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A convergent finite element algorithm for
mean curvature flow in arbitrary codimension

Tim Binz and Balazs Kovacs

Abstract. Optimal-order uniform-in-time H !-norm error estimates are given for semi- and full
discretizations of mean curvature flow of surfaces in arbitrarily high codimension. The proposed
and studied numerical method is based on a parabolic system coupling the surface flow to evolution
equations for the mean curvature vector and for the orthogonal projection onto the tangent space. The
algorithm uses evolving surface finite elements and linearly implicit backward difference formulas.
This numerical method admits a convergence analysis in the case of finite elements of polynomial
degree at least 2 and backward difference formulas of orders 2 to 5. Numerical experiments in
codimension 2 illustrate and complement our theoretical results.

1. Introduction

In this paper we prove semi- and fully discrete error bounds of a numerical algorithm for
the evolution of a closed m-dimensional surface I'(f) C R” evolving under mean curvature
flow of arbitrary codimension, with a particular interest in codimension at least 2.

The goal of the paper is to derive and analyze an algorithm for (high codimension)
mean curvature flow. Our algorithm is based on the numerical approximation of a non-
linear parabolic equation system coupling the velocity law to evolution equations, for the
mean curvature vector FI and the orthogonal projection onto the tangent space m, along
the flow. This is a similar approach to that of recent work for the numerical analysis of
mean curvature flow [28], which first utilized such an approach using similar evolution
equations for the (scalar) mean curvature and surface normal. For the numerical analysis
of other geometric flows using this approach, see [13,29,30].

Similarly, as Huisken [26] did for codimension 1 mean curvature flow, in higher
codimension Andrews and Baker [7] have derived numerous geometric evolution equa-
tions for various geometric quantities; see [39] as well. They used them to show existence
of a unique smooth solution (with suitable initial value), which converges to a point in
finite time. For mean curvature flow in arbitrary codimension (and dimension), we derive
here evolution equations for the mean curvature vector H and the orthogonal projection
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onto the tangent space, which (to our knowledge) are not yet known in the literature. Until
the present work, it was also not evident that these evolution equations for H and 7 form
a closed system that does not involve further geometric quantities.

We now give a brief overview of mean curvature flow in higher codimension.

In two papers [3, 4], Altschuler and Grayson have proved the first results for curves
in R3—namely that, unlike with planar curves, singularities may occur in finite time.
Ambrosio and Soner [5, 6] have studied high codimension mean curvature flow using a
level set approach. Andrews and Baker [7] have proved that submanifolds sufficiently
close to the round sphere smoothly collapse to round points in finite time and have proved
pinching estimates. They derive evolution equations for geometric quantities along the
flow, similar to [26] in codimension 1, but have not derived the closed system of evolution
equations derived and used in this paper. These pinching estimates were greatly refined
by Naff in [36]. Ancient solutions were recently studied by Lynch and Nguyen [34]. In
the survey article [39], Smoczyk presents results on short-time existence and unique-
ness, long-time existence and convergence, and singularities. The survey-type article by
Wang [40] collects several theorems on regularity, global existence, and convergence; see
also [41].

We also give a literature overview on numerical methods for curve shortening and
mean curvature flow in codimension at least 2 (while only giving a brief outlook on other
flows):

Following the ideas of Dziuk [20] for mean curvature flow, Dziuk [21] and Deckel-
nick and Dziuk [15] have both proposed and analyzed finite element algorithms for curve
shortening flow for curves possibly in higher codimension and have proved semi-discrete
L>®(L?)- and L?(H')-norm error estimates. We note here that the original algorithm [20]
works for high-codimension surfaces; however, convergence results were not yet proven.
Carlini, Falcone, and Ferretti [14] proposed a semi-Lagrangian scheme for curve shorten-
ing flow in codimension 2 (i.e., closed curves in R?), and have analyzed its (conditional)
consistency. Pozzi proposed a numerical method for anisotropic curve shortening and
mean curvature flow in higher codimension in [37, 38], and proved semi-discrete error
estimates for curves in arbitrary codimension. Barrett, Garcke, and Niirnberg [10] pro-
posed numerical algorithms—allowing tangential movements—for gradient flows (includ-
ing curve shortening and Willmore flow) for closed curves in R” (n > 2). In [11] they
discretized high-order flows for plane and space curves. Dorfler and Niirnberg [18] have
proposed finite element discretizations for gradient flows for general curvature energies
of space curves. A tangentially redistributing scheme for 3-dimensional curve evolutions
was proposed in [35].

Apart from the convergence results for curves in R" by Dziuk [21], Deckelnick and
Dziuk [15], and Pozzi [37], we are not aware of any convergence results for mean curva-
ture flow in high codimension.

The newly derived non-linear geometric evolution equations for the mean curvature
vector H and orthogonal projection are coupled with the velocity law v = H and the
ordinary differential equation (ODE) X=voX describing the surface evolution. This
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geometric coupled system is then discretized using evolving surface finite elements (of
degree at least 2) and using linearly implicit backward difference formulas (of order 2
to 5), under a mild step size restriction.

We prove optimal-order time-uniform H '-norm semi- and fully discrete error estim-
ates for mean curvature flow in arbitrary codimension and dimension, utilizing the newly
derived geometric coupled system, for the surface position X, the velocity v, and the
geometric quantities H, 7. The functional-analytic setting for the spatial semi-discrete
coupled system of mean curvature flow in arbitrary codimension is fundamentally dif-
ferent from the one for mean curvature flow [28]. Still, the matrix—vector formulations
of their respective semi-discretizations formally coincide. We regard this as an advant-
age of our algorithm. They both use the same mass and stiffness matrices with different
block-sizes, but the non-linear terms are more complicated than in [28]; however, both
are locally Lipschitz continuous. Due to this purely formal analogy of the matrix—vector
formulations, the convergence proofs for arbitrary codimension mean curvature flow also
formally coincide with the respective proofs in [28] for mean curvature flow. More pre-
cisely, since the non-linear terms are locally Lipschitz, the stability proofs of [28] directly
apply to the present case as well. Consistency proofs are shown using similar arguments.

Arguably, for curves, the algorithm proposed here is more complicated to implement
than the methods of Dziuk [21] and Deckelnick and Dziuk [15]; however, the algorithm
proposed here comes with a convergence analysis for surfaces.

