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We survey recent results on analysis and numerics of the scalar Perona—Malik equation. A vectorial
Perona—Malik equation is introduced to evolve unit vector fields for directional diffusion. For both
cases, scalar and vectorial, fully discrete schemes are proposed which fulfill a discrete energy law,
and satisfy a discrete sphere constraint in the vectorial case. Computational experiments are provided
to illustrate quantitative behaviors, and compare with scalar total variation flow and heat flow of
harmonic maps.
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1. Introduction

Regularization of multivalued images with PDE’s is an active research area, which includes
denoising/edge enhancement, segmentation, and inpainting of digital color images, and restoration
of optical flow and direction fields, or fields of diffusion tensors in magnetic resonance imaging, for
example. The goal in image segmentation and edge detection is to decompose a given image into
regions that are essentially homogeneous (with little variation in color or brightness); these regions
should be separated by sharp boundaries (edges). In this paper, we study directional diffusion,
where a unit vector fieldip : 2 — S? is anisotropically diffused by a vectorial Perona—Malik
equation into the sphe&#; this program is motivated by recent models, which suggest independent
processing of brightnegsig| : £2 — R and chromaticityug/|ug| : £2 — S? of colored RGB-
imagesuo : £2 — R3 (cf. [55,/56/542P]).

Originally, the model of Perona and Malik [50] was developed to anisotropically diffuse gray
valuesug : 2 — R, i.e.,u : 27 — Rsolvesforu(0, ) =ug € L*°(2),andall0< ¢ < T,

u—div(ge ((Vul9)Vu) =0 in27:=(0,T)x2, du=0 0ndRr = (0,T)xd2. (1.1)
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Let 2 c RM be a bounded, Lipschitz domain. A standard example of a smooth nonincreasing
positive functiong, : R — R with g.(0) = 1 andsg.(s?) — 0 at infinity is g.(s?) =
(1 + s2/k)~Y, k > 0. Problem[{T]l) may then formally be considered as iiRegradient flow
related to the nonconvex, noncoercive enefigyu) = k [, ¢ (|Vu[?) dx with ¢, (s?) = sg,(s?)
and ¢, (s%) = %Iog(l + 52/k). In the following, we drop the subscrigt > 0 in casex = 1.
The motivation for this model is to suppress diffusion at regions of large gradients to preserve
sharp edges; it is in these regions where the gradient exceeds some threshold 8 z(«),
so that [(I.]l) becomes backward parabolic, wherga$ (1.1) is forward parabolic elsewhere. As a
consequence of the additional noncoercivity, well-posednegs gf (1.1) is a delicate matter [45, 44,
38], and recent literature mainly focuses on modified versiong of (1.1). These are partly outlined
in [45], together with the proposal of a ‘reasonable’ concept of solutions:_in[[27, 33], solutions
for a spatial discretization:( > 0) are characterized{ = 1), and a system of PDE’s coupled
via nonlinear boundary conditions is derived to control the limiting function admitting jumps as
h — 0in casex = O(h~1) at all times (see alsd [14]). These ansatzes are mainly motivated to
construct global solutions with possible (spatial) discontinuities, which enjoy further properties,
like e.g. decrease of energy and maximum principle. Another strategy introduces finite scales to the
problem by spatial [19] or temporall[3,149,/10] convolution of entrieg,ofo verify (local/global)
existence of Sobolev type solutions. A third, closely related approach adds regularizing terms, like
+eA%u or —g Auy, & > 0, to [1.]) to allow for weak solutions® : 27 — R, and derive governing
PDE's for appropriate limits (as — 0), which are of bounded variation to ensure edge-preserving
regularization (cf.[[11]).

The growth condition for the above functional at infinity is a crucial feature to keep and enhance
edges and corners of input images. [In|[51], the total variation functiénal = |, |Vu|dx is
introduced to denoise and restore inpugs 2 — R, and theL2-gradient flow formally reads

\%
ut—div<|vu|)=0 iNn2r, ohu=0 ond2r. (1.2)
u

Advantages of this model ovef (].1) are well-posedness in the practically relevant space of
functions with bounded variation, and further analytical[[4, 5] and numefic¢al |1, 25, 21, B2, 31,
20] understanding. However, computational experiments for a stable discretization in $edtion 2.2
evidence improved flexibility of the model of Perona—Malik over th&-model, due to the
asymptotic sublinear growth of related energies: fading away of bulk features at logarithmic time-
scale (in contrast to linear one), or invariance of honconvex supports (in contrast to variance of
nonconvex supports); see alsol[42, 31], and Fifure 2.3 below.

Processing colored images is a more complex task, where brightness and directions/chromaticity
of an RGB vector fieldip : £2 — RS2 are independently and anisotropically diffused [54, 56]: the
scalar brightnessug| : 2 — R is regularized by[(1]1) of (I.2), for example, whereas phe
harmonic map heat flow to the sph&® for 1 < p < 2, is used to regularize directions/|uo| :

2 — S? (cf. [41,136,3/ 18 6.18], and references therein for analytical and numerical results for
p-harmonic map heat flow). In particular, computational studieslinl[6, 9] evidence an interesting
dynamical behavior for cases< p < 2, like finite-time blow-ups, or geometric changes. In this
paper we continue this program by numerically studying anisotropic diffusion of directions by a
vectorial Perona—Malik model, whete: 27 — R3 solves

U —-UuxUuUxDGU)=0 in27, d,u=0 ondR2y, u0,)=up ing2, (1.3)
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for up : 2 — S? and(DG(u), v) = [, g(IVul?)(Vu, Vv) dx. Again, solvability of this model is

a critical issue, and related problems definitely exceed those mentioned before in the context of the
scalar problen{(I]1); in this paper, we focus on numerical aspects, i.e., construction and analysis of
fully discrete versions of (1] 3), and their iterative solution. This is a nontrivial task due to the sphere
constraint and nonconvexity of the underlying potential.

