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Classification of global solutions of a
free boundary problem in the plane

Serena Dipierro, Aram Karakhanyan, and Enrico Valdinoci

Abstract. We classify non-trivial, non-negative, positively homogeneous solutions of the equation

�u D u�1

in the plane. The problem is motivated by the analysis of the classical Alt–Phillips free boundary
problem, but considered here with negative exponents  . The proof relies on several bespoke results
for ordinary differential equations.

1. Introduction

Several problems of interest in the calculus of variations can be reduced to the study of
critical points of an energy functional of the typeZ

jruj2

2
C F.u/;

where, up to normalization, F.r/ > 0 for all r 2 R and F.r/ D 0 for all r 2 .�1; 0�.
An archetypal example of the potential F is given by power-like functions such as

F.r/ WD r �.0;C1/.r/; (1.1)

for a given  2 R. In this case, non-negative critical points of the energy functional form-
ally correspond to solutions of the equation

�u D u�1 (1.2)

in ¹u > 0º.
When  > 2, we have that F 2 C 1;1.R/ and the right-hand side of (1.2) is Lipschitz

continuous in u. In particular, in this case one can define c WD �u�2 and deduce that c
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is continuous if u is: in this setting, the Strong Maximum Principle (see, e.g., [7, The-
orem 1.7]) yields that non-negative solutions of (1.2) are actually strictly positive inside
the domain in which the equation takes place.

When  2 .0; 2/, the situation changes significantly: for instance, it is readily checked
that

u.x/ WD
� .2 � /2 .xn/2C

2

� 1
2�

(1.3)

is in this case Lipschitz continuous and, for every � 2 C10 .B1/, the partial integration
yields the identityZ

B1

ru.x/ � r�.x/C u�1.x/�.x/ dx

D

Z
B1\¹xn>0º

ru.x/ � r�.x/C u�1.x/�.x/ dx

D

Z
B1\¹xn>0º

.2 � /

2�

2
�1
2�

x

2�
n @n�.x/C 

� .2 � /2 x2n
2

� �1
2�

�.x/ dx

D

Z
B1\¹xn>0º

@n

� .2 � / 
2�

2
�1
2�

x

2�
n �.x/

�
dx D 0;

providing an example of a weak solution1 of (1.2) with a vanishing point (actually, a
vanishing region) in the interior of the domain.

For this reason, equation (1.2) when  2 .0; 2/ has been widely investigated in the
context of free boundary problems and it is indeed the main topic of a classical article by
H. W. Alt and D. Phillips; see [2].

From the point of view of applications, equation (1.2) also models a reaction–diffusion
problem of gas distribution in a porous catalyst pellet (see, e.g., [9]). To understand the
regularity of the minimizers of the associated energy functional and the way in which the
free boundary separates the zero set of the solution from the positive region, one of the
main tools relies on the blow-up analysis of the problem, as well as on the understanding
of the corresponding homogeneous solutions (see, e.g., [2, Sections 1.15 and 1.16]; see
also [11, Theorem 5.1] for the range  2 .1; 2/).

The case  D 1 in (1.1) corresponds to an obstacle problem and is covered by the
classical work in [3]. Similarly, the case  D 0 in (1.1) produces the seminal case studied
in [1]. The case  2 .0; 1/ has also been considered in [10].

The case of negative exponents  appears to have been studied much less in the liter-
ature. Once we have completed this paper, the preprint [5] will become available online,
where the case  2 .�2; 0/ has been taken into account (our perspective here is, however,

1We stress that, at this level, the solution considered in (1.3) is a weak solution. The setting will be
different in the forthcoming Theorems 1.1 and 1.2, where classical solutions will be taken into account
without integrability assumptions (the function in (1.3) will, however, appear in (1.9)).
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quite different from that in [5], since we do not focus our attention on the regularity of
the local minimizers of the energy functional but rather on classification results for global
solutions, without energy constraints, concentrating on the case of classical solutions).

The main goal of this paper is indeed to consider all possible ranges of  , addressing
in particular the two-dimensional case.

Specifically, we focus on homogeneous solutions, which play a special role in free
boundary problems, since this kind of function appears as limits of blow-ups and their
classification is thereby an essential ingredient toward a free boundary regularity theory.

A natural assumption for us, in view of the degree a of homogeneity of the solution, is
to consider the case in which u

1
a meets the zero set2 in a suitably regular fashion. In this

situation, as expected, one obtains positive and rotationally invariant solutions, as well as
“one-dimensional” one phase solutions whose positivity set is a halfplane. But, perhaps
more surprisingly, when a D 1=2, one also detects a “resonance” which produces new
solutions whose positivity set is a non-trivial cone (and even the union of different cones
whose opening is an acute angle).

The precise result that we have deals with classical solutions and is the following:

Theorem 1.1. Let a > 0 and  ¤ 0. Assume that u 2C.R2/ is a non-trivial, non-negative,
positively homogeneous solution of degree a of the equation

�u D u�1 in a connected component of R2 \
®
u > 0

¯
: (1.4)

Then,

 < 2 and a D
2

2 � 
: (1.5)

If a ¤ 1
2

, suppose additionally3 that, for each connected component S of .B2 n B1=2/
\ ¹u > 0º,

u
1
a 2 C �. xS/ for some � >

8<: 3 � 2a if a 2 .0; 1/;
1

a
if a > 1:

(1.6)

2For instance, in [8, Theorem 1.2] it is proved that when  D 1, under zero Dirichlet boundary data,
the free boundary meets the fixed boundary in a C 1 way and without density assumptions (and the result
holds also in the fully non-linear case).

3As is customary, when � 2 .0;C1/ nN, we can write � D �1 C �2, with �1 2 N and �2 2 .0; 1/. In
this setting, C � is a short notation for C �1;�2 , that is, having derivatives up to order �1, with the derivatives
of order �1 satisfying a Hölder condition with exponent �2.

Notice that in condition (1.6) a neighborhood of the origin is removed: the intuitive idea for it is that,
for a “typical” situation in the plane arising from homogeneous solutions, the positivity set of the solution
is given by some cone and condition (1.6) aims at detecting the way in which the solution meets the free
boundary at the regular points (and not at the origin, where the free boundary may display a singularity).

We also point out that the equation �u D �u�1 for any � 2 R such that � 2 .0;C1/ can be reduced
to (1.4) by setting v WD . 

�
/

1
2� u.
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Then, only the following possible, non-exclusive scenarios can happen:

(1) We have
 2 .0; 2/ (1.7)

and

u.x/ D Ca jxj
a with Ca WD

.2.a � 1//
a
2

a
3a
2

: (1.8)

(2) Up to a rotation,

u.x/ D
2
a
2

aa
.x2/

a
C: (1.9)

(3) Up to a rotation,

u.x/ D
2
a
2

aa
jx2j

a: (1.10)

(4) The following situation occurs:

• a D 1=2,

• given c 2 R n ¹0º, up to a rotation and a reflection, the positivity set of u
contains the cone

Cc WD
®
.r cos �; r sin �/ j r > 0; � 2 .0; Tc/

¯
; (1.11)

with

Tc WD

´
2� � 2 arctan.1=c/ when c > 0;

�2 arctan.1=c/ when c < 0,
(1.12)

• u D 0 on @Cc ,

• for every x 2 Cc ,
u.x/ D 2

3
4

p
x2 � cx1 C cjxj: (1.13)

We stress that the scenarios (1), (2), (3), and (4) described in Theorem 1.1 are non-
exclusive, that is, when a D 1=2, the solution u can take any of the forms in (1.9), (1.10),
and (1.13) (but not the form in (1.8), since this requires  > 0, that is, a > 1).

Similarly, when  2 .0; 2/, the solution can take the form of (1.8), (1.9), and (1.10).
Another interesting feature of Theorem 1.1 is that the “degenerate” case in which

the free boundary reduces to a single point, as described by (1.8), can only occur when
 2 .0; 2/, as detailed in (1.7). Instead, the case  <0 only produces a “flat free boundary”,
as given in (1.9), with the only possible exception of  D �2, in which a resonance can
produce the situation described in (1.13).

The solution in (1.9) also coincides with that pointed out below [5, (2.3)].
Some of the solutions described in Theorem 1.1 are depicted in Figures 1, 2, 3, and 4;

see also Table 1 for a summary of all these solutions.
In relation to (1.12), we also remark that Tc 2 .�; 2�/ when c > 0, and Tc 2 .0; �/

when c < 0. In particular, the case c < 0 produces acute cones in (1.11): in this scenario,
the solutions in (1.13) can be rotated and glued to form solutions with positive sets in
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Figure 1. The solution in (1.8) with a WD 4=3.

multi-flap cones; see, for example, Figure 5 (and, as a matter of fact, these superpositions
can be iterated, thus also producing solutions whose positive sets are cones with countably
many disjoint flaps).

