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The Ginzburg–Landau energy with a pinning term
oscillating faster than the coherence length

Mickaël Dos Santos, Rémy Rodiac, and Etienne Sandier

Abstract. The aim of this article is to study the magnetic Ginzburg–Landau functional with an
oscillating pinning term. We consider here oscillations of the pinning term that are much faster than
the coherence length " > 0, which is also the inverse of the Ginzburg–Landau parameter. We study
both the case of a periodic potential and of a random stationary ergodic one. We prove that we can
reduce the study of the problem to the case where the pinning term is replaced by its average in
the periodic case and by its expectation with respect to the random parameter in the random case.
In order to do that, we use a decoupling of the energy (detailed in Lassoued and Mironescu’s 1999
paper) that leads us to the study of the convergence of a scalar positive minimizer of the Ginzburg–
Landau energy with pinning term and with homogeneous Neumann boundary conditions. We prove
uniform convergence of this minimizer towards the mean value of the pinning term by using a blow-
up argument and a Liouville-type result for non-vanishing entire solutions of the real Ginzburg–
Landau/ Allen–Cahn equation, due to the results of Farina (2003).

1. Introduction

Let G � R2 be a smooth bounded domain. The main goal of this article is to study the
following pinned Ginzburg–Landau energy:
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where " > 0; hex � 0 are parameters (here, " is a small parameter: "! 0), u 2H 1.G;C/;
A 2 H 1.G;R2/, curlA D @1A2 � @2A1, .r � iA/u is the covariant gradient of u (i.e.,
the vector with complex components .@xu � iA1u; @yu � iA2u/T ), and a" is a func-
tion oscillating at a rate ı D ı"� ". More precisely, we will study the case where a".x/
D a0.

x
ı
/, with a0 WR2!R a 1-periodic function and the case where a".x/D a1.T .xı /!/,

where a1 W �! R is a random variable defined on a probability space � and T denotes
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an action of R2 on � which is stationary and ergodic. Although we do not specify it in
our notation, the parameter ı depends on ", hence the notation a". The functional GLpin

"

is used to describe the behavior of type-II superconductors in presence of impurities. In
this model u is the complex order parameter, with juj2 representing a normalized density
of Cooper pairs of electrons in the sample G, and h WD curlA represents the magnetic
field inside the sample. When the sample is a homogeneous material (i.e., a" � 1), and
in the absence of magnetic field (i.e., when A D hex D 0), functional (1.1) has been stud-
ied in the pioneering work of Bethuel–Brezis–Hélein [10]. For the study of the functional
with magnetic field, we refer to [25] and references therein. In order to describe hetero-
geneous materials, various authors have considered a modified Ginzburg–Landau energy
where various fixed weights appear [3–5,8,22]. Oscillating pinning terms were also stud-
ied in [1, 15, 16]. Here, our setting is close to the one in [1], except that the assumptions
on a" are different: in [1] the pinning term a" oscillates slower than " (with our notation,
their assumption would correspond to ı�j log "j�1). The study of (1.1) combines the dif-
ficulties of concentration phenomena in phase transition theory and of homogenization
effects due to oscillations. This is also the case in the recent paper [2] where the authors
study the homogenization of an oscillating Ginzburg–Landau energy where the oscillating
term occurs in the gradient. Oscillations in phase transition problems were also studied in
the context of the Allen–Cahn/ Modica–Mortola functional. On this subject, we refer to
[6,12–14,19]. We note that the oscillating weight in the energies studied in those works is
different from the one studied here. Of particular interest for us in this article are [6, 19],
where the case when the oscillations are much faster than the phase transition parameter "
is considered. We note that, in these references, the hypothesis that ı D o".1/ is not suffi-
cient to obtain a homogenization result and the authors assume instead that ı D o"."3=2/
in both papers, even though the techniques used in these papers are different.

We will describe the asymptotic behavior of minimizers of (1.1), but also of a sim-
ilar pinned Ginzburg–Landau functional in three dimensions and a pinned Allen–Cahn
functional in d dimensions, for arbitrary d .

LetQD .0;1/d be the unit cube in Rd . We consider a function a0 2L1.Q;R/which
satisfies the following condition:

there exist 0 < m < M such that m < a0.x/ < M a.e. in Q: (1.2)

Without loss of generality, we can assume thatZ
Q

a0.y/dy D 1 and m < 1 < M;

and we will indicate how to adapt the arguments to the case M D
qR

Q
a0 ¤ 1.

We can see a0 as a 1-periodic function (still denoted by a0) in Rd by setting

a0.x/ D a0.x1 � bx1c; : : : ; xd � bxd c/ for x D .x1; : : : ; xd / 2 Rd ;
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where b�c denotes the integer part of a real number. We first consider the case where the
pinning term is defined by

a".x/ WD a0

�x
ı

�
with ı D ı" � ": (1.3)

We also consider the case where the pinning term oscillates randomly. Let .�;†; �/
be a probability space. We assume that Rd acts on � by measurable isomorphisms and
we denote this action by T . More precisely, this means that for every x 2 Rd , we have
an application T .x/ W �! � such that �ŒT .x/.A/� D �.A/ for every set A in the � -
algebra †, and we have that T .x C y/ D T .x/ ı T .y/ for every x; y in Rd .

We recall that a function a W � �Rd ! R is said to be stationary with respect to the
action T if a.!; x C y/ D a.T .y/!; x/ for every x; y 2 Rd and for almost every ! 2 �.
A typical example of a stationary process is given by

za0.!; x/ D a1.T .x/!/ with a1 W �! R a measurable function. (1.4)

We also recall that a function f W �! R is T -invariant if f .T .x/!/ D f .!/ for every
x 2 Rd and a.e. ! 2 �. The action T is ergodic if every function that is invariant with
respect to T on � is constant almost everywhere on �.

When considering a stationary-ergodic pinning term, we will assume that za0 is given
by (1.4) with a1 2 L1.�;R/ which satisfies

m < a1 < M for some 0 < m < M: (1.5)

Without loss of generality, we will assume that

E.a1/ D 1 and 0 < m < 1 < M;

and we will indicate briefly how to adapt the argument to the case E.a1/ ¤ 1.
Then, the pinning term will take the form

a".!; x/ D za0

�
!;
x

ı

�
D a1

�
T
�x
ı

�
!
�

with ı D ı" � ": (1.6)

Given a smooth bounded domainG in R2, we define the (unpinned) Ginzburg–Landau
energy of .u; A/ 2 H WD H 1.G;C/ �H 1.G;R2/ by

GL".u; A/ D
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For functions u inH 1.G;C/ we also define the pinned energy without magnetic field:

Epin
" .u/ D
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2/2: (1.8)

We define the denoised energy as

eGLpin
" .u; A/ WD GL

pin
" .u; A/ � min

U2H1.G/
Epin
" .U /: (1.9)
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We will see in Corollary 2.3 and Definition 2.4 below that Epin
" has a unique positive

minimizer U" in H 1.G;R/ and that U" is still a minimizer of Epin
" in H 1.G;C/.