In the following, letV;, := [V;,]° be the space of finite element functions, which are elementwise
affine and globally continuous, i.eV;, = {v, € C(R2) : v,|x is affineVK e 73}, whereT, is a
triangulation of$2. Further, Iy = {t,}n>0 denotes an equidistant net of mesh stze- 0 to
discretize [0 T]. We study, both theoretically and numerically, properties of iteréitds} c Vy,
of Algorithm ‘ below to motivate properties of certain limits of approximating seque{bl}figs,,
whereld € C([0, T]; V;,) is defined by

(1,00 1= Ut = wﬂm+—71Wm,rd%%m.

This scheme is constructed to satisfy a discrete sphere constraibt’t.&x) e S? at the nodes of
the triangulatiori, (m > 0), and a discrete energy law (see Lenima 3. 1)

Letd, Um+t = k=1t — U™y andU+Y/2 .= (U +1 + U™) for m > 1; we use a discrete
version (reduced integration) of the inner producLﬁ(Q, R3), i.e., (f, o = [o Zn(f, ) dx, for
the nodal interpolation operatdy,, andf, g € C(2; R3); we refer to Secti02 for further details
regarding notation.

ALGORITHM 1.1 Form > 0, letU™ e V},, and determingU™ 1, L"™+1) ¢ [V,]? from

(dtUm+1, llf)h _ (Um+1/2 % (Um-‘rl/z % Lm+l), w)h — o v,'p, e th (14)
L")y = FVUTHL VUM, V) VY eV, (1.5)

with ¥ (@, B) = (¥ («ij, Bij))ij € R¥>M fora = (a;j)ij, B = (Bij)ij € R¥>M, where

¢ (a®) — ¢(b?)
(. b) = — ifa #b,
g(@®a if a=>n.

Here, the functionL”*1 is an approximation oG (u). For practical purposes, a simple fixed
point scheme together with a stopping criterion (Algorifhnj 3.1) is used to approximate solutions to
Algorithm[1.]. As is stated in Theorgm B.1, iterates still satisfy the sphere constraint, and converge
to solutions of Algorithnf 11 provided that< Ch2.

The remainder of this paper is as follows: Secfior] 2.1 surveys recent strategies tq s¢lve (1.1);
a full discretization of[(T]1) is proposed in Sectfon|2.2, where solutions satisfy a discrete energy
law (M > 1); in order to exclude additional spatio-temporal perturbation effects, which may affect
dynamics of staircasing [45] at finite scales, we consider a direct discretization]of (1.1) (rather than
regularized versions of (J.1)). Comparative computational experiments for the total variation flow
and the Perona—Malik evolution show very different quantitative behaviors. In Sption 3, we study
the (fully discrete) Perona—Malik evolution into the sphere, and prove its stability; computational
studies show different dynamics in comparison with regularized 1-harmonic map heat flow.
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2. Gradient flow of a nonconvex functional: the scalar case

Nonstationary equations
up=—DF(u) inR2r, 0wu=0 ond2r, u(0,:)=up in§2, (2.1)

for nonconvexF(u) = [, ¥ (|Vul)dx are forward-backward parabolic, which in the case of
coercivity ofyy : R — R possess global Young measure solutions$ [24]. Such solutions are typically
not unique; however, the first moment of the Young measure is unique, and its stability is reflected by
maximum and comparison principles, as well as an energy decay property. Numerical experiments
in [30] give further insight into dynamics df (2.1) in the coercive case: (i) the gradient flow for the
convexified density (e.g., no ‘wrinkling’, see below) does not approximate the above Young measure
solution of [2.1); (ii) formation of wrinkles of size of spatial discretization- 0 only appears in

the locally concave regionsU S = {s € R : ¢ (s) < 0} of the energies, and not in the larger set of
globally unstable region6U S = {s € R : ¥ (s) > ¢¥**(s)}, and movement of ‘wrinkling regions’

at later times is observed.

The properties of[(2]1) for nonconvex, noncoerciveare much less understood, and the
approach in[[24] to construct Young-measure solutions via Rothe’s method for the above setup
does not apply here. Recently [53], the construction of Young-measure solutipng to (I yfdr
succeeded, which is based on a reformulation of the problem; it is pointed dutlin [53] that the
solutions constructed suffer from severe instabilities, which e.g. occur in the evolution for ‘mixed’
initial datauo, whereug , belongs to both convex and concave regiong oDiscretization of the
governing PDE, or approximation respectively regularizatiof @fre common strategies to obtain
well-posed problems, to construct and identify possible limits to control asymptotical dynamics of
the regularized model. The work [37] is an interesting example for this program, where a notion
of gradient flow of the nonconvex Mumford—Shah functioffal: SBV(2) — R (M = 1)is
introduced as the limit of the well-posed gradient flaw{ 0)