We also stress that condition (1.6) cannot be removed, otherwise a family of new solu-
tions arises, as detailed in the following result (in which condition (1.6) is not assumed):

Theorem 1.2. Let a > 0 and  ¤ 0. Assume that u 2C.R2/ is a non-trivial, non-negative,
positively homogeneous solution of degree a of the equation

�u D u�1 in a connected component of R2 \ ¹u > 0º:

Then,

 < 2 and a D
2

2 � 
:

Also, either u is one of the solutions listed in Theorem 1.1 or a ¤ 1
2

and, up to a rotation,

u.r; �/ D
2
a
2

aa
ra ya.�/;

where the function y is defined implicitly by

� D

Z y.�/

0

dYp
1CmY 2.1�a/ � Y 2

for some m 2 R, with m > 0 if a > 1.
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Figure 2. The solution in (1.9) with a WD 4=3.

A particular explicit solution of the family listed in Theorem 1.2 is given by

u.x/ D
x22 C 2x1x2

2
: (1.14)

This is a solution of�uD 1which is positive in the cone ¹x2.x2C 2x1/ > 0º, correspond-
ing to a solution of �u D u�1 with  D 1; see Figure 6 for a diagram of this function
(and Remark 7.2 for its explicit link to the family of solutions presented in Theorem 1.2).

The paper is organized as follows: in Section 2 we present a brief heuristic discussion
of the ODE analysis performed in this paper and on the difficulties related to the singu-
larity of the associated Cauchy problem. The rigorous analysis begins in Section 3, where
we reduce the PDE problem to a non-standard ODE problem. Besides a family of expli-
cit solutions, the ODE analysis will leverage a special function of improper integral-type
and its inverse; these additional functions will be introduced and studied in Sections 4, 5,
and 6. In Section 7 we present a series of tailored results on ODEs which will lead to the
proof of Theorems 1.1 and 1.2, as given in Section 8.

Finally, in Section 9 we remark that the implicit solutions presented in Theorem 1.2,
when extended by zero outside their positivity cone, are actually not weak solutions
of �u D u�1�¹u>0º.
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Figure 3. The solution in (1.10) with a WD 4=3.

2. A heuristic discussion

We give here a sketchy description of the ODE analysis related to our problem. The clas-
sification of homogeneous solutions uD rag.�/ leads, with the substitution y WD ap

2
g
1
a ,

to4 the ODE

y2.�/C y.�/ y00.�/C .a � 1/.y2.�/C .y0.�//2 � 1/ D 0 (2.1)

or, equivalently,

ay2.�/C y.�/ y00.�/C .a � 1/.y0.�//2 C .1 � a/ D 0:

4The choice of working with y instead of g presents advantages and disadvantages. On the one hand,
the ODE for g is a2g C g00 D 2.a�1/

a
g
a�2
a , which is more standard than (2.1). On the other hand, the ODE

in (2.1) has the advantages of placing the dependence on the exponent  (i.e., on the parameter a) only in
the coefficients and of presenting useful algebraic properties in terms of factorization and reduction.

In a sense, the convenience of working with y instead of g is hinted by the “one-dimensional” situation
described by the solution in (1.9), namely

u.x/ D
2
a
2

aa
.x2/

a
C D

2
a
2 ra

aa
.sin �/aC:

In this case, in its positivity set g.�/ would be sina � , while y.�/ would have the simpler expression sin � .
The structural simplification in the one-dimensional case is also our motivation to write the regularity

assumption in (1.6) in terms of powers of 1
a

.



S. Dipierro, A. Karakhanyan, and E. Valdinoci 462

Figure 4. The solution in (1.13) with c D �1; �1=2; 1=2; 1.

This equation can be reduced to a first-order ODE by the substitution

y0 D u.y/; (2.2)

arriving at
ay2.�/C yu0.y/y0 C .a � 1/u2.y/C .1 � a/ D 0;

and using the new unknown function u to substitute y0 in the last equation yields

ay2 C .a � 1/u2 C
y

2
.u2/0 C .1 � a/ D 0:

Finally, taking U WD u2.y/ � 1, we have the linear first-order ODE

y

2
U 0 C .a � 1/U C ay2 D 0:

The explicit solution of this ODE is given by

.y0/2 D 1Cmy2.1�a/ � y2; (2.3)
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Ranges
of 

Solution u Free boundary @¹u > 0º

 2 .0; 2/ u.x/ D .2.a�1//
a
2

a
3a
2

jxja ¹0º

 < 2 u.x/ D 2
a
2

aa
.x2/

a
C ¹x 2 R2; x2 D 0º

 < 2 u.x/ D 2
a
2

aa
jx2j

a ¹x 2 R2; x2 D 0º

 D �2 u.x/ D 2
3
4

p
x2 � cx1 C cjxj ¹rei� ; r > 0; � 2 .0; Tc/º; with Tc

given in (1.12)

Table 1. Display of the solutions detected in Theorem 1.1.

where m is the integration constant.
Note that (2.3) gives an implicit relation between � and y and some extra care is

needed to choose a branch of inverse function that produces the desired solution of our
problem. Similarly, the change of independent variable from x to y utilized in (2.2) needs
to be justified; for example, by showing that y0 ¤ 0 in the region of interest. We also
remark that, since the ODE in (2.1) is singular at the origin, it is not sufficient in our
framework just to “exhibit” a solution to complete a classification result, since in principle
other solutions may arise due to a lack of uniqueness for a non-standard Cauchy problem.

Moreover, we observe that for one special case a D 2 and m > 0, the implicit relation
for y takes the form of an elliptic integral

t D

Z y.t/

0

Y dY
p
Y 2 Cm � Y 4

;

which can be solved explicitly; see Sections 3, 4, and 5. However, in general, explicit rep-
resentation of solutions is impossible: instead, the presence of unusual integral equations
describing solutions in an implicit way is actually the content of Theorem 1.2.

3. Reduction to ODEs

Here, we point out that, for a homogeneous function, satisfying the partial differential
equation in (1.4) is equivalent to having an appropriate power of the angular component
satisfying a suitable ordinary differential equation. The proof is a direct computation,
though some care is needed, since the ordinary differential equation obtained is not a
standard one.

Lemma 3.1. Let a > 0 and  ¤ 0. Let u W R2 n ¹0º ! R be a homogeneous function of
degree a expressed in polar coordinates .r; �/ 2 .0;C1/ � S1 as

u.r; �/ D ra g.�/: (3.1)
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Figure 5. Superposition of the solutions in (1.13) with c D �1=2 and c D �2.

Let S � S1, assume that g > 0 in S , and set

y.�/ WD
a
p
2
g
1
a .�/:

If u is a solution of
�u D u�1 in .0;C1/ � S; (3.2)

then
 < 2; a D

2

2 � 
(3.3)

and y is a solution of

y2.�/C y.�/ y00.�/C .a � 1/.y2.�/C .y0.�//2 � 1/ D 0 for � 2 S: (3.4)

Conversely, if (3.3) holds true and y is a solution of (3.4), then u is a solution of (3.2).

Proof. We use the polar representation of the Laplace operator

�u.x/ D @2r .r
a g.�//C

1

r
@r .r

a g.�//C
1

r2
@2� .r

a g.�//

D a.a � 1/ra�2g.�/C ara�2g.�/C ra�2g00.�/

D a2ra�2g.�/C ra�2g00.�/
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D a2ra�2
�p2 y.�/

a

�a
C ra�2@2�

h�p2 y.�/
a

�ai
D 2

a
2 a2�ara�2ya.�/C

2
a
2 ra�2

aa
.a.a � 1/ya�2.�/.y0.�//2 C aya�1.�/y00.�//

D 2
a
2 a1�ara�2ya�2.�/.ay2.�/C .a � 1/.y0.�//2 C y.�/y00.�//:

Therefore,

�u � u�1 D 2
a
2 a1�ara�2ya�2.ay2 C .a � 1/.y0/2 C yy00/ � .ra g/�1

D ra�2
h
2
a
2 a1�aya�2.ay2 C .a � 1/.y0/2 C yy00/ � ra.�1/�aC2

�p2
a
y
�a.�1/i

D ra�2
h
2
a
2 a1�aya�2.ay2 C .a � 1/.y0/2 C yy00/

�
2
a.�1/
2 

aa.�1/
ra.�2/C2ya.�1/

i
: (3.5)

For this reason, if u is a solution of (3.2), then

2
a
2 a1�aya�2.ay2 C .a � 1/.y0/2 C yy00/ �

2
a.�1/
2 

aa.�1/
ra.�2/C2ya.�1/ D 0: (3.6)

Now, to prove (3.3), we suppose by contradiction that a ¤ 2
2�

(note that if we reach a
contradiction, then (3.3) is established, since we assumed a > 0). We thus write (3.6) as

2
a
2 a1�aya�2.ay2 C .a � 1/.y0/2 C yy00/ �

2
a.�1/
2 

aa.�1/
rıya.�1/ D 0

with ı ¤ 0. But, it cannot be that ı > 0, otherwise we would reach a contradiction by
sending r ! C1; nor can it be that ı < 0, otherwise we would reach a contradiction by
sending r & 0. The proof of (3.3) is thereby complete.

