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Instantaneous convexity breaking for the
quasi-static droplet model

Albert Chau and Ben Weinkove

Abstract. We consider a well-known quasi-static model for the shape of a liquid droplet. The solu-
tion can be described in terms of time-evolving domains in R”. We give an example to show that
convexity of the domain can be instantaneously broken.

1. Introduction
We consider the following system of equations for a function u(x,¢) and domains

Q; C R”, for ¢ > 0; this system is used to model the quasi-static shape evolution of a
liquid droplet of height u(x, ) occupying the region €2;:

—Au = A; on £, (1.1a)

u=20 on 092, (1.1b)

V = F(|Du|) on a2, (1.1¢)

/ udx = 1. (1.1d)
Q;

In the above, V is the velocity of the free boundary d€2; in the direction of the outward
unit normal and F : (0, 00) — R is an analytic function with F’(r) > 0 for r > 0. The
constant A; > 0 is determined by the integral condition on u.

The initial data is given by a domain €2¢, which we assume is bounded with smooth
boundary 9d€2¢. Note that the domains €2, (assuming they are bounded with sufficiently
regular boundary d€2;) determine uniquely the solution x — u(x, ¢). Thus, we may denote
a solution of (1.1) by a family of evolving domains €2;. In Section 2 we will explain what
is meant by a classical solution to this problem.

The system of equations given in (1.1) has long been accepted as a model for droplet
evolution in the physical literature [1,6,7,10, 11]. There have been results on weak formu-
lations of this equation by Glasner—Kim [5] and Grunewald—Kim [8]. Feldman—Kim [3]
gave some conditions for global existence and convergence to an equilibrium. Escher—
Guidotti [2] proved a short time existence result for classical solutions, which we describe
in Section 2 below.
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In this note we address the following natural question:
Question 1.1. Is the convexity of Q2; preserved by system (1.1)?

This question is implicit in the work of Glasner—Kim [5]. It was raised explicitly by
Feldman—Kim [3, p. 822]: “Let us point out that, in particular, it is unknown whether the
convexity of the drop is preserved in the system [(1.1)].”

In this note, we answer Question 1.1 by showing that convexity is not generally pre-
served. We make an assumption on F, namely that

F//
r_l)l‘(I)1+ F’((:)) >y forsomey > 0. (1.2)

This includes the important cases F(r) = r3 — 1 and F(r) = r? — 1 considered in [5]
and [3, 8], respectively.

We construct an example where 2 is convex for ¢t = 0, but not convex for ¢ € (0, §]
for some § > 0.

Theorem 1.2. Assume that F satisfies Assumption 1.2. There exist § > 0 and a bounded
convex domain Qo C R? with smooth boundary such that the solution Q; to (1.1) with
this initial data is not convex for any t € (0, ].

Escher—Guidotti [2] showed that as long as €2¢ is a bounded domain with sufficiently
smooth boundary, there always exists a unique classical solution for a short time, and this
is what is meant by “the solution €2,” in the statement of Theorem 1.2. In Section 2, we
describe more precisely the results of [2].

In Section 3 we give the proof of Theorem 1.2. The starting point is an explicit solution
of the equation —Au = A on an equilateral triangle [9]. We smooth out the corners to
obtain our convex domain €2 and show that it immediately breaks convexity.

2. Short time existence

In this section, we recall the short time existence result of Escher—Guidotti [2].

We first give a definition of a solution of (1.1), following [2]. Note that the domains €2,
determine uniquely the functions u, so we will describe the solution of (1.1) in terms of
varying domains—given as graphs over the original boundary.

Fix o € (0, 1). Assume that ¢ is a bounded domain in R” whose boundary I'g := 92
is a smooth hypersurface. Let v(x) denote the unit outward normal to T'y at x. Then, there
exists a maximal constant 6 (Q¢) > 0 such that for any given function p € C27%(Tp) with
lellcrry) < o, the set

T, = {x + p(x)v(x) | x € To}

is a C2T® hypersurface in R”, which is the boundary of a bounded domain Q = Q(p).
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We can now describe a solution of (1.1) in terms of a time-varying family p(x, ¢), that
is, given
p € C([0.T].C*™(T)) N C1([0. T]. C*(Ty))

with sup, o, 77 l0C. D) lcrry) < 0(820), write @4, ¢ € [0, T, for the corresponding family
of domains, with boundaries I'; := I',(;). The velocity V' of the boundary in the direction
of the outward normal at a point y = x + p(x,?)v(x) € I'; is given by

_ 9
V = 5(x,t)v(x) -n(y,t),

where n(y, t) is the outward unit normal to I'; at the point y.
Since the domains §2; have C 21 boundaries, there exists for each ¢ a unique solution
u(-,t) € C>**(Q,)and A, € R of

—Au =2A; on&y, ulr, =0, /udle;
Q

see, for example, [4, Theorem 6.14].
Then, we say that such a p is a classical solution of (1.1) with initial domain 2 if the
velocity V(y) ateach y € Ty, for ¢t € [0, T], satisfies

V = F(|Dul).

