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Embeddedness of liquid-vapour interfaces in
stable equilibrium

Costante Bellettini

Abstract. We consider a classical (capillary) model for a one-phase liquid in equilibrium. The
liquid (e.g., water) is subject to a volume constraint, it does not mix with the surrounding vapour
(e.g., air), it may come into contact with solid supports (e.g., a container), and it is subject to the
action of an analytic potential field (e.g., gravity). The region occupied by the liquid is described as
a set of locally finite perimeter (Caccioppoli set) in R3; no a priori regularity assumption is made on
its boundary. The (twofold) scope in this note is to propose a weakest possible set of mathematical
assumptions that sensibly describe a condition of stable equilibrium for the liquid-vapour interface
(the capillary surface), and to infer from those that this interface is a smoothly embedded analytic
surface. (The liquid-solid-vapour junction, or free boundary, can be present but is not analysed here.)
The result relies fundamentally on the recent varifold regularity theory developed by the author
and Wickramasekera, and on the identification of a suitable formulation of the stability condition.

1. Introduction

Given a constant-density, incompressible liquid sitting in a container and subject to a
potential field, we denote by � � R3 the open set identified with the interior of the con-
tainer and by E �� the region occupied by the liquid, for the moment assuming @E \�
is smooth and embedded up to @�, and @� is sufficiently regular (e.g., C 1). The liquid
and the surrounding vapour cannot mix. Following a classical capillary model for one-
phase liquids (see, e.g., [14, 19, 21]), the equilibrium condition is obtained by imposing a
volume-constrained stationarity condition with respect to the free energy

F .E/ D H
2.@E \�/C �H

2.@E \ @�/C

Z
E

g dL3;

where � 2 .�1; 1/ is the adhesive coefficient between the liquid and the walls of the con-
tainer, H2 is the Hausdorff 2-dimensional measure (the usual surface measure when @E
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is a smooth surface), and g is the potential (for example, g can be the gravitational poten-
tial in R3 given by g D g0�x3, where � is the constant density of the liquid and g0 is
gravity on Earth). The first term encodes the effect of surface tension on the liquid-vapour
interface @E \�, usually referred to as the capillary surface.

The formulation in terms of the free energy F goes back to the work of Gauss [15],
where the equilibrium condition for E follows from the virtual work principle as fol-
lows: we imagine a continuous deformation of the region E (made so that the deformed
region keeps the same volume and stays inside the container), we compute the free energy
of the deformed regions, and we impose that F does not decrease to first order along
the deformation. This stationarity condition recovers Young–Laplace’s law ([18, 28]) –
in other words, the following two conditions: (i) the mean curvature of @E \� (liquid-
vapour interface) is .g � �/�E for some � 2 R (possibly depending on the connected
component of the liquid), where �E is the unit outer normal on @E; and (ii) �E � �� D �
at the boundary of @E \� (liquid-vapour-solid junction), where �� is the unit outer nor-
mal on @�. In order to reflect physically observable equilibria, one often additionally
imposes a second-order condition – namely, the fact that the equilibrium configuration is
stable by requiring that F does not increase to second order along the deformation, that
is, imposing the non-negativity of the second variation of F .

A more modern formulation of the above problem models the region E occupied by
the liquid as a Caccioppoli set, rather than a set with smooth boundary; see [14,19,21] (and
Appendix B for some reminders). This is partly motivated by the need to pose the vari-
ational problem in a class where E has just enough structure to ensure that the energy F

is well-defined, but no further regularity is assumed. Concretely, this will include in the
model all equilibrium configurations, and a priori there may be equilibria for which the
liquid-vapour interface lacks smoothness. From a mathematical point of view, in order to
answer existence questions it is necessary to work in classes that enjoy good compactness
properties at the price of possessing less regularity (for example, to use the direct method
of calculus of variation or to use min-max arguments): good compactness properties typ-
ically fail for smooth submanifolds, and one is required to work with weaker notions that
enjoy them (e.g., reduced boundaries of Caccioppoli sets, currents, varifolds). In the case
of Caccioppoli sets that we are interested in, the regularity (smoothness) properties of @E
(more precisely, of the reduced boundary @�E), under suitable variational hypotheses,
become then a fundamental issue to address.1

In this note we propose a set of mathematical assumptions on the Caccioppoli set E
that reflect a stable equilibrium condition and that can be considered as weak as pos-
sible. We will discuss why such assumptions are mathematically necessary and why they
can be deemed to sensibly encode, through the virtual work principle, a physically stable

1The reduced boundary @�C (the measure-theoretic notion of boundary for a Caccioppoli set C ) is
in general merely a rectifiable set, and as such can be very irregular. Any regularity information must be
deduced from the specific variational assumptions.
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equilibrium. Some care will be required in stating the variational assumptions via the vir-
tual work principle, since no regularity is assumed on @�E. We stress that the stability
assumption will involve non-negativity of the second variation (rather than the stronger
positivity requirement). Once the assumptions are in place, we will infer from them that,
when the potential is analytic, the liquid-vapour interface (i.e., any portion of @�E that
does not touch the solid support of the container) is in fact a smoothly embedded (ana-
lytic) surface. The aim is thus to justify, under a minimal set of postulates, the description
of a one-phase liquid in stable equilibrium by means of a set whose boundary is smoothly
embedded (in the interior of the container). The embeddedness conclusion agrees with
experimental observation.

We will not be concerned with the free boundary, that is, the liquid-vapour-solid junc-
tion given by the boundary of the surface-with-boundary @E \�; we address only the
interior regularity, that is, the regularity of the liquid-vapour interface away from the con-
tainer. It is then clear that the same results apply to a pendant drop hanging from a syringe,
a sessile drop sitting on a desk – or, more generally, to any incompressible liquid with
constant density – as long as we stay away from any solid support that may be present.
Mathematically, this means that we will only be interested2 in the energy given by the first
and third terms of F .

Our set up is then the following: let C be a Caccioppoli set in R3 and let � � R3 be
an open set (concretely, we can think of � as any open subset of R3 n S , where S is the
closed set representing all solid supports; note that xC is not necessarily contained in �)
and let g W �! R be smooth. The free energy of C in � is

E�.C / D Per�.C /C
Z
C\�

g dL3
D kD�C k.�/C

Z
C\�

g dL3

(here �C stands for the characteristic function of C , whose distributional gradient is a
Radon measure by definition of Caccioppoli sets; see Appendix B). Our aim is to prove
the next result. For the moment, we use the phrase “physically stationary and stable” to
describe the variational assumptions and we summarise these, a bit imprecisely, after the
statement. In Section 2 we will make precise both the variational assumptions (Defini-
tions 1–6) and the statement of the theorem (see Theorem 2.6).

Theorem. Let � � R3 be open, g W �! R be analytic, and E a Caccioppoli set in R3.
Assume that E is “physically stationary and stable” with respect to E�, for volume-
preserving deformations inside �. Then, @�E \ � is a smoothly embedded (analytic)
surface.

2The regularity of the solid-liquid-vapour junction is highly interesting and important. The behaviour
of this junction is ruled by Young’s law; the relevant regularity questions are of free-boundary regularity
type. Our focus here is on the liquid-vapour interface, for which the relevant analysis is of (local) interior
regularity type.
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The notions of “physically stationary and stable” amount to the following require-
ments:

(i) the vanishing of the first variation (stationarity) and non-negativity of the second
variation (stability) with respect to E� for any 1-parameter family of diffeomorph-
isms of � whose initial speed is in C 1c .�IR

3/ (“ambient deformations”) and
such that the 1-parameter family of Caccioppoli sets in� obtained by acting with
the diffeomorphisms on an arbitrary “connected component” of E has constant
volume;

(ii) that if, in a neighbourhood U ���, @E is given by one of three precisely defined
non-embedded structures (that we will denote by (a), (a’), (b) in Section 2.2; see
also Figure 1), then E is stationary and stable with respect to specific volume-
preserving deformations (that we will call “coalescence” and “break-up”; see
Figures 3 and 4).

The ambient deformations considered in assumption (i) above are customary in the
literature on variational problems such as the one we consider. However, assumption (i)
alone does not imply the embeddedness conclusion. We identify in assumption (ii) the
missing variational hypotheses that lead to it. In addition to why they are mathematically
necessary, we will also discuss why the volume-preserving deformations considered in
assumptions (i) and (ii) can be deemed admissible, in the sense that they reflect observed
deformations of liquids.

The above theorem also recovers the corresponding regularity results available for
volume-constrained perimeter-minimisers [16, 17]; see Remark 2.7.

As we will see, the proof of the theorem relies heavily on a corollary of [3, 4] that we
recall in Theorem 2.2. The more general theory developed in [3, 4] addresses a class of
integral varifolds with prescribed mean curvature that satisfy certain stability conditions.
Particular emphasis is given, in [3, 4], to the fact that the hypotheses made are “easily
checkable”, particularly in view of applications to problems in differential geometry; a
key example of such an application is given with the resolution of the existence problem
for prescribed-mean-curvature hypersurfaces in [5]. In this note, on the other hand, we
capitalise on the “checkability” feature in a different sense, when ruling out the stationarity
of certain specific configurations ((a), (b)) by drawing a parallel with the behaviour of
liquids. The optimality of the conclusions in [3, 4] (see Theorem 2.2) then permits us to
reduce the embeddedness question to the analysis of a single specific configuration ((a’)),
which we will prove not to be stable (Section 5). It is here that, through somewhat non-
standard computations, we will make key use of the stability condition for “coalescence”
and “break-up” deformations (mentioned in assumption (ii) above).

Remark 1.1. While the 3-dimensional setting is natural for the concrete problem, it is
mathematically interesting to question the validity of an analogue of Theorem 2.6 in arbit-
rary dimensions; similarly, weaker assumptions on g may be investigated. This will be
discussed briefly in Appendix A.
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We point out an application to the case of droplets that sit in a potential field in the
absence of any solid support. This problem was a motivation for [7], where the C 2 embed-
dedness of the boundary of the droplets is an assumption. Combining the above theorem
with [7] and with the curvature estimates of [2], we obtain (the precise statement is given
in Corollary 6.1):

Corollary. Let g 2 R3 ! R be analytic and assume that the Caccioppoli set E � R3

is bounded, connected, and is “physically stationary and stable” with respect to the
energy ER3 for volume-preserving deformations. If jEj is sufficiently small, then E is
a perturbation of a single sphere, that is, @E D @�E is given by the graph of a smooth
small function on a sphere.

In other words, droplets tend to remain almost spherical; a configuration where they
come into contact and connect to each other by a tiny meniscus is not stable.

Using the results in [2], in Section 6 we also comment more generally (not only in
the case of droplets) on the possible presence of regions of very high curvature in the
conclusion of the main theorem.

1.1. Preliminary heuristic discussion

The guiding idea in the choice of stationarity and stability assumptions in the main the-
orem goes back to the implementation of the virtual work principle. For that, one has to
decide which “virtual deformations” of the liquid are admissible. Indeed, the virtual work
principle requires a comparison argument, through a deformation of a given bulk of liquid,
and it seems natural to admit only those deformations of E that can be thought of as con-
crete movements of a liquid bulk. We therefore wish to call a deformation admissible if
it reflects a deformation that can be concretely induced for a liquid. One should keep in
mind that @�E is of unknown regularity (for an arbitrary Caccioppoli set E), and there-
fore, this task may look ill-posed: the configurations that are concretely realised for liquids
are all quite regular (at least at the macroscopic level that the model under consideration
is concerned with). We begin with a discussion from which we will extrapolate some of
our postulates.

On connected components. We start with the case in which @E is smoothly embedded.
Already here, one does not allow all volume-preserving deformations of E. For example,
if E has two connected components E1 and E2, that sit a positive distance apart, then
we do not allow instantaneous transfer of liquid from one component to the other; rather,
we require the volume-preserving virtual deformations to separately preserve the volumes
of E1 and E2. For instance, E1 and E2 can be two spherical drops, in the case g � 0,
that do not touch: this is a stable equilibrium. (If we allowed arbitrary volume-preserving
deformations ofE, one drop could gain volume and the other lose it. Indeed, if we allowed
that, taking initial balls with different radii, one sphere would gain volume until the other
one disappears, in order to reach a stationary condition. In the case in which the two
initial balls have equal radii, the same effect would be induced in order to evolve towards
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a stable equilibrium.) These considerations motivate the necessity of Definition 1 below,
which essentially says that liquid can move only within a “connected component of E”
when we perform a virtual deformation.

On coalescence. It is however observed that distinct smooth drops can interact when they
are close enough to each other; the small scales at which these interactions are meaningful
depend on the characteristics of the liquid and surrounding vapour. An observable effect
of such interactions is the fact that, if two drops are brought close to each other in a quasi-
static way, once they become sufficiently close, a thin connecting neck (also referred to
as a meniscus, or bridge) forms and the two drops coalesce (see, e.g., [26, Figure 1]).
Coalescence begins on a microscopic scale3, possibly with complex dynamics, and then
continues with the formation of the meniscus and with motion driven by surface tension
(see, e.g., [13]), observable on a macroscopic scale.

Our energy E� does not account for the distant interactions4. However, we keep track
of these in the “limit case” when the distance between the two drops is 0. Our perspective
is to interpret the configuration of two smooth drops E1 and E2 that touch tangentially
(along a submanifold of dimension � 1) as a situation in which the microscopic merging
has taken place. We then encode the interaction effects mathematically by allowing virtual
deformations in which the touching set may be “smoothed out” into a thicker neck (we
will call such a virtual deformation “coalescence”; see Figure 3, top row). The virtual work
principle for such a deformation will show that surface tension, acting via the perimeter
term in E�, finds the coalescence of tangentially touching drops to be energy-favourable5.

Analogous remarks apply to break-up phenomena, in which a thin meniscus (that con-
nects two bulks of liquid) breaks, leaving the two bulks disconnected (as in the bottom
row of Figure 3). Break-up phenomena are complementary to coalescence.

Remark 1.2. With reference to the previous discussion, the microscopic dynamics dur-
ing coalescence (or break-up) is object of a large body of literature (see, e.g., [11–13, 22,
23, 25, 26] and references therein). The way in which microscopic merging (or break-up)
arises, the factors that influence it (e.g., viscosity properties of the fluids), and quantit-
ative analysis of relevant lengthscales and timescales lie outside the scope of this work.
Our analysis here is based on the point of view that coalescence of touching drops (with
smooth, or sufficiently regular boundaries) can happen and, regardless of the microscopic

3A standard microscopic explanation of this effect is the following: liquid molecules are attracted to
each other, and this results primarily in surface tension, since for molecules at the boundary of a drop the
attraction is mainly on one side. If two drops are sufficiently close, then the molecules at the boundary also
feel the attraction towards the other drop.

