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A novel finite element approximation of
anisotropic curve shortening flow

Klaus Deckelnick and Robert Nürnberg

Abstract. We extend the DeTurck trick from the classical isotropic curve shortening flow to the
anisotropic setting. Here, the anisotropic energy density is allowed to depend on space, which allows
an interpretation in the context of Finsler metrics, giving rise to, for instance, geodesic curvature
flow in Riemannian manifolds. Assuming that the density is strictly convex and smooth, we intro-
duce a novel weak formulation for anisotropic curve shortening flow. We then derive an optimal
H1-error bound for a continuous-in-time semidiscrete finite element approximation that uses piece-
wise linear elements. In addition, we consider some fully practical fully discrete schemes and prove
their unconditional stability. Finally, we present several numerical simulations, including some con-
vergence experiments that confirm the derived error bound, as well as applications to crystalline
curvature flow and geodesic curvature flow.

1. Introduction

The aim of this paper is to introduce and analyze a novel approach to approximate the
evolution of curves by anisotropic curve shortening flow. The evolution law that we con-
sider arises as a natural gradient flow for the anisotropic, spatially inhomogeneous energy

E.�/ D

Z
�

a.z/
.z; �/ dH1.z/ D

Z
�

a
.�; �/ dH1 (1.1)

for a closed curve � , with unit normal �, that is contained in the domain � � R2. In the
above, 
 W��R2! R�0 denotes the anisotropy function and a W�! R>0 is a positive
weight function. In the spatially homogeneous case, that is,


.z; p/ D 
0.p/ and a.z/ D 1 8 z 2 � D R2; (1.2)

the corresponding functional E frequently occurs as an interfacial energy, for example, in
models of crystal growth [31,44]. Our more general setting is motivated by the work [14]
of Bellettini and Paolini, who consider the gradient flow for a perimeter functional P�
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that is associated with a Finsler metric �. Through [14, (2.5), (2.6)], it is shown that
E.�/ D P�.�/ if one chooses 
 as the dual of � and a in terms of the two-dimensional
�-volume. As an important special case, we mention that the choices


.z; p/ D
p
G�1.z/p � p and a.z/ D

p
detG.z/ (1.3)

can be used to describe the length of a curve in a two-dimensional Riemannian mani-
fold .M; g/. In this case, G.z/ is the first fundamental form arising from a local para-
metrization of M (cf. Example 2.2(3) below). Apart from being of geometric interest, the
functional E also has applications in image processing [17].

The natural gradient flow for the energy E evolves a family of curves �.t/�� accord-
ing to the law

V
 D ~
 ; (1.4)

where V
 and ~
 are the anisotropic normal velocity and the anisotropic curvature, resp-
ectively. The precise definitions of these quantities are based on a formula for the first
variation of E , and they will be given in Section 2. In the isotropic case, that is, when


.z; p/ D jpj and a.z/ D 1 8 z 2 � D R2; (1.5)

we have that (1.4) is just the well-known curve shortening flow, V D ~, with V

and ~ denoting the normal velocity and the curvature of �.t/, respectively. For theoretical
aspects of the anisotropic evolution law in (1.4), we refer to [13, 30]. Further information
on (spatially homogeneous) anisotropic surface energies and the corresponding gradient
flow can be found in [21, 30] and the references therein.

In this paper, we are interested in the numerical solution of (1.4) based on a para-
metric description of the evolving curves, that is, �.t/ D x.I; t/ for some mapping x W
I � Œ0; T �! �. Here, most of the existing literature has focused on the spatially homo-
geneous case given by (1.2). Then, the law in (1.4) reduces to 1


0.�/
V D ~
0 (see Section 2

for details), which can be viewed as a special case of the weighted anisotropic curvature
flow b̌

0.�/V D ~
0 ; (1.6)

for some mobility function b̌0; see, for example, [21, (8.20)]. In [24], a finite element
scheme is proposed and analyzed for (1.6) with b̌0 D 1. The method uses a variational
formulation of the parabolic system

xt D ~
0�; (1.7)

and is generalized to higher codimension in [38]. A drawback of this approach is that
the above system is degenerate in the tangential direction, so that the numerical ana-
lysis requires an additional equation for the length element. A way to circumvent this
difficulty consists in replacing (1.7) by a strictly parabolic system with the help of a suit-
able tangential motion, known as DeTurck’s trick in the literature. For the isotropic case,
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corresponding schemes have been suggested and analyzed in [19, 26]. We mention that
alternative parametric approaches for (1.6) allow for some benign tangential motion; see,
for example, [5, 8, 34, 36].

Since the choice of (1.3) allows to describe the length of a curve in a Riemannian
manifold .M; g/, it is possible to use (1.4) in order to treat geodesic curvature flow in M

within our framework. Existing parametric approaches for this flow on a hypersurface
of R3 include the work [35] for the flow on a graph, as well as [6] for the case that
the hypersurface is given as a level set. Moreover, numerical schemes for the geodesic
curvature flow (and other flows) of curves in a locally flat two-dimensional Riemannian
manifold have been proposed in [12]. To the best of our knowledge, no error bounds have
been derived for a numerical approximation of geodesic curvature flow in Riemannian
manifolds in the literature so far.

In this paper, we propose and analyze a new method for solving (1.4), which is based
on DeTurck’s trick and which applies to general, spatially inhomogeneous anisotropies.
Let us outline the contents of the paper and describe the main results of our work. By tak-
ing advantage of the fact that the function .z;p/ 7! 1

2
a2.z/
2.z;p/ is strictly convex in p,

we derive in Section 3 a strictly parabolic system whose solution satisfies (1.4). It turns
out that this system can be written in a variational form, which makes it accessible to dis-
cretization by linear finite elements. In the isotropic case, the resulting numerical scheme
is precisely the method proposed and analyzed in [19], while in the anisotropic case we
obtain a novel scheme that can be considered as a generalization of the ideas in [19, 26].
As one of the main results of this paper, we show in Section 4 an optimalH 1-error bound
in the continuous-in-time semidiscrete case. Unlike in [24, 38], the corresponding proof
does not need an equation for the length element because of the strict parabolicity of the
underlying partial differential equation. In order to discretize in time, we use the backward
Euler method. In particular, in Section 5, as another important contribution of our work,
we introduce unconditionally stable fully discrete finite element approximations for the
following scenarios:

(a) a spatially homogeneous, smooth anisotropy function 
.z; p/ D 
0.p/;

(b) a spatially homogeneous anisotropy function


.z; p/ D

LX
`D1

p
ƒ`p � p;

where ƒ` are symmetric and positive definite matrices;

(c) a spatially inhomogeneous anisotropy function in the form of (1.3) to model geo-
desic curvature flow in a two-dimensional Riemannian manifold.

In particular, the functions in scenario (b) can be used to approximate the case of a crystal-
line anisotropy (cf. [5]). Using these three fully discrete schemes, we present in Section 6
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results of test calculations that confirm our error bound and show that the tangential motion
that is introduced in our approach has a positive effect on the distribution of grid points
along the discrete curve.

As our approach is based on a parametrization of the evolving curves, we only briefly
mention numerical methods that employ an implicit description such as the level-set
method or the phase field approach. The interested reader may consult [10, 37] for aniso-
tropic curve shortening flow, as well as [15, 16, 43] for the geodesic curvature flow. These
papers also provided additional references.

We end this section with a few comments about notation. Throughout the paper, we
let I DR=Z denote the periodic interval Œ0;1�. We adopt the standard notation for Sobolev
spaces, denoting the norm of W `;p.I / (` 2 N0, p 2 Œ1;1�) by k�k`;p and the seminorm
by j � j`;p . For p D 2, W `;2.I / will be denoted by H `.I / with the associated norm and
seminorm written as k � k` and j � j`, respectively. The above are naturally extended to
vector functions, and we will write ŒW `;p.I /�2 for a vector function with two components.
For later use, we recall the well-known Sobolev embeddingH 1.I / ,!C 0.I /, that is, there
exists CI > 0 such that

kf k0;1 � CIkf k1; 8f 2 H
1.I /: (1.8)

Furthermore, throughout the paper C will denote a generic positive constant independent
of the mesh parameter h, which will be introduced in Section 4. At times, " will play the
role of a (small) positive parameter, with C" > 0 depending on ", but independent of h.
Finally, in this paper we make use of the Einstein summation convention.

2. Anisotropy and anisotropic curve shortening flow

Let��R2 be a domain, and let a 2C 2.�;R>0/. Moreover, we assume that 
 2C 0.��
R2;R�0/ \ C 3.� � .R2 n ¹0º/;R>0/, as well as


.z; �p/ D �
.z; p/; 8z 2 �; p 2 R2; � 2 R>0; (2.1)

which means that 
 is positively one-homogeneous with respect to the second variable. It
is not difficult to verify that (2.1) implies that


p.z; �p/ D 
p.z; p/; 
p.z; p/ � p D 
.z; p/;

and 
pp.z; p/p D 0; 8 z 2 �; p 2 R2 n
®
0
¯
; � 2 R>0:

(2.2)

Here, 
p D .
pj /
2
jD1 and 
pp D .
pipj /

2
i;jD1 denote the first and second derivatives of 


with respect to the second argument. Similarly, we let 
z D .
zj /
2
jD1 denote the derivatives

of 
 with respect to the first argument. We note for later use that on differentiating (2.2)
with respect to z, we immediately obtain that the functions 
zj .z; �/ and 
pzj .z; �/ are
positively one- and zero-homogeneous, respectively, for every z 2 �. In addition, we
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assume that p 7! 
.z; p/ is strictly convex for every z 2 � in the sense that


pp.z; p/q � q > 0; 8z 2 �; p; q 2 R2 with jpj D jqj D 1; p � q D 0: (2.3)

We are now in a position to define anisotropic curve shortening flow. To this end, with
the help of [22, Corollary 4.3], we first state the first variation of the functional E in (1.1),
the proof of which will be given in Appendix A.

Lemma 2.1. Let � � � be a smooth curve with unit normal �, unit tangent � , and scalar
curvature ~. Let V be a smooth vector field defined in an open neighborhood of � . Then,
the first variation of E at � in the direction V is given by

dE.�IV / D �

Z
�

~
 V � �
 a
.�; �/ dH1; (2.4)

where

�
 D
�


.�; �/
and ~
 D ~
pp.�; �/� � � � 
pizi .�; �/ �

ra

a
� 
p.�; �/ on � (2.5)

denote the anisotropic normal and the anisotropic curvature of � , respectively.

We remark that the definitions in (2.5) correspond to [14, (3.5) and (4.1)]. Note also
that �
 is a vector that is normal to � , but normalized in such a way that 
.z; �
 .z// D 1,
z 2 � . We remark that although ~
 clearly depends on both 
 and a, we prefer to use the
simpler notation that drops the dependence on a.

