Instantaneous convexity breaking for the quasi-static droplet model

Albert Chau and Ben Weinkove

Abstract. We consider a well-known quasi-static model for the shape of a liquid droplet. The solution can be described in terms of time-evolving domains in \mathbb{R}^n . We give an example to show that convexity of the domain can be instantaneously broken.

1. Introduction

We consider the following system of equations for a function u(x, t) and domains $\Omega_t \subset \mathbb{R}^n$, for $t \ge 0$; this system is used to model the quasi-static shape evolution of a liquid droplet of height u(x, t) occupying the region Ω_t :

$$-\Delta u = \lambda_t \qquad \text{on } \Omega_t, \qquad (1.1a)$$

$$u = 0 \qquad \text{on } \partial \Omega_t, \tag{1.1b}$$

$$V = F(|Du|) \quad \text{on } \partial\Omega_t, \tag{1.1c}$$

$$\int_{\Omega_t} u \, dx = 1. \tag{1.1d}$$

In the above, V is the velocity of the free boundary $\partial \Omega_t$ in the direction of the outward unit normal and $F : (0, \infty) \to \mathbb{R}$ is an analytic function with F'(r) > 0 for r > 0. The constant $\lambda_t > 0$ is determined by the integral condition on u.

The initial data is given by a domain Ω_0 , which we assume is bounded with smooth boundary $\partial \Omega_0$. Note that the domains Ω_t (assuming they are bounded with sufficiently regular boundary $\partial \Omega_t$) determine uniquely the solution $x \mapsto u(x, t)$. Thus, we may denote a solution of (1.1) by a family of evolving domains Ω_t . In Section 2 we will explain what is meant by a *classical solution* to this problem.

The system of equations given in (1.1) has long been accepted as a model for droplet evolution in the physical literature [1,6,7,10,11]. There have been results on weak formulations of this equation by Glasner–Kim [5] and Grunewald–Kim [8]. Feldman–Kim [3] gave some conditions for global existence and convergence to an equilibrium. Escher–Guidotti [2] proved a short time existence result for classical solutions, which we describe in Section 2 below.

²⁰²⁰ Mathematics Subject Classification. Primary 35R35; Secondary 35B99.

Keywords. Liquid droplet, quasi-static model, convexity.

In this note we address the following natural question:

Question 1.1. Is the convexity of Ω_t preserved by system (1.1)?

This question is implicit in the work of Glasner–Kim [5]. It was raised explicitly by Feldman–Kim [3, p. 822]: "Let us point out that, in particular, it is unknown whether the convexity of the drop is preserved in the system [(1.1)]."

In this note, we answer Question 1.1 by showing that convexity is *not* generally preserved. We make an assumption on F, namely that

$$\lim_{r \to 0^+} \frac{F''(r)}{F'(r)} \ge \gamma \quad \text{for some } \gamma > 0.$$
(1.2)

This includes the important cases $F(r) = r^3 - 1$ and $F(r) = r^2 - 1$ considered in [5] and [3, 8], respectively.

We construct an example where Ω_t is convex for t = 0, but not convex for $t \in (0, \delta]$ for some $\delta > 0$.

Theorem 1.2. Assume that F satisfies Assumption 1.2. There exist $\delta > 0$ and a bounded convex domain $\Omega_0 \subset \mathbb{R}^2$ with smooth boundary such that the solution Ω_t to (1.1) with this initial data is not convex for any $t \in (0, \delta]$.

Escher–Guidotti [2] showed that as long as Ω_0 is a bounded domain with sufficiently smooth boundary, there always exists a unique classical solution for a short time, and this is what is meant by "the solution Ω_t " in the statement of Theorem 1.2. In Section 2, we describe more precisely the results of [2].

In Section 3 we give the proof of Theorem 1.2. The starting point is an explicit solution of the equation $-\Delta u = \lambda_0$ on an equilateral triangle [9]. We smooth out the corners to obtain our convex domain Ω_0 and show that it immediately breaks convexity.

2. Short time existence

In this section, we recall the short time existence result of Escher-Guidotti [2].

We first give a definition of a solution of (1.1), following [2]. Note that the domains Ω_t determine uniquely the functions u, so we will describe the solution of (1.1) in terms of varying domains—given as graphs over the original boundary.