4However, different models do, such as Allen-Cahn models.
5As we will see, if two smooth drops touch at a point, a coalescence-type (volume-preserving) virtual

deformation can be constructed that violates the stability condition identified in assumption (ii) above.
(Stationarity, on the other hand, is valid in this configuration.) It is worthwhile noting that this coalescence-
type deformation happens with bounded initial speed (including at the touching point).
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dynamics leading to it, is driven by surface tension after the initial instant. Therefore, we
allow it as a virtual deformation (when we state the virtual work principle). An analogous
point of view applies to virtual break-up deformations.

Remark 1.3. We have just discussed “virtual coalescence” for distinct smooth drops
touching, a case in which the deformation can be concretely visualised and thus related
to observable behaviour of liquids (and therefore deemed admissible for the virtual work
principle). However, we are interested in boundaries of Caccioppoli sets, that are poten-
tially very irregular. What would “touching drops” and “connecting meniscus” mean in
that context, and would it be possible to define “coalescence” without knowing what
shape we start from? Probably, the answer is: no. As we will see, a key advantage of
the “checkability” of the hypotheses in [3, 4] is that we only need to discuss “virtual
coalescence” in the case of drops with regular shapes that touch in a regular fashion.

2. Variational assumptions and main result

2.1. Ambient deformations

Restricting, to begin with, to the classical case in which @E \� is known to be a smooth
embedded surface, the virtual deformations that are used to reach the conclusion that the
mean curvature of @E \ � is given by .g � �/� (for some � 2 R possibly depend-
ing on the connected component, and with � being the unit outer normal) are those
induced by ambient diffeomorphisms that fix E outside an arbitrary open set U �� �
in which E \ U is connected. This means that for any 1-parameter family  t of ambi-
ent diffeomorphisms that keep R3 n U fixed (here t 2 .� "; "/,  t .x/ D  .t; x/ is C 2

in t , and @ 
@t

is C 1 in .x; t/,  t W R3 ! R3 is a C 1 diffeomorphism for every t , with
 t D Id for t D 0 and  t jR3nU D Id for every t ) and that preserve the volume of E
(i.e., j t .E/ \ U j D jE \ U j for all t ), we require stationarity with respect to EU at
t D 0 along the deformation, that is,

d

dt

ˇ̌̌
tD0

EU . t .E// D 0:

These deformations reflect the fact that we may slightly perturb the liquid in U “as a
whole”, respecting the volume constraint. Deformations of the type just considered will
be called ambient deformations and the stationarity condition just stated leads to the mean
curvature characterisation recalled above (see [19] or Section 3 below).

We pass now to the case in whichE is only assumed to be a Caccioppoli set. What is an
admissible volume-preserving virtual deformation of E? The notion of admissible virtual
deformation implicitly involves questioning whether such a deformation is meaningful
for a concrete liquid. At the same time, as we mentioned earlier, all configurations that
are experimentally observed are rather regular, and therefore, the task to characterise all
admissible volume-preserving virtual deformations of E is likely ill-posed (@E and @�E
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could a priori be extremely irregular). Fortunately, we do not need to characterise all
meaningful deformations, but only sufficiently many types of deformations to allow the
regularity conclusion of the main theorem (Theorem 2.6 below).

Deformations that are natural (and indispensable to infer any amount of regularity)
are the ambient ones introduced above. The derivative @

@t
jtD0 t is the initial speed by

which E moves in U ; one can think of it as induced by the (short-lasting) action of an
external field, that causes a “slight shaking” of the liquid bulk. For such a deformation to
make sense we do not need to know anything about the shape of the liquid bulk, because
the liquid is perturbed as a whole in the relevant open set. Hence, we admit such vir-
tual deformations in our analysis. We only need some care in implementing the volume
constraint. We postulate the following, in accordance with the discussion in Section 1.1:

Definition 1. Admissible volume-preserving ambient deformations of E in U are those
ambient deformations that separately preserve the volume of each connected component
of EL \ U , where EL is the Lebesgue representative of E and EL denotes its closure.

The choice of the Lebesgue representative (i.e., the set of points at which the dens-
ity of E with respect to L3 is 1) is needed in order to reflect that a virtual deformation
allows liquid transfer only through points where there is actually some liquid6. To sim-
plify notation we will assume that E is its own Lebesgue representative. The stationarity
requirement with respect to ambient volume-preserving deformations, that is, the fact that

d

dt

ˇ̌̌
tD0

EU . t .E// D 0 (2.1)

for every admissible ambient volume-preserving deformation  t , leads to the condition
that (see Section 3), whenever U �� � is such that xE \ U is connected, then j@�Ej U

has first variation in L1 and generalised mean curvature equal to g � � for some � 2 R
(possibly depending on the connected component of xE \ U ). Here j@�Ej is the integral
varifold obtained by assigning multiplicity 1 almost everywhere on the reduced bound-
ary @�E, and j@�Ej U denotes its restriction toU . (Integral varifolds are weak notions of
submanifolds and the generalised mean curvature coincides with the usual mean curvature
in the case in which the integral varifold “is actually a submanifold”.) The L1 condition
on the first variation is not sufficient7 to imply enough local regularity for @�E. (If, for

6Given two distant Caccioppoli sets E1 and E2 in RnC1, n � 1, we can always connect them using a
curve 
 and the set E1 [ E2 [ 
 is equivalent, as a set of finite perimeter, to E1 [ E2. The curve 
 is of
course an artificial addition: choosing the Lebesgue representative will remove it.

7In the special case g � 0 and assuming that E is bounded and�DRnC1, [10] strikingly proves that,
under only this stationarity condition, E must equal a collection of balls with equal radii; the arguments
in [10], however, exploit global properties. A local regularity result (that goes beyond Allard’s theorem)
under this stationarity assumption alone does not seem within reach at the moment, and at any rate it would
have to allow for non-embedded points, as we will also see below. The local feature is important for us in
that it allows the applicability of the result to the interior points of the capillary surface in the presence of
solid supports.
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example, we had Lipschitz regularity of @E, we could bootstrap via elliptic theory to C 2;˛

and higher. The example produced in [6] shows that the L1 condition is too weak for this
purpose.) Therefore, one is led to introduce more restrictive variational assumptions, as
in the case treated there, where the equilibrium is assumed to be stable. This also makes
sense from a physical point of view, since experimentally observable configurations are
stable. The stability condition for volume-preserving ambient deformations  t amounts
to the non-negativity of the second variation of EU (note that we do not require its strict
positivity):

d2

dt2

ˇ̌̌
tD0

EU . t .E// � 0: (2.2)

Stationarity condition (2.1) for volume-preserving ambient deformations has the follow-
ing equivalent formulation by means of a Lagrange multiplier (see Proposition 3.1 below):
whenever U ��� is such that xE \U is connected, then there exists � 2R such thatE is
stationary with respect to the functional EU .E/ � �jE \ U j for arbitrary ambient defor-
mations that fix R3 n U (not necessarily volume-preserving ones). In other words, the
volume constraint gets encoded in the energy functional. On the contrary, prescribing the
non-negativity of the second variation of EU .E/� �jE \ U j for arbitrary ambient defor-
mations is strictly stronger than the stability requirement that we have given in (2.2) (as
explained, e.g., in [1]); so we will keep the formulation given in (2.2).8

Having agreed that prescribing the validity of (2.1) and (2.2) for all volume-preserving
ambient deformations is coherent with the description of a stable equilibrium, a natural
question is whether these assumptions are sufficient to characterise stable equilibria. How-
ever, as we will now describe, certain local structures for @E are not ruled out by (2.1)
and (2.2), and such configurations are considered with consensus not to describe stable
equilibria of the one-phase liquids under consideration. Here are the three local structures:

(a) there exists an open set U �� � such that @E \ U D D1 [ D2, where D1
and D2 are smooth embedded discs in U ; D1 and D2 lie on opposite sides of
each other; and D1 \D2 is a smooth 1-dimensional submanifold.

(a’) there exists an open set U �� � such that @E \ U D D1 [ D2, where D1
and D2 are smooth embedded discs in U ; D1 and D2 lie on opposite sides of
each other; and D1 \D2 is a point.

(b) there exists an open set U ��� such that @E \U D
S2N
jD1Lj , where theLj ’s

are surfaces-with-boundary that have a common boundary T ; Lj are smooth
away from T ; T is of class C 1;˛; all the Lj ’s are C 1;˛ up to their boundary T ;
and at least two of the Lj ’s intersect transversely at T .

8Stability for EU .E/� �jE \ U j for arbitrary deformations is usually called strong stability; stability
under volume-preserving deformations is usually referred to as weak stability and it implies, in particular,
that the Morse index of EU .E/ � �jE \ U j (for arbitrary ambient deformations) is at most 1.
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Figure 1. On the left, the cross section of two half-cylinders of equal radii touching along a line;
this is an example of (a). The same cross section can be obtained from two half-spheres of equal
radii touching tangentially at a point: this is an example of (a’). On the right, the cylinder over the
depicted set is an example of (b). The three wedges depicted are defined by drawing three arcs of
circles with equal radii, and the three arcs pass through a common point. All these examples fulfil,
with g � 0, stationarity and stability conditions (2.1) and (2.2) for admissible volume-preserving
ambient deformations.

The union of two half-cylinders with equal radii and touching tangentially along a
line (Figure 1, left) provides an example of the local structure (a) and, assuming g � 0,
this configuration satisfies (2.1) and (2.2) for any volume-preserving ambient deformation
whose initial velocity is compactly supported in a neighbourhood U of a point on the
touching line. Stationarity condition (2.1) is true in view of the fact that cylinders are
CMC hypersurfaces with the same mean curvature. Stability condition (2.2) follows by a
semi-calibration argument, exploiting the fact that each half-cylinder is a graph. We recall
the argument in Appendix C.

The union of two half-spheres with equal radii and touching tangentially at a point
provides an example of the local structure (a’) and, assuming g � 0, this configuration
satisfies (2.1) and (2.2) for any ambient deformation whose initial velocity is compactly
supported in a neighbourhood U of the touching point. This is again proved by exploiting
the fact that each half-sphere is a CMC graph (Appendix C).

For an example of (b) with N D 3, consider the picture in Figure 1 on the right (more
precisely, the product with an interval in R3). Assuming g � 0, this configuration satis-
fies (2.1) and (2.2) for any ambient deformation that only acts in a neighbourhood U of
the central point. The stationarity condition is true, since the three cylinders employed
are CMC surfaces with the same mean curvature (all with respect to the inward pointing
normal). The stability condition relies again on the fact that each of the three cylinders is
a graph (in a suitable coordinate system); see Appendix C.
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Figure 2. Two half-cylinders touching along a line and two half-spheres touching at a point (left
picture in Figure 1) are perimeter-minimisers (g � 0) among Caccioppoli sets of equal volume
that are formed by “two bulks”, as the two sets depicted here. (This property is stronger than the
fulfilment of (2.1) and (2.2), since in those two conditions the deformations allowed are only of
ambient type; the picture on the left here would be permitted as a deformation, but the picture on
the right would not.) To rule out those two configurations, one has to permit deformations in which
the two bulks coalesce.

The previous examples show that (a), (a’), and (b) must be permitted in the conclu-
sion of any regularity result that only assumes (2.1) and (2.2). As we mentioned, these
structures do not reflect observed equilibria, and therefore, one needs to identify extra
assumptions (in addition to (2.1) and (2.2)) in order to have a meaningful framework that
selects observed equilibria.

We will discuss this in Section 2.2, where we introduce volume-preserving defor-
mations of coalescence (or break-up) type. We note explicitly that the argument in Appen-
dix C proves a local minimising property (clearly stronger than the condition of having
non-negative second variation) for each of the three examples above. For example, for (a)
and (a’), when E D E1 [ E2 where E1, E2 are two bulks that bound either two half-
cylinders or two half-spheres (and g � 0), this minimising property holds among Cac-
cioppoli sets C in�, with the same volume asE, that can be defined by �C D �C1 C �C2 ,
where C1, C2 are Caccioppoli sets in � that coincide respectively with E1 and E2 out-
side U , and such that PerU .C1/ C PerU .C2/ D PerU .C /. This is a strictly larger class
of competitor sets than those allowed in (2.2); for example, we can allow C1, C2 to be
smooth domains with C1 \ C2 \ U D ; (while any ambient deformation of E1 [ E2
would preserve the fact that the closures of the two deformed bulks intersect at a curve);
see Figure 2. To rule out (a), (a’), we will thus have to allow deformations in which
two such bulks coalesce, as in the top row of Figure 3. Similar remarks apply to con-
figuration (b) (where, with reference to Appendix C, one has to introduce break-up or
coalescence deformations in order to break the constraint

P3
jD1 �Cj D 1C �C ).

Remark 2.1. It is an open problem to understand what amount of regularity can be
obtained for @E under assumptions (2.1) and (2.2) alone, and in principle, non-embedded
configurations other than (a), (a’), and (b) may be allowed by (2.1) and (2.2). We only
need to consider these three configurations, ultimately thanks to the results in [3, 4].
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2.2. Non-ambient deformations (and major gain in regularity)

To analyse configurations (a), (a’), and (b) and give a mathematical explanation of why
they are not observed equilibria, we recall the discussion in Section 1.1 where we poin-
ted out that when distinct drops (with regular shapes) touch tangentially, the touching set
should be interpreted as an idealisation of a thin connecting meniscus; hence, we can con-
sider virtual deformations that smooth out the configuration by thickening (or, similarly,
breaking off) the meniscus. (These are clearly not ambient deformations, as they alter the
topology of VE or of xE.) Each of the structures (a), (a’), and (b) is defined by regular
enough bulks that touch in a well-defined regular fashion. This key feature makes it pos-
sible to define virtual deformations of such structures of “coalescence” or “break-up” type.

For (a) or (b), we will produce a volume-preserving virtual deformation in U of type
“coalescence” or “break-up” that decreases the energy EU .E/ to first order and thus viol-
ates stationarity. Now we describe the key idea; formal arguments are given in Section 4.