Our main result is the following:

Theorem 1.1. Assume that ı D o"."/ and that a" is given by (1.3) (respectively (1.6)).
Then, U", the unique positive minimizer of Epin

" in H 1.G;C/, satisfies (respectively satis-
fies almost surely)

lim
"!0
kU" � 1kL1.G/ D 0:

Also, given .u"; A"/, we have

eGLpin
" .u"; A"/ D GL".v"; A"/.1CO".kU" � 1kL1.G///; (1.10)

where v" WD u"=U".
In particular, .u"; A"/ is a family of quasi-minimizers of GLpin

" and eGLpin
" in H if and

only if .v"; A"/ is a family of quasi-minimizers of the unpinned energy GL" in H . This
equivalence holds only almost surely in the stationary ergodic case.

By a family .x"/ of quasi-minimizers for some family of functionals .F"/ we mean a
family which satisfies F".x"/ D .1C o".1// inf.F"/ as "! 0.

Theorem 1.1 allows us to describe the behavior of u" as "! 0, and in particular the
behavior of the vortices of u", by using the literature concerning the minimizers of GL".
We refer to Theorems 5.1, 5.3, 5.5, and 5.8 for precise statements.

Remark 1.2. If we do not assume that M WD
qR

Q
a0.y/dy D 1 in the periodic case,

or that M WD
p

E.a/ D 1 in the random case, then Theorem 1.1 has to be modified as
follows: with the same assumptions and notations, we have that .v"; A"/ is a family of
quasi-minimizers of GLM

" (instead of GL"), where for .v; A/ 2 H

GLM
" .v; A/ D GL
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.1 � jv0j2/2 C j curlA0 � hex=M
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DM2GL";hex=M2;M�G.v; A/;

where A0.�/ D A.�=M/=M, v0.�/ D v.�=M/ and expansion (1.10) holds. The study
of GLM

";hex;G
reduces to the study of GL";hex=M2;M�G in the dilated domain M � G by

a change of variable and a dilation of the unknowns. This is similar to the operations
made in the non-dimensionalizing process of the Ginzburg–Landau functional (see, e.g.,
[25, Section 2.1.1]).

This article is organized as follows: in Section 2 we recall the decomposition lemma
from [22] and show how it reduces the study of the problem to the convergence of a min-
imizer of Epin

" in H 1.G;R/, with Epin
" being defined in (1.8). In particular, we show that
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there exists a unique positive minimizer U" of Epin
" in H 1.G;C/. In Section 3 we prove

the convergence, in the L1 norm, of this minimizer to the square root of the average of a0
in the periodic case and to the square root of the expectation of a1 in the random case.
The proofs of both results make use of a blow-up argument. This convergence is suffi-
cient to prove Theorem 1.1. We also give another proof of the convergence of U", which
has the advantage of working in Lipschitz bounded domains and giving explicit rates of
convergence and the disadvantage of requiring ı D O."2/. Then, we use Theorem 1.1
and known results in the literature to describe the behavior of minimizers of GLpin

" in the
two-dimensional case in Section 5. We also use analogous results to Theorem 1.1 in three
dimensions in Section 6 and also for the Allen–Cahn problem with prescribed mass in
Section 7.

2. The decomposition lemma

In the framework of pinned Ginzburg–Landau-type energies, a useful decomposition
method is described in [22]. This can be expressed by the following lemma:

Lemma 2.1 (Decomposition lemma). Let G be a Lipschitz domain of Rd with d � 1. Let
p 2 L1.G;RC/ and let us assume that U 2 H 1.G;R/ is a solution of8<:��U D

1

"2
U.p � jU j2/ in G;

@�U D 0 on @G;
(2.1)

which satisfies U � m > 0 in G for some m > 0. We consider
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and for d D 2 we define
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Then, for every d � 1, if we set u D Uv, we obtain
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For d D 2, with u D Uv we find
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Remark 2.2. In [22] the decomposition lemma was proved in the context of a planar
pinned Ginzburg–Landau-type energy without magnetic field (given by (1.8), where a"
is independent of "). In this context, the Ginzburg–Landau-type energy studied is mini-
mized under a Dirichlet boundary condition g 2 C1.@G;S1/, with G a smooth bounded
domain. The authors of [22] proved the decoupling given in (2.2) with UDir 2H

1.G;RC/
instead of U , where UDir is the unique minimizer of Ep" submitted to the boundary con-
dition UDir D 1 on @G (they also need that p D 1 on @G in the sense of traces and
p � m > 0 in G). If we look at their proof, we can see that the minimality of UDir is only
used through the validity of the Euler–Lagrange equation ��UDir D "

�2UDir.p � U
2
Dir/,

while the boundary condition UDir D 1 on @G makes the boundary terms vanish since
UDir � p D 0 on @G. These boundary terms may also be canceled with a homogeneous
Neumann boundary condition as in (2.1). Hence, one may follow (in arbitrary dimension)
the argument of [22] to prove (2.2) and also (2.3).

Corollary 2.3. LetG be a Lipschitz domain of Rd with d � 1, p 2 L1.G;R/ and " > 0.
Assume that p � m > 0. Then, there exists a unique minimizer U" of Ep" in H 1.G;C/
which is non-negative. It satisfies

kpkL1.G/ � U
2
" � m:

Any other minimizer is of the form ˛U" for some ˛ 2 S1. Moreover, U" is the only positive
solution of (2.1).

Proof. Let "> 0;p 2L1.G;R/ be such that p�m for somem>0. LetU be a minimizer
of Ep" in H 1.G;C/. It is clear that Ep" .jU j/ � E

p
" .U /. Moreover, V D max.jU j;

p
m/

satisfiesEp" .V /�E
p
" .jU j/. Thus, by minimality of jU j,Ep" .V /DE

p
" .jU j/. This impliesZ

¹jU j<
p
mº

jrjU jj2 D
1

4"2

Z
¹jU j<

p
mº

..p �m2/2 � .p � jU j2/2/ � 0;

since in ¹jU j <
p
mº we have p � jU j2 > p �m � 0. This implies that ¹jU j < mº D ;.

By considering V 0 D min.jU j;
p
kpkL1.G//, we find jU j �

p
kpkL1.G/.

