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Linear stability implies nonlinear stability
for Faber–Krahn-type inequalities

Mark Allen, Dennis Kriventsov, and Robin Neumayer

Abstract. For a domain � � Rn and a small number T > 0, let

E0.�/ D �1.�/CT tor.�/ D inf
u;w2H1

0 .�/n¹0º

´
jruj2´
u2

CT

ˆ
1

2
jrwj2 � w

be a modification of the first Dirichlet eigenvalue of�. It is well known that over all� with a given
volume, the only sets attaining the infimum of E0 are balls BR; this is the Faber–Krahn inequality.
The main result of this paper is that, if for all � with the same volume and barycenter as BR whose
boundaries are parametrized as small C 2 normal graphs over @BR with bounded C 2 norm

ˆ
ju� � uBR j

2
C j�4BRj

2
� C ŒE0.�/ � E0.BR/�

(i.e., the Faber–Krahn inequality is linearly stable), then the same is true for any � with the same
volume and barycenter as BR without any smoothness assumptions (i.e., it is nonlinearly stable).
Here u� stands for an L2 normalized first Dirichlet eigenfunction of �. Related results are shown
for Riemannian manifolds. The proof is based on a detailed analysis of some critical perturbations
of Bernoulli-type free boundary problems. The topic of when linear stability is valid, as well as
some applications, are considered in a companion paper.

1. Introduction

For a domain � � Rn, let

�1.�/ D inf
u2H1

0 .�/

´
jruj2´
u2

be the first Dirichlet eigenvalue, and let u� be a nonnegative function with
´
u2� D 1

attaining the infimum. The Faber–Krahn inequality asserts that

�1.�/ � �1.BR/; (1.1)
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where BR is a ball with jBRj D j�j; and moreover, this inequality is strict unless �
is equal to a translation of BR, up to a set of zero capacity. In recent years, the topic
of stability for this inequality has received considerable attention: if �1.�/ � �1.BR/ is
small, how closely must � resemble BR? For a survey of the recent literature on this
question, see [9]. In particular, quantitative stability refers to inequalities of the form

d˛.BR.x�/;�/ � C Œ�1.�/ � �1.BR/�; (1.2)

where d is some notion of distance between sets, ˛ > 0 is a positive number, and
x� D

ffl
�
x is the barycenter. Here it is desirable to find the strongest d , as well as the

smallest number ˛, for which such an inequality may hold.
The best result of this type in the literature is due to Brasco, De Philippis, and

Velichkov [10], which establishes (1.2) with

d D d0.E;E
0/ D jE4E 0j (1.3)

and ˛ D 2. This theorem is sharp, in the sense that (1.2) is false with d D d0 and ˛ < 2.
However, it does not fully resolve the issue of quantitative stability, as it seems unlikely
that d0 is the “strongest” distance for which (1.2) holds. To understand why, it is useful
to separate the stability question into two “regimes” where it may be studied: we say
that (1.1) is linearly stable with respect to d; ˛ if (1.2) holds for any � whose boundary
may be expressed as a C 2 normal graph over @BR, and we say (1.1) is nonlinearly stable
with respect to d; ˛ if (1.2) holds for any �, unconditionally. For example, the result
of [10] is a nonlinear stability result.

It is not difficult to see that d0 is not the strongest norm for which linear stability
is valid. Indeed, if @� is given by a normal graph g, then d0 is comparable to the L2

norm of � , while, as shown in [10], the right-hand side of (1.2) controls a term of the
form

´
@BR

�L� , where L is a first-order differential operator. In particular, Sobolev norms
of � up to k�kH1=2.@�/ appear to be controllable. Unfortunately, this kind of observation
does not easily lead to improved nonlinear stability statements, as it is unclear how to
define a stronger Sobolev-type distance for arbitrary sets �.

In the nonlinear context, d0 has a different sort of drawback, which is discussed in
[9, Open Problem 3]: it is possible to modify � by removing a set of measure 0 in a way
which strictly increases its eigenvalue (consider, for example, B1 vs. B1 n ¹te1 W t > 0º, a
slit domain in R2). Any change to � which modifies the local capacity of its compliment
should be reflected in �1.�/. On the other hand, d0 is clearly insensitive to any such
changes.

We propose a distance

d1.E;E
0/ D

sˆ
juE � uE 0 j2;

where uE ; uE 0 are the normalized first eigenfunctions as above extended by zero to be
defined on all of Rn, partially in an attempt to formulate nonlinear stability statements
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for (1.1) which address these issues. This has advantages and disadvantages in comparison
to d0. In the nonlinear context, it is sensitive to capacity-zero perturbations of �. It also
turns out to be specifically relevant to some applications to monotonicity formulas in free
boundary theory, which we discuss in [3]. On the other hand, d1 is a kind of indirect
measure of set difference and may be difficult to use in practice; we also do not know
whether d1.E;BR/ controls d0.E;BR/ for all sets.

The results of this paper, in conjunction with our companion paper [3], establish sharp
quantitative stability for the Faber–Krahn inequality with respect to the distance d1. The
result is proven on the round sphere and hyperbolic space as well as in Euclidean space:
we prove in [3, Theorem 1.1] that (1.2) holds with d D d1C d2 and ˛ D 2 on simply con-
nected space forms. The proof is based on a selection principle. This scheme, introduced
by Cicalese and Leonardi in [20] in the context of the isoperimetric inequality, has been
implemented in various settings in recent years (including [10]) to establish quantitative
forms of geometric inequalities. A selection principle has two main steps:

(1) The reduction step to show that linear stability implies nonlinear stability, based
on regularity theory for a penalized functional.

(2) The local step to prove that linear stability holds.

This paper is dedicated to carrying out Step (1): if (1.1) is linearly stable with d D d1
and ˛ D 2, then it is also nonlinearly stable. Step (2) on simply connected space forms
is established in [3]. Let us describe how the classical selection principle argument for
Step (1) might go in this context, and where the significant challenges arise in this setting.
Suppose by way of contradiction that (1.2) fails. We may thus find a sequence of sets �k
with j�kj D jBRj and �1.�k/ � �1.BR/! 0, while

ck WD d
2
1 .BR.x�k /;�k/ � kŒ�1.�k/ � �1.BR/�: (1.4)

The goal, then, is to replace each �k with a set Uk that also satisfies (1.4), but such
that @Uk is a smooth normal graph over @BR, in this way contradicting the linear stability
assumption. Such a set is obtained by choosing Uk to be a minimizer of a functional that
roughly takes the form

F 0
� .U / D �1.U /C �

q
c2
k
C .ck � d1.U;BR.xU //2/2

for a small parameter � > 0 and establishing regularity estimates for such minimizers. The
second term in this functional forces d1.Uk ; BR.xUk // to be close to d1.�k ; BR.x�k //
so that (1.4) will be satisfied by Uk , while the first term is hopefully regularizing the
boundary of Uk .

The Euler–Lagrange equation for minimizers of F 0
� leads to a free boundary condition

along @Uk of Bernoulli-type, similar to the one studied in [5]. When working with d0
or other weaker distances, the second term in F 0

� is of lower order, and can easily be
seen to be a minor perturbation of the functional. In particular, the regularity theory of
Alt and Caffarelli [5] applies more or less directly (at least in conjunction with more



M. Allen, D. Kriventsov, and R. Neumayer 220

recent literature, such as [21,23]). In the case of d1, however, this is no longer a sufficient
heuristic: the second term of F 0

� is now a critical, or same-order, perturbation of �1.U /.
The key to establish regularity becomes controlling the distance d1.U 0; U / between a
minimizing set U and various competitors U 0. This amounts to needing estimates like

ˆ
juU � uU 0 j � C j�1.U / � �1.U

0/j; (1.5)

at least for the competitors U 0 necessary to obtain estimates on U . These competitors
were essentially laid out in [5], and closely follow minimal surface theory; they consist of
U [ Br .x/, U n Br .x/, and �t .U / for smooth diffeomorphisms �t .

We do not know if (1.5) is valid for these competitors, and believe this is an interesting
problem. This means that we are unable establish the necessary regularity theory for F 0

�

to carry out Step (1) of the selection principle as described above. In order to overcome
this challenge, we modify the functional: let

F �� .U / D �1.�/CT tor.�/C �
q
c2
k
C .ck � d1.U;BR.xU //2/2; (1.6)

where T > 0 is a small parameter and

tor.�/ D inf
°ˆ 1

2
jrwj2 � w W w 2 H 1

0 .�/
±

is the torsional rigidity of �. The torsional rigidity has a long history of appearing when
considering spectral optimization problems (see [10, 12]), and shares with �1 the ball
as the unique volume-constrained minimizer. Functional (1.6) corresponds to a vectorial
free boundary problem. The crucial benefit of introducing this torsion term is that we can
establish the analogue of key estimate (1.5) corresponding to this functional:

ˆ
juU � uU 0 j � C

�
j�1.U / � �1.U

0/j C j tor.U / � tor.U 0/j
�

(1.7)

for all the relevant competitors U 0. This is shown in Proposition 3.9 and is the starting
point toward establishing an existence and regularity theory for F �� and its generalizations,
which constitutes the core analysis of this paper.

Theorem 1.1. There exists T0 > 0 such that for each T < T0, there exists �0.T / > 0
such that if � < �0, then:

(i) There exists a minimizer U of F �� over the class of all open sets U with
jU j D jBRj.

(ii) This U has C 2;˛ boundary for any ˛ < 1, and @U may be expressed as a normal
graph � over @BR with k�kC 2 D o� .1/ (i.e., for every " > 0, there is �."/ such
that if � < �."/, then k�kC 2;˛ � ").

Beyond establishing key estimate (1.7), further difficulties arise in proving Theo-
rem 1.1, which we discuss below. Theorem 1.1 holds for a more general class of critical
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perturbations of the Alt–Caffarelli functional that is introduced in Section 2.2. One gen-
eralization is that Theorem 1.1 holds for functional (1.6) with d1 replaced by zd0 C d1,
where zd0 is an essentially equivalent regularization of d0 in (1.3) above.

Returning to the discussion of the selection principle, we use the functional F �� to
establish Step (1) of the selection principle corresponding to the inequality �1.�/ C
T tor.�/ � �1.BR/CT tor.BR/ instead of (1.1). This linear-implies-nonlinear stability
result takes the following form:

Corollary 1.2. Assume that, for some 0 < T < T0 and " > 0, the inequality

d21 .BR.x�/;�/C d
2
0 .BR.x�/;�/ � C Œ�1.�/ � �1.BR/CT .tor.�/ � tor.BR//�

holds for all � with j�j D jBRj whose boundaries may be expressed as a C 2;˛ normal
graph over @BR with norm bounded by ". Then, it also holds for all open sets � with
j�j D jBRj (and with a possibly larger constant).

Although it may appear that we have departed from the central aim of establishing
Step (1) of the selection principle for the Faber–Krahn inequality, we show in the com-
panion paper [3] that the statement of Corollary 1.2 actually implies that the same is valid
with T D 0 after combining with the Kohler-Jobin inequality ([33, 34]; see also [8, 35]),
an inequality that relates tor.�/ � tor.BR/ to �1.�/ � �1.BR/. It is also shown in [3]
that (1.1) is linearly stable with d D d1 C d2 and ˛ D 2, which when combined with
Corollary 1.2 gives nonlinear stability as well. We remark that the constant C in Corol-
lary 1.2 is obtained through a compactness argument and is not explicit. It remains an
open problem to establish a sharp quantitative form of the Faber–Krahn inequality, with
any distance (see [9, Open Problem 2]); a nonsharp quantitative estimate with an explicit
constant was shown in dimension 2 in [29] and in general dimension in [9, Theorem 2.10].
In a related direction, let us mention paper [7], in which the authors show that the deficit
in the Faber–Krahn inequality controls the L1 distance between symmetrized first eigen-
functions.

The idea of using the torsional rigidity to prove a quantitative form of the Faber–Krahn
inequality was already present in [10], though it plays a different role there. In [10], the
authors prove a quantitative version of the Saint-Venant inequality (the minimality of balls
for the torsional rigidity), and then using the Kohler-Jobin inequality they immediately
obtain quantitative versions of the Faber–Krahn inequality and a whole family of shape
optimization problems for the Poincaré–Sobolev constant (for which balls are always opti-
mal). The introduction of the torsional rigidity in [10] simplifies some aspects of the proof
and allows the authors to kill many birds with one stone, but does not appear essential
to the argument for the stability of the Faber–Krahn inequality in particular. The role of
the torsional rigidity in our context plays a more pivotal role, and we do not know how to
proceed without it.

In view of the results in [10], one is naturally led to ask whether the results of the
present paper can be extended to a more general family of inequalities for the optimization
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of the sharp Poincaré–Sobolev constant. There is, however, a major difference between the
stability result of Corollary 1.2 and the result in [10]: in our case the eigenfunction of the
domain appears on left-hand side of the inequality. When considering stability statements
like these for generalized inequalities, one must then carefully select which functions are
reasonable to use in the distance, and see to what extent they can be controlled by the
inequality deficit.

As such, we leave the question of which exact generalizations of distance or Poincaré–
Sobolev inequalities admit stability statements like Corollary 1.2 as an interesting and
possibly challenging open problem, and believe that the methods developed here are appli-
cable to treating it systematically. Perhaps of particular interest is the distance

d
;p.U; V / D kwU � wV kLp ;

where wU is the torsion function associated with U (see below; Section 3), both for the
Faber–Krahn and Saint-Venant inequalities, and p 2 Œ1; 2n

n�2
/. These distances metrize

the notion of 
 -convergence of sets frequently used in shape optimization (see [13, Cha-
pter 4] for a discussion of known relations between such distances).

While the preceding discussion was carried out in Rn to more clearly illustrate the
concepts in play, the results proved here also apply to Riemannian manifolds, and are
stated accordingly (see Theorems 2.13 and 2.14 for the general forms of Theorem 1.1
and Corollary 1.2, respectively). In particular, Corollary 1.2 is also valid for any manifold
for which balls are the isoperimetric sets (i.e., they are the unique sets which attain the
minimum in the isoperimetric inequality), or with suitable modifications to the statement,
on any manifold on which minimizers to (1.1) are unique up to isometry. The former
condition is restrictive and only known for a handful of manifolds (see [40] for a survey
of the known results), but includes the round sphere and hyperbolic space with standard
metrics, which will be studied in [3] in greater detail.

Remark 1.3. Corollary 1.2 holds on hyperbolic space and the round sphere, with the
barycenter x� replaced by the set centers defined in Examples 2.8 and 2.9, respectively.

The outline of our approach and the structure of the rest of the paper is as follows:
In Section 2 we give careful definitions of the quantities discussed here on manifolds
and set up notation for everything to follow. In Section 2.4, we discuss how to pass from
Theorem 1.1 to Corollary 1.2 (and state it more carefully and in greater generality). In
Section 3 we establish basic properties of the first eigenvalue and the torsional rigidity and
discuss Faber–Krahn inequalities on manifolds to the extent needed. The introduction of
the torsional rigidity is the first key idea in the paper, and in Section 3 we also prove (1.7).
As previously discussed, this inequality will be necessary to prove even basic estimates.

Typical approaches to Bernoulli free boundary problems involve first proving exis-
tence of minimizers, usually via the direct method, and then proving nondegeneracy and
growth estimates at the free boundary. Due to the presence of the eigenfunction penaliza-
tion term, which is of the same order as the other terms in the functional, a direct approach
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to the existence of minimizers fails, as the functional is not lower semicontinuous with
respect to topologies for which compactness is available. For this reason, we must intro-
duce a new approach to proving existence. In Section 4 we prove a priori nondegeneracy
estimates for the free boundary for inward minimizers. In Section 5 we prove a priori
Lipschitz growth estimates at the free boundary for outward minimizers. In Section 6 we
construct a minimizing sequence of outward minimizers and utilize the Lipschitz estimate
to prove the limit � is a minimizer. This minimizer will then have both nondegeneracy
and Lipschitz estimates, since it is also both an inward and outward minimizer. One ben-
efit of this approach is that the entire argument takes place in the class of open sets; the a
priori estimates allow us to avoid relaxing the problem to the class of quasi-open sets, as
is common in the literature [14].

From here, we would like to follow the recent approaches of [16, 38] to establish reg-
ularity for vectorial free boundary problems. The first step in doing so is to apply the
boundary Harnack principle in order to establish a scalar form of the free boundary condi-
tion. Substantial difficulties arise here due to the nonlinear term, because the contribution
from d1 to the Euler–Lagrange equation along @� is of the same order as that from �1.�/

or tor.�/: it may be expressed as jrvj2 for some function v satisfying an elliptic PDE
on �. In particular, there is no favorable sign appearing in this term (it is not elliptic, in
some sense), and so it must be controlled by the other contributions. The key tool for con-
trolling this term is a careful analysis of the Green’s function G� of �, which we carry
out in Section 7. This involves utilizing an inhomogeneous boundary Harnack principle
recently shown in [4].

We begin Section 8 by considering more carefully how d1 and u� change under
smooth deformations of domains. Applying the estimates from the previous section, we
obtain several forms of the free boundary condition satisfied along @� and arrive at a
pointwise version. The final fundamental point in the paper is to again apply the inho-
mogeneous boundary Harnack principle to rewrite the free boundary condition in a form
suitable to known methods.

In Section 9 we apply recent free boundary theory to conclude that @� is C 1;˛ . In
Section 10 we apply a higher-order inhomogeneous boundary Harnack principle [25] to
prove Theorem 1.1 (that @�may be parametrized as aC 2;˛ normal graph over the sphere).
Appendix A gives further examples of functionals to which our results apply. Finally,
Appendix B shows that domains supporting solutions to elliptic PDEs with linear growth
away from @U are nontangentially accessible, a result which is known in the literature
but, to the best of our knowledge, not in the generality required here. This is a technical
point relevant in Section 7.

2. Setup and definitions

Throughout this paper, we let .M; g/ be a complete, n-dimensional smooth Riemannian
manifold without boundary that is connected and oriented. We also assume that .M;g/ has
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bounded geometry, that is, injM WD infx2M injx > 0 and supx2M jRm.x/j <1: Here injx
is the injectivity radius of .M;g/ at x, that is, the largest radius r such that the exponential
map expx W TxM ! M is a diffeomorphism from B.0; r/ to the geodesic ball Bg.x; r/;
and jRm.x/j denotes the norm of the Riemann curvature tensor at x with respect to g.
All constants will depend on the metric g; it is likely that these constants are uniform
for Riemannian manifolds with uniformly bounded geometry, but we do not track this
dependence.

Unless otherwise specified, all integrals are taken with respect to the volume mea-
sure m associated with g. We use the notation j�j for the volume of a measurable set
� �M and Hn�1 for the .n� 1/-dimensional Hausdorff measure. We let d.x; y/ denote
the geodesic distance between x; y 2M and let

Br .x/ D
®
y 2M W d.y; x/ < r

¯
denote a geodesic ball centered at x of radius r . Given a set � and a point x 2M , we let
d.x;�/D inf¹d.x;y/ W y 2�º:We let r and div denote the gradient and divergence with
respect to g and let �u D divru be the Laplace–Beltrami operator with respect to g.

Let G denote the (possibly trivial) group of isometries of .M; g/. Several global exis-
tence results in the remainder of the paper will hold for Riemannian manifolds such that
either M is compact or M=G is compact; examples of the latter to keep in mind are
Euclidean space, hyperbolic space, cylinders Sn�k �Rk equipped with the standard prod-
uct metric, and more generally, products of space forms.

2.1. Base energy

Given a bounded open set � �M , we may define the torsional rigidity of �:

tor.�/ D inf
u2H1

0 .�/

ˆ
�

1

2
jruj2 � u: (2.1)

We note that the definition of the torsional rigidity given here differs by a sign from the
typical definition. This is a negative quantity, and it is straightforward to check (using the
Sobolev inequality and the Lax–Milgram theorem) that the infimum is finite and uniquely
attained for any open bounded � ¤M by a function w� � 0. We will refer to w� as the
torsion function. Note also that tor.�/ is decreasing with respect to set inclusion.

The first (Dirichlet) eigenvalue of � is defined as

�1.�/ D inf
u2H1

0 .�/n¹0º

´
�
jruj2´
�
u2

: (2.2)

This infimum is also attained by a nonnegative function u�, the first eigenfunction,
and �1.�/ is also a decreasing function with respect to set inclusion. The first eigen-
function is unique up to scalar multiples so long as �1.�/ < �2.�/, which in particular is
true if� is connected. The notation u� will be used for the unique first eigenfunction with
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u� � 0 and
´
u2� D 1, whenever it exists and is unique. We will frequently extend u�

and w� by zero to be defined on all of M , using the same notation to indicate the funct-
ions u�; w� WM ! R.

In principle, we are interested in minimizing energy functionals of the type shown
in (1.6) among sets � �M of a fixed volume j�j D v. In practice, it is more convenient
to replace the volume constraint with a volume penalization term. Following [1, 10], we
define the volume penalization

fv;�.t/ D

´
�.t � v/; t � v;
1
�
.t � v/; t > v:

(2.3)

The idea of volume penalization (2.3) is that by choosing the parameter � to be sufficiently
small, a set � whose volume exceeds the prescribed volume v will have a large energy
contribution coming from the term fv;�.j�j/. We define the base energy of � as

E.�/ D �1.�/CT tor.�/C fv;�.j�j/; (2.4)

where T 2 Œ0; 1�. The principal goal of this paper is to study certain critical perturbations
of the base energy introduced in the next subsection. In order to do so, we need to first
consider the minimization problem of the base energy itself. We discuss the problem of
minimizing E.�/ over sets briefly here and in more detail in Section 3. Many of the
existence and regularity results in later sections will apply to this base energy problem as
well. Let us begin with two observations regarding the existence theory for this problem:

Remark 2.1 (A hard volume constraint is needed). If we attempt to minimize the base
energy E among all bounded open subsets of M , then the energy may fail to be bounded
from below and minimizers may fail to exist or�DM may be a minimizer. For instance,
on Euclidean space, a simple scaling computation shows that E.BR/! �1 as R!1
for any fixed triple of parameters v;�;T >0. Similarly, ifM is compact without boundary,
then H 1.M/ D H 1

0 .M/, and so the minimizing sequence wk D �k for tor.M/ tells us
that tor.M/ D �1. Since the other quantities in the energy are finite, this implies that
E.M/ D �1.

To remedy this issue, we will introduce a “hard volume constraint” that is much
larger than v. Given the desired volume constraint v 2 .0; jM j/, we fix a larger number
vmax 2 .v; jM j/ and minimize with respect to competitors� with j�j � vmax. Ultimately,
this hard constraint will never be saturated: in Proposition 9.5 we show that for small
values of � (depending on v and vmax) and T (depending on v; vmax and �), any mini-
mizer over this class actually satisfies the original desired volume constraint j�j D v. In
particular, this means the volume-constrained problem (minimizing only over j�j D v) is
equivalent to the volume-penalized problem where j�j � vmax.

Remark 2.2 (Compactness issues on noncompact manifolds). On noncompact manifolds,
a minimizing sequence �k for the base energy E can “drift to infinity” in the sense that
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d.x0; �k/!1 for any reference point x0. In view of this issue, we first minimize over
the class of � contained in (smoothed-out) balls of large radius R. Depending on the
geometry of the manifold at infinity, global minimizers may simply fail to exist when
R!1. However, when M=G is compact, the compactness issues are solely caused by
the symmetries of the metric and we may send the radius R to infinity using concentration
compactness techniques (see [37]). This will be addressed in Section 3.4 for the base
energy and then more completely in Theorem 6.3.

Since geodesic balls need not have smooth boundary on an arbitrary Riemannian man-
ifold, it is more convenient from a technical standpoint to work with an exhaustionQR of
smooth bounded open sets that play the role of smoothed-out balls. More specifically, we
let QR be a fixed 1-parameter family of open sets which have the following properties:

(i) xQR � QS for any S > R.

(ii) diam.QR/ � 2R.

(iii) @QR is either smooth (a finite union of disjoint C 2 codimension-1 submanifolds)
or empty.

(iv) M D
S
RQR.

In view of Remarks 2.1 and 2.2, we will fix parameters R > 0 and vmax 2 .0; jM j/ and
minimize the base energy (as well as the main energy) over open sets in QR of volume at
most vmax: We use the notation

H D HR;vmax D
®
� �M open W j�j � vmax; � � QR

¯
(2.5)

to denote this collection of sets. We will assume throughout the paper, without further note,
that R is chosen to be large enough so that jQRj � vmax. In this way, the container QR
does not obstruct the hard volume constraint and the collection H is nonempty. Moreover,
we will always assume that vmax < jM j when the volume of M is finite.

Given parameters 0 < v < vmax < jM j; � > 0, T 2 .0; 1� and R > 0, we consider the
following minimization problem for the base energy:

Emin D Emin.v; vmax; �;T ; R/ D inf
®
E.�/ W � � H

¯
I (2.6)

we will drop the parameters, unless there is ambiguity. The collection of minimizers for
this problem will be denoted by

M DM.v; vmax; �;T ; R/ D
®
� � H W E.�/ D Emin

¯
; (2.7)

which we will show in Lemma 3.10 is always nonempty. While several of our interme-
diate results will hold for larger parameter ranges, the reader should typically think of
first fixing the desired and hard volume constraints v; vmax and the radius R, then fixing
the volume penalization parameter �, and finally fixing the coefficient T in front of the
torsional rigidity.
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In the following example, we consider minimization problem (2.6) on simply con-
nected space forms; generally speaking, these are important motivating examples to keep
in mind throughout the paper. Since these spaces are compact after modding out by the
isometry group, we may send the parameter R to infinity and so, the following example
has no R parameter:

Example 2.3. Let .M; g/ be Euclidean space, hyperbolic space, or the round sphere. Fix
parameters v;vmax with 0< v < vmax, choosing vmax < jM j in the case of the round sphere.
For � � �0.v; vmax/ and T � T0.v; vmax; �/, geodesic balls of volume v are the unique
minimizers of the base energy E among all open bounded subsets of M with volume at
most vmax.

For general Riemannian manifolds, we cannot hope to explicitly characterize mini-
mizers as in the example above. However, the next proposition summarizes the basic facts
that will be proven about minimizers of the base energy in this paper: The proof follows
from combining Lemma 3.10 and Theorem 6.3 (local and global existence, respectively),
Lemma 3.13 (connectedness), and Lemma 9.5 (volume constraint satisfied).

Proposition 2.4 (Minimizers of the base energy). Fix R > 0 and v 2 .0; jM j/. Fix any
vmax 2 .v; jM j/. There exists �0 D .R; v; vmax/ such that for � � �0, there exists T0 D

T0.R; v; vmax; �/ such that the following holds: If T � T0, then Emin > �1 and a
minimizer of the base energy E exists among sets in H , that is, the set M is nonempty.
Moreover, any minimizer in M is connected and has volume equal to v.

If M is compact or M=G is compact, then the constants above may be taken to be
independent ofR and the minimization of E may be taken among all open bounded subsets
of M with volume at most vmax:

2.2. Main energy functional

Let us now introduce the class of energy functionals whose existence and regularity theory
constitute the heart of this paper and using which we can carry out a selection principle
as described in the introduction (in Section 2.4 below). Following the discussions in the
introduction and in the previous subsection, we are interested in functionals of the type
shown in (1.6), though as in the previous subsection we relax the volume constraint. So,
the general form of the functionals we consider is

F� .�/ D E.�/C �h.�/: (2.8)

Here h.�/ is a functional mapping open bounded sets to R and � < �0 is a parameter that
will be chosen sufficiently small depending on the parameters of the base energy E . The
existence and regularity results of this paper will hold whenever h is an admissible nonlin-
earity as defined in Definition 2.11 below. Before defining this general class of admissible
nonlinearities, we motivate the definition with some important concrete examples that will
be used for our selection principle applications. In these examples, the relevant nonlinear-
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ities take the form
h.�/ D

p
c2 C .c � d�.�/2/2 � c (2.9)

for a constant c 2 .0; 1�, where d�.�/ is a suitably defined distance of � to the class of
minimizers M of the base energy. Note that (1.6) takes this form with d�.�/ D

d1.�; BR.x�// on Euclidean space; the subtraction of the constant c in (2.9) is imma-
terial for the minimization problem but conveniently normalizes the functional. We are
interested in generalizing this in two directions: (i) we want a distance d� that measures
the size of the symmetric difference as well as the eigenfunction difference, and (ii) we
wish to suitably generalize this to certain Riemannian manifolds.

In order to establish Step (1) of the selection principle (and ultimately quantitative
stability) in the form of Corollary 1.2 in which both the eigenfunction distance d1 and the
asymmetry distance d0 are controlled (say on Euclidean space), a first approach might be
to let d�.�/D d1.�;BR.x�//C d0.�;BR.x�// in (2.9), where d0 is the symmetric dif-
ference defined in (1.3). The issue here, already understood in [10], is that the distance d0
is not sufficiently smooth (as the integral of a characteristic function), and consequently,
minimizers of such a functional will not be smooth.

To deal with this, we follow the approach of [10] and consider a smoothed-out ver-
sion of the asymmetry term d0. More specifically, consider a bounded open set U with
smooth boundary (say @U is a disjoint union of C 2-embedded submanifolds); in the rel-
evant applications U will be a minimizer of the base energy E , so in Euclidean space,
hyperbolic space, or the round sphere, take U to be a geodesic ball. Take f to be a smooth
nondecreasing function with f .t/D t for jt j � c0 and f .t/ locally constant for jt j > 2c0,
where c0 is selected so that d.x; @U / is a C 2 function on ¹d.x; @U / < 4c0º. One can
always find such a c0 (see [28, Lemma 14.16]). Now, let  U be given by

 U .x/ D

´
f .d.x; @U //; x 2 U;

�f .d.x; @U //; x 2M n U:

The essential point of the function  U is that
´
�
 U �

´
U
 U is comparable to jU4�j2

for � whose boundary is a (small) normal graph over @U , and controls jU4�j2 in all
cases. More precisely, for any � we have
ˆ
�

 U �

ˆ
U

 U D

ˆ
�4U

j U j �

ˆ
�4U

min
®
jd.x; @U /j; c0

¯
dx � cj�4U j2;

where the last step can be seen from the fact that the integral is minimized by tubular
neighborhoods of U , and then by changing variables and using the smoothness of @U . On
the other hand, if the boundary of � is a C 2 normal graph � over @U with j�j � c0, we
may change variables and integrate

ˆ
�4U

j U j � C

ˆ
@U

ˆ j�.x/j
0

t dt dHn�1
D C

ˆ
@U

ˆ j�.x/j2=2
0

1dt dHn�1
� C jU4�j2:
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So, given any two bounded open sets � and U with U smooth as above, we let

d�.�;U /
2
D

ˆ
�

 U �

ˆ
U

 U C

ˆ
ju� � uU j

2; (2.10)

where u� denotes the first eigenfunction of�, normalized so that u � 0 and ku�kL2 D 1
and extended by zero to be defined on all of M . In each of the examples which follow,
we will use d�.�;U / to define a distance d�.�/ to the collection M of minimizers of the
base energy and consider functional (2.8) with nonlinearity (2.9) for this suitable definition
of d�.�/.

Remark 2.5 (Unique first eigenfunction). Lemma 3.14 below guarantees that if E.�/ �

Emin C �0 whenever �0 is sufficiently small, then � has a unique first eigenfunction and
so d�.�; U / is well-defined for such a set. This means that by choosing the parameter �
in (2.8) accordingly, u� and d�.�;U / will be well-defined for any minimizing sequence
or minimizer of (2.8). As such, we will generally only define h for sets with E.�/ �

Emin C �0. There is no loss of generality, at least when considering minimizers, to define
h.�/ D 1 if E.�/ � Emin C �0.

The simplest example is the case where only one minimizer of the base energy exists.

Example 2.6 (Unique minimizer). Suppose that the collection of minimizers M of the
base energy consists of a single set U , and U has boundary of class C 2. Then, the dis-
tance d�.�/ of � to the collection of minimizers of the base energy with v D j�j is
defined by d�.�/ D d�.�;U /:

In the case where minimizers of the base energy are not unique, to define a distance
of a given set � to the collection of minimizers, we must select the nearest minimizer
to �. On Euclidean space, where translation invariance gives rise to nonuniqueness of
minimizers, we do this by choosing the ball with the same barycenter as �.

Example 2.7 (Euclidean space). Let .M; g/ be Euclidean space. Given a bounded open
set�, letR be the unique radius so that j�j D jBRj and let x�D

ffl
�
x dx be the barycenter

of �. Then, the distance d�.�/ of � to the collection of balls BR (i.e., the minimizers of
the base energy with v D j�j) is defined by d�.�/ D d�.�;BR.x�//:

We saw in Example 2.3 that the situation on hyperbolic space and the round sphere
is similar to Euclidean space: the collection of minimizers of the base energy comprises
geodesic balls of suitable radius centered at any point. In these cases, we define an appro-
priate “set center” in analogy to the Euclidean barycenter.