Fix $\alpha \in (0, 1)$. Assume that Ω_0 is a bounded domain in \mathbb{R}^n whose boundary $\Gamma_0 := \partial \Omega_0$ is a smooth hypersurface. Let $\nu(x)$ denote the unit outward normal to Γ_0 at x. Then, there exists a maximal constant $\sigma(\Omega_0) > 0$ such that for any given function $\rho \in C^{2+\alpha}(\Gamma_0)$ with $\|\rho\|_{C^1(\Gamma_0)} \le \sigma$, the set

$$\Gamma_{\rho} = \left\{ x + \rho(x)\nu(x) \mid x \in \Gamma_0 \right\}$$

is a $C^{2+\alpha}$ hypersurface in \mathbb{R}^n , which is the boundary of a bounded domain $\Omega = \Omega(\rho)$.

We can now describe a solution of (1.1) in terms of a time-varying family $\rho(x, t)$, that is, given

$$\rho \in C([0, T], C^{2+\alpha}(\Gamma_0)) \cap C^1([0, T], C^{1+\alpha}(\Gamma_0))$$

with $\sup_{t \in [0,T]} \|\rho(\cdot,t)\|_{C^1(\Gamma_0)} < \sigma(\Omega_0)$, write $\Omega_t, t \in [0,T]$, for the corresponding family of domains, with boundaries $\Gamma_t := \Gamma_{\rho(t)}$. The velocity V of the boundary in the direction of the outward normal at a point $y = x + \rho(x,t)\nu(x) \in \Gamma_t$ is given by

$$V = \frac{\partial \rho}{\partial t}(x,t)v(x) \cdot n(y,t),$$

where n(y, t) is the outward unit normal to Γ_t at the point y.

Since the domains Ω_t have $C^{2+\alpha}$ boundaries, there exists for each t a unique solution $u(\cdot, t) \in C^{2+\alpha}(\overline{\Omega}_t)$ and $\lambda_t \in \mathbb{R}$ of

$$-\Delta u = \lambda_t$$
 on Ω_t , $u|_{\Gamma_t} = 0$, $\int_{\Omega_t} u \, dx = 1$;

see, for example, [4, Theorem 6.14].

Then, we say that such a ρ is a *classical solution* of (1.1) with initial domain Ω_0 if the velocity V(y) at each $y \in \Gamma_t$, for $t \in [0, T]$, satisfies

$$V = F(|Du|).$$

The main theorem of Escher–Guidotti [2] implies, in particular, the following:

Theorem 2.1. There exist a T > 0 and a unique classical solution

$$\rho \in C([0,T], C^{2+\alpha}(\Gamma_0)) \cap C^1([0,T], C^{1+\alpha}(\Gamma_0))$$

of the quasi-static droplet model (1.1) with initial domain Ω_0 whose boundary Γ_0 is smooth.

In fact, they prove more: they also allow their initial domain to have its boundary in $C^{2+\alpha}$. Note that this result does not require Assumption 1.2.

3. Proof of Theorem 1.2

In this section we give a proof of Theorem 1.2. We work in \mathbb{R}^2 , using x and y as coordinates. The heart of the proof is the following lemma, which makes use of Assumption 1.2:

Lemma 3.1. There exist a bounded convex domain Ω_0 with smooth boundary Γ_0 and real numbers $0 < x_0 < x_1$ with the following properties:

- (i) Ω_0 is contained in $\{y \ge 0\}$.
- (ii) $(x, 0) \in \partial \Omega_0$ for $x_0 \le x \le x_1$.