Following [14, (1.1)], we now consider a natural gradient flow induced by (2.4). In
particular, given a family of curves .�.t//t2Œ0;T � in�, we say that �.t/ evolves according
to anisotropic curve shortening flow provided that

V
 D ~
 on �.t/; (2.6)

where V
 D .V�/ � �
 D
1


.�;�/
V , with V denoting the normal velocity of �.t/, and

where ~
 is defined in (2.5). We remark that the name of the flow is inspired by the
fact that solutions of (2.6) satisfy the energy relation

d
dt

Z
�.t/

a 
.�; �/ dH1
C

Z
�.t/

jV
 j
2 a 
.�; �/ dH1

D 0: (2.7)

We note that the higher-dimensional analogue of (2.6) is usually called anisotropic mean
curvature flow or anisotropic motion by mean curvature. Hence, alternative names for
evolution law (2.6) in the planar case treated in this paper are anisotropic curvature flow
and anisotropic motion by curvature.

Example 2.2. The following three cases fall within the framework of this paper:

(1) Isotropic case: We let 
.z;p/D jpj and a.z/D 1 for all z 2�DR2 (recall (1.5))
so that E.�/ is the length of � . In this case, (2.6) is just the well-known curve
shortening flow

V D ~ on �.t/:
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(2) Space-independent anisotropy: We let 
.z; p/ D 
0.p/ and a.z/ D 1 for all z 2
� D R2 (recall (1.2)) so that E.�/ D

R
�

0.�/ dH1 is the associated anisotropic

length. Then, (2.6) reduces to

1


0.�/
V D ~
0 D ~


00
0 .�/� � � on �.t/ (2.8)

where, here and throughout, 
 00 and 
 000 denote the gradient and Hessian of 
0,
respectively. We observe that (2.8) corresponds to [21, (8.20)] with ˇ.�/ D 1


0.�/
;

see also [39] for a nice derivation of this law. Of course, for 
0.p/ D jpj, we
obtain the isotropic case described in Example 2.2(1) above.

(3) Riemannian manifolds: Suppose that .M; g/ is a two-dimensional Riemannian
manifold. Let F W � ! M be a local parametrization of M, ¹@1; @2º be the
corresponding basis of the tangent space TF.z/M, and gij .z/ D gF.z/.@i ; @j /,
z 2 �. Also, let G.z/ D .gij .z//

2
i;jD1. We set 
.z; p/ D

p
G�1.z/p � p and

a.z/ D
p

detG.z/. Then, we have

a.z/
.z; p/ D
p

detG.z/G�1.z/p � p D
q
G.z/p? � p?; (2.9)

where p? D
�
p1
p2

�?
D
�
�p2
p1

�
denotes an anti-clockwise rotation of p by �

2
. For a

curve � � �, the vector � D ��? is then a unit tangent and

E.�/ D

Z
�

a
.�; �/ dH1
D

Z
�

p
G� � � dH1 (2.10)

is the Riemannian length of the curve z� D F.�/ �M. We show in Appendix B
that the geodesic curvature of z� at F.z/ is equal to ~
 at z 2 � , and also that
.�.t//t2Œ0;T � � � is a solution of (2.6) if and only if z�.t/ D F.�.t// evolves
according to geodesic curvature flow in M.

3. DeTurck’s trick for anisotropic curve shortening flow

In what follows, we shall employ a parametric description of the evolving curves. Let
�.t/ D x.I; t/, where x W I � Œ0; T � ! R and I D R=Z. In order to satisfy (2.6), we
require that

1


.x; � ı x/
xt � .� ı x/ D ~
 ı x in I � .0; T �: (3.1)

From now on, we fix a normal on �.t/ induced by the parametrization x, and since no
confusion can arise, we identify � ı x with �, ~
 ı x with ~
 , and similarly, ~ ı x with ~.
In particular, we define the unit tangent, the unit normal, and the curvature of �.t/ by

� D
x�

jx�j
; � D �?; ~ D

1

jx�j

� x�
jx�j

�
�
� � D

x��

jx�j2
� �: (3.2)
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In place of (3.1), we simply write

1


.x; �/
xt � � D ~
 in I � .0; T �: (3.3)

Clearly, (3.3) only prescribes the normal component of the velocity vector xt , and so there
is a certain freedom in the tangential direction. Our aim is to introduce a strictly parabolic
system of partial differential equations for the parametrization x, whose solution in the
normal direction still satisfies (3.3).

Let us briefly review the DeTurck trick in the isotropic setting; recall (1.5) and Exam-
ple 2.2(1). Then, (3.3) collapses to xt � � D ~, and adjoining a zero tangential velo-
city leads to the formulation xt D ~� D 1

jx�j
.
x�
jx�j
/� as the isotropic equivalent to (1.7).

We recall that optimal error bounds for a semidiscrete continuous-in-time finite element
approximation of this formulation have been obtained in the seminal paper [23] by Gerd
Dziuk. One difficulty of Dziuk’s original approach is that the analyzed system is degen-
erate in the tangential direction. DeTurck’s trick addresses this problem by removing the
degeneracy through a suitable reparametrization. In fact, it is natural to consider the sys-
tem

xt D
x��

jx�j2
(3.4)

(recall (3.2)) for which a semidiscretization by linear finite elements was analyzed in [19].
The appeal of this approach is that the analysis is very elegant and simple. For example,
the weak formulation of (3.4) is given byZ

I

jx�j
2xt � � d�C

Z
I

x� � �� d� D 0; 8� 2 ŒH 1.I /�2; (3.5)

and choosing � D xt immediately gives rise to the estimate

1

2

d
dt

Z
I

jx�j
2 d� D

Z
I

x� � xt� d� D �
Z
I

jx�j
2
jxt j

2 d� � 0; (3.6)

which can be mimicked on the discrete level.
Our starting point for extending DeTurck’s trick to the anisotropic setting is to define

the function ˆ W � �R2 ! R�0 by setting

ˆ.z; p/ D
1

2
a2.z/
2.z; p?/; 8z 2 �; p 2 R2: (3.7)

We mention that the square of the anisotropy function plays an important role in the phase
field approach to anisotropic mean curvature flow (cf.[1, 10, 27]).

On noting (3.2), (2.1), and (3.7) we compute, in a similar manner to the calculations
in (3.6), that

1

2

d
dt

Z
I

a2.x/
2.x; �/jx�j
2 d� D

d
dt

Z
I

ˆ.x; x�/ d�
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D

Z
I

p̂.x; x�/ � xt� Cˆz.x; x�/ � xt d�

D �

Z
I

�
Œ p̂.x; x�/�� �ˆz.x; x�/

�
� xt d�: (3.8)

The crucial idea is now to define positive definite matrices H.z; p/ 2 R2�2, for .z; p/ 2
� � .R2 n ¹0º/, such that if a sufficiently smooth x satisfies

H.x; x�/xt D Œ p̂.x; x�/�� �ˆz.x; x�/ in I � .0; T �; (3.9)

then x is a solution to anisotropic curve shortening flow given by (3.3). For the construc-
tion of the matricesH , it is important to relate the right-hand side in (3.9) to the right-hand
side in (3.3). We begin by calculating

p̂.z; p/ D �a
2.z/
.z; p?/
?p .z; p

?/; 8z 2 �; p 2 R2 n
®
0
¯
I

ˆz.z; p/ D a
2.z/
.z; p?/
z.z; p

?/C a.z/
2.z; p?/ra.z/; 8z 2 �; p 2 R2;

where we use the notation 
?p .z; p/ D Œ
p.z; p/�
?. Furthermore, we obtain with the help

of (2.1), (2.2), and (3.2) that

Œ p̂.x; x�/�� D �Œa.x/
.x; x
?
� /a.x/


?
p .x; x

?
� /��

D �Œa.x/
.x; x?� /��a.x/

?
p .x; x

?
� / � a

2.x/
.x; x?� /xj;�

?
pzj
.x; x?� /

� a.x/
.x; x?� /ra.x/ � x�

?
p .x; x

?
� / � a

2.x/
.x; x?� /.
pp.x; x
?
� /x

?
��/
?

D �Œa.x/
.x; x?� /��a.x/

?
p .x; �/Ca

2.x/
.x; �/jx�j
2.�1


?
pz2
.x; �/ ��2


?
pz1
.x; �//

� a.x/jx�j
.x; �/ra.x/ � x�

?
p .x; �/C a

2.x/jx�j
2
.x; �/~.
pp.x; �/� � �/�:

Similarly,

ˆz.x; x�/ D a
2.x/jx�j

2
.x; �/
z.x; �/C a.x/jx�j
2
2.x; �/ra.x/;

and therefore,

Œ p̂.x; x�/�� �ˆz.x; x�/

D �Œa.x/
.x; x?� /��a.x/

?
p .x; �/C a

2.x/jx�j
2
.x; �/~.
pp.x; �/� � �/�

C a2.x/
.x; �/jx�j
2.�1


?
pz2
.x; �/ � �2


?
pz1
.x; �/ � 
z.x; �//

� a.x/jx�j
2
.x; �/.ra.x/ � �
?p .x; �/C 
.x; �/ra.x//: (3.10)

Observing that 
zi .x; �/ D 
pzi .x; �/ � � (recall (2.2)), we find

Œ�1

?
pz2
� �2


?
pz1
� 
z �1 D ��1
p2z2 C �2
p2z1 � �1
p1z1 � �2
p2z1

D �.
p1z1 C 
p2z2/�1;
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and a similar argument for the second component yields

�1

?
pz2
.x; �/ � �2


?
pz1
.x; �/ � 
z.x; �/ D �
pizi .x; �/�: (3.11)

Next, since


?p .x; �/ � � D �
p.x; �/ � � D �
.x; �/ and 
?p .x; �/ � � D 
p.x; �/ � �; (3.12)

we derive

ra � �
?p C 
ra D .ra � �/
�
.
?p � �/� C .


?
p � �/�

�
C 
..ra � �/� C .ra � �/�/

D .ra � �/.
p � �/� C .ra � �/.
p � �/� D .ra � 
p/�: (3.13)

If we insert (3.11) and (3.13) into (3.10), recall (2.5), and use the abbreviation !.x/ D
Œa.x/
.x; x?� /��, we obtain

Œ p̂.x; x�/�� �ˆz.x; x�/ D �!.x/a.x/

?
p .x; �/C a

2.x/jx�j
2
.x; �/~
�: (3.14)

Let us now assume that x is a solution of (3.9), where H.z; p/ is an invertible matrix
of the form

H.z; p/ D

�
˛.z; p/ �ˇ.z; p/

ˇ.z; p/ ˛.z; p/

�
; 8z 2 �; p 2 R2 n

®
0
¯
:

In order to determine ˛.z; p/; ˇ.z; p/ 2 R such that x satisfies (3.3), we calculate

xt � � D H
�1.x; x�/.Œ p̂.x; x�/�� �ˆz.x; x�// � �

D
1

˛2.x; x�/C ˇ2.x; x�/
.Œ p̂.x; x�/�� �ˆz.x; x�// �H.x; x�/�:

If we multiply by ˛2.x; x�/C ˇ2.x; x�/ and insert (3.14) we obtain, on noting
�
��2
�1

�
D

�? D �� and (3.12), that

.˛2.x; x�/C ˇ
2.x; x�//xt � �

D .�!.x/a.x/
?p .x; �/C a
2.x/jx�j

2
.x; �/~
�/ � .˛.x; x�/� � ˇ.x; x�/�/

D !.x/a.x/.�˛.x; x�/
p.x; �/ � � � ˇ.x; x�/
.x; �//

C ˛.x; x�/a
2.x/jx�j

2
.x; �/~


D ˛.x; x�/a
2.x/jx�j

2
.x; �/~
 ;

provided that ˛.x; x�/
p.x; �/ � � C ˇ.x; x�/
.x; �/D 0. With this choice, we obtain that