Example 2.8 (Hyperbolic space). Let .M; g/ be hyperbolic space. Given a set bounded
open set � � M , define the set center x� of � by x� D argminx

´
�
d2.x; y/ dm.y/,

which is well-defined. Then, the distance d�.�/ of � to the collection of balls BR (i.e.,
the minimizers of the base energy with v D j�j) is defined by d�.�/ D d�.�;BR.x�//:
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On the round sphere, we cannot define the notion of set center in analogy to Exam-
ple 2.8, as the minimum may not be uniquely achieved. We instead consider the following:

Example 2.9 (The round sphere). Let .M; g/ be the round sphere. Consider its stan-
dard embedding in RnC1. Given any open � � M , let y� D

ffl
�
y dHn.y/; where y;

y� 2 RnC1; this is a (vector-valued) surface integral. If y� ¤ 0, then define the set center
of � as x� D y�=jy�j. The distance d�.�/ of � to the collection of balls BR (i.e., the
minimizers of the base energy with v D j�j) is defined by d�.�/ D d�.�;BR.x�//:

In all three of the preceding examples, uniqueness of minimizers of the base energy
fails solely due to the isometries of the space, and modulo the isometry group G, there is
a unique minimizer U with boundary of class C 2. In more general situations of this type,
we define a suitable notion of set center, which is a mapping� 7! x� for which there is a
unique minimizer U� of the base energy with the same set center as �. Because the def-
inition is somewhat technical, we postpone it until Definition A.2 in Appendix A. In this
situation, we define d�.�/ in analogy with the examples above; the Euclidean barycenter
and the set centers for hyperbolic space and the round sphere above are examples of set
centers in the sense of Definition A.2.

Example 2.10 (Minimizer is unique modulo isometries). Assume that M consists of a
single set U up to the action of the isometry group G. Also assume that it has smooth
boundary, and that there exists a set center � 7! x� adapted to U . We define

d�.�/ D d�.�;U�/; (2.11)

where U� is the unique set in M with the same set center as �.

It may be tempting to give generic constructions of d�.�/, independent of set centers,
by solving minimization problems along the lines of U� D argmin¹d�.�; U / W U 2Mº

and letting d�.�/ D d�.�; U�/: However, such variational problems have issues with
uniqueness and regularity of the solution map: these are closely related to the convexity
and smoothness of the “distance” functional being minimized, as well as the structure of
the family M.

All of the examples given above fall into the general class of admissible nonlin-
earities h for which our main existence and regularity results are valid. Below, u� is
used to denote the normalized, nonnegative first eigenfunction of � (see (2.2)); recalling
Remark 2.5, this function exists and is unique when E.�/ � Emin C �0.

Definition 2.11 (Admissible nonlinearities). Fix a (possibly trivial) closed subgroup
G0 � G of the isometry group of .M; g/. A function h mapping bounded open subsets
of M to R is said to be an admissible nonlinearity with respect to G0 if the following
properties hold:

(N1) h 2 Œ0; 1�.

(N2) h is invariant under isometries in G0.
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(N3) If �;�0 are bounded open sets with E.�/ � Emin C �0, then

jh.�/ � h.�0/j � j�4�0j C

ˆ
ju� � u�0 j:

(N4) For any x0 2 M and r � r0, take a 1-parameter family �t of diffeomorphisms
with �0.x/ D x and j@t�t j � 1 such that j¹x W �t .x/ ¤ xºj � Br .x0/. Assume
that �t .�/ is a set with E.�t .�// � Emin C �0 and Hn�1.@�/ <1; then,

lim sup
t!0

1

jt j

ˇ̌̌
h.�t .�// � h.�/ �

ˆ
.u�t .�/ � u�/a� �

hˆ
�t .�/

b� �

ˆ
�

b�

iˇ̌̌
� Chr

n;

where a�, b� are continuous functionsM ! R with ja�j; jb�j � 1. Moreover,
kb�kC 1;1.QR/ � 1 and ka�kC 0;1.�/ � 1.

Assumption (N1) simply says that h is nonnegative and uniformly bounded on bound-
ed open sets, and it is convenient to normalize any such functional so that the upper
bound is 1. Assumption (N2) should be understood with Example 2.10 in mind; when
the base energy E has a nonunique minimizer due only to a subgroup of isometries G0,
then Assumption (N2) is used to compare a set � to the nearest minimizer of the base
energy. Assumption (N3) heuristically states that h is a Lipschitz function � 7! R, where
the topology placed on the space of sets is either the L1 distance j�4�0j or a dis-
tance governed by the L1 difference of their eigenfunctions. Assumption (N4) should be
viewed as a higher regularity assumption on h; it is asking that h is not only Lipschitz but
also C 1, with derivative represented by the functions a� and b�.

Only the first three assumptions ((N1), (N2), and (N3)) are needed for the existence
theory and core estimates up through Section 7. Assumption (N4) is used to derive the
Euler–Lagrange equation in Section 8 (indeed, the functions a� and b� appear in the first
variation) and for the regularity of minimizers in Sections 9 and 10. In particular, the extra
regularity of a�; b� is only needed in Section 10 to obtain better smoothness of @� for
minimizers.

In Appendix A, we verify that the examples given above are admissible nonlineari-
ties. Given an admissible nonlinearity, it is easy to construct others via composition with
functions of one variable:

Remark 2.12. Given any admissible nonlinearity h, and anyC 1 function � W Œ0;1�! Œ0;1�

with j�0j � 1, the composition � ı h is again an admissible nonlinearity. No monotonicity
or structure of � is required here.

2.3. Minimizers of the main energy

As we did for the base energy, we will fix R > 0 and vmax and minimize the main energy
over the set H DHR;vmax defined in (2.5). We say that a bounded open set� is a minimizer
if � 2 H and for any �0 2 H ,

F� .�/ � F� .�
0/: (2.12)
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We say that � is an inward minimizer if (2.12) holds for any �0 2 H with �0 � �. We
say that � is an outward minimizer if (2.12) holds for any �0 2 H with �0 � �.

The next theorem summarizes the main existence and regularity properties for F�
that are established in this paper. The proof follows by combining Theorems 6.2 and 6.3
(existence), Proposition 9.5 (volume constraint), Theorem 8.1 (free boundary condition),
Theorem 9.4 (C 1;˛-regularity), and Corollary 10.5 (higher regularity).

We say that a collection C of bounded open subsets of M is uniformly C k if there
is a constant C > 2=injM such that for every U 2 C and every x 2 @U , the set
@U \ B1=C .x/ may be expressed as a graph with C k norm at most C over a hyperplane
in normal coordinates.

Theorem 2.13. Fix R > 0 and v 2 .0; jM j/. Fix any vmax 2 .v; jM j/: There exist positive
constants �;T �0 > 0 depending on R; v; vmax such that the following holds: Let h be
an admissible nonlinearity with respect to the isometry group G of .M; g/, and for fixed
� < �0 consider the energy functional F� defined in (2.8) with the parameters v; �; and T

in the base energy E of (2.8). Then:

(i) There exists an open set � that minimizes F� among sets in H D HR;vmax . Any
such minimizer satisfies the volume constraint j�j D v, is a set of finite perimeter,
and has a unique first eigenfunction u� up to scaling.

(ii) There exist C > 0 and ˛ 2 .0; 1/ depending only on v; vmax; R; a function
� � �C� with k�kC 0;˛.@�/ � C ; and a constant A0 2 Œ1=C; C � such that the
normalized first eigenfunction u� satisfies the free boundary condition

jru�.x/j
2.1C �.x// D A0

for Hn�1-a.e. x 2 @�� \QR.

(iii) Assume further that the collection M of minimizers of the base energy is uni-
formly C 4. For every ˛ 2 .0; 1/ and r1 > 0 there is a �1 D �1.v;vmax; �; r1; ˛/ > 0

such that the following holds: If � < �1, then for any minimizer � of F� , the set
@�\ ¹x 2QR W d.x; @QR/ > r1º may be parametrized as a C 2;˛ normal graph
(with C 2;˛ norm bounded by r1) over @U for some U 2M.

If M=G is compact, then all constants may be taken to be independent of R; the
minimization of F� may be taken among all bounded open subsets of M with volume at
most vmax; and in (iii), the entire boundary of any minimizer � may be written as a C 2;˛

graph over @U for some U 2M.

Theorem 2.13(i) implies that the minimization of F� among sets in H is equivalent to
the minimization problem

inf
®
F� .�/ W � 2 H�; j�j D v

¯
;

where we let H� denote either the collection of open bounded subsets of QR or, in the
case that M=G is compact, the collection of open bounded subsets of M .
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In order to better track the dependence of constants in various estimates in the sections
which follow, we define two quantities which measure growth properties of the eigenfunc-
tion and torsion function of �. Let � be an open subset of QR with �1.�/ < �2.�/,
and u� be the first eigenfunction (normalized so that

´
u2� D 1 and u� � 0 as usual),

while w� is the torsion function. Then,

UP.�/ D sup
°u�.x/CpTw�.x/

d.x; @�/
W x 2 �; d.x; @�/ 2 .0; 1/

±
(2.13)

and

DO.�/ D inf
°1
r

sup
x2Br .y/

u�.x/C
p

Tw�.x/ W y 2 x�; r 2 .0; 1/
±
: (2.14)

In general, UP.�/ 2 .0;1� while DO.�/ 2 Œ0;1�, though we will show in Section 3.1
that DO.�/ < 1 by showing that u� and w� are bounded. We also always have
DO.�/ � UP.�/. The core nonlinear estimates for this type of variational problem, fol-
lowing [5], are that outward minimizers have UP.�/ � C <1, while inward minimizers
have DO.�/ � c > 0.

2.4. Selection Principle

In this section, we establish the main linear-implies-nonlinear stability result of this paper,
which is Theorem 2.14 below. This is a generalization of Corollary 1.2. As we noted in
the introduction and as will be apparent in the proof, the constant c in Theorem 2.14
below is not explicit. The proof is essentially self-contained assuming Proposition 2.4 and
Theorem 2.13, with the exception of some continuity statements of Lemmas 3.10 and 3.16.
We operate under one of the following sets of assumptions:

Case 1: M=G is compact.
Case 2: M is arbitrary and R > 0 is fixed.
Let H� D ¹� open, boundedº in Case 1 and H� D ¹� open W � � QRº in Case 2.

Fix 0 < v < vmax < jM j, with vmax < jQRj in Case 2. Let � D �.v; vmax; R/ be chosen
small enough according to Proposition 2.4, as well as Lemma 3.16 and Lemma 3.10 in
Case 1 and Case 2, respectively. Then, choose T� D T�.v; vmax;R; �/ > 0 small enough
according to Proposition 2.4. Fix any 0 < T < T�. All constants and parameters below
depend on these fixed values.

We are interested in looking at the quantitative stability of minimizers of the base
energy E with a volume constraint:

inf
®
�1.�/CT tor.�/ W � 2 H�; j�j D v

¯
: (2.15)

By Proposition 2.4, the infimum in (2.15) is equal to the infimum Emin.v/ of the uncon-
strained problem (see (2.6)), and the two minimization problems are equivalent in the
sense that if a set� 2H� attains the infimum in (2.6), then j�j D v and it attains the infi-
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mum in (2.15), and the converse also holds. Let M� denote the collection of minimizers
of this variational problem, which is nonempty by Proposition 2.4. In Theorem 2.14, we
make the following assumptions about M�:

In Case 1, assume that M� may be represented as ¹e.U /ºe2G for a set U 2 M�,
the boundary @U is smooth, and there exists a set center adapted to U defined for sets
in ¹� W E.�/ � Emin.v/ C ıº for ı small enough. Recall that set centers are defined in
Definition A.2 and that examples to keep in mind are those on simply connected space
forms in Examples 2.7–2.9.

In Case 2, assume that M� contains only one element U and U �� QR and that @U
is smooth.

More general situations, such as finitely many minimizers (modulo isometries in
Case 1) may be considered with suitable modifications to the arguments here. Given an
open bounded set �, let d�.�/ be the distance to the collection of minimizers as defined
in Example 2.10. In Case 1, we let U� denote the unique minimizer with the same set
center as �:

Theorem 2.14. For M and M� as above and " > 0 small, assume that the inequality

�1.�/CT tor.�/ � Emin � cd�.�/
2 (2.16)

holds for all � 2 H� with j�j D v and @� expressible as a C 2 normal graph over @U�
with C 2;˛ norm bounded by ". Then, up to possibly replacing c with a smaller con-
stant, (2.16) holds for all � 2 H� with j�j D v.

Proof. Suppose by way of contradiction that the theorem is false. We may find a sequence
of sets ¹�j º with �j 2 H� and j�j j D v such that

E.�j / D �1.�j /CT tor.�j / � Emin C
d2j

j
; (2.17)

where here and in the remainder of the proof, we let dj D d�.�j /. The quantity d�.�/ is
bounded above uniformly for any � 2 H�, so (2.17) implies that

lim
j!1

E.�j / D Emin.v/:

Applying Lemma 3.16 in Case 1 or Lemma 3.10 in Case 2, we see that dj ! 0, and
so there exists U 2M� such that, after passing to a subsequence, j�j4ej .U /j ! 0 as
j !1 for some ej 2 G.

For each j 2 N, consider the minimization problem

inf
®
F� .�/ D E.�/C �h.�/ W � 2 H�

¯
; (2.18)

where we let

h.�/ D

q
d4j C

�
d�.�/2 � d

2
j

�2
� d2j ;
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where � < �0 is a small parameter, and �0 D �0.v; vmax; R; �;T / is chosen so that Theo-
rem 2.13 holds. By Theorem 2.13, a minimizer Vj of this variational problem exists and
satisfies jVj j D v. Let us take �j as a competitor in (2.18) in order to relate the deficits
and distances of �j and Vj . We find that

E.Vj /C �
�q

d4j C
�
d�.Vj /2 � d

2
j

�2
� d2j

�
� E.�j / (2.19)

� E.U /C
d2j

j
: (2.20)

In (2.20) we have applied equation (2.17). Subtracting E.U /D Emin.v/ throughout (2.19)
and (2.20) (and recalling that Emin.v/ � E.Vj / by definition), we directly see that

E.Vj / � Emin.v/ � E.�j / � Emin ! 0: (2.21)

Furthermore, (2.20) tells us thatq
d4j C

�
d�.Vj /2 � d

2
j

�2
�

�
1C

1

�j

�
d2j :

After squaring both sides of this inequality, we find that .d�.Vj /2 � d2j /
2 � 3d4j =�j . This

guarantees, first of all, that Vj 62M� for j sufficiently large. Moreover, taking the square
root of both sides, we find that for sufficiently large j ,

1

2
dj � d�.Vj /: (2.22)

Therefore, combining contradiction hypothesis (2.17) with deficit and distance compar-
isons (2.21) and (2.22), we see that

E.Vj / � Emin.v/ � E.�j / � Emin.v/ �
d2j

j
�
2d�.Vj /

2

j
: (2.23)

According to Theorem 2.13, Vj may be represented as a C 2;˛ normal graph over @Uj
for some Uj 2M, with C 2;˛ norm controlled by oj .1/. Moreover, the set centers of Uj
and Vj converge, since d.xUj ;xVj /�C jUj4Vj j D oj .1/;which immediately implies that
jUj4UVj j D oj .1/ from the properties of set centers. Here UVj is the unique minimizer
with the same set center as Vj . Using the smoothness of the minimizers U and the tubular
neighborhood theorem, this means for large j , @Uj (and then also @Vj ) may be written as
a C 2;˛ normal graph over @UVj with small C 2;˛ norm. Applying hypothesis (2.16) to Vj ,
we see that

cd�.Vj /
2
� E.Vj / � Emin;

which for large j is a contradiction. This completes the proof.
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Recall from the discussion in Section 2.2 that d�.�/2 is comparable to

xd�.�/
2
WD j�4U�j

2
C

ˆ
ju� � uU� j

2

for � whose boundary is a (small) normal graph over @U , and controls xd�.�/2 in all
cases. This leads to the following corollary, which in particular proves Corollary 1.2:

Corollary 2.15. Theorem 2.14 remains valid with xd� in place of d�.

3. Eigenfunctions, torsion functions, and the base energy

This section collects some useful facts about eigenfunctions and torsion functions of
bounded open subsets of M , as well some initial properties about the base energy E and
its optimizers. Section 3.1 is devoted to general properties of eigenfunctions and torsion
functions.

Section 3.2 contains Proposition 3.9—the key estimate that will allow us to control the
nonlinear perturbation in the main energy in the remainder of the paper. This proposition
estimates the difference of eigenfunctions on nested domains in terms of their eigenvalue
and torsional rigidity differences. Fundamentally, this proposition highlights why we are
able to establish existence and regularity of minimizers of the main energy when the coef-
ficient T in front of the torsional rigidity is positive (and suitably small), but not when
T D 0 and the leading term in the base energy is only the first eigenvalue.

In Section 3.3, we establish the existence and initial properties of minimizers of the
base energy in QR, while Section 3.4 extends some of these properties of minimizers of
the base energy globally.

We recall the set H D HR;vmax defined in (2.5). Recall that we always implicitly
assume that vmax and R are chosen so that vmax � jQRj and, when jM j is finite, so that
vmax < jM j. Finally, we remind the reader that, in addition to the dependencies stated in
each theorem, all constants will depend on .M; g/.

3.1. Eigenfunctions and torsion functions

Our first lemma collects some basic facts about eigenfunctions and torsion functions. The
proof is elementary, so we omit it.

Lemma 3.1. Let � �M be a bounded open set. Then, the following properties hold:

(i) w� is nonnegative and satisfies �w� � �1� on M in the sense of distributions.

(ii) �w� D �1 on �.

(iii)
´
�
jrw�j

2 D
´
�
w� D �2 tor.�/.
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(iv) If �1.�/ < �2.�/, the normalized eigenfunction u�, up to replacing with �u�,
is nonnegative and �u� � ��1.�/u� on M in the sense of distributions.

(v) If u� is as in (iv), �u� D ��1.�/u� on �.

Next, we show that eigenfunctions of a domain � � M are bounded uniformly in
terms of an eigenvalue upper bound.

Lemma 3.2 (Eigenfunction upper bound). For each �0 > 0, there exists a constant
C1 D C1.�0/ such that the following holds: Let� be an open bounded set and fix � � �0.
For any function u 2 H 1

0 .�/ with kukL2 D 1 satisfying �juj � ��juj on �,

juj � C1:

In particular, this applies to any eigenfunction of �.

Proof. Let K.x; y; t/ be the heat kernel on M (see [22]), and set

C1 D e
�0 sup
x2M

p
K.x; x; 2/:

Since .M; g/ has bounded geometry, C1 is finite. Extending u by zero to be defined on
all of M , the function e�t�ju.x/j is a subsolution to the heat equation on M . Using the
comparison principle,

e�t�ju.x/j �

ˆ
K.x; y; t/ju.y/jdy �

�ˆ
K2.x; y; t/dy

�1=2
kukL2 D

p
K.x; x; 2t/:

Set t D 1 to conclude.

Next, the torsion function of an open bounded set is bounded in terms of its torsional
rigidity:

Lemma 3.3 (Torsion function upper bound). For each T > 0; there exists a constant
C2 D C2.T / such that the following holds: Let � be an open bounded set such that
tor.�/ � �T . Then,

w� � C2:

Proof. In local coordinates on a ball Br .x/ around any point x 2M , we have thatw� � 0
and �w� � �1; so applying the local maximum principle ([28], Theorem 8.17) gives

sup
Br=2.x/

w2� � C.r; x/
hˆ
Br .x/

jrw�j
2
C 1

i
� C.r; x/Œ� tor.�/C 1�:

In the second inequality we used Lemma 3.1(iii). Since .M; g/ has bounded geometry,
the values of r and the constant C.r; x/ D C may be taken uniformly for all x 2 M . We
conclude by letting C2 D C ŒT C 1�.

The next lemma shows that the eigenfunction is controlled by the torsion function.
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Lemma 3.4 (Torsion function controls eigenfunction). Let� be an open bounded set with
j�j < jM j such that �1.�/ < �2.�/. Then, there is a constant C3 depending only on C1
of Lemma 3.2 and �1.�/ such that

u� � C3w�:

Proof. This follows directly from the maximum principle and Lemma 3.2: We know that
��u� � �1.�/C1 D ���1.�/C1w� on �, and both u� and w� are in H 1

0 .�/, there-
fore u� � C1�1.�/w� on �.

As a consequence of this lemma, if we write �u� D ��1.�/u� C � in the sense of
distributions, with � a nonnegative measure, and similarly, �w� D �1� C � where � is
a nonnegative measure, then � � C�. The opposite inequality w� � Cu� is much more
subtle, and will be discussed for minimizing � in Proposition 7.8.

We now establish two forms of a Poincaré inequality on the sets QR defined at the
beginning of Section 2; the key point here is that they depend only on the parameters R
and vmax.

Lemma 3.5 (Poincaré inequality). Fix vmax < jM j andR>0, and letX be the completion
of the space ¹u2C10 .QR/ W j¹juj>0ºj � vmaxºwith respect to the seminorm krukL2.QR/.
Then, the embedding

X ! Lp.QR/

is continuous for p 2 Œ1; 2n
n�2

� and compact for p < 2n
n�2

. If vmax < jQRj, then the same
is also true, letting X be the completion of the space ¹u 2 C1.QR/ W j¹juj > 0ºj � vmax;

krukL2.QR/ < C1º with respect to the seminorm krukL2.QR/.

Proof. LetH 1.QR/ be the completion of the space ¹u 2 C1.QR/ W kukH1.QR/ < C1º

with respect to the norm kukH1.QR/ WD kukL2.QR/ C krukL2.QR/. It is well known (see
for instance [30, Theorem 10.2] or [6, Theorems 2.30 and 2.34]) that onQR (or more gen-
erally, any compact Riemannian manifold with boundary),H 1.QR/ embeds continuously
into Lp.QR/ for p 2 Œ1; 2n

n�2
� and the embedding is compact for p < 2n

n�2
.

Suppose by way of contradiction that the second embedding stated in the lemma
fails for p D 2n=.n � 2/. Take a sequence of functions ¹ukº with kukkLp.QR/ D 1 and
j¹uk > 0ºj � vmax such that krukkL2.QR/ ! 0. We see from Hölder’s inequality that
kukkL2.QR/ � C.QR/. So, from the continuous embedding H 1.QR/ ,! Lp.QR/ we
find that uk ! c in H 1.QR/, Lp.QR/ and pointwise a.e. in QR for some constant
c 2 R. On one hand, kckLp.QR/ D 1, while on the other hand, Fatou’s lemma implies
that j¹jcj > 0ºj � vmax and so c D 0. We reach a contradiction.

Now, for p <2n=.n� 2/, the continuous embedding then follows by Hölder’s inequal-
ity, while the compactness of the embedding follows from the compact embedding
of H 1.QR/ into Lp.QR/ and the continuous embedding of ¹u 2 PH 1.QR/ W j¹juj > 0ºj

� vmaxº into L2.QR/ that we have just established.
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We prove the first embedding of the lemma analogously. If M is compact, then the
argument above carries over directly. IfM is noncompact, we again argue by way of con-
tradiction and take a sequence of functions with kukkLp.QR/ D 1 and krukkL2.QR/! 0.
Extend each uk by zero to be defined on Q2R. By Hölder’s inequality, kukkL2.Q2R/ � C
and so from the continuous embedding H 1.Q2R/ ,! Lp.Q2R/ we see that uk ! c

in H 1.Q2R/; L
p.Q2R/ and pointwise a.e. in Q2R. On one hand, kckLp.Q2R/ D 1; while

on the other hand, uk � 0 on Q2R nQR and so we see that c D 0. We reach a contra-
diction. Again, the continuous embedding for p < 2n=.n � 2/ then follows by Hölder’s
inequality, while the compactness of the embedding follows from the compact embedding
of H 1

0 .QR/ which embeds continuously into Lp.QR/ and the continuous embedding of
PH 1
0 .QR/ into L2.QR/ that we have just established.

As an immediate consequence of Lemma 3.5, we may bound the torsional rigid-
ity tor.�/ from below uniformly for all domains in H D HR;vmax , (that is, the class of
admissible domains defined in (2.5)). Naturally, if M has bounded diameter, then the
lower bound is independent of R.

Corollary 3.6 (Torsional rigidity lower bound). Fix R > 0 and vmax < jM j. There is a
constant C.R; vmax/ <1 such that for any � 2 H ,

tor.�/ � �C.R; vmax/:

Proof. Fix � 2 H and let w� be the corresponding torsion function, so that tor.�/ D´
�
1
2
jrw�j

2 � w�. Then, for any " > 0,
ˆ
jw�j � C.R; vmax/krw�kL2 � "

ˆ
jrw�j

2
C C.";R; vmax/;

where the first inequality used Lemma 3.5 on w� extended by 0 and the fact that
j¹w� > 0ºj � j�j � vmax. Take " D 1

4
and reabsorb to get

tor.�/ D
ˆ
�

1

2
jrw�j

2
� w� � �C.R; vmax/C

ˆ
�

1

4
jrw�j

2:

This concludes the proof.

Remark 3.7. Notice that from Corollary 3.6, for any � 2 H D HR;vmax , the constant C2
in Lemma 3.3 depends only on R and vmax:

The final lemma of this section is an elementary fact about the energy of the difference
between any normalized nonnegative function and the first eigenfunction.

Lemma 3.8. Let � be an open bounded set with �1.�/C ˛ � �2.�/ for some ˛ > 0,
and v 2 H 1

0 .�/ with
´
v2 D 1 and v � 0. Then,

ˆ
jr.u� � v/j

2
�

�
1C

2�1.�/

˛

�hˆ
jrvj2 � �1.�/

i
:
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Proof. Let us use the shorthand �1 D �1.�/ and �2 D �2.�/, and write v D ˇu� C v?
where ˇ D

´
u�v. Because

´
u�v? D 0 by definition, we observe that

�2.1 � ˇ
2/ D �2

ˆ
v2? �

ˆ
jrv?j

2
D

ˆ
jrvj2 � �1ˇ

2
D

ˆ
jrvj2 � �1 C �1.1 � ˇ

2/:

In particular, ˛.1 � ˇ/2 �
´
jrvj2 � �1 and

´
jrv?j

2 � .1C �1=˛/.
´
jrvj2 � �1/. So,

since u� � v D .1 � ˇ/u� C v? and 0 � ˇ � 1, we see that
ˆ
jr.u� � v/j

2
D .1 � ˇ/2�1 C

ˆ
jrv?j

2
�

�
1C

2�1

˛

�� ˆ
jrvj2 � �1

�
:

This concludes the proof.

3.2. The key estimate on the nonlinear perturbation

In order to study the existence and regularity of minimizers of the main energy F� , we
require some sharp estimates on how an admissible nonlinearity h changes under a change
in domain from � to �0. From Assumption (N3) in Definition 2.11, this is controlled
by the sum of the symmetric difference j�4�0j, which is easy to estimate; and the L1

difference of eigenfunctions
´
ju� � u�0 j, which is not significantly more difficult to

estimate. In fact, we do not know how to control this quantity in terms of the eigenvalue
difference j�1.�0/� �1.�/j alone, at least in the case of outward perturbations. The next
proposition does bound

´
ju� � u�0 j, but the difference j tor.�/ � tor.�0/j appears on

the right-hand side of the estimate as well. This is the fundamental reason for introducing
the torsional rigidity term into the main energy functional F� .

This proposition will be the crucial ingredient in proving the main estimates of Sec-
tions 4 and 5 and establishing our main existence result in Section 6. At least for the
estimates, the proposition’s specific form, with linear dependence on j tor.�/ � tor.�0/j
and j�1.�0/ � �1.�/j, is essential; the (much) simpler sublinear versions of this inequal-
ity are insufficient.

Proposition 3.9. Fix 0 < vmax < jM j, ˛ > 0 and �0 > 0. Let � � �0 be bounded open
sets with j�0j � vmax, �2.�0/ � �1.�0/ C ˛, and �1.�/ � �0. Let f W M ! R be a
bounded function. Then, there exists a constant C4 D C4.˛; vmax; �0/ such thatˇ̌̌ ˆ

f .u�0 � u�/
ˇ̌̌
� C4kf kL1

�
tor.�/ � tor.�0/C �1.�/ � �1.�0/

�
: (3.1)

In the case that the first eigenvalue of � is not simple, Proposition 3.9 holds trivially
for any first eigenfunction u�. To see this, note that �1.�/� �1.�0/ and �2.�/� �2.�0/
from � � �0. So, if �1.�/ is not simple, then �1.�/ D �2.�/ and so �1.�/ � �1.�0/
� ˛, meaning the estimate here holds automatically for every normalized first eigenfunc-
tion u� (using Lemma 3.2). So, in the proof below, we will assume that �1.�/ < �2.�/,
in which case u� is uniquely defined.
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Proof. We first consider the case of � compactly contained inside �0 and having smooth
boundary, but all constants will be independent of the nature or regularity of @�. Let
ˇ D

´
f u�0 and write f D ˇu�0 C f?. We estimate the contributions of ˇu�0 and f?

on the left-hand side of (3.1) separately. To estimate the contribution from the first term,
use the normalization of the eigenfunctions u�; u�0 :

ˆ
ˇu�0.u�0 � u�/ D ˇ

ˆ
u2�0 � u�0u� D

ˇ

2

ˆ
u2�0 C u

2
� � 2u�0u�

D
ˇ

2

ˆ
ju� � u�0 j

2:

Applying Lemma 3.8 and assuming without loss of generality that ˛ � �1.�0/, we have
ˆ
ju� � u�0 j

2
�

1

�1.�0/

ˆ
jr.u� � u�0/j

2
�
3

˛

hˆ
jru�j

2
� �1.�

0/
i

D
3

˛
Œ�1.�/ � �1.�

0/�;

and therefore, ˇ̌̌ˆ
ˇu�0.u�0 � u�/

ˇ̌̌
�
3

˛
kf kL2 Œ�1.�/ � �1.�

0/�: (3.2)

Now, for the remainder f? we have that kf?kL2 � kf kL2 �
p
vmaxkf kL1 and´

f?u�0 D 0. This means we may solve for the potential´
��q � �1.�

0/q D f? on �0;

q D 0 on @�0;
(3.3)

which has a unique solution q 2 H 1
0 .�

0/ with
´
qu�0 D 0, and enjoys the estimate

kqkH1
0 .�

0/ � C.˛/kf?kL2 (this follows from the Fredholm alternative). From Lemma 3.2
we have that ku�0kL1 � C , so

kf?kL1 � kf kL2ku�0kL1 C kf kL1 � Ckf kL1 :

So, from (3.3), we see that ��q � �1.�0/q 2 L1, and we have from applying [28, The-
orem 8.17] in charts that

kqkL1 � C
�
kf?kL1 C kqkL2

�
� Ckf kL1 :

Now rewriting the PDE as ��q D �1.�0/q C f? 2 L1, applying the comparison prin-
ciple with a multiple of the torsion function w�0 gives

jqj � Ckf kL1w�0 :
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This is the key fact about q; note also that from standard elliptic regularity q lies in
C.V / \W 2;2.V / for any V compactly contained in �0.

We proceed in our estimate:
ˆ
f?.u�0 � u�/ D

ˆ
f?u� D

ˆ �
��q � �1.�

0/q
�
u�: (3.4)

From Lemma 3.1, we have�u� D��1.�/u�C� in the sense of distributions, where �
is a nonnegative measure supported on @�: that is, for any function � 2 C1c .M/, we have
that ˆ

.�� C �1.�/�/u� D

ˆ
� d�: (3.5)

Take an open set V such that � �� V �� �0 and a sequence �k 2 C1c .M/ with
k�k � qkW 2;2.V /\C.V / ! 0; then, passing to the limit in (3.5) leads to

ˆ
.�q C �1.�/q/u� D

ˆ
q d�:

Continuing on and applying this to (3.4), we have
ˆ
q
�
��u� � �1.�

0/u�
�
D

ˆ
�qd�C

�
�1.�/ � �1.�

0/
� ˆ

qu�:

The second term is controlled by�
�1.�/ � �1.�

0/
� ˇ̌̌ˆ

qu�

ˇ̌̌
�
�
�1.�/ � �1.�

0/
�
kqkL2 ku�kL2

� C.�1.�/ � �1.�
0//kf kL1 ;

so we need only focus on the first. Recall from Lemma 3.4 that writing�w� D �1� C �
on �0 for a nonnegative measure �, we have � � C�. As such,ˇ̌̌ ˆ

q d�
ˇ̌̌
�

ˆ
jqj d� � Ckf kL1

ˆ
w�0 d� D Ckf kL1

ˆ
.w�0 C w�/ d�

in the final identity, using that w� vanishes on the support of �.
Let  be a C 2c .M/ function with  D w� C w�0 on x� �� �0; this exists as � is

smooth and sow� is smooth up to the boundary @�0, and then we may apply, for example,
Whitney’s extension theorem. Applying the distributional definition of �, we have that
ˆ
.w�0 C w�/ d� D

ˆ
 d� D

ˆ
w�� C 1� D

ˆ
�2w� C 1�.w� C w�0/;

using that � D �.w� C w�0/ D �2 on the support of w� in the last step. Using the
positivity of w�0 , we have

ˆ
�2w� C 1�.w� C w�0/ �

ˆ
w�0 � w�:
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Recalling that tor.�/ D �1
2

´
jrw�j

2 D �
1
2

´
w� and the analogous result for �0,

we have shown thatˇ̌̌ ˆ
f?.u�0 � u�/

ˇ̌̌
� Ckf kL1

�
�1.�/ � �1.�

0/C tor.�/ � tor.�0/
�
:

This together with (3.2) gives the conclusion.
For the case of a general � without restrictions on the smoothness or location of @�,

let �k � �kC1 �� � be an exhaustion of � by smooth sets (i.e., � D
S
k �k ; see,

e.g., [26, Chapter 5, Theorem 4.20]). Then, apply (3.1) to �k . We have that �1.�k/
� �1.�/ and tor.�k/ � tor.�/ from set inclusion. Take first eigenfunctions u�k *
u 2 H 1

0 .�/ weakly (and therefore strongly in L2.�/) and locally in C 2 topology for
some u 2H 1

0 .�/ along a subsequence; similarly, w�k *w 2H 1
0 .�/. Passing the PDEs

satisfied by these to the limit, we see that ��u D �u and ��w D 1 on all of �, where
� D limk �.�k/ � �1.�/ is some number; moreover, u;w � 0 on � and

´
u2 D 1. This

implies that u is an eigenfunction of � and � is an eigenvalue; however, as
´
uu� > 0

it must be the case that u D u� and � D �1.�/ (recall we are assuming that �1.�/ is
simple). Similarly, w� D w as the solutions to the corresponding PDE are unique. This
means that

tor.�k/ D �
1

2

ˆ
w�k ! �

1

2

ˆ
w� D tor.�/

while ˆ
f u�k !