(iii) Let u(x, y) solve

$$-\Delta u = \lambda_0 \quad \text{on } \Omega_0, \qquad u|_{\Gamma_0} = 0, \qquad \int_{\Omega_0} u \, dx dy = 1$$

for a constant λ_0 . Then, V(x) := F(|Du(x, 0)|) satisfies

$$\frac{V(x_0) + V(x_1)}{2} > V\left(\frac{x_0 + x_1}{2}\right).$$

Proof. We begin with the following explicit solution of the "torsion problem," $-\Delta v = \text{const.}$, on the equilateral triangle [9]. Let *D* be the equilateral triangle of side length 2a given by

$$0 < y < \sqrt{3}(a - |x|).$$

The function

$$v = cy((y - a\sqrt{3})^2 - 3x^2)$$
 for $c := \frac{5}{3a^5}$

satisfies

$$-\Delta v = 4ac\sqrt{3},$$

$$\int_D v \, dx \, dy = 1$$

On the bottom edge of the triangle

$$E_1 = \{(x, 0) \in \mathbb{R}^2 \mid -a \le x \le a\},\$$

we have

$$v_y(x,0) = 3c(a^2 - x^2).$$

Hence,

$$V(x) = F(3c(a^2 - x^2)),$$

and

$$V''(x) = 36c^2 x^2 F''(3c(a^2 - x^2)) - 6cF'(3c(a^2 - x^2)).$$
(3.1)

Recalling that $c = 5/(3a^5)$, we may then choose a > 0 sufficiently small so that

$$36c^2 x^2 \ge 2\frac{6c}{\gamma} \quad \text{for } |x| \ge a/2,$$
 (3.2)

where $\gamma > 0$ is given by Assumption 1.2. From now on, we fix this *a* (and hence, *c*).

It follows from (3.1), (3.2), and Assumption 1.2 that V''(x) > 0 for |x| sufficiently close to *a*. In particular, there exists $0 < x_0 < x_1 < a$ with

$$\frac{V(x_0) + V(x_1)}{2} > V\left(\frac{x_0 + x_1}{2}\right).$$
(3.3)

The above example readily implies the existence of a smooth domain Ω_0 satisfying the conditions in the lemma. Indeed, we only have to "smooth the corners" of the triangle domain *D*.

Denote the vertices of D by p_1, p_2, p_3 . Let $\{D_k\}_{k=1}^{\infty}$ be a sequence of bounded convex domains with smooth boundaries such that for each $k \ge 1$:

- (1) $D_k \subset D_{k+1} \subset D$ (the sequence is nested and increasing).
- (2) $D \setminus D_k \subset \bigcup_{i=1}^3 B_{k^{-1}}(p_i)$, where $B_r(p)$ denotes the ball of radius r centered at p.

Such a sequence $\{D_k\}$ can be constructed by "rounding out the corners" of the triangle *D* in a ball of radius k^{-1} centered at each corner.

For each $k \ge 1$, let u_k on D_k be the solutions of

$$-\Delta u_k = 4ac\sqrt{3}$$
 on D_k , $u|_{\partial D_k} = 0$,

where we recall that *a* and *c* are fixed constants.

It follows from property (1) above and the maximum principle that for each $k \ge 1$

$$0 < u_k \le u_{k+1} \le v \quad \text{on } D_k, \tag{3.4}$$

from which we conclude a pointwise limit on the triangle D

$$0 \le u_{\infty}(x) := \lim_{k \to \infty} u_k(x) \le v(x) \quad \text{for } x \in D,$$
(3.5)

and define $u_{\infty}(x)$ to be zero on ∂D .

By standard elliptic estimates (see, for example, [4, Theorem 6.19] and the remark after it), the convergence above will hold in $C^{\ell}(K)$ for any compact set $K \subset \subset (\overline{D} \setminus \{p_1, p_2, p_3\})$ and any $\ell \ge 0$. Hence, $u_{\infty} \in C^{\infty}(\overline{D} \setminus \{p_1, p_2, p_3\})$ and $-\Delta u_{\infty} = 4ac\sqrt{3}$ on D. Moreover, by (3.4) and the continuity of v, it is easily verified that u_{∞} is also continuous at the corners p_1, p_2, p_3 and thus on all of \overline{D} . By the maximum principle, $u_{\infty} = v$. Note also that

$$\int_{D_k} u_k \, dx dy \to 1 \quad \text{as } k \to \infty$$

Then, for sufficiently large k, the domain $\Omega_0 := D_k$ will satisfy conditions (i), (ii), and (iii), with

$$u := \frac{u_k}{\int_{D_k} u_k \, dx \, dy}, \quad \lambda_0 := \frac{4ac\sqrt{3}}{\int_{D_k} u_k \, dx \, dy}$$

Here we are using (3.3) and the fact that $x \mapsto F(|Du_k(x, 0)|)$ will converge uniformly to $x \mapsto F(|Dv(x, 0)|)$ on $[x_0, x_1]$ as $k \to \infty$. This completes the proof of the lemma.