ul = —DF,") in2r, un0,-) = uoy, (2.2

for the functionalf, : PC2 — R,

_ 2
Ey(u) = }/ arctar(lu(x+h) u@)| )dx,
h e h

with piecewise constant functiorB;C,f :={u € L2(R) : ulg € Po(K;)}, and which converge t¢
in variational sense. Here, a nonoverlapping covetij)g?i = R is used, which consists of open
triangles such thak; N K; = @ for 0 < i # j, with area sup|K;| < A; itis shown in [37] that
well-defined limitsu : 27 — R solve local heat equations with homogeneous Neumann boundary
conditions at (a finite number of) starting discontinuities, which keep position and exist for finite
(‘merging’) or infinite times (‘surface energy monotonicitgHo(SM(t,.)) < 0, i.e., the singularity
setSu.) = {x € R :ut(t,x) # u"(z,x)} is nonincreasing; see e.g! [4]), and enjoys desirable
properties, like maximum principle, energy dec{%y-'(u(t, -)) < 0, and Hilder continuity in time.
Due to some connection between Mumford—Shah and Perona—Malik problems, those results may
serve as a motivation to better understand the latter (cf. [43], and the literature cited therein).
Another example for unexpected dynamics which follows a similar program is studied in
[14] for the nonconvexp(£) = min{&2, 1} (M = 1), where (nonunique) limits of restricted
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functions of bounded variatiofu,(z, )} € V, C BV (£2) (which solve a problem similar to

([2-2)) are inL>([0, 00), BV (0, 1)) N AC?([0, o0); L?(0, 1)), and satisfy (i) a free boundary value
problem (local linear heat equations, with homogeneous Neumann conditions at interfaces), (ii)

a maximum principle (no comparison principle), and (iii) monotonicity for the total variation,
i.e.|Du(t, )|((0,1)) < |Duogl((0,1)) for t+ > 0; moreover, the discontinuity s} ., may move

and subsets may merge in space-time. Part of these results have recently been extended to Perona—
Malik (M = 1) in [15]; in particular, additional temporal discretization effects are shown to play a
crucial role for limiting solutionsk, 1 — 0), unlesst < C exp(—1/h%) for a > 2 (see([15, Props.

6.1, 6.2]).

2.1 Scalar Perona—Malik—an overview

Analytical studies[[b] of the scalar-valued total variatidh\() flow (p = 1) —u, € 9J(u), for

u(0,) = ug € L2(82), andJ (u(z, -)) = |Dul(z,-)|(£2) show interesting characterizations of the
strong solution in the sense of semigroup theory: (i) finite extinction tikie=f 2), (ii) u(z,-) €

L®(R2) fort > 0if ug € LM(£2), and noL!-L2-regularizing effect forL1(2)-initial data in
general, (ii)Ct-regularity of level set$*[u(z, -) > A] for ug € LM (£2) of decreasing size, i.e.,
%H"“l(a*[u(r, ) > A]) < 0, and (iv) invariance of supports, provided e.g. the curvature of the
smooth boundary of the simply connected convex domain is not too large. The more practical notion
of weak solutions is established and studied in [40, 32], and convergent finite element methods are
discussed in[[32,31]. Considérs k¢, ) 1= Za=tym 4 ntym=1l e V,int € [ty_1.tn),

where the iterateg/™} C V}, solve the regularized, fully discrete problem

vu”
VIvom2Z 4 g2’

The iterates satisfy a discrete energy law, and convergengg‘df*} c C([0, T]; V) towards
strong solutions of th& V-problem with a rate

d; U™, v,) + ( Vvh> =0 Vv, € V. (2.3)

lu = Tl poio.7:12) < CV1RIT /e + Ca(e)k + Ca(e)h?

is verified in [31/32] provided that the underlying triangulation is quasiuniform,kagd O (h?).
Moreover, the constants; (¢) > 0 depend o1 in a low polynomial order.

A mathematical study of Perona—Malik's modgl {1.1) started with Kichenassamy’s work
[45], where weak solutions fof (3.1) were excluded, and a concept of generalized solutions is
motivated, which allows for (energetically favorable) step functions in finite and infinite time, to
analytically describe numerically observed formation, merging, and segmentatiornf) during
a ‘staircasing’ process (cf. also Figiire]2.1 below). The following general assumptions from [45] for
g¢ . R — R apply to the upper prototypic example, in particular.

ASSUMPTION2.1 (i) g«(¢§) > Oforall¢ > 0.
(i) The parametek > O defines a positive critical valug(c) such thatds (5g,(£%)) > 0 for

|&] < z(c), anddz (58, (£2)) < O for €] > z(x).
(iii) Both g, (&) anddg (£g, (€2)) tend to zero a§ goes to infinity.

In Esedoglu’s work[[27], solutions;, : 2r — R for a spatial semi-discretization d¢f (1.1) in
the casec = «(h) are shown to converge: (— 0) to solutions of the following system of heat
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equations coupled to each other through nonlinear boundary conditions that may become singular
at finite times {4 = 1):
dui _ 0%u; u; uit1 1

_° - |n i_1, Di), —(t,p;) = t, p;) = ,
5 0x2 (pi-1, i) 8x( Di) o @, pi) 1t ) — w0

forall1<i < N—1,and%2(, po) = %%(t, py) = 0. Here,pg < p1 < --- < py denote

the positions of jumps, which are shown not to move during the evolution process, but will vanish
within finitetime (energy argument). (Changes in time of the jump seifet 2 is computationally
evidenced in[[28].) Locally existing solutions satisfy the maximum principle (but no comparison
principle, [27]), are Klder continuous in time, and decrease the energy

1N, pri
PMg(t) = > 2/
i=17pi-1

which, however, is not bounded from below as jumps tend to zero. Canonical continuation of
solutions beyond blow-ups at ‘quenching times’ is possible; this reflects merging of neighboring
terraces (‘coarsening’) in the final step during evolution, which is preceded by the formation
of terraces (‘staircasing’). Hence, this program follows the propadsal [45] to explain formation
and merging of terraces; see [27] for illustrative simulations in 1D; see also 1D-simulations
respectively 2D-simulations in [27] respectively [46, pp. 84ff].1[43].
A different line of research uses recent resulis [4, 18] aliduabnvergent approximations of

energiesF : BV (£2) — R of the form [48]

