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Stable discretization of scalar and constrained
vectorial Perona–Malik equation
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We survey recent results on analysis and numerics of the scalar Perona–Malik equation. A vectorial
Perona–Malik equation is introduced to evolve unit vector fields for directional diffusion. For both
cases, scalar and vectorial, fully discrete schemes are proposed which fulfill a discrete energy law,
and satisfy a discrete sphere constraint in the vectorial case. Computational experiments are provided
to illustrate quantitative behaviors, and compare with scalar total variation flow and heat flow ofp-
harmonic maps.
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1. Introduction

Regularization of multivalued images with PDE’s is an active research area, which includes
denoising/edge enhancement, segmentation, and inpainting of digital color images, and restoration
of optical flow and direction fields, or fields of diffusion tensors in magnetic resonance imaging, for
example. The goal in image segmentation and edge detection is to decompose a given image into
regions that are essentially homogeneous (with little variation in color or brightness); these regions
should be separated by sharp boundaries (edges). In this paper, we study directional diffusion,
where a unit vector fieldu0 : Ω → S2 is anisotropically diffused by a vectorial Perona–Malik
equation into the sphereS2; this program is motivated by recent models, which suggest independent
processing of brightness|u0| : Ω → R and chromaticityu0/|u0| : Ω → S2 of colored RGB-
imagesu0 : Ω → R3 (cf. [55, 56, 54, 22]).

Originally, the model of Perona and Malik [50] was developed to anisotropically diffuse gray
valuesu0 : Ω → R, i.e.,u : ΩT → R solves foru(0, ·) = u0 ∈ L∞(Ω), and all 0< t 6 T ,

ut −div(gκ(|∇u|
2)∇u) = 0 inΩT := (0, T )×Ω, ∂nu = 0 on∂ΩT := (0, T )×∂Ω. (1.1)
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Let Ω ⊂ RM be a bounded, Lipschitz domain. A standard example of a smooth nonincreasing
positive functiongκ : R → R with gκ(0) = 1 and sgκ(s2) → 0 at infinity is gκ(s2) =

(1 + s2/κ)−1, κ > 0. Problem (1.1) may then formally be considered as theL2-gradient flow
related to the nonconvex, noncoercive energyGκ(u) = κ

∫
Ω
φκ(|∇u|

2)dx with φ′
κ(s

2) = sgκ(s
2)

andφκ(s2) =
1
2 log(1 + s2/κ). In the following, we drop the subscriptκ > 0 in caseκ = 1.

The motivation for this model is to suppress diffusion at regions of large gradients to preserve
sharp edges; it is in these regions where the gradient exceeds some threshold 0< z = z(κ),
so that (1.1) becomes backward parabolic, whereas (1.1) is forward parabolic elsewhere. As a
consequence of the additional noncoercivity, well-posedness of (1.1) is a delicate matter [45, 44,
38], and recent literature mainly focuses on modified versions of (1.1). These are partly outlined
in [45], together with the proposal of a ‘reasonable’ concept of solutions: in [27, 33], solutions
for a spatial discretization (h > 0) are characterized (M = 1), and a system of PDE’s coupled
via nonlinear boundary conditions is derived to control the limiting function admitting jumps as
h → 0 in caseκ = O(h−1) at all times (see also [14]). These ansatzes are mainly motivated to
construct global solutions with possible (spatial) discontinuities, which enjoy further properties,
like e.g. decrease of energy and maximum principle. Another strategy introduces finite scales to the
problem by spatial [19] or temporal [3, 49, 10] convolution of entries ofgκ to verify (local/global)
existence of Sobolev type solutions. A third, closely related approach adds regularizing terms, like
+ε∆2u or −ε∆ut , ε > 0, to (1.1) to allow for weak solutionsuε : ΩT → R, and derive governing
PDE’s for appropriate limits (asε → 0), which are of bounded variation to ensure edge-preserving
regularization (cf. [11]).

The growth condition for the above functional at infinity is a crucial feature to keep and enhance
edges and corners of input images. In [51], the total variation functionalJ (u) =

∫
Ω

|∇u| dx is
introduced to denoise and restore inputsu0 : Ω → R, and theL2-gradient flow formally reads

ut − div

(
∇u

|∇u|

)
= 0 inΩT , ∂nu = 0 on∂ΩT . (1.2)

Advantages of this model over (1.1) are well-posedness in the practically relevant space of
functions with bounded variation, and further analytical [4, 5] and numerical [1, 25, 21, 32, 31,
20] understanding. However, computational experiments for a stable discretization in Section 2.2
evidence improved flexibility of the model of Perona–Malik over theT V -model, due to the
asymptotic sublinear growth of related energies: fading away of bulk features at logarithmic time-
scale (in contrast to linear one), or invariance of nonconvex supports (in contrast to variance of
nonconvex supports); see also [42, 31], and Figure 2.3 below.

Processing colored images is a more complex task, where brightness and directions/chromaticity
of an RGB vector fieldu0 : Ω → R3 are independently and anisotropically diffused [54, 56]: the
scalar brightness|u0| : Ω → R is regularized by (1.1) or (1.2), for example, whereas thep-
harmonic map heat flow to the sphereS2, for 1 6 p 6 2, is used to regularize directionsu0/|u0| :
Ω → S2 (cf. [41, 36, 3, 18, 6, 8], and references therein for analytical and numerical results for
p-harmonic map heat flow). In particular, computational studies in [6, 9] evidence an interesting
dynamical behavior for cases 1< p 6 2, like finite-time blow-ups, or geometric changes. In this
paper we continue this program by numerically studying anisotropic diffusion of directions by a
vectorial Perona–Malik model, whereu : ΩT → R3 solves

ut − u × (u ×DGDGDG(u)) = 0 inΩT , ∂nu = 0 on∂ΩT , u(0, ·) = u0 in Ω, (1.3)
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for u0 : Ω → S2, and(DGDGDG(u), v) =
∫
Ω
g(|∇u|

2)〈∇u,∇v〉 dx. Again, solvability of this model is
a critical issue, and related problems definitely exceed those mentioned before in the context of the
scalar problem (1.1); in this paper, we focus on numerical aspects, i.e., construction and analysis of
fully discrete versions of (1.3), and their iterative solution. This is a nontrivial task due to the sphere
constraint and nonconvexity of the underlying potential.

In the following, letVh := [Vh]3 be the space of finite element functions, which are elementwise
affine and globally continuous, i.e.,Vh = {vh ∈ C(Ω) : vh|K is affine∀K ∈ Th}, whereTh is a
triangulation ofΩ. Further,Ik := {tm}m>0 denotes an equidistant net of mesh sizek > 0 to
discretize [0, T ]. We study, both theoretically and numerically, properties of iterates{Um} ⊂ Vh
of Algorithm 1.1 below to motivate properties of certain limits of approximating sequences{UUU}k,h,
whereUUU ∈ C([0, T ]; Vh) is defined by

(t, x) 7→ UUU(t, x) :=
t − tm

k
Um+1(x)+

tm+1 − t

k
Um(x), t ∈ [tm, tm+1).