In the light of (3.3), equation (3.6) reduces to

2
a
2 a1�aya�2.ay2 C .a � 1/.y0/2 C yy00/ � 2

a
2 a1�a.a � 1/ya�2 D 0;

whence
.ay2 C .a � 1/.y0/2 C yy00/ � .a � 1/ D 0;

which is (3.4), as desired.
Now we assume that y satisfies (3.4) and (3.3) holds true. Then, we infer from (3.5)

that

aa�1 r2�a y2�a

2
a
2

.�u � u�1/ D .ay2 C .a � 1/.y0/2 C yy00/ � .a � 1/ D 0;

showing that (3.2) holds true.
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Figure 6. The solution in (1.14).

4. Two special functions  .y/ and ‰.y/

In this section, we study a special function built from an improper integral.
Let m 2 R and a 2 .0; 1/ [ .1;C1/. If a > 1, assume additionally that

m > 0: (4.1)

For all y > 0, we let
 .y/ WD 1Cmy2.1�a/ � y2: (4.2)

We observe that, by (4.1),

lim
y&0

 .y/ D

8̂̂<̂
:̂
1 if a 2 .0; 1/;

1 if a > 1 and m D 0,

C1 if a > 1 and m > 0.

As a result,
lim
y&0

 .y/ > 1 > �1 D lim
y!C1

 .y/;

and therefore, there exists a unique y� > 0 such that

 .y/ > 0 for all y 2 .0; y�/ and  .y�/ D 0: (4.3)
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Lemma 4.1. We have that
 0.y�/ < 0: (4.4)

Proof. By (4.3), for all small " > 0,

0 6
 .y� � "/

"
D
 .y�/ �  

0.y�/"CO."
2/

"
D � 0.y�/CO."/I

hence, sending "& 0, we find that  0.y�/ 6 0.
Consequently, to establish (4.4), it suffices to check that

 0.y�/ ¤ 0: (4.5)

To this end, suppose, by contradiction, that  0.y�/ D 0. Then,

0 D  0.y�/ D 2.1 � a/my
1�2a
� � 2y�;

whence y2a� D .1 � a/m.
This gives that

.1 � a/m > 0 (4.6)

and
y� D ..1 � a/m/

1
2a :

Accordingly, if  0.y�/ D 0, we deduce that

0 D  .y�/ D  ...1 � a/m/
1
2a / D 1Cm..1 � a/m/

1�a
a � ..1 � a/m/

1
a

D 1C ..1 � a/m/
1
a

� 1

1 � a
� 1

�
D 1C ..1 � a/m/

1
a

a

1 � a
:

Necessarily, this gives that a
1�a

< 0, and so a > 1. Combined with (4.6), this establishes
that m < 0, but this is against our assumption in (4.1). The proof of (4.5) is thereby com-
plete.

Now, for all y 2 Œ0; y�/, we define

‰.y/ WD

Z y

0

dYp
 .Y /

D

Z y

0

dYp
1CmY 2.1�a/ � Y 2

: (4.7)

Note that ‰.0/ D 0. Moreover,

‰ is a strictly increasing function of y 2 Œ0; y�/ (4.8)

and we may define
t� WD lim

y%y�
‰.y/ 2 .0;C1�: (4.9)

Now we show that t� is always finite, according to the next observation:
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Lemma 4.2. We have that t� < C1.

Proof. We let " > 0, to be taken suitably small. Then,

 .y� � "/ D � 
0.y�/"CO."

2/ D j 0.y�/j"CO."
2/

and therefore, for all ı > � > 0 suitably small,Z y���

y��ı

dYp
 .Y /

D

Z ı

�

d"p
 .y� � "/

D

Z ı

�

d"
p
"
p
j 0.y�/j CO."/

:

As a result, using (4.4), we find for small ı thatZ y���

y��ı

dYp
 .Y /

6
Z ı

�

d"
p
"
p
j 0.y�/j=2

6 2

s
2ı

j 0.y�/j
:

Therefore, for all y 2 Œy� � ı; y�/,

‰.y/ D ‰.y� � ı/C

Z y

y��ı

dYp
 .Y /

6 ‰.y� � ı/C 2

s
2ı

j 0.y�/j
;

and therefore, we can send y % y� and obtain that

t� 6 ‰.y� � ı/C 2

s
2ı

j 0.y�/j
< C1:

5. The inverse function ‡ of ‰

Now we aim at inverting the special function constructed in the previous section. This
method of implicitly inverting an integral equation is somewhat inspired by that used in the
study of cnoidal wave solutions to the Korteweg–de Vries equation; see, for example, [6].

The special function that we obtain reconstructs all the solutions of the ODE presented
in Section 3 and therefore, in light of Lemma 3.1, all the suitable powers of the angular
components of the solutions of the PDE in (1.4).

Let us now present the analytical details of this construction. In view of Lemma 4.2,
we can extend ‰ continuously at the point y� by setting

‰.y�/ WD t� 2 .0;C1/: (5.1)

Thus, by (4.8), we can define the inverse function of ‰ W Œ0; y�� ! Œ0; t��, that is, we
denote by ‡ W Œ0; t��! Œ0; y�� the unique function such that ‰.‡.t// D t (i.e., ‡.t/ is
the unique solution y of the equation t D ‰.y/; note also that ‡ > 0 in .0; t��). We then
evenly extend ‡ across t D t� by setting, for all t 2 .t�; 2t��,

‡.t/ WD ‡.2t� � t /: (5.2)
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Figure 7. Numerical plot of ‡ for t 2 Œ0; t�� when a D 1
4 and m 2 ¹�3;�1; 1; 2; 3º.

In this way, ‡ 2 C.Œ0; 2t��/.
See Figures 7 and 8 for some numerical plots of ‡ for t 2 Œ0; t��. The basic properties

of this function are listed below.

Proposition 5.1. We have that ‡ 2 C 2..0; 2t�//. Moreover, ‡.0/D 0D ‡.2t�/ and, for
all t 2 .0; 2t�/, we have that

‡2.t/C ‡.t/‡ 00.t/C .a � 1/.‡2.t/C .‡ 0.t//2 � 1/ D 0: (5.3)

Proof. Since ‰.‡.0// D 0 D ‰.0/, we obtain that ‡.0/ D 0. As a result, ‡.2t�/ D
‡.2t� � 2t�/ D ‡.0/ D 0.

We also observe that ‡ 2 C 2..0; t�// and, for all t 2 .0; t�/,

1 D
d

dt
.t/ D

d

dt
.‰.‡.t/// D ‰0.‡.t//‡ 0.t/ D

‡ 0.t/p
1Cm‡2.1�a/.t/ � ‡2.t/

;

that is,

‡ 0.t/ D

q
1Cm‡2.1�a/.t/ � ‡2.t/: (5.4)

Thus,

‡ 00.t/ D
d

dt

�q
1Cm‡2.1�a/.t/ � ‡2.t/

�
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D
.m.1 � a/‡1�2a.t/ � ‡.t//‡ 0.t/p

1Cm‡2.1�a/.t/ � ‡2.t/

D m.1 � a/‡1�2a.t/ � ‡.t/: (5.5)

By even symmetry, this also gives that ‡ 2 C 2..0; t�/ [ .t�; 2t�//.
Additionally, again by even symmetry,

‡ 0.2t� � t / D �‡
0.t/ and ‡ 00.2t� � t / D ‡

00.t/:

We also observe that ‰.‡.t�// D t� D ‰.y�/, whence ‡.t�/ D y�, and therefore,

1Cm‡2.1�a/.t�/ � ‡
2.t�/ D 1Cmy

2.1�a/
� � y2� D  .y�/ D 0:

From the observations above, we infer that

lim
t%t�

‡ 0.t/ � lim
t&t�

‡ 0.t/ D lim
t%t�

‡ 0.t/C lim
t&t�

‡ 0.2t� � t / D 2 lim
t%t�

‡ 0.t/

D 2

q
1Cm‡2.1�a/.t�/ � ‡2.t�/ D 0;

and therefore, ‡ 2 C 1..0; 2t�//.
Also,

lim
t%t�

‡ 00.t/ � lim
t&t�

‡ 00.t/ D lim
t%t�

‡ 00.t/ � lim
t&t�

‡ 00.2t� � t /

D lim
t%t�

‡ 00.t/ � lim
t%t�

‡ 00.t/ D 0;

and therefore ‡ 2 C 2..0; 2t�//, as desired.
It remains to check (5.3). For this, we observe that, if t 2 .t�; 2t�/,

‡2.2t� � t /C ‡.2t� � t / ‡
00.2t� � t /C .a � 1/.‡

2.2t� � t /C .‡
0.2t� � t //

2
� 1/

D ‡2.t/C ‡.t/‡ 00.t/C .a � 1/.‡2.t/C .�‡ 0.t//2 � 1/

D ‡2.t/C ‡.t/‡ 00.t/C .a � 1/.‡2.t/C .‡ 0.t//2 � 1/;

hence, it suffices to check (5.3) for t 2 .0; t�� (or, actually, for t 2 .0; t�/ since the values
at t� can be reached by continuity).