The paper is organized as follows: Section 2 introduces basic notations for arbitrary
codimension submanifolds and contains the main technical results of the paper, which
consist in deriving the evolution equations for H and 7. Section 3 contains the evolving
surface finite element spatial semi-discretization, and the corresponding matrix—vector
formulation, and discusses its relation to the matrix—vector formulation of mean curva-
ture flow [28]. Section 4 presents the linearly implicit backward differentiation formulas.
Section 5 contains the main results of the paper—namely, semi- and fully discrete error
bounds. Section 6 reports on a large number of numerical experiments to illustrate and
complement our theoretical results, including convergence tests and comparisons with
Dziuk’s algorithm [21], and presents some examples from the literature.

2. Evolution equations for mean curvature flow

2.1. Basic notions and notation

We start by introducing some basic concepts and notations.

We consider an evolving m-dimensional (m = 1, 2, 3) closed submanifold I'[ X] C R”,
that is, an m-dimensional submanifold in R” of codimension n — m. In this paper we allow
submanifolds of arbitrary codimension n —m > 1.

The m-dimensional submanifold I'[X] is given as the image

T[X]=TX(.0] = {X(p.0) | peT°}
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of a smooth mapping X : I'® x [0, T] — R” of an initial submanifold I'° such that X(-, 7)

is an embedding for every ¢, and X(p,0) = p. Here, the initial submanifold T'® ¢ R”

is smooth and of dimension m. In view of the subsequent numerical discretization, it is

convenient to think of X(p, t) as the position at time ¢ of a moving particle with label p,

and of I'[X] as a collection of such particles. This approach is similar to the one in [28].
The velocity v(x,t) € R atapoint x = X(p,t) € T'[X(-, )] equals

8tX(p,[)=U(X(p,l),l). (21)

For a known velocity field v, the position X(p,?) at time ¢ of the particle with label p is
obtained by solving the ordinary differential equation in (2.1) from O to ¢ for a fixed p.

For a function u(x,t) (x € I'[X], 0 <t < T), we denote the material derivative (with
respect to the parametrization X)) as

0%u(x,t) = %M(X(p,l),l) for x = X(p,1).

On a regular submanifold, we denote by gij = 8; X - 9; X = Y, _, 3; X,,0; X, (i, j =
1,...,m) the induced metric, where X denotes the local parametrization of the surface T".
We denote its inverse by (g% ). Moreover, we denote the second fundamental form by

AW) = (A )72y = (@0, X(p.0))] = @0, X = TH Xy € R")™.

Here, + denotes the orthogonal projection to the orthogonal complement of the tangent
space of I'[X] at x = X(p,1).
Furthermore, the mean curvature vector is the trace of the Weingarten map, that is,

H=g"4; =(g79;0,X)" =79;0,X — g"TEd X e R™;

in other words, we use the sign convention that for a sphere of radius R, the mean curvature
vector H points inwards and has length m/R.

For every x € I'[ X], we denote the orthogonal projection from R” to the tangent space
of the submanifold I'[X (-, #)], at the point x = X(p, ), by

n(x)=g"3; X ® ;X € R™™",

On any regular submanifold I' C R”, the rangential gradient Vru : I' — R”" of a func-
tionu : I' — R is given by Vru := g¥/ 3;u d; X, and in the case of a vector-valued function
u=@i,....up)T : T — R", we define Vru = (Vruy,..., Vriu,) componentwise, that
is, we use the convention that the gradient of u has the gradient of the components as
column vectors. We denote by Aru = Vr - Vru the Laplace—Beltrami operator applied
to u, so that on a closed surface we have [ Aruv = — [ Vru - Vv (cf. [23]).
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2.2. Evolution equations for orthogonal projection and mean curvature vector of a
submanifold evolving under mean curvature flow

Mean curvature flow (in arbitrary codimension) sets the velocity (see (2.1)) of the sub-
manifold T'[X] to

-

v=H. (2.2)

For geometric surface flows (see, e.g., [26]), it is known that the geometric quantities
satisfy evolution equations along the flow. The algorithm here is based on parabolic partial
differential equations for the mean curvature vector H and the projection 7, which are
derived in the following result:

Lemma 2.1. For a regular m-dimensional submanifold T'[X] C R" moving under mean
curvature flow in codimension n — m, the orthogonal projection w and the mean curvature
vector H satisfy

' = A]“[X]JT + fi(m), (2.3a)
0°H = ArpyH + fo(m, H), (2.3b)

where the Laplace—Beltrami operator is understood componentwise. The non-linear terms
are given componentwise, foro, § = 1,...,n, by

n n
[iap =2 VrxiTap - Ve mae —4 Y Tue Ve Tau - Vox) T

=l pore=t (2.4)

n n
fo(r H)a =2 Ve e - Ve Hy +4 ) Ve e - Vopx) e Hee
n=1 k=1
Proof. The lemma is proved in Appendix A, in order for the paper to avoid local defini-
tions as much as possible. The result follows from Lemmas A.6 and A.8, in a differential
geometric setting using calculations in geodesic normal coordinates. ]

These equations are formally the same as the analogous ones for mean curvature flow
(the normal vector and mean curvature); see [26], or [28, (2.4) and (2.5)]. The non-linear
terms are, however, more complicated.

In the case of codimension 1, we have A;; = —h;;v and the mean curvature vector
H=-— tr(h)v, where h;; denotes the second fundamental form and v the outer unit nor-
mal. Furthermore, tr(%) is the scalar mean curvature. In this case, the orthogonal projection
is given by mag = 8o — Vo Vg. Using the identities

n n
Z Vrix) e - Ve Hy = Z & 7001 Hy,
n=1 n=1

n
= > &M (Wa0vy + vu0kva) (9 tr(h)vy + trdpv,)
n=1
= g 3; tr(h)dxve + |h|? tr(h)ve
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and
n
Z VI‘[X]Tfom rix ]T[MKHK = Z gklakﬂaualﬂwcH/c
wk=1 wok=1
n
= — > (€ 0kvadrvy + [h[vavy) tr(h)va,
k=1

as well as dpv = hi d; X, we obtain from (2.3b) and (2.4) the evolution equation of the
mean curvature vector:

O°H = ArpxgH — 2082 w(h)v + 2¢7 ¢¥0; tw(h)hjrd; X
= AF[X]FI + 2|h|2ﬁ + Z(VF[X] tr(h)) - VF[X]V. 2.5)

Combining the evolution equations of the normal vector and mean curvature in [26] (see
also [28, (2.4) and (2.5)]), we obtain equation (2.5) by the product rule.