ˆ
f u�;

by using convergence in L2. In particular, both sides of (3.1) pass to the limit.

3.3. Base energy minimizers inQR

We now move toward minimizing the base energy E among subsets of a fixed QR. In this
section we establish existence, volume bounds and connectedness properties of minimiz-
ers in the class H D HR;vmax :

We start with an existence and compactness theorem for minimizers. The statement
is formulated in a way to give information on w� if and only if T > 0. We recall that
the base energy E , the collection of sets over which we minimize H , and the collection
of minimizers M are defined in (2.4), (2.5), and (2.7), respectively. Recall from (2.6) that
Emin D Emin.v; vmax; �;T ; R/ denotes the infimum of the base energy.

Lemma 3.10. Fix R > 0 and v; vmax with 0 < v < vmax, as well as the parameters � > 0
and T > 0 in the base energy. Then:

(i) Emin > �1.

(ii) Let �k 2 H and uk ; wk 2 H 1
0 .�k/ with

´
u2
k
D 1 and

lim
k

ˆ
jrukj

2
CT

ˆ
1

2
jrwkj

2
� wk C fv;�.j�kj/ D Emin: (3.6)
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Then, there is a subsequence �kj and a set � 2 H such that

kukj � u�kH1
0 .QR/

C
p

Tkwkj � w�kH1
0 .QR/

C j�4�kj j ! 0;

where u� is a normalized first eigenfunction of � and w� is the torsion function
of �.

(iii) M is nonempty, and for any�2M, the functions u� and
p

Tw� are continuous
onM after extension by 0 to be defined on all ofM (for any choice of normalized
first eigenfunction u�).

Proof. Notice that
´
jrukj

2 � 0 and fv;�.j�kj/ � ��v by definition. Moreover, tor.�/
is bounded from below uniformly in � 2 H by Corollary 3.6. Summing these terms and
taking the infimum shows that Emin > �1; thus establishing (i).

Step 1: Basic compactness. Let �k be a minimizing sequence as in claim (ii) of
the lemma. As we noted above, each of the terms

´
jrukj

2;T
´
1
2
jrwkj

2 � wk ; and
fv;�.j�kj/ in the energy are bounded from below individually. Because Emin is also
bounded from above, these three terms are bounded above individually as well. This
immediately gives that kukkH1

0 .QR/
is uniformly bounded, while applying Lemma 3.5

as in the proof of Corollary 3.6 gives that

C � T

ˆ
1

2
jrwkj

2
� wk � T

h
�C.R; vmax/C

1

4

ˆ
jrwkj

2
i
;

giving
p

TkrwkkL2.QR/ � C and so
p

TkwkkH1
0 .QR/

� C from Lemma 3.5 again.
Passing to subsequences, we have that uk ! u weakly in H 1

0 .QR/, strongly in L2,
and a.e., and similarly for wk ! w when T > 0. This implies that 1¹jujCT jwj>0º �

lim infk 1¹juk jCT jwk j>0º, so by Fatou’s lemma j¹juj CT jwj > 0ºj � lim infk j�kj and

fv;�.j¹juj CT jwj > 0ºj/ � lim inf
k!1

fv;�.j�kj/:

Using the lower semicontinuity of the norm under weak convergence, we have that
ˆ
jruj2 CT

ˆ
1

2
jrwj2 � w C fv;�.j¹juj CT jwj > 0ºj/ � Emin (3.7)

and
´
u2 D 1. From Lemmas 3.2 and 3.3, we have jukj � C1 and jwkj � C2; these pass

to the limit to give juj C
p

T jwj � C .

Step 2: Continuous representatives. We will now show that u; w admit continuous
representatives; this will imply that the set � WD ¹juj C T jwj > 0º is open (and hence
in H ), u is a first eigenfunction of �, w D w�, and the inequality in (3.7) is an equality.
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Step 2a. To this end, we first claim that u and w have the following “almost minimal-
ity” property: Fix a small ball B2r .x/, x 2 QR. We claim that

ˆ
jruj2 CT

ˆ
1

2
jrwj2 � w �

´
jraj2´
a2
CT

ˆ
1

2
jrbj2 � b C Crn (3.8)

for any pair of functions a; b with a D u and b D w on Br .x/c and such that u � a and
w � b are in H 1

0 .Br .x/ \QR/.
Indeed, let  be a smooth cutoff function which is 1 on Br .x/ and supported

on B2r .x/. Let �0
k
D �k [ Br .x/ and define the functions ak ; bk 2 H 1

0 .�
0
k
/ by

ak D  aC .1 �  /uk ;

bk D  b C .1 �  /wk :

Note that ak ! a and bk ! b in L2. Moreover, fv;�.j�0kj/ � fv;�.j�kj/C Cr
n: So, we

may use ak=kakkL2 as a competitor for u�0
k

and bk for w�0
k

inside of (2.2) and (2.1) to
give

Emin � E.�0k/ �

´
jrakj

2´
a2
k

CT

ˆ
1

2
jrbkj

2
� bk C fv;�.j�kj/C Cr

n:

Recalling that uk ; wk were chosen to satisfy (3.6), this gives that

0 � lim inf
k!1

´
jrakj

2´
a2
k

�

ˆ
jrukj

2
CT

hˆ 1

2
jrbkj

2
� bk �

ˆ
1

2
jrwkj

2
� wk

i
C Crn;

(3.9)
We first focus on the term in brackets. We haveˆ

1

2
jrbkj

2
�

ˆ
1

2
jrwkj

2

D
1

2

ˆ
jrwkj

2
�
.1 �  /2 � 1

�
C  2jrbj2 C 2 .1 �  /rb � rwk C ok.1/;

where the ok.1/ term contains all error terms containing r and can be seen to converge
to 0 using the weak convergence of rwk !rw, the strong convergence of wk ! w, and
the fact that b D w on the support of r . Therefore, taking limits in the term in brackets
in (3.9), since w D b when 1 �  is nonzero, we have

lim sup
k!1

ˆ
1

2
jrbkj

2
� bk �

ˆ
1

2
jrwkj

2
� wk

�
1

2

ˆ
jrwj2Œ.1 �  /2 � 1�C  2jrbj2 C 2 .1 �  /jrwj2 C

ˆ
w � b

D
1

2

ˆ
 2Œjrbj2 � jrwj2�C

ˆ
w � b

D

ˆ
1

2
jrbj2 � b �

ˆ
1

2
jrwj2 � w:
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In the inequality we have used that
´
�jrwj2 � lim infk!1

´
�jrwkj

2 for � � 0 from
weak convergence (and setting � D 1� .1� 2/). A similar computation for the ak terms
gives

lim sup
k!1

´
jrakj

2´
a2
k

�

ˆ
jrukj

2
�

´
jraj2´
a2
�

ˆ
jruj2:

Substituting these conclusions into (3.9), we arrive at (3.8), thus proving the claim.
Step 2b. Now let a be the harmonic replacement of u on Br .x/ \QR (i.e., the mini-

mizer of
´
Br .x/\QR

jraj2 with data u on @ŒBr .x/\QR�), and b the harmonic replacement
of w. Then,

ˆ
Br .x/

jruj2 CT
1

2
jrwj2 � Crn C

ˆ
Br .x/

jraj2 CT
1

2
jrbj2;

which we obtain by estimating the nongradient terms using juj; jwj; jaj; jbj � C and
absorbing them into the Crn term. Rewriting and using that

´
hra;r.u � a/i D 0 from

the equation on a (and similarly with b),
ˆ
Br .x/

jr.u � a/j2 CT
1

2
jr.w � b/j2 � Crn:

This is valid for any B2r .x/, and implies that u;
p

Tw are C 0;˛.QR/ (see [17]).

Step 3: Conclusion. Finally, as � is open, � 2 H and Emin � E.�/ �
´
jruj2 C´

1
2
jrwj2 � w C fv;�.j�j/ � Emin. This implies that w D w�, u is a first eigenfunction

of �, and

lim
k!1

ˆ
jru2kj D

ˆ
jruj2; lim

k!1

ˆ
jrw2kj D

ˆ
jrwj2; lim

k!1
j�kj D j�j:

This gives the strong convergence of uk and wk in H 1
0 .QR/. To see the convergence

of�k , recall that 1� � lim infk 1�k ; integrating over� and applying Fatou’s lemma gives
j�j � lim infk j� \ �kj, or j� n �kj ! 0. Together with j�kj ! j�j this guarantees
j�k n�j ! 0 as well.

For (iii), properties (i) and (ii) immediately give that M is nonempty by applying
them with uk D u�k (an eigenfunction of�k) and wk D w�k , where�k is any sequence
in H with E.�k/! Emin. Choosing �k D � and any first eigenfunction u�k D u� and
applying the continuity argument above gives that u� and

p
Tw� are continuous.

Recall that the volume penalization term fv;� in the base energy does not immedi-
ately guarantee that a minimizer � 2M satisfies the desired volume constraint j�j � v.
However, the next lemma provides an initial upper bound on the volume of a minimizer,
provided that the parameter � in the volume penalization term is taken to be sufficiently
small. We will eventually show this in Proposition 9.5, as well as that � 2 M actually
satisfies the desired volume constraint j�j D v.
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Lemma 3.11. Fix R > 0 and v; vmax with 0 < v < vmax, and 0 < T � 1. There exists an
�0 D �0.v; vmax; R/ > 0 so that for � < �0, if � 2M then

j�j <
vmax C v

2
:

Proof. We have already verified in the proof of Lemma 3.10 that E.�/��C C fv;�.j�j/

for any� 2H ; this estimate is uniform for any T � 1. By choosing some smooth� such
that j�j D v, we see that E.�/� C with C independent of � (and T ). We therefore have,
for � 2M,

j�j � v

�
� fv;�.j�j/ � C:

Choosing � � vmax�v
2C

gives the conclusion.

Remark 3.12. In the remainder of the paper, we will always assume, without further
comment, that the parameter in the base energy E and the main energy F� is taken such
that � � �0, where �0 D �0.v; vmax; R/ is the constant obtained in Lemma 3.11.

In the next lemma, we show that the coefficient T in front of the torsional rigidity
in the base energy can be taken to be sufficiently small to guarantee that a minimizer
� 2M is connected and its first eigenvalue is simple. Although the simplicity of the first
eigenvalue follows from the connectedness, we prove these two properties separately so
that the proof can be immediately generalized to prove Lemma 3.14 below.

Lemma 3.13. Fix R > 0, v < vmax, and � > 0. There exists a T0.v; vmax; �;R/ > 0 such
that if � 2M with T < T0, then � is connected, u� > 0 on � (up to changing sign),
and

�2.�/ > �1.�/:

Proof. We first prove that these three properties hold when T D 0.
Spectral gap when T D 0: First, suppose by way of contradiction that �2.�/D�1.�/.

Then, there are two functions u1; u2 with
´
jrui j

2 D �1.�/,
´
u2i D 1, and

´
u1u2 D 0.

By Lemma 3.10, they are both continuous, and we may assume without loss of generality
that ui � 0 by replacing ui with jui j in the Rayleigh quotient characterization of eigen-
functions. So, the orthogonality shows that ¹u1 > 0º and ¹u2 > 0º are disjoint open sets.
Now let �0 D ¹u1 > 0º, noting that �1.�0/ �

´
jru1j

2 D �1.�/. On the other hand,
j�0j < j�j, so fv;�.j�0j/ < fv;�.j�j/ and E.�0/ < E.�/ D Emin. This is a contradiction
which shows that �2.�/ > �1.�/.

Connectedness and positivity of the eigenfunction when T D 0: Next, suppose by way
of contradiction that � is not connected. Then, there is some connected component �0 on
which the first eigenfunction u� of � (which is unique by the previous step) is positive.
Then, u�j�0 is a first eigenfunction of �0, so �1.�/ D �1.�0/, and j�0j < j�j. So, just
as in the previous step, we take �0 as a competitor and find that E.�0/ < E.�/. This is a
contradiction, showing that � is connected. Then, the strong maximum principle implies
that u� > 0 in �:
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Setup for T > 0: Now we prove these three properties when T > 0 is sufficiently
small. We prove the spectral gap and the connectedness again arguing by contradiction.
As in the previous part of the proof, the positivity of the first eigenfunction follows
immediately from connectedness and the maximum principle. Suppose by way of con-
tradiction that there is a sequence of numbers Tk ! 0 and a corresponding sequence of
sets �k 2MTk

such that either �2.�k/ D �1.�k/ or �k is disconnected.
Let us begin by making some general convergence and compactness observations

about this sequence. By minimality, for any fixed competitor � 2 H , we have

�1.�k/CTk tor.�k/C fv;�.�k/ � �1.�/CTk tor.�/C fv;�.�/

! �1.�/C fv;�.�/:

From Corollary 3.6 we know that tor.�/ � �C , and so each of �1.�k/; tor.�k/; and
fv;�.�k/ are bounded uniformly in k, so the middle term Tk tor.�k/! 0. This means

Emin.Tk/ D �1.�k/C fv;�.�k/C ok.1/

� inf¹�1.�/C fv;�.�/ W � 2 Hº C ok.1/ D Emin.0/C ok.1/:

In particular, Emin.Tk/! Emin.0/ and limk �1.�k/C fv;�.�k/ D Emin.0/. For each k,
fix a first eigenfunction u�k for �k ; as above we may take them nonnegative. Applying
the compactness claim of Lemma 3.10, there is an� 2M0 with ku�k � u�kH1

0 .QR/
! 0

and j�k4�j ! 0. Since � 2 M0, that is, � is a minimizer for T D 0, it satisfies the
three properties of the lemma shown above in the case T D 0.

Spectral gap for T > 0 sufficiently small: Returning to our main contradiction argu-
ment, first suppose that �2.�k/ D �1.�k/ along some subsequence (that we do not
relabel). So, for each k we have a first eigenfunction vk 2 H 1

0 .�k/ with vk � 0 and´
v2
k
D 1 that is orthogonal to the previously selected first eigenfunction:

´
vku�k D 0,

and
´
jrvkj

2 D �1.�k/ ! �1.�/. We may apply Lemma 3.10 to vk instead of u�k
to obtain another set �0 2M0 and a continuous first eigenfunction u�0 of �0 such that
kvk � u�0kH1

0 .QR/
! 0 and j�k4�0j ! 0. In particular, this tells us that j�4�0j D 0.

So the set�00 WD�[�0 is in the competitor class H , and satisfies �1.�00/ � �1.�/, and
j�00j D j�j. In particular, �00 2M0 and �1.�00/ D �1.�/. In turn, this means both u�0
and u� are first eigenfunctions of �00. Moreover, they are orthogonal because

ˆ
u�u�0 D lim

k!1

ˆ
u�kvk D 0:

Thus, �2.�00/D �1.�00/, which contradicts the previously established spectral gap for the
case where T D 0.

Connectedness for T > 0 sufficiently small: Next, let us assume that along some
(unrelabeled) subsequence, the sets �k are disconnected. For each k, denote by Ei

k
the

connected components of �k .
As a first step, we notice that jEi

k
j converges either to j�j or to 0. Indeed, let uk � 0

be the first eigenfunction of �k , and E1
k

be the (unique) connected component of �k on
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which it is nonzero. We know that uk ! u� a.e. Since � 2M0, that is, � is a minimizer
for T D 0, we know from the first part of the proof that u� is strictly positive on �. This
gives that jE1

k
j ! j�j while jEi

k
j ! 0 for any other i .

Next, we claim that for k sufficiently large, that is, Tk sufficiently small, we have
E1
k
D�k , and thus,�k is connected. Set j�kj D jE1k j C tk ; we have shown that tk ! 0.

Assume by way of contradiction that tk > 0 for all k along some subsequence. The basic
idea of the argument is that the torsional rigidity is additive on connected components,
and a component of small nonzero volume contributes too much torsional rigidity for a
set to be minimizing.

More specifically, take E1
k

as a competitor for �k in the minimization of ETk
. Since

�1.�k/ D �1.E
1
k
/, we find

Tk tor.�k/C fv;�.j�kj/ � Tk tor.E1k/C fv;�.jE
1
k j/:

Moreover, tor.A[B/ D tor.A/C tor.B/ for any disjoint sets A;B . Applying this fact to
A D E1

k
and B D �k nE1k , we find that

Tk tor.�k nE1k/C fv;�.j�kj/ � fv;�.jE
1
k j/: (3.10)

Consequently, if we define the quantity

a.t/ WD inf
®
tor.E/ W E 2 H ; jEj � t

¯
;

then rearranging (3.10) gives us an upper bound for a.tk/:

Tk a.tk/ � fv;�.jE
1
k j/ � fv;�.j�kj/ � ��tk : (3.11)

On the other hand, we establish a lower bound for a.t/ that will ultimately give us a
contradiction.

Indeed, from Lemma 3.1(iii), we have
´
jrwE j

2 D
´
wE D �2 tor.E/ (using wE as

a test function for itself). Therefore, we have

� tor.E/ D
1

2

ˆ
wE � jEj

1=2
kwEkL2 � C jEj

1=2
krwEkL2 � C jEj

1=2
p
� tor.E/;

where the constant C D C.R; vmax/ introduced in the second-to-last inequality comes
from the Poincaré inequality of Lemma 3.5. Dividing and squaring, tor.E/ � �C jEj; so

a.t/ � �Ct: (3.12)

Together, (3.11) and (3.12) tell us that �tk � �Tk a.tk/ � C Tk tk , and thus, 0 < �

� CTk : For large k, this is a contradiction. We conclude that �k is connected.

The same compactness argument can be applied to “approximate” minimizers instead,
except for the full connectedness conclusion. We omit the proof.
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Lemma 3.14. FixR>0; 0<v <vmax, �>0 and "> 0. There exist T0DT0.v;vmax;�;R/

and ı D ı.v; vmax; R; �; "/ both greater than 0 such that if T < T0, � 2 H and

E.�/ � Emin C ı;

then:

(i) There exists �0 2 M such that j�04�j < ", ku�0 � u�kH1 � ", and also
p

Tkw�0 � w�kH1 � ".

(ii) �2.�/ > �1.�/C c.v; vmax; R/.

(iii) One connected component E of � is such that jEj � j�j � ", while every other
(if any) is such that jEj � ".

Note that under the assumptions of this lemma, it is simply false that � must be con-
nected: one may always add a ball of small measure to�, which perturbs E continuously.

3.4. Global minimizers of the base energy

In general, the constants in the previous section necessarily depend on R, and there is no
reason to expect, for instance, existence of global minimizers on noncompact Riemannian
manifolds with arbitrary (bounded geometry) behavior at infinity. In this section, we turn
our attention to Riemannian manifolds .M; g/ where M=G is compact. In this case, most
of the above estimates remain valid with constants independent of R, and minimizers
of the base energy E among all open bounded sets exist and have bounded diameter. In
the present section, we focus only on estimates which will be relevant in later sections;
in particular, the existence of minimizers is not treated here (but does follow later, from
Theorem 6.3).

Of course, in the case where .M;g/ is compact, thenM �QR for sufficiently largeR,
and thus the constants in the previous section may be taken as independent of R trivially.
So, to simplify statements, in this section we will assume that .M; g/ is noncompact but
.M=G; g/ is compact. Note in this case that M has infinite volume.

For our first estimate, we show some initial bounds on the infimum of the energy
and on the torsion function of any open bounded set in terms of its volume. Observe
that Emin.R/ is a nonincreasing function of R, as the class H is increasing in R. Set
Emin.1/ D limR!1 Emin.R/.

Lemma 3.15. Assume M=G is compact and fix v < vmax < 1. Then, there exists
C D C.vmax/ < 1 such that for any bounded open set � with j�j � vmax, we have
Emin.1/ � �C and w� � C .

Proof. First, we claim there exists a large S � 0 such that[
e2G

e.QS / DM:
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If not, for every k there is an xk 2M such that e.xk/ … Qk for any e 2 G. There exists,
however, a subsequence xkj and isometries ej with ej .xkj / ! x 2 M . If x 2 QJ for
some J , then asQJ is open, ej .xkj /2QJ for j large enough; this is impossible if kj � J ,
so x …QJ . This contradictsM D

S
RQR. Using the Vitali covering lemma and possibly

taking S larger, there exists a countable collection L � G such that
S
e2L e.QS / D M

and ¹e.QS /ºe2L have finite overlap. Up to possibly increasing S depending on vmax; we
also assume that jQS j > vmax.

Now, fix any open, bounded� with j�j � vmax. For any e 2 L, we apply the Poincaré
inequality of Lemma 3.5 to e.QS / to obtain that

kw�kL2.�\e.QS // � Ckrw�kL2.�\e.QS // (3.13)

for a constant C D C.S; vmax/ D C.vmax/, using that j�\ e.QS /j � vmax < jQS j. Sum-
ming over all e 2L and using the finite overlapping property gives

´
�
w2��C

´
�
jrw�j

2:

Then, ˆ
�

w� � C j�j
1=2
krw�kL2.�/ � C krw�kL2.�/;

so tor.�/ D
´
1
2
jrw�j

2 � w� � �C: On the other hand, we have �1.�/ > 0, while
fv;�.�/ � �vmax, so E.�/ � �C.vmax/. Taking the infimum over all � gives the first
conclusion.

To see that w� � C , we now have from (3.13), elliptic estimates [28, Theorem 8.17],
and a basic covering argument that

kw�kL1.�\e.QS // � C Œkw�kL2.Q2S / C 1� � C:

Applying to every e gives the estimate.

We now establish an analogue of Lemma 3.14 that is independent of R: that any low
energy set can be well approximated by a minimizer (on some QS for S uniform) and
has one “large” connected component. We use a concentration compactness argument to
handle the loss of compactness coming from the isometries of the space.

Lemma 3.16. Assume M=G is compact. Fix v < vmax < 1, " > 0, and � > 0. There
exist T0 D T0.v; vmax; �/ > 0 and ı D ı.v; vmax; �; "/ > 0 such that if T < T0, then
the following holds: For any open bounded set � � M with j�j � vmax and E.�/ �

Emin.1/C ı,

(i) there is an S D S.v; vmax; �; "/ and a U 2 M.S/ (i.e., a minimizer of E over
open � � QS with j�j � vmax) such that jU4�j < ", kuU � u�kH1 � ", and
p

TkwU � w�kH1 � ";

(ii) �2.�/ > �1.�/C c.v; vmax/;

(iii) one connected component E of � is such that jEj � j�j � ", while every other
(if any) is such that jEj � ".
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Proof. Let L � G and S be as in the proof of Lemma 3.15. We use the shorthand
xQDQS . Let ¹ eºe2L be a partition of unity subordinate to the cover ofM by ¹e. xQ/ºe2L

with functions  e D  ı e�1 2 C1c . xQ/ which are translates of each other. Throughout
this proof, C and c denote constants depending only on vmax (and, as usual, on g) whose
values change from line to line. Let ı � 1 be a fixed number to be specified in the proof
and let � be as above. Applying Lemma 3.15, we know that

ˆ
�

jru�j
2
C u2� C jrw�j

2
C w2� � C: (3.14)

The first step of the proof is a concentration compactness argument that allows us to
replace� by a uniformly bounded set, losing only a small amount of mass and increasing
the base energy only a small amount.

Step 1: There exist T0 and xJ D xJ .vmax; ı/ 2N such that we may choose x0 2M and
j � xJ depending on � such that´

E.� \ B8Sj .x0// � Emin C 2ı;

j� n B8Sj .x0/j � 4�ı:
(3.15)

Because this step is rather involved, we divide it into several substeps.
Step 1a: Selection of x0. We show that � has a (uniformly) nontrivial amount of mass

in e0. xQ/ for some e0 2 L, and choose x0 in this set. More specifically, for any e 2 L, we
apply Lemma 3.5 to � \ e. xQ/ to find

ˆ
e. xQ/

u2� � j� \ e.
xQ/j

2
n

�ˆ
e. xQ/

u
2n
n�2

�

� n�2
n
� C j� \ e. xQ/j

2
n

ˆ
e. xQ/

jru�j
2:

Summing over e 2 L, recalling the finite overlap property of L and (3.14), we have

1 D

ˆ
�

u2� � C
�

sup
e2L

j� \ e. xQ/j
2
n

�ˆ
�

jru�j
2
� C

�
sup
e2L

j� \ e. xQ/j
2
n

�
:

Consequently, j� \ e0. xQ/j � c for some e0. We let x0 be any fixed point in e0. xQ/.
Step 1b: Selecting j for each J 2 N. Next, we show how, for each J 2 N, to suitably

choose j � J that will ultimately lead to estimates of the form (3.15) but with a C=J
error; we will later choose J depending on ı to absorb this term. For any k 2N, we denote
by Lk the finite collection of isometries such that e. xQ/ lies in the annulus B16kS .x0/ n
B8kS .x0/, that is,

Lk D
®
e 2 L W e. xQ/ \

�
B8kS .x0/ [ .M n B16kS .x0//

�
D ;

¯
:

Since diam xQ � 2S by assumption, the collections Lk are pairwise disjoint, and so
from (3.14) we find that

1X
kD1

X
e2Lk

ˆ
e. xQ/\�

jru�j
2
C u2� C jrw�j

2
C w2� � C:
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Since this sum is finite, it follows that for every J > 0, we may find some j � J such thatX
e2Lj

ˆ
e. xQ/\�

jru�j
2
C u2� C jrw�j

2
C w2� �

C

J
:

In other words, the functions u� and w� have most of their mass and energy outside of
the annulus corresponding to Lj . Let this j D j.J / be fixed.

Step 1c: Truncation and intermediate bounds. In this step, we consider J 2 N fixed
and j D j.J / as determined in the previous step. Let us now define two smooth trunca-
tions of the eigenfunction u�, the “inner part” uI in the ball B8jS and the “outer part” uO
in the complement of B16Sj , by setting

uI D
X
e2LI

 eu�; LI D
®
e 2 L W e. xQ/ \ B8jS .x0/ ¤ ;

¯
;

uO D
X
e2LO

 eu�; LO D
®
e 2 L W e. xQ/ \ .M n B16jS .x0// ¤ ;

¯
:

Notice that the functions uI ; uO have disjoint support and the remaining “annular part”
of u� is given by u� � uI C uO D

P
e2Lk

 eu�. The truncations uI and uO capture
most of the energy of u� in the following sense:ˇ̌̌ˆ

jru�j
2
� jruO j

2
� jruI j

2
ˇ̌̌
D

ˇ̌̌ˆ
hrŒu� � uO � uI �;rŒu� C uO C uI �i

ˇ̌̌
�

X
e2Lj

ˆ
e. xQ/

.jr ejju�j C  ejru�j/ � C jru�j

� C
X
e2Lj

ˆ
e. xQ/

ju�j
2
C jru�j

2
�
C

J
:

In particular, this together with the Poincaré inequality applied to uO provide the follow-
ing upper bound for the energy of uI :

ˆ
jruI j

2
� �1.�/ �

ˆ
jruO j

2
C
C

j
� �1.�/

�
1 �

ˆ
u2O

�
C
C

J
: (3.16)

In a similar fashion, we find that
ˆ
u2� � u

2
O � u

2
I �

C

J
: (3.17)

The first main estimate of this substep is the following: there exists C such that

if
ˆ
u2I �

1

4
; then �1

�
� \ B8Sj .x0/

�
� �1.�/C

C

J
I

if
ˆ
u2O �

1

4
; then �1

�
� n B8Sj .x0/

�
� �1.�/C

C

J
:

(3.18)
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Note that (3.17) guarantees that one of the two alternatives in (3.18) must hold provided J
is sufficiently large. If

´
u2I � 1=4, then (3.17) implies that .1�

´
u2O/=

´
u2I � 1CC=J .

So, if we multiply (3.16) by .1 �
´
u2O/=

´
u2I and divide both sides by 1 �

´
u20, we

arrive at ´
jruI j

2´
u2I

� �1.�/C
C

J
:

Here we have also used the fact that �1.�/ is uniformly bounded; recall (3.14). So, the
first estimate of (3.18) follows by taking uI as a test function for �1.� \ B8Sj .x0//. The
proof of the second estimate of (3.18) is the same, using the analogous estimate to (3.16)
for uO .

The second main estimate of this substep is the following:

tor.� \ B8Sj .x0// � tor.�/C
C

J
C C j� n B8Sj .x0/j;

tor.� n B8Sj .x0// � tor.�/C
C

J
C C j� \ B8Sj .x0/j:

(3.19)

Estimate (3.19) follows in a similar manner to (3.18). Splitting the torsion function w�
into an “inner part” wI , “outer part” wO , and an “annular part” w� � wI � wO exactly
as above leads to

�
1

2

ˆ
wI C wO � tor.�/C

C

J
I

we omit the details. Recalling that w� � C from Lemma 3.15, we find that

tor.� \ B8Sj .x0// � �
1

2

ˆ
wI � tor.�/C

C

J
C
1

2

ˆ
wO

� tor.�/C
C

J
C C j� n B8Sj .x0/j;

thus proving the first estimate in (3.19). The second estimate in (3.19) is proven in the
same way.

Step 1d: Energy comparison and selection of xJ and T0. Fix any J 2 N and let
j D j.J / be as determined in Step 1b. Let us first consider the case that

´
u2I �

1
4
:

In this case, we may use the first estimates in (3.18) and (3.19) to compare E.�/ with
E.� \ B8Sj .x0//, which gives

E.�/ � Emin C ı � E.� \ B8Sj .x0//C ı

� �1.�/CT tor.�/C
C

J
C fv;�.j� \ B8Sj .x0/j/C ı C CT j� n B8Sj .x0/j

� E.�/C
C

J
C fv;�.j� \ B8Sj .x0/j/ � fv;�.j�j/C ı C CT j� n B8Sj .x0/j

� E.�/C
C

J
C ı � Œ� � CT �j� n B8Sj .x0/j:
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At this point, we can fix our remaining parameters. Choosing T0 <
�
2C

, the last term is
negative and this leads to´

E.� \ B8Sj .x0// � Emin C
C
J
C ı � 2ı;

j� n B8Sj .x0/j � 4�ı:
(3.20)

Finally, we choose J D xJ large enough in terms of ı so that C
J
� ı, and (3.15) follows.

This concludes the proof of Step 1 in the case where
´
u2I �

1
4
: holds. Now, assume instead

that
´
u2O �

1
4
: We may argue in the analogous fashion to find that´

E.� n B8Sj .x0// � Emin C
C
J
C ı � 2ı;

j� \ B8Sj .x0/j � 4�ı:
(3.21)

This contradicts Step 1a for ı chosen sufficiently small. We conclude that
´
u2I �

1
4

holds
and thus, have completed the proof of Step 1.

Step 2: Conclusion. We are now in a position to prove the first conclusion of the
lemma. Let �0 D � \ B8Sj .x0/ be the truncation of � obtained in Step 1. Let S 0 be
chosen large enough that e�10 .B8SJ .x0// � QS 0 ; note that this depends only on J and S ,
and so only on vmax and ı. Applying Lemma 3.10 to e�10 .�0/ onQS 0 , there is U 2M.S 0/

with kuU � uIkH1 ;
p

TkwU � wIkH1 � "=2. On the other hand, from the Caccioppoli
inequality and letting L0 D ¹e 2 L W e.QS / \ B8jS .x0/ D ;º, we get
ˆ
jr.u� � uI /j

2
� C

X
e2L0

ˆ
jr ej

2
ju�j

2
C  2e jru�j

2
� C

ˆ
�nB8Sj .x0/

ju�j
2
� Cı;

where we used that ju�j � C and the volume estimate in (3.15) at the end. Similarly,´
jr.w� � wI /j

2 � Cı, and we obtain conclusion (i) from the triangle inequality.
To prove (ii), note that applying Lemma 3.14 gives that �2.�0/ � �1.�/ C c0

for c0 D c0.S
0; v; vmax/, and so it remains to show that �2.�0/ � �2.�/ C c0=2. To

this end, let u2 be a second eigenfunction for �. From Lemma 3.2, we have that
ju2j � C.�1.�// � C unless �2.�/ > 1 C �1.�/ (in which case we would be done).
Then, set u2;I D

P
e2LI

 eu2 to be the “inner part,” that is, the analogue of uI for u2.
As �ju2j � ��2.�/ju2j in the sense of distributions, the same Caccioppoli inequality
argument gives that

ˆ
jr.u2 � u2;I /j

2
� C

ˆ
�nB8Sj .x0/

ju2j
2
� Cı:

Hence, ´
jru2;I j

2´
u22;I

� �2.�/C Cı and
j
´
u2;I uI j

ku2;IkL2kuIkL2
� Cı;

implying that �2.�0/ � �2.�/C Cı: Taking ı small enough completes the proof of (ii).
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To check the third and final conclusion of the lemma, note that from Lemma 3.14,
we know that one connected component A of �0 is such that jAj > j�0j � "=2, while
every other is such that jAj � "=2 (choosing ı small enough in terms of "). Since we have
j� n B8Sj .x0/j � Cı, we may conclude by choosing Cı < "=2.

4. The lower bound

In this section we consider inward minimizers of the main functional F� defined in (2.8).
The main result of this section is Theorem 4.1, which provides a linear lower bound for the
growth of the function u� C

p
Tw� away from the boundary of an inward minimizer�.