For (a), denoting by T the curve along which the two disks coincide, we want to con-
sider virtual volume-preserving deformations ofE as those depicted in Figure 3. From the
point of view of computing the first variation, it is irrelevant whether the region between
the disks D1 and D2 is in the complement of E or in E (one of these two eventualit-
ies must occur): both cases are depicted, in the said order, in Figure 3. The deformation
in question changes the topology around T (so it is not an ambient deformation) and
corresponds in the former case to the coalescence of the two bulks of liquid; in the lat-
ter case it corresponds to a break-up of the two bulks at T . Such a deformation will act
on @E \ U by independently smoothing out the cusps of the two degenerate immersions
that describe respectively the portion of @E \ U to the left of T and to the right of T . The
mean curvature of these degenerate immersions at T is “infinite”, due to the presence of
a cusp (roughly, the principal curvature in the direction of T is finite, while the one in the
direction orthogonal to T is infinite due to the cusp), and points into the cuspidal domain.
As the driving gradient of EU .�/ is given by the mean curvature plus a finite term com-
ing from the potential term, “thickening the neck” along T via coalescence or break-up
decreases the energy to first order (thus violating stationarity).

Passing to local structure (b), we note that it corresponds to the case in which E is the
union of N “wedges” that come together in a C 1;˛ way along a common curve T (at least
one wedge has an opening angle at T smaller than �). The non-ambient deformations
needed here are those that permit a break-up phenomenon or a coalescence phenomenon
at T . This can once again be explained by means of first variation arguments, exploiting
that the mean curvature vector of each wedge is “infinite” at T and points inside the
wedge, and employing the deformation that pushes a wedge to its interior around T (or
that makes two wedges coalesce around T ; see Figure 4).

The previous ideas (partly present in [3, 4] and detailed in Section 4 in the context
addressed here) will guarantee that, as long as the virtual volume-preserving deformations
“coalescence” and “break-up” are allowed in the definition of stationarity, structures (a)
and (b) are nowhere present in @E.
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Then, we are in a position to use the below fundamental result (within the proof of
our main theorem). Its first assumption is implied by stationarity for volume-preserving
ambient deformations, that is, the validity of (2.1), as recalled in Section 2.1. The validity
of (2.1) and (2.2) implies immediately the validity of the third assumption. The second
assumption is implied by the stationarity condition for virtual volume-preserving defor-
mations “coalescence” and “break-up” discussed above.

Theorem 2.2 ([3, Section 1.6]; [4, Section 2.3]). Let � � R3 be an open set and let g be
an analytic function on �. Let E � R3 be a Caccioppoli set such that

• the first variation of j@�Ej � (the multiplicity-1 varifold associated to the reduced
boundary of E) is representable by integration as a vector-valued measure of the type
hH2 .@�E \�/, with h 2 L1.H2 .@�E \�/IR3/;

• there exists no open set U �� � such that @�E \ U is of the type (a) or (b);

• for every U ��� such that @�E \U is a C 1 embedded surface, the set E is station-
ary with respect to EU for volume-preserving ambient deformations that fix � n U .
For every U �� � such that @�E \ U is a C 2 embedded surface, the set E is stable
with respect to EU for volume-preserving ambient deformations that fix � n U .

Then, @�E \� is smoothly embedded (also analytic) away from a (possibly empty) set of
points that are isolated in �, that is, for every such point p there exists a neighbour-
hood Up contained in � such that .@�E n ¹pº/ \ Up is smoothly embedded. Locally
around any such p, the structure of @�E is the one in (a’).

The above theorem is a special case of the results in [3, 4] (see also Appendix A) and
will be applied, in our case, to every connected component of xE \ �, where E is the
Lebesgue representative of the Caccioppoli set that denotes the region occupied by the
liquid. Theorem 2.2 provides the first (and major) gain in regularity, giving a very precise
characterisation of @E; the leftover lack of embeddedness is confined to isolated points,
where the only allowed structure is (a’).

Remark 2.3. The difficult conclusion, in Theorem 2.2, is the C 2 embeddedness away
from isolated points at which the structure is (a’). From there, higher regularity and ana-
lyticity of the surface are immediate by elliptic PDE theory, since g is analytic. A few
comments on the proof of Theorem 2.2 are given in Appendix A.

Structure (a’) is also not observed for liquids in stable equilibrium. The expectation
should be that, considering again the touching point as the idealisation of a thin connecting
neck, the possibility of coalescence provides a virtual deformation that violates stable
equilibrium. The fact that a coalescence phenomenon should be energy convenient (when
we have a tiny meniscus) is sometimes attributed, in the literature, to the large values of the
curvature in the meniscus (along the lines of the explanation given when we ruled out (a)).
However, upon close inspection, that turns out not to be completely accurate. It is not a
priori clear why the curvature should play a role, since E� selects the mean curvature
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(and not the full curvature) as the key quantity that drives towards an equilibrium. The
mean curvature of a tiny neck, obtained by a smoothing of two touching spherical caps,
may attain any value; in particular, the neck could be part of a Delaunay surface, which is
stationary for g� 0 (in stark contrast with (a), where it is the mean curvature that becomes
very large)9.

It turns out that, allowing virtual volume-preserving deformations “coalescence” and
“break-up” does indeed permit us to rule out (a’); however, for (a) and (b), it will be the
stability assumption – rather than stationarity – that will do so (stationarity alone would
not suffice). In fact, we will prove the following proposition in Section 5 (the formal
notions of “coalescence” and “break-up” deformations are given in Definitions 2–4 and
the notions of stationarity and stability for these deformations are given in Definition 5
below):

Proposition 2.4. Let U and E be as in the definition of (a’). Assume that E is stationary
in U for ambient volume-preserving deformations, with respect to EU . Then, E is not
stable in U with respect to EU for volume-preserving deformations of “coalescence” and
“break-up” type.

Applying the proposition locally around every point of non-embeddedness in the con-
clusion of Theorem 2.2, we will complete the proof of the embeddedness of @E \�, and
thus of the main theorem (Theorem 2.6).

2.3. Stationarity and stability for “coalescence” and “break-up” virtual
deformations: Formal definitions and statement of main result

Having discussed the need for the “coalescence” and “break-up” virtual deformations and
their role in achieving the embeddedness conclusion, we will now formally define these
deformations. As we saw, we only need to define them for very specific starting configur-
ations – namely, (a), (a’), and (b). We also note that the deformation of @�E is actually
the same for “coalescence” and “break-up”: we speak of coalescence if (in the neigh-
bourhood in question) distinct connected components of the interior of E merge, and we
speak of break-up if that is not the case. Passing to the complement of E, we locally turn
“coalescence” into “break-up” and vice-versa (see Figures 3 and 4).

With reference to the structures (a), (a’), (b) described in Section 2.2, the definition
of “coalescence” or “break-up” deformations will be given after choosing a convenient
system of coordinates and a sufficiently small neighbourhood. We recall that a map is said
to be proper when the inverse image of a compact set is compact.

Configuration (a). Upon choosing coordinates suitably and making U smaller if needed,
we assume that 0 2 T , D1 and D2 are graphs over the plane spanned by the first two
coordinates, and this plane is tangent to D1 and D2 at 0; and that D1 is below D2, T is a

9For further comments on bounds on the full curvature, see Section 6.
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connected curve, and it is a graph over the second coordinate axis. Let .
1.s/; s; 
3.s// be
a smooth injective parametrisation of T . Denote the four connected components of @E \
U nT byA1;A2;A3;A4, whereA1;A2 are contained in the top embedded disk andA3;A4
in the bottom embedded disk, with A1; A3 defined by the condition y 2 A1 [ A3 )
y1 < 
1.y2/ (i.e., A1; A3 are “on the left of T ”) and A2; A4 defined by the condition
y 2 A2 [ A4 ) y1 > 
1.y2/ (i.e., A1; A3 are “on the right of T ”). Then, A1 [ T [ A3
and A2 [ T [A4 are topologically disks; both fail to be smoothly embedded or immersed
exactly at points in T (T is a cusp). We then consider two disks DL and DR and a C 1

proper map  LR W DL [ DR ! U such that its restriction to DL and DR has image
equal to A1 [ T[A3 and A2 [ T [A4, respectively; moreover,  LR is a smooth embed-
ding away from the inverse image of T (where the differential becomes degenerate –
note that  �1LR.T / disconnects both DL and DR and these are the only points of non-
injectivity).

Definition 2 (Coalescence/break-up from (a); degenerate immersions of two disks). We
say that ‰LR.t; x/ W Œ0; "/ � .DL [DR/! U (with " > 0) is a “coalescence” or “break-
up” deformation in U if it is C 1 as a function of .t; x/, it is C 2 as a function of t , we have
‰LR.0; �/ D  LR.�/, and if there exists an open non-empty ball B �� U that contains 0
and such that, writing BLR D  �1LR.B/ and  tLR WDL [DR ! U for the map defined by
 tLR.�/D‰LR.t; �/, we have the following: for all t 2 Œ0; "/, the map tLR is an embedding
when restricted to BLR n  �1LR.T /; additionally, for all t 2 Œ0; "/, we have  tLR D  LR
in .DL [DR/ n BLR.

Configuration (a’). Upon choosing coordinates suitably and making U smaller if needed,
we assume that ¹0º D D1 \D2, D1 and D2 are graphs over the plane spanned by the
first two coordinates, and this plane is tangent to D1 and D2 at 0. We describe the initial
configuration of @E \ U as the image of a C 1 proper map  C W S1 � .�1; 1/ ! U ,
with10  C an embedding away from S1 � ¹0º and with S1 � ¹0º mapped to the touching
point of the two embedded disks that we assume to be 0 2 R3. The differential of  C is
degenerate (and  C becomes non-injective) on S1 � ¹0º.

Definition 3 (Coalescence/break-up from (a’); degenerate immersion of a cylinder). We
say that‰C .t; x/ W Œ0; "/� .S1 � .�1; 1//! U (with " > 0) is a “coalescence” or “break-
up” deformation in U if it is C 1 as a function of .t; x/, it is C 2 as a function of t ,
‰C .0; �/ D  C .�/, and if there exists an open non-empty ball B �� U that contains 0
and such that, writing BC D  �1C .B/ and  tC W S

1 � .�1; 1/! U for the map defined
by  tC .�/ D ‰C .t; �/, we have the following: for every t 2 Œ0; "/,  tC restricted to S1 �
..�1; 0/ [ .0; 1// is an embedding; additionally, for all t 2 Œ0; "/,  tC D  C in .S1 �
.�1; 1// n BC .

10For example, .ei� ; z/ 2 S1 � .�1; 1/ ! .z2 cos �; z2 sin �; sgn.z/z4/ 2 R3 covers two touching
paraboloids.
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Configuration (b). We set coordinates so that 0 2 T and choose U sufficiently small
so that T is connected. We assume that the indexation of Lj is such that Lj and LjC1
are adjacent. We then describe @E \ U D

S2N
jD1 Lj as the image of a C 1 proper map

 cl W D1 [ � � � [DN ! U , where Dj are disks and  cl is an embedding away from the
inverse image of T (which disconnects each diskDj ),  cl .Di /D L2i�1 [L2i (i.e., each
disk covers two adjacent hypersurfaces-with-boundary) and the differential of  cl is non-
injective exactly on the inverse image of T .

Definition 4 (Coalescence/break-up from (b); degenerate immersion of N disks). We
say that ‰cl .t; x/ W Œ0; "/ � .D1 [ � � � [ DN / ! U (with " > 0) is a “coalescence” or
“break-up” deformation in U if it is C 1 as a function of .t; x/, it is C 2 as a function of t ,
‰cl .0; �/ D  cl .�/, and if there exists an open non-empty ball B �� U that contains 0
and such that, writing Bcl D  �1cl .B/ and  t

cl
WD1 [ � � � [DN ! U for the map defined

by  t
cl
.�/ D ‰cl .t; �/, we have the following: for every t 2 Œ0; "/,  t

cl
is a smooth embed-

ding when restricted to Bcl n  �1cl .T /; additionally, for all t 2 Œ0; "/ we have  t
cl
D  cl

in .D1 [ � � � [DN / n Bcl .

Initial speed. Denoting by  t the deformation in either of the three cases, the initial velo-
city Ev WD @

@t
jtD0C 

t is a C 1c vector field on the domain of  (i.e., a C 1c and R3-valued
function on the domain of 0). In particular, we require in all three cases that Ev is bounded
(in other words, the virtual deformations happen at bounded speed). We note that Ev fails
to be identifiable with an ambient vector field on @E \ U exactly at T , in all three cases.

Volume-preserving constraint for coalescence and break-up virtual deformations. Note
that in all three cases above, the image of t is the (topological) boundary of a Caccioppoli
set Et in U , for all t . In fact, choosing two alternative orientations, it is the boundary of
two Caccioppoli sets, one being the complement of the other. In case (a), for example, the
interior of E D E0 could be either the portion of U “between” the two embedded disks
(that touch each other tangentially at T ), or the complement of this region. We do not
need to distinguish the two possibilities – we merely need to define Et coherently with
E0 DE, in a way that ensures �Et is continuous in L1.U /. Depending on which set is the
interior of E, the same deformation  t of @E in U could be “coalescence” or “break-up”
(see, e.g., Figure 3). We will say that the deformation  t is volume-preserving if jEt \U j
is constant in t ; note that this does not depend on which set isE and which is U nE, since
preserving the volume of E \ U is equivalent to preserving the volume of U nE.

Definition 5. Let E be a Caccioppoli set in R3 with @E \ U given by one of the three
structures (a), (a’), (b). Stationarity of E in U for volume-preserving (one-sided) “coales-
cence” or “break-up” deformations means that for any  t taken to be either  tLR or  tC
or  t

cl
of (respectively) Definitions 2, 3, or 4, and with  t volume-preserving in U (and

with bounded initial speed), the energy EU does not decrease to first order, that is,

d

dt

ˇ̌̌
tD0C

EU .Et / � 0:
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Similarly, stability ofE in U for “coalescence” or “break-up” volume-preserving deform-
ation means that (for the same class of t ) the second variation (at t D 0C) is non-negative
if the first variation (at t D 0C) vanishes, that is: for any  t as in Definitions 2–4 that is
volume-preserving and has bounded initial speed, we have

d

dt

ˇ̌̌
tD0C

EU .Et / D 0)
d2

dt2

ˇ̌̌
tD0C

EU .Et / � 0:

Remark 2.5. The stationarity condition in Definition 5 is an inequality because the defor-
mations are one-sided (t 2 Œ0; "/, so the deformation “cannot decrease the energy to first
order”). If the (one-sided) first variation is strictly positive, then the non-negativity of the
second variation would be an unnatural requirement, hence the formulation of stability
given.