2 N-1

8”[
S ()] dr + ; log(|ui+1(t, pi) — ui(t, pi)l),

F(u) =/ f(qu|)dX+f ot —u)ydHM 1 4 C |DCu| (2.4)
2

Su

by sequences;, : W22(2) — R,
Fulu) = / £(Vul) x4 (o) / 9 2u[? dx. (2.5)
2 2

Here,C1(/z — 1) < ¢(z) < Ca(z + 1) forall z > 0, andC1, C2 > 0 (which excludes the
Mumford—Shah functional; cf [17] fod = 1), and|Du| denotes the total variation of the
Cantor part of the measuiu; moreover, 1.} is any family of positive, nondecreasing functions
of nonconvex or convex-concave shape, ghdespectivelyp are defined as proper limits gf
respectively-(¢) f: (-/r(¢)). As is pointed out in[48], by using the right rescaling) = ¢/log(1/¢)

for the Perona—Malik functional, we have

3
Gg(u)—i—(Ll) /|V2u|2dX£>/ |Vu|2dx+c/ lut —u~ Y2 aHM L,
lo Q Q Su

for some computable > 0. Then the general results in [48] allow constructing generalized Perona—
Malik equations, where solutions of formaP-gradient flows to[(2)4) are interpreted as limits (as

e — 0) of existing L2-gradient flows of[(2}5); in([11,12], the authors study #tregradient flow

for the I"-limit of the slightly different scaling (cf[(Z]3)F, : W22((0, 1)) — R,

,_ 1 ! @ (uy) 3 2
Fo(u) = E/o <v¢(1/v) + V7 |ty )dx (v > 0), (2.6)




VECTORIAL PERONA-MALIK EQUATION 437

which is proved to beF : P((0, 1)) — R with

Fu) = 2\/2 Z ut ) —u"(x)[Y? for P(0,1):={uec SBV(O,1): DU =0},

x€eSy,

whereD%u denotes the absolutely continuous part of the derivddivea motivation for the scaling
in (Z.8) comes from studying solutions of thé-gradient flow (for2 = (0, 1))

ub + %(qﬁ’(ui))x +62uf =0 inQr, ut=ut, =0 oniQr
at large times = O(1/v¢(1/v)), with €2 = v4p(1/v), where coarsening takes place (after an
initial period of rapid formation of microstructures, followed by a longer coarsening period). Then
the L2-gradient dynamics fofF that is identified with the global.2-minimizing movement in the
sense of De Giorgi leads to a coupled system of nonlinear ODE's, which controls dynamics of local
heights of the piecewise constant functi®(0, 1)) > u(z, -) = s0-|-ZJN:1 si (O X1p;. D) again, initial
places of jumps do not move, and merging is admitted; seelalso [30, Example 1] for computational
evidence and discussion of formation and coarsening of piecewise constant mappingsrattithes
for casequg » € LUS} # 0.

Finally, we mention[[3B], where results help to better comgaveflow and [1.1), and illustrate
different behaviors of (I]1) in different spatial dimensions & 1): for M = 1, the total variation
of solutions to[(T.]L) is shown to be nonincreasing in time, while counterexamples show that this
assertion fails fod = 2. In addition, the authors in [33] study solutions to a semidiscretization in
space forM = 1, 2, where only maximum and energy decay property are validatee=(1), due
to failure of tools which apply only for the continuous model[1.1), like the chain rule, for example.
An interesting recent resul{ = 1) is given in [34], which shows that instantaneous staircasing
may not always be expected for ‘mixed’/transcritical data: it is shown that the set of initial data for
which Perona—Malik has a local in time classical soluiion2; — R is dense inC1(£2).

Computational experiments fdr (1.1) nourish the above analytical studies; unfortunately, it is
difficult to design fully discrete schemes that satisfy all properties mentioned above at the same
time, like energy, positivity, and maximum principle féf > 2, and not evident how to properly
relate numerical discretization parametérs [15].1n [28], Esedoglu verifies a restricted comparison
principle for a spatial semidiscretizatioM(> 2), with additional control over gradients in the case
M = 1; computational experiments are provided to evidence failure of these propertigs=fo?.

In [10], a discrete maximum principle is established for a fully discrete finite difference scheme to
solve Nitzberg—Shiota's [49] temporal regularization[of 1) £ 2). Unconditional convergence
inC(0, T; L3(2))NL2(0, T; WL2(£2)) of the whole sequend® ¥} (see construction as before in
(2:3)) of solutiondU™} of a semi-implicit finite element discretizatiom(= 2) for the regularized
version [19] with smoothing kernel

|x[?

1
gg(x) = 477:—0_ eXp(—E>, o > 0,

in the form

d: U™, vp) + (g(IVGy * U™ HVU™, Vo) =0 Vop € Vp, m > 1, (2.7)
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for u® = up € L?(£2) to a unique limit which solves its continuous version is verified if [42]: its
proof rests upon the (a priori) bound

1 k2 &
SIUm + = >
2 2 o

m
U712, +k2fga,-_1 VU7 dx = %nuoniz, m=>1 (28)

j=1
with o, —1 1= g(|V Gy * U™ 1)) > v, >0.The properties o (|VG, * -|), together with equation
(2:9), are key tools for a compactness argument, and to establish solution character of a proper
limit in L2(27) for the continuum version of (2.7). Interesting computations are also included
in [42] for valuesh = k ~ 1073div102, ando ~ 108div10~5, where cusp-like edges are
preserved/enhanced, while gross parts of the solution are smoothened. A corresponding program
was realized for a semi-implicit finite volume scheme [inl[47]; more recently, suboptimal rates
IU"F — ull 20,y < Crv/h are verified for the caske = h in [39], using a (discrete) Gronwall
argument.