The main theorem of Escher—Guidotti [2] implies, in particular, the following:

Theorem 2.1. There exist a T > 0 and a unique classical solution
p € C([0,T],C>**(Ty)) N C'([0, T], C'*%(Iy))

of the quasi-static droplet model (1.1) with initial domain 2y whose boundary Ty is
smooth.

In fact, they prove more: they also allow their initial domain to have its boundary
in C2%%, Note that this result does not require Assumption 1.2.

3. Proof of Theorem 1.2

In this section we give a proof of Theorem 1.2. We work in R2, using x and y as coordi-
nates. The heart of the proof is the following lemma, which makes use of Assumption 1.2:

Lemma 3.1. There exist a bounded convex domain Qo with smooth boundary Ty and real
numbers 0 < xo < x1 with the following properties:
(i) S is contained in {y > 0}.

(1) (x,0) € Q¢ for xg < x < x1.
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(iii) Let u(x,y) solve
—Au = Ay on Qy, ulr, =0, / udxdy =1
Qo

for a constant Ag. Then, V(x) := F(|Du(x, 0)|) satisfies

V(xo) + V(x1) o V(Xo + Xl)
2 2 '

Proof. We begin with the following explicit solution of the “torsion problem,” —Av =
const., on the equilateral triangle [9]. Let D be the equilateral triangle of side length 2a
given by

0<y<~3a—|x].

The function

5
v=cy((y —av3)? —=3x?) forc:= —
3a’
satisfies
—Av = 4ac «/5,
vanishes on the boundary of D, and satisfies
/ vdxdy = 1.
D
On the bottom edge of the triangle
E = {(x,O) € R? | —a < x Sa},
we have
vy (x,0) = 3c(a? — x?).
Hence,
V(x) = F(Bc(a® — x?)),
and
V"(x) = 36c2x%F" (3c(a? — x?)) — 6¢F'(3c(a? — x?)). 3.1

Recalling that ¢ = 5/(3a”), we may then choose a > 0 sufficiently small so that
2 0 6¢
36c“x* >2— for|x|>a/2, (3.2)
Y

where y > 0 is given by Assumption 1.2. From now on, we fix this a (and hence, c).
It follows from (3.1), (3.2), and Assumption 1.2 that V" (x) > 0 for |x| sufficiently
close to a. In particular, there exists 0 < x¢ < x1 < a with

V(xo) + V(x1) Xo + x1
—_—> V(T) (3.3)
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The above example readily implies the existence of a smooth domain 2 satisfying
the conditions in the lemma. Indeed, we only have to “smooth the corners” of the triangle
domain D.

Denote the vertices of D by p1, pa, p3. Let { D¢ }32, be a sequence of bounded convex
domains with smooth boundaries such that for each k > 1:

(1) Dy C Dg41 C D (the sequence is nested and increasing).

2) D\ Dy C Ui3=1 Bi-1(pi), where B,(p) denotes the ball of radius r centered
at p.
Such a sequence { Dy } can be constructed by “rounding out the corners” of the triangle D
in a ball of radius k~! centered at each corner.
For each k > 1, let ux on Dy be the solutions of

—Auy = 4ac/3 on Dy, ulap, = 0.

where we recall that a and ¢ are fixed constants.
It follows from property (1) above and the maximum principle that for each k > 1

0 <ug <ugy1 <v on Dy, 3.4
from which we conclude a pointwise limit on the triangle D

0 <ug(x):= kli)n;ouk(x) <v(x) forx e D, 3.5

and define u oo (x) to be zero on dD.

By standard elliptic estimates (see, for example, [4, Theorem 6.19] and the remark
after it), the convergence above will hold in C*(K) for any compact set K cC (D \
{p1. p2. p3}) and any £ > 0. Hence, uoo, € C®(D \ {p1. p2. p3}) and —Aus, = 4ac~/3
on D. Moreover, by (3.4) and the continuity of v, it is easily verified that v, is also
continuous at the corners pi, p,, p3 and thus on all of D. By the maximum principle,
Uso = V. Note also that

/ urp dxdy -1 ask — oo.
Dy

Then, for sufficiently large k, the domain Q¢ := Dy will satisfy conditions (i), (ii),
and (iii), with
U 4ac/3
U=—-——— Alop:i= —.
Jp, uk dxdy Jp, uk dxdy

Here we are using (3.3) and the fact that x — F'(|Dug (x, 0)|) will converge uniformly to
x > F(|Dv(x,0)|) on [xg, x1] as k — oo. This completes the proof of the lemma. |
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Proof of Theorem 1.2. Let 2 and u be given as in Lemma 3.1. By Theorem 2.1, there
exists a unique classical solution of (1.1) for a short time interval [0, 7] with T > 0.