We can now summarise and define precisely the hypotheses that we make to describe
a condition of stable equilibrium for a liquid that occupies the region E.

Definition 6. Let E be a Caccioppoli set in R3 and let � � R3 be an open set. We say
that E is stationary and stable in � with respect to the energy E� if the following two
conditions hold:

(i) For every admissible (as in Definition 1) volume-preserving ambient deforma-
tion  t , with initial speed compactly supported in �, (2.1) and (2.2) hold.

(ii) Let U �� � be such that @E \U is given by one of the three structures (a), (a’),
or (b). Then, the stationarity and stability inequalities given in Definition 5 hold
for any choice of “coalescence” or “break-up” volume-preserving deformation
in U .

We can now state our main result in precise form.

Theorem 2.6. Let � be an open set in R3, g W � ! R be analytic, and let E be a
set of locally finite perimeter (Caccioppoli set) in R3. Assume that E is stationary and
stable in � with respect to E� in the sense of Definition 6. Then, @�E \� is a smoothly
embedded (analytic) surface. (Moreover, the mean curvature vector of @�E \ U is given
by .g � �/�E for some � 2 R that possibly depends on the connected component of E,
with �E denoting the unit outer normal to E).

Summary of the proof of Theorem 2.6. The proof of Theorem 2.6 (informally outlined in
Sections 2.1 and 2.2) will be given in the next three sections. In Section 3 we verify the
claim that the first variation of j@�Ej � is inL1. In Section 4 we show that structures (a)
and (b) are prevented by the stationarity assumption in condition (ii) of Definition 6. These
two facts, together with condition (i) of Definition 6, verify the validity of the hypotheses
of Theorem 2.2, whose conclusion reduces the proof of Theorem 2.6 to the analysis of
structure (a’). Structure (a’) will be ruled out in Section 5 thanks to the stability assump-
tion in condition (ii) of Definition 6.
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Remark 2.7 (The case of minimisers). The case of energy-minimisers has a long and
fruitful history. The local minimising conditions for E in an open set U entails a compar-
ison with Caccioppoli sets that coincide with E in the complement of U and are L1-close
to E. Such a condition easily implies the assumptions made in Theorem 2.6, hence The-
orem 2.6 recovers the regularity conclusions known for minimisers (see, e.g., [16,17,19]).
We point out that, under a minimising assumption, density estimates analogous to those
in [19, Theorem 16.14] play a key role in the regularity theory. The proof of these density
estimates, however, makes use of the comparison argument with a “competitor” Cacciop-
poli set that is L1-close to E. The competitor is built by (roughly speaking) cutting off the
part of E contained in a small ambient ball (and balancing the volume constraint some-
where else). This operation does not give rise to a deformation that can be visualised as a
concrete liquid movement, since @�E is of unknown structure in said ball.

Remark 2.8. In contrast to the case of minimisers, the notions of stationarity and sta-
bility put an emphasis on the evaluation of derivatives of a certain order (one or two,
respectively) along admissible deformations. We note explicitly that, given an admiss-
ible deformation with non-zero initial speed, composing with a time-reparametrisation of
infinite initial speed, such as k

p
t , changes the order of differentiation to which non-zero

derivatives are detected; note that this composition is not in our admissible class (and has
infinite initial speed on an open set).

Remark 2.9 (Curvature bounds). In Section 6 we will discuss boundedness properties
of jA@E j in the conclusions of Theorem 2.6.

Remark 2.10. The variational assumptions of Theorem 2.6 can be weakened as explained
in Appendix A.

3. Volume-constraint as Lagrange multiplier

We prove the claim in Section 2.1 which states that (2.1) leads to the L1 condition on the
first variation and to the fact that the generalised mean curvature is .g � �/�.

Let E be a Caccioppoli set in RnC1 and U be an open set. Recall that (see, e.g., [19,
Theorem 17.5 and Proposition 17.8]), for an ambient deformation  t in U with initial
velocityX 2 C 1c .U IR

nC1/, the first variation of perimeter in U is given by
R
@�E

div@�EX
and the first variation of

R
E
g is given by

R
@�E

gX � �, where � is the outer unit normal
to @�E. In particular, the first variation of

R
E
1 D jEj is given by

R
@�E

X � �. These first
variations are thus independent of the particular deformation; they only depend on the
initial velocity. We have the following result:

Proposition 3.1. Let E be a Caccioppoli set in RnC1 and U � RnC1 an open set. The
following are equivalent:

(i) E is stationary in U with respect to the functional EU .�/ for volume-constrained
ambient deformations in U ;
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(ii) there exists � 2 R such that E is stationary in U with respect to the functional
EU .�/ � �j � \U j for arbitrary ambient deformations in U .

An analogous equivalence is proved in [19, Theorem 17.20] (in the case g � 0;
however, the argument extends to arbitrary g) for the more restrictive class of volume-
constrained minimisers “among Caccioppoli sets”, or (with the same proof) for volume-
constrained local minimisers, that is, for Caccioppoli sets E that minimise the perimeter
among Caccioppoli sets of the same volume that are close to E in the L1-topology. Since
we are interested in stationarity for ambient deformations (which are more restrictive than
deformations with respect to theL1-topology), we adapt the arguments of [19] in the proof
below, adapting also in Step 1 an argument from [1, Lemma 2.4].

Proof. Step 1. Let X 2 C 1c .U IR
nC1/ be such that

R
@�E

X � � D 0. Then, there exists
an ambient deformation  t of E that is volume-preserving in U and has initial velocity
d t
dt
jtD0 D X . To see this, choose any Y 2 C 1c .U IR

nC1/ such that
R
@�E

Y � � ¤ 0. Con-
sider the 2-parameter family of diffeomorphisms Id C tX C sY , for s; t 2 .� "; "/, with
" > 0 sufficiently small. The function .t; s/ ! j.Id C tX C sY /.E/ \ U j is of class
C 2..� "; "/ � .� "; "//. Indeed, the value of the volume at .t; s/ is given by

R
U
�E ı

.Id C tX C sY /�1, where �E is the characteristic function of E; changing variable
and computing the Jacobian of the diffeomorphism x ! x C tX.x/ C sY.x/, we can
rewrite the volume at .t; s/ as

R
U
�E .1C t divX C s divY CO.s2/CO.t2//, withO.s2/

and O.t2/ continuous in x and smooth in t; s. This also implies that the partial derivative
@
@s
j.t;s/D.0;0/j.Id C tX C sY /.E/ \ U j is

R
U
�E divY D

R
@�E

Y � � ¤ 0 (by definition
of @�E). By the implicit function theorem, the level set ¹.t; s/ W j.Id C tX C sY /.E/\U j
D jE \ U jº is of the form ¹.t; s.t/º for some C 1 function s.t/ (in fact, also C 2) defined
on a possibly smaller interval t 2 .� "0; "0/; moreover, s0.0/ D �

R
@�E X ��R
@�E Y ��

D 0. We thus
obtain that t D Id C tX C s.t/Y is a volume-preserving ambient deformation inU with
initial velocity X C s0.0/Y D X .

Step 2. Let us prove (in Steps 2, 3, and 4) that statement (i) implies statement (ii).
Given X as in Step 1, the stationarity assumption on E gives that the first variation of EU
is 0 along the deformation  t exhibited in Step 1. The expression of the first variation
of EU agrees with the one computed along any ambient deformation (not necessarily
volume-preserving) with initial velocityX , as recalled before the statement of the Propos-
ition. We have therefore proved that, for X 2 C 1c .U IR

nC1/ such that
R
@�E

X � � D 0, the
first stationarity condition in the proposition implies that

R
@�E

div@�EX C
R
@�E

gX � �D 0.
Note that this identity is also obtained from the stationarity condition in statement (ii),

when employing a deformation with initial speedX , regardless of the choice of � (because
the first variation of �j � \U j is �

R
@�E

X � �, which vanishes for the given X ).
Step 3. We prove the following: Assume that E satisfies the stationarity condition in

statement (i). LetX;Y 2 C 1c .U IR
nC1/ be such that

R
@�E

X � � ¤ 0,
R
@�E

Y � � ¤ 0. Then,R
@�E

div@�EX C
R
@�E

gX � �R
@�E

X � �
D

R
@�E

div@�EY C
R
@�E

gY � �R
@�E

Y � �
:
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(In particular, all such ratios are equal to a common value � 2 R.) To see this, define the
vector field

T D X �

R
@�E

X � �R
@�E

Y � �
Y:

Then,
R
@�E

T � � D 0, and T 2 C 1c .U I R
nC1/. By Step 2, we have

R
@�E

div@�ET CR
@�E

gT � � D 0. Substituting for T , the conclusion follows.
Step 4. By Step 3, there exists a scalar � 2 R such that

R
@�E

div@�EX C
R
@�E

gX � � �

�
R
@�E

X � � D 0 for every X such that
R
@�E

X � � ¤ 0. The same identity holds for X
with

R
@�E

X � � D 0 as well, as proved in Step 2. This amounts to the stationarity of E for
any ambient deformations with respect to the functional EU � �jE \ U j. We have thus
proved that statement (i) implies statement (ii).

Step 5. Given an arbitrary volume preserving ambient deformation  t , its initial velo-
city d

dt
jtD0 t satisfies

R
@�E

. d
dt
jtD0 t / � �D 0. The stationarity condition in statement (ii)

reduces to the one in statement (i) for such a vector field, hence statement (ii) implies
statement (i).

As a consequence (see, e.g., [19] or [3, Remark 2.19]), we get the following:

Proposition 3.2. For � 2 R, let E be stationary with respect to EU .�/ � �j � \U j for
arbitrary ambient deformations in U . Then, the first variation (in the varifold sense)
of j@�Ej U is in L1 with respect to Hn .@�E \ U/, and its density – that is, the
generalised mean curvature of @�E in U – is given by .g � �/�, where � is the measure-
theoretic unit outer normal to E in U .

4. Ruling out (a) and (b) by first variation

In this section we will show that configurations (a) and (b) are ruled out by the stationarity
assumption of Theorem 2.6, specifically by the stationarity requirement in Definition 5.

In case (a), choosing U and the coordinate system as in Section 2, we denote by T the
1-submanifold (connected curve) of coincidence and assume that D1; D2 are graphs of
smooth functions u1 � u2 over the plane ¹x3 D 0º, that is tangent to both graphs at 0 2 T ,
and with D1 \D2 D T . The set E is either (Case 1) the union of the subgraph of u1 and
the supergraph of u2 (as in the top left picture in Figure 3), or (Case 2) it is the set of
points that lies between the two graphs (as in the bottom left picture in Figure 3); in either
case, xE is connected in the neighbourhood U that we are analysing, and therefore (by
Proposition 3.1) stationary, for arbitrary ambient deformations, with respect to EU .�/ �

�j � \U j. We note that E is stationary in U with respect to PerU .�/C
R
�\U

g � �j � \U j

if and only if R3 n E is stationary in U with respect to PerU .�/ �
R
�\U

g C �j � \U j.
Therefore, upon redefining � and g by a change of sign, we can (and do) assume that we
are in Case 2.
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Figure 3. Top row: virtual deformation “coalescence”. Bottom row: virtual deformation “break-
up”. The boundary is deformed in the same way in both cases. The picture depicts cross sections
with starting configuration (a), in which case one should imagine cylinders over the given figures.
Alternatively, the same cross sections can be obtained with starting configuration (a’), as in the
example of two spherical caps touching at a point.

Stationarity with respect to PerU .�/ C
R
�\U

g � �j � \U j for ambient deformations
implies that @E n T is smooth and has mean curvature .g � �/�, for a � 2 R, where11 � is
the outer unit normal to E. Let @E D �1 [ �2 and E D F1 [ F2 be the decompositions
such thatF1;F2 are open sets with @Fj D�j for j 2 ¹1;2º andF1 \F2D;, xF1 \ xF2D T ;
here �1 D A1 [ A3 [ T and �2 D A2 [ A4 [ T , with notations as in Section 2. (With
reference to the bottom left picture of Figure 3, F1 and F2 are the two cuspidal domains
on the left and on the right of the touching curve T , respectively.) The set F1 [ F2 is
stationary for arbitrary ambient deformations with respect to PerU .�/C

R
�\U

g � �j � \U j.
We will show however, in a first instance, that neither F1 nor F2 is (separately) stationary
for volume-preserving ambient deformations, with respect to PerU .�/C

R
�\U

g.
The condition that the mean curvature on the smooth parts of �j is .g � �/� (where �

is the outer unit normal to Fk) implies already that, for each k 2 ¹1;2º, Fk is not stationary
for arbitrary ambient deformations with respect to PerU .�/C

R
�\U

g � �0j � \U j if �0 ¤ �.
We therefore only need to prove that, for each k 2 ¹1; 2º, Fk is not stationary for arbitrary
ambient deformations with respect to PerU .�/C

R
�\U

g � �j � \U j. Then, Proposition 3.1
will imply that Fk is not stationary, for volume-preserving ambient deformations, with
respect to PerU .�/C

R
�\U

g.
We analyse the first variation of area for the integral varifold j@�Fkj D jAkj C jAkC2j,

for each k 2 ¹1; 2º. This varifold is given by the sum of (the multiplicity-1 varifolds
associated to) two smooth surfaces-with-boundary (the boundary is T for both). The first

11It is easily checked via the maximum principle (see, e.g., [4, Proposition 3.2]), that the mean curvature
vector of @E points to the exterior of E in Case 2, in a neighbourhood of T ; hence, one must have � < g
in a neighbourhood of T – we do need to use this fact.
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variation is additive, so we compute it separately for jAkj and jAkC2j and add up the res-
ults. We compute the first variation ı.jAkj/.X/ (evaluated on a vector field X 2 C 1c .U /)
by decomposing the vector field into normal and tangential components, then using the
divergence theorem for the latter, and [24, Chapter 2, §9] for the former. We obtain
�
R
.g � �/� � XdH2 Ak �

R
yn � Xd.H1 T / (interior and boundary terms, respect-

ively), where yn is the inward conormal at the boundary, that is, the unit vector orthogonal
to T , tangent to D1 and D2, pointing into Ak . Adding this to the analogous expression
for ı.jAkC2j/, we obtain that the first variation of area ı.j@�Fkj/ is (represented by) the
vector-valued Radon measure

�.g � �/H2 .�k n T /� � 2.H
1 T /yn:

With this in mind, we can exhibit an ambient deformation of Fk that decreases the
functional PerU .�/ C

R
�\U

g � �j � \U j to first order (for k fixed). Let xn be a smooth
extension of yn to U . Such an extension is possible, by taking the initial U smaller if
necessary. Let � 2 C 1c .U / with � � 0 and � � 1 on B , where B is an open ball centred
at 0. DefineX 2C 1c .U IR

3/ byX D �xn. Then, the first variation with respect to PerU .�/CR
�\U

g � �j � \U j evaluated on X is given by (using the first variation formula [19, Pro-
position 17.8] for the potential and volume terms)Z

�knT

.� � g/� �X � 2

Z
T

yn �X C

Z
�knT

g� �X �

Z
�knT

�� �X D �2

Z
T

yn �X < 0

by the choice of X (with integration with respect to H1 on T and H2 on �k n T ).
The above statement implies (through Proposition 3.1) the existence of ambient vol-

ume-preserving deformations, separately for F1 and F2, that decrease to first order EU .
Such volume-preserving deformations can be built with initial velocity still equal toX in a
neighbourhood of T . For that, it suffices (for each k) to combine the previous deformation
of Fk with another ambient deformation of Fk that only acts inside a compact subset
U n .T [ B/ and that balances the volume-constraint (this corresponds to a choice of
Y 2 C 1c .U n .T [ B// in Step 3 of the proof of Proposition 3.1). Let F t1 and F t2 be the
two volume-preserving deformations obtained, with t 2 Œ0; "/ and F 01 D F1, F 02 D F2.
By construction xF t1 \ xF

t
2 � T .