Long-time dynamics of a fully discrete version pf{|1.1) is studied in the recent Wwark [26]. Here,

a semi-implicit discretization based on finite differences for a reformulation df (1.1) is used, and a
discrete energy inequality is derived to study asymptotic behavior of itefdtésfor m — oo.

The works [42]'417,-39] employ properties of the special regularization of the elliptic PDE (1.1)
given in [19]; in Sectiof 2]2, we consider a full, finite element based discretization of the original
problem [I.]1) which exploits its character as gradient flow for the nonconvex functignfar
M > 2, and whose iteratd$/"} satisfy the discrete energy law

m
kY U2, +GU™) = Guo), m>1 (> 0). (2.9)
j=1

To reach this goal, the Echet derivative oG, : V;, — R is replaced by a difference quotient
in Algorithm [2.]. As outlined above, convergence behavior remains unclear, but may easily be
concluded—based on the discrete energy ideftity (2.9)—for regularizatignsiof (1.1).

2.2 Scalar Perona—Malik equation—energy decreasing discretization

We propose a stable, implicit finite element discretization of a slightly modified versign ¢f (1.1)
(M = 2); a discrete energy law is established for an implicit discretization in time. Numerical
simulations are performed to directly compare properties with total variation flow. This section also
serves as a preparatory step and motivation for the scheme devised in Section 3. We follow [50, 27,
28] and evolveig € L*>°(£2) via (M = 2)

(s, .
u; — div 5 =0 in2r, ohu=0 ondfr. (2.10)

Notice that[(Z.ID) is formally the gradient flow @u) = Jo (¢(u§) + ¢>(u§)) dx dy.

Let 7, be a regular triangulation of the polygonal or polyhedral bounded Lipschitz domain
2 c RM into triangles or tetrahedra of maximal diameies 0 for M = 2 or M = 3, respectively.
Given the set of all nodes (or vertices) in 7;, and letting{¢; : z € N} denote the nodal basis
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in V;,, we define the nodal interpolation operafgr: C(2) — V;, by Zpy = Y zen YV (D, for
V¥ e C(R).Forg, ¥ € C(2), adiscrete inner product is defined by

(R 1=/ Tn(py) dx = Z Bz2¢ (DY (2),
2 zeN

wheref; = fg pzdx forall ze NV; we define||1p||ﬁ = (Y, ¥)i. We remark that

Il 2 < IWnlln < (M +2Y2 )yl 2

for all ¥, € V},. Basic interpolation estimates yield

[(Dns Ydn — (@i, Yiu)l < Chllgnll L2 IVl 2 (2.11)
for all ¢y, ¥y, € Vy;

ALGORITHM 2.1 ForJ > 0, and givenU” }o< < C Vj, determinel’/*1 € v, from
dUT T ), + VUL, vUT), V) =0 Yy eV, (2.12)

wherey (e, B) = (¥ (a1, B1). ¥ (a2, B2))T € R2 for e = (a1, @2), B = (B1. B2), with 7 (-, -) from
Algorithm[L.].

The algorithm for the approximation of scalar Perona—Malik flow is stated for two space
dimensions # = 2) but can easily be modified for arbitrafy. The use of reduced integration
is not essential in the scalar case but will be in the vectorial setting discussed below.

We may usey = d,U/*1 to verify the discrete energy law for iterates of Algorit2.1; by
Brouwer’s fixed point theorem, this also implies existence of solutions to the problem.

THEOREM2.1 Letk, h > 0.

(i) Forevery 0O< m1 < ma < 00,

kUt R+ Gt =G,

J=my
and in particular the functiom — G(U™) is nonincreasing. Moreover,
102 = U7 < G(wo) ltmy =ty

(ii) The only stationary points are constant functions.

Proof. The first part of assertion (i) follows from choosing = d,U/*! in (2.13). The asserted
inequality follows from

mo—1
+1
U™ — U™y <k Y lld U,
Jj=my

mo—1 12 mo—1

< () (k0 1007 ) < — PG,

J=my J=my



440 S. BARTELS AND A. PROHL

It remains to prove assertion (ii): by (i), we conclude lim, Id; U/, 2 = 0, whence, by definition
of (-, ), the limitU* =lim;_, o, U’ € V) solves

(UPU;
L) ) =0 vy e
(U
and thus is a critical point of : V;, — R. Because of Assumptidn 2.1()) an®iU*| < oo, as
h > 0, this implies the assertion. |

We refer to[[26, Cor. 4.2] for a corresponding asymptotic result for a different discretization of

€.D.

2.3 Scalar Perona—Malik—numerical experiments

Besides the energy decay property, supposed smooth solutigns|to (1.1) Eatisfyimates, and a
maximum principle[[44, 57, 33]; according to [33], the behavior of gradients differsMfce 1,

the total variation of solutions decreases, and strictly increasing behaviorof|| Vu(¢)|| .~ for
supercritical initial data can be shown; ffr > 2, (abstract) counterexamples are given which show
failure of the latter two properties for gradients of the solution. We illustrate failure of a supercritical
reverse maximum principle foM = 2, which statesd%HVu(t, IMigee > 0 for |Vugllpe > 1

sufficiently large.