The boundary I'; of Q; can be written as a graph over [y := 9€2¢. In particular,
using x as a coordinate, part of I'; is given by a graph y = g(x, 1) for xo < x < xq,
with g(x,0) = 0 for xg < x < x; and with the unit normal to ¢ being in the negative y
direction.

We may assume that

g € C([0,T],C* *([xo, x1])) N C'([0, T], € *¥([xo, x1])).

Moreover, (dg/dt)(x,0) represents the negative of the velocity in the normal direction at
time ¢t = 0. Hence, by condition (iii) of Lemma 3.1,

Then, for ¢ € (0, 6] for § > 0 sufficiently small, we have

Xo + X1 t)

%(g(xO,t) + g(xl,t)) < g( >

In particular, x — g(x,t) is not convex for (x,t) € [xg, x1] X (0, §]. Hence, 2, is not a
convex domain for ¢ € (0, §]. [

Funding. This work was partially supported by NSERC grant #327637-06 and NSF grant
DMS-2005311.

References

[1] R.G. Cox, The spreading of a liquid on a rough solid surface. J. Fluid Mech. 131 (1983), 1-26
Zbl 0597.76102 MR 718031

[2] J.Escher and P. Guidotti, Local well-posedness for a quasi-stationary droplet model. Calc. Var.
Partial Differential Equations 54 (2015), no. 1, 1147-1160 Zbl 1329.35363 MR 3385195

[3] W. M. Feldman and I. C. Kim, Dynamic stability of equilibrium capillary drops. Arch. Ration.
Mech. Anal. 211 (2014), no. 3, 819-878 Zbl 1293.35240 MR 3158808

[4] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Class.
Math., Springer, Berlin, 2001 Zbl 1042.35002 MR 1814364

[5] K. Glasner and I. C. Kim, Viscosity solutions for a model of contact line motion. Interfaces
Free Bound. 11 (2009), no. 1, 37-60 Zbl 1166.35386 MR 2487023

[6] K.B. Glasner, A boundary integral formulation of quasi-steady fluid wetting. J. Comput. Phys.
207 (2005), no. 2, 529-541 Zbl 1213.76068 MR 2144627

[7]1 H.P. Greenspan, On the motion of a small viscous droplet that wets a surface. J. Fluid Mech.,
84 (1978), no. 1, 125-143 Zbl 0373.76040

[8] N. Grunewald and I. Kim, A variational approach to a quasi-static droplet model. Calc. Var.
Partial Differential Equations 41 (2011), no. 1-2, 1-19 Zbl 1228.35087 MR 2782795


https://doi.org/10.1017/S0022112083001214
https://zbmath.org/?q=an:0597.76102
https://mathscinet.ams.org/mathscinet-getitem?mr=718031
https://doi.org/10.1007/s00526-015-0820-7
https://zbmath.org/?q=an:1329.35363
https://mathscinet.ams.org/mathscinet-getitem?mr=3385195
https://doi.org/10.1007/s00205-013-0698-5
https://zbmath.org/?q=an:1293.35240
https://mathscinet.ams.org/mathscinet-getitem?mr=3158808
https://zbmath.org/?q=an:1042.35002
https://mathscinet.ams.org/mathscinet-getitem?mr=1814364
https://doi.org/10.4171/IFB/203
https://zbmath.org/?q=an:1166.35386
https://mathscinet.ams.org/mathscinet-getitem?mr=2487023
https://doi.org/10.1016/j.jcp.2005.01.022
https://zbmath.org/?q=an:1213.76068
https://mathscinet.ams.org/mathscinet-getitem?mr=2144627
https://doi.org/10.1017/s0022112078000075
https://zbmath.org/?q=an:0373.76040
https://doi.org/10.1007/s00526-010-0351-1
https://zbmath.org/?q=an:1228.35087
https://mathscinet.ams.org/mathscinet-getitem?mr=2782795

Instantaneous convexity breaking 523

[9] G. Keady and A. McNabb, The elastic torsion problem: solutions in convex domains. New
Zealand J. Math. 22 (1993), no. 2, 43-64 Zbl 0814.35133 MR 1244022
[10] L. Tanner, The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12 (1979),
1473-1484
[11] O. V. Voinov, Hydrodynamics of wetting. Fluid Dyn. 11 (1976), 714-721

Received 4 November 2022.

Albert Chau
Department of Mathematics, The University of British Columbia, 1984 Mathematics Road,
Vancouver, BC V6T 172, Canada; chau@math.ubc.ca

Ben Weinkove
Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208,
USA; weinkove @math.northwestern.edu


https://zbmath.org/?q=an:0814.35133
https://mathscinet.ams.org/mathscinet-getitem?mr=1244022
https://doi.org/10.1088/0022-3727/12/9/009
https://doi.org/10.1007/bf01012963
mailto:chau@math.ubc.ca
mailto:weinkove@math.northwestern.edu

	1. Introduction
	2. Short time existence
	3. Proof of Theorem 1.2
	References