Denote by �.t;x/, for t 2 Œ0; "/ and x 2U , the 1-parameter family of diffeomorphisms
inducing F t1 , that is, �.t; F1/ D F t1 . Recall (in the notation of Section 2) the map  LR
defined on the disjoint union of discs DL [DR with image  LR.DL/ D @F1 D �1 and
 LR.DR/D @F2D �2. We define‰L W Œ0; "/�DL!U by‰L.t;x/D �.t; LRjDL.x//;
then, ‰L.¹tº � DL/ D @F t1 and ‰L.¹0º � DL/ D  LRjDL . Similarly, we obtain ‰R W
Œ0;"/�DR!U with‰R.¹tº �DR/D @F t2 and‰R.¹0º �DR/D LRjDR . Define‰LR W
DL [DR ! U to coincide with ‰L on DL and with ‰R on DR. Then, ‰LR.t; �/ is an
embedding away from �1LR.T / (using that xF t1 \ xF

t
2 � T ). Hence,‰LR is a deformation of

break-up type, as in Definition 2 (bottom row of Figure 3). (Note also that the initial speed
for this deformation is bounded.) By construction, EU decreases to first order at t D 0C,
so ‰LR contradicts the stationarity assumption of Definition 5.
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Figure 4. Top row: virtual deformation “break-up”. Bottom row: virtual deformation “coalescence”.
The boundary is deformed in the same way in both cases. The starting configuration is (b) (one
should consider cylinders over the depicted sets).

Remark 4.1. In Case 1, the sets F1 and F2 that we introduced above satisfy the equality
F1 [ F2 D U n xE and the exact same argument leads to a volume-preserving deformation
of coalescence type that contradicts stationarity (top row of Figure 3).

Passing to case (b), stationarity for ambient deformations (and the fact that xE \ U
is connected) implies that there exists � 2 R such that mean curvature is .g � �/� on
.@E n T /\ U , where � is the outer unit normal. Upon redefining g and � (by a change of
sign) if needed, we assume that each wedge of E \U has an angle smaller than � at 0 (in
the slice orthogonal to T at 0), where by “wedge” we mean each connected component of
the interior of E \ U . This is possible because an angle greater than or equal to � cannot
be present simultaneously for E and for U n E. We choose the indexation of Lk in the
decomposition given in (b) so that each wedge is bounded by Lk [ LkC1 with k odd.

Then, for each fixed odd k, the (open) wedge W bounded by Lk [ LkC1 admits a
one-sided ambient deformation ¹W tºt2Œ0;"/ that is volume-preserving, has bounded initial
speed, and decreases to first order the energy PerU .�/ C

R
�\U

g. The initial speed can
be chosen to point towards the interior of W along T , therefore we can ensure that the
closures of any two (distinct) deformed wedges only intersect at points of T . All of this
follows by arguments very similar to those used to treat (a), which essentially come down
to the observation that the leading term in the first variation for each single wedge is
the boundary contribution at T (of each surface-with-boundary Lj ), and it points to the
exterior of the wedge thanks to the condition that the opening angle is less than � . (So
that pushing a wedge to its interior in a neighbourhood of 0 2 T will decrease the energy.)
We then produce, by taking the union of the ambient deformations for each wedge, a
non-ambient volume-preserving deformation of E \ U , with bounded initial speed, of
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break-up type (as in Definition 4) that decreases EU to first order (top row of Figure 4).
If we had passed to the complement of E in the beginning, then this would have been a
coalescence-type deformation for E (bottom row of Figure 4).12

In conclusion, we have proved that (a) and (b) cannot be present in � under the
assumptions of Theorem 2.6, specifically under the stationarity condition of Definition 5.

5. Ruling out (a’) by second variation

In Section 4 we have proved that under the assumptions of Theorem 2.6, configurations (a)
and (b) are nowhere present in �. This, together with Proposition 3.2, ensures that the
assumptions of Theorem 2.6 imply those of Theorem 2.2 and lets us conclude that @E \�
is smoothly embedded except possibly at isolated points, around which the only possible
structure is (a’). To complete the proof of Theorem 2.6, we only need to establish Propos-
ition 2.4 – that is, we prove that configuration (a’) violates the equilibrium assumptions
of Theorem 2.6. More precisely, we will show that it violates the stability condition of
Definition 5.

Assume that in the open set U �� � we have that @E \ U is as in (a’). Note that
both xE \ U and U nE are connected (regardless of which is E \ U and which is its
complement). By choosing coordinates suitably, we fix U to be the cylinder B23R.0/ �
.�R;R/ � R2 � R, for R > 0, and @E \ U D graph.u/ [ graph.v/ with u � v, u; v 2
C 2.B3R/, u.0/ D v.0/ D 0, Du.0/ D Dv.0/ D 0, u < v on B23R.0/ n ¹0º. We will use
Cartesian coordinates .x;y;z/ and cylindrical coordinates .r;�;z/. To lighten notation, we
will also writeB2s forB2s .0/. There exists � 2R for which condition (ii) of Proposition 3.1
holds; as in Section 4, we can make the choice that E \U is given by the regions below u

and above v, upon changing sign to g and � if needed. The graphs of u; v then have
mean curvatures .g � �/ and �.g � �/ respectively, with respect to the upward pointing
normal.13 By choosing R sufficiently small, we ensure that supB2s juj; supB2s jvj < s and
that the areas of graph.u/ \ .B2s � .�s; s// and graph.v/ \ .B2s � .�s; s// are bounded
by 2�s2 for all s � R.

12If the acute angle condition is valid for all wedges of E and for all wedges of U n E, then our
proof, repeated for E and for U n E, gives both a coalescence and a break-up deformation of E that
reduce energy. If the acute angle condition is valid for E but not for U n E, then our proof produces only
a break-up deformation of E, while if the acute angle condition is valid for U n E but not for E, then
our proof produces only a coalescence deformation. In fact, even in the latter two cases, it is possible to
decrease energy both by a coalescence and by a break-up deformation, however the proof given needs to
be modified: one has to consider the case in which a (single) wedge has opening angle larger than � ; its
contribution to the first variation would be dominated by the contribution coming from another wedge that
has an acute angle.

13The condition on the mean curvature is verified thanks to Proposition 3.2 at any point ¤ 0, since for
a smooth surface the classical mean curvature agrees with the generalised mean curvature in the varifold
sense; by the smoothness of u; v, and g, the conclusion extends across 0 for each graph. We note that, by
the maximum principle, it must hold � > g.0/ for this configuration to arise; however, we will not make
use of this fact.



Embeddedness of liquid-vapour interfaces 549

Denote by @r the vector field .x;y;0/p
x2Cy2

onU n ¹xD y D 0º. Let � be a smooth function

on B23R.0/ � .�R;R/, independent of the variable z, with 0 � � � 1, and that is identic-
ally 1 on r � R0 and identically 0 on r � 2R0, with R0 2 .0;R=6/ to be chosen. We will
consider the vector field �@r on U n ¹x D y D 0º. Let ˆt , for t 2 .0; R0=2/, denote the
flow associated to �@r . This means that ˆt .x/ D 
.t/, where 
 solves 
 0.t/D �.
.t//@r ,

.0/ D x 2 U n ¹x D y D 0º (that is, 
 is the flow line of �@r starting at x). Then,
¹ˆtºt2Œ0;R0=2/ is a one-sided 1-parameter family of diffeomorphisms, with ˆt mapping
.B23R n ¹0º/� .�R;R/ onto .B23R nB

2
t /� .�R;R/. Also note thatˆt ıˆs DˆtCs , since

the vector field is time independent. Moreover, ˆ0 D Id and, for every t 2 .0; R0=2/,
ˆt D Id on the cylinder ¹r � Rº. This family of diffeomorphisms induces a one-sided
deformation zMt ofM0 D graph.u/ n ¹0º, namely zMt Dˆt .M0/. Note that the restriction
of zMt to the cylinder ¹r 2 .t; t CR0=2�º is the graph of u.r � t; �/ (in cylindrical coordin-
ates). Roughly speaking, the deformation opens up a hole at 0 and pushes graph.u/ n ¹0º
radially in the horizontal .x; y/-directions, with no vertical displacement. We will con-
sider zMt as an embedded surface in U . Then, zMt does not intersect the cylinder ¹r < tº.
The closure zM t is a surface-with-boundary in U ; the boundary @ zMt in U is the circle
¹r D t; z D 0º and �@r is the unit outer conormal (to zMt ) on the boundary.

The idea is to combine the one-sided deformation zMt of graph.u/ n ¹0º with an ana-
logous deformation zNt D ˆt .N0/ of N0 D graph.v/ n ¹0º; since @ zNt D @ zMt this gives
rise to a coalescence-type deformation zM t [ zN t of @E \U inU . (Note that zMt \ zNt D;

for all t .) We denote by zEt the Caccioppoli set that agrees withE in the complement of U
and is given, in U , by

zEt \ U D ˆt
�
.E \ U/ n

®
.0; 0; z/ W jzj < R

¯�
[
�
xB2t .0/ � .�R;R/

�
;

noting that the boundary of zEt in U is given by zM t [ zN t . (To see that zEt is well-defined,
recall that ¹r < tº � ¹jzj > tº is contained in E for all t � R0=2, by the initial choice
of U , and note that zEt D E in a neighbourhood of @U for all t � R0=2.) In order to
ensure the volume-preserving condition, we will modify this deformation in the cylinder
¹2R < r < 3Rº � .�R;R/, in which zEt D E for all t .

For this purpose, we analyse the function V .t/ D j zEt \ U j. The first variation of
volume at t D 0C, V 0.0/, is not affected by the volume of the cylinder ¹r � tº � .�R;R/
(which we included in zEt ), since this volume is 2�Rt2, so its rate of change at t D 0C

is 0. Hence, V 0.0/ is the same as the first variation of volume forˆt ..E \U/ n ¹.0; 0; z/ W
jzj < Rº/ at t D 0C. Recall that ˆt is a diffeomorphism of .B23R n ¹0º/ � .�R;R/ onto
.B23R nB

2
t /� .�R;R/. Then, the first variation of volume can be computed as in the proof

of [19, Proposition 17.8] and is equal to
R
E\.Un¹.0;0;z/Wjzj<Rº/

div.�@r /. This divergence
is bounded by 1=r in a neighbourhood of ¹.0; 0/º � .�R; R/, and is thus summable on
the given domain. Approximating this integral by

R
E\.Un¹.r;z/Wjzj<R;r<�º/

div.�@r / with
� > 0, �! 0, we can use the divergence theorem to obtain that the first variation of V is
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given by

V 0.0/ D lim
�!0

Z
@�E\.Un¹.r;z/Wjzj<R;r<�º/

� � .�@r /C lim
�!0

Z
@¹.r;z/Wjzj<R;r<�º/

.�@r / � .�@r /:

Here .�@r / in the second integral and � in the first integral give the unit outer normal
to E \ .U n ¹.r; z/ W jzj < R; r < �º/ on the respective boundary portions. The second
integral is bounded in absolute value by 4��R, hence the first variation of volume is
V 0.0/D

R
graph.u/ �@r � � C

R
graph.v/ �@r � �. We note from this expression that V 0.0/ tends

to 0 as R0 ! 0.
We will also need to compute V 00.0/. To that end, we begin by showing that

V 0.t/ D
R
zMt[ zNt

�� � @r for all t > 0. This is seen as follows: recall that ˆs is a diffeo-
morphism from .B23R n B

2
t / � .�R;R/ onto .B23R n B

2
tCs/ � .�R;R/ and that ˆt ı ˆs

D ˆsCt . Then, for any t > 0 the derivative V 0.t/ can be computed as sum of two terms:

d

ds

ˇ̌̌
sD0C

ˇ̌
ˆs
�
zEt \ ..B

2
3R n B

2
tCs/ � .�R;R//

�ˇ̌
C
d

ds

ˇ̌̌
sD0C
jB2tCs � .�R;R/j:

The first term (using [19, Proposition 17.8], with the function g therein replaced by the
constant 1), is equal to

R
zEt\..B

2
3RnB

2
t /�.�R;R//

div.�@r /. We use the divergence theorem
on this integral (leading to the first two terms on the right-hand side of the next identity,
in which � and �@r are the outer unit normal on the two respective boundary portions). In
conclusion,

V 0.t/ D

Z
@ zEt\..B

2
3RnB

2
t /�.�R;R//

�@r � � C

Z
@B2t �.�R;R/

�@r � .�@r /C

Z
@B2t �.�R;R/

1:

Since �D 1 on @B2t � .�R;R/, the second and third integrals cancel each other; note also
that @ zEt \ ..B23R n B

2
t / � .�R;R// D @

zEt \ U D zMt [ zNt . Thus, as claimed (with �
denoting the outer unit normal to zEt ),

V 0.t/ D

Z
zMt

�@r � � C

Z
zNt

�@r � �:

(Also note that V 0.t/! V 0.0/ as t ! 0C, so V is at least C 1.Œ0; R0
2
//.)