To this end, in .0; t�/, we recall (5.4) and (5.5) and we compute that

‡2 C ‡ ‡ 00 C .a � 1/.‡2 C .‡ 0/2 � 1/

D a‡2 C ‡ .m.1 � a/‡1�2a � ‡/C .a � 1/.1Cm‡2.1�a/ � ‡2 � 1/ D 0;

thus completing the proof of the desired result.

We now study the dependence of the above quantities with respect to the parameter m
(considering a as given). For this, we use the notations  .y;m/, ‰.y;m/, y�.m/, t�.m/,
and ‡.t;m/ to emphasize their dependence upon m.
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Figure 8. Numerical plot of ‡ for t 2 Œ0; t�� when a D 3
2 and m 2 ¹0:01; 0:2; 0:5; 1; 2; 3º.

Lemma 5.2. We have that
y�.0/ D 1 (5.6)

and
t�.0/ D

�

2
: (5.7)

Proof. By (4.2) and (4.3),

0 D  .y�.0/; 0/ D 1 � .y�.0//
2;

leading to (5.6).
Moreover, by (4.7), (4.9), and (5.6),

t�.0/ D lim
y%y�.0/

‰.y; 0/ D lim
y%1

Z y

0

dY
p
1 � Y 2

D

Z 1

0

dY
p
1 � Y 2

D
�

2
;

which demonstrates (5.7).

Corollary 5.3. There exists M � R such that M ¤ ; and, if m 2M, the following holds
true:

There exist t� 2 .0;�� and a function‡ 2 C 2..0; 2t�//\C.Œ0; 2t��/ such that‡.0/D
0 D ‡.2t�/ and, for all t 2 .0; 2t�/, we have that ‡.t/ > 0 and

‡2.t/C ‡.t/‡ 00.t/C .a � 1/.‡2.t/C .‡ 0.t//2 � 1/ D 0: (5.8)

Also, for all t 2 Œ0; 2t��, we have that ‡.2t� � t / D ‡.t/ and

t D

Z ‡.t/

0

dYp
1CmY 2.1�a/ � Y 2

:



S. Dipierro, A. Karakhanyan, and E. Valdinoci 472

Proof. The existence and basic properties of ‡ follow from Proposition 5.1. The addi-
tional ingredient here is that we can find M¤ ; such that whenm 2M it holds that t�.m/
2 .0; ��, which is warranted by Lemma 5.2.

The importance of having that t� 2 .0; �� in Corollary 5.3 consists in being able to
use the function ‡ as a suitable power of the angular component of a solution of the PDE
in (1.4) (indeed, for this scope, one wants that Œ0; 2t�� � Œ0; 2��).

6. Behavior of ‡ near boundary points

Now we address the boundary regularity properties of the function ‡ introduced in Sec-
tion 5:

Proposition 6.1. IfmD 0, then ‡.t/D sin t . If insteadm¤ 0, the following claims hold
true:

(1) If a D 1
2

, then

‡.t/ D sin t C
m

2
.1 � cos t /: (6.1)

(2) If a 2 .0; 1/ then ‡ 2 C 1.Œ0; 2t��/,

‡ 0.0/ D 1 D �‡ 0.2t�/; (6.2)

and

lim
t&0

‡ 0.t/ � ‡ 0.0/

t2.1�a/
D
m

2
: (6.3)

(3) More precisely, if a 2 .0; 1
2
/, then

‡ 2 C 2;1�2a.Œ0; 2t��/ with ‡ 00.0/ D 0 and

lim
t&0

‡ 00.t/ � ‡ 00.0/

t1�2a
D .1 � a/m; but

‡ 62 C 2;�.Œ0; 2t��/ if � > 1 � 2a;

(6.4)

while if a 2 .1
2
; 1/, then

‡ 2 C 1;2.1�a/.Œ0; 2t��/; but ‡ 62 C 1;�.Œ0; 2t��/ if � > 2.1 � a/: (6.5)

(4) If a > 1, then

lim
t&0

‡.t/ � ‡.0/

t
1
a

D a
1
am

1
2a I

‡ 2 C
1
a .Œ0; 2t��/; but ‡ 62 C �.Œ0; 2t��/ when � >

1

a
:

(6.6)
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Proof. We focus on the regularity theory at t D 0, since the one at t D 2t� can be inferred
by symmetry, owing to (5.2).

To this end, when m D 0 we have that t� D �
2

thanks to (5.7), whence, for all
t 2 .0; �

2
/,

t D ‰.‡.t// D

Z ‡.t/

0

dY
p
1 � Y 2

D arcsin‡.t/;

therefore ‡.t/ D sin t , and this holds for all t 2 .0; �/, using the parity of ‰ across t D
t� D

�
2

, as claimed.
Hence, we now suppose that m ¤ 0. When a D 1

2
, we have that

0 D  .y�/ D 1Cmy� � y
2
�;

and therefore,

y� D
mC
p
m2 C 4

2
:

Consequently,

t� D ‰.y�/ D

Z y�

0

dY
p
1CmY � Y 2

D arctan
m

2
� arctan

m � 2y�

2
p
1Cmy� � y2�

D arctan
m

2
C arctan

p
m2 C 4

0C

D arctan
m

2
C arctan.C1/ D arctan

m

2
C
�

2
2 .0; �/:

Furthermore, for all t 2 .0; t�/,

t D ‰.‡.t// D

Z ‡.t/

0

dY
p
1CmY � Y 2

D arctan
m

2
� arctan

m � 2‡.t/

2
p
1Cm‡.t/ � ‡2.t/

;

and therefore,
m � 2‡.t/

2
p
1Cm‡.t/ � ‡2.t/

D tanT;

where

T WD arctan
m

2
� t 2

�
arctan

m

2
� t�; arctan

m

2

�
D

�
�
�

2
; arctan

m

2

�
�

�
�
�

2
;
�

2

�
:

This gives
m2 � 4m‡.t/C 4‡2.t/

4 tan2 T
D 1Cm‡.t/ � ‡2.t/;

and, as a result,

0 D ‡2.t/ �m‡.t/C
m2

4
cos2 T � sin2 T
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D

�
‡.t/ �

m

2

�2
�
m2 C 4

4
sin2 T

D

�
‡.t/ �

m

2

�2
�
.m cos t � 2 sin t /2

4

D

�
‡.t/ �

m

2

�2
�

�m
2

cos t � sin t
�2

D

�
‡.t/ �

m

2
�
m

2
cos t C sin t

��
‡.t/ �

m

2
C
m

2
cos t � sin t

�
D

�
‡.t/ �

m

2
.1C cos t /C sin t

��
‡.t/ �

m

2
.1 � cos t / � sin t

�
: (6.7)

This yields that ‡ has the form stated in (6.1). To check this, let us argue by contradiction
and suppose that‡ does not agree with the form in (6.1) in some interval .t1; t2/, with 06
t1 < t2 6 t�, and let us suppose that this interval is as large as possible. Then, in view
of (6.7), we know that for every t 2 .t1; t2/,

‡.t/ D
m

2
.1C cos t / � sin t;

and in particular, ‡.t1/ D m
2
.1C cos t1/ � sin t1.

Hence, t1 > 0 necessarily, otherwise we would have that

0 D ‡.0/ D
m

2
.1C cos 0/ � sin 0 D m;

which contradicts our assumptions.
This observation and (6.7) give that

‡.t/ D

8̂̂<̂
:̂
m

2
.1 � cos t /C sin t if t 2 .0; t1/;

m

2
.1C cos t / � sin t if t 2 .t1; t2/:

Since, by (5.8), we know that ‡ is C 1 in a neighborhood of t1, we thereby find that

m

2
sin t1 C cos t1 D lim

t%t1
‡ 0.t/ D lim

t&t1
‡ 0.t/ D �

m

2
sin t1 � cos t1;

leading to
0 D

m

2
sin t1 C cos t1 D

m

2
cos
�
t1 �

�

2

�
� sin

�
t1 �

�

2

�
;

and thus, t1 D �
2
C arctan m

2
D t�. This also contradicts our assumptions. This gives (6.1),

as desired.
Now we point out that, for t 2 .0; t�/,

1 D
d

dt
t D

d

dt
.‰.‡.t/// D

d

dt

�Z ‡.t/

0

dYp
1CmY 2.1�a/ � Y 2

�
D

‡ 0.t/p
1Cm‡2.1�a/.t/ � ‡2.t/

;
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whence
‡ 0.t/ D

q
1Cm‡2.1�a/.t/ � ‡2.t/: (6.8)

Therefore, if a 2 .0; 1/, it follows that ‡ 0 is continuous at t D 0 and ‡ 0.0/ D 1, giv-
ing (6.2).