2.3. A coupled system for mean curvature flow

The evolution of a submanifold of dimension m in codimension n — m > 1 evolving by
mean curvature flow is then governed by coupled system (2.2), (2.3a)—(2.3b) together with
ODE (2.1). The numerical method is based on the weak form of the above coupled system,
which reads:

(2.6)

- H,
/ 3°7T'<.0”+/ Vrix)m - Vrix / Sfi(m) - o™,
T[] T[]

/ 3°ﬁ'§0H+/ VF[X]H'VF[X]¢ = fz(ﬂ Hy-f
r'ix] r[x]
together with the ODE 0, X =vo X,

for all test functions ™ € H(I'[X])"*" and <pﬁ € HY(T'[X])". This system is comple-
mented by the initial data for X°, 7°, and H°.

For simplicity, by - we denote both the Euclidean scalar product for vectors and the
Frobenius inner product for matrices (i.e., the Euclidean product with an arbitrary vector-
ization).

We now directly compare the weak formulation of the coupled geometric system for
mean curvature flow in codimension 1 derived in [28] (in particular, see [28, (2.6)]): Find
the velocity v, scalar mean curvature H, outward unit normal vector v, and the paramet-
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rization X such that the following system holds:

/ Vrixjv - Vrixge® + / v’
r[x] r'[x]

—— [ ru) Vet - [ g
rix] r'[x]
/ v - " +[ Vrixjv - Vrixe” =/ IVrpxv?v -, 2.7)
rx] r[X] X
/ I H o +/ Vrix H - Vrixe? = / Vel H o,
r[x] rix] rIX]

together with the ODE  9;X = vo X,

for all test functions ¢¥ € HY(T'[X])3, ¥ € H'(T'[X])?, and ¢ € H'(T'[X]). This
system is complemented by the initial data X °, v°, and H°.

It is also worthwhile to compare the size of formulations (2.6) and (2.7) for a surface
of codimension 1 in R”: without the ODE present in both cases, weak formulation (2.7)
is of size 2n + 1, while the new weak system given in (2.6) is of size n? 4 n (the first
equation is merely an identity).

We note that the first equation determining v could be simplified to the natural point-
wise identity v = —Hv (see [30]).

3. Evolving surface finite element semi-discretization

3.1. Evolving surface finite elements

We formulate the evolving surface finite element (ESFEM) discretization for the velocity
law coupled with evolution equations on the evolving surface following the description
in [28,31], which is based on [17,19,27]. We use simplicial finite elements and continuous
piecewise polynomial basis functions of degree k, as defined in [17, Section 2.5].

We triangulate the given smooth initial surface I'° by an admissible family of tri-
angulations 7; of decreasing maximal element diameter /; see [22] for the notion of
an admissible triangulation, which includes quasi-uniformity and shape regularity. For
a momentarily fixed &, we denote by x° the vector in R™¥ that collects all nodes Dj
(j =1,..., N) of the initial triangulation. By piecewise polynomial interpolation of
degree k, the nodal vector defines an approximate surface F,? that interpolates T'? in the
nodes p;. We will evolve the jth node in time, denoted by x; () with x;(0) = p;, and
collect the nodes at time ¢ in a column vector

x(1) € RV,

We just write x for x(z) when the dependence on ¢ is not important.
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By piecewise polynomial interpolation on the plane reference triangle that corresponds
to every curved triangle of the triangulation, the nodal vector x defines a closed surface
denoted by I';,[x]. We can then define globally continuous finite element basis functions

¢i[x] : Tp[x] = R, i=1,...,N,

which have the property that on every triangle, their pullback to the reference triangle is a
polynomial of degree k which satisfies at the nodes ¢; [x](x;) = §;; foralli,j =1,..., N.
These functions span the finite element space on I',[x], that is,

Snlx] = Sp(Tx[x]) = span{¢:[x]. f2[x]. ... d [x]}.

For a finite element function uj, € Sp,([x], the tangential gradient Vr, qu, is defined piece-
wise on each element.

The discrete surface at time ¢ is parametrized by the initial discrete surface via the map
Xp (1) : T) — T'y[x(1)] defined by

N
Xn(pnt) =Y x; (1) ¢;[xO)(pn).  pn €T},
j=1

which has the properties that X5 (p;,t) = x;j(¢) for j =1,..., N, X3 (pn,0) = pj forall
pr € T, and
Ta[x(0)] = T[Xu(, 0] = {Xn(pn. 1) | pn € T}

The discrete velocity vy (x,t) € R™ ata point x = X (pp,t) € T'[Xn(:,1)] is given by

0 Xn(pn,t) = vp(Xp(pp. 1), 1).

In view of the transport property of the basis functions [22], (f—t (9j [x(O](Xn(pn.1))) =0,
the discrete velocity equals, for x € T';[x(?)],

N
va(x, 1) = ) v () ¢ [x(O](x)  with v; () = % (1),

J=1

where the dot denotes the time derivative d/dz. Hence, the discrete velocity vy (-, ¢) is in
the finite element space S [x(7)], with nodal vector v(r) = X(z).

The discrete material derivative of a finite element function uj (x, t) with nodal val-
ues u; () is

N
Mup(x.1) = %uh(xh(ph,z» =Y (¢ [xO)x) at x = Xp(pa. 1)
j=1
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3.2. ESFEM spatial semi-discretizations

Now we describe the semi-discretization of the coupled system for mean curvature flow
in arbitrary codimension.