We now compute V 00.0/ by differentiating the expression obtained for V 0.t/. We get14,
for t � 0,

V 00.t/ D

Z
zMt[ zNt

�2.� � @r /. EHt � @r /C

Z
zMt[ zNt

d

dt
.�� � @r /;

14With zMt D ˆt .M0/, ˆt .x/ D ˆ.t; x/, and ˆtˆs D ˆtCs as above, let v W Œ0; "/ �Mt ! R be
smooth (in the sense that v.t; ˆt .x// is smooth in t and x on M0). We have the following first variation
formula:

d

dt

Z
zMt

v dHn
D �

Z
zMt

v EH zMt
� EVt dH2

C

Z
@ zMt

vyn � EVt dH1
C

Z
zMt

dv

dt
dH2; (5.1)

with EVt D dˆ
dt

, yn the outward unit conormal at @ zMt , and EH zMt
the mean curvature vector of zMt . The

derivative dv
dt

at t D t0 is, explicitly, d
ds
jsD0v.t0 C s; ˆt0Cs.x//. The formula for arbitrary t follows once

it is proved at t D 0, thanks to ˆtˆs D ˆtCs . The formula for t D 0C is obtained by following the proof
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where EHt stands for the (classical) mean curvature vector of zMt [ zNt . In particular,
V 2 C 2.Œ0; R0

2
//. Moreover, we estimate

jV 00.0/j �

Z
M0[N0

�2j EH j C

Z
M0[N0

ˇ̌̌ d
dt

ˇ̌̌
tD0C

.�@r /
ˇ̌̌
C

Z
M0[N0

ˇ̌̌d�
dt

ˇ̌̌
tD0C

ˇ̌̌
;

where EH stands for the (classical) mean curvature vector ofM0 [N0. For the last term, the
integrand is, explicitly, j d

dt
jtD0C� zMt

.ˆt .x//j with x 2M0, or j d
dt
jtD0C� zNt .ˆt .x//j with

x 2 N0; here we have temporarily indicated the dependence of � on t , when using � zMt
,

or � zNt . We estimate this by direct computation, noting that � zMt
is the unit vector ortho-

gonal to the tangent space to zMt Dˆt .M0/ (similarly for � zNt and zNt Dˆt .N0/). Denot-
ing by D the derivatives in the space variables x, we have d

dt
Dˆ D D d

dt
ˆ D D.�@r /,

from which we find jd�
dt
jtD0C j �C jD.�@r /j, for a dimensional constantC . For the second

term on the right-hand side, differentiating in t the composition .�@r / ı ˆt .x/, we sim-
ilarly obtain j d

dt
jtD0C.�@r /j � jD.�@r /j. Recall now that EH is bounded, jD@r j � C=r

is summable, the area of M0 [ N0 is bounded by 2�R20 in the set where � ¤ 0, andR
M0[N0

jD�j tends to 0 as R0 ! 0 (D� is bounded by 2
R0

on an annulus of area at
most 2�R20 and vanishes otherwise). In particular, we see that V 00.0/ tends to 0 asR0! 0.

Relevant volume-preserving coalescence deformation. Consider the two subdomains U1
D B2R � .�R;R/ and U2 D .B23R n xB

2
R/ � .�R;R/. By construction, zEt and E coincide

in U2. Let �0 2 C 1c .M0 \ U2/ be such that
R
M0
�0 ¤ 0 (this choice is independent of R0).

Set � D �V 0.0/R
M0

�0
�0, so that

R
M0
.��/ � � D �V 0.0/, and extend �� to a vector field in U2,

compactly supported away from N0 \ U2. Following the argument in [1, Lemma 2.4]
(also recalled in Step 1 of the proof of Proposition 3.1), we pick another vector field
Y 2 C 1c .U2 n N0/ such that

R
M0
Y � � ¤ 0 (the choice of Y is independent of R0) and

construct, for t 2 .�t0; t0/ for some t0 > 0, an ambient deformation ‰t D Id C t�� C
s.t/Y with s.0/ D 0 and s0.0/ D 0, that is, with initial speed ��, and such that j‰t .E/ \
U2j � jE \ U2j D �V .t/C jE \ U j. This follows from the implicit function theorem,
by considering the level set ¹f .t; s/ D f .0; 0/º for the function f .t; s/ D j.Id C t�� C

of the usual first variation formula (of area), for the surface-with-boundary zMt in U (see [24]) with the
following modification: by means of the area formula,

R
zMt
v dHn D

R
M0
v.t; ˆt .x//jJ‰t j dHn, where

‰t D ˆt jM0 . Then, differentiating in t givesZ
zMt

v.t; ˆt .x//
� d
dt
jJ‰t j

�
dHn

C

Z
zMt

� d
dt
v.t; ˆt .x//

�
jJ‰t j dHn:

Evaluating the derivative at t D 0C, the first of these two terms is treated exactly as in the classical proof of
the first variation formula [24] and gives �

R
M0
v EHM0 �X0 dH2 C

R
@M0

vyn �X0 dH1. The second term
gives

R
M0

dv
dt
jtD0C dH2.

In our case, EVt D �@r (independently of t ) and v D �@r � �, where � is the unit normal to zMt . We have
@r � � D 0 on @ zMt , hence the second term in the formula vanishes. The computation for zNt is identical.
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sY /.E/\U2j C V .t/, noting that @f
@s
.0;0/D

R
M0
Y � �¤ 0. Then, the level set is described

by .t; s.t// for t 2 .�t0; t0/; moreover,

s0.0/ D
�
@f
@t
.0; 0/

@f
@s
.0; 0/

;

which vanishes because @f
@t
.0; 0/ D V 0.0/C

R
M0
.��/ � � D 0. (In fact, for t0 sufficiently

small, s.t/ is C 2, since f is C 2 in .s; t/.)
We will employ this deformation for t 2 Œ0; t0/ (note that ‰t .M0/ remains disjoint

from N0 for all t � t0). Combining the deformation ‰t , which only acts in ¹2R < r <

3Rº�.�R;R/, with the deformation zEt introduced above, which only acts in ¹r < Rº �
.�R;R/, we obtain a deformation Et of E that is volume preserving in U . The boundary
ofE in U is given by xMt [ xnt , whereMt is equal to zMt in ¹r < 2Rº � .�R;R/ and equal
to ‰t .M0/ in ¹2R � r < 3Rº � .�R;R/, while Nt D zNt . Recalling that V 0.0/! 0 as
R0 ! 0 (�0 and � are fixed), we note that supU2 j��j and supU2 jD.��/j can be made
arbitrarily small by choosing R0 sufficiently small.

The deformation ¹Etºt2Œ0;t0/ is of coalescence type: @Et \ U is the image of a C 1

map  t W S1 � .�1; 1/! U , of class C 2 in t , whose differential is allowed to vanish (for
each t ) on S1 � ¹0º, and that is a smooth embedding away from the image of S1 � ¹0º
(as required in Definition 3). At t D 0 the circle S1 � ¹0º is mapped to 0, while for t > 0
it is mapped to @Mt D @Nt . The initial speed of the deformation just exhibited is given
by X D �@r C ��. This is a well-defined R3-valued map on S1 � .�1; 1/ (and bounded
as in Definition 5). We remark that on S1 � ¹0º it fails to be identifiable with an ambient
vector field in U ; at .p; 0/ 2 S1 � .�1; 1/ the vector field is given by p

jpj
, thinking of

p 2 S1 � R2 � ¹0º � R3. We stress that the speed of the deformation @Et \ U1 is equal
to �@r (as a vector field on S1 � .�1; 1/), and thus independent of t 2 Œ0; t0/; the speed of
@Et \U2 is equal to �� C s.t/Y , and hence dependent on t (the latter is also well-defined
as a vector field on U2).

The volume-preserving condition implies, arguing as we did for V 0.0/ (using the
approximation argument with �! 0), thatZ

graph.u/
X � � C

Z
graph.v/

X � � D 0:

In view of forthcoming arguments, we compute also s00.0/. Since we have @f
@t
D 0 at

.t; s/ D .0; 0/, the implicit function theorem gives

s00.0/ D
�
@2f

@t2

@f
@s

;

with the derivatives on the right-hand side evaluated at .t; s/D .0; 0/. In order to compute
the quantity @2f

@t2
.0; 0/, we recall the expansion of the determinant close to the identity;

see [19, (17.11)]. We then argue as in the proof of [19, Proposition 17.8], with g therein
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replaced by the constant 1, and also keeping in our computation the terms (of the determ-
inant expansion) that are quadratic in t : we thus obtain that j.Id C t��/.E/\U2j � jE \
U2j D

R
Et\U2

1 �
R
E\U2

1 is given by
R
E
t div.��/ C t2

2
..div.��//2 � trace.D.��//2/

C o.t2/. Hence,

@2f

@t2

ˇ̌̌
.t;s/D.0;0/

D V 00.0/C

Z
E\U2

.div.��//2 �
Z
E\U2

.trace.D.��//2/:

All three terms tend to 0 as R0! 0: for V 00.0/, this was shown earlier; for the second and
third terms, this follows from the fact (see above) that supU2 j��j and supU2 jD.��/j tend
to 0 as R0 ! 0. The denominator @f

@s
is determined by the choice of Y (so independent

of R0). In conclusion, s00.0/! 0 as R0 ! 0.

First variation. We will now check that the first variation of the functional EU .Et / D

PerU .@�Et /C
R
Et\U

g at t D 0C (along the deformation ¹Etºt2Œ0;t0/ just constructed) is

d

dt

ˇ̌̌
tD0C

EU .Et / D�

Z
graph.u/

EH �X C

Z
graph.u/

g� �X

�

Z
graph.v/

EH �X C

Z
graph.v/

g� �X; (5.2)

where EH stands for the mean curvature vector (of graph.u/ and graph.v/, respectively,
in the two corresponding integrals). It is convenient to compute the above first variation
separately in the two subdomains U1 D B2R � .�R;R/ and U2 D .B23R n xB

2
R/� .�R;R/.

(We recall that Et and E coincide in a neighbourhood of @B2R � .�R; R/.) The first
variation in U2 is given by the well-known formulae (see [1, 19]), since in this domain
the deformation is an ambient one, induced by a 1-parameter family of diffeomorphisms
whose initial speed is the vector field �� 2 C 1c .U2/. We thus obtain

d

dt

ˇ̌̌
tD0

EU2.Et / D�

Z
graph.u/

� EH � � C

Z
graph.u/

g�� � �

�

Z
graph.v/

� EH � � C

Z
graph.v/

g�� � �:

In U1 the initial speed �@r is not compactly supported in U1, and the deformation
moves the boundary of Mt and Nt . For future purposes, for U1 it will be convenient to
compute the first variation for an arbitrary t . Recalling that Et \ U1 D ˆt .E \ U1/ [

. xB2t � .�R;R//, and using that ˆs ıˆt D ˆsCt , the first variation at t 2 Œ0; t0/ in U1 is
given by (as we will justify below)

d

dt
EU1.Et / D�

Z
Mt

EH � .�@r /C

Z
@Mt

En � .�@r /C

Z
Mt

g� � .�@r /

�

Z
Nt

EH � .�@r /C

Z
@Nt

En � .�@r /C

Z
Nt

g� � .�@r /; (5.3)
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where EH stands for the mean curvature vector (of Mt and Nt , respectively, in the two
corresponding integrals) and En is the unit conormal at @Mt (for the surface-with-boundary
Mt \ U ) pointing away from Mt , or the unit conormal at @Nt , pointing away from Nt .
By construction, @Mt D @Nt is the circle in the .x; y/-plane with centre at 0 and radius t
(with t � R0=2) and yn is the same for Mt and Nt , namely yn D �@r D �@r . Therefore,
the second and fifth terms on the right-hand side of (5.3) are each equal to �2�t .

The first, second, fourth, and fifth terms in (5.3) arise from the first variation of area
of a surface-with-boundary (see [24]). The third and sixth terms on the right-hand side
of (5.3) arise from the first variation of

R
Et\U1

g. For t > 0, the latter claim follows by
splitting the domain Et \ U1 into the two subdomains .Et \ U1/ n .Bt � .�R;R// and
Bt � .�R;R/. The contribution coming from the first subdomain is computed as in the
proof of [19, Proposition 17.8], using that ˆs is a diffeomorphism from .B3R n Bt / �

.�R;R/ onto .B3R nBtCs/� .�R;R/, and gives
R
E\..B3RnBt /�.�R;R//

div.g�@r /. Using
the divergence theorem, we obtain the third and sixth terms of (5.3) and an additional
summand

R
@B2t �.�R;R/

g�@r � .�@r /. The contribution from the second subdomain gives
the term

R
@B2t �.�R;R/

g. These two last integrals on the surface @B2t � .�R; R/ cancel
each other (since �D 1 on the surface of integration); this concludes the case t > 0. In the
case t D 0 we argue as we did earlier for V 0.0/ (using the approximation argument with
�! 0) to reach the same conclusion.15

Taking t D 0C in (5.3) and adding d
dt
jtD0CEU1.Et / C

d
dt
jtD0EU2.Et /, we obtain

equation (5.2). Substituting EH D .g � �/� in (5.2) for the �2R found in the beginning of
this section, and recalling

R
graph.u/X � �C

R
graph.v/X � � D 0, we get that the first variation

at t D 0C vanishes:
d

dt

ˇ̌̌
tD0C

EU .Et / D 0:

Second variation. We now show that the second variation of the functional EU .Et / D

PerU .@�Et / C
R
Et\U

g at t D 0C (for the same deformation Et ) is strictly negative,
contrary to the assumption (we checked that we have vanishing one-sided first variation;
see the implication in Definition 5).