This scheme is constructed to satisfy a discrete sphere constraint, i.e.Um+1(x) ∈ S2 at the nodes of
the triangulationTh (m > 0), and a discrete energy law (see Lemma 3.1).

Let dtUm+1 := k−1(Um+1
− Um) andUm+1/2 := 1

2(U
m+1

+ Um) for m > 1; we use a discrete
version (reduced integration) of the inner product inL2(Ω; R3), i.e., (f,g)h =

∫
Ω
Ih〈f,g〉 dx, for

the nodal interpolation operatorIh, andf,g ∈ C(Ω; R3); we refer to Section 2.2 for further details
regarding notation.

ALGORITHM 1.1 Form > 0, letUm ∈ Vh, and determine(Um+1,LLLm+1) ∈ [Vh]2 from

(dtUm+1,ψψψ)h − (Um+1/2
× (Um+1/2

×LLLm+1),ψψψ)h = 0 ∀ψψψ ∈ Vh, (1.4)

(LLLm+1,ψψψ)h = (γ̃γγ (∇Um+1,∇Um),∇ψψψ) ∀ψψψ ∈ Vh, (1.5)

with γ̃γγ (ααα,βββ) = (γ̃ (αij , βij ))ij ∈ R3×M for ααα = (αij )ij , βββ = (βij )ij ∈ R3×M , where

γ̃ (a, b) =


φ(a2)− φ(b2)

a − b
if a 6= b,

g(a2)a if a = b.

Here, the functionLLLm+1 is an approximation ofDGDGDG(u). For practical purposes, a simple fixed
point scheme together with a stopping criterion (Algorithm 3.1) is used to approximate solutions to
Algorithm 1.1. As is stated in Theorem 3.1, iterates still satisfy the sphere constraint, and converge
to solutions of Algorithm 1.1 provided thatk 6 Ch2.

The remainder of this paper is as follows: Section 2.1 surveys recent strategies to solve (1.1);
a full discretization of (1.1) is proposed in Section 2.2, where solutions satisfy a discrete energy
law (M > 1); in order to exclude additional spatio-temporal perturbation effects, which may affect
dynamics of staircasing [45] at finite scales, we consider a direct discretization of (1.1) (rather than
regularized versions of (1.1)). Comparative computational experiments for the total variation flow
and the Perona–Malik evolution show very different quantitative behaviors. In Section 3, we study
the (fully discrete) Perona–Malik evolution into the sphere, and prove its stability; computational
studies show different dynamics in comparison with regularized 1-harmonic map heat flow.
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2. Gradient flow of a nonconvex functional: the scalar case

Nonstationary equations

ut = −DF(u) in ΩT , ∂nu = 0 on∂ΩT , u(0, ·) = u0 in Ω, (2.1)

for nonconvexF(u) =
∫
Ω
ψ(|∇u|)dx are forward-backward parabolic, which in the case of

coercivity ofψ : R → R possess global Young measure solutions [24]. Such solutions are typically
not unique; however, the first moment of the Young measure is unique, and its stability is reflected by
maximum and comparison principles, as well as an energy decay property. Numerical experiments
in [30] give further insight into dynamics of (2.1) in the coercive case: (i) the gradient flow for the
convexified density (e.g., no ‘wrinkling’, see below) does not approximate the above Young measure
solution of (2.1); (ii) formation of wrinkles of size of spatial discretizationh > 0 only appears in
the locally concave regionsLUS = {s ∈ R : ψ ′′(s) < 0} of the energies, and not in the larger set of
globally unstable regionsGUS = {s ∈ R : ψ(s) > ψ∗∗(s)}, and movement of ‘wrinkling regions’
at later times is observed.

The properties of (2.1) for nonconvex, noncoerciveψ are much less understood, and the
approach in [24] to construct Young-measure solutions via Rothe’s method for the above setup
does not apply here. Recently [53], the construction of Young-measure solutions to (1.1) forM = 1
succeeded, which is based on a reformulation of the problem; it is pointed out in [53] that the
solutions constructed suffer from severe instabilities, which e.g. occur in the evolution for ‘mixed’
initial datau0, whereu0,x belongs to both convex and concave regions ofψ . Discretization of the
governing PDE, or approximation respectively regularization ofF are common strategies to obtain
well-posed problems, to construct and identify possible limits to control asymptotical dynamics of
the regularized model. The work [37] is an interesting example for this program, where a notion
of gradient flow of the nonconvex Mumford–Shah functionalF : SBV (Ω) → R (M = 1) is
introduced as the limit of the well-posed gradient flow (h > 0)

uht = −DF̂h(u
h) in ΩT , uh(0, ·) = u0,h, (2.2)

for the functionalF̂h : PC2
h → R,

F̂h(u) =
1

h

∫
R

arctan

(
|u(x + h)− u(x)|2

h

)
dx,

with piecewise constant functionsPC2
h := {u ∈ L2(R) : u|K ∈ P0(Ki)}, and which converge toF

in variational sense. Here, a nonoverlapping covering
⋃
i Ki = R is used, which consists of open

triangles such thatKi ∩ Kj = ∅ for 0 6 i 6= j , with area supi |Ki | 6 h; it is shown in [37] that
well-defined limitsu : ΩT → R solve local heat equations with homogeneous Neumann boundary
conditions at (a finite number of) starting discontinuities, which keep position and exist for finite
(‘merging’) or infinite times (‘surface energy monotonicity’d

dtH
0(Su(t,·)) 6 0, i.e., the singularity

setSu(t,·) := {x ∈ R : u+(t, x) 6= u−(t, x)} is nonincreasing; see e.g. [4]), and enjoys desirable
properties, like maximum principle, energy decayd

dtF(u(t, ·)) 6 0, and Ḧolder continuity in time.
Due to some connection between Mumford–Shah and Perona–Malik problems, those results may
serve as a motivation to better understand the latter (cf. [43], and the literature cited therein).