The finite element spatial semi-discretization of the weak coupled parabolic system
(see (2.6)) reads as follows: Find the unknown nodal vector x(¢) € R¥” and the unknown
finite element functions vy (+,¢) € Sp[x(¢)]" and 75 (-, t) € Sp[x(¢)]"*", as well as I:Ih (-, 1)
€ Sp[x(2)]", satisfying the coupled semi-discrete system

vy, =Ijlh, (3.1a)

/ 0pTh - @ +/ Vi, 7 - VK9, =/ Si(n) - op (3.1b)
T[] I'y[x] T'p[x]

/ 3Zﬁh'¢f +/ Vrh[x]ﬁh'vrh[x]fﬂf =/ fz(ﬂh,ﬁh)'%fl, (3.1c)
Tplx] Tplx] Tplx]

where f1(mp) and f>(mp, ﬁh) are the spatially discrete analogues of non-linear expres-
sions (2.4), for all g € Sp[x(¢)]"*" and <pf € Sp[x(¢)]*, with the surface I'y[x(7)] =
I'[ X} (-, 1)] given by the differential equation

3 Xn(pn,t) = vi(Xn(pn.t),1), pnreT}. (3.2)

The initial values for the nodal vector x are taken as the positions of the nodes of the
triangulation of the given initial surface I'°. The initial data 77 and H}) are determined by
componentwise Lagrange interpolation of 7% and H°.

3.3. Matrix—vector formulation

The nodal values of the unknown semi-discrete functions vy (-, t) € Sp[x(¢)]", 7p(-, 1) €
Spx(#)]", and H(-, t) € Sp[x(¢)]" are collected into column vectors v(z) = (vj(t))
e RN n(t) = (;(t)) € RN and H(r) = (ﬁj (t)) € RN respectively. Furthermore,

we set
u= ]f c RN(n2+n)
H

and set I to be a block matrix extracting the H component of u, that is, Ju = H.
We define the surface-dependent mass matrix M(x) and stiffness matrix A(x) by

M(x)|;; =/F[]¢,-[x]¢j[x] and  A(x)|;; Z/r ]VFh[x]¢i[X]'Vl"h[x](pj[x]»

nlx

fori, j = 1,..., N. The non-linear terms f(x,u) = (f;(x,u), f>(x,u))” are defined by

£1 (X, 0) k4 (@-1)N+B-1)nN = /r []fl(ﬂh)a;s ér [x].
h X
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£2(% Wt @etyy = /F S e el
h X

fork=1,...,Nande,8 =1,...,n.
Furthermore, for d € N (with the identity matrices I; € R4*4) we let

M (x) = I, 9 M(x), A(x) = I; ® Ax).

When no confusion can arise, we will write M(x) for M[?](x) and A (x) for Al?l(x).
Using the definitions given in (3.1), (3.2) can be written in the matrix—vector form

v = 1u,
M(x)u + A(x)u = f(x, u), (3.3)
with X =v.

Matrix—vector formulation (3.3) for mean curvature flow in arbitrary codimension is
almost identical to the same formulas for mean curvature flow in codimension 1 (see
[28, (3.4)—-(3.5)]):

M(x) + A(x))v = g(x,u),
M(x)u + A(x)u = f(x, u),

with X =v.

In the two above ODE systems, the equations for u and x are formally the same, though the
equation for v is even simpler here. Note that here u collects & and ﬁ, whereas for mean
curvature flow in codimension 1 it collects u = (n, H)T, that is, the nodal values of the
approximations to the normal vector and scalar mean curvature. Naturally, the block-size
of the matrices in the two equations for u are different (n2 4+ n and n + 1, respectively).

It is crucial to notice that, thanks to the coinciding matrix—vector formulations, many
results from [28]—most notably, the stability results given by Propositions 7.1 and 10.1
therein—hold directly for the present case as well.

3.4. Lifts

As in [31] and [28, Section 3.4], we compare functions on the exact surface T[X(-, t)]
with functions on the discrete surface T'y[x(t)] via functions on the interpolated sur-
face Ty[x*(¢)], where x*(t) denotes the nodal vector collecting the grid points x}k ()
= X(pj,t) on the exact surface, and p; are the nodes of the discrete initial triangula-
tion F;l).

Any finite element function wy, on the discrete surface, with nodal values wy;, is asso-
ciated with a finite element function Wy, on the interpolated surface I', [x*] with the exact
same nodal values. This can be further lifted to a function on the exact surface by using
the lift operator ¢, mapping a function on the interpolated surface I';,[x*] to a function on
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the exact surface I'[X], via the closest point projection. Provided that the two surfaces are
sufficiently close, for x € T';[x*], find x¢ € I'[X] such that x* — x is minimal, that s,

xt—x L T.T[X], and then set @h(xé) = Wp(x).

This definition is consistent with the lift operator in codimension 1 (see [17, 19, 22])
using the signed distance function d. The standard norm-equivalence results given by
[17, (2.15)—(2.17)] hold for this definition as well.

Then, the composed lift £ maps finite element functions on the discrete surface I';[x]
to functions on the exact surface I'[X] via the interpolated surface I'y[x*], and it is def-
ined by

wy = (@p)"

4. Linearly implicit full discretization

Similar to the case of mean curvature flow [28], for the time discretization of system of
ordinary differential equations (3.3), we use a g-step linearly implicit backward difference
formula (BDF method). For a step size t > 0, and with ¢, = nt < T, we determine the
approximations to all variables x” to x(t,,), v"* to v(, ), and u” to u(z, ) by the fully discrete
system of linear equations

vi=1vu", (4.1a)
M@E")a" + AE")u” = X", 0"), (4.1b)
X" =v", (4.1¢c)

where we denote the discretized time derivatives
14 ' 14 '
X' = - E §ix", 0t = - E sju""/, n>gq,
j j
T 4 T 4
}=() j=0

and where X" and 0" are the extrapolated values
q-1 q-1
X" = Zijn_l_/, u = Z yju"_l_’, n>gq. 4.2)
j=0 j=0

The starting values x* and u’ (i =0, ...,q — 1) are assumed to be given; in addition, we
set X =x' and W =u’ fori =0,...,9 — 1. They can be precomputed using either a
lower-order method with smaller step sizes or an implicit Runge—Kutta method.

The method is determined by its coefficients, which are given by §(¢) = >1_,6;¢/ =

ZZ=1 %(1 —Otand y(0) = ?;(1) yi¢/ = (1= (1—=¢)9)/¢. The classical BDF method
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is known to be zero-stable for ¢ < 6 and to have order g; see [25, Chapter V]. This order
is retained, for ¢ < 5, by the linearly implicit variant using the above-mentioned coeffi-
cients y; (cf. [2,33]).

