). =
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4. Quadratic growth away from branch points

Let x* € I'gr (1) N By be fixed. Consider the maximal subset of N whose elements j are
such that

1
sup lu(x)| > g Sup [u(x)]; 4.1
x€B, ;1 (x*) XEB,_j(x*)

we denote this set by M(x*, u).
Proposition 3. Letu € ngc’d (B1) be a strong solution to (1.1). Suppose Assumptions 1, 3,

and 4 hold true. Let x* € I'gr(u) and suppose Assumption 5 holds at x*. There exists a
choice of Co > 0 in Assumption 5 such that, if

Voi(x*,u) < Co 4.2)

for every j € M(x*,u), then

1 .

sup  Ju(x)| < =27, Ve Mx*u).
X€EB,_j(x*) Co

Proof. For ease of presentation, we split the proof into three steps.

Step 1 - Set x* = 0 and M(u) := M(0, u). We resort to a contradiction argument;
suppose the statement of the proposition is false. Then, there exist sequences (1, )nen and
(Jn)nen such that u, is a normalized strong solution to (1.1) such that

1
VL (un) < —, (4.3)
2n n

with

n
sup  up(x)| > 20 4.4
xeBz—jn "

for every j, € M(u,) and n € N. Because |[u,||L=(p,) is uniformly bounded, it follows
from (4.4) that j, — oo. In particular, we re-write (4.3) as

Vo () < @5)

2Jn Jn
Step 2 - Now, we introduce an auxiliary function v, : B; — R, given by

U, (2777 x)

lunllLoos, g1

vy (x) =

Clearly, v,(0) = 0. In addition, V7 (v,) — 0. Moreover, it follows from the definition
of v, that

sup [vp (x)] =1 (4.6)
By
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and
sup v, (x)| < 16.
By

We notice that )
D?u, (277" x)

D?v,(x) = —
! 22Jnlup || Lo (B

2-Gn+D)
Hence, the homogeneity of F; and F, yields
min(Fy (D?u, (2777 x)), F2(D?u, (2777 x)))

min(F; (D2v,(x)), F2(D?v,(x))) < 22in up | o8

2—Gn+1))

see Assumption 4. Therefore,

1 Cllunllze(s,,,)

min(Fy(D?v,), F>(D?v,)) < < Co, 4.7

C
- S J—
n unllLeos, ) ~ 7
for some Cyp > 0 and n > 1. On the other hand,
max(Fy (D?un(55)). F2(D?un(55)))

22Jn ||up || Lo (B

max(F; (D?vy,), F2(D%vy,)) >

2—(jn+1))

> —Cy. (4.8)

It follows from (4.7)—(4.8) that (v, )nen C S*(A, A, Cp). As a consequence, v, € C2 (By)
for every n € N, for some unknown « € (0, 1), with uniform estimates; see [9, Proposi-
tion 4.10]. Therefore, there exists voo such that v, — v in Clgc(Bl), for every 0 <
B < a. Since v, (0) = 0 for every n € N, we infer that v, (0) = 0, whereas (4.6) leads to
Voo llLoo(B,,,) = 1. Because Vi (vn) — 0, we conclude that vee > 0 in Bj.

Step 3 - Standard stability results for viscosity solutions build upon (4.7) to ensure
min(F; (D?veo), F2(D?*vs0)) <0 in By.

We conclude that v € §(A, A, 0) attains an interior local minimum at the origin. It leads
to a contradiction and finishes the proof; see [9, Proposition 4.9]. [

In Proposition 3 the constant Cy > 0 informing Assumption 5 is determined. This
quantity remains unchanged henceforth. The following result extrapolates the former anal-
ysis from M (x*, u) to the entire set of natural numbers:

Proposition4. Letu € w24 (B1) be a strong solution to (1.1). Suppose Assumptions 1, 3,

loc

and 4 hold true. Let x* € T'gr(u) and suppose Assumption 5 holds at x*. Finally, suppose
that for every j € M(x*,u) we have

Va-i (x*,u) < Co,
for Cy > 0 fixed in (4.2). Then,

4 .
sup  Ju(x)] < —=—2"%, VjeN.
Co

XEB,_j (x*)
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Proof. As before, we set x* = 0 and argue through a contradiction argument; suppose the
proposition is false. Let m € N be the smallest natural number such that

4
sup |u(x)| > C—Z_zm. 4.9)

Bym 0

We claim that m — 1 € M(u). Indeed,

4 16

sup |u(x)| < —2720mD = 272 4 qup |u(x)|.

le—m CO CO By—m
We conclude that

1 —2(m—1) 4 —2m

sup |u(x)| = sup |u(x)| = =2 = 27",

By-m Byiom Co 0
which contradicts (4.9) and thus completes the proof. ]

Consequential to Proposition 4 is the quadratic growth of ¥ away from the branch
point x*. We detail this argument in the proof of Theorem 1.2.

Proof of Theorem 1.2. Find j € N satisfying 20U+ < < 277 It is straightforward to
notice that

swp ()| < swp o) = €[(5) | = e

2—J

which ends the proof. ]
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