Another example for unexpected dynamics which follows a similar program is studied in
[14] for the nonconvexφ(ξ) = min{ξ2,1} (M = 1), where (nonunique) limits of restricted
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functions of bounded variation{uh(t, ·)} ⊂ Vh ⊂ BV (Ω) (which solve a problem similar to
(2.2)) are inL∞([0,∞), BV (0,1)) ∩ AC2([0,∞);L2(0,1)), and satisfy (i) a free boundary value
problem (local linear heat equations, with homogeneous Neumann conditions at interfaces), (ii)
a maximum principle (no comparison principle), and (iii) monotonicity for the total variation,
i.e. |Du(t, ·)|((0,1)) 6 |Du0|((0,1)) for t > 0; moreover, the discontinuity setSu(t,·) may move
and subsets may merge in space-time. Part of these results have recently been extended to Perona–
Malik (M = 1) in [15]; in particular, additional temporal discretization effects are shown to play a
crucial role for limiting solutions (k, h → 0), unlessk 6 C exp(−1/hα) for α > 2 (see [15, Props.
6.1, 6.2]).

2.1 Scalar Perona–Malik—an overview

Analytical studies [5] of the scalar-valued total variation (T V ) flow (p = 1) −ut ∈ ∂J (u), for
u(0, ·) = u0 ∈ L2(Ω), andJ (u(t, ·)) = |Du(t, ·)|(Ω) show interesting characterizations of the
strong solution in the sense of semigroup theory: (i) finite extinction time (M = 2), (ii) u(t, ·) ∈

L∞(Ω) for t > 0 if u0 ∈ LM(Ω), and noL1-L2-regularizing effect forL1(Ω)-initial data in
general, (iii)C1,α-regularity of level sets∂∗[u(t, ·) > λ] for u0 ∈ LM(Ω) of decreasing size, i.e.,
d
dtH

M−1(∂∗[u(t, ·) > λ]) 6 0, and (iv) invariance of supports, provided e.g. the curvature of the
smooth boundary of the simply connected convex domain is not too large. The more practical notion
of weak solutions is established and studied in [40, 32], and convergent finite element methods are
discussed in [32, 31]. ConsiderU ε,h,k(t, ·) := t−tm−1

k
Um +

tm−t
k
Um−1

∈ Vh in t ∈ [tm−1, tm),
where the iterates{Um} ⊂ Vh solve the regularized, fully discrete problem

(dtU
m, vh)+

(
∇Um√

|∇Um|2 + ε2
,∇vh

)
= 0 ∀vh ∈ Vh. (2.3)

The iterates satisfy a discrete energy law, and convergence of{U ε,h,k} ⊂ C([0, T ];Vh) towards
strong solutions of theT V -problem with a rate

‖u− U ε,h,k‖L∞(0,T ;L2) 6 C
√

|Ω|T
√
ε + C1(ε)k + C2(ε)h

2

is verified in [31, 32] provided that the underlying triangulation is quasiuniform, andk = O(h2).
Moreover, the constantsCi(ε) > 0 depend onε−1 in a low polynomial order.

A mathematical study of Perona–Malik’s model (1.1) started with Kichenassamy’s work
[45], where weak solutions for (1.1) were excluded, and a concept of generalized solutions is
motivated, which allows for (energetically favorable) step functions in finite and infinite time, to
analytically describe numerically observed formation, merging, and segmentation (t → ∞) during
a ‘staircasing’ process (cf. also Figure 2.1 below). The following general assumptions from [45] for
gκ : R → R apply to the upper prototypic example, in particular.

ASSUMPTION2.1 (i) gκ(ξ) > 0 for all ξ > 0.
(ii) The parameterκ > 0 defines a positive critical valuez(κ) such that∂ξ (ξgκ(ξ2)) > 0 for

|ξ | < z(κ), and∂ξ (ξgκ(ξ2)) < 0 for |ξ | > z(κ).
(iii) Both gκ(ξ) and∂ξ (ξgκ(ξ2)) tend to zero asξ goes to infinity.

In Esedoglu’s work [27], solutionsuh : ΩT → R for a spatial semi-discretization of (1.1) in
the caseκ = κ(h) are shown to converge (h → 0) to solutions of the following system of heat
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equations coupled to each other through nonlinear boundary conditions that may become singular
at finite times (M = 1):

∂ui

∂t
=
∂2ui

∂x2
in (pi−1, pi),

∂ui

∂x
(t, pi) =

∂ui+1

∂x
(t, pi) =

1

ui+1(t, pi)− ui(t, pi)
,

for all 1 6 i 6 N − 1, and ∂u1
∂x
(t, p0) =

∂uN
∂x
(t, pN ) = 0. Here,p0 < p1 < · · · < pN denote

the positions of jumps, which are shown not to move during the evolution process, but will vanish
within finite time (energy argument). (Changes in time of the jump set forM = 2 is computationally
evidenced in [28].) Locally existing solutions satisfy the maximum principle (but no comparison
principle, [27]), are Ḧolder continuous in time, and decrease the energy

PME(t) :=
1

2

N∑
i=1

∫ pi

pi−1

∣∣∣∣∂ui∂x (t, ·)
∣∣∣∣2 dx +

N−1∑
i=1

log(|ui+1(t, pi)− ui(t, pi)|),

which, however, is not bounded from below as jumps tend to zero. Canonical continuation of
solutions beyond blow-ups at ‘quenching times’ is possible; this reflects merging of neighboring
terraces (‘coarsening’) in the final step during evolution, which is preceded by the formation
of terraces (‘staircasing’). Hence, this program follows the proposal [45] to explain formation
and merging of terraces; see [27] for illustrative simulations in 1D; see also 1D-simulations
respectively 2D-simulations in [27] respectively [46, pp. 84ff], [43].

A different line of research uses recent results [4, 18] aboutΓ -convergent approximations of
energiesF : BV (Ω) → R of the form [48]

F(u) =

∫
Ω

f (|∇u|)dx +

∫
Su

ϕ(u+
− u−)dHM−1

+ C |Dcu| (2.4)

by sequencesFε : W2,2(Ω) → R,

Fε(u) =

∫
Ω

fε(|∇u|)dx + |r(ε)|3
∫
Ω

|∇
2u|2 dx. (2.5)

Here,C1(
√
z − 1) 6 ϕ(z) 6 C2(z + 1) for all z > 0, andC1, C2 > 0 (which excludes the

Mumford–Shah functional; cf. [17] forM = 1), and |Dcu| denotes the total variation of the
Cantor part of the measureDu; moreover,{fε} is any family of positive, nondecreasing functions
of nonconvex or convex-concave shape, andf respectivelyϕ are defined as proper limits offε
respectivelyr(ε)fε(·/r(ε)). As is pointed out in [48], by using the right rescalingr(ε) = ε/log(1/ε)
for the Perona–Malik functional, we have

Gε(u)+

(
ε

log 1
ε

)3 ∫
Ω

|∇
2u|2 dx

Γ
→

∫
Ω

|∇u|2 dx + c

∫
Su

|u+
− u−

|
1/2 dHM−1,

for some computablec > 0. Then the general results in [48] allow constructing generalized Perona–
Malik equations, where solutions of formalL2-gradient flows to (2.4) are interpreted as limits (as
ε → 0) of existingL2-gradient flows of (2.5); in [11, 12], the authors study theL2-gradient flow
for theΓ -limit of the slightly different scaling (cf. (1.3))Fν : W2,2((0,1)) → R,