We again point out that fully discrete system (4.1)—(4.3) is formally the same as the
fully discrete system for the mean curvature flow for surfaces [28, (5.1)-(5.4)]. In [28,
Theorem 6.1] optimal-order error bounds for the combined ESFEM-BDF full discretiz-
ation of the mean curvature flow system are proved, for finite elements of polynomial
degree k > 2 and BDF methods of order 2 < ¢ < 5.

We note that in the nth time step, the method decouples and hence only requires solv-
ing a linear system with the symmetric positive definite matrix oM(X") + TA(X").

From the vectors and matrices x" = (x]'-’), vt = (v;’), and u” = (u;l) with u;’ =
(7%, f]}’), where 71]’.’ € R™" and ITI;’ € R”, we obtain position approximations to X (-, ;)
and idr[x(.,)], velocity approximations to v(-, t,), and approximations to the orthogonal
projection and the mean curvature vector, respectively, at time #, as

N
X\ (pw) = Y_xI §;[x(O)](pp)  for p € T},
j=1

xp, (x) = idppxo,

N
(x) = i [x" for x € Ty[x"],

v (x) ;vj ¢, [x"](x) or x € I'4[x"] ws)
N

() = Yt ¢ [x"](x) for x € [y[x"],
j=1

- N -

Hy (x) = Z H' ¢;[x"](x) for x € Ty[x"].
j=1

In the semi-discrete case, the approximations of the same quantities are given analogously.

5. Main results: Error estimates

We are now in the position to state the main results of this paper—namely, time-uniform
optimal-order semi- and fully discrete H '-norm error estimates for the position, velo-
city, orthogonal projection, and mean curvature vector obtained, respectively, by semi-
discretization (3.1) (or (3.3)), or linearly implicit BDF full discretization (4.1), using
evolving surface finite elements of polynomial degree at least 2, and ¢g-step BDF method
with2 < ¢ < 5.
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5.1. Convergence of the semi-discretization

Theorem 5.1. Consider semi-discretization (3.1) of the mean curvature flow in (2.2)
in arbitrary codimension n — m, using evolving surface finite elements of polynomial
degree k > 2. Suppose that the mean curvature flow problem in arbitrary codimension
admits an exact solution (X, v, m, H ) that is sufficiently smooth on the time interval
t €0, T], and that the flow map X(-,t) : T — I'(t) C R”" is non-degenerate so that
['(t) = T'[X(-, )] is a regular surface on the time interval t € [0, T].

Then, there exist constants hg > 0 and C > 0 such that

IXE (. 1) — idr oy < ChE.
lof ¢ 1) = v Dl ey < CE,
l7f o) = G Ol ey < Ch,
IHE .0y = HC Oy < ChE,
X5 C.t) = XC.0) | g1 roy < ChE,

forall h < ho. The constant C > 0 is independent of h and t, but depends on the H**1-
norms of the exact solution (X, v, w, H) and on the final time T .

Proof. The result essentially follows from the proof of [28, Theorem 4.1].

The stability is shown following the proof of [28, Proposition 7.1], since (as we have
pointed out above) matrix—vector formulation (3.3) is (almost) identical to the matrix—
vector formulation of [28, (3.4)—(3.5)] (recalling that here u = (7, ﬁ)T is in the role
of u = (n, H)T in [28]). The system uses the same mass and stiffness matrices (but of
different size), while the proof therein only uses the local Lipschitz continuity of the non-
linear terms, which holds here as well. The bounded operator I in the velocity equation
v = I'u even simplifies part (B) of the stability proof of [28, Proposition 7.1].

The consistency errors for (X, v, 7, H ) are shown by the exact techniques of the con-
sistency analysis [28, Lemma 8.1].

The uniform-in-time H '-norm error bounds are proved by combining stability and
consistency, verbatim as in [28, Section 9]. |

5.2. Convergence of the full discretization

Theorem 5.2. Consider full discretization (4.1) of the mean curvature flow in (2.2) in
arbitrary codimension n — m, using evolving surface finite elements of polynomial degree
k > 2 and linearly implicit BDF time discretization of order q with 2 < q < 5. Suppose
that the mean curvature flow problem in arbitrary codimension admits an exact solution
(X,v,m, H ) that is sufficiently smooth on the time interval t € [0, T, and that the flow
map X(-,t) : T — I'(t) C R” is non-degenerate so that T'(t) = T'[X(-,1)] is a regular
surface on the time interval t € [0, T.
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Then, there exist constants hg > 0, 79 > 0, and Cy > 0 such that for all mesh sizes
h < ho and time step sizes T < t¢ satisfying the mild step size restriction

T < Coh

(where Co > 0 can be chosen arbitrarily), the following error bounds for the lifts of the
discrete position, velocity, tangential projection and mean curvature vector hold over the
exact surface: provided that the starting values are O(h* + t911/2) accurate in the H'
norm at time t; fori =0,...,q — 1, we have at time t, =nt < T

||(XZ)L —idre) lm1 (@) < C(h* + 19),
I = vC )l @y < C(h* + 19),
Y = 7ot oy < CHF +19),
ICHME = He i)l gy < COF +79),
”(X;:)[ = XC.tw)llgrroy < C(h* + 17)

for all h < hg. The constant C > 0 is independent of h, t, and n, but depends on bounds
of higher derivatives of the exact solution (X, v, w, H), on the final time T, and on Cy.

Proof. The proof is similar to the case of semi-discrete error bounds: since the ESFEM/
linearly implicit BDF discretization given in (4.1) is (almost) identical to [28, (5.1)], the
proof of this result directly follows as the proof of [28, Theorem 6.1]. ]

For surfaces in codimension at least two, Theorems 5.1 and 5.2 provide (to our know-
ledge) the first convergence results. However, for curves in higher codimension, simpler
methods with convergence analysis are available; see [15,21,37].

For surfaces in codimension 1, although Theorems 5.1 and 5.2 hold, we recommend
the use of the convergent methods of [28] (which requires polynomial degree k > 2) or
Dziuk [20, 32] (which requires polynomial degree k > 6). We note that other attractive
methods—without a convergence analysis—are available; for these, see the references
in [28].