As a result, ‡.t/ D t C o.t/ as t & 0, whence, by (6.8),

‡ 0.t/ D

q
1Cm.t C o.t//2.1�a/ � .t C o.t//2

D 1C
m t2.1�a/.1C o.1//2.1�a/ � t2.1C o.1//2

2
; (6.9)

leading to (6.3).
We also deduce from (6.9) that as t & 0,

‡ 0.t/ D 1C
m t2.1�a/

2
C o.t2.1�a//;

and thus,
.‡ 0.t//2 D 1Cm t2.1�a/ C o.t2.1�a//:

As a consequence, by (5.3),

0 D
‡2.t/C ‡.t/‡ 00.t/C .a � 1/.‡2.t/C .‡ 0.t//2 � 1/

t

D .1C o.1//‡ 00.t/C .a � 1/.m t1�2a C o.t1�2a//CO.t/

D .1C o.1//‡ 00.t/C .a � 1/m t1�2a C o.t1�2a/: (6.10)

Let us now assume that a 2 .0; 1
2
/. Then, the asymptotics in (6.10) shows that ‡ 2

C 2.Œ0; 2t��/, with ‡ 00.0/ D 0 and

lim
t&0

‡ 00.t/ � ‡ 00.0/

t1�2a
D .1 � a/m: (6.11)

Furthermore, employing (5.3) for taking one more derivative, for small t > 0 we have that

‡ 000.t/ D
d

dt
.‡ 00.t//

D �
d

dt

�
a‡.t/C

.a � 1/..‡ 0.t//2 � 1/

‡.t/

�
D �a‡ 0.t/C

2.1 � a/‡ 0.t/‡ 00.t/

‡.t/
C

.a � 1/..‡ 0.t//2 � 1/‡ 0.t/

‡2.t/

D �a.1C o.1//C
2.1 � a/.1C o.1//..1 � a/m t1�2a C o.t1�2a//

t C o.t/

C
.a � 1/.m t2.1�a/ C o.t2.1�a///.1C o.t//

t2 C o.t2/
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D �aC .a � 1/.2a � 1/mt�2a C o.t�2a/:

For this reason, if yt > 0 is sufficiently small and 0 < t1 < t2 < yt , we infer that

j‡ 00.t2/ � ‡
00.t1/j 6

Z t2

t1

j‡ 000.t/j dt

6 a

Z t2

t1

dt C 2.1 � a/.1 � 2a/m

Z t2

t1

t�2a dt

D a.t2 � t1/C
2.1 � a/.1 � 2a/m

1 � 2a
.t1�2a2 � t1�2a1 /

6 C.t2 � t1/
1�2a

for some C > 0 depending only on a and m, which shows that ‡ 2 C 2;1�2a.Œ0; 2t��/.
Additionally, if � > 1 � 2a,

lim
t&0

‡ 00.t/ � ‡ 00.0/

t�
D .1 � a/m lim

t&0
t1�2a�� D C1;

due to (6.11). Hence, ‡ 62 C 2;�.Œ0; 2t��/. The proof of (6.4) is thereby complete.
Let us now deal with the case a 2 .1

2
; 1/. In this situation, we deduce from (6.10) that

‡ 00.t/ D .1 � a/m t1�2a C o.t1�2a/;

and consequently, if yt > 0 is sufficiently small and 0 < t1 < t2 < yt ,

j‡ 0.t2/ � ‡
0.t1/j 6

Z t2

t1

j‡ 00.t/j dt 6 2.1 � a/m

Z t2

t1

t1�2a dt

D 2.1 � a/m.t
2.1�a/
2 � t

2.1�a/
1 / 6 C.t2 � t1/

2.1�a/;

which shows that ‡ 2 C 1;2.1�a/.Œ0; 2t��/.
However, if � > 2.1 � a/,

lim
t&0

‡ 0.t/ � ‡ 0.0/

t�
D C1;

due to (6.3). Hence, ‡ 62 C 1;�.Œ0; 2t��/. We have therefore completed the proof of (6.5).
Now we assume that a > 1. In this case, we have that

lim
t&0

‡1�a.t/ D C1:

Therefore, for small t > 0, it is convenient to write (6.8) in the form

‡ 0.t/ D ‡1�a.t/

q
mC ‡2.a�1/.t/ � ‡2a.t/ D .

p
mC o.1//‡1�a.t/; (6.12)

and accordingly,

d

dt
.‡a.t// D a‡a�1.t/‡ 0.t/ D a

p
mC o.1/:
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This entails that
‡a.t/ D a

p
m t C o.t/;

and therefore,
‡.t/ D .a

p
m t C o.t//

1
a D .a

1
am

1
2a C o.1// t

1
a : (6.13)

This shows that ‡ 62 C �.Œ0; 2t��/ when � > 1
a

.
In addition, in light of (6.12) and (6.13),

‡ 0.t/ D .
p
mC o.1//.a

1
am

1
2a C o.1//1�a t

1�a
a D .a

1�a
a m

1
2a C o.1// t

1�a
a :

Owing to this, if yt > 0 is sufficiently small and 0 < t1 < t2 < yt ,

j‡.t2/ � ‡.t1/j 6
Z t2

t1

j‡ 0.t/j dt 6 2a
1�a
a m

1
2a

Z t2

t1

t
1�a
a dt

D 2a
1
am

1
2a .t

1
a
2 � t

1
a
1 / 6 C.t2 � t1/

1
a

for some C > 0, which demonstrates that ‡ 2 C
1
a .Œ0; 2t��/. This ends the proof of (6.6).

7. ODE methods

This section contains some bespoke results on solutions of ordinary differential equations
which rely on the preliminary work done in the previous sections and will be used in
Section 8 to establish Theorems 1.1 and 1.2.

Lemma 7.1. Let a > 0, with a ¤ 1. Let T0 > 0 and y 2 C.Œ0; T0�/ \ C 2..0; T0// be a
solution of 8̂̂<̂

:̂
y2 C yy00 C .a � 1/.y2 C .y0/2 � 1/ D 0;

y.0/ D 0;

y.t/ > 0 for all t 2 .0; T0/:

(7.1)

Then, either

y.t/ D

´
sin t if a ¤ 1=2;

sin t C c.1 � cos t / if a D 1=2
(7.2)

with c 2 R, or y.t/ is implicitly defined by the relation

t D

Z y.t/

0

dYp
1CmY 2.1�a/ � Y 2

(7.3)

for some m 2 R, with m > 0 if a > 1.
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Proof. If y has the form claimed in (7.2), then it solves (7.1) by a direct computation.
Furthermore, if y is as in (7.3), then it solves (7.1), due to Proposition 5.1.

Hence, it remains to prove that if y solves (7.1), then it is of the form claimed in
either (7.2) or (7.3). To establish this, we first observe that if zy 2 C.Œ0; T0�/\C 2..0; T0//
is a solution of (7.1); then, by the uniqueness result for regular Cauchy problems, we
deduce that

if y.t/ D zy.t/ for all t in an interval I ¤ Œ0; T0�,

then y.t/ D zy.t/ for all t 2 Œ0; T0�.
(7.4)

As a consequence, in light of (7.4), it is sufficient to prove that if y solves (7.1), then
it is of the form claimed in either (7.2) or (7.3) for all t in a suitable interval.

To this end, we observe that

y cannot be constant in an open interval. (7.5)

Indeed, suppose by contradiction that y.t/ D c0 for all t in an open interval I . Then,
by (7.1), for all t 2 I ,

0 D c20 C 0C .a � 1/.c
2
0 C 0 � 1/ D ac

2
0 � aC 1:

In particular, a¤ 0 necessarily, and then c20 D
a�1
a
¤ 0. This says that y is equal to c0 ¤ 0

in an open interval and we can therefore divide by y in the ordinary differential equation
in (7.1) and extend the solution. But then, using the initial value in (7.1), we see that 0 D
y.0/ D c0 ¤ 0, which is a contradiction and hence, (7.5) is proved.

Now, we define
w.t/ WD y2.t/C .y0.t//2 � 1: (7.6)

We first suppose thatw vanishes identically in an open interval I . In this case, for all t 2 I ,

.y0.t//2 D 1 � y2.t/:

Also, by (7.5), we can find an interval I 0 � I in which y0 ¤ 0. Thus, we conclude that for
every t 2 I 0,

by0.t/ D
p
1 � y2.t/

with b 2 ¹�1; 1º, and accordingly,

d

dt
.b arcsiny.t/ � t / D

by0.t/p
1 � y2.t/

� 1 D 0:

From this, we arrive at

y.t/ D sin
t

b
C xc D b sin t C xc for all t 2 I 0; (7.7)

where xc 2 R. Consequently, by (7.1), for all t 2 I 0,

0 D .b sin t C xc/2 � b.b sin t C xc/ sin t C .a � 1/..b sin t C xc/2 C cos2 t � 1/

D xc.axc C b.2a � 1/ sin t /: (7.8)
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This gives that
xc D 0: (7.9)

Because, if not, we deduce from (7.8) that the real analytic function axc C b.2a � 1/ sin t
vanishes for all t 2 I 0 and so, by analytic continuation, for all t 2 R. Hence, taking
t 2 ¹0; �

2
º,

axc D 0 and axc C b.2a � 1/ D 0;

yielding that a D 1
2

and then (7.9), as desired.
In light of (7.9), we deduce that (7.7) boils down to y.t/ D b sin t for all t 2 I 0.