Fν(u) :=
1

2

∫ 1

0

(
φ(ux)

νφ(1/ν)
+ ν3

|uxx |
2
)

dx (ν > 0), (2.6)
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which is proved to beF : P((0,1)) → R with

F(u) := 2

√
2

3

∑
x∈Su

|u+(x)− u−(x)|1/2 for P((0,1)) := {u ∈ SBV ((0,1)) : Dau = 0},

whereDau denotes the absolutely continuous part of the derivativeDu; a motivation for the scaling
in (2.6) comes from studying solutions of theL2-gradient flow (forΩ = (0,1))

uεt +
1

2
(φ′(uεx))x + ε2 uεxxxx = 0 inΩT , uεx = uεxxx = 0 on∂ΩT

at large timest = O(1/νφ(1/ν)), with ε2
= ν4φ(1/ν), where coarsening takes place (after an

initial period of rapid formation of microstructures, followed by a longer coarsening period). Then
theL2-gradient dynamics forF that is identified with the globalL2-minimizing movement in the
sense of De Giorgi leads to a coupled system of nonlinear ODE’s, which controls dynamics of local
heights of the piecewise constant functionP((0,1)) 3 u(t, ·) = s0+

∑N
j=1 sj (t)χ[pj ,1); again, initial

places of jumps do not move, and merging is admitted; see also [30, Example 1] for computational
evidence and discussion of formation and coarsening of piecewise constant mappings at timest > 0
for cases{u0,x ∈ LUS} 6= ∅.

Finally, we mention [33], where results help to better compareT V -flow and (1.1), and illustrate
different behaviors of (1.1) in different spatial dimensions (M > 1): forM = 1, the total variation
of solutions to (1.1) is shown to be nonincreasing in time, while counterexamples show that this
assertion fails forM = 2. In addition, the authors in [33] study solutions to a semidiscretization in
space forM = 1,2, where only maximum and energy decay property are validated (M = 1), due
to failure of tools which apply only for the continuous model (1.1), like the chain rule, for example.
An interesting recent result (M = 1) is given in [34], which shows that instantaneous staircasing
may not always be expected for ‘mixed’/transcritical data: it is shown that the set of initial data for
which Perona–Malik has a local in time classical solutionu : ΩT → R is dense inC1(Ω).

Computational experiments for (1.1) nourish the above analytical studies; unfortunately, it is
difficult to design fully discrete schemes that satisfy all properties mentioned above at the same
time, like energy, positivity, and maximum principle forM > 2, and not evident how to properly
relate numerical discretization parameters [15]. In [28], Esedoglu verifies a restricted comparison
principle for a spatial semidiscretization (M > 2), with additional control over gradients in the case
M = 1; computational experiments are provided to evidence failure of these properties forM = 2.
In [10], a discrete maximum principle is established for a fully discrete finite difference scheme to
solve Nitzberg–Shiota’s [49] temporal regularization of (1.1) (M = 2). Unconditional convergence
inC(0, T ;L2(Ω))∩L2(0, T ;W1,2(Ω)) of the whole sequence{Uh,k} (see construction as before in
(2.3)) of solutions{Um} of a semi-implicit finite element discretization (M = 2) for the regularized
version [19] with smoothing kernel

Gσ (x) =
1

4πσ
exp

(
−

|x|2

4σ

)
, σ > 0,

in the form

(dtU
m, vh)+ (g(|∇Gσ ∗ Um−1

|
2)∇Um,∇vh) = 0 ∀vh ∈ Vh, m > 1, (2.7)
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for u0
= u0 ∈ L2(Ω) to a unique limit which solves its continuous version is verified in [42]: its

proof rests upon the (a priori) bound

1

2
‖Um‖

2
L2 +

k2

2

m∑
j=1

‖dtU
j
‖

2
L2 + k

m∑
j=1

∫
Ω

αj−1 |∇U j |2 dx =
1

2
‖u0‖

2
L2, m > 1, (2.8)

with αm−1 := g(|∇Gσ ∗ Um−1
|) > νσ > 0. The properties ofg(|∇Gσ ∗ ·|), together with equation

(2.8), are key tools for a compactness argument, and to establish solution character of a proper
limit in L2(ΩT ) for the continuum version of (2.7). Interesting computations are also included
in [42] for valuesh = k ≈ 10−3div 10−2, andσ ≈ 10−8div 10−5, where cusp-like edges are
preserved/enhanced, while gross parts of the solution are smoothened. A corresponding program
was realized for a semi-implicit finite volume scheme in [47]; more recently, suboptimal rates
‖Uh,k − u‖L2(ΩT )

6 CT
√
h are verified for the casek = h in [39], using a (discrete) Gronwall

argument.
Long-time dynamics of a fully discrete version of (1.1) is studied in the recent work [26]. Here,

a semi-implicit discretization based on finite differences for a reformulation of (1.1) is used, and a
discrete energy inequality is derived to study asymptotic behavior of iterates{Um} for m → ∞.

The works [42, 47, 39] employ properties of the special regularization of the elliptic PDE (1.1)
given in [19]; in Section 2.2, we consider a full, finite element based discretization of the original
problem (1.1) which exploits its character as gradient flow for the nonconvex functionalG, for
M > 2, and whose iterates{Um} satisfy the discrete energy law

k

m∑
j=1

‖dtU
j
‖

2
L2 +G(Um) = G(u0), m > 1 (κ > 0). (2.9)

To reach this goal, the Fréchet derivative ofGκ : Vh → R is replaced by a difference quotient
in Algorithm 2.1. As outlined above, convergence behavior remains unclear, but may easily be
concluded—based on the discrete energy identity (2.9)—for regularizations of (1.1).

2.2 Scalar Perona–Malik equation—energy decreasing discretization

We propose a stable, implicit finite element discretization of a slightly modified version of (1.1)
(M = 2); a discrete energy law is established for an implicit discretization in time. Numerical
simulations are performed to directly compare properties with total variation flow. This section also
serves as a preparatory step and motivation for the scheme devised in Section 3. We follow [50, 27,
28] and evolveu0 ∈ L∞(Ω) via (M = 2)

ut − div

(
g(u2

x)ux

g(u2
y)uy

)
= 0 inΩT , ∂nu = 0 on∂ΩT . (2.10)

Notice that (2.10) is formally the gradient flow toG(u) =
∫
Ω
(φ(u2

x)+ φ(u2
y))dx dy.