Again, the computation is conveniently carried out separately in the subdomains U1
and U2. For U2, we rewrite EU2.C /D PerU2.C /C

R
C\U2

.g � �/C �jC \U2j (for the �
identified in the beginning of the section). The well-known formula ([1, Appendix], [4,
Section 2.2]) for the second variation of PerU2.C / C

R
C\U2

.g � �/ for the set E (that
is stationary with respect to this functional in U2, i.e., @E has mean curvature .g � �/�)

15For t0 > 0, one can give an alternative argument as follows: the deformation of Et0 that we are
considering can be equivalently induced by the 1-parameter family of diffeomorphisms Id C s zXs , where
zXs D  .�@r / and  is a smooth function that only depends only on r and is equal to 1 for r � t0=2 and

equal to 0 for r � t0=4. This is well-defined as a vector field in U , so the usual formula for the first variation
of volume applies.
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yields

d2

dt2

ˇ̌̌
tD0

EU2.Et / D
�Z
@E\U2

.D�g � jA@E j
2/�2 C jr�j2

�
C �

d2

dt2

ˇ̌̌
tD0
jEt \ U2j;

where D� is the derivative in the direction �, r is the gradient on the surface, and A@E is
the second fundamental form of @E. For the second term on the right-hand side, we follow
the proof of [19, Proposition 17.8] using the second- (rather than first-) order expansion
in t of the Jacobian. Expanding the diffeomorphism as Id C t .��/C t2

2
Z C o.t2/, where

Z D s00.0/Y by construction, and using ([19, (17.11)]) we have det.I C tA C t2

2
B/ D

1C t trace.A/C t2

2
.trace.B/C .trace.A//2 � trace.A2//C o.t2/, we get

d2

dt2

ˇ̌̌
tD0
jEt \ U2j D

Z
E\U2

divZ C
Z
E\U2

.div.��//2 �
Z
E\U2

trace..D.��//2/

D

Z
@E\U2

Z � � C

Z
E\U2

.div.��//2 �
Z
E\U2

trace..D.��//2/:

The last two integrals tend to 0 asR0! 0, since supU2 jD.��/j does. For the first integral,
recall that s00.0/! 0 as R0 ! 0, while Y is fixed independently of R0, so this term also
tends to 0 as R0 ! 0; we conclude that

d2

dt2

ˇ̌̌
tD0
jEt \ U2j ! 0 as R0 ! 0:

For U1, instead, we compute the derivative at t D 0C of (5.3). The derivatives of the
terms

R
@Mt
En � .�@r /D�2�t and

R
@Nt
En � .�@r /D�2�t at t D 0C are each equal to�2� .

This is independent of the choice of R0. (These will be the dominant terms in the end.)
We write H for the scalar curvature, so that EH D H�. The term �

R
Mt

EH � .�@r / has
derivative at t D 0C given by (using (5.1))Z

M0

. EH � .�@r //
2
�

Z
M0

@H

@t

ˇ̌̌
tD0C

� � .�@r / �

Z
M0

H
@�

@t

ˇ̌̌
tD0C

� .�@r /: (5.4)

(There is no boundary term, since EH and .�@r / are bounded on M0 and @M0 is reduced
to a point; in fact, one also has that EH � .�@r / tends to 0 as we approach @M0.) For the
second summand in (5.4), we follow [1, Appendix] to compute @H

@t
jtD0C , noting that those

computations are local and can be repeated16 until we reach the formula in [1, p. 353].

16In our case, unlike in [1], the deformation of M0 is not performed at fixed boundary, but Mt moves
so that the speed is orthogonal to the normal toMt at @Mt . The contribution of the moving boundary to the
first (and second) variation of area has been isolated in the term

R
@Mt
En � .�@r / of (5.3). The remaining terms

are treated as in [1], since those computations are pointwise and do not use the fixed boundary condition
until after the formula in [1, p. 353]. We point out that f in [1, p. 353] corresponds to � � .�@r / in our case,
and � in [1, p. 353] corresponds to �@r . Also note that the convention in [1] is to have the mean curvature
equal to the average of the principal curvatures (while we take the sum), so nH therein corresponds to H
in our case. We write A for the second fundamental form, while [1] uses B .
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The only difference is given by the fact that, instead of the constant nH0 therein, the third
summand on the right-hand side of the formula in [1, p. 353] will have (in the integral) the
mean curvature function .� � g/. We thus find

Z
M0

@H

@t

ˇ̌̌
tD0C

� � .�@r / D�

Z
M0

..�@r / � �/.�M0..�@r / � �// �

Z
M0

jAM0 j
2..�@r / � �/

2

C

Z
M0

r..�@r / � �/ �G;

where r is the gradient on the surface. The (vector-valued) function G has modulus
bounded above by a constant that only depends on supM0

jAM0 j, supU jDgj, kukC 1.B23R/.
This comes from crude bounds on the last three terms of the formula in [1, p. 353] (in
which, again, the third summand on the right-hand side has been modified to account
for our mean curvature .�� g/). Recall, then, the following facts: the second fundamental
formAM0 (and similarly, the mean curvature EH ) is bounded in U , sinceM0 �D1 andD1
is a smooth graph; and the area of M0 grows at a quadratic rate around 0. The following
bounds thus follow: firstly,Z

M0

� and
Z
M0

..�@r / � �/
2
�

Z
M0

�2

can be made as small as we wish by taking R0 sufficiently small. Moreover (using that �
is normal to the surface),

jr..�@r / � �/j � jAM0 j�:

Then, for the first two terms in (5.4), we have thatZ
M0

. EH � .�@r //
2
D

Z
M0

j EH j2..�@r / � �/
2

and Z
M0

@H

@t

ˇ̌̌
tD0C

� � .�@r / D

Z
M0

ˇ̌
rM0..�@r / � �/

ˇ̌2
�

Z
M0

jAM0 j
2..�@r / � �/

2

C

Z
M0

r..�@r / � �/ �G

can both be made as small as we wish (in module) by choosing R0 suitably small. For the
remaining term in (5.4), recalling that

ˇ̌̌
@�
@t

ˇ̌̌
tD0C

ˇ̌̌
� C jD.�@r /j (see earlier in this section),

we find thatˇ̌̌Z
M0

H
@�

@t

ˇ̌̌
tD0C

� .�@r /
ˇ̌̌
� C

Z
M0

j EH jjD�jj�j C C

Z
M0

�2j EH jjD.@r /jI

this can be made as small as we wish by takingR0 sufficiently small, since jD.@r /j �C=r
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is summable onM0 and
R
M0
jD�j � CR0 (where C denotes a dimensional constant). This

concludes the proof that, with reference to equation (5.3), by choosing a small enough R0
we can make j d

dt
jtD0C.

R
Mt
� EH �X/j as small as we wish.

We now consider the derivative of the third term in (5.3) – namely,
R
Mt
g� � .�@r /,

at t D 0C. This derivative is given by (again using (5.1))

�

Z
M0

g.� � .�@r //. EH � .�@r //C

Z
M0

d

dt

ˇ̌̌
tD0C

.g�� � @r /:

Using again that j d
dt
jtD0C�j � C jD.�@r /j, we can bound the modulus of the previous

expression by

C sup
U

.jgj C jDgj/
� Z

M0

�j EH j C

Z
M0

j�j C

Z
M0

jD�j C

Z
M0

�jD.@r /j
�
:

This term can also be made as small as we wish, as above, taking R0 small.
We repeat identical considerations forN0 to handle the fourth and sixth terms in (5.3),

showing that a sufficiently small R0 will make them in modulus as small as we wish. In
conclusion, the second variation with respect to EU along Et at t D 0C is given by �4�
(the derivative at t D 0C of the second and fifth summands in (5.3)) plus the other four
terms that can be made small in module, say smaller than �

2
, by a suitable initial choice

of R0. Hence, we have a strictly negative second variation – this is a contradiction. Struc-
ture (a’) then cannot be anywhere present in �. The embeddedness of @�E \� claimed
in Theorem 2.6 is proved. It follows immediately that @�E0 \ � D @E0 \ � (E is its
Lebesgue representative) for each connected component E0 of xE \ � and (using Pro-
positions 3.1 and 3.2) that the mean curvature is given by .�E0 � g/�E0 , for �E0 2 R
depending on the connected component E0. This finishes the proof of Theorem 2.6.

6. Curvature bounds and droplets

An additional question, in fact related to the ruling out of configuration (a’) in The-
orem 2.6, is whether it is possible to have regions in which @E is smoothly embedded,
but with “very high curvature”. Ruling out (a’) in Section 5 amounts to a negative answer
in the “limit case” in which a connecting neck between two bulks of liquid is reduced to a
point (“infinite curvature”). However, in the conclusion of Theorem 2.6 there is no quant-
itative control on how large the curvature can be. We will now give some further remarks
in this direction.

On one hand, as we are allowing in Theorem 2.6 multiple connected components
of xE \�, it is possible, say with g � 0, for E to be the union of countably many balls Bn
with pairwise disjoint closures and with the radius of Bn tending to 0 sufficiently fast
as n!1. (Note that balls are minimisers of the perimeter for constrained volume, and
hence are stable.) Therefore, it is possible to have jA@�E j unbounded in the conclusion of
Theorem 2.6, even within a single configuration E.
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On the other hand, if we restrict to a connected E (or to a single connected component
of E) it may be possible to obtain a priori bounds on jA@�E j in the interior of �, that
is in W �� �, in terms of a quantity depending only on kgkC 1 , W , and on jE\�j

j�j
. In

support of such a possibility, we note the following: For j 2 N, let Ej be a Caccioppoli
set in� and gj a function on� that verify the hypotheses of Theorem 2.6 withEj in place
ofE and gj in place of g, and withEj \� connected. By the conclusion of Theorem 2.6,
@�Ej D @Ej is smoothly embedded with scalar mean curvature gj ��j , with �j 2R. With
W ��� fixed, assume that there exists yj 2 @Ej \W such that jA@Ej .yj /j !1 (which
is what one would have in the absence of ‘a priori curvature bounds’). If, additionally,
there exists a uniform bound for j�j j, then we can select R > 0 and K > 0 such that
B3R.yj / � � for all j and H2.@E0 \ B

3
R.yj // � K for all j . Then, the surfaces .@Ej \

B3R.yj // � yj (translating by the vector yn so as to have surfaces in the fixed ball BR.0/)
would have uniform area and mean curvature bounds, and be stationary and stable under
volume-preserving deformations: they would thus satisfy the curvature estimates in [2,
Theorem 1] (more precisely, the easy generalisation to the case of non-constant mean
curvature discussed in [2, Remark 4]), which give an a priori bound on the curvature,
contradicting that jA@Ej .yj /j ! 1. In other words, the missing ingredient for “a priori
curvature bounds” appears to be an estimate on the magnitude of � (in the conclusions of
Theorem 2.6) in terms of given quantitative properties of E and g (e.g., a; b 2 .0; 1/ and
G > 0 such that jE\�j

j�j
2 .a; b/ and kgkC 1 � G).

In the previous discussion, it appears to be necessary to restrict to an open set W
with closure compactly contained in �. For otherwise we may consider, with g � 0 and
�D¹.x;y;z/ W jxj<1; jyj<1;z > 0º, a sequence of surfaces Sn where each surface Sn is
a portion of a Delaunay CMC unduloid, with mean curvature independent of n, as follows:
the rotational axis of the unduloid is the line ¹.0; y; 0/º, and the unduloids degenerate
towards a union of tangential spheres as n ! 1; the surface Sn is the portion of the
unduloid that is in�. (Recall that the Delaunay family of unduloids depends continuously
on a parameter and it interpolates between a cylinder and a union of tangential spheres,
keeping the same value for the mean curvature.) Then, the maximum of the curvature
of Sn in � tends to 1 as n ! 1, and this maximum is achieved at a point xn 2 Sn
such that the xn accumulate on @� as n!1. (These points xn are on the necks of the
unduloids.) Note that Sn are graphs over the .x; y/-plane, and hence are stable.

It also appears necessary to restrict the range of jE\�j
j�j

. Otherwise, we could consider
a ball B with xB contained in the interior of W , and with radius arbitrarily small. (This
explains the need for a lower volume bound; passing to the complement, an upper volume
bound is similarly justified).

It may be possible to exploit the stability condition (and the resulting stability inequal-
ity) in order to obtain uniform bounds on the L2 norm of the second fundamental form
of the surface, which implies a control on the L2 norm of the mean curvature and thus an
estimate on �.
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In the small volume regime for E one speaks of “droplets”. We assume that in The-
orem 2.6 we have no solid supports and thatE is bounded and with connected closure. The
analysis in [7, Section 1.2] implies that (from stationarity for volume-preserving ambient
deformations with respect to ER3 ) the so-called Alexandrov deficit tends to 0 when the
volume jEj ! 0. Therefore, for droplets (i.e., for sufficiently small jEj), the Alexandrov
deficit is small and, in view of [7, Theorem 1.1 (i)], the surface @E has to be given by a per-
turbation of a collection of spheres. (The C 2 embeddedness of @E is an assumption in [7],
while it was a conclusion in our Theorem 2.6. On the other hand, [7, Theorem 1.1 (i)]
makes use only of stationarity.) The perturbation, given quantitatively in [7], can be qual-
itatively described as follows: a large portion of @E is graphical over the spheres, the
remaining part of @E is made of small connecting necks between distinct spheres. The
Alexandrov deficit is scale invariant, so this description of @E is given in a normalised
way, setting the spheres to have unit radius. In this normalised sense, the length of the
connecting necks tends to 0 as the Alexandrov deficit tends to 0, and in the limit, as the
deficit tends to 0, one obtains a collection of spheres with equal radii touching tangentially.

We have the following corollary, which follows immediately from Theorem 2.6, and
from the results in [2, 7]:

Corollary 6.1. Let E � R3 be (the Lebesgue representative of) a Caccioppoli set, with
@�E � B for some open ball B , xE connected, and let g W B ! R be analytic. Assume
that E is stationary and stable with respect to EB in the sense of Definition 6. There exists
a constantm0 > 0 such that if jEj <m0, then @E D @�E is the graph of a function over a
single sphere, with gradient bounded in the sup norm by CkgkC 1 jEjˇ , for (dimensional)
constants C and ˇ.

Proof. Theorem 2.6 gives the fact that @�E D @E is smoothly embedded, which permits
the use of [7, Theorem 1.1 (i)] to conclude that @E is given by a perturbation of a finite
collection of spheres, as described above. As jEj tends to 0, the Alexandrov deficit tends
to 0 ([7, Section 1.2]). The Alexandrov deficit is scale invariant and as jEj ! 0, the norm-
alised spheres get closer and closer. This implies that, if a configuration with two or more
spheres is possible, then the curvature of the normalised boundary, that we denote by @ yE,
blows up as jEj tends to 0, while the mean curvature of @ yE remains bounded. On the
other hand, [2, Theorem 1] (see also [2, Remark 3]) provides a priori pointwise curvature
bounds under a condition of stability for volume-preserving deformations, thus ruling out
the possibility of two or more spheres. (The mean curvature bound required by [2] is true
by the normalisation procedure that leads to yE; the mass bound required by [2] is true
in view of the fact that we have local convergence of @ yE to two spherical caps with unit
multiplicity, as jEj ! 0.) We thus find that under the assumptions of Corollary 6.1, there
exists a sufficiently small volume regime in which there can only be a single sphere in the
conclusion of [7, Theorem 1.1 (i)]. We refer to [7] for the quantitative estimates on the
function whose graph gives @E.
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Remark 6.2. In the more restrictive case ofE being a minimiser, the closeness conclusion
to a single sphere (as in Corollary 6.1) follows from [20]17. In fact, in [20] droplets are
also allowed to touch a container (and the potential is assumed to be just continuous), in
which case the conclusion of [20] is a quantivative closeness to a single spherical cap.