Proof of Theorem 1.2. Let Ω_0 and *u* be given as in Lemma 3.1. By Theorem 2.1, there exists a unique classical solution of (1.1) for a short time interval [0, T] with T > 0.

The boundary Γ_t of Ω_t can be written as a graph over $\Gamma_0 := \partial \Omega_0$. In particular, using x as a coordinate, part of Γ_t is given by a graph y = g(x, t) for $x_0 \le x \le x_1$, with g(x, 0) = 0 for $x_0 \le x \le x_1$ and with the unit normal to Ω_0 being in the negative y direction.

We may assume that

$$g \in C([0,T], C^{2+\alpha}([x_0,x_1])) \cap C^1([0,T], C^{1+\alpha}([x_0,x_1])).$$

Moreover, $(\partial g/\partial t)(x, 0)$ represents the *negative* of the velocity in the normal direction at time t = 0. Hence, by condition (iii) of Lemma 3.1,

$$\frac{1}{2} \Big(\frac{\partial g}{\partial t}(x_0, 0) + \frac{\partial g}{\partial t}(x_1, 0) \Big) < \frac{\partial g}{\partial t} \Big(\frac{x_0 + x_1}{2}, 0 \Big).$$

Then, for $t \in (0, \delta]$ for $\delta > 0$ sufficiently small, we have

$$\frac{1}{2}\Big(g(x_0,t)+g(x_1,t)\Big) < g\Big(\frac{x_0+x_1}{2},t\Big).$$

In particular, $x \mapsto g(x, t)$ is not convex for $(x, t) \in [x_0, x_1] \times (0, \delta]$. Hence, Ω_t is not a convex domain for $t \in (0, \delta]$.

Funding. This work was partially supported by NSERC grant #327637-06 and NSF grant DMS-2005311.

References

- [1] R. G. Cox, The spreading of a liquid on a rough solid surface. J. Fluid Mech. 131 (1983), 1–26 Zbl 0597.76102 MR 718031
- [2] J. Escher and P. Guidotti, Local well-posedness for a quasi-stationary droplet model. *Calc. Var. Partial Differential Equations* 54 (2015), no. 1, 1147–1160 Zbl 1329.35363 MR 3385195
- [3] W. M. Feldman and I. C. Kim, Dynamic stability of equilibrium capillary drops. Arch. Ration. Mech. Anal. 211 (2014), no. 3, 819–878 Zbl 1293.35240 MR 3158808
- [4] D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*. Class. Math., Springer, Berlin, 2001 Zbl 1042.35002 MR 1814364
- [5] K. Glasner and I. C. Kim, Viscosity solutions for a model of contact line motion. *Interfaces Free Bound.* 11 (2009), no. 1, 37–60 Zbl 1166.35386 MR 2487023
- [6] K. B. Glasner, A boundary integral formulation of quasi-steady fluid wetting. J. Comput. Phys. 207 (2005), no. 2, 529–541 Zbl 1213.76068 MR 2144627
- [7] H. P. Greenspan, On the motion of a small viscous droplet that wets a surface. J. Fluid Mech., 84 (1978), no. 1, 125–143 Zbl 0373.76040
- [8] N. Grunewald and I. Kim, A variational approach to a quasi-static droplet model. *Calc. Var. Partial Differential Equations* 41 (2011), no. 1–2, 1–19 Zbl 1228.35087 MR 2782795

- [9] G. Keady and A. McNabb, The elastic torsion problem: solutions in convex domains. *New Zealand J. Math.* 22 (1993), no. 2, 43–64 Zbl 0814.35133 MR 1244022
- [10] L. Tanner, The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12 (1979), 1473–1484
- [11] O. V. Voinov, Hydrodynamics of wetting. Fluid Dyn. 11 (1976), 714-721

Received 4 November 2022.

Albert Chau

Department of Mathematics, The University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada; chau@math.ubc.ca

Ben Weinkove

Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, USA; weinkove@math.northwestern.edu