Actually, by (7.4), we have that y.t/ D b sin t for all t 2 Œ0; T0�. Now, if b D �1, then
we obtain a contradiction with the assumption that y.t/ > 0. Therefore, we conclude
that b D 1, and accordingly, y.t/ D sin t for all t 2 Œ0; T0�, which is of the form claimed
in (7.2).

Thus, from now on, we can assume that

w cannot be identically zero in an open interval. (7.10)

In this setting, we recall (7.5) and we deduce that y0 cannot be identically zero in an
open interval. Furthermore, since y is analytic in .0; T0/ (being the solution of an analytic
Cauchy problem; see, e.g., [4, page 124]), we have that y0 is analytic in .0; T0/ as well,
and therefore, the set ¹y0 D 0º cannot have accumulation points in .0; T0/.

As a consequence of this observation, we have that there exists 	 � N such that®
y0 ¤ 0

¯
D

[
i2	

.�iC1; �i /; (7.11)

where �0 D T0 and �iC1 2 Œ0; �i /.
We now claim that

.y0.t//2 D 1Cmy2.1�a/.t/ � y2.t/ for all t 2 .0; T0/; (7.12)

for some m 2 R n ¹0º.
To prove it, we observe that

w0 D 2yy0 C 2y0y00 D 2y0.y C y00/:

Hence, in every interval of the form .�iC1; �i /, we can divide by 2y0 and find that

w0

2y0
D y C y00:

This and (7.1) give that

0 D y2 C yy00 C .a � 1/w D y.y C y00/C .a � 1/w D
w0y

2y0
C .a � 1/w;
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which produces

d

dt
.log jwj/ D

w0

w
D �2.a � 1/

y0

y
D 2.1 � a/

d

dt
.log jyj/:

As a result, for every "i 2 .�iC1; �i / such that w."i / ¤ 0 (whose existence is warranted
by (7.10)), we have that

log
jw.t/j

jw."i /j
D 2.1 � a/ log

jy.t/j

jy."i /j
:

Hence, since y.t/ > 0,

jw.t/j D jw."i /j
�
jy.t/j

jy."i /j

�2.1�a/
D

jw."i /j

y2.1�a/."i /
y2.1�a/.t/: (7.13)

Without loss of generality, we can assume that

w has a strict sign in the interval .�iC1; �i /, (7.14)

otherwise we can pick a sequence of points "k 2 .�iC1; �i / such that w."k/ ¤ 0, "k !
x"i 2 .�iC1; �i / as k ! C1 and w.x"i / D 0. This and (7.13) give that, for every
t 2 .�iC1; �i /,

jw.t/j D lim
k!C1

jw."k/j

y2.1�a/."k/
y2.1�a/.t/ D

jw.x"i /j

y2.1�a/.x"i /
y2.1�a/.t/ D 0;

which contradicts our statement in (7.10). This proves (7.14).
Also, by (7.6), (7.13), and (7.14), for every t 2 .�iC1; �i /,

y2.t/C .y0.t//2 � 1 D w.t/ D
w."i /

y2.1�a/."i /
y2.1�a/.t/ D mi y

2.1�a/.t/; (7.15)

where

mi WD
w."i /

y2.1�a/."i /
2 R n

®
0
¯
:

We claim that
miC1 D mi for all i 2 	: (7.16)

Indeed, since (7.15) holds true in .�iC1; �i / with coefficient mi and in .�iC2; �iC1/ with
coefficient miC1, we have that

y2.t/C .y0.t//2 � 1 �mi y
2.1�a/.t/ D 0 for all t 2 .�iC1; �i /

and y2.t/C .y0.t//2 � 1 �miC1 y
2.1�a/.t/ D 0 for all t 2 .�iC2; �iC1/:

For this reason,

y2.�iC1/C .y
0.�iC1//

2
� 1 �mi y

2.1�a/.�iC1/
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D 0 D y2.�iC1/C .y
0.�iC1//

2
� 1 �miC1 y

2.1�a/.�iC1/;

which gives (7.16).
As a consequence of (7.16), we can set m WD mi , recall (7.11), and obtain that the

equation in (7.12) is satisfied in ¹y0 ¤ 0º, and thus in ¹y0 ¤ 0º \ .0; T0/ D .0; T0/. This
completes the proof of (7.12).

Now we claim that

if a 2 .0; 1/; then lim
t&0

y0.t/ D 1I

and if a > 1; then m > 0 and lim
t&0

y0.t/ D C1:
(7.17)

To check this, let us first suppose that a 2 .0; 1/. Then, by (7.12),

lim
t&0

.y0.t//2 D lim
t&0

.1Cmy2.1�a/.t/ � y2.t// D 1:

Since y is positive for small t , this gives (7.17) in this case.
Let us now suppose that a > 1. Thus, using (7.12) we obtain that

lim
t&0

.y0.t//2 D lim
t&0

.1Cmy2.1�a/.t/ � y2.t// D 1Cm1I (7.18)

therefore, in this case, since the left-hand side is non-negative, we have thatm 2 .0;C1/.
Hence, we obtain from (7.18) that

lim
t&0

.y0.t//2 D C1

and the claim in (7.17) follows, since y is positive for small t .
As a consequence of (7.17) we obtain that, if � > 0 is chosen appropriately small, then

for all t 2 .0; �/,
y0.t/ 2 .0;C1�: (7.19)

Thus, exploiting (7.12) and (7.19), we find that for every t 2 .0; �/,

y0.t/ D

q
1Cmy2.1�a/.t/ � y2.t/: (7.20)

Now we recall the function‰ introduced in (4.7) and we claim that, for every t 2 Œ0;�/,

‰.y.t// D t: (7.21)

Indeed,

lim
t&0

.‰.y.t// � t / D lim
r&0

Z r

0

dYp
1CmY 2.1�a/ � Y 2

D 0

and, in view of (7.20),

d

dt
.‰.y.t// � t / D ‰0.y.t// y0.t/ � 1 D

y0.t/p
1Cmy2.1�a/.t/ � y2.t/

� 1 D 0:
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Figure 9. The function in (7.22) for m WD 1.

These observations establish (7.21), as desired.
From (7.21), we deduce that, for every t 2 Œ0; �/, the solution y.t/ must coincide with

the inverse function ‡.t/ of ‰, as detailed in (5.1). This gives that y is as in (7.3). In
particular, if a D 1=2, y.t/ is as in (7.2), thanks to (6.1) in Proposition 6.1.

Remark 7.2. We stress that some explicit solutions can be found among those presented
in (7.3); for example, if a WD 2 and m > 0, then (7.3) reads

t D

Z y.t/

0

Y dY
p
Y 2 Cm � Y 4

:

Since a primitive of Yp
Y 2Cm�Y 4

is given by �1
2

arctan 1�2Y 2

2
p
mCY 2�Y 4

, we find that

t D
1

2

�
arctan

1

2
p
m
� arctan

1 � 2y2.t/

2
p
mC y2.t/ � y4.t/

�
;

and therefore,

1 � 2y2.t/

2
p
mC y2.t/ � y4.t/

D tan
�

arctan
1

2
p
m
� 2t

�
:

Hence, using the trigonometric formula

tan.˛ � ˇ/ D
tan˛ � tanˇ
1C tan˛ tanˇ

;

we obtain that

1 � 2y2.t/

2
p
mC y2.t/ � y4.t/

D

1

2
p
m
� tan.2t/

1C 1

2
p
m

tan.2t/
;
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which gives

y2.t/ D
1

2
.1˙ .2

p
m sin.2t/ � cos.2t///:

Noticing that

lim
t&0

d

dt
.y2.t// D lim

t&0
˙.2
p
m cos.2t/C sin.2t// D ˙2

p
m;

we find that 0 6 y2.t/ D ˙2
p
mt C o.t/ for small t . This solves the sign ambiguity,

leading to

y2.t/ D
1

2
.1C .2

p
m sin.2t/ � cos.2t/// D

1 � cos.2t/
2

C
p
m sin.2t/;

and therefore,

y.t/ D

r
1 � cos.2t/

2
C
p
m sin.2t/I (7.22)

see Figure 9 for a diagram of this function when m WD 1.
Recalling Lemma 3.1, we infer from this example that the function

u D
r2.1 � cos.2�/C 2

p
m sin.2�//

4
D
x22 C 2

p
mx1x2

2

is a solution of �u D 1 (which can also be checked by a direct calculation). This obser-
vation is related to (1.14).