Assume U 0 is another minimizer of Ep" in H 1.G;C/. Then, by definition Ep" .U 0/ D
E
p
" .U /, but from Lemma 2.1, letting v D U 0=U we have

0 D Ep" .U
0/ �Ep" .U / D

1

2

Z
G

jU j2jrvj2 C
jU j4

2"2
.1 � jvj2/2:

Hence, v is a constant and v 2 S1.
To prove the last statement, we consider V a positive solution of (2.1); by the mini-

mizing property of U , we can say that Ep" .U / � E
p
" .V / � 0. There exists m0 > 0 such

that V � m0. Using Lemma 2.1 again, letting v D U=V we have

0 � Ep" .U / �E
p
" .V / D

1

2

Z
G

V 2jrvj2 C
V 4

2"2
.1 � jvj2/2:

Since v � 0 and V � m0 on G, we deduce v D 1, that is, V D jU j D U .
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From Corollary 2.3, one may state the following definition:

Definition 2.4. LetG �Rd be a Lipschitz bounded domain. For p 2L1.G;R/ such that
p � m for some m > 0 and for " > 0, we let U p" be the unique positive minimizer of Ep"
in H 1.G;C/. It satisfies m � jU p" j2 � kpkL1 in G. Moreover, if G is a C2 bounded
domain, then by elliptic regularity, U p" 2 W 2;q.G;R/ for every 1 � q < C1. If p D a"
is given by (1.3) or (1.6), we simply write U".

Next, we give a Lipschitz estimate on U p" in the case where G is a C1 domain. The
proof follows the argument of [9, Lemma A.2].

Lemma 2.5. Let us assume that G is a C1 bounded domain. Let " > 0 and let p 2
L1.G;R/ be such that p � m for some m > 0. Let U p" 2 H 1.G;R/ be the unique posi-
tive minimizer of Ep" inH 1.G;C/ from the previous definition. There is C > 1 depending
only on G and kpkL1 such that

krU p" kL1.G/ �
C

"
: (2.4)

Proof. Following step by step the proof of [9, Lemma A.2], we obtain that if u2H 1.G;C/
and f 2 L1.G;C/ with

R
G
f .x/dx D 0 satisfy´

��u D f in G;

@�u D 0 on @G;

then there exists C > 0 which depends only on G such that

krukL1.G/ � Ckf kL1.G/kukL1.G/:

The only modification with respect to the proof of [9, Lemma A.2] is the use of the fol-
lowing Neumann elliptic estimate in place of its Dirichlet counterpart: let A 2 C1.BC1 ;

Md .R//, which is bounded and uniformly elliptic, with BC1 D ¹x 2 B1.0/ j xd > 0º;
g 2 L1.BC1 ;R/; and v 2 H 1.BC1 ;R/ satisfy´

� div.A.x/rv/ D g in BC1 ;

@�v D 0 on B1 \ ¹x 2 BC1 j xd D 0ºI

then krvkL1.BC
1=2
/ � C.kgkL1.BC1 /

C kvkL1.BC1 /
/ for some C > 0 depending on the

ellipticity constant of A and on kAkC1.BC1 /.

3. Convergence of the free minimizer

3.1. The periodic case

Let Epin
" be defined by (1.8) with a" being defined by (1.3).
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Theorem 3.1. Let G � Rd be a C1 bounded domain. Let U" be the minimizer of E"
in H 1.G;C/ given by Definition 2.4. Then,

lim
"!0
kU" �MkL1.G/ D 0: (3.1)

We recall that, for simplicity, we assumed that M D
qR

Q
a0.x/dx D 1.

Proof. By contradiction, we assume that (3.1) is not true. Then, there exist � > 0 and a
sequence of points .x"/">0 such that jU".x"/ � 1j � � for all " > 0 small enough.

We first assume that �" WD dist.x"; @G/� ". We then consider the blow-up function
V".y/ D U".x" C "y/ defined for y 2 B.0; �"="/. This function satisfies

��V" D V".b" � V
2
" / in B.0; �"="/; (3.2)

with b".y/ WD a".x" C "y/ D a0.
x"C"y
ı

/ for y 2 B.0; �"="/.

Claim: After extraction, the functions ¹b"º" converge to 1 as "! 0 in the L1-weak star
topology. Indeed, since ¹b"º" is bounded in L1, it converges after extraction to some b0
in the L1-weak star topology. But, since the function b" is periodic with period ı="
tending to 0 as "! 0, the function b0 is constant and equal to the average of b" over a
period, that is, b0 D

R
Q
a0 D 1. This can be seen by observing that

R
Rd b".x/1D.x/dx!R

A
a0.x/dxjDj, where D is any measurable set in Rd . This latter fact can be proved by

dividing D into small cubes of size " and using the periodicity of b" as in the proof of
Proposition 3.3 below.

Therefore, after extraction and for any ¹f"º" converging strongly to f in L1, and
supported in a fixed compact set, we haveZ

Rd

f"b" !

Z
Rd

f: (3.3)

Besides, m � V" � kU"kL1.G/ � M and, by Lipschitz estimate (2.4), we have that V"
satisfies krV"kL1.B.0;�"="// � C . This implies by the Arzelà–Ascoli theorem that, up to
passing to a subsequence, V" ! V0 locally uniformly in Rd for some continuous V0 W
Rd ! Œm; M�. It then follows from (3.3), choosing f" D V"' for any C1 compactly
supported ', that V"b" * V0 in D 0.Rd /. On the other hand, V 3" ! V 30 locally uniformly
in Rd , and hence in the sense of distributions as well.

Passing to the limit in the sense of distributions in (3.2), we find that the limit V0
satisfies

��V0 D V0.1 � V
2
0 / in Rd : (3.4)

But, since m � V0 � M , by using [18, Theorem 2.1] we conclude that V0 � 1. Thus,
V".0/ D U".x"/! 1, which is a contradiction.

Now we assume that, up to passing to a subsequence, dist.x"; @G/ D O."/. Thus,
we may define y" WD …@G.x"/, the orthogonal projection of x" on @G. We then have
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jx" � y"j D O."/. Up to passing to a further subsequence, we may assume that y" !
y0 2 @G. We let �" WD 2max.jy" � y0j;

p
"/ and we set V".y/ WD U".y" C "y/ for

y 2 BC" D
B.y0 � y"; �"/ \ .G � y"/

"
:

By using that G is C1, up to passing to a subsequence and up to considering a vectorial
rotation, we may assume that for all x 2 RdC there exists "0 > 0 such that x 2 BC" for all
" < "0. Then, as in the first case, we can obtain the existence of V0 W RdC ! R such that,
up to a subsequence, V" ! V0 locally uniformly in RdC. Passing to the limit in (3.2), we
find that V0 satisfies ´

��V0 D V0.1 � V
2
0 / in RdC;

@�V0 D 0 on @RdC:
(3.5)

We can consider a new function defined for y D .y0; yd / 2 Rd�1 �R by

zV0.y/ D

´
V0.y/ if yd � 0;

V0.y
0;�yd / if yd < 0:

We can check that zV0 satisfies �� zV0 D zV0.1� zV 20 / in Rd and we conclude as before that
zV0 � 1. On the other hand, since jx" � y"j D O."/, up to passing to a subsequence, there
exists y? in RdC such that y? WD lim"!0

x" � y"

"
and j zV0.y?/� 1j D lim"!0 jV".y"/� 1j �

� > 0. This is a contradiction and this concludes the proof of the theorem.

Remark 3.2. We recall that, for simplicity, we assumed that MD
q

1
jQj

R
Q
a0.x/dx D 1.