Let Th be a regular triangulation of the polygonal or polyhedral bounded Lipschitz domain
Ω ⊂ RM into triangles or tetrahedra of maximal diameterh > 0 forM = 2 orM = 3, respectively.
Given the set of all nodes (or vertices)N in Th and letting{ϕz : z ∈ N } denote the nodal basis
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in Vh, we define the nodal interpolation operatorIh : C(Ω) → Vh by Ihψ :=
∑

z∈N ψ(z)ϕz for
ψ ∈ C(Ω). Forφ,ψ ∈ C(Ω), a discrete inner product is defined by

(φ, ψ)h :=
∫
Ω

Ih(φψ)dx =

∑
z∈N

βzφ(z)ψ(z),

whereβz =
∫
Ω
ϕz dx for all z ∈ N ; we define‖ψ‖

2
h := (ψ,ψ)h. We remark that

‖ψh‖L2 6 ‖ψh‖h 6 (M + 2)1/2‖ψh‖L2

for all ψh ∈ Vh. Basic interpolation estimates yield

|(φh, ψh)h − (φh, ψh)| 6 Ch‖φh‖L2 ‖∇ψh‖L2 (2.11)

for all φh, ψh ∈ Vh;

ALGORITHM 2.1 ForJ > 0, and given{U j }06j6J ⊂ Vh, determineUJ+1
∈ Vh from

(dtU
J+1, ψ)h + (γ̃γγ (∇UJ+1,∇UJ ),∇ψ) = 0 ∀ψ ∈ Vh, (2.12)

whereγ̃γγ (ααα,βββ) = (γ̃ (α1, β1), γ̃ (α2, β2))
T

∈ R2 for ααα = (α1, α2), βββ = (β1, β2), with γ̃ (·, ·) from
Algorithm 1.1.

The algorithm for the approximation of scalar Perona–Malik flow is stated for two space
dimensions (M = 2) but can easily be modified for arbitraryM. The use of reduced integration
is not essential in the scalar case but will be in the vectorial setting discussed below.

We may useψ = dtU
j+1 to verify the discrete energy law for iterates of Algorithm 2.1; by

Brouwer’s fixed point theorem, this also implies existence of solutions to the problem.

THEOREM 2.1 Letk, h > 0.

(i) For every 06 m1 6 m2 < ∞,

k

m2∑
j=m1

‖dtU
j+1

‖
2
h +G(Um2+1) = G(Um1),

and in particular the functionm 7→ G(Um) is nonincreasing. Moreover,

‖Um2 − Um1‖
2
h 6 G(u0) |tm2 − tm1|.

(ii) The only stationary points are constant functions.

Proof. The first part of assertion (i) follows from choosingψ = dtU
j+1 in (2.12). The asserted

inequality follows from

‖Um2 − Um1‖h 6 k

m2−1∑
j=m1

‖dtU
j+1

‖h

6
(
k

m2−1∑
j=m1

)1/2(
k

m2−1∑
j=m1

‖dtU
j+1

‖
2
h

)1/2
6 |tm2 − tm1|

1/2[G(Um1)]1/2.
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It remains to prove assertion (ii): by (i), we conclude limj→∞ ‖dtU
j
‖L2 = 0, whence, by definition

of γ̃ (·, ·), the limitU∗
= limj→∞ U j ∈ Vh solves((

g(|U∗
x |

2)U∗
x

g(|U∗
y |

2)U∗
y

)
,∇ψ

)
= 0 ∀ψ ∈ Vh,

and thus is a critical point ofG : Vh → R. Because of Assumption 2.1(i) and|∇U∗
| < ∞, as

h > 0, this implies the assertion. 2

We refer to [26, Cor. 4.2] for a corresponding asymptotic result for a different discretization of
(1.1).

2.3 Scalar Perona–Malik—numerical experiments

Besides the energy decay property, supposed smooth solutions to (1.1) satisfyLp-estimates, and a
maximum principle [44, 57, 33]; according to [33], the behavior of gradients differs: forM = 1,
the total variation of solutions decreases, and strictly increasing behavior oft 7→ ‖∇u(t)‖L∞ for
supercritical initial data can be shown; forM > 2, (abstract) counterexamples are given which show
failure of the latter two properties for gradients of the solution. We illustrate failure of a supercritical
reverse maximum principle forM = 2, which statesd

dt ‖∇u(t, ·)‖L∞ > 0 for ‖∇u0‖L∞ > 1
sufficiently large.

EXAMPLE 2.1 LetΩ := {(x, y) ∈ R2 : x2
+ y2 < 1}, T = 1, andu0(x, y) = f (r), where

r = (x2
+ y2)1/2 and

f (r) =
1

9
(2r − 1)9 −

2

5
(2r − 1)5 + (2r − 1).

The triangulationsT (j)h consist of 4096 and 16384 triangles forj = 1 andj = 2, respectively,
and define interior approximations of the domainΩ. We usehj = 2−(4+j) andk = h2

j /10 for
j = 1,2, . . . ,5. Throughout this example, we employκ = 1.

Example 2.1 has been constructed in [33, Example 3] in such a way that if there exists a radial
C2 solution of the Perona–Malik equation inΩ subject to the given initial data then there exists
δ > 0 such that for allt ∈ (0, δ),

‖∇u(t, ·)‖L∞ < ‖∇u0(·)‖L∞ ,

which contradicts the validity of a supercritical reverse maximum principle for the gradient.
Figure 2.1 displays snapshots of the numerical approximations obtained with Algorithm 2.1 for
t = 0, 0.01, 0.02. The numerical solution does not seem to be radially symmetric fort = 0.01
and t = 0.02, and we observe a ‘staircasing effect’. Nevertheless, as predicted in [33], theW1,∞

seminorm is decreasing at small times as can be seen in Figure 2.2; more precisely, for the discrete
time derivativedt‖∇U1

‖L∞ , we successively compute the values

dt‖∇U
1
‖L∞ = −23.039, −22.4700, −20.0971, −18.5080, −17.9046

for hj = 2−(4+j), 1 6 j 6 5, respectively.
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FIG. 2.1. Numerical solution in Example 2.1 fort = 0, t = 0.01, andt = 0.02 on the triangulationT (1)
h
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|U(t,⋅)|
1,∞   (h=2−6)

|U(t,⋅)|
1,1

  (h=2−6)

FIG. 2.2. EnergyG(uh(t, ·)),W
1,1 seminorm‖∇U j ‖1, andW1,∞ seminorm‖∇U j ‖∞ of the numerical approximations

in Example 2.1 on the triangulationsT (1)
h

(h = 2−5) andT (2)
h

(h = 2−6).

We remark that even though this example is critical in the sense that it eventually leads to
large gradients, our approximation scheme guarantees a decreasing energy (cf. Figure 2.2). We also
displayed theW1,1 seminorm of the numerical approximations as functions of time and observe in
the same Figure 2.2 that they are decreasing.