The theorem is phrased in terms of a lower bound on the quantity DO.�/ defined in (2.14).
One important consequence of this theorem is a lower volume density estimate for inward
minimizers shown in Corollary 4.4. Throughout this section, we fix R > 0, 0 < v < vmax,
and 0 < � � �0 (recall Remark 3.12).

Theorem 4.1. There are constants ım;Tm; cm > 0 depending only on R; v; vmax; and �
and a constant �m.R; v; vmax; �;T / > 0 such that if we fix T < Tm and then � < �m, the
following holds: Let� be an inward minimizer of F� onQR satisfying E.�/� EminC ım.
Then, we have

DO.�/ � cm;

where DO.�/ is defined in (2.14). If M=G is compact, all constants may be taken as
independent of R.

It is worth noting that Theorem 4.1 and Lemma 3.4 show that the torsion function w�
grows at least linearly away from the boundary, but we cannot immediately deduce an
analogous lower bound for the growth of the eigenfunction u�. It will require some del-
icate Green’s function estimates to eventually show in Section 7 that, for minimizers, the
first eigenfunction also satisfies this type of linear lower bound.

The core arguments in the proof of Theorem 4.1 below are from David and Toro [21].
We present the details to show how to apply the key estimate of Proposition 3.9 in order to
handle the nonlinear term h, as well as to verify the dependence on all of the parameters.
The proof will be established by iteratively applying the following lemma:

Lemma 4.2. There exist constants ım;Tm; cm > 0 depending only on R; v; vmax; and �
and a constant �m.R; v; vmax; �;T / > 0 such that if we fix T < Tm and then � < �m, the
following holds: Let � be an inward minimizer on QR satisfying E.�/ � Emin C ım. For
any x 2 QR, and

p
r � cm, if

sup
Br .x/

u� C
p

Tw� � cmr; (4.1)
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then
sup

Br=2.x/

u� C
p

Tw� �
1

4
cmr:

If M=G is compact, all constants may be taken as independent of R.

Proof. The basic idea of the proof is make use of the inward minimality property of �
using an energy competitor �0 obtained by removing a small ball from �.

Step 1: The competitor �0. Let cm � min¹injM ; 1º be a fixed number to be specified
later in the proof. For r � c2m and x 2QR, we consider the competitor�0D� nB3r=4.x/:
Choose ım and Tm according to Lemma 3.14, so that � has a spectral gap �2.�/ >
�1.�/ C c.R; vmax; v/ of a definite size. This allows us to apply the key estimate of
Proposition 3.9 to �0 � �, which yields

ku�0 � u�kL1 � C
�
tor.�0/ � tor.�/C �1.�0/ � �1.�/

�
;

where the constant depends only on R; vmax; v. (Note that the constant a priori also
depends on an upper bound for �1.�0/; a basic cutoff function argument like the one
in Step 3 below and the assumption on E.�/ show that �1.�0/ � C.R; vmax; v/:) IfM=G
is compact, we may take the constants here as independent of R by using Lemma 3.16 in
place of Lemma 3.14. This leads to

jh.�/ � h.�0/j � j�4�0j C

ˆ
ju�0 � u�j

� j� n�0j C C
�
tor.�0/ � tor.�/C �1.�0/ � �1.�/

�
;

using assumption (N3) on h. From the inward minimality of�, we have F� .�/�F� .�
0/,

and so,

0 � F� .�
0/ � F� .�/

� �1.�
0/ � �1.�/CT Œtor.�0/ � tor.�/�C fv;�.�0/ � fv;�.�/

C �
�
k� n�0j C C

�
tor.�0/ � tor.�/C �1.�0/ � �1.�/

��
� 2

�
T .tor.�0/ � tor.�//C �1.�0/ � �1.�/

�
C .� � �/j� n�0j;

where the final inequality holds provided �m is chosen small enough in terms of C and T .
So long as � < �=2, we may rewrite this as

j� \ B3r=4.x/j D j� n�
0
j � C

�
T .tor.�0/ � tor.�//C �1.�0/ � �1.�/

�
: (4.2)

Step 2: Estimates for the eigenfunction and torsion function. First, note �u�;
�w� � �C on M for a constant C depending only on R; v; vmax; and �. Indeed, the
lower bound for �w� comes directly from Lemma 3.1. For �u�, the assumed upper
bound on the energy of � paired with the torsional rigidity lower bound of Corollary 3.6
and the fact that fv;�.j�j/ � �v � implies that �1.�/ � �0.R; v; vmax; �/. Then, applying
Lemma 3.1 and the bounds from Lemma 3.2, we deduce the statement for �u�.
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Fix a cutoff function � which is 1 on B 7r
8
.x/, compactly supported on B1, and such

that jr�j � C=r . Applying the Caccioppoli inequality to w� (i.e., using �2w� as a test
function for w� and rearranging terms) and assumption (4.1), we get

T

ˆ
�2jrw�j

2
�TC

ˆ
.jr�j2w2�C �

2w�/� C Œr
n�2c2mr

2
C rn
p

Tcmr�� Cr
nc2m:

In the final inequality we have used that r �
p
r � cm. We may estimate u� in a similar

manner: ˆ
�2jru�j

2
� C

ˆ
.jr�j2u2� C �

2u�/ � Cr
nc2m: (4.3)

Altogether, this implies
ˆ
B7r=8.x/

jru�j
2
CT jrw�j

2
� Crnc2m;

ˆ
B7r=8.x/

u2� CTw2� � Cr
nC2c2m:

Step 3: Estimates for the eigenvalue and torsional rigidity of �0. Now take another
cutoff function �1 which is 1 on M n B7r=8.x/, vanishes on B3r=4.x/, and is such that
jr�1j � C=r . We use �1u� as a competitor for �1.�0/ to find

�1.�
0/ �

ˆ
jr.�1u�/j

2=

ˆ
.�1u�/

2:

Estimating the denominator, we have
ˆ
�21u

2
� �

ˆ
u2� �

ˆ
�nB7r=8.x/

u2� � 1 � Cr
nc2m:

For the numerator, we use the Caccioppoli inequality (see (4.3)) with �1 in place of � and
the Cauchy–Schwarz inequality to find

ˆ
jr.�1u�/j

2
D

ˆ
jru�j

2�21 C

ˆ
jr�1j

2u2� C 2

ˆ
hru�;r�1iu��1

� �1.�/C 2

ˆ
jru�j

2�21 C jr�1j
2u2� � �1.�/C Cr

nc2m;

so
�1.�

0/ � �1.�/C Cr
nc2m:

An identical estimate on w� gives

T tor.�0/ � T tor.�/C Crnc2m:

Step 4: Conclusion. Substituting the estimates of Step 3 into (4.2), we arrive at

j� \ B3r=4.x/j � Cr
nc2m: (4.4)
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We now apply the local maximum principle for subsolutions (see [28, Theorem 8.17]) to
u� C

p
Tw�:

sup
Br=2.x/

u� C
p

Tw� � C
�
r�n=2ku� C

p
Tw�kL2.B3r=4.x// C r

2
�

� C
�
cmrr

�n=2
j� \ B3r=4.x/j

1=2
C rc2m

�
� Crc2m;

where we used (4.4), (4.1), and that r � c2m by assumption. Finally, we choose cm small
enough so that Ccm � 1

4
to conclude the proof.

Theorem 4.1 now follows by iteratively applying Lemma 4.2:

Proof of Theorem 4.1. Set all constants as in Lemma 4.2. Take any y 2 x� and any r <
r0 WD c

2
m=16. We claim that

sup
Br .y/

u� C
p

Tw� � cmr:

Indeed, if this is not the case, we apply Lemma 4.2 to obtain

sup
Br=2.y/

u� C
p

Tw� �
cm

2

r

2
:

Then, take any x 2 Br=4.y/; we have

sup
Br=4.x/

u� C
p

Tw� � cm
r

4
;

so repeatedly applying Lemma 4.2 gives

sup
B
r=4�2�k

.x/

u� C
p

Tw� �
cm

2

r

4
2�k :

In particular, x is a Lebesgue point of u� and of w�, and u�.x/ D w�.x/ D 0. This is
true of all points in Br=4.y/, so u� � w� � 0 there. Using � n Br=4.y/ as a competitor
for � implies that j� \ Br=4.y/j D 0, contradicting that y 2 x� and that � is open.

For r 2 Œr0; 1�, we simply use supBr .y/ u� C
p

Tw� � cmr0 � cmr0r: This gives
DO.�/ � cmr0.

Note that while for an absolute minimizer (should one exist) E.�/� EminC ı follows
from � being small (see Section 6), there is no reason for that to be the case for an inward
minimizer in general.

Remark 4.3. The careful reader may observe that it is possible to modify the argument
in this section to give supBr .y/ w� � cmr as long as � < �m.R; v; vmax/ is independent
of T (by using Lemma 3.4 to estimate u� � Cw�). Estimates in this spirit were used
by Bucur [12] for other problems. We do not pursue this point further here because the
opposite estimate on UP.�/, discussed in the next section, cannot be altered in this way
without a version of Proposition 3.9 which omits the torsional rigidity terms on the right-
hand side.
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The following corollary will help us bound the diameter of minimizers when tak-
ing R ! 1. We will discuss much sharper estimates in Section 7.1, using the upper
bound UP.�/ as well.

Corollary 4.4. Let � be as in Theorem 4.1. Then, for any x 2 � and r < c4m,

j� \ Br .x/j � c.r; v; vmax; �; R/:

If M=G is compact, c may be taken as independent of R.

Proof. As in the proof of Lemma 4.2, apply the local maximum principle on Br .x/ to
obtain

sup
Br=2.x/

u2� CTw2� � Cr
�n

ˆ
Br .x/\�

.u2� CTw2�/C Cr
4

� C j� \ Br .x/jr
�n sup

�

.u2� CTw2�/C Cr
4

� C j� \ Br .x/jr
�n
C Cr4;

with the last step using Lemmas 3.2 and 3.3. The quantities j tor.�/j and �1.�/ are con-
trolled by E.�/, which is bounded from the assumption Emin � E.�/ � Emin C ı and
Lemmas 3.10 or 3.15. The constant C can be taken to depend only on M; v; vmax; �

if M=G is compact, and otherwise also depends on R. Then, applying Theorem 4.1 to
the left-hand side, c2mr

2=2 � C j� \ Br .x/jr
�n C Cr4; so reabsorbing r4 implies the

conclusion.

5. The upper bound

In this section we consider outward minimizers of the main functional F� defined in (2.8).
The main result of the section is Theorem 5.1 below, which shows that the function
u� C

p
Tw� grows at most linearly away from the boundary of an outer minimizer �.

The result is phrased in terms of the quantity UP.�/ defined in (2.13). Throughout this
section, we fix R > 0, 0 < v < vmax, and 0 < � � �0 (recall Remark 3.12).

Theorem 5.1. There are constants ıM ;TM ;CM > 0 depending only on R;v; vmax; and �
and a constant �M .T ;R; v; vmax; �/ > 0 such that if we fix T <TM and then � < �M , the
following holds: Let� be an outward minimizer onQR and suppose E.�/ � Emin C ıM .
Then, we have

UP.�/ � CM ;

where UP.�/ is defined in (2.13).

The proof of Theorem 5.1 will require a few initial lemmas. We start by checking
that, for an outward minimizer �, u� and w� are close to their harmonic replacements
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in small balls. By the harmonic replacement of u� on Br .x/ \QR, we mean the unique
function u with u � u� 2 H 1

0 .Br .x/ \QR/ and �u D 0 on Br .x/ \QR in the weak
sense, extended so that u D u� on QR n Br .x/.

Lemma 5.2. There are constants ıM ;TM ; CM ; r0 > 0 depending only on R; v; vmax;

and � and a constant �M .T ;R;v; vmax/ > 0 such that if we fix T <TM and then � < �M ,
the following holds: Let� be an outward minimizer onQR satisfying E.�/� EminC ıM .
Then, for any x 2 QR and r < r0,
ˆ
jr.u� � u/j

2
CT jr.w� �w/j

2
�CM

�
jBr .x/n�j Cr

n sup
Br .x/

.u2�CTw2�/
�
�CM r

n;

where u;w are the harmonic replacements of u�, w� on Br .x/ \QR.

Proof. The basic idea of the proof is make use of the outward minimality property of �
using an energy competitor �0 obtained by adding a small ball to �.

Step 1: The competitor �0. Let us set �0 D � [ .Br .x/ \ QR/ and also set
A D supBr .x/ u

2
� CTw2�. First, we may use that �1.�0/ � �1.�/ and tor.�0/ � tor.�/

to deduce that
E.�0/ � E.�/C

C

�
rn � ıM C

C

�
rn0 � 2ıM

if r0 is small enough. Choosing ıM and TM sufficiently small and applying Lemmas 3.11
and 3.14 shows that �0 2 H and �2.�0/ > �1.�0/C c.v; vmax; R/. The latter fact allows
us to apply the key proposition, Proposition 3.9, to �;�0 to find that

ˆ
ju� � u�0 j � C Œ�1.�/ � �1.�

0/C tor.�/ � tor.�0/�;

where C depends only on R and v; vmax. So, from Assumption (N3) on h, we know that

jh.�/ � h.�0/j � j�4�0j C

ˆ
ju� � u�0 j

� jBr .x/ n�j C C Œ�1.�/ � �1.�
0/C tor.�/ � tor.�0/�:

Now, we use �0 as an energy competitor for �0; the outward minimizing property gives
that

0 � F� .�
0/ � F� .�/

� �1.�
0/ � �1.�/CT .tor.�0/ � tor.�//C

C

�
j�0 n�j C � jh.�/ � h.�0/j

�
�
�1.�

0/ � �1.�/CT .tor.�0/ � tor.�//
��
1 � C

�

T

�
C
C

�
jBr .x/ n�j:

Select �M small enough that 1 � C �M
T
< 1

2
; then,

�1.�/ � �1.�
0/CT .tor.�/ � tor.�0// � C jBr .x/ n�j: (5.1)
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Step 2: Estimates for the eigenvalue and torsional rigidity of �0. Next, we use u as a
competitor for �1.�0/ to find �1.�0/ �

´
jruj2=

´
u2. To estimate this quantity further,

from the maximum principle we know that u2 CTw2 � CT on Br .x/ as well. This can
be used to bound the denominator:ˆ

u2 D

ˆ
u2� C

ˆ
Br .x/\QR

u2 � u2� � 1 � CAjBr .x/j � 1 � CAr
n:

For the energy term,
ˆ
jruj2 D �1.�/C

ˆ
Br .x/\QR

jruj2 � jru�j
2

D �1.�/C

ˆ
Br .x/\QR

g.r.u � u�/;r.uC u�//

D �1.�/ �

ˆ
Br .x/\QR

g.r.u � u�/;r.u � u�//

D �1.�/ �

ˆ
Br .x/\QR

jr.u � u�/j
2;

where the second-to-last step used that
´
g.ru; r.u � u�// D 0 since �u D 0 and

u � u� 2 H
1
0 .Br .x/ \QR/. Putting these together leads to

�1.�
0/ � �1.�/ �

ˆ
jr.u � u�/j

2
C CArn:

A similar computation (using Lemma 3.3) gives

T tor.�0/ � T tor.�/ �
T

2

ˆ
jr.w � w�/j

2
C CArn:

Step 3: Conclusion. Plugging these into (5.1), we get
ˆ
jr.u � u�/j

2
CT

ˆ
jr.w � w�/j

2
� C

�
Arn C C jBr .x/ n�j

�
:

Recalling from Lemmas 3.2 and 3.3 that A � C.R; vmax/ and jBr .x/ n �j � jBr .x/j
� Crn concludes the proof.

Lemma 5.2 immediately gives that u�,w� are Hölder continuous functions from [17],
and also satisfy a Morrey-type estimate:

Corollary 5.3. Let � be as in Lemma 5.2. Then, u�;Tw� 2 C 0;˛.QR/ for any ˛ < 1,
with

Œu��C 0;˛ C
p

T Œw��C 0;˛

� C sup
x2QR;r<r0

r�n=2C1�˛
�
kru�kL2.Br .x// CTkrw�kL2.Br .x//

�
� C (5.2)

for C D C.R; v; vmax; �; ˛/.
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Below we show how to instead obtain the more precise estimate u�;w� 2C 0;1, which
will follow easily from the growth estimate of Theorem 5.1. Before proving Theorem 5.1,
let us recall some basic facts about Green’s functions and prove a mean value-type inequal-
ity. Consider the (positive) Green’s function G.x; �/ for Br .x/ (with the pole at the center
of the ball). For any continuous function � which is smooth on a neighborhood of x and
has �� represented by a finite Borel measure, we have that

�.x/C

ˆ
Br .x/

G.x; y/d��.y/ D

ˆ
@Br .x/

g.rG.x; y/; �y/�.y/dHn�1.y/;

where �y is the outward unit normal to @Br .x/. From, say, [32, Theorem 1.2.8], we have
the following standard bounds on G:

�Cr1�n � g.rG.x; y/; �y/ � �cr
1�n; y 2 @Br .x/ (5.3)

and

c.jy � xj2�n � r2�n/ � G.x; y/ � C.jy � xj2�n � r2�n/; y 2 Br .x/ n ¹xº (5.4)

if n � 3, while

c.log jy � xj � log r/ � G.x; y/ � C.log jy � xj � log r/

instead when n D 2, with constants depending only on R (i.e., they are uniform in x
and r).

Lemma 5.4 (Mean value-type inequality). Let � be a nonnegative continuous function
which is either (i) smooth in a neighborhood of x, or (ii) satisfies the Morrey-type estimate
(see (5.2)), is such that �.x/ D 0, and whose distributional Laplacian �� is a Radon
measure with locally finite total variation. Then,

1

rn�1

ˆ
@Br .x/

� � C
h
�.x/C

ˆ r

0

s1�nj��j.Bs.x//ds
i
: (5.5)

Proof. Let us first assume that � � 0 is smooth in a neighborhood of x. When n � 3,
making use of the upper bound in (5.4), we have

ˆ
Br .x/

G.x; y/ d��.y/ �

ˆ
Br .x/

G.x; y/ d j��j.y/

� C

ˆ r

0

ˆ
@Bs.x/

�
s2�n � r2�n

�
d j��j ds

D C

ˆ r

0

�
s2�n � r2�n

� ˆ
@Bs.x/

d j��j ds

D C.n � 2/

ˆ r

0

s1�n
ˆ
Bs.x/

d j��j ds:
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The last step was an integration by parts in one variable, using that s2�n
´
Bs.x/

j��j ! 0

as s ! 0 (recall that �� is smooth near 0). From (5.3), we have

1

rn�1

ˆ
@Br .x/

� � C�.x/ � C
h
��.x/ �

ˆ
@Br .x/

gy.rG.x; y/; �y/�.y/ dHn�1.y/
i

D C

ˆ
Br .x/

G.x; y/ d��.y/:

Together these two estimates give (5.5) for n� 3. A similar computation gives an identical
estimate when n D 2.

Now, suppose that instead of � being smooth in a neighborhood of x, we simply know
that � satisfies (5.2) and �.x/D 0. For fixed t 2 .0; r=2/, let �t be a cutoff function which
vanishes onBt .x/, is 1 outside ofB2t .x/, and is such that jr�t j � Ct�1, jD2�t j � Ct

�2.
In this way, ��t is smooth in a neighborhood of x and we may apply (5.5) to ��t . We
have

�.��t / D �t�� C 2g.r�;r�t /C ���t

in the sense of distributions (with the second two terms absolutely continuous), so

j�.��t /j.Bs.x// � j��j.Bs.x/ n Bt .x//C

ˆ
B2t .x/

2g.r�;r�t /C ���t

� j��j.Bs.x//C Ct
n=2C˛�1tn=2�1 C Ct˛tn�2

� j��j.Bs.x//C Ct
n�2C˛

for s � t , and 0 otherwise. Then, (5.5) applies to �t� to give

1

rn�1

ˆ
@Br .x/

� � C
h
�t�.x/C

ˆ r

t

s1�nj��j.Bs.x//C Cs
1�ntn�2C˛ ds

i
� C

h
0C

ˆ r

t

s1�nj��j.Bs.x// ds C Ct
˛
i
:

Sending t ! 0 completes the proof.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Step 1: Setup. Fix a point x 2 @� and r < r0, with r0 � injM=4 to
be chosen below. We will show that

S D S.x; r/ WD sup
®
u.y/ W y 2 @Br .x/; d.y; @�/ D r

¯
� CM r;

where u is either u� or
p

Tw�. As we know that u�;w� are bounded, the same inequal-
ity is automatic for r 2 Œr0; 1� with constant C=r0. This will imply the conclusion, as for
every y 2 � with d.y; @�/ � 1, there is an x 2 @� and r with r D d.y; @�/ D d.y; x/,
so u � S.x; r/.
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If B2r .x/ is not fully contained in QR, we have that u� � Cw� � CwQR on �
(using Lemma 3.4), and from elliptic regularity and the smoothness of QR, wQR.y/ �
C.R/d.y; @QR/. This gives

S � C sup
@Br .x/

wQR � Cr;

and we are done. Assume, then, that B2r .x/ � QR.
Step 2: Initial S bound. In this step, we bound S from above in terms of the integral

of u over spheres @Bs.x/ for s 2 .0;1/ using a multiple of the Green’s function as a barrier.
More specifically, let z 2 @Br .x/\ ¹y W d.y; @�/D rº be a point such that u.z/D S . By
definition Br .z/ � �, and so from Lemma 3.1 we have j�uj � C on this ball. Applying
the Harnack inequality [28, Theorems 8.17 and 8.18],

S � sup
Br=2.z/

u � C inf
Br=2.z/

uC Cr2:

If S � r , we are done; if not, choose r0 small enough in terms ofC so thatCr2� 1
2
r � 1

2
S ,

and we thus obtain
inf

Br=2.z/
u �

S

C
: (5.6)

In order to propagate this bound to balls centered at x (at least in an integral sense), con-
sider the barrier v.y/D S

C�
rn�2G.z; y/, whereG.z; y/ is the Green’s function for Br .z/.

On @Br .z/, we have v D 0 � u, while v � u on @Br=2.z/ so long as C� is chosen
to be large, relative to the constants in (5.6) and (5.4). On the annular region between
them, �v D 0 and �u � 0. It follows from the comparison principle that v � u on
Br .z/ nBr=2.z/. In particular, in conjunction with (5.6), this means that for any t 2 . r

2
; r/

we have

inf
Bt .z/

u � cS
�rn�2
tn�2

� 1
�
� cS

r � t

r
:

For any s 2 .0; r/, choose t 2 .r=2; r/ so that r � t D s=2. One may check that the measure
of the set Bt .z/ \ @Bs.x/ is bounded from below by csn�1. So, integrating over this set
and applying the previous estimate, we have

ˆ
@Bs.x/

u �

ˆ
@Bs.x/\Bt .z/

u � csn�1
s

r
S (5.7)

for all s 2 .0; r/. This is the first of two estimates which will be combined to bound S .
Ultimately, in Step 4, we will use the mean value-type inequality of Lemma 5.4 in

order to bound the left-hand side of (5.7). So, it is essential to estimate the j�j measure of
balls Bs.x/.

Step 3: Estimate for j�j. The second estimate involves computing the total variation
of �u when viewed as a measure, using Lemma 5.2. From Lemma 3.1, we know that
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�u D � � f in the sense of distributions, where � is a nonnegative Borel measure sup-
ported on @� and f is either �1.�/u� or T1�, and in each case is uniformly bounded.
Fix s � r and let h be the harmonic replacement of u on Bs.x/: from Lemma 5.2, we have

ˆ
Bs.x/

jr.u � h/j2 � Csn:

Using that �h D 0 on Bs.x/ and u D h on @Bs , we get
ˆ
Bs.x/

.h � u/ d�u D �

ˆ
Bs.x/

g.ru;r.h � u// D

ˆ
jr.u � h/j2 � Csn:

The left-most identity used that �u represents the Laplacian of u in the sense of distribu-
tions. Decomposing this further, we have

ˆ
Bs.x/

.h � u/ d�u D

ˆ
Bs.x/\@�

.h � u/ d� �

ˆ
Bs.x/\�

.h � u/f:

The second term is controlled by Csn, as both h; u are bounded. In the first term, u D 0,
so ˆ

Bs.x/\@�

h d� � Csn: (5.8)

We thus need to bound h from below on this set. Applying the Harnack inequality followed
by (5.5) to h gives that

C inf
Bs=2.x/

h � h.x/ � cs1�n
ˆ
@Bs.x/

h:

Since h D u on @Bs.x/, we find from (5.7) that infBs=2.x/ h � c
s
r
S: Combining this

with (5.8), we get

c
s

r
S�.Bs=2/ � �.Bs=2/ inf

Bs=2.x/
h �

ˆ
Bs.x/\@�

h d� � Csn:

So, we arrive at our second main estimate:

j�uj.Bs=2/ �
Cr

S
sn�1 C Csn �

Cr

S
sn�1; (5.9)

where the very last step used that s � r and S � C is bounded.
Step 4: Conclusion. By Corollary 5.3, and the fact that u.x/ D 0, we may apply

Lemma 5.4 to u. So, using (5.9), Lemma 5.4 tells us that

1

rn�1

ˆ
@Br=4.x/

u � C

ˆ r=4

0

r

S
ds D C

r2

S
:

Applying (5.7) to the left-hand side gives S2 � Cr2. This bounds S , thus completing
the proof.
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By applying standard elliptic estimates on Bd .x/ for any x 2 � and using that
d D min¹r0; d.x; @�/=2º and u� C

p
Tw� � CdUP.�/ on this ball, we obtain the

following gradient estimate as well:

Corollary 5.5. Under the assumptions of Theorem 5.1,

jru�j C
p

T jrw�j � C.UP.�/;R; v; vmax/:

6. Existence of minimizers

We are now in a position to show that minimizers to the main functional F� defined
in (2.8) exist. Theorem 6.2 below establishes the existence of minimizers of F� among
sets in HR;vmax for any Riemannian manifold. In the case where M=G0 is compact for
a subgroup G0 of the isometry group for which the functional is invariant, Theorem 6.3
shows that the parameter R may be taken to 1 and global minimizers exist. Through-
out the section, we fix R > 0 and 0 < v < vmax, and assume that � < �0.R; v; vmax/ and
T < T0.R; v; vmax; �/ are fixed to be small enough that all results in Sections 3, 4, and 5
apply.

In the following lemma, we show that any set � with low base energy is contained in
an outward minimizer whose energy does not exceed the energy of �:

Lemma 6.1. There are ı D ı.R; v; vmax; �/ > 0 and �0 D �0.R; v; vmax;T ; �/ such that
if � < �0 and� 2H with E.�/ � EminC ı, then there exists U 2H which is an outward
minimizer such that � � U and F� .U / � F� .�/.

Proof. Given any bounded open set E, let

mE D inf
®
F� .V / W V 2 H ; E � V

¯
:

Clearlym� � F� .�/, and asm� � Emin > �1, from Lemma 3.10, this is bounded from
below. If m� D F� .�/, then � is itself an outward minimizer and we are done by letting
U D �. If not, we construct the set U in the following way: Let U1 2 H be a set with
� � U1 which has F� .U1/ < .m� C F� .�//=2. Now repeat this construction with U1 in
place of�, producing a nested sequence (finite or infinite) Uk 2H with�� Uk � UkC1,
and F� .Uk/ < .mUk�1 C F� .Uk�1//=2.

The sequence is finite if mUk D F� .Uk/ for the final k, meaning it is also an outward
minimizer. In this case, Uk satisfies the conclusions of this lemma and we are done by
taking U D Uk . Now assume the sequence is infinite. Observe that mUk � mUk�1 from
the fact that Uk�1 � Uk . SetmD limkmUk . On the other hand, F� .Uk/ is decreasing and

F� .Uk/ �mUk <
mUk�1 C F� .Uk�1/

2
�mUk�1 D

F� .Uk�1/ �mUk�1
2

;

meaning m D limk F� .Uk/.
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LetU D
S
kUk ; this is an open set. Note that��U �QR and jU j D lim jUkj � vmax

from the monotone convergence theorem. We also havemU �mUk for each k, somU �m.
Our goal is to show that F� .U / D m; if we do so, then clearly U is an outward minimizer
and satisfies the assumptions.

First, E.U /� lim infk E.Uk/. Indeed, this follows by extracting a subsequence of first
eigenfunctions uUk and torsion functions wUk for Uk which converge weakly in H 1

0 .U /

to some u; w which may be used as competitors for the eigenvalue and torsional rigidity
problems on U (together with the previously observed fact that jU n Ukj ! 0):

�1.U / �

´
jruj2´
u2

� lim inf
k

´
jruUk j

2´
u2Uk

D lim inf
k

�1.Uk/;

and similarly, tor.U / � lim infk tor.Uk/ and fv;�.U / D limk fv;�.Uk/. This implies that

E.U / � lim F� .Uk/ � F� .�/ � E.�/C �0 � Emin C ı C �0: (6.1)

Set ˛ D lim infk E.Uk/ � E.U / � 0, noting that

lim inf
k

�
�1.Uk/C tor.Uk/ � �1.U / � tor.U /

�
�
˛

T
:

Consider now the remaining term, h.U /. From Proposition 3.9 applied to U and Uk
(using Lemma 3.14 and (6.1), choosing ı and �0 small enough), we have that

ˆ
juUk � uU j � C4.tor.Uk/ � tor.U /C �1.Uk/ � �1.U //:

Therefore, from property (N3) of h, we have that

jh.U /� h.Uk/j � jU nUkj CC4.tor.Uk/� tor.U /C �1.Uk/� �1.U //�
C4˛

T
C ok.1/:

In particular, if �0C4 < T=2, this leads to

m � mU � F� .U / D E.U /C �h.Uk/C � jh.U / � h.Uk/j

� E.U /C �h.Uk/C �
C4˛

T
C ok.1/

D E.Uk/ � ˛ C �h.Uk/C
˛

2
C ok.1/

D F� .Uk/ � ˛ C
˛

2
C ok.1/ D m �

˛

2
C ok.1/:

Taking the limit, we see that ˛ D 0, F� .U / D m, and the conclusion follows.

We now show that a minimizer of F� exists among sets in H D HR;vmax . The proof
makes use of Lemma 6.1 to replace any minimizing sequence with a minimizing sequence
of outer minimizers, whose eigenfunctions and torsion functions we know to be uniformly
Lipschitz from the results of Section 5.
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Theorem 6.2. There is �0 D �0.R; v; vmax;T ; �/ such that if � < �0, then there exists
� � H that is a minimizer of F� among sets in H D HR;vmax .

Proof. Let ˛ D inf¹F� .E/ W E 2 Hº and let �j be a minimizing sequence for F� . Note
that E.�/ � F� .�/ � E.�/C � for any set�, so ˛ � Emin C � and E.�j / � Emin C 2�

for all j large enough. Apply Lemma 6.1 to replace each �j with an outward minimizer
with smaller F� .�j /, choosing 2�0 < ı0 there. Let u�j , w�j be the first eigenfunc-
tions and torsion functions respectively, and pass to subsequences with u�j ! u and
w�j ! w weakly in H 1

0 .QR/ and strongly in L2.QR/. Our approach here is different
from the previous lemma: we show that u is the unique first eigenfunction on its positivity
set, u D u¹u>0º.

Apply Corollary 5.5 to see that the u�j and w�j are equicontinuous, and so con-
verge uniformly to u and w (which are Lipschitz functions) on QR. This also implies
that � D ¹u > 0º is, by definition, an open set. Let us show that � is a minimizer.

Let �D lim�1.�j / (pass to a subsequence if needed). From the uniform convergence
of u�j ! u, we have that for every x 2 �, there is a ball Br .x/ such that Br .x/ � �j
for every j large enough. On this ball, the u�j converge in the smooth topology to u from
standard elliptic estimates, and so ��u.x/ D �u.x/ passes to the limit. In particular, this
implies that u� is an eigenfunction for � with eigenvalue �.

From the weak convergence of u�j ! u and w�j ! w in H 1
0 , we have that

�1.�/CT tor.�/ �

´
jruj2´
u2
CT

ˆ
jrwj2

2
� w � lim inf

j
�1.�j /CT tor.�j /:

From Fatou’s lemma, j�j � lim infj j�j j, so E.�/ � lim infj E.�j /. We also have that
� � QR and j�j � vmax, so � 2 H is an admissible competitor.

Using that E.�/ � lim inf E.�j / � Emin C 2� , we may apply Lemma 3.14 to deduce
that �2.�/ > �1.�/C c.R; v; vmax/. As Emin � E.�/ as well, we must have that

0 � lim�1.�j / � �1.�/ � 2�0;

and so j�1.�/ � �j � 2�0. Ensuring that �0 is small enough in terms of R; v; vmax guar-
antees that � < �2.�/. In particular, this means there is a unique eigenfunction on� with
eigenvalue at most �, and so u� D u. In particular, this means that u�j ! u� uniformly.

Set ˇ D lim infj E.�j / � E.�/ � 0; which is such that ˇ � �Œlim infj j�j j � j�j�:
From Fatou’s lemma, j�j � lim infj j�j \�j, so lim infj j� n�j j D 0. This gives

lim inf
j
j�4�j j D lim inf

j
j�j n�j D lim inf

j
j�j j � j�j �

ˇ

�
:

It follows from assumption (N3) from Definition 2.11 on h that jh.�/ � h.�j /j �

oj .1/C j�4�j j � oj .1/ C
ˇ
�

. We can now estimate the energy of � in the follow-
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ing way:

˛ � F� .�/ � E.�/C �h.�j /C oj .1/C �
ˇ

�

� E.�j / � ˇ C �h.�j /C oj .1/C �
ˇ

�

D F� .�j / � ˇ C oj .1/C �
ˇ

�
D ˛ � ˇ C oj .1/C �

ˇ

�
:

If � < �, this implies that ˇ D 0, F� .�/ D ˛, and � is a minimizer.