ˇ2.x; x�/ D ˛
2.x; x�/

.
p.x; �/ � �/
2


2.x; �/
;

and so

1


.x; �/
xt � � D

˛.x; x�/

˛2.x; x�/C ˇ2.x; x�/
a2.x/jx�j

2~
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D
1

˛.x; x�/


2.x; �/


2.x; �/C .
p.x; �/ � �/2
jx�j

2a2.x/~


D
1

˛.x; x�/


2.x; jx�j�/

j
p.x; �/j2
a2.x/~
 ;

where in the last step we have used the one-homogeneity of 
 (recall (2.2)). Clearly, (3.3)
will now hold if we choose

˛.z; p/ D
a2.z/
2.z; p?/

j
p.z; p?/j2
;

ˇ.z; p/ D �˛.z; p/

p.z; p

?/ � p


.z; p?/
D �

a2.z/
.z; p?/
p.z; p
?/ � p

j
p.z; p?/j2
:

In summary, we have shown the following result:

Lemma 3.1. Let ˆ.z; p/ D 1
2
a2.z/
2.z; p?/ and

H.z;p/D
a2.z/
.z; p?/

j
p.z; p?/j2

�

.z; p?/ 
p.z; p

?/ � p

�
p.z; p
?/ � p 
.z; p?/

�
; 8z 2�; p 2 R2 n

®
0
¯
:

(3.15)
If x W I � Œ0; T �! � satisfies (3.9), then x is a solution to anisotropic curve shortening
flow given in (3.3). In addition, H is positive definite in � � .R2 n ¹0º/ with

H.z; p/w � w D
a2.z/
2.z; p?/

j
p.z; p?/j2
jwj2; 8z 2 �; p 2 R2 n

®
0
¯
; w 2 R2: (3.16)

Furthermore, it can be shown that system (3.9) is strictly parabolic. The proof hinges
on the fact thatH and p̂p are positive definite matrices in� � .R2 n ¹0º/. This property
of p̂p immediately follows from our convexity assumptions on 
 (recall (2.3)).

Lemma 3.2. Let K � � � .R2 n ¹0º/ be compact. Then, there exists �K > 0 such that

p̂p.z; p/w � w � �K jwj
2; 8 .z; p/ 2 K; w 2 R2: (3.17)

Furthermore,

ˆ.z; q/ �ˆ.z; p/ � p̂.z; p/ � .q � p/ �
1

2
�K jq � pj

2;

8 .z; p/; .z; q/ 2 K with ¹zº � Œp; q� � K:

(3.18)

Here, Œp; q� � R2 denotes the line segment connecting p and q.

Proof. It is shown in [30, Remark 1.7.5] that (2.3) implies that p̂p.z; p/ is positive
definite for all z 2� and p¤ 0. Bound (3.17) then follows with the help of a compactness
argument, while the elementary identity

ˆ.z; q/ �ˆ.z; p/ � p̂.z; p/ � .q � p/

D

Z 1

0

. p̂.z; sq C .1 � s/p/ � p̂.z; p// � .q � p/ ds
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D

Z 1

0

Z 1

0

s p̂p.z; �sq C .1 � �s/p/.q � p/ � .q � p/ d� ds;

together with (3.17), implies (3.18).

Lemma 3.3. The system in (3.9) is parabolic in the sense of Petrovsky.

Proof. On inverting the matrix H.x; x�/, we may write (3.9) in the form

xt D H
�1.x; x�/ p̂p.x; x�/x��

CH�1.x; x�/. p̂z.x; x�/x� �ˆz.x; x�// in I � .0; T �:

Hence, by definition we need to show that the eigenvalues of H�1.z; p/ p̂p.z; p/ have
positive real parts for every .z;p/ 2�� .R2 n ¹0º/; see, for example, [25, Definition 1.2].
Let us fix .z; p/ and abbreviate H D H.z; p/, A D p̂p.z; p/. The two eigenvalues
�1; �2 2 C of H�1A 2 R2�2 satisfy

�1�2 D det.H�1A/D
detA
detH

> 0; �1C �2 D tr.H�1A/D
tr.HTA/

detH
D
H11 trA

detH
> 0;

since H11 > 0 and detH > 0 (recall (3.15)) and since A is symmetric positive definite in
view of (3.17). Hence, either both eigenvalues are positive real numbers, or �2 D �1 with
2Re�1 D �1 C �2 > 0.

In view of Lemma 3.3, we expect that it is possible to prove the short-time existence
of a unique smooth solution to (3.9). Moreover, existence and uniqueness of classical
smooth solutions to PDEs of the form xt D b.~; �/� C a� , arising from closely related
curvature-driven geometric evolution equations, have been obtained in [34].

The weak formulation of (3.9) now reads as follows: Given x0 W I ! �, find
x W I � Œ0; T �! � such that x.�; 0/ D x0 and, for t 2 .0; T �,Z

I

H.x; x�/xt � � d�C
Z
I

p̂.x; x�/ � �� d�

C

Z
I

ˆz.x; x�/ � � d� D 0; 8� 2 ŒH 1.I /�2: (3.19)

Choosing � D xt in (3.19) yields, on recalling (3.8) and (3.16), that

1

2

d
dt

Z
I

a2.x/
2.x; �/jx�j
2 d� D

d
dt

Z
I

ˆ.x; x�/ d�

D

Z
I

. p̂.x; x�/ � xt� Cˆz.x; x�/ � xt / d�

D �

Z
I

H.x; x�/xt � xt d� � 0: (3.20)

Clearly, (3.20) is the desired anisotropic analogue to (3.6). So, together with the fact
that x is a solution of the gradient flow given in (3.3) (recall also (2.7)), we obtain that
both 1

2

R
I
a2.x/
2.x; �/jx�j

2 d� and
R
I
a.x/
.x; �/jx�j d� are monotonically decreasing

in time.
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Example 3.4. For the following cases, we refer to the same numbering as in Example 2.2.

(1) Isotropic case: We have ˆ.z; p/ D 1
2
jpj2 and H.z; p/ D jpj2Id, so that (3.19)

collapses to (3.5), which is the same as [19, (12)].

(2) Space-independent anisotropy: We have ˆ.z; p/ D ˆ0.p/ D 1
2

20 .p

?/, so that

p̂.z; p/ D ˆ
0
0.p/ D �
0.p

?/Œ
 00.p
?/�? (3.21a)

and H.z; p/ D H0.p/ D

0.p

?/

j
 00.p
?/j2

�

0.p

?/ 
 00.p
?/ � p

�
 00.p
?/ � p 
0.p

?/

�
: (3.21b)

Hence, the weak formulation readsZ
I

H0.x�/xt � � d�C
Z
I

ˆ00.x�/ � �� d� D 0; 8 � 2 ŒH 1.I /�2: (3.22)

(3) Riemannian manifolds: In view of (2.9), we have ˆ.z; p/ D 1
2
G.z/p � p, while

H.z; p/

D
detG.z/

�
G�1.z/p? � p?

� 3
2

jG�1.z/p?j2

0@pG�1.z/p? � p? G�1.z/p?�pp
G�1.z/p?�p?

�
G�1.z/p?�pp
G�1.z/p?�p?

p
G�1.z/p? � p?

1A
D
.detG.z//G.z/p � p

jG.z/pj2

�
G.z/p � p �G.z/p � p?

G.z/p � p? G.z/p � p

�
: (3.23)

Hence, the weak formulation readsZ
I

H.x; x�/xt � � d�C
Z
I

G.x/x� � �� d�

C
1

2

Z
I

�iGzi .x/x� � x� d� D 0; 8 � 2 ŒH 1.I /�2:

Remark 3.5. It is a straightforward matter to extend our approach for (3.3) to the more
general flow b̌.x; �/xt � � D ~
 in I � .0; T �I (3.24)

compare also with (1.6) in the space-independent case. In particular, it can be easily shown
that if x is a solution to


.x; �/b̌.x; �/H.x; x�/xt D Œ p̂.x; x�/�� �ˆz.x; x�/ in I � .0; T �;

then it automatically solves (3.24). Extending our analysis in Section 4 to this more general
case is straightforward, upon making the necessary smoothness assumptions on b̌.

4. Finite element approximation

In order to define our finite element approximation, let 0D q0 <q1 < : : : < qJ�1 <qJ D 1
be a decomposition of Œ0; 1� into intervals Ij D Œqj�1; qj �. Let hj D qj � qj�1 as well as
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h D max1�j�J hj . We assume that there exists a positive constant c such that

h � chj ; 1 � j � J;

so that the resulting family of partitions of Œ0; 1� is quasiuniform. Within I , we identify
qJ D 1 with q0 D 0 and define the finite element spaces

V h D
®
� 2 C 0.I / j � jIj is affine; j D 1; : : : ; J

¯
and V h D ŒV h�2:

Let ¹�j ºJjD1 denote the standard basis of V h. For later use, we let �h W C 0.I /! V h be
the standard interpolation operator at the nodes ¹qj ºJjD1, and we use the same notation for
the interpolation of vector-valued functions. It is well known that for k 2 ¹0; 1º, ` 2 ¹1; 2º,
and p 2 Œ2;1�, it holds that

h
1
p�

1
r k�hk0;r C hj�hj1;p � Ck�hk0;p; 8 �h 2 V

h; r 2 Œp;1�I (4.1a)

j� � �h�jk;p � Ch
`�k
j�j`;p; 8 � 2 W

`;p.I /: (4.1b)

Our semidiscrete approximation of (3.19) is now given as follows: Find xh W I �
Œ0; T �! � such that xh.�; 0/ D �hx0 and, for t 2 .0; T �, xh.�; t / 2 V h such thatZ

I

H.xh; xh;�/xh;t � �h d�C
Z
I

p̂.xh; xh;�/ � �h;� d�

C

Z
I

ˆz.xh; xh;�/ � �h d� D 0; 8 �h 2 V h: (4.2)

Expanding xh.�; t / D
PJ
jD1 xh.qj ; t /�j , we find that (4.2) gives rise to a system of

ordinary differential equations (ODEs) in R2J which has a unique solution on some inter-
val Œ0; Th/. By choosing �h D xh;t , one also immediately obtains a semidiscrete analogue
of (3.20).