The following numerical experiments display advantages of the Perona–Malik evolution over
(regularized)T V -flow, where we putε = h in (2.3). The next example compares evolution of
geometric objects by Perona–Malik andT V -flow.

EXAMPLE 2.2 LetΩ = (−1/2,1/2)2 andu0(x) = χK(x), where

(a) ford = 1/5 andBr(a, b) = {(x, y) ∈ R2 : (x − a)2 + (y − b)2 < r2
}

K = B1/8(0,2d/
√

3) ∪ B1/8(−d,±d/
√

3);
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FIG. 2.3. Nodal interpolant of the initial data defined in (a)–(c) of Example 2.2 (first row). Numerical approximation of
Perona–Malik equation fort = 0.15, t = 0.15, andt = 0.1 (second row), andt = 0.3, t = 0.3, t = 0.175 (third row)
respectively, in (a)–(c) of Example 2.2. Developed initial data for the approximation of regularizedT V -flow for t = 0.035,
t = 0.035,t = 0.025 in (a)–(c) of Example 2.2 forε = h (last row).

(b) for d = 1/4 andB∞
r (a, b) = {(x, y) ∈ R2 : |x − a|, |y − b| < r}

K = B∞

1/8(0,±d) ∪ B∞

1/8(±d,0);

(c) for s = 2/7 andr = 2/13

K = B∞
s (0,0) \ (Br(0,0) ∪ Br(±s, s) ∪ Br(−s,±s) ∪ Br(0,±s) ∪ Br(±s,0)).

We let Th be a triangulation ofΩ consisting of halved squares along the direction(1,1) and of
maximal diameterh = 2−5.

We ran Algorithm 2.1 for the initial data specified in (a)–(c) of Example 2.2. The first row
in Figure 2.3 displays the initial data, i.e., the nodal interpolant of the functions defined in
Example 2.2(a)–(c). The second resp. third row show the numerical approximation at intermediate
times t ≈ 0.15 resp. later timest ≈ 0.3. Diffusion of structures occurs much faster for the
regularizedT V -flow (last row), for which snapshots of the numerical solutions at timet ≈ 0.035
for the different initial data specified are shown.

Qualitative properties of evolving sets inR2 by T V -flow have been studied analytically in
[5, Chapter 4], and numerically in [31]. Hence, (i) linear reduction of height of characteristic
functions, and (ii) change of corresponding supports built from nonconvex sets or close neighboring
convex sets, as well as (iii) a rounding effect of corners are well-known properties of theT V -
flow. In contrast, no corresponding study on qualitative properties for the Perona–Malik equation is
available, where the numerical studies in rows two and three of Figure 2.3 evidence (i) significantly
slower reduction of height of characteristic functions, (ii) invariance of nonconvex supports in time,
and (iii) conservation of corners/edges—at least for much longer time ranges than in the case of
T V -flow.

Our final numerical experiment for the scalar Perona–Malik equation indicates that characteris-
tic functions remain characteristic functions in the continuous case, and ‘coarsening rates’ depend
on the spatial discretization widthh > 0.

EXAMPLE 2.3 SetΩ = (−1/2,1/2)2 andu0(x) = χK(x), x ∈ Ω, where

K = B1/6(−1/6,−1/6) ∪ B1/6(1/6,1/6).

We employ three different triangulationsT (j)h of Ω which consist of 512, 2048, and 8192 triangles
which are halved squares along the direction(1,1) for j = 4,5,6, respectively (cf. Figure 2.5).
Moreover, we usedκ = 1 andk = h2

j /10, wherehj =
√

2 2−j for j = 4,5,6.

The upper row in Figure 2.4 displays snapshots of the numerical solution on the triangulation
T (4)h for t = 0, t = 0.1, andt = 0.2. We observe that the profile of the initialu0 is preserved for a
positive time, only the height changes untilt ≈ 0.3, when a constant (stationary) state is attained.
The qualitative behavior is identical for the higher resolution defined by the triangulationT (5)h .
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FIG. 2.4. Numerical approximationU(t, ·) for t = 0, t = 0.1, andt = 0.2 with j = 4 (upper row) and fort = 0, t = 0.2,
andt = 0.4 with j = 5 (lower row) in Example 2.3.
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FIG. 2.5. Quantity‖dtU(t, ·)‖h in Example 2.3 for the numerical approximationU defined throughj = 4,5,6.
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Snapshots of the evolution are shown in the lower row of Figure 2.4 fort = 0, t = 0.2, and
t = 0.4. Again, the profile of the starting valueu0 is preserved but here for a significantly longer
time (until t ≈ 0.5). Thus, the time when the numerical approximation attains a constant state
depends on the triangulation used. This is in good agreement with the coarsening rates derived in
[29]. The behavior can also be deduced from Figure 2.5 which displays the quantity‖dtU(t, ·)‖h as
a function oft ∈ (0,1) for the three triangulationsT (j)h with j = 4,5,6. Finally, we remark that
for the three employed triangulations we computed the values

(
k

L∑
`=1

‖dtU
`
‖

2
h

)1/2
= 0.9311, 0.7359, 0.5841,

which provide further indication that, ash tends to zero, the initial characteristic functionu0 is a
stationary state of the scalar Perona–Malik model. Note that this conjecture is no contradiction with
Theorem 2.1(ii).

3. Mappings into the sphere: one-harmonic map heat flow vs. Perona–Malik evolution

We verify stability and an energy law for existing solutions to Algorithm 1.1. Let

Ĝ(u) =

∑
16k6M
16l63

∫
Ω

φ(|∂kul |
2)dx.

LEMMA 3.1 Letk, h > 0. Suppose that|U0(z)| = 1 for all z ∈ N . Then the sequence{Um} from
Algorithm 1.1 satisfies, for all 06 m < ∞,

(i) |Um(z)| = 1 ∀z ∈ N ,

(ii) Ĝ(Um+1)+ k

m∑
j=0

‖Uj+1/2
×LLLj+1

‖
2
h = Ĝ(U0),

(iii ) k

m∑
j=0

‖dtUj+1
‖

2
h 6 Ĝ(U0).

Proof. Assertion (i) follows from choosingψψψ = ϕzUm+1/2(z) ∈ Vh, z ∈ N , in (1.4). In order to
verify (ii), we chooseψψψ = LLLm+1 in (1.4), andψψψ = dtUm+1 in (1.5), and benefit from the definition
of γ̃ ,

dt
∑
k,l

∫
Ω

φ(|∂kU
m+1
l |

2)dx − (Um+1/2
× (Um+1/2

×LLLm+1),LLLm+1)h = 0.