EXAMPLE 2.1 Letf2 = {(x,y) € R2 : x2 4+ y2 < 1}, T = 1, andug(x, y) = f(r), where
r=@x2+y»)Y?and

f(r) = %(Zr —1)°%-— é(Zr — 1D+ @2r 1.

The triangulationsj;,(j) consist of 4096 and 16384 triangles for= 1 andj = 2, respectively,
and define interior approximations of the domain We useh; = 2=/ andk = hf/lo for
Jj =12, ...,5. Throughout this example, we employ= 1.

Examplg Z.]l has been constructed in/ [33, Example 3] in such a way that if there exists a radial
€2 solution of the Perona—Malik equation i2 subject to the given initial data then there exists
8 > 0 such that for alt € (0, §),

IVu(r, e < [Vuo()llz=,

which contradicts the validity of a supercritical reverse maximum principle for the gradient.
Figure[2.1 displays snapshots of the numerical approximations obtained with Algérithm 2.1 for

t = 0, 001, 002. The numerical solution does not seem to be radially symmetric for0.01

andr = 0.02, and we observe a ‘staircasing effect’. Nevertheless, as predicted in [33},tPe
seminorm is decreasing at small times as can be seen in Figlire 2.2; more precisely, for the discrete
time derivatived; | VU | ., we successively compute the values

d;|VUY| 1~ = —23.039, —22.470Q —20.0971, —18508Q —17.9046

for h; = 2=+, 1< j < 5, respectively.
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FiG.2.1. Numerical solution in Exam.l foe= 0,7 = 0.01, andr = 0.02 on the triangulatioﬁ;l(l).

25

20

15

10

— G UtD) (h=279)

Ul (=29

Ul ,, (h=275)
— vl (h=275
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uEnl, ,, (h=279
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t

FIG.2.2. EnergyG(uy(t,-)), wil seminorm|| VU / II1, andwl.o° seminorm|VU/ | oo of the numerical approximations
in Exampl on the triangulatiorif%(l) (h= 2—5) and’Th(z) (h= 2—6).

We remark that even though this example is critical in the sense that it eventually leads to
large gradients, our approximation scheme guarantees a decreasing energy (cf. Higure 2.2). We also
displayed thew -1 seminorm of the numerical approximations as functions of time and observe in

the same Figurie 2.2 that they are decreasing.

The following numerical experiments display advantages of the Perona—Malik evolution over
(regularized)T V-flow, where we put = h in (2.3). The next example compares evolution of

geometric objects by Perona—Malik afid/ -flow.
EXAMPLE 2.2 Letf2 = (—1/2,1/2)2 andug(x) = xk (x), where
(@) ford = 1/5andB,(a,b) = {(x,y) € R?: (x —a)? + (y — b)2 < r?}

K = B1/8(0, 2d/~/3) U B1/g(—d, +d /+/3);
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FiG.2.3. Nodal interpolant of the initial data defined in (a)—(c) of Exarfipl¢ 2.2 (first row). Numerical approximation of
Perona—Malik equation far = 0.15,+ = 0.15, andr = 0.1 (second row), and = 0.3,+ = 0.3,¢ = 0.175 (third row)
respectively, in (a)-(c) of Examgle 2.2. Developed initial data for the approximation of reguldtizétbw for 1 = 0.035,

r = 0.035,7 = 0.025 in (a)—(c) of Example 22 far= h (last row).

(b) ford = 1/4andB>®(a,b) = {(x,y) € R?: |x —al, |y — b| < r}
K = Bg(0, d) U BfYg(+d. 0);
(c) fors =2/7 andr = 2/13
K = B(0,0) \ (B,(0,0) U By (s, s) U B.(—s, s5) U B, (0, £5) U B, (+£s, 0)).

We let 7, be a triangulation of2 consisting of halved squares along the directignl) and of
maximal diameteh = 2.

We ran Algorithm[ 2L for the initial data specified in (a)—(c) of Exanjplg 2.2. The first row
in Figure[2.B displays the initial data, i.e., the nodal interpolant of the functions defined in
Examplg 2.P(a)—(c). The second resp. third row show the numerical approximation at intermediate
timest ~ 0.15 resp. later times ~ 0.3. Diffusion of structures occurs much faster for the
regularizedr V-flow (last row), for which snapshots of the numerical solutions at tirre 0.035
for the different initial data specified are shown.

Qualitative properties of evolving sets ®? by 7T'V-flow have been studied analytically in
[5l Chapter 4], and numerically in_[31]. Hence, (i) linear reduction of height of characteristic
functions, and (ii) change of corresponding supports built from nonconvex sets or close neighboring
convex sets, as well as (iii) a rounding effect of corners are well-known properties @fthe
flow. In contrast, no corresponding study on qualitative properties for the Perona—Malik equation is
available, where the numerical studies in rows two and three of Higdre 2.3 evidence (i) significantly
slower reduction of height of characteristic functions, (ii) invariance of nonconvex supports in time,
and (iii) conservation of corners/edges—at least for much longer time ranges than in the case of
TV -flow.

Our final numerical experiment for the scalar Perona—Malik equation indicates that characteris-
tic functions remain characteristic functions in the continuous case, and ‘coarsening rates’ depend
on the spatial discretization width> 0.

EXAMPLE 2.3 Set2 = (—1/2, 1/2)2 andug(X) = xx (X), X € £2, where
K = B1/6(—=1/6,—1/6) U B1/6(1/6, 1/6).