Remark 5.3. The stability and convergence results readily extend to higher-dimensional
submanifolds T'[X] C R” of dimension m > 4 and of arbitrary codimension n — m (cf. [28,
Section 14]), provided that a suitable optimal-order (quasi-)interpolation is used to counter
the effect of the inverse estimates instead of the nodal interpolation (cf. [23, Lemma 4.3],
which requires dimension m < 3), and requires evolving surface finite elements of degree
k > |m/2]| + 1 and BDF methods of order |m/2| + 1 < g < 5. For the six-step BDF
method, a new multiplier-based energy technique was developed in [1]. The fully discrete
stability proof in [28] should generalize to this approach.
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6. Numerical examples for curves in R?

We performed the following numerical experiments for mean curvature flow of curves
in R3:
* A convergence test using planar curves where the exact solution is known.

* A comparison test with Dziuk’s algorithm for curves [16] using circles and Angenent
ovals [8].

» Experiments for space curves using established examples from the literature [10, 37]
(e.g., a trefoil knot), still comparing with Dziuk’s algorithm.

All our numerical experiments were carried out in Matlab using quadratic evolving
surface finite elements and BDF methods of various order specified in the experiments.
The parametrization of the quadratic elements was inspired by [12]. The initial meshes
were all generated using an arc-length parametrization, without taking advantage of any
symmetry of the surface.

6.1. Convergence test

We are reporting on the errors of our algorithm for mean curvature flow in codimension 2
for flat space curves. Simple test examples are constructed in this setting by using the fact
that the evolution of flat space curves evolving under the flow given by (2.2) is equivalent
to their evolution under curve shortening flow.
Let the curve I'? : [0, 2] — R3 be a circle of initial radius Ry in an arbitrary plane.
We consider the mean curvature flow of I'(-, #) with initial value I'y. Using the rota-
tional symmetry of I' along flow, we obtain that its radius satisfies the ODE

d 1
ER(I) = RO with initial value R(0) = Ry.

The above initial value problem has the solution

R(t) = JR2 —21

until final time Tix = R(z) /2. Therefore, the curvature of I'(:, ) is given by the formula
H(-,t) = 1/R(t) = (RZ —21)"V/2.

We computed numerical approximations to the flow using quadratic finite elements
(k = 2) and using the 2-step linearly implicit BDF method (¢ = 2) for a circle of radius
Ro = 1 which lies in the y—z-plane rotated by # = m/e. The starting values X' € R3V
andu = (7, H)T e ROTIN fori = 1,...,q — 1 were computed as the interpolations of
the exact values.

In Figures 1 and 2 we report on the errors between the numerical and (interpolation
of) exact solutions for mean curvature flow in codimension 2 of a flat circle until the final
time Tiax, illustrating the error bounds of Theorems 5.1 and 5.2. The two plots in Figure 1
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I X — Xl oo | H — Hyll g

errors

e J—a—7=0.05

—a—17 =0.05

—e—7 = 0.025 —o—1 = 0.025

104+ —x—171 = 0.0125 1 104 F —x—171 = 0.0125
7 = 0.00625 7 = 0.00625
5 —o—7 = 0.003125 ] sl —o— 17 = 0.003125 ]

10 ——7 = 0.0015625 10 —+—7 = 0.0015625

——— O(h?) —— O(h?)
10© : 106 ‘

107 107
mesh size (h) mesh size (h)

Figure 1. Spatial convergence of the BDF2/ quadratic ESFEM discretization for MCF codimen-
sion 2 of the unit circle for 7 = 0.4.

report on the surface error and the errors of the mean curvature H » on the left- and right-
hand side, respectively. The logarithmic error plots show the L® (H !)-norm errors against
the mesh size 4. The lines marked with different symbols correspond to different time step
sizes 7. Figure 2 reports on the same errors but reversing roles of / and .

In both cases the error curves match the slope of the reference lines (dashed) corres-
ponding to the convergence order of Theorems 5.1 and 5.2, @ (h?) and O (z?).

6.2. Comparison with Dziuk’s algorithm

We compared algorithm (4.1) with (the linearly implicit BDF version of) Dziuk’s algo-
rithm for curves; see [16,21]:

ME")X" + AX")X" =0 forn >gq, 6.1)

with given initial data x' € R3" fori = 1,..., ¢ — 1. Naturally, Dziuk’s algorithm is
considerably faster in each time step. Comparing (4.1) and (6.1), for the former we addi-
tionally need to assemble the non-linear term f; moreover, for curves in n, the linear
equation systems have block sizes n? + n and n, respectively (each of size N for a mesh
with N nodes). Further numerical comparisons are not reported here.

Figure 3 compares the exact solution (black), Dziuk’s algorithm (gray), and our algo-
rithm (4.1) (light gray) for a flat circle of unit radius over the time interval [0, 0.4875],
using a mesh with 128 nodes and 7 = 0.0125.
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| X — Xl oo |H — Hpll g

errors

107 —a—dof 32 ) —a—dof 32
—e—dof 64 L7 —e—dof 64
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10 ——dof 1024 10 ——dof 1024
—ee O(72) e O(72)
10 ' : 106 : '
102 107! 102 107
step size (1) step size (7)

Figure 2. Temporal convergence of the BDF2/ quadratic ESFEM discretization for MCF codimen-
sion 2 of the unit circle for 7 = 0.4.

time = 0 time = 0.2 time = 0.4 time = 0.4875
1 04 - < 0.15
0.5 \ 0.1
0.5 0.2
0.05
0 0 0 0
exact solution -0.05
-0.5 Y . -0.2
Dziuk’s algorithm| o5 / 0.1
p new algorithm 0.4 . 015
4 05 0 05 1 05 0 05 04 02 0 02 04 0.1 0 0.1

Figure 3. Comparing our algorithm (light gray) with the exact solution (black) and Dziuk’s algo-
rithm (gray) using a flat circle.