Thanks to(a × b, c) := −(a × c,b) for all a,b, c ∈ R3, this verifies (ii). The estimate (iii) now
follows easily from (i)–(ii), on puttingψψψ = dtUm+1, and using Young’s inequality. 2

3.1 Fixed point method for Algorithm 1.1

We use a simple fixed-point iteration to solve Algorithm 1.1; the subsequent method is motivated
by the substitutionkdtUj+1

= 2Wj+1
− 2Uj , for Wj+1

= Uj+1/2, such that (1.4)–(1.5) may be
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rewritten as follows:

2

k
(Wj+1,ψψψ)h − (Wj+1

× (Wj+1
×LLLj+1),ψψψ)h =

2

k
(Uj ,ψψψ)h ∀ψψψ ∈ Vh, (3.1)

(LLLj+1,ψψψ)h = −(γ̃γγ (∇{2Wj+1
− Uj },∇Uj ),∇ψψψ) ∀ψψψ ∈ Vh. (3.2)

Given a stopping criterionεεε = {εj }j>0 > 0, the fully practical linear scheme reads as follows.

ALGORITHM 3.1 1. SetŨ0 := U0 andW1,0 := Ũ0. Setj := 0 and` := 0.
2. ComputeWj+1,`+1

∈ Vh such that for allψψψ ∈ Vh,

2

k
(Wj+1,`+1,ψψψ)h − (Wj+1,`+1

× (Wj+1,`
×LLLj+1,`),ψψψ)h =

2

k
(Ũj ,ψψψ)h ∀ψψψ ∈ Vh, (3.3)

(LLLj+1,`,ψψψ)h = −(γ̃γγ (∇{2Wj+1,`
− Ũj },∇Ũj ),∇ψψψ) ∀ψψψ ∈ Vh. (3.4)

3. Givenεj > 0, stop if
‖Wj+1,`+1

− Wj+1,`
‖L2 6 εj , (3.5)

and setŨj+1 := 2Wj+1,`+1
− Ũj ∈ Vh.

4. Set̀ := `+ 1 and go to Step 2.

Unconditional unique solvability of (3.3) forWj+1,`+1
∈ L2 follows from the Lax–Milgram

theorem.

THEOREM 3.1 LetĜ(Ũj ) 6 C and|Ũj (z)| = 1 for all z ∈ N andj > 0 in Algorithm 3.1. For all
` > 0, there exists a unique solutionWj+1,`+1

∈ L2 to (3.3)–(3.4) such that‖Wj+1,`+1
‖L∞ 6 1.

Moreover there existsC > 0 such that

‖LLLj+1,`
‖L∞ 6 Ch−1. (3.6)

Additionally, there exists 06 C̃ < 1 such that fork 6 C̃h2, there exists 0< Γ < 1 with

‖Wj+1,`+1
− Wj+1,`

‖L2 6 Γ ‖Wj+1,`
− Wj+1,`−1

‖L2, ` > 1, (3.7)

and|Ũj+1(z)| = 1 for all z ∈ N .

Proof. Control of‖Wj+1,`+1
‖L∞ by 1 follows from (3.3) on choosingψψψ = Wj+1,`+1(z)ϕz.

To verify ‖LLLj+1,`
‖L∞ 6 Ch−1, choosez ∈ N such that‖LLLj+1,`

‖L∞ = |LLLj+1,`(z)|. Upon
choosingψψψ = LLLj+1,`(z)ϕz in (3.2), we have

βz |LLLj+1,`(z)|2 6 |(γ̃γγ (∇{2Wj+1
− Ũj },∇Ũj ),∇ϕz)| |LLL

j+1,`(z)|

6 |LLLj+1,`(z)|
∑

K∈Th, z∈K
|K| |∇ϕz| |γ̃γγ (∇{2Wj+1

− Ũj },∇Ũj )|,

with chM 6 βz, |K| 6 ChM . Since the sum is finite and̃γγγ 6 C, this implies|LLLj+1,`(z)| 6 Ch−1.
Subtraction of two subsequent equations in the fixed-point iteration yields, for every` > 1 and

allψψψ ∈ Vh,

1

k
(E`+1
j+1,ψψψ)h + (E`+1

j+1 × (Wj+1,`
×LLLj+1,`),ψψψ)h + (Wj+1,`

× (E`j+1 ×LLLj+1,`),ψψψ)h

+ (Wj+1,`
× (Wj+1,`

× [LLLj+1,`
−LLLj+1,`−1]),ψψψ)h = 0.
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Choosingψψψ = E`+1
j+1 leads to

‖E`+1
j+1‖h 6 k‖Wj+1,`

‖L∞ ‖LLLj+1,`
‖L∞ ‖E`j+1‖h + k‖Wj+1,`

‖
2
L∞ ‖LLLj+1,`

−LLLj+1,`−1
‖h. (3.8)

Thanks to (3.2), the mean value theorem together with uniform boundedness of|D2φ(| · |2)| which
implies uniform Lipschitz continuity of̃γ (·, X) whenX is fixed, and an inverse inequality, the last
term in (3.8) may be bounded by

Ckh−1
‖∇E`j+1‖L2 6 Ckh−2

‖E`j+1‖L2.

A combination of the estimates then yields assertion (3.7). Finally, ifŨj+1
= 2Wj+1,`+1

− Ũj ,
equation (3.3) can be written as

(dt Ũj+1,ψψψ)h − (Ũj+1/2
× (Ũj+1/2

×LLLj+1,`),ψψψ)h = 0.

The choiceψψψ = Ũj+1/2(z)ϕz then impliesdt |Ũj+1(z)|2 = 0. 2

3.2 Computational experiments

Numerical experiments with Algorithm 1.1 show that evolved edges/structures are preserved for a
long time.

EXAMPLE 3.1 (a) LetΩ := (−1,1)2, T = 1/2, andu0 be as in the left upper plot in Figure 3.1.
We choose a triangulationTh consisting of 2048 triangles which are halved squares (along the
direction(1,1)) and with 1089 nodes. Hence,h =

√
22−4 and we setk = h2/10.

(b) LetΩ, T , andTh be as in (a) and letu0 be the perturbation of the initial data of (a) shown in the
left plot of Figure 3.4.

Figure 3.1 shows the evolution defined by the Perona–Malik equation into the sphere in
Example 3.1(a) and computed with Algorithm 1.1. We observe that the sharp interfaces separating
regions in whichu = (1,0,0) from those in whichu = (0,1,0) are preserved for a long time
t = 0.44688 before all vectors start to align. This is different if regularized one-harmonic flow
(ε = h) is applied to the initial data of Example 3.1(a) as one can deduce from the snapshots
of the numerical solutions for different times shown in Figure 3.2; for its calculation, we used
a consistent, stable scheme constructed in [9], where iterates satisfy an analogue of Lemma 3.1.
The vectors immediately start to align, and att = 0.15469 no sharp interfaces are observable. In
Figure 3.3 (left) we displayed the first component of the vectorsu(t, x) for x ∈ {(−1/4,0), (1/2,0)}
as functions oft > 0. This allows for a quantitative comparison of the speed of the alignment of the
vectors displayed in Figures 3.1 and 3.2. We observe an approximately linear change in the direction
for 0 6 t 6 2 in the case of (regularized) one-harmonic map heat flow into the unit sphere, while
the rotation is slowed down for Perona–Malik evolution on the sphere. The perturbed initial data
shown in the left plot of Figure 3.4 is denoised att = 0.020313 but (practical) discontinuities are
preserved.