Next, we prove that when M=G0 is compact, a minimizer of F� among all open
bounded sets with j�j � vmax exists. The main idea is to show that the minimizers �R
from the previous theorem have uniformly bounded diameter, and thus, �R is a global
minimizer for sufficiently large R.

Theorem 6.3. AssumeM=G0 is compact. There exist constants S D S.v; vmax;T ; �/ > 0

and �0 D �0.v; vmax;T ; �/ such that if � < �0, there exists an open, bounded � with
j�j � vmax which minimizes F� over all such sets. For every such minimizer � of F� ,
there is an e 2 G0 such that e.�/ � QS .

Recall that G0 is a (possibly empty) subgroup of isometries under which h, and
hence F� , is invariant. The assumption here implies that M=G is compact.

Proof. For each R� 1, consider the minimizer �R of F� over HR obtained from Theo-
rem 6.2. Set

˛R D F� .�R/ D inf
®
F� .�/ W � 2 HR

¯
I

note that ˛R is nonincreasing in R and from Lemma 3.15, we have that ˛R � E.�R/ �

Emin.1/ > �1. We claim that so long as �0 and T0 are chosen small enough, �R has
bounded diameter uniformly inR. Indeed, fix r small and apply the lower density estimate
of Corollary 4.4 to �R: for every x 2 �R,

j�R \ Br .x/j � c:

As j�Rj � vmax, this implies that �R may be covered by a bounded number K of
balls Br .xk/, with xk 2 �R. Assume that the union of these balls is disconnected: this
implies that� itself cannot have a connected component of measure greater than j�j � c.
Apply Lemma 3.16 with " D c=2: this gives a contradiction to the lemma’s third conclu-
sion. We infer that all the balls Br .xk/ have a connected union of diameter at most 2Kr ,
as promised.

It follows that there is an S and eR 2 G0 such that eR.�R/ � QS for all R (this
uses only the diameter bound and that

S
e2G0

e.QS / D M for some S , as in the proof
of Lemma 3.15). Since F� is invariant under isometries in G0, F� .�R/ D F� .eR.�R//

and eR.�R/ is also a minimizer. This implies that for R � S ,

˛S � ˛R D F� .�R/ D F� .eR.�R// � ˛S :
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In particular, ˛R is independent of R for R � S , and �S minimizes F� over all open
bounded sets with j�j � vmax. The second conclusion follows from the fact that any open,
bounded set � with F� .�/ D ˛S lies in QR for a sufficiently large R, and so the above
argument applies to �.

A consequence of Theorem 6.3 is that all constants pertaining to minimizers of F� may
be taken to be independent of R ifM=G0 is compact. This allows us to avoid tracking the
dependence on R below, instead fixing a sufficiently large R and looking at minimizers
in QR.

7. Measure-theoretic estimates

Having now established the existence of minimizers of the main energy, we move toward
understanding some initial measure-theoretic properties of these minimizers. Ultimately,
the results of this section will be used in Section 8 to derive the Euler–Lagrange equation
satisfied by �.

In Section 7.1, we first prove that � is a nontangentially accessible (NTA) domain.
This allows us to utilize an inhomogeneous boundary Harnack principle for NTA domains
recently shown in [4] in Section 7.2 in order to prove some fine estimates for the Green’s
function. This allows us to show that the first eigenfunction of a minimizer grows at least
linearly from the boundary in Proposition 7.8. Proposition 7.9 contains some finer Green’s
function estimates that will be crucial in deriving a useful form of the Euler–Lagrange
equation in the section which follows. With these results in hand, in Section 7.3 we can
recover some basic measure-theoretic properties of � and understand the nontangential
limits of jru�j and jrw�j on the reduced boundary @��, in a similar manner to other
recent approaches in vectorial free boundary problems [16, 38].

We assume throughout the section that R and v < vmax are fixed, as well as that � <
�0.R; v; vmax/, T <T0.R; v; vmax; �/, and � < �0.R; v; vmax;T ; �/ are small enough that
all results in earlier sections apply. We recall that the growth quantities DO.�/ and UP.�/
are defined in (2.14) and (2.13), respectively.

7.1. Density estimates and the NTA property

Let us summarize some consequences of the upper and lower bounds of Sections 4 and 5.
The proofs are mostly standard and may be carried out in local coordinates, so we provide
only brief sketches and references. First, we have uniform upper and lower bounds on the
volume density of � and perimeter density of @�.

Lemma 7.1. Let � 2 H be a minimizer of F� . Then, there are r0; C > 0 depending only
on R; v; vmax; � such that for any x 2 @� and r < r0,

1

C
<
jBr .x/ \�j

jBr .x/j
< 1 �

1

C
(7.1)
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and
1

C
<

Hn�1.@� \ Br .x//

rn�1
< C: (7.2)

Sketch of the proof. First, from Theorem 4.1 and Theorem 5.1, we have that c �DO.�/�
UP.�/ � C . To prove the lower bound in (7.1), let y 2 Br=2.x/ \ � be a point with
u�.y/ C

p
Tw�.y/ � DO.�/r=2. By Corollary 5.5, we have jr.u�.y/ C

p
Tw�/j

� C.UP.�//, and so we must have that d.y; @�/ � DO.�/r
2C.UP.�// � cr . So long as r0 is

small enough, jBcr .y/j � c0rn, jBr .x/j � Crn, and so

jBr .x/ \�j

jBr .x/j
�
jBcr .y/j

jBr .x/j
�
1

C
:

For the upper bound in (7.1), first note that if Br=2.x/ \ .M nQR/ is nonempty, then
jBr .x/ nQRj � c.R/r

n using the smoothness of @QR, and this implies the estimate. If
this is not the case, then Br=2.x/ � QR. We apply Lemma 5.2 to learn that if u, w are
harmonic replacements for u�; w� respectively on Br=2.x/, then
ˆ
jr.u� � u/j

2
CT jr.w� � w/j

2
� C

�
jBr=2.x/ \�j C r

n sup
Br=2.x/

T .w2� C u
2
�/
�
:

Now, as x 2 @�, we have that supBr=2.x/ Tw2� C u
2
� � C.UP.�//r2. On the other hand,

there must be a point y 2 Br=4.x/with
p

Tw�.y/C u�.y/�DO.�/r=4. Recalling that
�.
p

Tw�.y/Cu�.y//��C.R;vmax/, applying [28, Theorem 8.16] to u� �u;w� �w
gives

sup
Br=2.x/

p
T Œw� � w�C Œu�.y/ � u� � Cr

2:

At y then, u.y/C
p

Tw.y/ � cr �Cr2 � cr as long as r0 is taken small enough. Using
the Harnack inequality on Br=2.x/, this implies uC

p
Tw � cr on Br=4.x/. By contrast,

we know that on B"r .x/, u� C
p

Tw� � "rUP.�/ � cr
2

as long as we choose " small
enough. Integrating and using the Poincaré inequality, we obtain

crnC2 �

ˆ
B"r .x/

ju� � uj
2
CT jw� � wj

2

�

ˆ
Br=2.x/

ju� � uj
2
CT jw� � wj

2

� Cr 2̂

Br=2.x/

jr.u� � u/j
2
CT jr.w� � w/j

2
� Cr2ŒjBr=2.x/ \�j C r

nC2�:

As long as r0 is small enough, the last term may be reabsorbed on the left, giving
jBr .x/ \�j � cr

n � cjBr .x/j.
For (7.2), the upper bound may be obtained as in [36, Lemma 2.4] or [38]. The lower

bound follows from applying the relative isoperimetric inequality [27, 4.5.2(2)].

The volume density bounds may be automatically improved slightly to give clean
balls, or corkscrew points, instead.
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Definition 7.2. Let � �M be an open set. We say that � satisfies the inner (resp. outer)
clean ball condition with constantK at x 2 @� if for any r < 1, there is a point y such that
Br=K.y/ � Br .x/ \� (resp. Br=K.y/ � Br .x/ n�). We say that � satisfies the inner
(resp. outer) clean ball condition with constant K if it satisfies it at every x 2 @�.

Corollary 7.3. Let � be as in Lemma 7.1. Then, there exists an ˛ D ˛.R; v; vmax; �/ > 0

such that for any x 2 @� and r < r0, there are two balls B˛r .y/ � Br .x/ \ � and
B˛r .z/ � Br .x/ n�. In particular, � satisfies the inner and outer clean ball condition
with constant depending only on r0; ˛.

Proof. For small ˛, take the collection ¹B˛r .y/ W y 2 Br=2.x/ n �º and from it pick a
finite-overlapping subcover ¹B˛r .yk/ºKkD1 of Br=2.x/ n�. Then, if every one of the balls
B˛r=2.yk/ intersects @� at a point xk , we have from Lemma 7.1 that

Hn�1.B˛r .yk/ \ @�/ � Hn�1.B˛r=2.xk/ \ @�/ � c.˛r/
n�1:

As jBr=2.x/ n�j � cjBr=2.x/j � crn and the B˛r .yk/ cover this set, we must have that
K.˛r/n � crn, or K � c˛�n. Summing over k and using the finite-overlapping property
and the upper bound in (7.2), we get

Crn�1 � Hn�1.@� \ Br .x//

� c

KX
kD1

Hn�1.B˛r .yk/ \ @�/ � cK.˛r/
n�1
�
c

˛
rn�1:

If ˛ is taken to be small enough, this is a contradiction, so for at least one B˛r=2.yk/, we
have B˛r=2.yk/ � Br .x/ n�. The inner clean ball may be found similarly.

Definition 7.4. Let � � M be an open set. We say that � satisfies the Harnack chain
condition with constant K at x; y 2 � if there is a curve 
 W Œ0; 1�! � with 
.0/ D x,

.y/ D y, l.
.Œ0; 1�// � Kd.x; y/, and

d.
.t/; @�/ �
1

K
min

®
l.
.Œ0; t �//; l.
.Œt; 1�//

¯
:

Here l.
.Œa; b�//D
´ b
a
j P
 jdt denotes length. We say� satisfies the Harnack chain condi-

tion with constant K if it satisfies it at every x; y 2 �. We say � is NTA with constant K
if it satisfies the inner and outer clean ball conditions and the Harnack chain condition
with constant K.

The next lemma follows from known results on Bernoulli-type free boundary prob-
lems [2], but we present a proof in Appendix B, as we are unaware of a version with
coefficients and nonzero right-hand side treated in the literature.

Lemma 7.5. Let � 2 H be a minimizer of F� . Then. there are r0;K > 0 depending only
on R; v; vmax, and � such that for any z 2 @� and any x; y 2 � \ Br0.z/, � satisfies the
Harnack chain condition at x and y with constant K.
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From Lemma 7.5, we find that a minimizer � is an NTA domain.

Corollary 7.6. Let � 2 H be a minimizer of F� . Then, � is an NTA domain, with con-
stants depending only on R; v; vmax, and �.

Proof. First, observe that � is connected so long as �0;T0; �0; r are taken to be small
enough. Indeed, we have from Lemma 3.14 that each connected component U of �
besides one must have jU j < ". On the other hand, Lemma 7.5 implies that Br0.z/ \�
lies within a single connected component of � for every z 2 @�, which when combined
with Lemma 7.1 gives that jU j � j� \ Br0.z/j � cr

n
0 ; if " is small enough, then � has

only one connected component.
Consider the set Ur D ¹x 2 � W d.x; @�/ > rº for r small and fixed. We claim that

any two points x; y 2 Ur may be connected by a path 
 which has length bounded by
C.R; v; vmax; �; r/ and stays a distance 1=C away from @�. To see this, cover � with
a finitely-overlapping collection ¹Br .zk/ºKkD1 with zk 2 �. As j�j � C , we have that
K � C from the finite-overlapping property and Lemma 7.1. For any two balls Br .zk/
and Br .zj / with nontrivial intersection, we have two possibilities: either both Br .zk/;
Br .zj / � Ur , or at least one of them (say Br .zk/) intersects @Ur . In the first case, any
pair of points x 2 Br .zk/; y 2 Br .zj / may be connected by a curve of length 2r which
keeps r away from @� as it stays inside Br .zk/ [ Br .zj /. In the second case, we have
that as long as r is small enough, Br .zk/[ Br .zj / � Br0.x/ for some x 2 @�. Applying
Lemma 7.5 gives that for any x 2 Br .zk/ \ Ur and any y 2 Br .zj / \ Ur , x and y may
be connected by a curve of length Cr staying r=C away from @�.

Take a graph with vertices ¹zkº and with an edge between zk and zj if and only if
Br .zk/; Br .zj / have nontrivial intersection. As these balls cover � and � is connected,
the graph must also be connected, and so any two balls may be connected by a chain of
distinct, pairwise overlapping balls. For any x 2 Br .zk/ and y 2 Br .zj / with x; y 2 Ur ,
find such a path of pairwise intersecting balls Br .zim/, m D 1; : : : ; J , with k D i1 and
j D iJ . We have shown that zim and zimC1 , as well as x and zi1 , ziJ and y, may be
connected by curves of length Cr and stay at a distance C=r from @�. By concatenating
these curves (and using that J � K is bounded), we see that x and y may be connected
by a curve of uniformly bounded length remaining at a distance r=C from the boundary,
as promised.

This, together with Lemma 7.5, shows that � satisfies the Harnack chain condition.
Combining with Corollary 7.3 implies � is an NTA domain.

7.2. Estimates on the Green’s function

In Lemma 3.4, we saw from a basic maximum principle argument that u� � Cw� for
essentially arbitrary domains. The opposite inequality is far more subtle, and will in gen-
eral fail even on polygonal domains in Rn (in particular, it does not follow from the NTA
property of Corollary 7.6). Nonetheless, we show in Proposition 7.8 below that it is, in
fact, valid for minimizing �.
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Let G�.x; y/ be the positive Green’s function for � with the pole at x. From [32,
Theorem 1.2.8], we have that

G�.x; y/ � Cd
2�n.x; y/; 8x; y 2 QRI

G�.x; y/ � cd
2�n.x; y/; 8x; y 2 �; d.x; y/ �

1

2
d.x; @�/;

(7.3)

where the constants depend only on R. If n D 2 the same is valid with � log d.x; y/ in
place of d2�n.x; y/; we will only consider the case of n > 2 below, but all estimates
remain valid if n D 2 after similar modification. We remark that similar estimates for the
Green’s function were obtained in [18].

Lemma 7.7. Let � 2 H be a minimizer of F� . Then, for every c0 > 0 there is a C0
depending only on R; v; vmax; �; c0 such that w�.y/ � C0G�.x; y/ for any y 2 � and
any x 2 � with d.x; @�/ > c0.

Proof. Choose 3r0 �min¹c0; injM º. LetK be the NTA constant of� from Corollary 7.6.
Let us first consider the case that y is such that d.y; @�/ � r0=K. From the Harnack
chain property of Corollary 7.6, we may find a sequence of finitely many balls (the num-
ber depending only on r0 and K) Bcr0.yk/ � � so that Bcr0=2.yk/ \ Bcr0=2.ykC1/ is
nonempty and y1 D y and yJ D x. Applying the Harnack inequality to G�.x; �/ on each
ball, we get

sup
z2Bcr0=2.yk/

G�.x; z/ � C inf
z2Bcr0=2.yk/

G�.x; z/

for k < J , while the assumption that d.x�/ > c0 guarantees that G�.x; z/ � cr2�n0 for
z 2 Bcr0=2.x/ from the Green’s function lower bound in (7.3). Together, these guarantee
that for any such point y we have

G�.x; y/ � c.r0/: (7.4)

On the other hand, from Lemma 3.3, we have w�.y/ � C at y, while for any z 2 �,
applying Theorem 4.1 and Lemma 3.4 gives

w�.z/ � cŒu�.z/C
p

Tw�.z/� � cDO.�/d.z; @�/: (7.5)

Now apply [4, Theorem 2.2] on Br0.z/ for any z 2 @�, with u1 D w�=w�.y/ and
u2 D G�.x; �/=G�.x; y/, where y 2 Br0.z/ is a point with d.y; @�/ � r0=K (such a
point y exists from the inner clean ball property). In the theorem, we set U D �, Q to
be the collection of NTA domains, ˇ D 1, � D 2, x0 D y, V D ¹u 2 C.x�/ \ C 2.�/ W
u � 0; j�uj � C º and H to be the solution to the Dirichlet problem for �. Assumptions
(P1–P7) from [4, Theorem 2.2] follow from standard elliptic estimates and (P8) from
[32, Lemma 1.3.7]. Using [4, Remark 2.4], we only need to verify growth bound (2.1) in
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[4, Theorem 2.2] for w�, which follows from (7.5). We conclude that

w�.a/ � CG�.x; a/ (7.6)

for all a 2 Br0.z/. Applying at any z, (7.6) remains valid for each a 2 � with
d.a; @�/ < r0. For a with d.y; @�/ � r0, (7.6) follows from (7.4) and that jw�j � C
instead.

We use the Green’s function as a barrier for u from below and apply Lemma 7.7 to
show that the torsion function bounds the eigenfunction from below:

Proposition 7.8. Let� 2H be a minimizer of F� . Then, w� � C.R;v; vmax; �/u� on�,
and in particular,

sup
Br .x/

u� �
1

C
DO.�/r

for all x 2 @� and r 2 .0; 1/.

Proof. We have that j�j � vmax and
´
u2� D 1. This means there must be a point x 2 �

with u�.x/ � c, and by Theorem 5.1, we have d.x; @�/ � c=UP.�/ � c. From the
Lipschitz estimate of Corollary 5.5, we still have u � c=2 on a ball Br .x/ � �, where
r > 0 depends on c and UP.�/, and thus on R;v; vmax; and �. Using the Green’s function
upper bound in (7.3), we have G�.x; y/ � cr2�n � c on @Br .x/. As �u� � 0 on �, we
may use cG�.x; �/ as a barrier from below for u� on the set � n xBr .x/; the comparison
principle implies that

u�.y/ � cG�.x; y/ � cw�.y/;

with the last inequality coming from Lemma 7.7. On Br .x/, on the other hand, u� � c=2
while w� � C , so the same inequality follows. This completes the proof.

Next, we prove sharp bounds on G� near @�. To state these in a more useful fashion,
recall that the harmonic measure on �, which we denote by !x , is defined as follows: for
any f 2 C.@�/, let xf 2 C.x�/ be the unique classical solution to the Dirichlet problem´

� xf D 0 on �;
xf D f on @�:

Such a solution xf may be obtained using Perron’s method or by approximation schemes,
noting that Lemma 7.1 guarantees that � satisfies the Wiener criterion (see [28, Theo-
rem 8.31]). Then, f 7! xf .x/ is a linear functional from C.@�/ to R, and from the maxi-
mum principle it has norm bounded by 1 which is positive (i.e., f � 0 H) xf .x/ � 0).
From the Riesz representation theorem, there is a positive Borel measure !x on @� such
that ˆ

@�

fd!x D xf .x/:

This is the harmonic measure; we clearly also have !x.@�/ D 1.
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Proposition 7.9. Let�2H be a minimizer of F� . Then, the Green’s functionG� satisfies

c
d.x; @�/d.y; @�/

dn.x; y/
� G�.x; y/ � C

d.x; @�/d.y; @�/

dn.x; y/
: (7.7)

Moreover, for any x 2 @�, and any y 2 � with d.y; x/ > 4r , we have

c
d.y; @�/

dn.x; y/
�
!y.Br .x//

rn�1
� C

d.y; @�/

dn.x; y/
: (7.8)

All constants depend only on v; vmax; R; and �.

Proof. For any point a 2 W , set da D d.a; @�/. Take two points x; y 2 �. If we have
d.x; y/ � 1

2
dy , then (7.7) follows directly from (7.3) (using the diameter bound for �

in the lower bound) and there is nothing more to show. We now consider the case of
d.x; y/ � 1

2
max¹dx ; dyº, breaking up the estimate into several cases depending on the

locations of x and y. The notation s � t below stands for cs � t � Cs with constants
depending only on v; vmax; R; �.

Case 1: 2d.x; y/ � dy � r0. First, assume that dy � r0 for some fixed r0 to be chosen
below. We have from Lemma 7.7 that

cdx � w�.x/ � C.r0/G�.y; x/

for any x 2�. On the other hand, from (7.3) we haveG�.y;x/�C.r0/ for x 2 @Br0=2.y/,
while u�.x/� cdx from Proposition 7.8. So, we may use a multiple ofG�.y; �/ as a lower
barrier for u� on the set � n Br0=2.y/: as �u� � 0, from the comparison principle this
leads to

G�.y; x/ � Cu�.x/ � CUP.�/dx

for x … Br0=2.y/. Together, these two estimates show that in the case where dy � r0 and
d.x; y/ � 1

2
dy �

r0
2

, we have

G�.y; x/ � dx �
dx

rn�10

�
dxdy

dn.x; y/
: (7.9)

Case 2: dy � d.x; y/=4K: Now fix r0 small enough that B2r0.y0/ � � for some
reference point y0, using the interior clean ball condition from Lemma 7.6. The next
two cases we treat are when dy � 1

4K
d.x; y/, with K the NTA constant of �. Take a

point a 2 @Bdy=4.y/. The basic estimates in (7.3) apply to this point to give G�.y; a/ �
d2�n.y;a/� d2�ny . If dx � 1

4K
dy , then dx � dy � d.x;y/ are all comparable and we may

use the Harnack chain condition to find a uniformly bounded chain of balls Br .xi / � �
with r � dy connecting a and x; applying the Harnack inequality finitely many times
gives

G�.y; x/ � G�.y; a/ � d
2�n
y �

dydx

dn.x; y/
: (7.10)
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We may therefore assume that dx � 1
4K
dy . In this case, let z 2 @� be a point with

dx D d.x; z/, and find an a0 with Bdy=4K.a
0/ � Bdy=4.z/ \ � using the interior clean

ball property. Since da0 � dy=4K, we have G�.y; a0/ � d2�ny from (7.10). On the other
hand, from (7.9) we have G�.y0; a0/ � dy . Applying the boundary Harnack principle
[32, Lemma 1.3.7] toG�.y; �/ andG�.y0; �/ on Bdy=2.z/ (note that this excludes the pole
at y), we have that

G�.y; x
0/

G�.y0; x0/
�

G�.y; a
0/

G�.y0; a0/
�
d2�ny

dy
�

dy

dn.x; y/

for any x0 2 Bdy=4.z/ (with the last step using dy � d.x; y/). In particular, this is valid at
x0 D x, leading to

G�.y; x/ � G�.y0; x/
dy

dn.x; y/
�

dxdy

dn.x; y/
; (7.11)

by again using (7.9).
Case 3: max¹dy ; dxº � d.x;y/=4K. The only case remaining is when max¹dy ; dxº �

1
4K
d.x; y/. Assume without loss of generality that dy � dx and choose zx 2 @� with

d.zx ; x/ D dx . Now use the clean ball property to find a point ax with Br=K.ax/ �
Br .zx/ \� for r D min¹d.x; y/=4; r0º. Construct zy and ay similarly. At ay , we have
from (7.11) that

G�.y; ay/ �
dyday

dn.ay ; y/
�

dy

rn�1
:

Applying the Harnack inequality along a Harnack chain connecting ax and ay , this also
gives G�.y; ax/ � dy=r

n�1. We now use the boundary Harnack principle on G�.y; �/
and G�.y0; �/ on the region B2r .zx/ \� (which contains x) to give

G�.y; x/

G�.y0; x/
�

G�.y; ax/

G�.y0; ax/
�

dy

rn�1
1

r
:

In other words,

G�.y; x/ � G�.y0; x/
dy

rn
�
dxdy

rn
:

Noting that r � d.x; y/ leads us to conclude with (7.7), which we have now established
in all cases.

For (7.8), [32, Corollary 1.3.6] gives that at any x 2 @�, r < r0, and y 2 � nB4r .x/,
if z is a point with Br=K.z/ � Br .x/ \�, then

!y.Br .x// � G�.z; y/r
n�2:

Applying (7.7) leads to

G�.z; y/ �
dzdy

dn.z; y/
� r

dy

dn.x; y/
;

from which (7.8) follows.
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Note that we used the upper and lower bounds UP.�/;DO.�/ in a crucial way to
get (7.9) and then (7.10) and the remaining estimates. For general NTA domains, the
conclusions of this lemma need not hold.

A direct consequence of these estimates and Lemma 7.1 is that !y is absolutely con-
tinuous with respect to the Hausdorff measure restricted to @�, and the Radon–Nikodym
derivative

K.x; y/ D
d!y

dHn�1 @�
.x/ �

d.y; @�/

dn.x; y/
; (7.12)

known as the Poisson kernel, is a bounded function of x satisfying similar estimates.

7.3. Blow-up analysis and the reduced boundary

Given a point x 2 @� and vector � 2 TxM with j�j D 1, let

Br;�.x/ D expx
®
v 2 TxM W jvj < r; g.v; �/ < 0

¯
� Br .x/

be a half-ball. For r � injM , define the function lx;� W Br .x/! R by

lx;�.expx.v// D g.v;��/C; (7.13)

that is, lx;� is a truncated linear function in normal coordinates.

Lemma 7.10. Let � be a minimizer of F� . For each s 2 .0; s0/, there are constants
".R; s; v; vmax; �/ > 0 and c D c.R; v; vmax; �/ such that for x 2 @� we have that
j.Br .x/ \�/4Br;�.x/j � "r

n for some � and r < ", then

(i) Bcr .x/ \ @� � expx¹v 2 TxM W jvj < r; jg.v; �/j < srº,

(ii) ju�.y/ � ˛lx;�.y/j < sr for some ˛ 2 Œc; 1=c� and for all y 2 Bcpsr .x/,

(iii) jw�.y/ � ˇlx;�.y/j < sr for some ˇ 2 Œc; 1=c� and for all y 2 Bcpsr .x/.

Proof. Conclusion (i) follows from standard geometric measure theory arguments using
only Lemma 7.1: if there is a y 2 @� \ Bcr .x/ with y D expx v , jg.v; �/j � sr , then
we may find clean balls Bcsr .y1/ 2 � \ Bsr=2.y/ and Bcsr .y2/ 2 Bsr=2.y/ n�, which
are either both inside or both outside Br;�.x/. This implies that j.Br .x/ \�/4Br;�.x/j
� csnrn (one of these two balls must be in this symmetric difference), and this is a con-
tradiction if "� sn.

The other two conclusions follow from a compactness argument: assume, say, (ii) is
false for a given s < s0 and take a sequence�k of minimizers, points xk in @�k , rk ! 0,
�k 2 TxkM with norm 1, and Brk .xk/ with

Brk .xk/ \ @�k � expx
®
v 2 TxkM W jvj < rk ; jg.v; �k/j < skrk

¯
with sk ! 0 (after applying (i) with sk rather than with s, using that "k ! 0 to do so).
Identify TxkM with Rn using an orthonormal basis with en D �k , and define zuk WB1.0/�
Rn ! R by

zuk.e/ D
uk.rk expxk e/

rk
:
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Using Corollary 5.5, the functions zuk are uniformly Lipschitz functions defined on B1.0/
and ¹zuk > 0º converges to B1;en.0/ WD ¹y 2 B1 W y � en < 0º in the Hausdorff topol-
ogy. After passing to a subsequence, zuk ! zu1 uniformly on B1.0/. Moreover, letting gk
denote the pullback of the metric g on Brk .xk/ under the rescaled exponential map
e 2 B1.0/ 7! expxk .rke/, we get gk ! g1 in the C 2 topology, where g1.ei ; ej / � ıij
is the Euclidean metric.

Let�k denote the Laplacian with respect to the metric gk onB1.0/. We have�kzuk D
�rk�1.�k/zuk on ¹zuk > 0º; from elliptic estimates this means zuk ! zu1 in C 2 locally
onB1;en.0/. Passing to the limit at any point inB1;en.0/ gives�1zu1 D 0. Therefore, zu1
is harmonic on B1;en.0/ and vanishes on the rest of B1.0/ (using uniform convergence
again). In particular, using elliptic estimates means zu1 is a piecewise smooth function
on B1.0/ with jrzu1j C jD2zu1j � C on B1=2;en.0/.

We also have that cDO.�k/r � supBr .0/ zuk � CUP.�k/r for r 2 .0; 1/ from Propo-
sition 7.8, and the constants here are uniform in k. Passing to the limit, we obtain that
cr � supBr .0/ zu1 � Cr , which implies that jrzu1.0/j � c (from the �en direction) and
so zu1.x/ D ˛.x � �en/C CO.jxj2/ for some c � ˛ � C . On B�ps.0/, this implies that

jzuk.x/ � ˛.x � �en/Cj � jzu1.x/ � ˛.x � �e/Cj C jzuk.x/ � zu1.x/j

� C jxj2 C ok.1/ � Cs�
2
C ok.1/ <

1

2
s:

In the last step we took � small, and then k large. Changing back to the original variables,
we have

sup
B�
p
srk
.xk/

ju�k � ˛lxk ;�k j < srk ;

which contradicts (ii), failing for �k at xk . The argument for (iii) is similar.

We say x 2 @��, where @�� is the reduced boundary, if

lim
r&0

j.Br .x/ \�/4Br;�.x/j

jBr .x/j
D 0

for some � 2 TxM with j�j D 1; we will use the notation �x for this �. Lemma 7.1 implies
that Hn�1.@� n @��/ D 0 (see [27, 4.5.11 and 4.5.6]).

Corollary 7.11. Let � be a minimizer of F� , and x 2 @��. Then, we have for constants
0 < c � C <1 depending only on R; v; vmax, and �:

(i) @� \ Br .x/ converges to the approximate tangent plane @Br;�x .x/ \ Br .x/ in
the following Hausdorff sense:

lim
r&0

1

r
sup

y2@�\Br .x/

d.y; @Br;�x .x/ \ Br .x// D 0:

(ii) Hn�1.@� \ Br .x// D !n�1r
n�1 C o.rn�1/, where !n�1 is the measure of the

unit ball in Rn�1.
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(iii) u�.y/ D jru�.x/jlx;�x .y/C o.d.x; y// for some number jru�.x/j 2 Œc; C �.

(iv) w�.y/ D jrw�.x/jlx;�x .y/C o.d.x; y// for some number jrw�.x/j 2 Œc; C �.

The second conclusion can be found in [27, 4.5.6(2)]; the others follow directly from
Lemma 7.10.

We say that a function u 2 C.�/ converges nontangentially to ˛ at x 2 @� if

lim
r&0

sup
®
ju.y/ � ˛j W y 2 Br .x/; d.y; @�/ > "r

¯
for all " > 0. While the numbers jru�.x/j in this corollary were abstract (not directly
connected to ru� proper), they may be reinterpreted as nontangential limits of jru�j:

Corollary 7.12. Let � be a minimizer of F� , x 2 @��, and jru�.x/j; jrw�.x/j be as
defined in Corollary 7.11. Then,

(i) �jru�.x/j�x is the nontangential limit of ru� at x,

(ii) �jrw�.x/j�x is the nontangential limit of rw� at x.

Proof. We only prove (i), setting ˛ D jru.x/j. Using Corollary 7.11,

lim
r&0

supy2Br .x/ ju�.y/ � ˛lx;�x .y/j

r
D 0:

Working in normal coordinates, at any y 2 Br;�x .x/ the function lx;�x .y/ is such that

j�lx;�x .y/j � Ckgx � geuckC 1 � Cr; jrlx;�x .y/ � rlx;�x .x/j � Cr;

where geuc denotes the Euclidean metric. Fix " > 0 and take y 2 Br .x/ such that d.x; y/
� "r . Then, applying elliptic estimates on Br".y/ in the first inequality and the fact that
j�u�j � C in the second inequality, we have

kr.u� � ˛lx;�x /kL1.B"r=2.x//

� C
h
rk�.u� � ˛lx;�x /kL1.B"r .x// C

1

r
ku� � ˛lx;�xkL1.B"r .x//

i
� Cr C or .1/ D or .1/:

The constant here depends only on ". It follows that

jru�.y/C ˛�xj � or .1/C j˛jj�x Crlx;�x .y/j

D or .1/C j˛jjrlx;�x .x/ � rlx;�x .y/j � or .1/:

8. The Euler–Lagrange equation

Our next goal is to derive the Euler–Lagrange equation satisfied by minimizers by differ-
entiating F� with respect to smooth families of diffeomorphisms applied to �. There will
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essentially be three main steps to do this. First, in Section 8.1, we derive the distributional
form of the Euler Lagrange equation. Computing the derivatives of the terms appearing
in E is more or less routine for smooth sets in Euclidean space, though we must take some
care because minimizers are not necessarily smooth and we are working on a Riemannian
manifold. For the distributional form of the Euler–Lagrange equation, the derivatives of
the nonlinear term are essentially given in condition (N4) in the definition of admissible
nonlinearity (Definition 2.11).

Next, in Section 8.2, we derive a pointwise form of the distributional Euler–Lagrange
equation from Section 8.1. The basic idea is to plug into the distributional Euler–Lagrange
equation a sequence of vector fields that approximate the outer unit normal to � at each
point in the reduced boundary. Carrying this out for the terms coming from the base energy
is not difficult, but it turns out to be fairly delicate for the term h for reasons discussed
below. This will require the optimal Green’s function estimates from Proposition 7.9 of
the previous section. Ultimately, we are able to arrive at the following pointwise form of
the free boundary condition (see Corollary 8.10 in Section 8.2): there is a constant A0
such that for almost every x 2 @�� \QR, we have the identity

�jru�.x/j
2
�

T

2
jrw�.x/j

2
C �

h
b�.x/C

ˆ
�

a�v
x
�

i
D �A0: (8.1)

If j�j ¤ v, then A0 D f 0v;�.j�j/. Here, for each x 2 @� \QR, the function vx� is the
solution of an auxiliary PDE.