If M ¤ 1, then we change the definitions of V" and b" by letting

V".y/ D

´
U".x" C "y=M

2/=M if dist.x"; @�/� ";

U".y" C "y=M
2/=M if dist.x"; @�/ D O."/

and

b".y/ D

´
a".x" C "y=M

2/=M2 if dist.x"; @�/� ";

a".y" C "y=M
2/=M2 if dist.x"; @�/ D O."/:

Convergence (3.3) reads as b"*1 in L1loc.R
d / and thus (3.4) and (3.5) still hold. The rest

of the proof is unchanged.

We can now give a proof of Theorem 1.1 in the periodic case.

Proof of Theorem 1.1 in the periodic case. Let .u;A/ 2H and " > 0. Letting v D u=U",
with (2.2) we have

eGLpin
" .u; A/ D

1

2

Z
G

U 2" jrv � iAvj
2
C

1

4"2

Z
G

U 4" .1 � jvj
2/2 C

1

2

Z
G

j curlA � hexj
2

DW GLweight
" .v; A/:
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By using that 0 < m � 1 �M , we obtain:

m4 �GL".v; A/ � GL
weight
" .v; A/ �M 4

�GL".v; A/:

Therefore,
m4 � inf

H
GL" � inf

H
GLweight

" �M 4
� inf

H
GL":

Moreover, if .v; A/ 2 H is such that GL".v; A/ � 2M 4 � infH GL", then

jGLweight
" .v;A/�GL".v;A/j � 2M

4
�max.kU 2" � 1kL1 ;kU

4
" � 1kL1/ inf

H
GL": (3.6)

In particular, with Theorem 3.1, we get

inf
H
GL" D .1C o".1// inf

H
GLweight

" (3.7)

when "! 0. Now let "! 0, let .u"; A"/ 2 H be a family of configuration, and write
v" D u"=U". We have

.u"; A"/ is a family of quasi-minimizers of eGLpin
"

”eGLpin
" .u"; A"/ D .1C o".1// � inf

H

eGLpin
"

” GLweight
" .v"; A"/ D .1C o".1// � inf

H
GLweight

"

”„ƒ‚…
with (3.6)&(3.7)

GL".v"; A"/ D .1C o".1// � inf
H
GL"

” .v"; A"/ is a family of quasi-minimizers of GL":

3.2. Rate of convergence in special cases

Although Theorem 3.1 has the advantage of working in every dimension and its proof
can be extended to a random stationary ergodic pinning term, it has the disadvantage of
requiring C1 regularity for @G and of not giving a rate of convergence, which could be
useful in some regime of applied magnetic fields hex.

In what follows, we give rates of convergence under additional assumptions. We work
in dimension 2 and the assumptions take two forms: either an assumption on ı D ı."/ or
a symmetry assumption on a0.

Proposition 3.3. Let G � R2 be a Lipschitz bounded domain. Let U" be the minimizer
of Epin

" given by Definition 2.4. There exists C > 0 (independent of ı and ") such that

kU" � 1kL2.G/ � C
�ı
"
C
p
ı
�
: (3.8)

If we assume furthermore that
ı D O"."

2/; (3.9)

then

kU" � 1kL1.G/ D O"

h� ı
"2

�1=4i
: (3.10)
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Note that if we assume that ıDO"."2/, then (3.8) becomes kU" � 1kL2.G/DO".
p
ı/.

Before proving Proposition 3.3, we present an estimate which may be obtained with a
weaker assumption.

Remark 3.4. We may get an explicit speed of convergence with assumptions weaker than
ı D O"."

2/. Specifically, let � WD ı=" and consider the assumption

�1=8 � e�
1=8j ln ıj

! 0: (3.11)

It is clear that ı D O"."2/ (which reads as �D O"."/) implies (3.11). One may prove that
if (3.11) holds we have

kU" � 1kL1.G/ < 4�
1=8
D 4

� ı
"2

�1=8
: (3.12)

The proof of (3.12) is quite long and thus it is omitted here.

Proof of Proposition 3.3. We let � WD ı
"
. For 0 < " < 1, we consider the energy

yE".u/ D
1

2

Z
Q

jruj2 C
�2

4

Z
Q

.a0 � juj
2/2 (3.13)

defined for u 2 H 1.Q;C/. Recall that Q D .0; 1/2 is the unit square. We write H 1.Q/

D H 1.Q;C/.
From Corollary 2.3, there exists a unique positive minimizer yU" of yE" in H 1.Q/ and

m � yU" �M . This minimizer satisfies´
�� yU" D �

2 yU".a0 � yU
2
" / in Q;

@� yU" D 0 on @Q:
(3.14)

We set `" D ` WD
R
Q
yU". By using the homogeneous Neumann boundary condition to

extend yU" in the square .�1; 2/2, we can use interior elliptic estimates in Q and obtain
that, for all 2 � p < C1,

k yU" � `kW 1;p.Q/ D O".�
2/: (3.15)

By multiplying (3.14) by yU", integrating by parts, and using (3.15), we find

�2
Z
Q

yU 2" .a0 �
yU 2" / D

Z
Q

jr yU"j
2
D O".�

4/: (3.16)

We infer that Z
Q

.`2 CO".�
2//.a0 � `

2
CO.�2// D O".�

2/:

Since ` � m > 0, we obtain that `2 D
R
Q
a0.x/dx C O".�2/ D 1C O".�2/. Thus, we

can reformulate (3.15) as: for all 2 � p < C1,

k yU" � 1kW 1;p.Q/ D O".�
2/: (3.17)
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We thus obtain from (3.16) that

yE". yU";Q/ D yE".1;Q/CO".�
4/: (3.18)

Now let U" be the positive minimizer of E" in H 1.G;C/ given by Definition 2.4. For
k; l 2 Z such that Qk;l WD ı.k; l/C ıQ � G, we define zU k;l" W Q ! R by zU k;l" .y/ D

U".ı.y C .k; l///. By minimality of yU" in H 1.Q/, we have

yE". zU
k;l
" ;Q/ � yE". yU";Q/ D yE".1;Q/CO".�

4/: (3.19)

We can then decompose G in cells Qk;l . We denote by Nı the number of cells Qk;l
included in G. We have

Nı D
jGj

ı2
CO"

�1
ı

�
:

We also denote Gı WD G n
S
Qk;l�G

Qk;l and we can see that jGı j D O".ı/. We have

Epin
" .U"; G/ �

X
Qk;l�G

Epin
" .U";Qk;l / �

X
Qk;l�G

yE". zU
k;l
" ;Q/

�

X
Qk;l�G

�
yE".1;Q/CO"

�ı4
"4

��
D O"

�ı2
"4

�
C

X
Qk;l�G

Epin
" .1;Qk;l /:

But, we observe that X
Qk;l\Gı¤;

Epin
" .1;Qk;l / D O"

� ı
"2

�
:

Hence, we obtain

Epin
" .U"; G/ � E

pin
" .1;G/ �

X
Qk;l\Gı¤;

Epin
" .1;Qk;l /CO"

�ı2
"4

�
� Epin

" .1;G/CO"

�ı2
"4
C
ı

"2

�
:

Thus, since Epin
" .1;G/ � E

pin
" .U"; G/, we find that

Epin
" .1/ �E

pin
" .U"/ D O"

�ı2
"4
C
ı

"2

�
: (3.20)

Now we use Lemma 2.1, writing 1 D U"v, to get

Epin
" .1/ D E

pin
" .U"/C

1

2

Z
G

U 2" jrvj
2
C

1

4"2

Z
G

U 4" .1 � v
2/2: (3.21)



Rapidly oscillating GL energy 503

We deduce from (3.21), (3.20), and the fact that U" � m > 0 that

1

2

Z
G

jrvj2 C
1

4"2

Z
G

.1 � v2/2 D O"

�ı2
"4
C
ı

"2

�
: (3.22)

Hence, we find that
R
G
.1� v2/2 DO".

ı2

"2
C ı/, which implies (3.8). Now we assume that

ı D O"."
2/. This implies kU" � 1kL2.G/ D O".

p
ı/. To prove the L1 estimate, we argue

by contradiction. We assume that there exist two sequences "n ! 0 and .xn/n � G such
that

1 � v.xn/
2
� .nC 1/

� ın
"2n

�1=4
: (3.23)

We set �n WD ın="
2
n. Since krvkL1.G/ � M

m
krU"kL1.G/ D O".

1
"
/, we find that there

exists c > 0 independent of " such that

1 � v2.x/ � n�1=4n for every x 2 B.xn; c"n�1=4n / \G: (3.24)

By Lipschitz regularity of G, we can assume that c > 0 is small enough (independent
of "n) so that jB.xn; c"n�

1=4
n / \Gj � c3"2n�

1=2
n . We then haveZ

B.xn;c"n�
1=4
n /\G

.1 � v2/2 � c3n2"2n�n:

By using that
R
G
.1 � v2/2 D O".ı/ (from (3.22) and (3.9)), we arrive at ın � cn2"2n.

ın
"2n
/

D cn2ın for some c > 0 sufficiently small (independent of ") and for all n 2 N. This is
a contradiction; and then we find that k1 � vkL1.G/ D O"n..

ın
"2n
/1=4/, which implies the

second part of (3.10).

In some cases we can improve the L1 bound obtained in the previous proposition.
For example, we make the following symmetry assumption on a0 W Q! R:´

a0.
1
2
� x1; x2/ D a0.x1; x2/; 8 .x1; x2/ 2 .0;

1
2
/ � .0; 1/;

a0.x1;
1
2
� x2/ D a0.x1x2/; 8 .x1; x2/ 2 .0; 1/ � .0;

1
2
/:

(3.25)

Proposition 3.5. Assume thatG is a square in R2 of sizeL. Let ın WD L
n
! 0 and "n! 0

be such that ın D o"n."n/. Let a"n be defined by (1.3) on a ın � ın grid matching with G
and assume that (3.25) holds.

Let U"n be the positive minimizer of Epin
"n given by Definition 2.4. Then, there exists

C > 0 such that

kU"n � 1kL1.G/ � C
ı2n
"2n
: (3.26)

Remark 3.6. Proposition 3.5 is still valid for a polygonal domain G such that G matches
with the union of cells of ın � ın grids with ın ! 0.
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Proof of Proposition 3.5. We drop the subscript n for simplicity. We decompose the
domain G in small regular cells of size ı which we denote byQk;l for k; l 2 Z. Let yU" be
the positive minimizer of yE".u/ D 1

2

R
Q
jruj2 C ı2

4"2

R
Q
.a0.x/ � juj

2/2 inH 1.Q/. Note
that yU" satisfies (3.14). We claim that

trj¹0º�.0;1/ yU" D trj¹1º�.0;1/ yU" and trj.0;1/�¹0º yU" D trj.0;1/�¹1º yU": (3.27)

Indeed, we can check that, thanks to the symmetry assumption on a0,

U .1/" W .x1; x2/ 7! yU"

�1
2
� x1; x2

�
and U .2/" W .x1; x2/ 7! yU"

�
x1;

1

2
� x2

�
satisfy the same equation as yU" inQ with the same boundary condition. By the uniqueness
result given in Corollary 2.3, we obtain yU .1/" D yU

.2/
" D yU" and hence the equality of the

traces on opposite faces of the square Q.
Now we set

U".x/ D yU".zx1; zx2/ (3.28)

if x 2 G can be written as x D .kı C zx1ı; lı C zx2ı/ for .zx1; zx2/ 2 Q. Thanks to the
homogeneous Neumann boundary condition satisfied by yU" on Q and because the traces
of yU" are equal on opposite faces, we can prove that U" satisfies8<:��U" D

U"

"2
.a0.x=ı/ � U

2
" / in G;

@�U" D 0 on @G:
(3.29)

We can then apply the uniqueness result of Corollary 2.3 to obtain that U" is the positive
minimizer of Epin

" in H 1.G/. We then obtain that

kU" � 1kL1.G/ D k yU" � 1kL1.Q/; krU"kL1.G/ D ıkr yU"kL1.Q/:

The conclusion follows from the bound on the L1 norm of yU" and of its gradient which
satisfies (3.14). Note that the estimate on r yU" can be obtained as an interior estimate
after extending yU" in a bigger square thanks to the homogeneous Neumann boundary
condition.

3.3. The stationary ergodic case

In this section we consider the case of a random stationary ergodic pinning term. More
precisely, we assume that a" is given by (1.6). We will use the Birkhoff ergodic theorem:

Theorem 3.7 ([21, Theorem 7.2] and [17, Section VIII.7]). Let .�; †; �/ be a prob-
ability space and T D .T .x//x2Rd be an action of Rd on � by measurable isomor-
phisms. Assume that a1 2 Lp.�/ for some 1 � p < C1. Then, for a.e. ! 2 �, the
function a1.T . �� /!/ W R

d ! R weakly converges in Lp.Rd / when � ! 0. We denote
by N .a1.T .x/!// its weak limit in Lp.Rd /. Then, as a function of !, N .a1.T .x/!// is
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invariant under T and we haveZ
�

N .a1.T .x/!//d� D E.a1/:

Besides, if T is ergodic, then N .a1.T .x/!// D E.a1/ for a.e. ! 2 �.