In what follows, we assume that (3.9) has a smooth solution x W I � Œ0; T �! � satis-
fying

0 < c0 � jx�j � C0 in I � Œ0; T � and
Z T

0

kxtk0;1 dt � C0: (4.3)

Let S D x.I � Œ0; T �/. Then, there exists ı > 0 such that Bı.S/ � � and we define the
compact setK DBı.S/� .B2C0.0/ nB c0

2
.0//��� .R2 n ¹0º/. We may chooseMK � 0

and c1 > 0 such that

max
jˇ j�3

max
.z;p/2K

jDˇ
.z; p/j �MK ; max
jˇ j�2

max
z2Bı .S/

jDˇa.z/j �MK ; (4.4)

and


.z; p/ � c1; j
p.z; p/j � c1; a.z/ � c1; 8 z 2 Bı.S/; p 2 B2C0.0/ n B c0
2
.0/:

(4.5)
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Theorem 4.1. Suppose that (3.9) has a smooth solution x W I � Œ0; T � ! � satisfy-
ing (4.3). Then, there exists h0 > 0 such that for 0 < h � h0, semidiscrete problem (4.2)
has a unique solution xh W I � Œ0; T �! �, and the following error bounds hold:

max
t2Œ0;T �

kx.�; t / � xh.�; t /k
2
1 C

Z T

0

kxt � xh;tk
2
0 dt � Ch2: (4.6)

Proof. Let us define

bT h D sup
°
t 2 Œ0; T � j xh solves .4.2/ on Œ0; t �; with

Z t

0

kxh;tk0;1 ds � 2C0 and

k.x � xh/.�; s/k0;1 � ı; k.x� � xh;�/.�; s/k0;1 �
1

2
c0; 0 � s � t

±
:

Let .�; t/ 2 I � Œ0;bT h/. Since j.1� �/x.�; t/C �xh.�; t/� x.�; t/j � k.x � xh/.�; t /k0;1
� ı for all � 2 Œ0; 1�, we find that Œx.�; t/; xh.�; t/� � Bı.S/. Arguing in a similar way
for the first derivative, we deduce that

Œx.�; t/; xh.�; t/� � Œx�.�; t/; xh;�.�; t/� � K; 8 .�; t/ 2 I � Œ0;bT h/: (4.7)

Comparing (3.19) and (4.2), we see that the error e D x � xh satisfiesZ
I

H.xh; xh;�/et � �h d�C
Z
I

. p̂.xh; x�/ � p̂.xh; xh;�// � �h;� d�

D

Z
I

.H.xh; xh;�/ �H.x; x�//xt � �h d�C
Z
I

. p̂.xh; x�/ � p̂.x; x�// � �h;� d�

C

Z
I

.ˆz.xh; xh;�/ �ˆz.x; x�// � �h d�; 8 �h 2 V h: (4.8)

Using the identity
e D x � �hx C �he (4.9)

and choosing �h D �het in (4.8), we obtainZ
I

H.xh; xh;�/et � et d�C
Z
I

. p̂.xh; x�/ � p̂.xh; xh;�// � et� d�

D

Z
I

H.xh; xh;�/et � .xt � �
hxt / d�

C

Z
I

. p̂.xh; x�/ � p̂.xh; xh;�// � .xt � �
hxt /� d�

C

Z
I

.H.xh; xh;�/ �H.x; x�//xt � �
het d�

C

Z
I

. p̂.xh; x�/ � p̂.x; x�// � .�
het /� d�

C

Z
I

.ˆz.xh; xh;�/ �ˆz.x; x�// � �
het d� DW

5X
iD1

Si : (4.10)
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Let us begin with the two terms on the left-hand side of (4.10). Clearly, (3.16), (4.4), (4.5),
and (4.7) imply thatZ

I

H.xh; xh;�/et � et d� D
Z
I

a2.xh/

2.xh; x

?
h;�
/

j
p.xh; x
?
h;�
/j2

jet j
2 d� � zc0ketk20; (4.11)

where zc0 DM�2K c41 . Next, we write

. p̂.xh; x�/ � p̂.xh; xh;�// � et�

D p̂.xh; x�/ � xt� C p̂.xh; xh;�/ � xh;t� � p̂.xh; x�/ � xh;t� � p̂.xh; xh;�/ � xt�

D Œˆ.xh; xh;�/ � p̂.xh; x�/ � xh;��t C p̂.xh; x�/ � xt� � p̂.xh; xh;�/ � xt�

�ˆz.xh; xh;�/ � xh;t C Œ p̂.xh; x�/�t � xh;�:

Since p 7! ˆ.z; p/ and p 7! ˆzj .z; p/ are positively homogeneous of degree 2, we have

p̂.xh; x�/ � x� D 2ˆ.xh; x�/ and p̂zj .xh; x�/ � x� D 2ˆzj .xh; x�/;

and therefore,

. p̂.xh; x�/ � p̂.xh; xh;�// � et�

D Œˆ.xh; xh;�/ �ˆ.xh; x�/ � p̂.xh; x�/ � .xh;� � x�/�t � Œˆ.xh; x�/�t

C p̂.xh; x�/ � xt� � p̂.xh; xh;�/ � xt� �ˆz.xh; xh;�/ � xh;t

C Œ p̂.xh; x�/�t � xh;�

D Œˆ.xh; xh;�/ �ˆ.xh; x�/ � p̂.xh; x�/ � .xh;� � x�/�t

� .ˆz.xh; xh;�/Cˆz.xh; x�// � xh;t

� p̂.xh; xh;�/ � xt� C xh;j;t p̂zj .xh; x�/ � xh;� C p̂p.xh; x�/xt� � xh;�

D Œˆ.xh; xh;�/ �ˆ.xh; x�/ � p̂.xh; x�/ � .xh;� � x�/�t

� . p̂.xh; xh;�/ � p̂p.xh; x�/xh;�/ � xt�

� .ˆzj .xh; xh;�/ �ˆzj .xh; x�/ � p̂zj .xh; x�/ � .xh;� � x�//xh;j;t

D Œˆ.xh; xh;�/ �ˆ.xh; x�/ � p̂.xh; x�/ � .xh;� � x�/�t

� . p̂.xh; xh;�/ � p̂.xh; x�/ � p̂p.xh; x�/.xh;� � x�// � xt�

� .ˆzj .xh; xh;�/ �ˆzj .xh; x�/ � p̂zj .xh; x�/ � .xh;� � x�//xh;j;t ; (4.12)

where the last equality follows from the relation p̂.z; p/ D p̂p.z; p/p (recall (2.2)). If
we combine (4.12) with (4.11) and use a Taylor expansion together with (4.4) and (4.7),
we obtain for the left-hand side of (4.10) thatZ

I

H.xh; xh;�/et � et d�C
Z
I

. p̂.xh; x�/ � p̂.xh; xh;�// � et� d�

� zc0ketk
2
0 C

d
dt

Z
I

ˆ.xh; xh;�/ �ˆ.xh; x�/ � p̂.xh; x�/ � .xh;� � x�/ d�

� C.kxt�k0;1 C kxh;tk0;1/ke�k
2
0: (4.13)
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Let us next estimate the terms on the right-hand side of (4.10). To begin, we obtain from
(3.15), (4.4), (4.5), and (4.1b) that

S1 � Cketk0kxt � �
hxtk0 � Chkxt�k0ketk0 � "ketk

2
0 C C"h

2
kxt�k

2
0: (4.14a)

The remaining terms involve differences between p̂ ,H , andˆz , which will be estimated
with the help of (4.4) and (4.7). Using (4.1b), we have

S2 � Cke�k0k.xt � �
hxt /�k0 � Chkxt��k0ke�k0 � ke�k

2
0 C Ch

2
kxt��k

2
0; (4.14b)

as well as

S3 � Ckek1kxtk0;1k�
hetk0 � Ckek1.ketk0 C kxt � �

hxtk0/

� "ketk
2
0 C C"kek

2
1 C Ch

2
kxt�k

2
0; (4.14c)

and similarly,

S5 � Ckek1k�
hetk0 � "ketk

2
0 C C"kek

2
1 C Ch

2
kxt�k

2
0: (4.14d)

Finally, noting once again identity (4.9) and estimate (4.1b), we have

S4 D
d
dt

Z
I

. p̂.xh; x�/ � p̂.x; x�// � .�
he/� d�

�

Z
I

Œ p̂.xh; x�/ � p̂.x; x�/�t � .�
he/� d�

D
d
dt

Z
I

. p̂.xh; x�/ � p̂.x; x�// � .�
he/� d�

C

Z
I

Œ p̂z.xh; x�/et C . p̂z.x; x�/ � p̂z.xh; x�//xt � � .�
he/� d�

C

Z
I

Œ. p̂p.x; x�/ � p̂p.xh; x�//xt�� � .�
he/� d�

�
d
dt

Z
I

. p̂.xh; x�/ � p̂.x; x�// � .�
he/� d�

C C.ketk0 C kek0;1kxtk1/.ke�k0 C kx� � .�
hx/�k0/

�
d
dt

Z
I

. p̂.xh; x�/ � p̂.x; x�// � .�
he/� d�C "ketk20 C C"kek

2
1

C C"h
2
kx��k

2
0; (4.14e)

where in the last inequality we have also used embedding result (1.8). If we insert (4.13)
and (4.14) into (4.10), and choose " sufficiently small, we obtain

1

2
zc0ketk

2
0 C �

0.t/ � C.1C kxh;tk0;1/kek
2
1 C Ch

2; (4.15)
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where

�.t/ D

Z
I

ˆ.xh; xh;�/ �ˆ.xh; x�/ � p̂.xh; x�/ � .xh;� � x�/ d�

�

Z
I

. p̂.xh; x�/ � p̂.x; x�// � .�
he/� d�:

Clearly, we have from (3.18), on noting (4.9) and (4.1b), that

�.t/ �
1

2
�Kke�k

2
0 � Ckek0k.�

he/�k0

�
1

2
�Kke�k

2
0 � Ckek0.ke�k0 C kx� � .�

hx/�k0/

�
1

4
�Kke�k

2
0 � C1kek

2
0 � Ch

2;

and hence,

kek21 D kek
2
0 C ke�k

2
0

� kek20 C
4

�K
Œ�.t/C C1kek

2
0 C Ch

2�

�
4

�K
.C2kek

2
0 C �.t//C Ch

2; (4.16)

where C2 D C1 C
�K
4

. Integrating (4.15) with respect to time, and observing (4.16) as
well as �.0/ � Ch2, we derive

1

2
zc0

Z t

0

ketk
2
0 ds C .�.t/C C2ke.t/k20/

� C

Z t

0

.1C kxh;tk0;1/kek
2
1 ds C 2C2

Z t

0

kek0ketk0 ds C Ch2

� C

Z t

0

.1C kxh;tk0;1/.�.s/C C2kek
2
0/ ds C

1

4
zc0

Z t

0

ketk
2
0 ds

C C

Z t

0

kek20 ds C Ch2;

and hence,

�.t/C C2ke.t/k
2
0 � Ch

2
C C

Z t

0

.1C kxh;tk0;1/.�.s/C C2kek
2
0/ ds; 0 � t < bT h:

Since
RbT h
0
kxh;tk0;1 ds � 2C0 by definition, we deduce with the help of Gronwall’s
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inequality and (4.16) thatZ bT h
0

ketk
2
0 ds C sup

0�s�bT h ke.s/k21 � Ch2: (4.17)

In particular, we have on recalling (1.8) that

kx.�;bT h/ � xh.�;bT h/k0;1 D ke.�;bT h/k0;1 � Cke.�;bT h/k1 � Ch � 1

2
ı;

provided that 0 < h � h0. Next, we have from (4.1b), (4.1a), (4.9), and (4.17) that

k.x� � xh;�/.�;bT h/k0;1 � k.x� � .�hx/�/.�;bT h/k0;1 C k..�hx/� � xh;�/.�;bT h/k0;1
� ChC Ch�

1
2 k.xh;� � .�

hx/�/.�;bT h/k0
� Ch

1
2 C Ch�

1
2 ke�.�;bT h/k0 � Ch 12 ;

and similarly, by (4.3), thatZ bT h
0

kxh;tk0;1 ds �
Z bT h
0

.kxtk0;1 ds C ketk0;1/ ds

� C0 C Ch
� 12

Z bT h
0

ketk0 ds � C0 C Ch
1
2 :

By choosing h0 to be smaller if necessary, we may therefore assume that the inequalities
k.x� � xh;�/.�;bT h/k0;1 � 1

4
c0 and

RbT h
0
kxh;tk0;1 ds � 3

2
C0 hold. Suppose that bT h < T .

Then, there exists an " > 0 such that xh exists on Œ0;bT hC "�with k.x � xh/.�; t /k0;1 � ı,

k.x� � xh;�/.�; t /k0;1 �
1
2
c0 for 0 � t � bT h C ", and

RbT hC"
0

kxh;tk0;1 ds � 2C0, which
contradicts the definition of bT h. Thus, bT h D T and the theorem is proved.