It is not clear that the Euler–Lagrange equation (see (8.1)) behaves as a Bernoulli-type
problem, or that it should yield any regularity. The most important part of this section,
which is the content of Section 8.3, is to rewrite the Euler–Lagrange equation in a way
which involves only jru�j, up to “lower-order” terms. In doing so, the term b�.x/ is
more or less innocuous and will be controlled by simply choosing the parameter � to
be sufficiently small. The jrw�j term is a priori problematic, but can be handled in a
similar manner to [16, 38]. The most challenging term to control is

´
�
a�v

x
�, because the

function vx� solves an auxiliary PDE that does not immediately lend itself to comparison
with u�. We will discuss how to overcome this difficulty at the beginning of Section 8.3
once we have seen introduced the equation for vx�. The main result of this section is the
following free boundary condition:

Theorem 8.1. There is a function � � �C� with k�kC 0;˛.@�/ � C , with C; ˛ depending
only on v; vmax; �; R, such that

jru�.x/j
2.1C �.x// D A0

for Hn�1-a.e. x 2 @�� \QR. For the constant A0, we have A0 2 Œ1=C; C �.

As always, we assume that R is fixed and � < �0.R; v; vmax/, T < T0.R; v; vmax; �/,
and � < �0.R; v; vmax;T ; �/ are small enough that all results in earlier sections apply. We
recall that a� and b� are functions given in the definition of admissible nonlinearity in
Definition 2.11.
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8.1. The first variation along a vector field

The main goal of this subsection is to derive the distributional form of the Euler–Lagrange
equation in Lemma 8.5. We start with some auxiliary lemmas quantifying how eigenvalues
and eigenfunctions vary under change of domains. We let � D �� denote the outer unit
normal of �. If we knew that � had smooth boundary, then the next lemma would follow
easily from the standard Hadamard variational formula; see [31]. Since thus far we only
know that � satisfies some very basic measure-theoretic properties, the proof requires
some more care.

Lemma 8.2. Let � be a minimizer of F� . Let �t W M ! M be a 1-parameter family of
smooth diffeomorphisms with �0.x/ D x and @t�t jtD0 D T for a vector field T on M .
Set �t D �t .�/. Then,

(i) lim supt!0
1
jt j
.�1.�t / � �1.�/C t

´
@��
jru�j

2g.T; �/ dHn�1/ � 0,

(ii) lim supt!0
1
jt j
.tor.�t / � tor.�/C t 1

2

´
@��
jrw�j

2g.T; �/ dHn�1/ � 0,

(iii) limt!0
1
t
.j�t j � j�j � t

´
@��

g.T; �/ dHn�1/ D 0,

(iv) �2.�t / � �1.�t /C c.R; v; vmax/ for all jt j small enough,

(v) limt!s
1
jt�sj
j�1.�t /� �1.�s/C .t � s/f

�
s j D 0, where f �s W .�c; c/! .0;1/

is a continuous function of s.

In particular, �1.�t / is differentiable and

@t�1.�t /jtD0 D �

ˆ
@��

jru�j
2g.T; �/ dHn�1:

Proof. Step 1: Some general expressions. Take any v 2 L2.�/, and let vt D v ı ��1t
2 L2.�t /. Then, we may compute

ˆ
�t

v2t D

ˆ
�

v2j det d�t j D
ˆ
�

v2
�
1C t divT CO.t2/

�
; (8.2)

where O depends only on k�tkC 1 . If instead we consider a v 2 H 1.�/, we have
ˆ
�t

jrvt j
2
D

ˆ
�

jd��1t .rv/j2j det d�t j

D

ˆ
�

�
jrvj2.1C t divT / � 2tg.rv;rrvT /

�
CO.t2/

ˆ
�

jrvj2:

If v is smooth on �, bounded, and such that ��v D f 2 L2.�/, this may be further
rewritten using the identity

div.jrvj2T � 2g.rv; T /rv/ D jrvj2 divT C 2g.rv; T /f � 2g.rv;rrvT / 2 L2.�/
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to give
ˆ
�t

jrvt j
2
D

ˆ
�

jrvj2 C t

ˆ
�

�2g.rv; T /f C div.jrvj2T � 2g.rv; T /rv/

CO.t2/

ˆ
�

jrvj2:

Applying the divergence theorem of [19] to the second term and assuming rv has non-
tangential limits at Hn�1-a.e. point of @� lets us rewrite this as
ˆ
�t

jrvt j
2
D

ˆ
�

jrvj2 � t

ˆ
�

2g.rv; T /f

C t

ˆ
@��

jrvj2g.T; �/ � 2g.rv; T /g.rv; �/dHn�1
CO.t2/

ˆ
�

jrvj2:

Step 2: Proofs of (i)–(iv). We now verify the conclusions of the lemma. For (i), take
v D u�, and use vt as a competitor for the definition of �1.�t /. Then, vt 2H 1

0 .�t /, and
ˆ
�t

v2t D

ˆ
�

u2�
�
1C t divT CO.t2/

�
D 1 � 2t

ˆ
�

u�g.ru�; T /CO.t
2/;

by integrating by parts as u� 2 H 1
0 .�/. On the other hand, ru� has nontangential limits

a.e. (from Corollary 7.12), and so
ˆ
�t

jrvt j
2
D �1.�/ � t

ˆ
�

2g.ru�; T /�1.�/u�

C t

ˆ
@��

jru�j
2g.T; �/ � 2g.ru�; T /g.ru�; �/dHn�1

CO.t2/:

Using the formula from Corollary 7.12 on the boundary gives g.ru�; T /g.ru�; �/ D
jru�j

2g.T; �/, so this leads to

�1.�t / �

´
jrvt j

2´
u2t

� �1.�/ � t

ˆ
@��

jru�j
2g.T; �/dHn�1

CO.t2/;

as the terms of the form t
´
�
u�g.ru�; T / cancel to order t . This proves (i).

The proof of (ii) is given analogously: proceeding in the same way using v D w�, the
terms t

´
�
g.ru�; T / in the expansion of tor.�t / again cancel and we find that

tor.�t / �
ˆ
1

2
jrvt j

2
� vt � tor.�/ �

t

2

ˆ
@��

jrw�j
2g.T; �/dHn�1

CO.t2/:

To prove (iii), we use the constant function v D 1 in (8.2) and the divergence theorem
to obtain

j�t j D j�j C t

ˆ
@��

g.T; �/dHn�1
CO.t2/:
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Using (i), (ii), and (iii), we see that E.�t / � E.�/C C jt j � Emin C ı if jt j is small
enough. From Lemma 3.14, this implies that �2.�t / > �1.�/C c, giving (iv).

Step 3: Proof of (v). Finally, for (v) we proceed as for (i), except with�s in place of�,
using us;t D u�s ı �s ı �

�1
t W �t ! R as a competitor. These are nonnegative, andˆ

�t

u2s;t D 1CO.jt � sj/; (8.3)

which we obtain from (8.2). We do not try to justify the application of the divergence
theorem in this case, instead only using

�1.�t / �

´
�t
jrus;t j

2

´
�t
u2s;t

D �1.�s/C .t � s/

ˆ
�

jru�s j
2 divTs � 2g.ru�s ;rru�s Ts/
C 2u�sg.ru�s ; Ts/

CO..t � s/2/

WD �1.�s/C .t � s/f
�
s CO..t � s/

2/;

where Ts D @t�t jtDs . Clearly, f �s is bounded in terms of � and �1.�t /, and we
know �1.�t / is bounded from (i). Applying this with t and s reversed shows that

�1.�s/ � �1.�t /C .s � t /f
�
t CO..t � s/

2/; (8.4)

and so j�1.�s/ � �1.�t /j � C js � t j. Together with (iv), Lemma 3.8, and (8.3), this
implies that

kus;t � u�t k
2
H1
0 .�t /

�





 us;tq´
u2s;t

� u�t





2
H1
0 .�t /

C C jt � sj

� C

�´
�t
jrus;t j

2

´
�t
u2s;t

� �1.�t /

�
C C jt � sj � C jt � sj:

On the other hand, as us;t are defined by u�s composed with smooth diffeomorphisms
approaching the identity, limt!0 kus;t � u�skH1.M/ D 0 from the Vitali convergence
theorem. Together, these give that u�t ! u�s strongly in H 1 as t ! s, and it follows
that f �t is a continuous function of t . Combining with (8.4) leads to

�1.�s/ � �1.�t /C .s � t /f
�
s C o.t � s/:

This completes the proof of (v). The final statement of the lemma is immediate from (i)
and (v).

We now turn to a finer analysis of how the eigenfunctions u�t vary under domain
variation. We already saw in the proof of (v) that they vary continuously in t , in the H 1

norm; however, we will need a much more careful estimate to handle the term h. Our first
goal is a kind of C 1t L

2
x estimate, which we break into two parts.
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Lemma 8.3. Let � be a minimizer of F� . Let gt be a smooth (in both x and t , uni-
formly on �), 1-parameter family of metrics with g0 D g, the original metric on M , and
let�t andmt respectively be the Laplace–Beltrami operator and volume measure for the
metric gt . Let ft be a C 1 function of t that is constant in x with f0 D �1.�/. Assume
that ut 2 H 1

0 .�/ is the unique nonnegative function with
´
u2t dmt D 1 and

��tut D ftut ;

and assume that no solutions v 2 H 1
0 .�/ to

��tv D �ftv

exist for any � 2 .0; 1C c/ (for some c > 0) apart from scalar multiples of ut . Then, ut
is continuously differentiable in t for jt j < c and any x 2 �, the derivative v at t D 0 lies
in C.x�/ \H 1

0 .�/, and

lim
t!0

1

t
kut � u0 � tvkH1

0 .�/
D 0:

Note that the existence of ut is part of the lemma’s hypotheses; we do not claim such
a ut exists.

Proof. Observe that kutkH1
0 .�/

is uniformly bounded in t , using ut as a test function for
itself: ˆ

jrut j
2
t dmt D ft

ˆ
u2t dmt � ft : (8.5)

For a q 2 H�1.�/ consider the problem of finding a p 2 H 1
0 .�/ which solves

��tp D ftp C q; with
´
put D 0. Such a p exists if and only if qŒut � D 0; if it exists it

is unique and
kpkH1.�/ � CkqkH�1.�/: (8.6)

Indeed, the operator��t � ftI WH 1
0 .�/!H�1.�/ is bounded and, by our assumptions,

has a one-dimensional kernel spanned by ut . From the Fredholm alternative and open
mapping theorem (see [11]), the range consists of all q 2 H�1.�/ with qŒut � D 0, and

ˆ ˇ̌̌
r

h
p � ut

ˆ
gt .rut ;rp/

iˇ̌̌2
gt
dmt � Ckqk

2
H�1

:

Then, (8.6) follows, as
´
gt .rut ;rp/ D

´
ftutp D 0 from the definition of ut .

Insert ut into the equation for us , to get (in weak form with � 2H 1
0 .�/ a test function)

ˆ
gs.rut ;r�/dms D

ˆ
gs.rut ;r�/dmt C

ˆ
gs.rut ;r�/d.ms �mt /

D ft

ˆ
ut�dmt C

ˆ
gs.rut ;r�/ � gt .rut ;r�/dmt

C

ˆ
gs.rut ;r�/d.ms �mt /
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D fs

ˆ
ut�dms C

ˆ
.ft � fs/ut� C gs.rut ;r�/

� gt .rut ;r�/dmt

C

ˆ
�fsut� C gs.rut ;r�/d.ms �mt /

D fs

ˆ
ut�dms C q

t
sŒ��;

where for qts 2 H
�1.�/, we have

jqtsŒ��j �
�
kft � fskL1 C C sup

�

jgt � gsj
�
kutkL2k�kL2

C sup
�

jgt � gsjkutkH1
0 .�/
k�kH1

0 .�/
;

and in particular, kqkH�1.�/ � C jt � sj. Here jgt � gsj D jgt � gsjg is with respect to
the original metric. Subtracting us , we have (in weak form)

��s.ut � us/ D fs.ut � us/C q
t
s : (8.7)

By applying (8.6) to ut � us � us
´
us.ut � us/dms D ut � aus , we see that

kut � auskH1
0
� CkqtskH�1 � C jt � sj:

The constant a need not be 1, but we do know that as ut ; us � 0 by assumption,
a D
´
utusdms � 0. Using the Poincaré and triangle inequalities and the normalization

on us; ut ,

j1 � aj D
ˇ̌
kutkL2.dmt / � kauskL2.dms/

ˇ̌
�
ˇ̌
kutkL2.dms/ � kauskL2.dms/

ˇ̌
C
ˇ̌
kutkL2.dms/ � kutkL2.dmt /

ˇ̌
� kut � auskL2.dms/ C C jt � sj � C jt � sj:

Therefore, we see that

kut � uskH1
0 .�/
� kut � auskH1

0 .�/
C j1 � ajkuskH1

0 .�/
� C jt � sj: (8.8)

Set

q0t Œ�� WD �

ˆ
.@tft /ut� � .@tgt /.rut ;r�/Cm

0
t

�
ftut� � gt .rut ;r�/

�
dmt ;

where m0t stands for the derivative of the volume form (that is, mt .E/ � ms.E/ D´ t
s

´
E
m0rdmrdr). Then,

jq0t Œ��j � Ck�kH1
0
kutkH1

0
;

so kq0tkH�1 � C . On the other hand, directly estimating each term using the assumptions
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on ft and gt leads to

jqtsŒw� � .s � t /q
0
t Œw�j

� C
�
sup
�

jft � fs C .s � t /@tft j C sup
�

jgt � gs C .s � t /g
0
t j

C sup
�

jft � fsj
2
C jgt � gsj

2
�
kutkH1

0 .�/
k�kH1

0 .�/

� o.jt � sj/kutkH1
0 .�/
k�kH1

0 .�/
;

so kqts � .s � t /q
0
tkH�1.�/ D o.jt � sj/. Using (8.8), kq0t � q

0
skH�1.�/ ! 0 as t ! s, so

this may be rewritten as

kqts � .s � t /q
0
skH�1.�/ D o.jt � sj/:

We also claim that q0sŒus�D 0. Indeed, as ��sut D fsut C qts is a nontrivial solution,
from the Fredholm alternative we must have qtsŒus� D 0, but then

jt � sjjq0t Œus�j D o.jt � sj/;

so taking t ! s implies q0sŒus� D 0. Let v0s 2 H
1
0 .�/ be the unique solution to ��v0s D

fsv
0
s C q

0
s with

´
usv

0
s D 0, using the Fredholm alternative from (8.6). Then, together

with (8.7), we have that

kut � aus � .s � t /v
0
s kH1

0
� Ckqts � .s � t /q

0
skH�1.�/ D o.jt � sj/;

where a D
´
utusdms as before. Now set v1s D us

1
2

´
u2sm

0
sdms , and estimate a again:ˇ̌̌ˆ

u2t dmt �

ˆ
u2sdms � .t � s/

ˆ
u2sm

0
sdms

ˇ̌̌
�

ˇ̌̌ ˆ
u2t dmt �

ˆ
u2sdms � .t � s/

ˆ
u2tm

0
sdms

ˇ̌̌
C C jt � sj2

� C jt � sj2:

So, taking square roots and recalling that
´
u2t dmt D 1, we haveˇ̌̌

kutkL2.dmt / � kutkL2.dms/ � .t � s/
1

2

ˆ
u2sm

0
sdms

ˇ̌̌
� C jt � sj2 C

j2 � 1 � kutkL2.dms/j

1C kutkL2.dms/
jt � sj

ˆ
u2s jm

0
sjdms � C jt � sj

2:

This may be used to estimate 1 � a up to a correction:ˇ̌̌
1 � a � .t � s/

1

2

ˆ
u2sm

0
sdms

ˇ̌̌
�
ˇ̌
kutkL2.dms/ � akuskL2.dms/

ˇ̌
C C jt � sj2

�
ˇ̌
kutkL2.dms/�kaus�.s � t /v

0
s kL2.dms/

ˇ̌
CC jt � sj2
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�kut � aus � .s � t /v
0
s kH1

0
C C jt � sj2 D o.jt � sj/:

The second step used that
´
usv

0
s dms D 0. Thus,

ut � us � .s � t /Œv0s C v1s �

H1

0
D kut � aus � .s � t /v

0
s kH1

0

C

ˇ̌̌
1 � a � .t � s/

1

2

ˆ
u2sm

0
sdms

ˇ̌̌
D o.jt � sj/:

Set vs D v0s C v
1
s . This establishes the main conclusion of the lemma. It remains to verify

that v0 2 C.x�/ and that ut is continuously differentiable on �.
These claims can be seen from the PDE for v0s . As ut is smooth on the interior of�, as

long as � 2 H 1
0 .U / for U �� �, we have (integrating by parts as needed) that jq0sŒ��j �

C.U /k�kL1 . In other words, q0s (and similarly, qts) may be represented by a bounded
function. Applying elliptic regularity estimates to (8.7) gives that for U 0 �� U ,

kut � us � .s � t /vskC 1;˛.U 0/

� C.U;U 0/
�
kut � us � .s � t /vskH1.U / C kq

t
s � .s � t /q

0
skL1.U /

�
D o.t � s/:

In particular, this implies that ut .x/;rut are continuously differentiable in t , locally uni-
formly on �.

As for checking that v0 2 C.x�/, note that q00 only depends on u0;ru0, which are
bounded uniformly on � (as u0 D u�, and using Corollary 5.5). Thus, from elliptic esti-
mates on NTA domains (see, e.g., [32, Theorem 1.2.8]), we have that for some ˛ > 0,

kv00kC 0;˛.x�/ � C
�
kv00kH1

0 .�/
C kq00kL1.�/

�
� C:

On the other hand, v10 is a bounded multiple of u0, and therefore Lipschitz continuous.

Lemma 8.4. Let � be a minimizer of F� , �t W M ! M a 1-parameter family of smooth
diffeomorphisms with �0.x/ D x, @t�t jtD0 D T a vector field on M , and such that
�t D �t .�/. Then, u�t W .�c; c/! H 1.�/ is differentiable in t at t D 0 with derivative
Pu� D Pu

T
� 2 L

1.M/ vanishing outside �, in the following sense:

lim
t!0

1

t
ku�t � u� � t Pu�kL2.M/ D 0:

The function Pu� satisfies8̂̂<̂
:̂
�� Pu� D �1.�/ Pu� � u�

´
@��
jru�j

2g.T; �/dHn�1 on �;

Pu� D �g.ru�; T / on @��;´
�
Pu�u� D 0:

(8.9)

The boundary condition holds in the sense of nontangential limits at a.e. point on @��.
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We will write PuT� to denote the derivative found in Lemma 8.4 when we wish to
emphasize its dependence on the vector field T , and will simply write Pu� otherwise in
order to alleviate notation. We will discuss the specifics of the PDE satisfied by Pu� below,
but note for now that from the absolute continuity of the harmonic and Hausdorff mea-
sures from Proposition 7.9, the boundary condition is given on a sufficiently large portion
of @� (i.e., there is a unique solution to this problem; see [32, Theorem 1.4.4]).

Proof. Set ut D u�t ı �t W �! Œ0;1/ to be the pullback of u�t . Then, ut satisfies a
PDE on �; namely, ��tut D ftut ; where �t is the Laplace–Beltrami operator asso-
ciated with the metric gt D ��t g and ft D �1.�t /. From Lemma 8.2, part (v), ft is
a C 1 function. Moreover, ut is the unique nonnegative solution to this equation inH 1

0 .�/

with kutkL2.�;dmt / D 1, while the same equation with ft replaced by �ft , � 2 Œ0; 1C c�
admits no nontrivial solutions (this follows from Lemma 8.2, part (iv)). Apply Lemma 8.3
to this to learn that ut is continuously differentiable in t and to obtain a function v 2
H 1
0 .�/ \ C.

x�/ with

lim
t!0

1

t
kut � u� � tvkH1

0 .�/
D 0:

In particular, we have that

ku�t � u� ı �
�1
t kH1

0 .�t /
� Ckut � u�kH1

0 .�/
� C jt j: (8.10)

Our goal now is to estimate u�t � ut . Consider, with t fixed, the function  ı �s.x/ W
M � Œ0; t � ! Œ0;1/ for any  2 H 1.M/. This function lies in H 1.M � Œ0; t �/, with
distributional derivative d.x;s/. ı �s/.v; 1/ D .d�s.x/ .dx�s.x/v/; d�s.x/ .@s�s.x//;
this may be verified by approximating by smooth functions. Plugging in u�t for  leads
to the identity

u�t .x/ � ut .x/ D �

ˆ t

0

@sŒu�t ı �s�.x/ds D �

ˆ t

0

g.ru�t .�s.x//; @s�s.x//ds;

which is valid for almost every x 2M . Now, for jsj � jt j,

kr.u�t ı �s/ � ru�kL2.M/ � kr.u�t ı �s/ � r.u� ı �
�1
t ı �s/kL2.M/

C kru� � r.u� ı �
�1
t ı �s/kL2.M/

� C jt j C ot .1/:

We used (8.10) to bound the first term (after changing variables), while the second goes
to 0 by the dominated convergence theorem (ru� is bounded while ��1t ı �s.x/! x

pointwise). We also have that

j@s�s.x/ � T j � C jsj � C jt j;

as �s is smooth. Applying both of these, we have

1

jt j
ku�t � ut C tg.ru�; T /kL2.M/

�
1

jt j

ˆ t

0

kg.ru�t .�s.�//; @s�s.�// � g.r�; T /kL2.M/ds
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� C jt j C ot .1/ D ot .1/:

Now, set Pu� D v � g.ru�; T / (extending it by 0 outside of �). We have shown that

1

jt j
ku�t � u� � t Pu�kL2.M/

�
1

jt j

�
kut � u� � tvkL2.�/ C ku�t � ut C tg.ru�; T /kL2.M/

�
! 0:

As both v and ru� are bounded, so is Pu�. It only remains to verify that Pu� solves the
stated PDE.

First, recall that from Lemma 8.3 we know ut (and its spatial derivatives) are contin-
uously differentiable in t on � for small jt j. It follows that u�t is continuously differen-
tiable in t on �t as well, and @tu�t jtD0 D Pu� on �. Therefore, we may differentiate the
PDE ��u�t D �1.�t /u�t pointwise on � at t D 0 to give

�� Pu� D �1.�/ Pu�C .@t�1.�t /jtD0/u� D �1.�/ Pu� � u�

ˆ
@��

jru�j
2g.T; �/dHn�1

on�, where in the second equality we used the final statement of Lemma 8.2. The orthog-
onality condition may be inferred from the normalization of u�t : indeed,

1 D

ˆ
u2�t D

ˆ
.u� C t Pu�/

2
C o.t/ D 1C 2t

ˆ
u� Pu� C o.t/:

Rearranging and sending t to 0 gives
´
u� Pu� D 0. Finally, we have that �g.ru�; T / has

nontangential limits a.e. on @� from Corollary 7.12, while v ! 0 on @� uniformly; this
gives the boundary condition.

We are now in a position to prove the main result of this subsection, which is a “dis-
tributional” Euler–Lagrange equation for �.

Lemma 8.5 (Distributional Euler–Lagrange equation). Let � be a minimizer of F� . Fix
Br .x0/ � QR and let L WD jBr .x0/j. Let T be a smooth vector field on M with jT j � 1
that is compactly supported on Br .x0/.

If T is volume preserving to first-order in the sense that
´
@��

g.T; �x/dHn�1 D 0,
then ˇ̌̌

�

ˆ
@��

jru�j
2g.T; �/C

T

2
jrw�j

2g.T; �x/dHn�1

C �
hˆ
�

Pu�a� C

ˆ
@��

b�g.T; �/dHn�1
iˇ̌̌
� CL;

where a�, b� are the functions from property (N4) of h and Pu� D PuT� is as in Lemma 8.4.
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If j�j ¤ v,L< jj�j � vj, and we do not assume
´
@��

g.T;�x/dHn�1D 0, we instead
haveˇ̌̌
�

ˆ
@��

jru�j
2g.T; �/C

T

2
jrw�j

2g.T; �/dHn�1
C f 0v;�.j�j/

ˆ
@��

g.T; �/dHn�1

C �
hˆ
�

Pu�a� C

ˆ
@��

b�g.T; �/dHn�1
iˇ̌̌
� CL:

The term containing Pu� may first appear to be of lower order, since it is integrated
on � rather than the boundary @��. This is not the case: due to how Pu� D PuT� depends
on T , it will end up being of the same order as the others.

Proof of Lemma 8.5. Let �t .x/ be the flow associated with T : @t�t .x/ D T .�t .x//;
then, �t is a smooth family of diffeomorphisms for all jt j � c small, with �t .x/ D x

outside of Br .x0/. Setting �t D �t .�/, apply Lemma 8.2 to � and �t ; this implies that
�2.�t / > �1.�t /C c and

E.�t / � E.�/ � t

ˆ
@��

jru�j
2g.T; �/C

T

2
jrw�j

2g.T; �/dHn�1
C o.t/:

Let us now consider h.�t /: using property (N4), we have that

h.�t / � h.�/ D

ˆ
.u�t � u�/a� C

ˆ
�t

b� �

ˆ
�

b� C o.t/CO.tr
n/:

The second term here may be estimated as in Lemma 8.2 using (8.2) to give
ˆ
�t

b� �

ˆ
�

b� D t

ˆ
�

b� divT C o.t/

D t

ˆ
@��

b�g.T; �/dHn�1
� t

ˆ
�

g.rb�; T /C o.t/

D t

ˆ
@��

b�g.T; �/dHn�1
CO.trn/C o.t/;

using that kb�kC 0;1 � C by assumption. For the first term, we see that ku�t � u� �
t Pu�kL2 D o.t/ by Lemma 8.4, and so

ˆ
.u�t � u�/a� D t

ˆ
Pu� a� C o.t/:

Putting everything together and using that F� .�/ � F� .�t /,

0 � �t

ˆ
@��

jru�j
2g.T; �/C

T

2
jrw�j

2g.T; �/dHn�1

C �
h
t

ˆ
@��

b�g.T; �/dHn�1
C t

ˆ
Pu� a�

i
C o.t/CO.trn/:

The conclusion follows from dividing by t and letting t ! 0.
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If j�j ¤ v and jj�j � j�t jj < jj�j � vj (which always holds if t is small enough),
then fv;� is linear and we may estimate

fv;�.j�t j/ D fv;�.j�j/C f
0
v;�.j�j/Œj�t j � j�j�

D fv;�.j�j/C tf
0
v;�.j�j/

ˆ
@��

g.T; �/dHn�1
C o.t/:

We then proceed as we did previously.

8.2. The first variation at a point

Next, we wish to derive a pointwise form of the distributional Euler–Lagrange equation of
Lemma 8.5 by sending T to ıx�x � ıy�y at points x; y 2 @��. Here and in the remainder
of the paper, we let �x D ��.x/ be the outer unit normal of� at x. Passing to this limit is
actually quite delicate, with the main challenge arising from making sure that the functions
Pu� D Pu

T
� behave well under such an approximation procedure. Heuristically speaking,

recalling equation (8.9) satisfied by PuT�, the limit of the PuT� should solve an equation with
a Dirac delta as boundary data. On the other hand, the boundary data in (8.9) is achieved
only Hn�1-a.e. and in a nontangential limit sense. To rigorously derive this limit, we will
use PDE (8.9) solved by Pu� by writing Pu� in terms of the Green’s function and Poisson
kernel.

It will be convenient to decouple the Poisson kernel part and the Green’s function part,
or in other words, the harmonic part and its remainder part, of Pu� in the following way:
For any smooth vector field as in Lemma 8.5, let the harmonic part hT of PuT� be given by

hT .x/ D

ˆ
@�

PuT� d!x ;

where !x is the harmonic measure; that is, it solves the PDE´
��hT D 0 on �;

hT D PuT� D �g.ru�; T / on @�

with the boundary condition in the sense of nontangential limits at a.e. point. Then, let
qT D PuT� � h

T be the remainder part. Using the equation for PuT� from Lemma 8.4, we see
that qT solves the PDE8̂̂<̂

:̂
��qT D �1.�/.q

T C hT / � u�
´
@��
jru�j

2g.T; �/dHn�1 on �;

qT D 0 on @�;´
.qT C hT /u� D 0:

(8.11)

We construct our approximating vector fields in the following way: Given a point
x 2 @�� and a sufficiently small scale r , let Tx;r be a vector field chosen such that
jTx;r j � 1, suppTx;r � Bc.n/r .x/, and

´
@��

g.Tx;r ; �/dHn�1 D !n�1r
n�1, where !n�1
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is the volume of the unit ball in Rn�1; this may always be found by starting with the
vector field �x�r in normal coordinates near x, with �r a smooth cutoff function approxi-
mating 1Br .x/, and then multiplying by a constant.

Recall the notation

K.x; y/ D
d!y

dHn�1 @�
.x/

for the Poisson kernel, that is, the Radon–Nikodym derivative of the harmonic and surface
measures, from (7.12).

First, in the next lemma we will show that the harmonic parts hTx;r , after suitable
renormalization, converge to a multiple of the Poission kernel as r ! 0. The main tool in
the proof is the sharp estimates for the harmonic measure established in Proposition 7.9.

Lemma 8.6. For every x 2 @��, if suppT � Br .x/, then the function hT satisfies

jhT .y/j �
C

dn�1.y; x/

ˆ
@��

jT jdHn�1

whenever d.x; y/ � Cr .
For Hn�1-almost every x 2 @��, if hx.y/ D jru�.x/jK.x; y/ is a multiple of the

Poisson kernel, then hx is well-defined emsand satisfies

jhx.y/j �
C

dn�1.y; x/

and

lim
r&0

sup
y2�nBCr .x/

ˇ̌̌
hx.y/ �

hTx;r .y/

!n�1rn�1

ˇ̌̌
dn�1.y; x/ D 0: (8.12)

Proof. The first conclusion follows from harmonic measure estimate (7.8) in Proposi-
tion 7.9, along with the fact that jru�j � C from Lemma 5.5. For the others, select x
with the following properties: (i) x 2 @��, (ii) x is a Lebesgue point of jruj with respect
to Hn�1, and (iii) x is a Lebesgue point ofK.x;y/with respect to Hn�1 for a fixed y 2�
with Bc0.y/ � �. Then, the Poisson kernel estimates of (7.12) following Proposition 7.9
directly give that for any z 2 �,

jhx.z/j D jru.x/jK.x; z/ �
C

dn�1.z; x/
:

As a first step toward proving (8.12), we have that for this one fixed y,ˇ̌̌
hx.y/ �

hTx;r .y/

!n�1rn�1

ˇ̌̌
D

ˇ̌̌
jru.x/jK.x; y/ �

hTx;r .y/

!n�1rn�1

ˇ̌̌
D

1

!n�1rn�1

ˇ̌̌ˆ
@��\Bcr .x/

jru.x/jK.x; y/g.Tx;r .z/; �z/ dHn�1.z/ � hTx;r .y/
ˇ̌̌

D
1

!n�1rn�1

ˇ̌̌ˆ
@��\Bcr .x/

jru.x/jK.x; y/g.Tx;r .z/; �z/

� Pu
Tx;r
� .z/K.z; y/ dHn�1.z/

ˇ̌̌
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�
C

rn�1

ˆ
@��\Bcr .x/

ˇ̌̌
jru.x/jK.x; y/g.Tx;r .z/; �z/

C g.ru�.z/; Tx;r .z//K.z; y/
ˇ̌̌
dHn�1.z/

D
C

rn�1

ˆ
@��\Bcr .x/

ˇ̌̌
jru.z/jK.x; y/g.Tx;r .z/; �z/

C g.ru�.z/; Tx;r .z//K.z; y/
ˇ̌̌
dHn�1.z/C or .1/

D
C

rn�1

ˆ
@��\Bcr .x/

ˇ̌̌
K.z; y/g.Tx;r .z/;ru�.z//

� g.ru�.z/; Tx;r .z//K.z; y/
ˇ̌̌
dHn�1.z/j C or .1/

D or .1/;

by using the definitions and both of the Lebesgue point assumptions, and the fact
that K.z; y/; jru�.z/j; jTx;r .z/j are all bounded.

Now, let us estimate the same quantity replacing y with any z 2 � n BCr .x/. To this
end, we use the triangle inequality and the definitions of hx and hTr;x to writeˇ̌̌

hx.z/ �
hTx;r .z/

!n�1rn�1

ˇ̌̌
D

ˇ̌̌
hx.y/

K.x; z/

K.x; y/
�

hTx;r .z/

!n�1rn�1

ˇ̌̌
� IC II;

where we set

I D
ˇ̌̌
hx.y/ �

hTx;r .y/

!n�1rn�1

ˇ̌̌K.x; z/
K.x; y/

;

II D
C

rn�1

ˇ̌̌ˆ
@��\Bcr.x/

Pu
Tx;r
� .q/

h
K.q; z/ �K.q; y/

K.x; z/

K.x; y/

i
dHn�1.q/

ˇ̌̌
:

Since d.x; y/ � c0, from (7.12) and Proposition 7.9 we have

K.x; z/

K.x; y/
� CK.x; z/ �

C

dn�1.z; x/
;

and therefore, we see that I � or .1/=dn�1.z; x/, using the first step above. Next, from
[32, Corollary 1.3.20],ˇ̌̌d!z

d!y
.x/ �

d!z

d!y
.q/
ˇ̌̌
� C

ˇ̌̌d!z
d!y

.x/
ˇ̌̌
d˛.x; q/ � C

d˛.x; q/

dn�1.z; x/

for some ˛ 2 .0; 1/, givingˇ̌̌
K.q; z/ �K.q; y/

K.x; z/

K.x; y/

ˇ̌̌
� C

d˛.x; q/

dn�1.z; x/
K.q; y/ � C

d˛.x; q/

dn�1.z; x/

for any q 2 @�. We therefore see that II � Cr˛=dn�1.z; x/. This proves (8.12).
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We now move toward estimating the remainder qT and pass to a limit for the (renor-
malized) functions qTx;r corresponding to the vector fields Tx;r defined above. The rema-
inder qT satisfies a simpler boundary condition than hT (recall (8.11)), and we will use
the following auxiliary elliptic estimate to help control it:

Lemma 8.7. Let p be a bounded function on � with
´
pu� D 0. Then,8̂̂<̂

:̂
��u D �1.�/uC p on �;´
uu� D 0;

u D 0 on @�

admits a unique solution u 2 H 1
0 .�/, which has the estimate

kukLP � C.P /kpkL1 (8.13)

for any P 2 Œ1; n
n�2

/.