The counterpart of Lemma 7.1 for the non-singular equations is given by the following
result:

Lemma 7.3. Let a > 0. Assume that there exists a periodic solution y 2 C 2.R/ of the
problem 8<:y2 C yy00 C .a � 1/.y2 C .y0/2 � 1/ D 0;min

R
y > 0:

(7.23)

Then,
a > 1 (7.24)

and

y is constantly equal to

r
a � 1

a
: (7.25)

Proof. Let t0 2 R be such that

y.t0/ D min
Œ0;2��

y > 0:
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Then, we have that y0.t0/ D 0 and y00.t0/ > 0. This and the equation in (7.23) give that

0 D y2.t0/C y.t0/y
00.t0/C .a � 1/.y

2.t0/ � 1/

D ay2.t0/C y.t0/y
00.t0/ � aC 1 > �aC 1; (7.26)

which yields (7.24), as desired.
It is also useful to remark that, in view of (7.26),

0 D ay2.t0/C y.t0/y
00.t0/ � aC 1 > ay2.t0/ � aC 1;

and therefore,

y.t0/ 6
r
a � 1

a
: (7.27)

Similarly, if t1 is such that
y.t1/ D max

Œ0;2��
y > 0; (7.28)

we have that y0.t1/ D 0 and y00.t1/ 6 0, whence the equation in (7.23) gives that

0 D y2.t1/C y.t1/y
00.t1/C .a � 1/.y

2.t1/ � 1/ 6 ay2.t1/ � aC 1;

and accordingly,

y.t1/ >
r
a � 1

a
:

We claim that

y.t1/ D

r
a � 1

a
: (7.29)

For this, we argue by contradiction, supposing that

y.t1/ >

r
a � 1

a
: (7.30)

We define
W.t/ WD 1 � y2.t/ � .y0.t//2

and we observe that, in light of (7.27),

W.t0/ D 1 � y
2.t0/ > 1 �

a � 1

a
D
1

a
> 0: (7.31)

Therefore,W is strictly positive in some interval I WD .t0 � ı; t0C ı/, for a suitable ı > 0.
As a consequence, we can consider the logarithm of W in I and exploit the equation
in (7.23) to see that

d

dt
logW D

W 0

W
D
�2yy0 � 2y0y00

1 � y2 � .y0/2
D
�2y0.y C y00/

1 � y2 � .y0/2
D
�2y0.y2 C yy00/

y.1 � y2 � .y0/2/
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D
2.a � 1/y0.y2 C .y0/2 � 1/

y.1 � y2 � .y0/2/
D
�2.a � 1/y0

y
D �2.a � 1/

d

dt
logy:

As a result, for all t 2 I ,

log
W.t/

W.t0/
D �2.a � 1/ log

y.t/

y.t0/
D log

� y.t/
y.t0/

�2.1�a/
:

Therefore, setting

� WD
W.t0/

.y.t0//2.1�a/
; (7.32)

we find that for all t 2 I ,

1 � y2.t/ � .y0.t//2 D W.t/ D �.y.t//2.1�a/: (7.33)

We also remark that y is an analytic function, since it is a solution of an analytic Cauchy
problem (the sign condition in (7.23) ensuring that the source term of the differential equa-
tion is non-singular, after a division by y); see, for example, [4, page 124]. Consequently,
the relation in (7.33) is globally valid, namely

.y0.t//2 D 1 � y2.t/ � �.y.t//2.1�a/ for all t 2 R: (7.34)

Moreover, recalling (7.27), (7.31), and (7.32),

� >
1=a

..a � 1/=a/1�a
D
1

a

� a

a � 1

�1�a
:

For this reason and (7.34), we have that

0 6 1� y2.t/� �.y.t//2.1�a/ 6 1� y2.t/�
1

a

� a

a � 1

�1�a
.y.t//2.1�a/ for all t 2 R:

From this and (7.30), we find that

0 < 1 �
a � 1

a
�
1

a

� a

a � 1

�1�a �a � 1
a

�1�a
D 0:

This is a contradiction, and thus (7.29) is established.
As a consequence of (7.28) and (7.29), we have that

y.t1/ D

r
a � 1

a
and y0.t1/ D 0:

Since, by inspection, the function y? which is constantly equal to
q
a�1
a

is also a solution
of (7.23), by the uniqueness result of the standard Cauchy problem we infer that y.t/
D y?.t/ for every t 2 R, and this proves the desired claim in (7.25).
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8. Proof of Theorems 1.1 and 1.2

In light of Lemma 3.1, we can express u in the polar form u.r; �/D ra g.�/ and we know
that  < 2 and a D 2

2�
. Also thanks to Lemma 3.1, when setting y.�/ WD ap

2
g
1
a .�/, we

obtain that

y2.�/C y.�/ y00.�/C .a � 1/.y2.�/C .y0.�//2 � 1/ D 0 for all � 2 S;

where S is an open subset of S1 (or simply of Œ0; 2�� under periodicity assumptions).
Our goal is now to use the ODE analysis carried out in Section 7. For this, to distin-

guish between the settings in (7.1) and (7.23), we recall that y is non-negative; hence, two
cases may hold:

either inf
Œ0;2��

y > 0; (8.1)

or y vanishes somewhere. (8.2)

Assume first that (8.1) holds true. Then, y is as in (7.23), whence we can apply Lemma 7.3
and infer that

a > 1 (8.3)

and, for all � 2 Œ0; 2��, r
a � 1

a
D y.�/ D

a
p
2
g
1
a .�/:

This and (3.1) give that

u D
.2.a � 1//a=2

a3a=2
ra;

hence (1.8) is established.
We also remark that the function in (1.8) is indeed a solution of (1.4) since

.2.a � 1//a=2a.a � 1/

a3a=2
ra�2 C

.2.a � 1//a=2a

a3a=2
ra�2 � 

� .2.a � 1//a=2
a3a=2

ra
��1

D
.2.a � 1//a=2a2

a3a=2
ra�2 �

2.a � 1/

a

� .2.a � 1//a=2
a3a=2

ra
�.a�2/=a

D

� .2.a � 1//a=2
a.3a�4/=2

�
2.a � 1/

a

.2.a � 1//.a�2/=2

a3.a�2/=2

�
ra�2

D 0:

Finally, (1.7) follows from (3.3) and (8.3).
Now, we can focus on the case in which (8.2) is satisfied. Up to a rotation, we can

suppose that y > 0 in .0; T /, with y.0/D y.T /D 0 for some T 2 .0; 2��. We then make
use of Lemma 7.1 (and note that a ¤ 1, owing to (3.3) and the assumption that  ¤ 0).
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As a consequence, we find that, for every � 2 .0; T /, either

y.�/ D sin � C c.1 � cos �/; (8.4)

with c an arbitrary real constant when a D 1=2 and c D 0 when a ¤ 1=2, or y.�/ is
implicitly defined by the relation

� D

Z y.�/

0

dYp
1CmY 2.1�a/ � Y 2

(8.5)

for some m 2 R, with m > 0 if a > 1.
The expression in (8.5) is precisely the one proposed in Theorem 1.2. We also stress

that such an expression is excluded in Theorem 1.1, thanks to assumption (1.6). More
precisely, we know from (6.4), (6.5), and (6.6) that, if (8.5) holds true, then:

• if a 2 .0; 1
2
/ and � > 1 � 2a, then y 62 C 2;� ,

• if a 2 .1
2
; 1/ and � > 2.1 � a/, then y 62 C 1;� ,

• if a > 1 and � > 1
a

, then y 62 C � ,

and therefore, assumption (1.6) excludes the appearance of solutions described by (8.5) in
Theorem 1.1.

Therefore, it remains to check that (8.4) provides all the possible solutions classified
in the statement of Theorem 1.1.

To this end, notice that if a ¤ 1=2, then y.�/ D sin � and T D � . This gives that, for
every x D .x1; x2/ with x2 > 0,

u D rag D
2
a
2

aa
raya D

2
a
2

aa
.r sin �/a D

2
a
2

aa
xa2 :

This gives two possibilities:

either u.x/ D
2
a
2

aa
.x2/

a
C

or u.x/ D
2
a
2

aa
jx2j

a

for all x 2 R2, therefore (1.9) and (1.10) are established in this case.
If instead a D 1=2, we have that for every � 2 .0; T /,

y.�/ D sin � C c.1 � cos �/;

with c 2 R, and the case c D 0 reduces to the previous situation. Hence, we can suppose
that c ¤ 0 and we use the formulas

cos � D
1 � �2

1C �2
and sin � D

2�

1C �2
; where � WD tan

�

2
:
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In this way, we have that

y D
2�.1C c�/

1C �2
;

which is positive when � 2 .�1;�1=c/ [ .0;C1/ if c > 0, and when � 2 .0;�1=c/
if c < 0.

In other words, y.�/ is positive when � 2 .0; 2� � 2 arctan.1=c// if c > 0, and
when � 2 .0;�2 arctan.1=c// if c < 0. This gives that T D 2� � 2 arctan.1=c/ 2 .�; 2�/
when c > 0, and that T D �2 arctan.1=c/ 2 .0; �/ when c < 0.