From this theorem we obtain, writing M WD
p

E.a1/, the following result:

Theorem 3.8. Let G be a bounded C1 domain of Rd . Let U" be the minimizer of Epin
"

in H 1.G;C/ given by Definition 2.4, where a" is defined by (1.6). Then,

lim
"!0
kU" �MkL1.G/ D 0 for a.e. ! 2 �: (3.30)

Proof. Recall that, without loss of generality, we can assume that E.a1/ D 1. By contra-
diction, we assume that (3.30) is not true. Then, there exists a set O � � with �.O/ > 0
such that for every ! 2 O , there exist �! > 0 and a sequence of points .x!" /">0=.x"/">0
such that jU".x"; !/ � 1j � � for all " > 0 small enough. In what follows, we fix ! and
drop the subscript !. We first assume that �" WD dist.x"; @G/� ". We then consider the
blow-up function V".y;!/ D U".x" C "y;!/ defined for y 2 B.0; �"="/ � G. This func-
tion satisfies

��V" D V".b" � V
2
" / in B.0; �"="/; (3.31)

with b".y/ WD a".x" C "y; !/ D a1.T . "xCx"ı
/!/.

Claim: Almost surely, after extraction the functions ¹b"º" converge to 1 as " ! 0 in
the L1-weak star topology. Consider the random variable X" D jBr j�1

R
Br .x0/

b", for
an arbitrarily chosen x0 2 G and r > 0. From the definition of b", we have that X" D
jB˛"r j

�1
R
a0.T .y � y"/!/ dy, where y" D ˛"x0 and ˛" D ı="!C1 as "! 0. Then,

from the hypothesis of stationarity,X" has the same law as Y"D jB˛"r j
�1
R
a0.T .y/!/dy

which, from the ergodic theorem above, converges to 1 almost surely. Therefore, for
any x0, r , the random variable X" converges in law to the constant 1, hence in proba-
bility as well (since the limit is constant).

It follows that after extraction, X" converges almost surely to 1. By a diagonal extrac-
tion process, we deduce that there exists a subsequence of ¹b"º" such that jBr j�1

R
Br .x0/

b"
converges to 1 almost surely for any x0 in a countable dense set in G and r belonging to,
for instance, the set ¹1=n j n 2 N�º. This implies that, almost surely, this subsequence
of ¹b"º" converges to 1 in the L1-weak star topology, thus proving the claim.

As in the proof of Theorem 3.1, it follows from the claim that after extraction and
almost surely, V" ! 1 locally uniformly, which contradicts the fact that jU".x"/ � 1j � �
with positive probability if " is small enough, since U".x"/ D V".0/.

The case where dist.x"; @G/D O."/ also follows from the claim using the same argu-
ments as in the proof of Theorem 3.1.

Theorem 1.1 in the random case follows from Lemma 2.1 and Theorem 3.8.

Remark 3.9. As in Remark 1.2, we may adapt the proof to prove U" !M in L1.G/
for a.e. ! 2 � when M D

p
E.a1/ ¤ 1.
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4. � -convergence and quasi-minimizers

In this section we recall the definition of �-convergence of functionals and show that it
allows us to describe the asymptotic behavior of quasi-minimizers of a family of function-
als.

Definition 4.1. For " 2 .0; 1�; we consider a family of functionals

F" W 	" ! .�1;C1� for a topological space 	"

and
F W 	 ! .�1;C1� for a topological space 	:

We define
	0 WD

®
x 2 	 j F.x/ < C1

¯
:

We say that F" �-converges to F as "! 0 if for every " 2 .0; 1� there exists P" W 	"! 	

such that:

Lower bound: If x 2 	0 and x" 2 	" is a sequence such that P".x"/! x (for the topology
of 	) as "! 0, then

lim inf
"!0

F".x"/ � F.x/:

Upper bound: For every x 2 	0, for every " 2 .0; 1�, there exists x" 2 	" such that
P".x"/! x in 	 and

lim sup
"!0

F".x"/ � F.x/:

The first two properties (Lower and Upper bounds) in the above definition are taken
from [20, Section 3.1] and are adapted from the original definition given by De Giorgi.
The adaptation comes from the fact that in Ginzburg–Landau theory, the limiting space on
which the �-limit is defined is not the same as the original space on which the Ginzburg–
Landau functional is defined.

In addition to these two properties, the supplementary compactness property is added:8̂̂<̂
:̂

Compactness: If, for some "0 2 .0; 1�, sup"2.0;"0� F".x"/ < C1, then

for a sequence " D "n # 0, there exist x 2 	0 and a subsequence (still

denoted by x") such that P".x"/! x in 	.

(4.1)

The notion of �-convergence has been conceived so that the infima of F" converge to
the infimum of F and a family of minimizers of F" converges to a minimizer of F . This
property remains true for a family of quasi-minimizers. Indeed, we have the following
proposition:

Proposition 4.2. Let F" W 	"! .�1;C1� be a family of functionals defined on topolog-
ical spaces 	" and F W 	! .�1;C1� be a functional defined on a topological space 	.
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Assume that F" �-converges towards F as "! 0 and that compactness property (4.1)
holds. Let .x"/" be a family of quasi-minimizers of F".

If F 6� C1, then there exists x 2 	 such that, up to a subsequence, P".x"/! x in 	

and
F.x/ D inf

y2	
F.y/:

In other words, a family of quasi-minimizers also converges (up to a subsequence)
towards a minimizer of the �-limit. The proof of this proposition is an adaptation of [11,
Theorem 1.21].

Hence, using Proposition 4.2 and Theorem 3.1, we are able to understand the asymp-
totic behavior of minimizers of GLpin

" thanks to existing �-convergence results on GL".
These asymptotics are the subject of the remaining sections.

5. Asymptotics for the pinned 2D Ginzburg–Landau energy

In this section we deduce from Theorem 1.1 results on the asymptotic behavior of min-
imizers of GLpin

" given by (1.1) with a" either given by (1.3) or by (1.6). The main
ingredient to pass from Theorem 1.1 to the description of minimizers of GLpin

" is Propo-
sition 4.2. In this section G is a smooth bounded domain of R2.

We first introduce some notations. For .u; A/ 2 H 1.G;C/ �H 1.G;R2/, we recall
that rAu D .r � iA/u and we define

j.u/ D .iu;rAu/; �.u;A/ D curl j.u/C curlA: (5.1)

Here, .iu;rAu/ D i
2
.urAu � urAu/: We let M.G/ be the set of Radon measures. For

� > 0, we define E� W M.G/ ! .�1;C1� in the following way: for � 2 M.G/

\H�1.G/, we consider the solution h� of´
��h� C h� D � in G;

h� D 1 on @G:
(5.2)

We then set

E�.�/ D

´
k�k
2�
C

1
2

R
G
.jrh�j

2 C jh� � 1j
2/ if � 2M.G/ \H�1.G/;

C1 otherwise:
(5.3)

Theorem 5.1. Assume that G � R2 is a smooth simply connected bounded domain.
Assume that hex

j log "j ! � > 0 when "! 0. We consider ¹.u"; A"/º", a family of minimizers
of Gpin

" . If we write u" D U"v" where U" is given by Definition 2.4, then as "! 0,

�.v"; A"/

hex
! �� in .C0; .G//� for every  2 .0; 1/; (5.4)

h"

hex
! h�� weakly in H 1

1 .G/ and strongly in W 1;p.G/; 8p < 2; (5.5)
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where �� is the unique minimizer of E� given by (5.3), and

GL
pin
" .u"; A"/ �E

pin
" .U"/

h2ex
! E�.��/: (5.6)

Moreover,
g".v"; A"/

hex
!