The existence and uniqueness are immediate from the Fredholm alternative (using that
p 2 L1), as in (8.6). The main point is that the estimate is in terms of only the L1 norm
of p.

Sketch of the proof. The estimate

kukL1.�/ � C
�
kpkLP 0 .�/ C kukL2.�/

�
for any P 0 > n=2 may be found in [28, Theorem 8.15]. Combining with the Hilbert space
estimate from the Fredholm alternative (as in (8.6)),

kukL2 � kukH1
0 .�/
� CkpkL2.�/

gives
kukL1.�/ � CkpkLP 0 .�/:

Then, (8.13) follows from duality.

Corollary 8.8. For almost every x 2 @��, the functions qTx;r=!n�1rn�1 converge in
the Lp topology (for any p 2 Œ1; n

n�2
/) to a function qx , which solves8̂̂<̂

:̂
��qx D �1.�/.q

x C hx/ � u�jru�.x/j
2 on �;´

�
.qx C hx/u� D 0;

qx D 0 on @�

in the sense that qx is the Green potential of the right-hand side: for a.e. y 2 �,

qx.y/ D

ˆ
�

�
�1.�/.q

x.z/C hx.z// � u�.z/jru�.x/j
2
�
G�.z; y/dz: (8.14)
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It is straightforward to check that in fact qx is continuous (up to the boundary) away
from x, and satisfies the PDE and boundary condition classically. However, the statement
here is actually stronger: it implies that at x, qx still is 0 in the sense that it does not form
measure-valued boundary data there.

Proof. Recalling equation (8.11) satisfied by qT , we wish to decompose qT further as
qT D qT1 � u�

´
hT u� in order to apply the estimate of Lemma 8.7 above to the piece qT1 ,

which is orthogonal to u� by construction. Let us integrate by parts twice to compute

�1.�/

ˆ
�

hT u� D �

ˆ
�

hT�u�

D

ˆ
�

g.rhT ;ru�/ �

ˆ
@��

hT g.ru�; �/dHn�1

D �

ˆ
@��

jru�j
2g.T; �/dHn�1: (8.15)

We used the divergence theorem of [19], the fact that �hT D 0, and Corollary 7.12. In
particular, if we write hT1 D h

T � u�
´
hT u� (so that hT1 C q

T
1 D h

T C qT ), we have8̂̂<̂
:̂
��qT1 D �1.�/

�
qT1 C h

T
1

�
on �;´

qT1 u� D 0;

qT1 D 0 on @�

and
´
hT1 u� D 0.

We claim that hTx;r1 =!n�1r
n�1 is a Cauchy sequence in L1 (with respect to index r).

To see this, apply Lemma 8.6 and notice that limr&0 k
hTx;r

!n�1rn�1
� hxkL1 D 0, and that

lim
r&0

ˆ
u�

hTx;r

!n�1rn�1
D

ˆ
hxu�:

From (8.15), we see this implies that at each Lebesgue point x of jru�j on @�� we have
ˆ
hxu� D lim

r&0
�

1

�1.�/!n�1rn�1

ˆ
@��

jru�j
2g.Tx;r ; �x/dHn�1

D �
jru�.x/j

2

�1.�/
:

So, applying Lemma 8.7, we see that qTx;r1 =!n�1r
n�1 is Cauchy in Lp , and so con-

verges to some function qx1 . Passing the orthogonality condition to the limit,
´
qx1u� D 0.

It then also follows that qTx;r=!n�1rn�1 ! qx WD qx1 � u�
´
hxu�.

We have verified the orthogonality condition
´
�
.qx C hx/u� D 0. The boundary con-

dition and PDE may be checked by writing

qTx;r .y/ D

ˆ
�

h
�1.�/

�
qTx;r .z/C hTx;r .z/

�
� u�.z/

ˆ
@��

jru�.y
0/j2g.Tx;r ; �y0/dHn�1.y0/

i
G�.z; y/dz;
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and passing both sides to the limit in Lp , which results in

qx.y/ D

ˆ
�

�
�1.�/.q

x.z/C hx.z// � u�.z/jru�.x/j
2
�
G�.z; y/dz

for a.e. y 2 �.

Remark 8.9. We may recover further estimates for qx from this argument if we wish. For
example, for any ˛; ˇ 2 R,

k˛qx C ˇqykL1 � Ck˛h
x
C ˇhykL1 C C j˛jru�.x/j

2
C ˇjru�.y/j

2
j;

by taking the limit in the corresponding estimates for qT with T D ˛Tx;r C ˇTy;r . If we
choose ˛ D 1

jru�.x/j2
and ˇ D � 1

jru�.y/j2
, the second term vanishes and we get


 qx

jru�.x/j2
�

qy

jru�.y/j2





L1
� C




 hx

jru�.x/j2
�

hy

jru�.y/j2





L1
:

These may also be derived directly from the potential identity (see (8.14)).

Set vx� D qx C hx . We are now in a position to derive a pointwise Euler–Lagrange
equation, or free boundary condition, satisfied Hn�1-a.e. along @�.

Corollary 8.10 (Pointwise form of the Euler–Lagrange equation). Let � be a minimizer.
Then, there is a constant A0 such that for almost every x 2 @�� \ QR, we have the
identity

�jru�.x/j
2
�

T

2
jrw�.x/j

2
C �

h
b�.x/C

ˆ
�

a�v
x
�

i
D �A0: (8.16)

Here vx� D q
x C hx , where qx is as in (8.14) and hx D jru�.x/jK.x; �/. If j�j ¤ v, then

A0 D f
0
v;�.j�j/.

Proof of Corollary 8.10. Take any two points x;y in @��\QR to which both Lemma 8.6
and Corollary 8.8 apply. Using Tr D .Tx;r � Ty;r /=!n�1rn�1 for T in Lemma 8.5, we see
thatˇ̌̌ˆ
@��

h
�jru�.q/j

2
�

T

2
jrw�.q/j

2
C �b�.q/

i
g.Tr .q/; �q/dHn�1.q/C �

ˆ
�

a� Pu
Tr
�

ˇ̌̌
� Cr ! 0:

Restricting further to only those x;y which are Lebesgue points of both jru�j and jrw�j
with respect to Hn�1 @�, we see that the first term converges to

jru�.y/j
2
� jru�.x/j

2
C

T

2

�
jrw�.y/j

2
� jrw�.x/j

2
�
C �Œb�.x/ � b�.y/�:
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From Lemma 8.6, we have that hTr ! hy � hx in L1.�/, while from Corollary 8.8,
qTr ! qy � qx in L1.�/. Passing to the limit then gives

jru�.y/j
2
� jru�.x/j

2
C

T

2

�
jrw�.y/j

2
� jrw�.x/j

2
�
C �Œb�.x/ � b�.y/�

C �

ˆ
�

a�Œv
x
� � v

y
�� D 0:

This implies the quantity in (8.16) is independent of x.
If j�j ¤ v, we may instead just use Tr D Tx;r=!n�1rn�1; proceeding similarly gives

that

�jru�.x/j
2
�

T

2
jrw�.x/j

2
C f 0v;�.j�j/C �

h
b�.x/C

ˆ
�

a�v
x
�

i
D 0:

This completes the proof.

8.3. The Euler–Lagrange equation rewritten

As we discussed at the beginning of the section, the pointwise form of the Euler–Lagrange
equation in Corollary 8.10 is not particularly useful from the perspective of regularity
theory. The goal of this subsection is to prove Theorem 8.1, that is, to rewrite (8.16) in a
way which involves only jru�j, up to “lower-order” terms.

The most difficult term in (8.16) to control is
´
�
a�v

x
�, so let us give a brief heuristic

idea of how this is done. Recall that vx� D hx C qx ; we will consider these two terms
separately. The term hx D jru�jK.x; �/ is strictly harder to control, so let us focus on the
term

´
�
a�h

x . In order to compare this term to jru�j2;we reinterpret the equation solved
by hx using that the Poisson kernel is the (normal) derivative of the Green’s function. So,
ˆ
�

hx.y/ dm.y/ � jru�.x/j
ˇ̌̌
rx

ˆ
�

G�.x; y/a�.y/ dm.y/
ˇ̌̌
D jru�jjrp.x/j;

where p.x/ is the potential solving �p D a� with p D 0 on @�. From here, this term
can be handled in a similar way to the term jrw�j2; using several applications of the
inhomogeneous boundary Harnack principle.

Let us now move toward proving Theorem 8.1. Before proving the main theorem, we
will need several lemmas that will allow us to control the other terms in (8.16). The first
lemma shows that the ratio between the first eigenfunction and a function p that solves an
equation is Hölder continuous up to the boundary. One application of this lemma will be
to the function p D w� in the proof of Theorem 8.1. It will also be used to help control
the bad term

´
�
a�v

x
� in the Euler–Lagrange equation (see (8.16)).

Lemma 8.11. Let p be a continuous function with p D 0 on @� and such that ��p D f ,
kf kL1 � 1. Then, 


 p

u�





C 0;˛.x�/

� C (8.17)
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for some C; ˛ depending only on v; vmax; R; �. Moreover, rp admits nontangential limits
at almost every point x of @��, jg.rp.x/; �x/j D jrp.x/j, and

jrp.x/j

jru�.x/j
D lim
y!x n.t.

ˇ̌̌ p.y/
u�.x/

ˇ̌̌
:

In particular, jrp.x/j D jru�.x/j�p.x/ along @�, where k�p.x/kC 0;˛.@�/ � C .

When one instead has the ratio of two harmonic functions, this fact follows from a
standard argument iteratively applying the classical boundary Harnack inequality. The
argument here is similar, but we include the details since our functions of interest solve
equations with a right-hand side and require the form of the boundary Harnack estimate
established in [4].

Proof. First, let pC solve ´
��pC D fC on �;

pC D 0 on @�:

We will show that pC satisfies (8.17); then, by also applying to �p�, we obtain the state-
ment for any p. Note that 0 � pC � w� from the maximum principle, so in particular,
from Proposition 7.8, p=u� � C .

Fix r < r0 small and z 2 @�, and let

M.r/ D sup
¹y2Br .z/\�Wd.y;z/>trº

pC

u�
; m.r/ D inf

¹y2Br .z/\�Wd.y;z/>trº

pC

u�
;

where t is small and fixed. We claim that there are c; " > 0 and a � < 1 such that

M.cr/ �m.cr/ � �ŒM.r/ �m.r/�C r":

This claim implies (8.17): indeed, a classic iteration argument then gives that M.r/ �
m.r/ � Cr"

0

, and then applying this along a Harnack chain connecting any two points
will give the conclusion.

Our claim is immediate if M.r/ � r". If not, then there is a point y 2 Br .z/ \ �
with d.y; z/ � t r and pC.y/ � r"u�.y/ � cr"C1. From the Harnack inequality, pC �
cr"C1 � Cr2 � cr"C1 on Btr=2.y/ as long as r0 is taken small enough. Then, we have

pC.y0/ � cr1C"rn�2G�.y; y
0/ � crn�1C"G�.y; y

0/

for y0 along @Btr=2.y/, and by the comparison principle on the entire complement of this
ball; we used (7.3) here. Applying the Green’s function bounds from Proposition 7.9 gives
that for x 2 Bcr .z/,

pC.x/ � crn�1C"G.y; x/ � cr"d.x; @�/ � cd1C".x; @�/:
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We now apply the inhomogeneous boundary Harnack principle [4, Theorem 1.3]
(working in normal coordinates and scaling suitably) on the region Bcr .z/ to

M.r/ �
pC

u�
D
M.r/u� C p

C

u�

and
pC

u�
�m.r/ D

pC �m.r/u�

u�
:

Both of these are quotients of positive functions vanishing on @� and having bounded
Laplace–Beltrami operators. They both also satisfy the growth condition with exponent
ˇ D 1C ". This implies that

M.r/ �m.cr/ � C ŒM.r/ �M.cr/�; M.cr/ �m.r/ � C Œm.cr/ �m.r/�:

These may be rewritten to giveM.cr/�m.cr/� C�1
CC1

ŒM.r/�m.r/�, proving our claim.
Now we consider the remaining conclusions. As jp.x/j � Cu�.x/ � Cd.x; @�/,

it follows from applying elliptic estimates on Bd.x;@�/=2.x/ that jrpj � C . Let �p D
p=u� 2 C

0;˛; then, near any x 2 @�� we have from Lemma 7.10 that

p.y/ D �p.y/u�.y/ D �p.x/
�
jru�.x/jlx;�x C o.jx � yj/

�
:

Here lx;�x is a truncated linear function in normal coordinates as defined in (7.13). Apply-
ing elliptic estimates as in Corollary 7.12, we obtain that rp.y/! ��p.x/jru�.x/j�x
nontangentially and the remaining conclusions follow.

We focus our attention toward the term
´
�
a�v

x
�. Following the discussion above, a

key point will be to rewrite the equation solved by vx� by using that the Poisson kernel is
the derivative of the Green’s function:

Lemma 8.12. The derivative of the Green’s function rxG�.x; y/ admits nontangential
limits as x ! z 2 @� for every y at Hn�1-a.e. z 2 @��. Moreover, rxG�.x; y/ D
��xjrxG�.x; y/j and K.x; y/ D jrxG�.x; y/j a.e. on @��.

Sketch of the proof. The existence of nontangential limits and the expression rxG�.x;y/
D ��xjrxG�.x; y/j may be obtained as in Lemma 8.11. The last point follows from the
integration by parts formula

ˆ
@��

g.rxG�.x; y/; �x/�.x/dHn�1.x/ D ��.y/ �

ˆ
�

G�.x; y/��.x/dx

for any � smooth (this may be justified using the divergence theorem of [19]). This gives a
representation formula for every harmonic function on�with continuous boundary condi-
tions, so it follows from the definition of harmonic measure thatK.x;y/D jrxG�.x; y/j
at Hn�1-a.e. x.
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The next two lemmas will be used to control the term
´
�
a�v

x
� in (8.16). Recall from

the previous section that vx� D h
x C qx . We focus on the term hx first.

Lemma 8.13. Let f W �! R be a function with jf j � 1. Then, at a.e. x 2 @�,
ˆ
�

hxf D jru�.x/j
2�f .x/;

where k�f kC 0;˛ � C and C; ˛ depend only on v; vmax; �; R. As a consequence,


 hx

jru�.x/j2
�

hy

jru�.y/j2





L1
� Cd˛.x; y/:

Proof. From the definition of hx and Lemma 8.12, at a.e. x 2 @�� we have
ˆ
�

hxf D jru�.x/j

ˆ
�

K.x; y/f .y/dy D �jru�.x/j

ˆ
�

g.rxG�.x; y/; �x/f .y/dy:

Let xk 2 � be a sequence of points converging to x nontangentially (i.e., "d.xk ; x/ �
d.xk ; @�/): then, rxG�.xk ; y/ converges to rxG�.x; y/ for every y. From [32, Le-
mma 1.2.8(iv)], supx krxG�.x; y/kLP .dy/ � C for P 2 Œ1; n

n�1
/. Working in normal

coordinates and applying the Vitali convergence theorem, this means that
ˆ
�

g.rxG�.x; y/; �x/f .y/dy D lim
k

ˆ
�

g.rxG�.xk ; y/; �x/f .y/dy:

Set p.z/ D
´
�
G�.z; y/f .y/dy, which solves´

��p D f on �;

p D 0 on @�:

From Lemma 8.11, rp admits nontangential limits Hn�1-a.e. on @� and jrp.x/j D
jru�.x/j�f .x/, with k�f kC 0;˛ � C . In particular,

g.rp.x/; �x/ D lim
k
g.rp.xk/; �x/ D lim

k
g
�
rx

ˆ
�

G�.xk ; y/f .y/dy; �x

�
:

We may pass the derivative under the integral sign (by again using the inequality
supx krxG�.x; y/kLp.dy/ � C to justify this), to obtain

jru�.x/j�f .x/ D lim
k

ˇ̌̌ˆ
�

g.rxG�.xk ; y/; �x/f .y/dy
ˇ̌̌
D

1

jru�.x/j

ˇ̌̌ˆ
�

hxf
ˇ̌̌
:

The first conclusion of the lemma follows using �f sign
´
�
hxf as the �f . TheL1 estimate

is now immediate from duality.

Next, we deal with the term involving qx , which is much easier to handle.
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Lemma 8.14. Let f W �! R be a function with jf j � 1. Then, at a.e. x 2 @�,
ˆ
�

qxf D jru.x/j2�f .x/;

where k�f kC 0;˛ � C and C; ˛ depend only on R; v; vmax; �.

Proof. We apply Lemma 8.13 to Remark 8.9 to obtain


 qx

jru.x/j2
�

qy

jru.y/j2





L1
� C




 hx

jru.x/j2
�

hy

jru.y/j2





L1
� Cd˛.x; y/:

We are now in a position to prove Theorem 8.1.

Proof of Theorem 8.1. Apply Lemmas 8.13 and 8.14 to hx , qx with f D a� to obtain that
for almost every x 2 @�Hn�1,

ˆ
�

a�.x/v
x
� D jru.x/j

2�1.x/;

where k�1kC 0;˛.@�/ � C . Then, apply Lemma 8.11 to p D w� to give

jrw�.x/j
2
D jru�.x/j

2�2.x/;

where k�2kC 0;˛.@�/ � C . Inserting both into Corollary 8.10 gives

jru�.x/j
2
�
�1 �

T

2
�2.x/C ��1.x/

�
D �A0 � �b�.x/:

So long as �0 is small enough,�1� T
2
�2.x/C ��1.x/��

1
2

. From Lemma 7.10, we have
that jru�j 2 Œ1=C; C � a.e., so A0 must also be bounded above and below. Choosing �0
smaller as necessary, we may rewrite

A0 D jru�.x/j
2
1C T

2
�2.x/ � ��1.x/

1 � �
A0
b�.x/

D jru�.x/j
2.1C �.x//;

where k�kC 0;˛.@�/ � C and �C� � �.

9. Viscosity form of the Euler–Lagrange equation and C 1;˛ estimates

Thus far, we have derived the Euler–Lagrange equation satisfied by minimizers of the
main energy in a pointwise (Hn�1-a.e.) sense and we established Theorem 8.1 to express
the Euler–Lagrange equation in a more useful form. In this section, we reformulate the
(useful form of the) Euler–Lagrange equation in the viscosity sense. This will allow us
to apply known regularity results for one-phase free boundary problems. In particular,
when minimizers of the base energy are sufficiently regular (for instance, this is the case
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when M is a simply connected space form), we find in Theorem 9.4 below that any mini-
mizer of the main energy is a small C 1;˛ perturbation of a minimizer of the base energy.
We additionally use the viscosity form of the Euler–Lagrange equation to guarantee that
minimizers satisfy the volume constraint j�j D v.

The viscosity form of the Euler–Lagrange equation follows directly from the pointwise
version and generic free boundary arguments, and we only briefly sketch the proof. Details
may be found in [36].

Lemma 9.1. Theorem 8.1 holds in the viscosity sense: let � be a minimizer of F� , x 2
@�\QR, and � be a smooth function on Br .x/. Assume that �C � .�/u� on Br .x/ and
�.x/ D 0. Then,

jr�.x/j2.1C �.x// � .�/A0:

Sketch of the proof. We work in normal coordinates around x. Let ur .y/ D u�.ry/=r

be rescalings, which converge (along a subsequence) locally uniformly on Rn to a func-
tion u. Similarly rescaling �r .y/ D

�.ry/
r

, this converges to the linear function �1.y/ D
r�.0/ � y. We have that ��ur ! ��u in the sense of distributions, so in particular, as
measures; it follows that u is harmonic on ¹u > 0º. As ur � .�/.�r /C, this passes to the
limit to give u � .�/�1. In particular, ¹u > 0º contains (is contained in) the half-space
¹y W r�.0/ � y > 0º. We also recover that cs � supBs.0/ u � Cs in the limit.

Possibly choosing a further subsequence, it may be shown that u is a half-linear func-
tion ˛.y � �/C, with �Dr�=jr�j. See [15, Lemma 11.17] or [36, Lemma 3.6] for details.

As measures, we have that ��ur D jrur jdHn�1 @� C or .1/, and jrur .y/j Dp
A0=.1C �.ry// a.e. on @�. Passing to the limit in the sense of distributions shows that
ˆ
@��=r

 jrur .y/jdHn�1
D �

ˆ
 d�ur C o1.r/!�

ˆ
 d�uD

ˆ
y��D0

˛ dHn�1

for any smooth  . The left-most integral converges top
A0=.1C �.0// lim

r

ˆ
@��=r

 dHn�1;

and as �=r ! ¹y � � > 0º locally as sets of finite perimeter (possibly taking a further
subsequence), this limit is p

A0=.1C �.0//

ˆ
y��D0

 dHn�1:

Therefore, ˛ D A0=.1C �.0//, and the conclusion follows from ˛ � .�/jr�.0/j.

The next lemma is an application of a regularity theorem, first shown in [5] in simpler
settings and generalized by De Silva [23] to equations and free boundary conditions which
include the one satisfied by u� here. It guarantees that at sufficiently flat points of the
boundary @�, it may be represented as a C 1;˛ graph over a tangent plane.
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Lemma 9.2. There is a ı D ı.v; vmax; �; R/ such that the following holds: Fix any x 2
@� \ QR and r < ı with Br .x/ � QR. If j�4Br;�.x/j < ıjBr .x/j, then we may
parametrize the entirety of @�\Br=2.x/ as a C 1;˛ normal graph over the lateral bound-
ary @Br;�.x/ \ Br .x/, with C 1;˛ norm bounded in terms of only v; vmax; �; R.

Proof. Choosing ı small, Lemma 7.10 implies that

Bcr .x/ \ @� � expx
®
v 2 TxM W jvj < r; jg.v; �/j < ı

0r
¯

and
sup
Bcr .x/

ju� � lx;� j � ı
0cr

for a small ı0. Applying Lemma 9.1, we see that � and u� is a viscosity solution to the
free boundary problem8̂̂̂̂

<̂
ˆ̂̂:
��u� D �1.�/u� on Bcr .x/ \�;

u� > 0 on Bcr .x/ \�;

u� D 0 on Bcr .x/ \ @�;

jru�j D f .x/ on Bcr .x/ \ @�;

where 0 < c � f � C <1 and kf kC 0;˛.@�/ � C . Applying the main theorem of [23], it
follows that Bcr=2.x/\ @� may be parametrized, in normal coordinates, as a C 1;˛ graph
over ¹e � � D 0º, with bounded C 1;˛

0

norm for some ˛0 > 0. The conclusion now follows
from a standard covering argument.

Remark 9.3. The previous lemma actually implies that if, working in normal coordinates
around x, @� D ¹.x0; f .x0// W jx0j < r

2
º on Br=2.x/ with kf kC 1;˛ � C , then f is small.

In particular, Lemma 7.10 gives that jf j D Cı1=n, while Œrf �C 0;˛0 � Cr
˛�˛0 � Cı˛�˛

0

for ˛0 < ˛. This means that krf kC 0;˛0 � Cı
� for some � > 0.

In the next theorem, we say that a collection of open sets, in this case M, is uni-
formly C k;˛ if there is a constant C such that for every x 2 @U for U 2 M, B1=C .x/
admits normal coordinates, and on this ball @U may be expressed as a graph with C k;˛

norm at most C over a hyperplane in normal coordinates.

Theorem 9.4. Assume that M is uniformly C 2;˛ . Then, for every r1 > 0 there is a �1 D
�1.v; vmax; �; R; r1/ > 0 such that if � minimizes F� and � < �1, then @� \ ¹x 2 QR W
d.x; @QR/ > r1º may be parametrized as a C 1;˛ normal graph (with C 1;˛ norm bounded
by r1) over @U for some U 2M.

If it is known that � �� QR (uniformly), then one may take a fixed r1 < d.�;

M nQR/ and obtain that the entire boundary @� may be parametrized in this manner.
In particular, this always applies to the case of M=G0 compact, using Theorem 6.3. The
assumption that @U 2C 2;˛ is not needed to guarantee that @�2C 1;˛ (even a flatness con-
dition at every point would suffice), but it is necessary to express @� as a graph over @U .



M. Allen, D. Kriventsov, and R. Neumayer 306

Proof. Let S D ¹x 2QR W d.x; @QR/ > r1º, and let ı be the parameter from Lemma 9.2.
First, observe that under the assumptions on M, there is an 0 < r 0 < ı such that for every
x 2 @U \ S for some U 2M, jBr 0;�x .x/4U j < jBr 0.x/j

ı
4

and Br 0;�x .x/ n Br 0.x/ may
be represented as a C 1;˛ normal graph over @U with C 1;˛ norm bounded by 1=r 0. Indeed,
this follows from the regularity assumption and the tubular neighborhood theorem.

Choose �1 small enough so that E.�/ � Emin C � � Emin C �1 . Then, Lemma 3.14
implies that j�4U j � ı

4
infx2QR jBr 0.x/j for some U 2M. Up to further decreasing �1;

we may apply Lemma 7.1 to take Hausdorff distance between @U and @� smaller
than �r1=2; where � is a fixed constant to be specified below. Then, for any x 2 @� \ S ,
let y 2 @U \ S with d.x; y/ < �r 0, and compute in normal coordinates around y:

j�4Br 0;�y .x/j � jU4�j C jBr 0;�y .y/4U j C jBr 0;�y .x/4Br 0;�y .y/j

�
ı

4
jBr 0.x/j C

ı

4
jBr 0.x/j C jBr 0;�y .x/4Br 0;�y .y/j

�

h ı
2
C C�

i
jBr 0.x/j;

where C is a constant depending only on the metric. By choosing � small enough depend-
ing on C and ı, the right-hand side is bounded above by ıjBr 0.x/j, so the hypotheses of
Lemma 9.2 are satisfied at x at scale r 0 in direction �y :

Apply Lemma 9.2 (and Remark 9.3) on Br .x/ to obtain that @� \ Br 0=2 may be
expressed as a C 1;˛ graph over Br 0;�x .x/ n Br 0.x/ with C 1;˛ norm bounded by cr1
for a small c. We may then parametrize @� over @U instead by composing with the
parametrization of Br 0;�x .x/ n Br 0.x/ over @U to obtain the conclusion.

Another application of our Euler–Lagrange equation is the following fact about the
volume j�j:

Proposition 9.5. There exist ��.v; vmax; R/, T�.v; vmax; R; �/, and ��.v; vmax; R; �;T /

all greater than 0 such that for any � < ��, T <T�, and � < ��, every minimizer� of F�
is such that j�j D v. IfM=G0 is compact, all constants may be taken as independent ofR.

Proof. If M=G is compact, we fix � small and select R D R.�/ large enough that
� �� QR; this is always possible, by Theorem 6.3. All constants will then be inde-
pendent of this R.�/, as we will verify below.

If j�j ¤ v, we apply Corollary 8.10 to give that A0 D f 0v;�.j�j/ and

jru�.x/j
2
C

T

2
jrw�.x/j

2
� �

h
b�.x/C

ˆ
�

a�v
x
�

i
D f 0v;�.j�j/:

From Theorem 8.1, we have that jrw�.x/j2 � C0jru�.x/j2 and that j
´
�
a�v

x
�j �

C0jru�.x/j
2, where the constant C0 depends on �. Now select T� small enough (in

terms of �) so that T
2
jrw�.x/j

2 �
1
10
jru�.x/j

2. Then, select �� small enough in terms
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of � so that � j
´
�
a�v

x
�j �

1
10
jru�.x/j

2, and also so that � jb�j � �=2. This gives

1

3
f 0v;�.j�j/ � jru�j

2
� 3f 0v;�.j�j/

along @�� \QR.
Consider the integration by parts formula

1

3

q
f 0v;�.j�j/H

n�1.@� \QR/ � �

ˆ
@��

g.ru�.x/; �x/dHn�1

D

ˆ
�

��u� � C.R;M/j�j:

We have that

inf
°Hn�1.@� \QR/

j�j
W � 2 H

±
> c D c.R; vmax/ > 0 (9.1)

from the relative isoperimetric inequality onQR (see [27, 4.5.2(2)]), so f 0v;�.j�j/�C.R/.
Choosing �� so that �� < 1

C.R/
, we see that fv;�.j�j/ < 1

��
and j�j � v. In the case

of M=G0 compact, @� \QR D @�, and we instead use the isoperimetric inequality: for
example, from [30, Theorem 3.2] we have j�j

n�1
n � C.Hn�1.@�/C j�j/with a constant

depending only on M , and this bounds (9.1) from below by c.M/v
�1=n
max .

It follows that if j�j ¤ v, then along @��\QR the derivative jru�j � 9�� is small.
On @�\ @QR, an elementary comparison argument withwQR shows that jru�j �C.R/.
From Bochner’s identity we have that �.jru�j2 C Su2�/ � �2�1.�/Su

2
� for S taken

large enough in terms of the Ricci curvature of .M; g/. Using Lemma 3.2 and the max-
imum principle, we see that jru�j � C.R/ on � (the point being that this bound is
independent of �); the constant may be taken as independent of R if M=G0 is compact.

Now, j�j < v and
´
u2� D 1, so there must be a point x 2 � with u�.x/ � 1

2

p
v.

Using the gradient estimate above, there is a ball Br .x/ ��, with r depending only on R
and v. We construct a sequence of ballsBr .xk/�� as follows: if there is an x 2Br=2.xj /
for some j < k with Br .x/ � � and z2 @Br .x/\ @�\QR, set xkD x and stop. If not,
choose any ball Br .x/ with d.x; xj / � r=2 and equality for one j . If this is impossi-
ble, then @� D @QR, which contradicts our standing assumption that vmax < jQRj. This
process must terminate after C.r/vmax steps, and so we have a chain of balls culminat-
ing in Br .xJ / which has z 2 @Br .xJ / \ @� \ QR. Applying the Harnack inequality
along this chain, we have u� � c.r; J / on Br=2.xJ /. Letting G0 be the Green’s func-
tion for Br .xJ /, we have that C.r; J /u�.y/ � G0.xJ ; y/ on Br .xJ / n Br=2.xJ / by the
comparison principle. From standard estimates on the Green’s function (see [32, Theo-
rem 1.2.8]),

C.r; J /u�.y/ � G
0.xJ ; y/ � c.r; R/d.z; y/:
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From the viscosity form of the Euler–Lagrange equation, Lemma 9.1, we then must have
that

c.r; R/ � jrG0.xJ ; z/j �
q
3f 0v;�.j�j/ � 3��:

If �� is chosen to be small in terms of r;R, this gives a contradiction. IfM=G0 is compact,
it is easy to see that all constants here may be taken uniformly in R.

10. Higher Regularity

For the purpose of deriving stability estimates, it will be helpful to have C 2;˛ regularity
for @�. Higher regularity depends on the regularity of the functions a�; b� which appear
in property (N4) of h. In particular, in the case of a� being a multiple of uU for a smooth
domainU , a� is at best Lipschitz continuous on� (unless�DU ). Under this assumption
we will have @� locally C 2;˛ at flat points for any ˛ < 1, but no better. Our approach is
based on a boundary Harnack estimate of De Silva and Savin.

Proposition 10.1 ([25], Theorem 2.4). Let f 2 C 0;˛.�/ satisfy k � �f kC 0;˛.�/ � 1
(with �� taken in the classical sense), f D 0 on @�, and let � be a minimizer of F� .
Assume that for some x0 2 @�, r < r0, and ı > 0 small enough, we have Br .x0/ � QR
and @� \ Br=2.x0/ a C 1;˛ graph over ¹e W � � e D 0º (in normal coordinates around x0)
with C 1;˛ norm bounded by C˛ . Then,


 f

u�





C 1;˛.x�\Br=4.x0//

� C

and 


g.rf; �x/
jru�j





C 1;˛.@�\Br=4.x0//

� C:

Here ˛ 2 .0; 1/ and the constants depend only on R; v; vmax; �; ˛; C˛ .

Proof. We consider the operator �� � �.�/, and note that ��u� � �.�/u D 0 and
k ��f � �.�/f kC 0;˛ � C . From [25, Theorem 2.4],


 f

u�





C 1;˛.x�\Br=4.x0//

� C
�
kf kL1 C k�f kC 0;˛

�
� C;

using also the lower bound on u�. The second conclusion follows as f
u�
!

g.rf;�x/
g.ru�;�x/

nontangentially at every point of @� \ Br=2.x0/, and then by passing to the limit.