We employ three different triangulatioﬁ'#j) of £2 which consist of 512, 2048, and 8192 triangles
which are halved squares along the directi@nl) for ; = 4,5, 6, respectively (cf. Figurg 2.5).

Moreover, we used = 1 andk = hI?/lo, whereh; = V227 for j =4,5,86.
The upper row in Figurg 2.4 displays snapshots of the numerical solution on the triangulation

7;54) forr =0,t = 0.1, andr = 0.2. We observe that the profile of the initia is preserved for a
positive time, only the height changes untic 0.3, when a constant (stationary) state is attained.

The qualitative behavior is identical for the higher resolution defined by the triangu@@n
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FIG. 2.4. Numerical approximatioti (¢, -) for r = 0,¢ = 0.1, andr = 0.2 with j = 4 (upper row) and for = 0,7 = 0.2,
andr = 0.4 with j = 5 (lower row) in Exampl§ 2]3.
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FIG.2.5.

Quantitylld; Uz, ) |5, in Examplg Z.B for the numerical approximatindefined through = 4,5, 6.
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Snapshots of the evolution are shown in the lower row of Figure 2.4 fer 0, r = 0.2, and

t = 0.4. Again, the profile of the starting valug is preserved but here for a significantly longer
time (until ¢ ~ 0.5). Thus, the time when the numerical approximation attains a constant state
depends on the triangulation used. This is in good agreement with the coarsening rates derived in
[29]. The behavior can also be deduced from Figurg 2.5 which displays the quehtity, -) ||, as

a function oft € (0, 1) for the three triangulation@;l(j) with j = 4,5, 6. Finally, we remark that
for the three employed triangulations we computed the values

L 1/2
(kZ ||dtU‘||%) — 0.9311 0.7359 0.5841
=1

which provide further indication that, astends to zero, the initial characteristic functiog is a
stationary state of the scalar Perona—Malik model. Note that this conjecture is no contradiction with

Theorenf Z1L(ii).

3. Mappings into the sphere: one-harmonic map heat flow vs. Perona—Malik evolution

We verify stability and an energy law for existing solutions to Algorifhnj 1.1. Let

Gw= Y /Qqsuakw?)dx.

1<k<M
1<I<3

LEMMA 3.1 Letk, h > 0. Suppose thgt)®(z)| = 1 for all z € V. Then the sequend&”} from
Algorithm[1.7 satisfies, for all & m < oo,

i) |U"@| =1 VzelN,
m
(i) GU™™+kY U2 LIt 2 = GUO),
j=0

m
ity kY I UHE < GO,

j=0
Proof. Assertion (i) follows from choosingr = ¢,U"+tY2(2) € V;,, z € N, in (L:4). In order to
verify (i), we choosey = L in (T.4), andy = d4,U™+1 in (L), and benefit from the definition
of 7,

diy / PUARU ) dx — (UMHY2 o @2 5 L, LY, = 0,
kil 782

Thanks to(a x b, ¢) := —(a x ¢, b) for all a, b, ¢ € R3, this verifies (ii). The estimate (jii) now
follows easily from (i)—(ii), on puttingy = 4,U™*1, and using Young’s inequality. |

3.1 Fixed point method for Algorithfn 3.1

We use a simple fixed-point iteration to solve Algorithm|1.1; the subsequent method is motivated
by the substitutiorkd, U/+1 = 2w/+1 — 20/, for Wi+t = U/+1/2 such that[(T}4)F(1)5) may be
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rewritten as follows:
Z W gy - W WIS LT = 2T W eV, B
LMYy = —FVRWH U/, VU, V) VY eV, (3.2)
Given a stopping criterion = {g;};>0 > 0, the fully practical linear scheme reads as follows.
ALGORITHM 3.1 1. Sel)? := U% andW0 := 0O, Setj := 0 and¢ := 0.
2. ComputeWV/ 141 ¢ v, such that for aly € V,

2 ; ~ j 2.0
L W gy, — (WL (WL LT gy = (U 9 Y e V), (33)
(LI gy, = —FVERWIL 07y, V), VY)YV e V. (34)
3. Giveng; > 0, stop if
WAL Wt < g, (3)

and set)/+1 = 2W/tLE+l _gi e v,
4. Set? := ¢+ 1 and go to Step 2.

Unconditional unique solvability of (3.3) fow/+1.¢+1 ¢ L2 follows from the Lax—Milgram
theorem.

THEOREM3.1 LetG(0/) < € and|0/(z)| = 1forallze M andj > Oin Algo_rithm. For all
¢ > 0, there exists a unique solutidi/T1-+1 ¢ | 2 to (3:3){3.%) such thatw/ 141« < 1.
Moreover there exist§' > 0 such that

L/ o < CRTE (3.6)
Additionally, there exists & C < 1 such that fok < Ch?, there exists 6< I" < 1 with
||Wj+1,l+l _ Wj+l,Z||L2 < F||Wj+1,l _ WjJrl,lfl”Lz’ ¢ > 1’ (37)

and|U/*t1(z)| = 1 forallz e N.