5. Fully discrete schemes

From now on, let the L2-inner product on I be denoted by .�; �/. Due to the nonlinearities
present in (4.2), for a fully practical scheme we need to introduce numerical quadrature.
For our purposes, it is sufficient to consider classical mass lumping. Hence, for two piece-
wise continuous functions with possible jumps at the nodes ¹qj ºJjD1, we define the mass
lumped L2-inner product .u; v/h via

.u; v/h D
1

2

JX
jD1

hj Œ.uv/.q
�
j /C .uv/.q

C

j�1/�; (5.1)

where u.q˙j / D lim
ı&0

u.qj ˙ ı/. The definition in (5.1) naturally extends to vector-valued
functions.
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In particular, we will consider fully discrete approximations of

.H.xh; xh;�/xh;t ; �h/
h
C . p̂.xh; xh;�/; �h;�/

h

C .ˆz.xh; xh;�/; �h/
h
D 0; 8 �h 2 V

h (5.2)

in place of (4.2). Using this quadrature does not affect our derived error estimate in (4.6),
as can be shown with standard techniques.

In order to discretize (5.2) in time, let tm D m�t , m D 0; : : : ; M , with the uniform
time step size �t D T

M
> 0. In the following, we let x0

h
D xh.�; 0/ D �hx0 2 V

h and
form D 0; : : : ;M � 1, let xmC1

h
2 V h be the solution of a system of algebraic equations,

which we will specify. In general, we will attempt to define fully discrete approxima-
tions that are unconditionally stable, in the sense that they satisfy the following discrete
analogue of (3.20):

.ˆ.xkh ; x
k
h;�/ �ˆ.x

0
h; x

0
h;�/; 1/

h

� ��t

k�1X
mD0

�
H.xmh ; x

m
h;�/

xmC1
h
� xm

h

�t
;
xmC1
h
� xm

h

�t

�h
� 0; (5.3)

for k D 1; : : : ;M . Here, the second inequality is a consequence of (3.16).

5.1. Space-independent anisotropic curve shortening flow

Let 
.z; p/ D 
0.p/ be an anisotropy function and let ˆ0.p/ D 1
2

20 .p/. Using Exam-

ple 3.4(2), we propose the scheme

1

�t
.H0.x

m
h;�/.x

mC1
h
� xmh /; �h/

h
C .ˆ00.x

mC1
h;�

/; �h;�/ D 0; 8 �h 2 V
h; (5.4)

whereH0 is defined in (3.21b). We remark that in the isotropic case, scheme (5.4) is linear
and collapses to the fully discrete approximation in [19, p. 108].

Lemma 5.1. A solution .xm
h
/MmD0 to (5.4) satisfies stability bound (5.3).

Proof. Choose �h D xmC1h
� xm

h
in (5.4), use (3.18), and sum from m D 0 to k � 1.

A disadvantage of the scheme in (5.4) is that at each time level, a nonlinear system of
equations needs to be solved. Following the approach in [20] (see also [38]), one could
alternatively consider a linear scheme by introducing a suitable stabilization term and
treating the elliptic term in (5.4) fully explicitly.

If we restrict our attention to a special class of anisotropies, then a linear and uncondi-
tionally stable approximation can be introduced that does not rely on a stabilization term.
This idea goes back to [5], and was extended to the phase field context in [10]. In fact, a
wide class of anisotropies can either be modeled or at least very well approximated by


0.p/ D

LX
`D1

p
ƒ`p � p; (5.5)
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where ƒ` 2 R2�2, ` D 1; : : : ; L, are symmetric and positive definite; see [4, 5]. Hence,
assumption (2.3) is satisfied. In order to be able to apply the ideas in [10, 11], we define
the auxiliary function �0.p/ D 
0.p?/, so that ˆ0.p/ D 1

2

20 .p

?/ D 1
2
�20.p/. Observe

that �0 also falls within the class of densities of the form (5.5), that is,

�0.p/ D 
0.p
?/ D

LX
`D1

q
zƒ`p � p; where zƒ` D det.ƒ`/ƒ�1` :

Moreover, we recall from [10, 11] that ˆ00.p/ D B.p/p, if we introduce the matrices

B.p/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0.p

?/

LX
`D1

zƒ`q
zƒ`p � p

p ¤ 0;

L

LX
`D1

zƒ` p D 0:

(5.6)

On recalling once again the definition of H0 from (3.21b), we then consider the scheme

1

�t
.H0.x

m
h;�/.x

mC1
h
� xmh /; �h/

h
C .B.xmh;�/x

mC1
h;�

; �h;�/ D 0; 8 �h 2 V
h; (5.7)

which is inspired by the treatment of the anisotropy in [10, 11] and leads to a system of
linear equations. We note that for the case L D 1, the two schemes in (5.7) and (5.4) are
identical.

Lemma 5.2. Suppose that xm
h
2 V h with xm

h;�
¤ 0 in I . Then, there exists a unique solu-

tion xmC1
h

2 V h to (5.7). Moreover, a solution .xm
h
/MmD0 to (5.7) satisfies the stability

bound in (5.3).

Proof. Existence follows from uniqueness, and so we consider the following homogen-
eous system: Find Xh 2 V h such that

1

�t
.H0.x

m
h;�/Xh; �h/

h
C .B.xmh;�/Xh;�; �h;�/ D 0; 8 �h 2 V

h:

Choosing �h D Xh, and observing that the matrices B.p/ are positive definite, we obtain

0 D .H0.x
m
h;�/Xh; Xh/

h
C�t.B.xmh;�/Xh;�; Xh;�/ � .H0.x

m
h;�/Xh; Xh/

h;

which implies thatXhD 0 in view of (3.16). This proves the existence of a unique solution.
In order to show the stability bound, we recall from [10, Corollary 2.3] that with B as
defined in (5.6), it holds that

B.q/p � .p � q/ � ˆ0.p/ �ˆ0.q/; 8 p; q 2 R2:

Hence, choosing �h D xmC1
h

� xm
h

in (5.7) and summing from m D 0 to k � 1

yields (5.3).
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5.2. Curve shortening flow in Riemannian manifolds

Let us denote by Sym.2;R/ the set of symmetric 2 � 2 matrices over R. For A; B 2
Sym.2;R/, we define A < B if and only if A � B is positive semidefinite. We say that a
differentiable function f W �! Sym.2;R/ is convex if

f .w/ < f .z/C .wi � zi /fzi .z/ for all z; w 2 � such that Œz; w� � �:

We now consider the situation in Example 3.4(3). Let G W �! Sym.2;R/, so that
ˆ.z; p/ D 1

2
G.z/p � p, where G.z/ is positive definite for z 2 �. In order to obtain an

unconditionally stable scheme, we adapt an idea from [12] and assume that we can splitG
into

G D GC CG� such that ˙G˙ W �! Sym.2;R/ are convex: (5.8)

Such a splitting exists if there exists a constant cG 2 R�0 such that

1

2
�i�jGzizj .z/C cG j�j

2Id < 0; 8 z 2 �; � 2 R2:

In that case, one may choose GC.z/ D G.z/C cG jzj2Id and G�.z/ D �cG jzj2Id. It fol-
lows from (5.8) that

.wi � zi /.GC;zi .w/CG�;zi .z// < G.w/ �G.z/;

8 w; z 2 � such that Œz; w� � �:
(5.9)

We now consider the scheme

1

�t
.H.xmh ; x

m
h;�/.x

mC1
h
� xmh /; �h/

h
C .G.xmh /x

mC1
h;�

; �h;�/
h

C
1

2
.�h;i .GC;zi .x

mC1
h

/CG�;zi .x
m
h //x

mC1
h;�

; xmC1
h;�

/h D 0; 8 �h 2 V
h; (5.10)

where H is as defined in (3.23). We note that in general (5.10) is a nonlinear scheme.

Lemma 5.3. Let .xm
h
/MmD0 be a solution to equation (5.10), with Œxm

h
.qj /;x

mC1
h

.qj /���

for j D 1; : : : ; J and m D 0; : : : ;M � 1. Then, stability bound (5.3) is satisfied.

Proof. Let us again choose �h D xmC1h
� xm

h
in (5.10) and calculate with the help of (5.9)

.G.xmh /x
mC1
h;�

; xmC1
h;�
� xmh;�/

h

C
1

2
..xmC1

h;i
� xmh;i /.GC;zi .x

mC1
h

/CG�;zi .x
m
h //x

mC1
h;�

; xmC1
h;�

/h

� .G.xmh /x
mC1
h;�

; xmC1
h;�

/h � .G.xmh /x
mC1
h;�

; xmh;�/
h

C
1

2
..G.xmC1

h
/ �G.xmh //x

mC1
h;�

; xmC1
h;�

/h
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D
1

2
.G.xmh /.x

mC1
h;�
� xmh;�/; x

mC1
h;�
� xmh;�/

h

C .ˆ.xmC1
h

; xmC1
h;�

/; 1/h � .ˆ.xmh ; x
m
h;�/; 1/

h

� .ˆ.xmC1
h

; xmC1
h;�

/; 1/h � .ˆ.xmh ; x
m
h;�/; 1/

h;

since G.xm
h
/ is symmetric and positive definite. This yields the desired result in a similar

manner to the proof of Lemma 5.2.

In the special case that the Riemannian manifold is conformally equivalent to the Euc-
lidean plane, that is, when G.z/ D g.z/Id for g W �! R>0, several numerical schemes
have been proposed in [12, §3.1]. In this situation, our fully discrete approximation (5.10)
collapses to the new scheme

1

�t
.g2.xmh /.x

mC1
h
� xmh /; �hjx

m
h;�j

2/h C .g.xmh /x
mC1
h;�

; �h;�/
h

C
1

2
..rgC.x

mC1
h

/Crg�.x
m
h //; �hjx

mC1
h;�
j
2/h D 0; 8 �h 2 V

h; (5.11)

where g D gC C g� and˙g˙ W �! R are convex. We observe that for the special case
g.z/ D .z1/

2, scheme (5.11) is in fact very close to approximation [3, (4.4)], modulo the
different time scaling factor that arises in the context of mean curvature flow for axisym-
metric hypersurfaces in R3 considered there.