Lemma 10.2. Let � and x0 be as in Proposition 10.1. Then,


 1

jru�j2

ˆ
�

hxf




C 1;˛.@�\Br=4.x0//

� Ckf kC 0;˛.�/:
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Proof. As in the proof of Lemma 8.13, we have that
ˆ
�

hxf D jru�.x/j

ˆ
�

K.x;y/f .y/dy D�jru�.x/jg
�
rx

ˆ
�

G�.x; y/f .y/dy; �x

�
:

If we set p.x/ D
´
�
G�.x; y/f .y/dy, this satisfies ��p D f on � and p D 0 on @�;

applying Proposition 10.1 gives


g.rp; �/
jru�j





C 1;˛.@�\Br=4.x0//

� Ckf kC 0;˛ :

The conclusion follows from

1

jru�.x/j2

ˆ
�

hxf D
�g.rp.x/ � �/

jru�.x/j
:

Lemma 10.3. Let � and x0 be as in Proposition 10.1. Then,


 1

jru�j2

ˆ
�

qxf




C 1;˛.@�\Br=4.x0//

� Ckf kC 0;˛ :

The function qx is actually somewhat better behaved than this, but we will not require
an optimal estimate below.

Proof. Set xhx D hx

jru.x/j2
and xqx D qx

jru.x/j2
. Rewriting the equation for q in terms of these,

we have that 8̂̂<̂
:̂
��xqx D �1.�/Œxq

x C xhx � � u� on �;´
xqxux D �

´
xhxux D �

1
�1.�/

;

xqx D 0 on @�:

Let us decompose f D f1C f2, where f2 D u�
´
u�f , and then solve for the poten-

tial function 8̂̂<̂
:̂
��p D �1.�/p C f1 on �;´
pu� D 0;

p D 0 on @�:

This admits a unique solution via the Fredholm alternative (using
´
f1u� D 0) which

satisfies kpkL2 � Ckf1kL2 � Ckf kC 0;˛ . From elliptic regularity, we have that

kpkC 0;˛.�/ � C
�
kf1kL1 C kpkL2

�
� Ckf kC 0;˛ :

Now, multiply the equation for xqx by p and integrate:
ˆ
�1.�/xh

xp D

ˆ
p.�� � �1.�//xq

x
D

ˆ
f1xq

x :

The other term on the left vanishes as
´
pu� D 0, while the simplification on the right is

from Green’s identity and the equation for p.
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On the other hand,
ˆ
f2xq

x
D

�ˆ
u�f

��ˆ
u�xq

x
�
D �

1

�1.�/

ˆ
u�f:

Combining these, we have that
ˆ
f xqx D �1.�/

ˆ
xhxp �

1

�1.�/

ˆ
u�f;

which is bounded in C 1;˛ by Lemma 10.2 when applied to p.

Corollary 10.4. Let � be a minimizer of F� . Assume that for some x0 2 @�, r < r0, and
ı > 0 small enough we have Br .x0/�QR and j�4Br;�.x0/j < ıjBr .x/j. Then, for each
˛ 2 .0; 1/, @� \ Br=64.x0/ is given by a C 2;˛ normal graph over @Br;�.x0/ \ Br .x0/,
with the C 2;˛ norm bounded by a constant depending only on R; v; vmax; �, and ˛.

Proof. From Lemma 9.2, @� \ Br=2.x0/ is a C 1;˛0 graph over ¹e W e � � D 0º in normal
coordinates, where ˛0 > 0 is the fixed exponent from that lemma. Applying Lemmas 10.2
and 10.3 with f D a� 2 C 0;1, we have that


 vx�

jru.y/j2





C 1;˛0 .@�\Br=4.x0//

� C:

Applying Proposition 10.1 to w� gives that


 jrw�j2
jru�j2





C 1;˛0 .@�\Br=4.x0//

� C:

We also have kb�kC 1;1 � 1 by assumption (N4). Proceeding as in Theorem 8.1, we may
write the Euler–Lagrange equation for u as

jru.x/j2 D �.x/;

where c � � � C and � 2 C 1;˛0.@� \ Br=4.x0//. Now apply [36, Appendix] or [24] to
obtain that @� may be parametrized as a C 2;˛0 graph on @� \ Br=8.x0/.

Now repeat this argument on Br=8.x/, except using that @� is C 2;˛0 � C 1;˛ rather
than C 1;˛0 , to recover the conclusion as stated.

Combining this with Theorem 9.4 gives that all of @� �� QR is C 2;˛ , so long as all
sets in M are smooth:

Corollary 10.5. Let � be as in Theorem 9.4 and assume that M is uniformly C 4. Then,
@�\ ¹x 2QR W d.x; @QR/ > r1º may be parametrized as a C 2;˛ normal graph over @U
for any ˛ < 1, with C 2;˛ norm bounded by r1.
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A. Admissible nonlinearities

In Section 2.2, we gave several examples of nonlinearities h used in the definition of
the main functional F� . In this appendix, we verify that these examples are admissible
nonlinearities in the sense of Definition 2.11. We also define the notion of a set center,
which generalizes the notion of the barycenter of a set in Euclidean space.

To begin, it will be useful to show that a constant multiple of d�.�; U /2 defined
in (2.10) is itself an admissible nonlinearity. Given any bounded open set U with C 2

boundary, define the functional

hU .�/ D
d�.�;U /

2

C1
D

1

C1

hˆ
�

 U �

ˆ
U

 U C

ˆ
ju� � uU j

2
i

(A.1)

on bounded open sets � with j�j � vmax and with E.�/ � Emin C �0; and recalling
Remark 2.5, hU is well-defined on this class of sets.

Lemma A.1. For C1 chosen sufficiently large depending on U and vmax, we have that the
functional hU .�/ is an admissible nonlinearity with respect to the trivial subgroup of the
isometry group.

Proof. Choose C1 � vmaxjmax f j C 4 to guarantee that hU .�/ 2 Œ0; 1� for any � so
property (N1) is satisfied. To see the upper bound, recall that

´
u2� D

´
u2U D 1; the lower

bound follows because d�.U;�/ � 0. Since G0 is trivial, property (N2) holds automati-
cally. Checking property (N3) is also straightforward:

jhU .�/ � hU .�
0/j �

1

C1

h
j�4�0jmax jf j C

ˆ
2ju�0 � 2u�jjuU j

i
; (A.2)

so as long as C1 � 2max uU , which is bounded by Lemma 3.2, and so property (N3)
follows. For property (N4), we set �t D �t .�/ and perform the same computation more
carefully to give

hU .�t / � hU .�/ D
1

C1

hˆ
�t

 U �

ˆ
�

 U C 2

ˆ
.u� � u�t /uU

i
: (A.3)

Set a� D � 2
C1
uU , b� D 1

C1
 U . After possibly choosing C1 to be larger, we see that

property (N4) is satisfied, by using elliptic regularity and the smoothness of U to
bound ruU .

Notice that in this example, while b� here is smooth, a� is not better than Lipschitz;
this is the limiting factor for the higher regularity discussed in Section 10.

Example 2.6 considered a nonlinearity h in the case where there is a unique (regular)
minimizer U of the base energy. Up to multiplication by a constant C D C.U /, it follows
that the nonlinearity in Example 2.6 is admissible with respect to the trivial subgroup of
the isometry group for any choice of c 2 .0; 1� in (2.9). Indeed, the functional h D hc of
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Example 2.6 (normalized by a constant C D C.U / independent of c) is given by �c ı hU
where �c W Œ0; 1�! Œ0; 1� is a smooth function with j�0c j � 1 for all c 2 .0; 1�, and is thus
admissible by Remark 2.12.

We now move toward verifying that the nonlinearity of Example 2.10 is admissible.
To this end, let us introduce the notion of a set center.

Definition A.2 (Set centers). LetG0 �G be a closed subgroup of isometries ofM , " > 0,
and U be a fixed bounded open set. We say that a mapping from the class of bounded,
open, nonempty subsets E of M with

inf
e2G0
jE4e.U /j � " (A.4)

to points xE in a complete Riemannian manifold .N; gN / is a set center adapted to U if
it satisfies the following properties:

(C1) If E;E 0 � QR, then dN .xE ; xE 0/ � C.R/jE4E 0j.

(C2) For every E, there is an e 2 G0 such that xE D xe.U /.

(C3) For any e; e0 2 G0, je.U /4e0.U /j � C.E/dN .xe.E/; xe0.E//.

(C4) For x 2M and r � r0, let �t be a 1-parameter family of diffeomorphisms with
�0.x/ D x and j@t�t j � 1 such that ¹�t .x/ ¤ xº � Br .x0/. If the sets �t .�/
satisfy (A.4) and Hn�1.@�/ <1, then t 7! x�t .�/ defines a C 1 curve inN and
for any tangent vector v 2 Tx�N ,

lim sup
1

jt j

ˇ̌̌
tgN

�
x0�t .�/jtD0; v

�
�

ˆ
�t .�/

av� C

ˆ
�

av�

ˇ̌̌
� Crn (A.5)

for a function av� independent of �t and depending linearly on v such that
kav�kC 2.QR/ � C.R/jvj.

Given a bounded open set E, we let UE D e.U / denote image under the unique isom-
etry e 2 G0 of U such that E and UE have the same set center.

Property (C1) implies xE is a kind of Lipschitz mapping from sets to the space of cen-
ters, while property (C3) suggests it acts like a projection onto the images of U under G0
action. Property (C4) implies that it is a C 1-regular projection in an appropriate sense: to
understand (A.5), note that

ˆ
�t .�/

av� �

ˆ
�

av� D t

ˆ
@��

av�g.�
0
0; �x/dHn�1

� t

ˆ
�

g.�00;ra
v
�/C o.t/:

The second term is bounded by Crnt , while the first captures the “leading-order” change
in � under t 7! �t .�/. Thus, (A.5) ensures that the v component of the derivative
of x�t .�/ exists and is proportional to

´
@��

av�g.�
0
0; �x/dHn�1 for some sufficiently

smooth function av�, up to error of size rn. This type of error is lower-order when consid-
ering localized deformations near a point on @�.
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Note that a set center may map to points in a Riemannian manifold .N; gN / that is
not .M;g/. An example to keep in mind here is if .M;g/ is a cylinder Sn�1 �R equipped
with the standard product metric, a set center can be defined by choosing the Euclidean
barycenter of a set when .M; g/ is embedded into RnC1 in the standard way.

Let us give some examples of set centers.

Example A.3. If G0 is trivial, the constant mapping xE D x0 is a set center adapted to
any U .

Example A.4. Suppose .M; g/ is simply connected and has nonpositive sectional cur-
vature. The barycenter x 7! argminx

´
E
d2.x; y/dm.y/ exists and is unique. This is a

set center adapted to any U so long as (i) G0 acts transitively on M , and (ii) if e 2 G0
fixes xU , it fixes U . In particular, this applies to Rn or hyperbolic space, G0 D G, and
U D Br .x/ a ball. It also applies to Rn with U an arbitrary (nice) open set and G0 the
group of translations.

Example A.5. Let .M; g/ be the round sphere, embedded in the standard way in RnC1.
Let G0 D G be the full isometry group and U D Br .x/ be a geodesic ball with r < � .
For any open E � Sn, let yE D

ffl
E
ydHn.y/; where y; yE 2 RnC1 and the integral is a

(vector-valued) surface integral. Note that yU ¤ 0 and that for any E;E 0, we have

jyE � yE 0 j �
1

jEj

ˆ
E4E 0

jyj C jSnj
ˇ̌̌ 1
jEj
�

1

jE 0j

ˇ̌̌
� C jE4E 0j:

In particular, if jE4U j � ", we may ensure that jyE j � r > 0. For any such E, the
mapping E 7! xE D

yE
jyE j

is a set center. Indeed, then jxE � xE 0 j � 1
r
jyE � yE 0 j, so

this satisfies property (C1). It also satisfies property (C2), as G acts transitively on Sn.
Property (C3) can be checked using that U D Br .x/ is invariant under rotation about its
set center, and property (C4) may be verified in a similar manner to that of the proof of
Proposition A.6 below.

Let us give a proof that the Euclidean barycenter is a set center in the sense of Defi-
nition A.2; the other examples described above can be checked similarly. First of all, the
barycenter on Euclidean space is an example of a set center.

Proposition A.6. Let .M; g/ be Euclidean space, and let G0 D G and U D B1. Then,
the barycenter xE D

ffl
E
x 2 Rn is a set center satisfying properties (C1)–(C4). Here "

in (A.4) may be taken as arbitrary.

Proof. For (C1),

jxE � xE 0 j D
ˇ̌̌ 1
jEj

ˆ
E

x �
1

jE 0j

ˆ
E 0
x
ˇ̌̌
�

1

jEj

ˆ
E4E 0

jxj C
ˇ̌̌
jE 0j

jEj
� 1

ˇ̌̌
R � C jE 04Ej:
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Then, properties (C2), (C3) are immediate, and for (C4) we may compute j�t j � j�j D
Hn�1.@��/t C o.t/ D O.t/ and

ˆ
�t .�/

x �

ˆ
�

x D t

ˆ
@��

x � �x � t

ˆ
�0t .0/C o.t/ D O.t/;

from which we see that

x�t D
1

j�t .�/j

ˆ
�t .�/

x D x� C

ˆ
�t .�/

h x
j�j
�

ˆ
�

x
i
�

ˆ
�

h x
j�j
�

ˆ
�

x
i
CO.t2/:

This shows x�t is a C 1 curve, and x0�t jtD0 satisfies (A.5) with av� D Œ
x
j�j
�
´
�
x� � v.

More general constructions can be carried out here, for example, considering set pro-
jections onto M in the case where M admits “smooth” parameterizations by finite-dimen-
sional manifolds, in which case the key point will always be verifying properties (N3)
and (N4) using analogues of (C1) and (C4).

Now, given a bounded open set U with C 2 boundary, a subgroup of isometries
G0 � G, and a set center � 7! x�, define the functional

h.�/ WD hU�.�/; xU� D x�; (A.6)

where hU was defined in (A.1). By properties (C2) and (C3) of set centers, h is well-
defined for all � with j�4e.U /j � " for some e 2 G0. From Lemma 3.10, this holds for
all � with E.�/ � Emin C �0.

Proposition A.7. The functional h.�/ in (A.6) is an admissible nonlinearity with respect
to G0 in the sense of Definition 2.11 for C1 sufficiently large.

Proof of Proposition A.7. Properties (N1) and (N2) are immediate from the construction.
For (N3), take �;�0 and apply property (C1) of set centers:

dN .x�; x�0/ � C.R/j�4�
0
j:

This means there exists e 2 G0 with e.U�/ D U�0 and jU�04U�j � C j�4�0j. To sim-
plify notation, we set U D U� and U 0 D U�0 .

First of all, after possibly composing e with an isometry which fixes U , we may
assume d.e; id/ � "1 is small. Indeed, if this is false then there is a sequence ek 2 G0
with jU4ek.U /j ! 0 but d.ek ; e0/ > "1 for any e0 fixing U . It is then straightforward to
show (see [39, Theorem 3] and subsequent remarks) that the ek have a subsequence con-
verging to some e with jU4e.U /j D 0, and therefore fixing U . This is a contradiction.

Let SU �G D TidG0 be the tangent space to the subgroup of isometries which fix U ,
and HU a subspace of G such that HU ˚ SU D G; set V D ¹v 2 HU W jvj D 1º. One
may verify that for any U 0 D expidw.U / for w with jwj � "1, U 0 may also be represented
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as expid tv.U / for v 2 V and jt j � C"1 (see, e.g., [41, Theorem 3.58]). We may estimate
the value of t more precisely:

jU4U 0j � C sup
x2U

d.expid tv.x/; x/ � C.U /t: (A.7)

The reverse bound is also valid. Indeed, for any fixed v 2 V , we have
´
@U
jg.v.x/;�x/j>0

where �x is the outward unit normal to @U : if jg.v.x/; �x/j � 0, then the isometries
generated by v fix U , contradicting that v 2 V � HU n ¹0º. As V is compact, this gives
that infv2V

´
@U
jg.v.x/; �x/j � c.U / > 0: Then, we may estimate

jU4U 0j D t

ˆ
@U

jg.v.x/; �x/j CO.t
2/ � c.U /t: (A.8)

This value t also controls the distance between U and U 0 in stronger topologies:

sup
x2QR

jd.x; @U / � d.x; @U 0/j D sup
x2QR

jd.x; @U / � d.expid�tv.x/; @U /j � Ct

and ˆ
juU � uU 0 j � sup

x
juU .x/ � uU .expid�tv.x//j � Ct sup

x
jruU j � Ct:

In the line above, we recall from Lemma 3.14 thatU has a unique nonnegative, normalized
first eigenfunction uU , and so uU 0 D uU ı e�1. So, we find that

jhU .�/� hU 0.�/j �
1

C1

ĥ
�

j U � U 0 j C 2

ˆ
ju�jjuU � uU 0 j

i
�
1

C1
Ct �

C

C1
j�4�0j:

Combining this with (A.2) of Lemma A.1 and choosing C1 small enough gives (N3).
We now verify (N4). To begin, let Ut D et .U / denote U�t .�/, the unique isometry

of U with the same set center as �t .�/. Our first claim is that after possibly modifying
the et , they may be represented for small t as et D expid 
.t/, where 
.t/ is a C 1 curve
in HU � G with 
.0/ D 0. To see this, consider the mapping T W v 7! xexpid v.U /

from a
small ball B"1.0/�G toN . By property (C4) of set centers, T has continuous directional
derivatives on B"1 , and so it is C 1. We also have that d0T .SU / D ¹0º, since any curve
of isometries fixing U has set center constant xU and by (A.8) and property (C3), this
is precisely the kernel of d0T . So, T jHU is a C 1 diffeomorphism onto its image, by the
inverse function theorem.

Applying property (C4), the curve t 7! x�t .�/ is C 1, and there is a unique C 1 curve

 W .�c; c/! HU � G such that x�t .�/ D expid 
.t/.U /. By definition of U , 
.0/ D 0.
Furthermore, we have that


 0.0/ D d0T
�1
jHU

�
x0�t .�/jtD0

�
D lim

t!0

1

jt j

ˆ
�t .�/

A� �

ˆ
�

A� CO.r
n/

for some A� W QR ! G with kA�kC 2 � C , that is, for each x, A�.x/ is a vector field
generating isometries.
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Let us next estimate the  U term:

 Ut .x/ D  U .expid�
.t/.x// D  U .x/ � tg.r U .x/; 

0.0/.x//C o.t/jD2 U j;

so ˆ
�

Œ Ut .�/ �  U .�/� D �

ˆ
�

tgx.r U .x/; 

0.0//C o.t/CO.rnt /:

In particular,

lim sup
t!0

1

jt j

ˇ̌̌ˆ
�

 Ut .�/ �  U .�/C

ˆ
�t .�/

ˆ
�

g.A�.y/;r U .x//dxdy

�

ˆ
�

ˆ
�

g.A�.y/;r U .x//dxdy
ˇ̌̌
� Crn:

Here and in the remainder of the proof we write dx to denote dm.x/ to consolidate nota-
tion. The estimate on the eigenfunction term is similar, at least so long as we avoid the set
¹d.x; @U / < C jt jº for C large enough that expid �
.s/.x/ ¤ @U for jsj � jt j, the issue
being that uU is not smooth near @U . Away from this set, we have:

uUt .x/ D uU .x/ � tg.ruU .x/; 

0.0//CO

�
t2 sup

U

jD2uU j
�
:

Note that while uU is not smooth, D2uU is uniformly bounded on U . Therefore,
ˆ
juUt � u�j

2
�

ˆ
juU � u�j

2
D 2

ˆ
u�.uU � uUt /

D 2t

ˆ
g.ruU .x/; 


0.0//C o.t/

CO
�ˆ
¹d.x;@U /<C jt jº

juU j C juUt j C t jg.ruU .x/; 

0.0//j

�
:

The right-most term is actually o.t/ as well; j¹d.x; @U / < C jt jºj ! 0, while also juU j C
juUt j � Ct and t jg.ruU .x/; 
 0.0//j � Ct over this region. So, rewriting the expansion
above, we have

lim sup
t!0

1

jt j

ˇ̌̌ˆ
juUt � u�j

2
�

ˆ
juU � u�j

2
� 2t

ˆ
g.ruU .x/; 


0.0//
ˇ̌̌
D 0:

Moreover, the first-order term may be re-expressed in terms of A� as well:

lim sup
t!0

1

jt j

ˇ̌̌
t

ˆ
g.ruU .x/; 


0.0// �

ˆ
�t .�/

ˆ
�

gx.A�.y/;ruU .x//dxdy

�

ˆ
�

ˆ
�

gx.A�.y/;ruU .x//dxdy
ˇ̌̌
� Crn:

To summarize, setting

a0� D

ˆ
�

gx.A�.y/; 2ruU .x/Cr U .x//dx;
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we have that ka0�kC 2.QR/ � C.U /, and

lim sup
t!0

1

jt j

ˇ̌̌
hUt .�/ � hU .�/C

ˆ
�t .�/

a0� �

ˆ
�

a0�

ˇ̌̌
� Crn:

Together with (A.3) this implies property (N4). This completes the proof.

As we saw following Lemma A.1 above, it follows immediately from Proposition A.7
and Remark 2.12 that the nonlinearity of Example 2.10 is an admissible nonlinearity with
respect to G in the sense of Definition 2.11 for all c 2 .0; 1�, after possibly normalizing
by a constant C D C.U /.

B. Domains admitting linear-growth solutions to elliptic equations
are NTA

The purpose of this appendix is to show that if a domain � supports a nonnegative func-
tion u vanishing on @�, growing like d.x; @�/ from the boundary, and solving an elliptic
equation with bounded right-hand side, then � is NTA (locally). Our first lemma follows
the approach of [2], using a monotonicity formula argument, except that u is not assumed
to be a minimizing solution to a free boundary problem. In fact, it may solve an equation
with bounded right-hand side, and not even all the way up to the boundary (so long as we
are only looking for Harnack chains between points a distance � from @�).

Lemma B.1. Let � � Rn be open and u be a continuous function on x� \ B1 (which
is C 2 on �), with u D 0 on @� and u > 0 on �. Then, for any K;M;m > 0, there are
�; ı > 0 such that if

(i) 0 2 @�;

(ii) jruj � 1 on � \ B1;

(iii) for all x 2 x� \ B1 and r < 1, supBr .x/ u � mr;

(iv) j�uj � ı on ¹d.x;�c/ > ıº \ B1;

(v) � satisfies the outer clean ball condition with constant K at 0,

then for any points x1; x2 2 BM� with d.x1; �c/; d.x2; �c/ > �, there exists a curve

 � B1 \ ¹d.x;�

c/ > c�º of length at most C connecting x1 and x2.

Proof. Set v.x/ D u.x/C ı
2n
jxj2; then, �v � 0 on ¹d.x;�c/ > ıº \ B1 and moreover,

as long as ı < 1, assumption (ii) gives jrvj � 2. Consider the set A D ¹x 2 � W v.x/ >
c0�º \ B1=2, noting that so long as we choose ı small enough in terms of �;m,°

d.x;�c/ >
1

2
�
±
\ B1=2 � A � ¹d.x;�

c/ > c1�º

for some c0; c1 depending only on n and m. Indeed, if d.x;�c/ > 1
2
�, we apply assump-

tion (iii) on B �
8
.x/ to learn that supB �

8
.x/ u � m

�
8

. Then, so long as ı < �=4 (and
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hence (iv) applies on B�=4.x/), the Harnack inequality gives

m
�

8
� sup
B �
8
.x/

u � Cu.x/:

Setting c0 D m
16C

ensures that u.x/ � 2c0�, and as long as ı < c0�, this gives v.x/ >
u.x/� ı� c0� and so x 2A. On the other hand, if x 2A and ı < c0

2
�, we have u.x/> c0

2
�.

In light of (ii), this guarantees that d.x;�c/ > c0
2
�, and we set c1 D c0

2
.

Let A1; A2 be the two connected components of A which contain x1; x2, respectively.
We will show that A1 D A2. From a computation like the one just performed, we have
that v.xi / > 2c0�. Set di D d.xi ; Ac/, and let yi 2 @Ai such that jyi � xi j D di . From
assumption (i), we must have di <M�. Our first task will be to show that jrvj is relatively
large on a set near xi .

Consider a line segment with endpoints x1 and y1. Integrating along it, we have

c0� < v.x1/ � v.y1/ D

ˆ 1

0

rv.tx1 C .1 � t /y1/ � .x1 � y1/dt

� d1

ˆ 1

0

jrv.tx1 C .1 � t /y1/jdt

�M�

ˆ 1

0

jrv.tx1 C .1 � t /y1/jdt:

As jrvj � 2 everywhere, the second-to-last step implies that d1 �
c0�
2

. We can say more:
if jrvj < c0

8M
for all t > c0

8M
, we could estimate

M�

ˆ 1

0

jrv.tx1 C .1 � t /y1/jdt �
�
1 �

c0

8M

�c0�
8
C
c0�

8
2 <

c0�

2
;

and this is a contradiction. Hence, there must be a t > c0
8M

with jrv.tx1 C .1 � t /y1/j
�

c0
8M

; set z1 D tx1 C .1 � t /y1. Letting c2 D c0
8M
�
c0
8

, we have that

jz1 � y1j D t jx1 � y1j D td1 �
c0

8M
�
c0�

2
D c2�:

In particular, Bc2�.z1/ � A1 � ¹d.x; �
c/ > ıº and we may apply an elliptic regularity

estimate to v on this ball:

.c2�/
1C˛Œrv�C 0;˛.B c2�

2
.z1// � C

�
osc

Bc2�.z1/
v C ı.c2�/

2
�
� C�;

so, in particular,

jrv.x/ � rv.z1/j � C
�
jx � z1j

�

�˛
<

c0

16M

so long as jx � z1j < c3�. For any such x, we have jrv.x/j � c0
16M

. Integrating, we get

1

.2M�/2

ˆ
B2M�\A1

jrvj2jxj2�ndx �
1

.2M�/n

ˆ
Bc3�.z1/

jrvj2 �
� c3
2M

�n
jB1j

c0

16M
� c4:
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Set

J.r/ D
1

r4

ˆ
Br\A1

jr.v � c0�/Cj
2
jxj2�ndx

ˆ
Br\A2

jr.v � c0�/Cj
2
jxj2�ndx:

We have just shown that J.2M�/ � c24 (as the computations apply equally well to x2
and A2). It is straightforward to check that J.1=2/ � C using just jrvj � 2. From the
enhanced monotonicity property of J [2, Lemma 4.4] and assumption (v), r 7! J.r/

rˇ
is an

increasing function for some ˇ > 0 depending only on K. This means that c24 � J.2M�/

� C.4M�/ˇ : This is a contradiction if � is chosen to be small in terms of M and c4.
We have shown thatA1 DA2. Now cover the closure ofA1 by balls of radius r D c1

4
�;

it is always possible to do so by at most N D C��n balls, and then to connect any two
points in A1 by a piecewise linear curve of length CN� contained in the union of these
balls. This curve has bounded length and stays a distance of at least c1�=4 away from @�,
concluding the proof.

If instead u solves an elliptic equation with Lipschitz coefficients, the previous lemma
still applies after a suitable change of variables and scaling argument. Here we carefully
exploit the form of assumption (iv) above.

Lemma B.2. Let � � Rn be open and u be a continuous function on x� \ B1 (which
is C 2 on �), with u D 0 on @� and u > 0 on �. Then for any �;K;M;m > 0, there is
an �0 > 0 such that if

(i) 0 2 @�;

(ii) jruj � 1 on � \ B1;

(iii) for all x 2 x� \ B1 and r < 1, supBr .x/ u � mr;

(iv) aij @i@juD f on�\B1, with kf kC 0;1 � 1, where �j�j2 � aij .x/�i�j � ��1j�j2

is a matrix-valued function with Œaij �C 0;1.B1/ � 1;

(v) � satisfies the outer clean ball condition with constant K at 0,

then for any � < �0 and points x1; x2 2 BM� with d.x1;�c/; d.x2;�c/ > �, there exists
a curve 
 � B1 \ ¹d.x;�c/ > c�º of length at most C� connecting x1 and x2.

Proof. First, take x 2 � and d D d.x;�c/: then,

d jD2u.x/j � C
�

sup
Bd=2.x/

jruj C d2Œf �C 0;1
�

from standard elliptic estimates and assumption (iv). If Bd=2.x/ � B1, combining with
assumption (ii) gives jD2uj � Cd�1.

Fix the matrix bij D aij .0/, and compute

bij @i@ju D f C .aij � bij /@i@ju:

On Br \ ¹d.x;�c/ > ı0rº, this implies

jbij @i@juj � 1C ı
�1
0 :



M. Allen, D. Kriventsov, and R. Neumayer 320

There exists a linear mapL WRn!Rn such thatB� �L.B1/�B��1 and if bij @i@juD g,
then �.u ı L/ D g ı L, where � D �.�/. Let v be given by

v.x/ D
u.rLx/

��1r
;

where r will be chosen, but we require at least that r < �. Let V D L�1.�/=r . Then,
jrvj � 1 on B1 \ V and 0 2 @V . Moreover, for every x 2 xV \ B1 and s < 1,

sup
Bs.x/

v � m�2s:

Finally,
j�v.x/j � C�r.1C ı�10 /

on ¹d.x; V c/ > ı0=�º \ B1.
Fix M 0 D M=� and m0 D �2m, and apply Lemma B.1 with parameters M 0; m0 to v

and V : then, there exist �0; ı0 such that if

j�v.x/j � ı0

on ¹d.x; V c/ > ı0º \ B1, and any y1; y2 2 BM 0�0 with d.yi ; V c/ > �0, there is a path
connecting y1 to y2 of length at most C and staying c�0 away from V c .

Select ı0 D �ı0, and r D ��=�0. Choose �0 so that r < � and

j�v.x/j � C�r.1C ı�10 / � C�2
�0

�0
.1C ı�10 / < ı0

on ¹d.x; V c/ > ı0=�º \ B1. Then, set yi D rLxi : we have that yi 2 BM 0�0 and
d.yi ; V

c/ � �0, so the above applies to give a path 
 0 connecting y1 to y2. Let 
 D
r�1L�1
 0; then 
 connects x1 and x2, has length at most Cr � C�, and stays a distance
cr�0 � c� from @�.

By iterating this lemma finitely many times, we can now show that � satisfies the
Harnack chain condition.

Theorem B.3. Let � � Rn be an open set, and u be a continuous function on x� \ B1
(which is C 2 on �), with u D 0 on @� and u > 0 on �. Assume that

(i) 0 2 @�;

(ii) jruj � 1 on �;

(iii) for all x 2 x� \ B1 and r < 1, supBr .x/ u � mr;

(iv) aij @i@juD f on�\B1, with kf kC 0;1 � 1, where �j�j2 � aij .x/�i�j � ��1j�j2

is a matrix-valued function with Œaij �C 0;1 � 1;

(v) � satisfies the inner and outer clean ball condition with constantK at every point
in @� \ B1.
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Then, there is a ı > 0 such that � satisfies the Harnack chain condition with constant C
at any points x1; x2 2 Bı \�. The constants ı; C depend only on m;�;K and n.

One may check that the inner clean ball condition follows from assumptions (ii)
and (iii). The outer clean ball condition, however, does not.

Proof. Let yi be a point in @�with di D d.xi ;@�/D jxi � yi j. Without loss of generality,
assume d1 � d2. We will first show that the conclusion holds if jx1 � x2j � 4Kd2. Note
that if jx1 � x2j < 1

2
d2, we may connect x1 and x2 by a line segment and the conclusion

is immediate.
Construct a sequence of points zk as follows, using the clean inner ball property: put

z1D x1, and then given zk , d.zkC1;@�/� 2d.zk ;@�/while jzkC1 � zkj � 4Kd.zk ;@�/.
We continue constructing such points until d.zk ; @�/ � d2; let the final point be zJ . Each
pair zk ; zkC1 lies inside BCK�k .pk/, where �k D d.zk ; @�/ and pk 2 @� is a point with
�k D jzk � pkj. They also have d.zk ; @�/;d.zkC1; @�/� �k . Applying Lemma B.2 with
M D CK centered around pk , we see that as long as �k < �0 for the �0 D �0.K;m; �/
there, the points zk and zkC1 may be connected by a curve 
k of length at most C�k
staying at least c�k away from @�. Choose ı small enough that

�k � �J � Cd2 � Cı � �0

and the assumption is verified for every k. Finally, apply Lemma B.2 one last time to
connect zJ to x2 by a similar curve.

We claim 
 , the concatenation of all of these curves 
k , works for the Harnack chain
property. Indeed, we have that �k � �J 2k�J by construction, so the total length is con-
trolled by

P
�k � 2�J � Cd2, which is comparable to jx1 � x2j. By the same argument,

the total length of the first k concatenated curves 
k is bounded from above by C�k , so
for any point z D 
.t/ on 
k , we have d.z; @�/ � c�k � cl.
.Œ0; t �//.

This leaves only the case of jx1 � x2j � 4Kd2. Pick a point x3 2� with d.x3; @�/ �
jx1 � x2j and jx3 � y2j � Kjx1 � x2j, using the clean inner ball property. Then,
jx3 � x2j � 2Kjx1 � x2j � 2Kd.x3; @�/ and similarly jx3 � x1j � 3Kd.x3; @�/, so
we may connect x3 to x2 and x1 by curves satisfying the Harnack chain property. The
concatenation of these curves then works to show that � satisfies the Harnack chain con-
dition at x1 and x2.

A direct application of this theorem proves Lemma 7.5.

Proof of Lemma 7.5. Apply Theorem B.3 to u.x/Dm0Œw�.r0x/C
p

Tu�.r0x/� in nor-
mal coordinates around a point x 2 @�. By choosing r0 and m0 small, we have prop-
erty (iv) from the regularity of the metric. Property (ii) follows from Corollary 5.5,
while (iii) comes from Theorem 4.1. The inner and outer ball conditions were verified
in Lemma 7.1.
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