1

2�
j��j C

1

2
.jrh�� j

2
C jh�� � 1j

2/ (5.7)

and ˇ̌̌
r

� h"
hex

�ˇ̌̌
!

1

�
�� (5.8)

in the weak sense of measures.
Here,

g".u; A/ D
j.r � iA/uj2

2
C
.1 � juj2/2

4"2
C
j curlA � hexj

2

2
:

Remark 5.2. We have that j.u"/ D U 2" j.v"/ and that �.u"; A"/ D U 2" �.v"; A/ C

2U"r
?U" � j.v"/C curlA.1 � U 2" /.

Proof. We use Theorem 1.1, Proposition 4.2, and the �-convergence result on GL"=h2ex
in this regime of the applied magnetic field (cf. [25, Theorem 7.1]) to deduce (5.4), (5.5),
and (5.6). Note that in [25, Theorem 7.1], the �-convergence result is obtained with

	" WD H
1.G;C/ �H 1.G;R2/; 	 WD .C0; .G//� � L2.G;R2/

for any  2 .0; 1/ where 	 is endowed with the product topology, .C0; .G//� is endowed
with the weak-� topology, and L2.G;R2/ with the weak topology. Furthermore, with the
notations of Definition 4.1, we have

P" W H
1.G;C/ �H 1.G;R2/! .C0; .G//� � L2.G;R2/;

.u"; A"/ 7! .�.u"; A"/; curlA"/:

Statements (5.7) and (5.8) follow exactly as in the proof of [25, Theorem 7.2].

Theorem 5.3. Assume that j log "j � hex � 1="2 as "! 0. Let ¹.u"; A"/º" be a family
of minimizers of GLpin

" in H . We set u" D U"v" where U" is given by Definition 2.4. Then,

2g".v"; A"/

hex
j log "

p
hexj* dx as "! 0

in the weak sense of measures and

min
.u;A/2H

G".u; A/ '
jGj

2
hexj log "

p
hexj as "! 0:

Besides,

h"

hex
! 1 in H 1.G/ and

�.v"; A"/

hex
! dx in H�1.G/:
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Proof. This follows from [25, Theorem 8.1 and Corollary 8.1] along with Theorem 1.1
and Proposition 4.2.

Unfortunately, Theorem 1.1 is not sufficient to describe the behavior of minimizers
of Gpin

" near the so-called first critical field, or more generally, when there is a number
of vortices much smaller than the applied magnetic field hex. This is because the leading-
order term in the asymptotic expansion of GL".v"; A"/ is independent of the position of
the vortices. In the so-called intermediate regime it is also independent of the number of
vortices and is of order hex. However, with an explicit rate of convergence of U", the posi-
tive minimizer of Epin

" in H 1.G;C/, we can give a condition on this rate such that results
of [25, Chapters 9–11] can be applied to describe the asymptotic behavior of minimizers
near the first critical field.

We first introduce some notations: We define h0 to be the solution of´
��h0 C h0 D 0 in G;

h0 D 1 on @G

and
�0 WD h0 � 1 and �0 D min

G
�0:

We suppose that �0 has a unique minimizer p in G. We set

Q.x/ WD D2.�0/.p/.x; x/

and we assume that Q is a positive definite quadratic form. We set

J0 D
1

2

Z
G

jrh0j
2
C jh0 � 1j

2
D
1

2
k�0k

2
H1.G/

:

We also set
H 0
c1
WD

1

2j�0j
j log "j:

We denote by G the modified Green function, solution to´
��xG .x; y/C G .x; y/ D ıy in G;

G .x; y/ D 0 on @G;

and we set
SG.x; y/ D 2�G .x; y/C log jx � yj:

For n 2 N, we set ` WD
q

n
hex

. We denote by ' the blow-up centered at p for the scale `
defined by

'.x/ D
x � p

`
:
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If � is a measure, we will denote by z� its push-forward by the mapping ' (i.e., z�.U / D
�.'�1.U // for every U measurable subset of R2). If x is a point, then we let zx D '.x/.
Now, we define a functional on the space of probability measures on R2 denoted by P :

I.�/ D ��

Z
R2

Z
R2

log jx � yjd�.x/d�.y/C �
Z

R2

Q.x/d�.x/ for � 2 P :

It is known that the infimum inf�2P I.�/ is uniquely achieved (see, e.g., [24]). We denote
by �0 the minimizer and we let

I0 WD I.�0/ D inf
�2P

I.�/:

For n 2 N, we define

g".n/ WD h
2
exJ0 C �nj log "j � 2�nhexj�0j C �.n

2
� n/ log

1

`

C �n2SG.p; p/C n
2I0: (5.9)

We recall the following from [25, Lemma 9.5]:

Lemma 5.4. There exist constants ˛; "0 > 0 and for each 0 < " < "0 an increasing
sequence .Hn/n defined for integers 0 � n � ˛j log "j, such that if hex > H

0
c1
=2, then n

minimizes g" over the integers in the interval Œ0; ˛j log "j� if and only if

hex 2 ŒHn;HnC1�:

We can now state the following result:

Theorem 5.5. Assume that hex is such that

j log j log "jj � hex."/ �H
0
c1
� j log "j

and let N" be a corresponding minimizer of g".�/ over Œ0; ˛j log "j�. Also let .u"; A"/ be a
minimizer of GLpin

" . We write u" D U"v" where U" is given by Definition 2.4. Assume that

kU" � 1kL1.G/ � g".N"/ D o".N
2
" /: (5.10)

Then, for any  2 .0; 1/,

z�.u"; A"/

2�N"
* �0 in .C0;c .R2//�;

where �0 is the unique minimizer of I and

GL".v"; A"/ D g".N"/C o".N
2
" /; GLpin

" .u"; A"/ D E
pin
" .U"/C g".N"/C o".N

2
" /:

Proof. Again, we deduce this theorem from Theorem 1.1, Proposition 4.2, and existing
results in the literature. Here, the results used are [25, Theorems 9.1 and 9.2]. Assump-
tion (5.10) is used to guarantee that g".N"/ � kU" � 1kL1.G/ is negligible compared to
all the terms of g".
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Remark 5.6. From Proposition 3.3, assumption (5.10) is satisfied, for example, when ı
D O"."

2/ and ı1=4

"1=2
h2ex D o".1/. This means ı D o". "

2

h8ex
/.