Proof. Control of [W/*14F1|| . by 1 follows from [3:8) on choosing = W/ +1-t+1(z)¢,.
To verify [|IL/*1¢)| .« < Ch™t, choosez € A such that|L/ T+t = |L/t14(z)[. Upon
choosingy = L/™1¢(2)¢, in (3.2), we have
B ILTTH @)1 < |(p(V{2WI T — U7}, V), V)| LT (2)
I @ Y 1K IVel P (VW - 07}, VD)),

KeTy,, zeK

with ch™ < B, |K| < ChM. Since the sum is finite ang < C, this implies|L/*1¢(z)| < Ch™L.
Subtraction of two subsequent equations in the fixed-point iteration yields, for every and
all I/I S Vh,

Efii, Yon + (BT x (W/TLE S LITRG gy, + (WIHEE (B, x LI, 9,

+ (Wj"rl,f x (Wj+1,€ x [Lj+1,f _ Lj-‘rl,f—l])’ ,'/,)h —0.
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Choosingy = E{ /] leads to
041 Y ny ¢ 110,12 L gj+le-1
||Ej::__1||h LKW oo IL T oo IE; 11 lln + kW 2o (LI — LT ln (3.8)

Thanks to[(3.R), the mean value theorem together with uniform boundedn@s$/d - |2)| which
implies uniform Lipschitz continuity of (-, X) whenX is fixed, and an inverse inequality, the last
term in [3:3) may be bounded by

Ckh™t IVES 4ll2 < Ckh™? IE 1l 2-

A combination of the estimates then yields assertion (3.7). Finally/ift = 2w/+L¢+1 _ 0/,
equation[(3B) can be written as

(d, 07 gy, — (072 5 (O7HY2 5 LIHLE) gy, = 0,

The choicey = 0/ 2(2)¢, then impliesd, |0/ +1(2)]2 = 0. O

3.2 Computational experiments

Numerical experiments with Algorithin 1.1 show that evolved edges/structures are preserved for a
long time.

ExaMPLE 3.1 (a) Let := (—1,1)2, T = 1/2, andug be as in the left upper plot in Figure B.1.
We choose a triangulatiaf, consisting of 2048 triangles which are halved squares (along the
direction(1, 1)) and with 1089 nodes. Hende = +/22-% and we set = #2/10.

(b) Let$2, T, and7;, be asin (a) and latg be the perturbation of the initial data of (a) shown in the

left plot of Figurg 3.4.

Figure[3.1 shows the evolution defined by the Perona—Malik equation into the sphere in
Examplg 3.]l(a) and computed with Algoritfim]1.1. We observe that the sharp interfaces separating
regions in whichu = (1, 0, 0) from those in whichu = (0, 1, 0) are preserved for a long time
t = 0.44688 before all vectors start to align. This is different if regularized one-harmonic flow
(¢ = h) is applied to the initial data of Example B.1(a) as one can deduce from the snapshots
of the numerical solutions for different times shown in Figlrg 3.2; for its calculation, we used
a consistent, stable scheme constructedin [9], where iterates satisfy an analogue of[Lemma 3.1.
The vectors immediately start to align, andrat 0.15469 no sharp interfaces are observable. In
Figurg 3.3 (left) we displayed the first component of the veaidrsx) for x € {(—1/4, 0), (1/2, 0)}
as functions of > 0. This allows for a quantitative comparison of the speed of the alignment of the
vectors displayed in Figurgs 3.1 gnd]|3.2. We observe an approximately linear change in the direction
for 0 < ¢ < 2 in the case of (regularized) one-harmonic map heat flow into the unit sphere, while
the rotation is slowed down for Perona—Malik evolution on the sphere. The perturbed initial data
shown in the left plot of Figurg 3.4 is denoisedrat 0.020313 but (practical) discontinuities are
preserved.

We conclude our discussion on the qualitative behavior of the vectorial Perona—Malik flow into
spheres with an example that shows that a ‘staircasing effect’ occurs as in the scalar case. The next
example evolves smooth initial data, leading to iterates with large gradients.
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FIG.3.1. First two components of the numerical solutians -) for + = 0, 0.085938, 015469, 044688, 077344, 099688

in Examplg 3]L(a) obtained with Perona—Malik evolution on the sphere.
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FIG.3.2. First two components of the numerical solutigin, -) for = 0, 0.085938, 015469 in Examplg 3]1(a) obtained

with regularized one-harmonic map heat flaw={ &).

(cosm|x|, sinm|x], 0). Three uniform triangu-

_ (=1, 1)2 and ug(x)
Iations?}l(’) for j = 4,5, 6 of £2 with maximal mesh-sizé; = 2+/227/ are employed. For each

j =4,5,6we setc = 1 andk = h?/10.

EXAMPLE 3.2 Let$2
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Fic.3.3. Firstcomponents® (s, A) andu( (z, B) of the numerical solutions in Examjjle B.1(a) obtained with regularized
one-harmonic map heat flow and regularized one-harmonic map heat flow into the sph&re=far-1/4,0) andB =
(1/2,0) for & = h (top). Quantity|| VU(z, -)|| Loo in Example[3.P for the numerical approximatibhdefined through the

triangulations]}fj) with j = 4,5, 6 (bottom).

FIG. 3.4. First two components of the numerical solutign -) for 1 = 0, 0.010156, 0020313 in Examplg 3]1(b) obtained
with Perona—Malik evolution on the sphere.
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FIG. 3.5. Numerical solutiotJ(¢, -) fort = 0,t = 0.1, andr = 0.2 on triangulationfh(s) in Exampl

Figure shows the numerical solutibkiz, -) on the triangulationfh(s) fort = 0,r = 0.2,
and: = 0.38. We see that the initially smooth vector figllf changes during the evolution and

atr = 0.38, a piecewise constant state with a sharp interface, that separates regions in which the
approximation is constant, is attained. The interface becomes sharper for finer triangulations, which

is reflected in Figurg 3]3 (bottom), where we plotted foe 4, 5, 6 the quantityil VU(z, -)|| .~ as
function of¢; large (almost maximal) gradients are attained for each triangulation.
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