We conclude our discussion on the qualitative behavior of the vectorial Perona–Malik flow into
spheres with an example that shows that a ‘staircasing effect’ occurs as in the scalar case. The next
example evolves smooth initial data, leading to iterates with large gradients.
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FIG. 3.1. First two components of the numerical solutionsu(t, ·) for t = 0, 0.085938, 0.15469, 0.44688, 0.77344, 0.99688
in Example 3.1(a) obtained with Perona–Malik evolution on the sphere.
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FIG. 3.2. First two components of the numerical solutionu(t, ·) for t = 0, 0.085938, 0.15469 in Example 3.1(a) obtained
with regularized one-harmonic map heat flow (ε = h).

EXAMPLE 3.2 LetΩ = (−1,1)2 and u0(x) = (cosπ |x|, sinπ |x|,0). Three uniform triangu-
lationsT (j)h for j = 4,5,6 ofΩ with maximal mesh-sizehj = 2

√
2 2−j are employed. For each

j = 4,5,6 we setκ = 1 andk = h2
j /10.
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FIG. 3.3. First componentsu(1)(t,A) andu(1)(t,B) of the numerical solutions in Example 3.1(a) obtained with regularized
one-harmonic map heat flow and regularized one-harmonic map heat flow into the sphere forA = (−1/4,0) andB =

(1/2,0) for ε = h (top). Quantity‖∇U(t, ·)‖L∞ in Example 3.2 for the numerical approximationU defined through the

triangulationsT (j)
h

with j = 4,5,6 (bottom).
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FIG. 3.4. First two components of the numerical solutionu(t, ·) for t = 0, 0.010156, 0.020313 in Example 3.1(b) obtained
with Perona–Malik evolution on the sphere.
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FIG. 3.5. Numerical solutionU(t, ·) for t = 0, t = 0.1, andt = 0.2 on triangulationT (5)
h

in Example 3.2.

Figure 3.5 shows the numerical solutionU(t, ·) on the triangulationT (5)h for t = 0, t = 0.2,
and t = 0.38. We see that the initially smooth vector fieldU0 changes during the evolution and
at t = 0.38, a piecewise constant state with a sharp interface, that separates regions in which the
approximation is constant, is attained. The interface becomes sharper for finer triangulations, which
is reflected in Figure 3.3 (bottom), where we plotted forj = 4,5,6 the quantity‖∇U(t, ·)‖L∞ as
function oft ; large (almost maximal) gradients are attained for each triangulation.
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Linear Growth Functionals. Birkhäuser (2004). Zbl 1053.35002 MR 2033382

6. BARRETT, J. W., BARTELS, S., FENG, X., & PROHL, A. A convergent and constraint-preserving
finite element method for thep-harmonic flow into spheres.SIAM J. Numer. Anal.45 (2007), 905–927.
MR 2318794

7. BARTELS, S. Stability and convergence of finite element approximation schemes for harmonic maps.
SIAM J. Numer. Anal.43 (2005), 220–238. Zbl 1090.35014 MR 2177142

8. BARTELS, S., & PROHL, A. Constraint preserving implicit finite element discretization of harmonic map
flow into spheres.Math. Comp.16 (2007), 1847–1859. Zbl pre05190892

9. BARTELS, S., & PROHL, A. Convergence of an implicit, constraint preserving finite element
discretization ofp-harmonic heat flow into sphere. Manuscript (2006).

10. BELAHMIDI , A., & CHAMBOLLE , A. Time-delay regularization of anisotropic diffusion and image
processing.M2AN39 (2005), 231–251. Zbl 1101.68102 MR 2143948

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0809.35151&format=complete
http://www.ams.org/mathscinet-getitem?mr=1306801
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0788.68153&format=complete
http://www.ams.org/mathscinet-getitem?mr=1225209
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05136268&format=complete
http://www.ams.org/mathscinet-getitem?mr=2331050
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0957.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1857292
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1053.35002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2033382
http://www.ams.org/mathscinet-getitem?mr=2318794
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1090.35014&format=complete
http://www.ams.org/mathscinet-getitem?mr=2177142
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05190892&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1101.68102&format=complete
http://www.ams.org/mathscinet-getitem?mr=2143948


VECTORIAL PERONA–MALIK EQUATION 451

11. BELLETTINI , G., & FUSCO, G. A regularized Perona–Malik functional: some aspects of the gradient
dynamics.Equadiff 2003(Hasselt, 2003), F. Dumortier, H. Broer et al. (eds.), World Sci. (2003), 639–644.
Zbl 1108.35078 MR 2185104

12. BELLETTINI , G., & FUSCO, G. TheΓ -limit and the related gradient flow for singular perturbation
functionals of Perona–Malik type. http://cvgmt.sns.it/papers/belfusa (2004).

13. BELLETTINI , G., FUSCO, G., & GUGLIELMI , N. A concept of solution and numerical experiments for
forward-backward diffusion equations.Discr. Contin. Dyn. Syst.16 (2006), 783–842. Zbl 1105.35007
MR 2257160

14. BELLETTINI , G., NOVAGA , M., & PAOLINI , E. Global solutions to the gradient flow equation of a
nonconvex functional.SIAM J. Math. Anal.37 (2006), 1657–1687. Zbl 1109.35050 MR 2215602

15. BELLETTINI , G., NOVAGA , M., PAOLINI , M., & TORNESE, C. Convergence of discrete schemes for the
Perona–Malik equation. http://cvgmt.sns.it/papers/belnovpao06 (2006).

16. BERTOZZI, A. L., & GREER, J. B. Low-curvature image simplifiers: global regularity of smooth
solutions and Laplacian limiting schemes.Comm. Pure Appl. Math.57(2004), 764–790. Zbl 1058.35083
MR 2038116

17. BOUCHITTÉ, G., BRAIDES, A., & BUTTAZZO, G. Regular approximation of free-discontinuity
problems.Math. Models Methods Appl. Sci.10 (2000), 1073–1097. Zbl 1009.49012 MR 1780150

18. BRAIDES, A. Approximation of Free-Discontinuity Problems. Springer (1998). Zbl 0909.49001
MR 1651773
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