Finally, it remains to examine the case of a bounded number of vortices. We let

f".n/ D h
2
exJ0 C �n log

`

"
� 2�nhexj�0j C �n

2SG.p; p/C �n
2 log

1

`
: (5.11)

We recall the following from [25, Lemma 12.1]:

Lemma 5.7. For every " > 0, there exists an increasing sequence .Hn."//n,H0 D 0, such
that the following holds: Given n � 0 independent of ", if hex."/� 1 is such that

g".n/ � min.g".n � 1/; g".nC 1//C o".1/;

then
Hn � o".1/ � hex � HnC1 C o".1/:

Moreover, the following asymptotic expansion holds as "! 0:

Hn D
1

2j�0j

h
j log "j C .n � 1/ log

j log "j
2j�0j

CKn

i
C o".1/;

where

Kn D .n � 1/ log
1

n
C
n2 � 3nC 2

2
log

n � 1

n

C
1

�

�
min
.R2/n

wn � min
.R2/n�1

wn�1 C  C .2n � 1/�SG.p; p/
�
:

Here,  is a universal constant and

wn.x1; : : : ; xn/ D ��
X
i¤j

log jxi � xj j C �n
nX
iD1

Q.xi /: (5.12)

We can now state the following result:

Theorem 5.8. Assume that N 2 N. There exists c" ! 0 as "! 0 such that if " < "0.N /
and

HN C c" � hex � HNC1 � c";

and if .u";A"/ is a minimizer of GLpin
" , then writing u" D U"v" where U" is the minimizer

of Epin
" given by Definition 2.4, then the following holds. If

kU" � 1kL1.G/ � f".N / D o".1/; (5.13)

then v" has N vortices a"1; : : : ; a
"
N and, possibly after extraction and letting za"i WD .a"i

�p/=`, theN -tuple .za"1; : : : ; za
"
N / converges as "! 0 to a minimizer ofwN given by (5.12)

and
GL".v"; A"/ D f".N /C min

.R2/N
wN CN C o".1/ as "! 0:
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Remark 5.9. Assumption (5.13) is satisfied for example when ı D O"."2/ and

ı1=4

"1=2
� h2ex D o".1/;

leading to ı D o". "
2

h8ex
/:

Proof of Theorem 5.8. Here, we use Theorem 1.1, Proposition 4.2, and [25, Theo-
rem 12.1]. Hypothesis (5.13) is here to guarantee that GL".v"; A"/ � kU" � 1kL1.G/ is
much smaller than all the terms in the asymptotic expansion of inf.v";A"/GL".v"; A"/.

6. Asymptotics for the pinned 3D Ginzburg–Landau energy

Let G � R3 be a smooth bounded domain. In this section we consider a 3D variant of
energy (1.1). Here, we use differential forms formalism. We define

F pin
" .u; A/ D

1

2

Z
G

jdu � iAuj2 C
1

4"2

Z
G

.a".x/ � juj
2/2 C

1

2

Z
R3

jdA � hexj
2
I (6.1)

here, u 2 H 1.G;C/, du is a 1-form, hex 2 L
2
loc.ƒ

2R3/ is a 2-form, A 2 H 1.ƒ1R3/ is a
1-form, and a" is defined by (1.3) or by (1.6). We define

PH 1
� .ƒ

1R3/ D ¹A 2 PH 1.ƒ1R3/ j d�A D 0º (6.2)

and we endow this space with the inner product

.A;B/ PH1
� .ƒ

1R3/ WD .dA; dB/L2.ƒ2R3/; (6.3)

for which PH 1
� .ƒ

1R3/ is a Hilbert space. For u 2 H 1.G;C/, we define (writing u D
u1 C iu2, u1; u2 2 H 1.G;R/)

ju WD .iu; du/ D u1du2 � u2du1; J u D du1 ^ du2 D
1

2
d.ju/: (6.4)

Theorem 6.1. Assume that hex D dAex;" and that there exists Aex;0 2 H 1
loc.ƒ

1R3/ such
that

Aex;"

j log "j
� Aex;0 ! 0 in PH 1

� .ƒ
1R3/:

Let .u"; A"/ 2 H 1.G;C/ � ŒAex;0 C PH 1
� .ƒ

1R3/� be a family of minimizers of F
pin
" . We

write u" D U"v" where U" is the minimizer of Epin
" given by Definition 2.4. Then, up to a

subsequence, we have
A"

j log "j
* A� in PH 1

� .ƒ
1R3/
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for some A� 2 Aex;0 C PH 1
� .ƒ

1R3/, and

jv"

j log "j
* w� in L

8
6 .ƒ1G/;

jv"

jv"jj log "j
* w� in L2.ƒ1G/;

J v"

j log "j
D
d.jv"/

2j log "j
! J� in W �1;p.ƒ2G/ 8p < 3=2

for some .J�; w�/ 2 A0 WD ¹.J; w/ j J is an exact measure-valued 2-form in G; v 2
L2.ƒ1G/º and J� D dw�

2
2 H�1.ƒ2G/. Besides, .w�; A�/ is a minimizer of the func-

tional defined for .v; A/ 2 L2.ƒ1G/ � ŒAex;0 C PH 1
� .ƒ

1R3/� by

F .v; A/ D

8̂̂<̂
:̂
1
2
kdvk C 1

2
kv � Ak2

L2.ƒ1G/

C
1
2
kdA � dAex;0k

2
L2.ƒ2R3/

if kdvk D jdvj.�/ < C1;

C1 otherwise:

Proof. It is easy to check that an analog of Lemma 2.1 holds for the 3D magnetic Ginz-
burg–Landau energy. With Propositions 3.1 and 3.8, we find that the analog of Theo-
rem 1.1 is true for the 3D Ginzburg–Landau energy. We conclude by using Proposition 4.2
and [7, Theorem 4].

7. Asymptotics for the pinned Allen–Cahn energy

In this section G is a C1 bounded open set of Rd , d � 1. By taking A D 0 and hex D 0,
we are able to describe the asymptotic behavior of a pinned Allen–Cahn functional. For
u 2 H 1.G;R/, we define

AC pin
" .u/ D "

Z
G

jruj2 C
1

"

Z
G

.a".x/ � u
2/2; (7.1)

where a" is given by (1.3) or (1.6).

Theorem 7.1. Let 0 < ˇ < 1 and .u"/" � H 1.G;R/ be a family of minimizers of the
pinned Allen–Cahn energy given in (7.1) under the constraint 1

jGj

R
G
u" D ˇ. Then, we

can write u" D U"v" with U" given by Definition 2.4, and we have that there exists v 2
BV.G; ¹˙1º/ such that

v" ! v in L1.G/

and v minimizes

A.w/ D
4

3

Z
G

jDwj

for w 2 BV.G; ¹˙1º/ under the constraint 1
jGj

R
G
w D ˇ.
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Remark 7.2. Recall that we normalized the average of a0 and a1 such that these quanti-
ties are equal to 1.

Proof of Theorem 7.1. This follows from an analog of Theorem 1.1 which we know to be
true thanks to Lemma 2.1 and Theorems 3.1 and 3.8. We conclude with Proposition 4.2
and the �-convergence results in [23].

Acknowledgments. We would like to warmly thank Alberto Farina for providing refer-
ence [18].
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