An interesting question, not addressed here, is to quantify the smallness condition on
the volume that ensures closeness to a single sphere in Corollary 6.1.

A. Remarks on the assumptions of Theorem 2.6

Weaker variational assumptions. It is possible to weaken the assumptions in Theorem 2.6
as follows: In part (i) of Definition 6 it suffices to require (2.2) for volume-preserving
ambient deformations with initial velocity given by a C 1c vector field whose support is
contained in an open set W such that @�E \W is a smoothly embedded surface. This set
cannot be a priori characterised (hence, the weaker assumption may be of interest only
for more abstract purposes); however, it follows from (2.1), from Allard’s theorem, and
from standard elliptic PDE theory that this set is not empty. The fact that this assumption
suffices is due to the fact that it is also a sufficient assumption in Theorem 2.2 (see the
third hypothesis). In part (ii) of Definition 6, when the starting configuration is (a) or (b),
it suffices to require stationarity for coalescence and break-up deformations. The stability
condition in part (ii) of Definition 6 is only used to handle (a’).

Analyticity of the potential. The fact that g is analytic is only used in deducing The-
orem 2.2 from the more general results in [3, 4] – namely, to conclude that whenever
two (non-identically coinciding) smooth embedded 2-dimensional disks D1; D2 of mean
curvature g intersect only tangentially, then the coincidence set is an analytic set and there-
fore admits a stratification as the union of analytic submanifolds of dimensions 2 ¹0; 1º.
A 1-dimensional coincidence set forces the existence of the local structure (a), which is
however ruled out by assumption in Theorem 2.2. It then follows that when D1 and D2
are separately smooth and stationary, D1 \ D2 can only contain isolated points. This
dimensional estimate allows the extension of the stability inequality, which is valid on the
embedded parts ofD1 [D2 thanks to the stability for ambient deformations, across those
points (by a standard capacity argument). This extended inequality gives the hypothesis
stated in [3, 4], that is, a stability condition for the C 2-immersed portion of spt kV k. The
analysis of the coincidence set of two C 2 disks with mean curvature˙.�� g/ is the only
step in which the analyticity of g is used in the proof of Theorem 2.6. If D1 and D2 are
only assumed to be C 2, then the coincidence set may be in principle more complicated.
Understanding its structure is certainly an interesting problem that would likely require
PDE tools to be tackled.

17If E is a priori assumed to have smooth embedded boundary and to be a local minimiser, then the
conclusion follows also from [7, Theorem 1.1 (ii)], by means of density estimates for minimisers.
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Dimensional restriction. We have worked in R3, which is the concretely relevant case
to describe liquids. It is mathematically interesting to address the problem in arbitrary
dimension. Many things remain unchanged, with the following exceptions:

A higher-dimensional analogue of Theorem 2.6 would have to allow for a singular set
of dimension � n� 7 (see [3,4]). This is well known already in the minimising case. The
higher-dimensional analogue of Theorem 2.2 replaces (a) and (b) with the correspond-
ing structures in which surfaces(-with-boundary) are replaced by hypersurfaces(-with-
boundary) and T has dimension n � 1; this theorem then permits, in the conclusion, a
singular set of dimension � n � 7, where @�E is locally neither an embedding nor an
immersion (at these points one has tangent cones but not tangent planes); moreover, there
may be a set of immersed but non-embedded points of dimension � n � 2, where @�E
is locally given by two embedded disks that intersect tangentially. Then, for a higher-
dimensional analogue of Theorem 2.6, one would need to exclude more configurations
(depending on the dimension of this intersection), rather than the single configuration (a’).
This is likely possible, although it probably requires a slight revision of the stability
assumption in Definition 5, by allowing the initial speed of the one-sided deformation
to be unbounded (and belong to a suitable Sobolev space), or, by prescribing lower regu-
larity in .t; x/ for the coalescence deformations. In R3 we required bounded initial speed
for any virtual deformation allowed (since we wanted deformations that can be considered
admissible for a concrete liquid).

We also point out that a higher-dimensional extension of Theorem 2.6 would also
lead to a higher-dimensional version of Corollary 6.1, since neither [7] nor [2] require the
dimensional restriction (in the case of [2], for n � 7 one would use [2, Theorem 2] rather
than [2, Theorem 1]).

On the proof of Theorem 2.2. The proof in [3, 4] contains three building blocks, proved
by simultaneous induction (on the multiplicity). The first is a “sheeting theorem” ([3,
Section 5] and [4, Theorem 6.2]; see also [27]), which says that the structure of the integ-
ral varifold (j@�Ej in our case) in regions where it is “very flat” is given by a union
of C 1;˛ graphs. The second is a “minimum distance theorem” ([3, Section 6] and [4, The-
orem 6.3]; see also [27])), which guarantees that the integral varifold cannot be too close
to a classical singularity. The third is a “higher regularity theorem” ([3, Section 7] and
[4, Theorem 6.4]), that amounts to bootstrapping the C 1;˛ conclusion of the sheeting the-
orem to a C 2 conclusion (also restricting the number of graphs in the local decomposition
to at most two). (The sheeting theorem is ultimately based on a codimension-1 Allard-
type result for high multiplicities; see [4, Theorem 9.1], or [5, Theorem 3.2], in which
the specific variational assumptions are not even needed – an Lp-condition on the mean
curvature is the only variational piece of information required.) It is certainly possible to
follow [3, 4] and exploit the more restrictive assumptions of Theorem 2.2 to make some
slight simplifications in the proof. Whether a substantially different (and much simpler)
proof of Theorem 2.2 can be obtained, in the 2-dimensional case relevant to Theorem 2.6,
is an interesting question that lies beyond the scope of this note.
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B. Reminders on Caccioppoli sets

A Caccioppoli set in RnC1 – or a set with locally finite perimeter – is a set C � RnC1

whose characteristic function �C is BVloc, that is, the distributional gradient D�C is a
Radon measure (regular and finite on compact sets). The perimeter of C in a bounded
open set U is given by

PerU .C / D
Z
U

kD�C k D sup
°Z
C

divT W T 2 C 1c .U IR
nC1/; sup jT j � 1

±
:

If C has C 2 boundary, this agrees with the usual perimeter Hn.@C \U/. This follows by
observing firstly that, using sup jT j � 1 and the divergence theorem, for any allowed T ,
we have j

R
C

divT j � Hn.@C \ U/; secondly, that by choosing T to be a C 1 extension
of the outer unit normal to C , suitably cut-off inside U , one gets as close as one wants to
the value Hn.@C \ U/. If xC �� U and @C is C 2, then a smooth extension of the unit
outer normal used in place of T gives exactly the full perimeter Hn.@C /.

The “correct” notion of boundary for a Caccioppoli set C � RnC1 is the so-called
reduced boundary @�C , introduced by De Giorgi [8,9]. A Caccioppoli set is defined up to
0-measure sets, and the topological boundary changes with the representative. Moreover,
it is seen by means of elementary examples that the topological boundary @C may be
even the whole space. The reduced boundary @�C is a measure-theoretic notion and it is
invariant under the choice of representative. It is characterised by the existence of a well-
defined measure-theoretic unit normal. De Giorgi’s fundamental theorem guarantees the
n-rectifiability of @�C , that is, the fact that @�C is, up to a set of vanishing n-dimensional
measure, a countable union of Lipschitz images of Borel subsets of Rn. The perimeter
measure �D�C can be written as .Hn @�C/�, where � is the measure-theoretic outer
unit normal on @�C . If C has C 2 boundary, then @�C D @C and � is the usual normal.

C. A minimising property (and stability under ambient
deformations) for instances of (a), (a’), and (b)

We review the examples in Section 2.1 of structures (a), (a’), and (b) and explain why they
are stable for volume-preserving ambient deformations. In all examples we take g � 0, so
that the relevant energy is the standard perimeter.

We begin with two half-cylinders with equal radii intersecting tangentially along a line.
We set the following notation: E \� D E1 [E2, with @E1 \� D D1, @E2 \� D D2
being two half-cylinders that intersect tangentially along a line `, with E1 \ E2 D `.
Let U �� � be open with U \ ` ¤ ;. We consider any Caccioppoli set C of the form
C D C1 [ C2 where C1 and C2 are Caccioppoli sets with the constraints Cj D Ej in
� nU , j 2 ¹1;2º, L3..C1 [C2/\U/DL3..E1 [E2/\U/, L3.C1 \C2 \U/D 0 and
Per�.C / D Per�.C1/C Per�.C2/. Note that any Caccioppoli set obtained by a volume-
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preserving ambient deformation of E in U is necessarily of the type C1 [ C2 described.
(In fact, it will additionally be forced to satisfy that @C1 and @C2 are smooth, and C1 \
C2 \ U is a curve.)

The graphical nature of each Dj allows the following well-known calibration-type
argument, that leads to a minimising property (see, e.g., [3, Appendix B]): We write D1
as a graph on an open set A � R2 of a smooth function u W A! R, with E1 that coin-
cides with the subgraph of u in �. Letting �E1 denote the inward unit normal to E1,
we have that �E1 agrees with the downward determination of unit normal for the graph,
that is, .ru;�1/p

1Cjruj2
. The mean curvature of D1 is given by c�E1 for c 2 R (in fact, c > 0

in this example). Next, we extend �E1 to a smooth vector field �1 in A � R by set-
ting �1.x; y/D �E1.x; u.x//. Then, divRnC1�1 is (at .x; y/) equal to the mean curvature
divA. rup

1Cjruj2
/ ofD1 (at .x;u.x//) with respect to the chosen (inward pointing) normal,

and hence, divRnC1�1 D c in A �R. We will compare the perimeters of C1 and E1 in �.
(When C is obtained by ambient deformation, the below computation can be carried out
by using the fact that all the domains involved have piecewise smooth boundary, using the
classical divergence theorem.) Writing �C1 for the inward pointing unit normal to C1, we
have (by definition of Caccioppoli sets, and using �E1 � �C1 in the complement of U ):

Z
@�C1\�

�C1 � �1 dH2
�

Z
@�E1\�

�E1 � �1 dH2

D

Z
�

D�C1 � �1 �

Z
�

D�E1 � �1 D

Z
�

D.�C1 � �E1/ � �1

D �

Z
�

.�C1 � �E1/ divRnC1�1 D �c

Z
.�C1 � �E1/:

Similarly, using the fact thatD2 is a graph (and that the two half-cylinders both have mean
curvature c) we obtain a unit smooth vector field �2 such that divRnC1�2 D c (here �C2
and �E2 are the inward unit normals to C2 and E2, respectively), so thatZ

@�C2\�

�2 � �C2dH2
�

Z
@�E2\�

�2 � �E2dH2
D �c

Z
.�C2 � �E2/:

We add these two equalities (side by side). The volume-preserving condition amounts toR
.�C1 � �E1 C �C2 � �E2/ D 0, therefore,Z

@�C1\�

�C1 � �1 dH2
C

Z
@�C2\�

�2 � �C2dH2

D

Z
@�E2\�

�2 � �E2dH2
C

Z
@�E1\�

�E1 � �1 dH2:

We have
R
@Cj\�

�j � �Cj dH2 � Per�.Cj / for j 2 ¹1; 2º (since the vectors �j , �Cj are
unit). ForEj , on the other hand, we have the equalities Per�.Ej /D

R
@Ej\�

�j � �Ej dH2,
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by construction. Since the equalities Per�.C / D Per�.C1/C Per�.C2/ and Per�.E/ D
Per�.E1/C Per�.E2/ hold (by the hypotheses made), we conclude that

Per�.E/ � Per�.C /:

This minimising property implies, in particular, stability condition (2.2) for all ambient
deformations.

The same argument can be repeated verbatim when D1 and D2 are two hemispheres
intersecting tangentially at a point (example of structure (a’)), with E1, E2 two half-balls
of equal radii and @Ej D Dj for j 2 ¹1; 2º.

Remark C.1. Having graphs in these examples is crucial for the calibration-type argu-
ment. We also note the following: two (full) spheres of equal radii touching at a point is
not a stable configuration for the problem (with g � 0). The configuration is stationary
(with respect to the perimeter, for volume-preserving ambient deformations); however, the
following deformation, which can be induced by ambient diffeomorphisms, gives negat-
ive second variation: we keep the touching point still, letting one sphere reduce in volume
while the other increases (so that the total volume remains the same and so that the two
spheres remain tangent to the same plane that they were tangent to in the initial configura-
tion). It is easy to compute explicitly the second variation and check that it is negative. The
minimising property proved above shows that it is not possible to “localise” the deforma-
tion just exhibited to a neighbourhood of the touching point (preserving the negativity of
the second variation).

For the example of configuration (b) given in Section 2.1 (right picture in Figure 1),
letE1,E2,E3 be three Caccioppoli sets such that @Ej DDj is a portion of a half-cylinder
(the cross product of an arc smaller than a half-circle with an interval), with all cylinders
having the same radius (and thus, all CMC with equal mean curvatures) and withDj inter-
secting transversely at a common segment (that is, with the three coplanar arcs intersecting
at a common point). The mean curvature vector ofDj points intoEj for each j 2 ¹1;2;3º.
The relevant set E is defined by �E D �E1�E2 C �E1�E3 C �E2�E3 . (Informally, the
union of three wedges.) We note that

P3
jD1�Ej D 1C�E is valid in� for the chosen con-

figuration. We compare E to any Caccioppoli set C that has the same volume as E in U ,
and whose characteristic function can be written as �C D �C1�C2 C �C1�C3 C �C2�C3 ,
whereCj are Caccioppoli sets withCj DEj in the complement ofU for each j 2 ¹1;2;3º,
and such that we have

3X
jD1

�Cj D 1C �C

in �. These conditions are verified for any C that is obtained by an ambient volume-
preserving deformation of E in U . By the relation between �Cj and �C , the volume
constraint on C is equivalent to the fact that

P3
jD1

R
�Cj D

P3
jD1

R
�Ej . This permits

to repeat (three times) the argument given above in the case of a half-cylinder, and obtain
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that E is a perimeter minimiser within the class of Caccioppoli sets C of the type con-
sidered (in particular, stability condition (2.2) is valid for all volume-preserving ambient
deformations).
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