Figure 4 reports on the same comparison for another family of known (ancient) solu-
tions Angenent ovals defined, for 6 € [0, 2] and ¢ € (—o0, 0), by

x0.0 = ([ costorordp. [ costortorap. o).

with «%(p,1) = (e 72" — 1)7! + cos?(p);

6.2)

for more details, we refer to [8]. Choosing I'0 as the Angenent oval with 7y < 0 via (6.2),
a solution exists on the interval [0, —¢¢).

The comparison experiment of Figure 4 was performed on the time interval [0, 2] using
the Angenent oval with ¢, = —2 as initial values T'°, using a mesh with 128 nodes and
7 = 107*. In the figure the numerical solutions overlap the exact solution (in black).
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time = 0 time = 1 time = 1.5 time = 1.9
05
25 15 yd ) ‘ 1 0.4
2 0.8
; / 03
1.5 0.6
/ 0.2
1 0.4
05 |
05 | | 02} | 04
1 |
0 0 : ot} | 0
-0.5 | 02| | -0.1
; 0.5 04 /
0.2
15 - " 06 |\
) exact solution \ o8 ) -0.3
Dziuk’s algorithm ’ :
25 . 15 q 04
: new algorithm
-0.5
Bl 0 1 4 05 0 05 1 4 05 0 05 1 04 -02 0 02 04

Figure 4. Comparing our algorithm (light gray) with the exact solution (black) and Dziuk’s algo-
rithm (gray) using (flat) Angenent ovals (see (6.2)).

6.3. Experiments for space curves

We have performed various experiments for space curves as well, comparing our algorithm
and Dziuk’s. In Figures 5—7 we report on the time evolution of a sinusoidal curve and a
trefoil knot (which is eventually only immersed).

The numerical experiments in [13,28,30] have indicated that it is beneficial to conserve
the geometric properties of the dynamic variables close to singularities; for example, for
mean curvature flow projecting the extrapolated normal vector back to the unit sphere
(cf. (4.2)).

According to our experiments the symmetry of m; is well preserved; however, the
idempotency nh2 = my, is deteriorating. Figure 5 reports on an experiment where a (reg-
ularized) minimization problem is solved (using Matlab’s fmincon) in order to preserve
idempotency, comparing it to the original algorithm. The regularization step is performed
only for those extrapolated projection matrices ﬁ,’l’ (see (4.2)) which are at least a tolerance
away from being idempotent. That is a correction step, which is still locally Lipschitz, and
is only performed on the right-hand side of (4.1). (Finding an idempotent matrix close
to 77, is a much harder problem than preserving unit length (cf. [28]). Therefore, this rudi-
mentary process only yields a slight improvement.) In order to highlight this phenomenon,
we used a coarse grid (dof = 64) and large step size T = 0.01 for Figure 5. On this very
coarse mesh, this loss of idempotency is severe (see the top row of Figure 5), and hence,
parts of the solution were cut off during plotting. In the bottom row of Figure 5 we employ
the correction step from above using the same mesh. Such a geometric process is used for
Figures 6 and 7 as well.

For the evolution of the sinusoidal curve (see Figure 7), we would like to highlight the
short time scale and the rapid shrinking along the z-axis.
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time = 0 time = 1.5 time = 1.6 time = 1.7 time = 1.8

Dziuk’s algorithm

new algorithm

time = 0 time = 1.5 time = 1.6 time = 1.7 time = 1.8

Dziuk’s algorithm
new algorithm (with correction)

Figure 5. Comparing our algorithm (light gray) without and with idempotency correction (top and
bottom), with Dziuk’s algorithm (gray) using a trefoil knot as initial value (dof = 64 and t = 0.01).

6.4. Experiments for two-dimensional surfaces of codimension 1

We have also performed experiments for two-dimensional surfaces in R (i.e., in codimen-
sion 1), comparing our algorithm (without the projection step for 77;}) with Dziuk’s algo-
rithm [20] and with the provably convergent method from [28].

Figure 8 reports on the time evolution of a (rotationally symmetric) dumbbell-shaped
initial surface from [24, (2.3)]. We use a time step size T = 10~3 and mesh with 10522
degrees of freedom.

We emphasize here that this comparison experiment only demonstrates that this algo-
rithm indeed works for codimension 1 surfaces, as stated in Theorems 5.1-5.2 and the
introduction. We do not suggest to use this method in the codimension 1 case over either
(parametric) algorithms in [9, 20, 28]. The last row of Figure 8 shows a pinch singularity
occurring prematurely, due to m;, strongly losing its idempotency. For the sake of com-
pleteness, the CPU times for each algorithm are also included.

A. Evolution equations for mean curvature flow in higher
codimension

Let X : I'% x [0, T] — R” be a solution of the mean curvature flow, that is,
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time = 0 time = 1.5 time = 1.6 time = 1.7 time = 1.8

Dziuk’s algorithm
new algorithm (with correction)

Figure 6. Comparing our algorithm (light gray) with Dziuk’s algorithm (gray) using a trefoil knot
as initial value (dof = 512 and 7 = 10™%).

time = 0 time = 0.05 time = 0.1 time = 0.15 time = 0.2

Figure 7. Comparing our algorithm (light gray) with Dziuk’s algorithm (gray) using a sinusoidal
initial curve (dof = 512 and T = 107%).

Let gij = 0;X -3;X =), 9;X,,9, X, denote the induced metric and g/ denote its
inverse. Let
Aij = (aian)J' = 8,-8jX - F,];akX

denote the second fundamental form and
H=g"4;=(g78;0,X)" =g78;9;X —g"Tkox
the mean curvature vector. We shall view H as a function taking values in R”. Further-
more, let
T=g"0;X®0;X
be the orthogonal projection from R” to the tangent space to the submanifold at the
point X (x, ¢). It can be seen as a function taking values in the space of n x n matrices.

Lemma A.1. The evolution of the metric is given by

Moreover, the inverse metric satisfies

8% i — 9 gk oIl [ . Ay,
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Dziuk’s algorithm

MCF algorithm [KLL (2019)]  MCF codim-1 algorithm
1 1

0.5

time = 0
o

-0.5

time = 0.01

time = 0.02

time = 0.022

-0.5 0 0.5

-0.5 0 0.5 -0.5 0 0.5
CPU time = 12.9318 CPU time = 35.894 CPU time = 109.004

Figure 8. Comparing our algorithm (without projection for 77;:, 3rd column) with Dziuk’s algorithm

(1st column) and the algorithm of [28] (2nd column) at different times (rows) (dof = 10522 and
T =1073).
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Proof. We compute

9 . . . . .
Egij =0;H -3]'X + 3,’X~8_/H =-H -aian—aja,’X-H =—-2H-A;.