6. Numerical results

We implemented our fully discrete schemes within the finite element toolbox Alberta [41].
Where the systems of equations arising at each time level are nonlinear, they are solved
using a Newton method or a Picard-type iteration, while all linear (sub)problems are
solved with the help of the sparse factorization package UMFPACK; see [18]. For exam-
ple, for the solution of (5.4) we employ a Newton iteration, while the Picard iteration for
the solution of (5.10) is defined through xmC1;0

h
D xm

h
and, for i � 0, by xmC1;iC1

h
2 V h

such that

1

�t
.H.xmh ; x

m
h;�/.x

mC1;iC1
h

� xmh /; �h/
h

C .G.xmh /x
mC1;iC1
h;�

; �h;�/
h
C
1

2

�
�h;i .GC;zi .x

mC1;i
h

/

CG�;zi .x
m
h //x

mC1;i
h;�

; x
mC1;i
h;�

�h
D 0; 8 �h 2 V

h: (6.1)

In all our simulations, the Newton solver for (5.4) converged in at most one iteration, while
the Picard iteration in (6.1) always converged in at most three iterations.
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For all our numerical simulations, we use a uniform partitioning of Œ0; 1�, so that qj
D jh, j D 0; : : : ;J , with hD 1

J
. Unless otherwise stated, we use J D 128 and�t D 10�4.

On recalling (1.1), for �h 2 V h we define the discrete energy

Eh.�h/ D .a.�h/; 
.�h; �
?
h;�//

h:

We also consider the ratio

rm D
maxjD1;:::;J jxmh .qj / � x

m
h
.qj�1/j

minjD1;:::;J jxmh .qj / � x
m
h
.qj�1/j

(6.2)

between the longest and shortest element of �m
h
D xm

h
.I /; we are often interested in the

evolution of this ratio over time. We stress that no redistribution of vertices was necessary
during any of our numerical simulations. In the isotropic case, this can be explained by
the diffusive character of the tangential motion induced by (3.4), since the flow can be
rewritten as xt D ~� � . 1

jx�j
/�� , as has been pointed out in, for example, [34, p. 1477].

Our numerical experiments indicate that while the induced tangential motion from (3.9)
may not be diffusive in general, it is sufficiently well-behaved to avoid coalescence of
vertices in practice.

6.1. Space-independent anisotropic curve shortening flow

In this subsection, we consider the situation from Example 2.2(2); in addition, see Exam-
ple 3.4(2). Anisotropies of the form 
.z; p/ D 
0.p/ can be visualized by their Frank
diagram F D ¹p 2 R2 W 
0.p/ � 1º and their Wulff shape W D ¹q 2 R2 W 
�0 .q/ � 1º,
where 
�0 is the dual of 
0 defined by


�0 .q/ D sup
p2R2n¹0º

p � q


0.p/
:

We recall from [28] that the boundary of the Wulff shape, @W , is the solution of the
isoperimetric problem for E.�/ D

R
�

0.�/ dH1. Moreover, it was shown in [42] that

self-similarly shrinking boundaries of Wulff shapes are a solution to anisotropic curve
shortening flow. In particular,

�.t/ D
®
q 2 R2 j 
�0 .q/ D

p
1 � 2t

¯
(6.3)

solves (2.8). We demonstrate this behavior in Figure 1 for the “elliptic” anisotropy


0.p/ D

q
p21 C ı

2p22 ; ı D 0:5: (6.4)

Observe that (6.4) is a special case of (5.5) with L D 1, so that the scheme in (5.4) col-
lapses to the linear scheme in (5.7). The evolution in Figure 1 nicely shows how the curve
shrinks self-similarly to a point. We can also see that the scheme in (5.4) induces a tan-
gential motion that moves the initially equidistributed vertices along the curve, so that
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Figure 1. Anisotropic curvature flow for (6.4) using scheme (5.4). The solution at times t D
0; 0:05; : : : ; 0:45; 0:499, as well as the distribution of vertices on xM

h
.I /, are shown. Below we

show a plot of the discrete energy Eh.xm
h
/ and of ratio (6.2) over time.

eventually a higher density of vertices can be observed in regions of larger curvature. We
note that this behavior is not dissimilar to the behavior observed in the numerical experi-
ments in [5].

We now use the exact solution given by (6.3) to perform a convergence experiment
for our proposed finite element approximation (see (4.2)). To this end, we choose the
particular parametrization

x.�; t/ D .1 � 2t/
1
2

 
cos.2��/
ı sin.2��/

!
(6.5)

and define
f D H0.x�/xt � Œˆ

0
0.x�/��; (6.6)

so that (6.5) is the exact solution of (3.22) with the additional right-hand side .f; �/. Upon
adding the right-hand side .f .tmC1/; �h/h to (5.4), we can thus use (6.5) as a reference
solution for a convergence experiment of our proposed finite element approximation. We
report on the observed H 1- and L2-errors for the scheme in (5.4) for a sequence of mesh
sizes in Table 1. Here we partition the time interval Œ0; T �, with T D 0:45, into uniform
time steps of size �t D h2 for h D J�1 D 2�k , k D 5; : : : ; 9. The observed numerical
results confirm the optimal convergence rate for the H 1-error from Theorem 4.1.
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J max
mD0;:::;M

kx.�; tm/ � x
m
h k0 EOC max

mD0;:::;M
kx.�; tm/ � x

m
h k1 EOC

32 1.2337e-02 — 2.8140e-01 —
64 3.1870e-03 1.95 1.4076e-01 1.00

128 8.0360e-04 1.99 7.0386e-02 1.00
256 2.0133e-04 2.00 3.5194e-02 1.00
512 5.0361e-05 2.00 1.7597e-02 1.00

Table 1. Errors for the convergence test for (6.5) over the time interval Œ0; 0:45� for scheme (5.4)
with the additional right-hand side .f .tmC1/; �h/h from (6.6). We also display the experimental
orders of convergence (EOC).

Figure 2. Frank diagram (left) and Wulff shape (right) for (6.7) with .k; ı/ D .3; 0:124/ and
.6; 0:028/.

Next we consider smooth anisotropies as in [24, (7.1)] and [8, (4.4a)]. To this end, let


0.p/ D jpj.1C ı cos.k�.p///; p D jpj

 
cos �.p/
sin �.p/

!
; k 2 N; ı 2 R�0: (6.7)

It is not difficult to verify that this anisotropy satisfies (2.3) if and only if ı < 1
k2�1

; see
also [8, p. 27]. In order to visualize this family of anisotropies, we show a Frank diagram
and a Wulff shape for the cases k D 3 and k D 6, respectively, in Figure 2. We show
the evolutions for anisotropic curve shortening flow induced by these two anisotropies,
starting in each case from an equidistributed approximation of a unit circle, in Figure 3.
Here we use the fully discrete scheme in (5.4). We observe from the evolutions in Figure 3
that the shape of the curve quickly approaches the Wulff shape, while it continuously
shrinks towards a point. It is interesting to note that the ratio in (6.2) increases only slightly
and then appears to remain nearly constant for the remainder of the evolution.

One motivation for choosing a sixfold anisotropy, as in (6.7) with k D 6, is its rel-
evance for modeling ice crystal growth; see, for example, [7, 9]. Here it is desirable to
choose a (nearly) crystalline anisotropy, which means that the Wulff shape exhibits flat
sides and sharp corners. With the help of the class of anisotropies in (5.5), this is possible.
We immediately demonstrate how this can be achieved for a general k-fold symmetry, for
even k 2 N. On choosing L D k=2, we define the rotation matrix Q.�/ D

� cos � sin �
� sin � cos �

�
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Figure 3. Anisotropic curvature flow for (6.7), with .k; ı/D .3;0:124/ (top) and .6;0:028/ (bottom),
using scheme (5.4). The solution at times t D 0; 0:05; : : : ; 0:5 is shown. We also show plots of
ratio (6.2) over time.

and the diagonal matrix D.ı/ D diag.1; ı2/, and then let


0.p/ D

LX
`D1

rh
.Q
��
L

�`iT
D.ı/

�
Q
��
L

��`
p � p; ı 2 R>0: (6.8)

We visualize some Wulff shapes of (6.8) for L D 2; 3; 4 in Figure 4 and observe that
these Wulff shapes, for ı ! 0, will approach a square, a regular hexagon and a regular
octagon, respectively. Of course, the associated crystalline anisotropic energy densities,
when ı D 0, are no longer differentiable and so, the theory developed in this paper no
longer applies. Yet, for a fixed ı > 0, all the assumptions in this paper are satisfied and
our scheme (see (5.7)) works extremely well. As an example, we repeat the simulations
in Figure 3 for anisotropy (6.8) with L D 2 and ı D 10�2, now using the scheme in (5.7).
From the evolution shown in Figure 5, it can be seen that the initial curve assumes the
shape of a smoothed square that then shrinks to a point. We also observe that after an
initial increase, the ratio in (6.2) decreases and eventually reaches a steady state. The final
distribution of mesh points is such that there is a slightly lower density of vertices on the
nearly flat parts of the curve.

Inspired by the computations in [37, Fig. 6.1], we now consider evolutions for an initial
curve that consists of a 3

2
�-segment of the unit circle merged with parts of a square of side

length 2. For our computations we employ the scheme in (5.7), with the discretization
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Figure 4. Wulff shapes (scaled) for (6.8) with L D 2; 3; 4 and ı D 10�2.
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Figure 5. Anisotropic curvature flow for (6.8) with L D 2 and ı D 10�2, using scheme (5.7). We
show the solution at times t D 0; 0:05; : : : ; 0:35 and the distribution of vertices on xM

h
.I /, as well

as the evolution of ratio (6.2) over time.

parameters J D 256 and �t D 10�4. The evolutions for the three anisotropies visualized
in Figure 4 can be seen in Figure 6. We observe that the smooth part of the initial curve
transitions into a crystalline shape, while the initial facets of the curve that are aligned with
the Wulff shape simply shrink. The other facets disappear, some immediately and some
over time, as they are replaced by facets aligned with the Wulff shape. The evolution of
the left nonconvex corner in the initial curve is particularly interesting, as it shows three
qualitatively very different behaviors for the three chosen anisotropies.

For the final simulations in this subsection, we choose as initial data a polygon that is
very similar to the initial curve from [2, Fig. 0]. In their seminal work, Almgren and Taylor
consider motion by crystalline curvature, which is the natural generalization of anisotropic
curve shortening flow to purely crystalline anisotropies—that is, when the Wulff shape is a
polygon. For motion by crystalline curvature, a system of ODEs for the sizes and positions
of all the facets of an evolving polygonal curve has to be solved. Here the initial curve
needs to be admissible in the sense that it only exhibits facets that also appear in the Wulff
shape, and any two of its neighboring facets are also neighbors in the Wulff shape. Hence,
the initial curve for the computations shown in Figure 7, for which we employed the
scheme in (5.7) with J D 512 and �t D 10�4, is admissible for an eightfold anisotropy,
with a regular octagon as Wulff shape. Our simulation for the smoothed anisotropy in (6.8)
with L D 4 and ı D 10�4 agrees remarkably well with the evolution shown in [2, Fig. 0].
In fact, it is natural to conjecture that in the limit ı! 0, anisotropic curve shortening flow
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Figure 6. Anisotropic curvature flow for (6.8) with L D 2; 3; 4 and ı D 10�2, using scheme (5.7).
We show the solution at times t D 0; 0:1; : : : ; 0:7; 0:75 (left), t D 0; 0:05; : : : ; 0:3 (middle), and
t D 0; 0:02; : : : ; 0:16 (right).