Hence, in the cone Cc introduced in (1.11), we have that

u D rag D
2
a
2

aa
raya D

2
a
2

aa
ra.sin � C c.1 � cos �//a D

2
a
2

aa
.x2 � cx1 C cjxj/

a;

and this is the setting described in (1.13).
We stress that the function in (1.9) satisfies (1.6) and is also a solution of (1.4), since,

in this setting,

�u � u�1 D
2
a
2 a.a � 1/

aa
xa�22 � 

�2 a2
aa
xa2

��1
D
2
a
2 a.a � 1/

aa
xa�22 �

2a � 2

a

2
a�2
2

aa�2
xa�22 D 0

when x2 > 0, thanks to (1.5).
We also observe that the function in (1.13) satisfies (1.6) and is a solution of (1.4),

since

�u � u�1

D
2
a
2

aa�1
.x2 � cx1 C cjxj/

a�2
h
.a � 1/

��cx1
jxj
� c

�2
C

�cx2
jxj
C 1

�2�
C

c

jxj
.x2 � cx1 C cjxj/

i
� 

�2 a2
aa
.x2 � cx1 C cjxj/

a
��1

D
2
a
2

aa�1
.x2 � cx1 C cjxj/

a�2
h
.a � 1/

�
2c2 C 1C

2c

jxj
.x2 � cx1/

�
C

c

jxj
.x2 � cx1 C cjxj/

i
�
2a � 2

a

2
a�2
2

aa�2
.x2 � cx1 C cjxj/

a�2

D
1

21=4
.x2 � cx1 C cjxj/

�3=2
h
�
1

2

�
2c2 C 1C

2c

jxj
.x2 � cx1/

�
C

c

jxj
.x2 � cx1 C cjxj/

i
C

1

25=4
.x2 � cx1 C cjxj/

�3=2

D
1

21=4
.x2 � cx1 C cjxj/

�3=2
h
�c2 �

1

2
C c2

i
C

1

25=4
.x2 � cx1 C cjxj/

�3=2

D 0:
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9. A comment about weak solutions

We point out that none of the implicit solutions presented in Theorem 1.2, when extended
by zero outside their positivity cone, are weak solutions of �u D u�1�¹u>0º. Indeed,
suppose that one of these functions is a weak solution and that its positivity cone is given
by the set ¹.r; �/ 2 R � .0; '/º, for some ' 2 .0; 2�/.

Consider a test function � supported in a small ball B around e1 D .1; 0/. Then,Z
B

ru.x/ � r�.x/ dx D �

Z
B

u�1.x/�¹u>0º.x/�.x/ dx D �

Z
BC
u�1.x/�.x/ dx;

where BC WD B \ ¹x2 > 0º.
But,Z
B

ru.x/ � r�.x/ dx D

Z
B\¹u>0º

ru.x/ � r�.x/ dx D

Z
BC
ru.x/ � r�.x/ dx

D

Z
BC

div.�.x/ru.x// dx �
Z
BC
�u.x/�.x/ dx

D �

Z
H

�.x1; 0
C/@2u.x1; 0

C/ dx1 � 

Z
BC
u�1.x/�.x/ dx;

where H WD B \ ¹x2 D 0º.
Therefore, @2u.x1; 0C/ D 0 along the x1-axis.
But, the implicit solutions constructed in Theorem 1.2 do not satisfy this condition,

since (up to multiplicative constants that we omit for simplicity):

• if a 2 .0; 1/, then y.�/ D � .1C o.1//, due to (6.2),

• if a > 1, then y.�/ D �
1
a .1C o.1//, due to (6.6).

Therefore,

g.�/ D

´
ya.�/ D �a.1C o.1// when a 2 .0; 1/;

�.1C o.1// when a > 1;

whence

@2u.1; 0
C/ D g0.0C/ D

´
C1 when a 2 .0; 1/;

1 when a > 1:

Acknowledgements. It is a pleasure to thank Xavier Ros-Oton for several interesting
comments on a preliminary version of this paper.

Funding. SD was supported by the Australian Research Council DECRA DE180100957
PDEs, free boundaries and applications. AK was supported by the EPSRC grant
EP/S03157X/1 Mean curvature measure of free boundary. EV was supported by the Aus-
tralian Laureate Fellowship FL190100081 Minimal surfaces, free boundaries and partial
differential equations.



S. Dipierro, A. Karakhanyan, and E. Valdinoci 490

References

[1] H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free
boundary. J. Reine Angew. Math. 325 (1981), 105–144 Zbl 0449.35105 MR 618549

[2] H. W. Alt and D. Phillips, A free boundary problem for semilinear elliptic equations. J. Reine
Angew. Math. 368 (1986), 63–107 Zbl 0598.35132 MR 850615

[3] L. A. Caffarelli, The regularity of free boundaries in higher dimensions. Acta Math. 139
(1977), no. 3–4, 155–184 Zbl 0386.35046 MR 454350

[4] C. Chicone, Ordinary differential equations with applications. Texts Appl. Math. 34, Springer,
New York, 1999 Zbl 0937.34001 MR 1707333

[5] D. De Silva and O. Savin, The Alt–Phillips functional for negative powers. Bull. Lond. Math.
Soc. (2023) DOI 10.1112/blms.12893

[6] S. Dipierro and E. Valdinoci, Elliptic partial differential equations from an elementary view-
point. 2021, arXiv:2101.07941.

[7] Q. Han and F. Lin, Elliptic partial differential equations. Second edn., Courant Lect. Notes
Math. 1, Courant Institute of Mathematical Sciences, New York; American Mathematical Soci-
ety, Providence, RI, 2011 Zbl 1210.35031 MR 2777537

[8] E. Indrei, Boundary regularity and nontransversal intersection for the fully nonlinear obstacle
problem. Comm. Pure Appl. Math. 72 (2019), no. 7, 1459–1473 Zbl 1429.35087
MR 3957397

[9] A. Rutherford, The mathematical theory of diffusion and reaction in permeable catalysts.
Vol. II: Questions of uniqueness, stability, and transient behaviour. Clarendon Press, Oxford,
1975 Zbl 0315.76052

[10] N. Soave and S. Terracini, The nodal set of solutions to some elliptic problems: singular non-
linearities. J. Math. Pures Appl. (9) 128 (2019), 264–296 Zbl 1422.35083 MR 3980852

[11] J. Spruck, Uniqueness in a diffusion model of population biology. Comm. Partial Differential
Equations 8 (1983), no. 15, 1605–1620 Zbl 0534.35055 MR 729195

Received 22 March 2022; revised 9 August 2022.

Serena Dipierro
Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway,
Crawley WA 6009, Australia; serena.dipierro@uwa.edu.au

Aram Karakhanyan
School of Mathematics, The University of Edinburgh, Peter Tait Guthrie Road,
Edinburgh EH9 3FD, UK; aram.karakhanyan@ed.ac.uk

Enrico Valdinoci
Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway,
Crawley WA 6009, Australia; enrico.valdinoci@uwa.edu.au

https://doi.org/10.1515/crll.1981.325.105
https://doi.org/10.1515/crll.1981.325.105
https://zbmath.org/?q=an:0449.35105
https://mathscinet.ams.org/mathscinet-getitem?mr=618549
https://doi.org/10.1515/crll.1986.368.63
https://zbmath.org/?q=an:0598.35132
https://mathscinet.ams.org/mathscinet-getitem?mr=850615
https://doi.org/10.1007/BF02392236
https://zbmath.org/?q=an:0386.35046
https://mathscinet.ams.org/mathscinet-getitem?mr=454350
https://doi.org/10.1007/b97645
https://zbmath.org/?q=an:0937.34001
https://mathscinet.ams.org/mathscinet-getitem?mr=1707333
https://doi.org/10.1112/blms.12893
https://doi.org/10.1112/blms.12893
https://arxiv.org/abs/2101.07941
https://doi.org/10.1090/cln/001
https://zbmath.org/?q=an:1210.35031
https://mathscinet.ams.org/mathscinet-getitem?mr=2777537
https://doi.org/10.1002/cpa.21814
https://doi.org/10.1002/cpa.21814
https://zbmath.org/?q=an:1429.35087
https://mathscinet.ams.org/mathscinet-getitem?mr=3957397
https://zbmath.org/?q=an:0315.76052
https://doi.org/10.1016/j.matpur.2019.06.009
https://doi.org/10.1016/j.matpur.2019.06.009
https://zbmath.org/?q=an:1422.35083
https://mathscinet.ams.org/mathscinet-getitem?mr=3980852
https://doi.org/10.1080/03605308308820317
https://zbmath.org/?q=an:0534.35055
https://mathscinet.ams.org/mathscinet-getitem?mr=729195
mailto:serena.dipierro@uwa.edu.au
mailto:aram.karakhanyan@ed.ac.uk
mailto:enrico.valdinoci@uwa.edu.au

	1. Introduction
	2. A heuristic discussion
	3. Reduction to ODEs
	4. Two special functions  and 
	5. The inverse function  of 
	6. Behavior of  near boundary points
	7. ODE methods
	8. Proof of Theorems 1.1 and 1.2
	9. A comment about weak solutions
	References