This proves the first statement. Since

0 i . 0
= oli — ik 5 j1 Z
8tg g8 & atgkh

the second statement follows. [

Lemma A.2. We have

3 .. — .. - . . -
—n=g"0H®JX+g"X®0H +2glk gfl (H - Ap1) 0: X ® 0; X.

ot
Proof. This follows from the definition of & together with the evolution equation of the
metric. m

Lemma A.3. The componentwise derivatives of w are given by
O = gij Aix ®0; X + gij 0;i X ® Ajk.
Proof. This follows from a direct calculation in geodesic normal coordinates. ]

In the following, Latin indices will run from 1 to m, and Greek indices will run from 1
ton:

Lemma A.4. The componentwise Laplacian of m, that is, the Laplacian of w such that
(Am)ap = Amag, where the Laplacian on the right-hand side is the Laplace—Beltrami
operator of the scalar-valued function g, is given by

Am =g 0;H®0;X + g7 0;X ®0;H +2g"" g/ (H- Aij) X ® 34X
—2g"P gl g (A - A;1) 0,X @ 0, X +287 g5 Ai @ Ay

Proof. Fix a point p € M. We again work in geodesic normal coordinates around p. We
compute

Arnr = gij gkl 01Aix ® 0; X + gij gkl 0; X ® 31Ajk
+¢" e A ® Aj1 + 87 g A ® A
at the point p. Using the Codazzi equations, we obtain
(" 8 4u)* = @i H)*
at p. Moreover,
(g 9 Au) = g P (91 Aik - 0, X) 9y X = —g" gP (Aig - 019, X) 3, X
= —g" g?? (Aik - A1p) 9 X



An algorithm for MCF in arbitrary codimension 395

and
m@iH) = gP? (0; H -0,X) ;X = —gP? (H - 9;0,X) 8,X = —gP9 (H - Aip) 3,X
at p. Since ¥ 3, A;x = w(g¥ ;A1) + (g% 9, Aip)* and 9; H = (3; H) + (3; H)L,
we conclude that
g Ak = 0iH + gP9 (H - Aip) 0,X — ¥ g7 (Aig - Ayp) 94X
at p. Thus,
Ar =g 0, H® ;X +g7 0, X ®3,H
+ 87 gP1 (H - Aip) 3,X ® ;X + g7 g7 (H - Ajp) ;X ® 94X
— 8" M gPl (Air - A1p) 0 X ® ;X — g7 g g1 (A - A1) i X ® 0, X
+87 gM Aje ® Ay + g7 g Ay ® Aji
at p. This proves the assertion. ]

Lemma A.5. We have

9 . g
5= Ar =2g" gl gM (A - A;1) 9,X @ 9, X — 287 ¢" Ay ® A,

where Am denotes the componentwise Laplacian.
Proof. This follows from Lemmas A.2 and A .4. ]

Lemma A.6. We have

d
—Tap — ATtgg =2 ngl Ok Ty 017g,, — 4 Z gkl Ty Ok Taye 01708y

ot
w v
Proof. We compute

ngl oy gy = [ &8 Ak ® Aj1 + ¢'P g79 " (Aik - Aj1) 9, X ® 94X ap
w

and
ngl Ty ak7l'om a17'[;311 = [gU gkl Air ® Ajl]aﬂ-
L,V
Hence, the assertion follows from Lemma A.5. [

Finally, let us derive the evolution equation for the mean curvature vector H.

Lemma A.7. The evolution of the mean curvature is given by

9 - - L S . -
o H—AH = 28" g/t (H - Apr) Ay +287 g¥1 (9:; H - Aj1) 9 X,

where AH denotes the componentwise Laplacian.
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Proof. The mean curvature vector is given by
H=g"83X~-g"Tkax

at each point in space-time. Let us fix a point p and work in geodesic normal coordinates
around p. In particular, Flkj = 0 at p. At the point p, we have

3 - y 9 3 . 9
g _siigg (2 —(¢Y9:9: X — o (—Tk
atH & a’af(atx) + at(g )0:9; X —¢ (azF’J)akX'
This implies
O Af =2 gl (f - Arr) Ayj (EF-"-)BkX
ot or Y

at p. We next compute

d 1 0 d ad
atrk = 2gkl (8 8lgjl +3] gll 01— glj)

= —gM (8;(H - A;) + a,- (H - Aip) = 0,(H - Ayj))
—gM (0 H - Ajp) + (H - 3; A1)
— g (0 H - Au) + (H -0, Aip))
+ gM (0 H - Aij) + (H - 81417))

at p. Consequently,

9 y . g - . -
g7 =Tk =2 g"0;H-Ajy—2g7 " H-0;45 +2¢" H-0,H

ot

at p. Using the Codazzi equations, we obtain (g 0; A jl)J- (81H )L at p, hence

9
g’fgri’; —2gY gFl o H - A

at p. Putting these facts together, we conclude that

3 3 R
EH AH =2g"% gV (H - Agy) Aij + 287 ¢ (0:H - Ajp) 0k X

at p. This proves the assertion. ]

Lemma A.8. The evolution of the mean curvature is given by

3 - N N N

a—Ha — AH, = Zngl Ormap 01 Hg + 4ngl Ok 7y 01mp, Hg,
! B B

where AH denotes the componentwise Laplacian.
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Proof. The identity

Y& tap g = (87 8" Ak ® Aji + &' g7 g (Aik - 4j1) 3, X ® 9 X]ap

nw

gives

> & sty dimpy Hp = [87 g% (H - Aj1) Aila.
B

Moreover, using the identity 81131 -0, X = .y 010; X = 7 Aj;, we obtain

> g emap 01 Hg = [87 g (01 H - Aj) ;X + g7 g (9 H -9, X) Aila
B
= [¢" ¢ (0 H - Aji) 9:; X — g7 g¥ (H - Aj1) Aikla.

Hence, the assertion follows from Lemma A.7. [
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