Figure 7. Anisotropic curvature flow for (6.8) with L D 2; 3; 4 and ı D 10�4, using scheme (5.7).
We show the solution at times t D 0; 2; : : : ; 16 (left), t D 0; 0:5; : : : ; 6; 6:4 (middle) and t D
0; 0:4; : : : ; 3:2; 3:4 (right).

for the anisotropies in (6.8) converges to flow by crystalline curvature with respect to the
crystalline surface energies in (6.8) with ı D 0. We stress that for the cases L D 2 and
L D 3, when the Wulff shape is a square and a regular hexagon, respectively, the initial
curve in Figure 7 is no longer admissible in the sense described above. As we only deal
with the case ı > 0, our scheme (see (5.7)) has no difficulties in computing the evolutions
shown in Figure 7 for L D 2 and L D 3. We observe once again that new facets appear
where the initial polygon is not aligned with the Wulff shape, while the admissible facets
simply shrink.

6.2. Curve shortening flow in Riemannian manifolds

In this subsection, we consider the setup from Example 2.2(3); see also Example 3.4(3).
At first we look at the simpler case of a manifold that is conformally flat, so that we can
employ the scheme in (5.11). As an example, we take G.z/ D g.z/Id with g.z/ D .z1/

�2

and note that with � D ¹z 2 R2 W z1 > 0º, we obtain a model for the hyperbolic plane,
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Figure 8. Curvature flow in the hyperbolic plane, using scheme (5.11). The solution at times t D
0; 0:02; : : : ; 0:14 is shown. We also show plots of the discrete energy Eh.xm

h
/ and of ratio (6.2)

over time.

which is a two-dimensional manifold that cannot be embedded into R3, as was proved
by Hilbert [32]; see also [40, §11.1]. From [12, Appendix A], and on noting Lemma B.2,
we recall that a true solution for (2.6)—that is, geodesic curvature flow in the hyperbolic
plane—is given by a family of translating and shrinking circles in �:

�.t/ D
�
a.t/
0

�
C r.t/S1; a.t/ D e�ta.0/; r.t/ D .r2.0/ � a2.0/Œ1 � e�2t �/

1
2 ; (6.9)

with a.0/ > r.0/ > 0 and S1 D ¹z 2R2 W jzj D 1º. In Figure 8 we show such an evolution,
starting from a unit circle centered at

�
2
0

�
, computed with scheme (5.11) where, since g

is convex in �, we choose gC D g. We observe that during the evolution the discrete
geodesic length is decreasing, while the approximation to the shrinking circle remains
nearly equidistributed throughout. At the final time T D 0:14, the maximum difference
between r.T / and jxM

h
.qj / �

�
a.T /
0

�
j, for 1 � j � J , is less than 6 � 10�3, indicating that

the polygonal curve �M
h
D xM

h
.I / is a very good approximation of the true solution �.T /

from (6.9).
For the remainder of this subsection, we consider general Riemannian manifolds that

are not necessarily conformally flat. An example application is the modeling of geodesic
curvature flow on a hypersurface in R3 that is given by a graph. In particular, we assume
that

F.z/ D .z1; z2; '.z//
T ; ' 2 C 3.�/: (6.10)

The induced matrix G is then given by G.z/ D Id C r'.z/ ˝ r'.z/, and the split-
ting given by (5.8) for scheme (5.10) can be defined by GC.z/ D G.z/C c' jzj2Id and
G�.z/D �c' jzj

2Id, with c' 2 R�0 chosen sufficiently large. In all our computations, we
observed a monotonically decreasing discrete energy when choosing c' D 0, and so we
always let GC D G.

We begin with a convergence experiment on the right circular cone defined by
'.z/D bjzj and � D R2 n ¹0º in (6.10), for some b 2 R�0. A simple calculation veri-
fies that the family of curves z�.t/ D r.t/.S1 � ¹bº/, with r.t/ D Œr2.0/ � 2t

1Cb2
�
1
2 and

r.0/ > 0, evolves under geodesic curvature flow on M D F.�/. In fact, it is not difficult
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J max
mD0;:::;M

kx.�; tm/ � x
m
h k0 EOC max

mD0;:::;M
kx.�; tm/ � x

m
h k1 EOC

32 1.6096e-02 — 3.5595e-01 —
64 4.2080e-03 1.94 1.7805e-01 1.00

128 1.0635e-03 1.98 8.9032e-02 1.00
256 2.6656e-04 2.00 4.4517e-02 1.00
512 6.6685e-05 2.00 2.2259e-02 1.00

1024 1.6674e-05 2.00 1.1129e-02 1.00

Table 2. Errors for the convergence test for (6.11), with b D
p
3 and r.0/ D 1, over the time inter-

val Œ0; 12 � for scheme (5.10) with GC D G.
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 1

-2 -1  0  1  2

-1

 0

 1

 2

-1  0  1

Figure 9. Geodesic curvature flow on the cone defined by (6.10) with '.z/ D
p
3jzj. We show the

evolution of xm
h

in�, as well as of F.xm
h
/ on M, at times t D 0;1;1:8 (left) and t D 0;0:2;0:6;1;1:1

(right).

to show that the particular parametrization

x.�; t/ D Œr2.0/ �
2t

1C b2
�
1
2

 
cos.2��/
sin.2��/

!
; (6.11)

so that z�.t/ D F.x.I; t//, solves (3.9). In a similar manner to Table 1, we report on the
H 1- and L2-errors between (6.11), for b D

p
3 and r.0/ D 1, and the discrete solutions

for scheme (5.10) in Table 2. Here, for a sequence of mesh sizes we use uniform time steps
of size �t D h2, for h D J�1 D 2�k , k D 5; : : : ; 9. Once again, the observed numerical
results confirm the optimal convergence rate from Theorem 4.1.

On the same cone M, we perform two computations for a curve evolving by geodesic
curvature flow. For the simulation on the left of Figure 9, it can be observed that as the
initial curve F.x0

h
.I // is homotopic to a point on M, it shrinks to a point away from the

apex. On recalling [29, Conjecture 5.1], due to Charles M. Elliott, on the right of Figure 9
we also show a numerical experiment for a curve that is not homotopic to a point on M.
According to the conjecture, any such curve should shrink to a point at the apex in finite
time, and this is indeed what we observe.
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Figure 10. Geodesic curvature flow on the graph defined by (6.12) with �1 D �2 D 1. We show the
evolution of F.xm

h
/ on M at times t D 0; 1; 2; 2:2.

Figure 11. Geodesic curvature flow on the graph defined by (6.12) with .�1; �2/D .5; 1/. We show
the evolution of F.xm

h
/ on M at times t D 0; 1; 2; 4.

For the final set of numerical simulations, we model a surface with two mountains.
Following [45], we define

'.z/ D �1 .jzj
2/C �2 .jz �

�
2
0

�
j
2/; �1; �2 2 R�0;

where  .s/ D

´
e�

1
1�s s < 1;

0 s � 1;

(6.12)

and let�DR2. We show three evolutions for geodesic curvature flow on such surfaces in
Figures 10, 11, and 12. In each case we start the evolution from an equidistributed approx-
imation of a circle of radius 2 in �, centered at the origin. In the first two simulations,
the curve manages to continuously decrease its length in R3, until it shrinks to a point. To
achieve this in the second example, the curve needs to “climb up” the higher mountain.
However, in the final example the two mountains are too steep, and so the curve can no
longer decrease its length by climbing higher. In fact, the curve approaches a steady state
for the flow, that is, a geodesic on M: a curve with vanishing geodesic curvature. The plot
of the discrete energy in Figure 12 confirms that the evolution is approaching a geodesic.

A. First variation of the anisotropic energy

Proof of Lemma 2.1. Abbreviating z
.z; p/ D a.z/
.z; p/, .z; p/ 2 � �R2, we tempor-
arily write E in (1.1) as

E.�/ D

Z
�

z
.�; �/ dH1:
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Figure 12. Geodesic curvature flow on the graph defined by (6.12) with �1 D �2 D 5. We show the
evolution of F.xm

h
/ on M at times t D 0; 1; 2; 4. Below we show a plot of F.xM

h
/ on M, as well as

a plot of the discrete energy Eh.xm
h
/ over time.

Let us fix a curve � � � and a smooth vector field V defined in an open neighborhood
of � . We infer from [22, Corollary 4.3] and (2.2) that the first variation of E.�/ in the
direction V is given by

dE.�IV /

D

Z
�

..z
.�; �/ � z
p.�; �/ � �/~ C @� z
.�; �/C div� z
p.�; �/

C z
pp.�; �/ W r��/ V � � dH1

D

Z
�

.@� z
.�; �/C div� z
p.�; �/C z
pp.�; �/ W r��/ V � � dH1: (A.1)

Here we note that the differential operators @�f D fzi �i and ��f D fi;zi � fi;zj �j �i
on � only act on the first variable of functions defined in� �R2. In addition, we observe
that the Weingarten map r�� is given by r�� D �~� ˝ � . We then calculate, on not-
ing (2.2), that

@� z
.�; �/ D @�a
.�; �/C a
zi .�; �/�i ;

div� z
p.�; �/ D div�.a
p.�; �//

D a.
pizi .�; �/ � 
pizj .�; �/�i�j /C .azi � @�a�i /
pi .�; �/

D a.
pizi .�; �/ � 
zj .�; �/�j /Cra � 
p.�; �/ � @�a
.�; �/;

z
pp.�; �/ W r�� D �a
pp.�; �/ W ~� ˝ � D �a~
pp.�; �/� � �:



A novel FEA of anisotropic curve shortening flow 703

If we insert the above relations into (A.1) and recall (2.5), we obtain

dE.�IV / D �

Z
�

~
 V � � a dH1
D �

Z
�

~
 V � �
 
.�; �/a dH1;

which is (2.4).

B. Geodesic curve shortening flow in Riemannian manifolds

In this appendix we prove the claims formulated at the end of Example 2.2(3). Here we
will make use of standard concepts in Riemannian geometry, and we refer the reader to
the textbook [33] for further details.

Let F W �!M be a local parametrization of a two-dimensional Riemannian mani-
fold .M; g/ and denote by ¹@1; @2º the corresponding basis of the tangent space TF.z/M,
for z 2 �. We also let gij .z/ D gF.z/.@i ; @j /, G.z/ D .gij .z//

2
i;jD1, .gij .z//2i;jD1

D G�1.z/, 
.z; p/ D
p
G�1.z/p � p, and a.z/ D

p
detG.z/, for z 2 � and p 2 R2,

which induces energy equivalence (2.10). Let z� be a smooth curve in M with unit tan-
gent �g and a unit normal �g such that ¹�g ; �gº is an orthonormal basis of the tangent
space TM, that is, g.�g ; �g/ D g.�g ; �g/ D 1 and g.�g ; �g/ D 0. Then, the geodesic
curvature ~g of z� is defined by

~g D g
�D

dzs
�g ; �g

�
on z�; (B.1)

where D
dzs �g is the covariant derivative of �g .

Lemma B.1. Let � � � be a smooth curve. Then, the anisotropic curvature of � and the
geodesic curvature of z� D F.�/ coincide in the sense that ~g ı F D ~
 on � .

Proof. Let � D x.I / for a parametrization x W I ! �, so that z� D zx.I / for zx D F ı x.
Denoting by zs the arc length of zx, we see that �g D zxzs and �g D 1


.x;�/
gij .x/�j @i form

an orthonormal basis of TzxM. Using the formula in [33, Lemma 5.1.2], we may write

D

dzs
�g D

D

dzs
zxzs D .xk;zszs C �

k
ij .x/xi;zsxj;zs/@k ; (B.2)

where .�kij .x//
2
i;j;kD1

are the Christoffel symbols of M at F.x/. Since @zs D ŒG.x/x� �

x��
� 12 @�, (B.1), (B.2), and (3.2) imply

~g ı zx D gzx

�D
dzs
�g ; �g

�
D gkr .x/.xk;zszs C �

k
ij .x/xi;zsxj;zs/

1


.x; �/
glr .x/�l

D
1


.x; �/
.xzszs � � C �

k
ij .x/xi;zsxj;zs�k/ D

1


.x; �/

x�� � � C �
k
ij .x/xi;�xj;��k

G.x/x� � x�

D
1


.x; �/

~ C �kij .x/�i�j �k

G.x/� � �
: (B.3)
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On the other hand, on recalling 
.z; p/ D
p
G�1.z/p � p and a.z/ D

p
detG.z/, we

observe that


p.z; p/ D
G�1.z/p


.z; p/
; 
pp.z; p/ D

G�1.z/


.z; p/
�
G�1.z/p ˝G�1.z/p


3.z; p/
; (B.4a)


pzj .z; p/ D
.G�1/zj .z/p


.z; p/
�
1

2

.G�1/zj .z/p � p


3.z; p/
G�1.z/p; (B.4b)

azj .z/ D
1

2
tr.G�1.z/Gzj .z//a.z/: (B.4c)

We infer from (B.4a) that


pp.x; �/� � � D
1


3.x; �/
Œ.G�1.x/� � �/.G�1.x/� � �/ � .G�1.x/� � �/2�

D
detG�1.x/

3.x; �/

: (B.5)

For ease of notation, we drop the dependencies on x from now on. It is well known that

gkl;zi D gkr�
r
il C glr�

r
ik ; i; k; l D 1; 2: (B.6)

Combining (B.6) with the relation .G�1/zi D �G
�1GziG

�1, we find that

Œ.G�1/zi ��j D �g
jkgkl;zig

lm�m D �g
jkglm.gkr�

r
il C glr�

r
ik/�m

D �glm�
j

il
�m � g

jk�mik�m;

as well as

.G�1/zi � � � D Œ.G
�1/zi ��j �j D �.g

lm�
j

il
�m C g

jk�mik�m/�j D �2g
jk�mik�m�j :

If we insert the above relations into (B.4b), we obtain


pj zj .�; �/ D �
glm�

j

jl
�m C g

jk�m
jk
�m


.�; �/
C
glk�m

jk
�m�l


3.�; �/
gjr�r :

Next we infer with the help of (B.4c) that

azj

a

pj .�; �/ D

1

2

gklgkl;zj g
jr�r


.�; �/
D
1

2

gklgjr .gkr�
r
jl
C glr�

r
jk
/�r


.�; �/
D
gjr�k

jk
�r


.�; �/
:

As a result,


pj zj .�; �/C
ra

a
� 
p.�; �/ D �

gjk�m
jk
�m


.�; �/
C
glkgjr�m

jk
�m�l�r


3.�; �/

D
1


3.�; �/
.glkgjr � gjkglr /�mjk�m�l�r :
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Clearly,

glkgjr � gjkglr D

8̂̂<̂
:̂
.detG/�1 .l; k; j; r/ D .1; 1; 2; 2/; .2; 2; 1; 1/;

�.detG/�1 .l; k; j; r/ D .1; 2; 2; 1/; .2; 1; 1; 2/;

0 otherwise;

so that


pj zj .�; �/C
ra

a
� 
p.�; �/ D �

detG�1


3.�; �/
.�m22�m�

2
1 C �

m
11�m�

2
2 � 2�

m
12�m�1�2/

D �
detG�1 �m

kl
�m�k�l


3.�; �/
;

since � D��?. Combining this relation with (2.5), (B.5), (B.3), and the fact that 
2.�;�/D
G�1� � � D .detG�1/G� � � , we finally obtain that

~
 ı x D
detG�1


3.�; �/
.~ C �mkl�k�l�m/ D

1


.�; �/

~ C �m
kl
�k�l�m

G� � �

D ~g ı zx D .~g ı F / ı x in I;

as claimed.

A family of curves .z�.t//t2Œ0;T � in M is said to evolve by geodesic curvature flow if

Vg D ~g on z�.t/; (B.7)

where Vg is the normal velocity in the direction of the unit normal �g from the definition
given in (B.1), that is, Vg D g.zxt ı zx

�1; �g/ with zx W I � Œ0; T �! � being a parametriz-
ation of .z�.t//t2Œ0;T �.

Lemma B.2. Let .�.t//t2Œ0;T � be a smooth family of curves in�. Then, anisotropic curve
shortening flow for .�.t//t2Œ0;T � in � (see (2.6)) is equivalent to geodesic curvature flow
for .F.�.t///t2Œ0;T � in M, (B.7).

Proof. In a similar manner to the proof of Lemma B.1, we assume that .�.t//t2Œ0;T � is
parametrized by x W I � Œ0; T �! �, so that zx D F ı x parametrizes .F.�.t///t2Œ0;T �.
Let �g D 1


.x;�/
gij .x/�j @i . Then, it follows from zxt D xk;t@k that

.Vg ı F / ı x D Vg ı zx D gzx.zxt ; z�/ D
1


.x; �/
gij .x/�jxk;t gzx.@k ; @i /

D
1


.x; �/
gij .x/gki .x/�jxk;t D

1


.x; �/
xt � �

D V
 ı x in I � .0; T �: (B.8)

Combining (B.8) and Lemma B.1 yields the desired result.
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[36] K. Mikula and D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of
plane curves with an external force. Math. Methods Appl. Sci. 27 (2004), no. 13, 1545–1565
Zbl 1049.35019 MR 2077443

[37] A. Oberman, S. Osher, R. Takei, and R. Tsai, Numerical methods for anisotropic mean
curvature flow based on a discrete time variational formulation. Commun. Math. Sci. 9 (2011),
no. 3, 637–662 Zbl 1273.35027 MR 2865799

[38] P. Pozzi, Anisotropic curve shortening flow in higher codimension. Math. Methods Appl. Sci.
30 (2007), no. 11, 1243–1281 Zbl 1122.65081 MR 2334978

[39] P. Pozzi, On the gradient flow for the anisotropic area functional. Math. Nachr. 285 (2012),
no. 5–6, 707–726 Zbl 1242.53084 MR 2902841

[40] A. Pressley, Elementary differential geometry. Second edn., Springer Undergrad. Math. Ser.,
Springer, London, 2010 MR 2598317

[41] A. Schmidt and K. G. Siebert, Design of adaptive finite element software. Lect. Notes Comput.
Sci. Eng. 42, Springer, Berlin, 2005 Zbl 1068.65138 MR 2127659

[42] H. M. Soner, Motion of a set by the curvature of its boundary. J. Differential Equations 101
(1993), no. 2, 313–372 Zbl 0769.35070 MR 1204331

[43] A. Spira and R. Kimmel, Geometric curve flows on parametric manifolds. J. Comput. Phys.
223 (2007), no. 1, 235–249 Zbl 1118.53004 MR 2314390

[44] J. E. Taylor, J. W. Cahn, and C. A. Handwerker, Geometric models of crystal growth. Acta
Metall. Mater. 40 (1992), no. 7, 1443–1474

[45] C. Wu and X. Tai, A level set formulation of geodesic curvature flow on simplicial surfaces.
IEEE Trans. Vis. Comput. Graph. 16 (2010), no. 4, 647–662

Received 31 August 2022; revised 26 January 2023.

Klaus Deckelnick
Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2,
39106 Magdeburg, Germany; klaus.deckelnick@ovgu.de

Robert Nürnberg
Dipartimento di Mathematica, Università di Trento, Via Sommarive 14, 38123 Trento, Italy;
robert.nurnberg@unitn.it

https://doi.org/10.1007/s00791-004-0131-6
https://doi.org/10.1007/s00791-004-0131-6
https://mathscinet.ams.org/mathscinet-getitem?mr=2071441
https://doi.org/10.1002/mma.514
https://doi.org/10.1002/mma.514
https://zbmath.org/?q=an:1049.35019
https://mathscinet.ams.org/mathscinet-getitem?mr=2077443
https://doi.org/10.4310/CMS.2011.v9.n3.a1
https://doi.org/10.4310/CMS.2011.v9.n3.a1
https://zbmath.org/?q=an:1273.35027
https://mathscinet.ams.org/mathscinet-getitem?mr=2865799
https://doi.org/10.1002/mma.836
https://zbmath.org/?q=an:1122.65081
https://mathscinet.ams.org/mathscinet-getitem?mr=2334978
https://doi.org/10.1002/mana.201010043
https://zbmath.org/?q=an:1242.53084
https://mathscinet.ams.org/mathscinet-getitem?mr=2902841
https://doi.org/10.1007/978-1-84882-891-9
https://mathscinet.ams.org/mathscinet-getitem?mr=2598317
https://doi.org/10.1007/b138692
https://zbmath.org/?q=an:1068.65138
https://mathscinet.ams.org/mathscinet-getitem?mr=2127659
https://doi.org/10.1006/jdeq.1993.1015
https://zbmath.org/?q=an:0769.35070
https://mathscinet.ams.org/mathscinet-getitem?mr=1204331
https://doi.org/10.1016/j.jcp.2006.09.008
https://zbmath.org/?q=an:1118.53004
https://mathscinet.ams.org/mathscinet-getitem?mr=2314390
https://doi.org/10.1016/0956-7151(92)90090-2
https://doi.org/10.1109/tvcg.2009.103
mailto:klaus.deckelnick@ovgu.de
mailto:robert.nurnberg@unitn.it

	1. Introduction
	2. Anisotropy and anisotropic curve shortening flow
	3. DeTurck's trick for anisotropic curve shortening flow
	4. Finite element approximation
	5. Fully discrete schemes
	5.1. Space-independent anisotropic curve shortening flow
	5.2. Curve shortening flow in Riemannian manifolds

	6. Numerical results
	6.1. Space-independent anisotropic curve shortening flow
	6.2. Curve shortening flow in Riemannian manifolds

	A. First variation of the anisotropic energy
	B. Geodesic curve shortening flow in Riemannian manifolds
	References

