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We use an expanded variational approach based on dissipation to study the motion of the boundary
of a non-circular cylindrical, and thus essentially 2-dimensional, crystalline grain of arbitrary
cross-section enclosed in another grain of the same material under conditions where the normal
grain boundary motion is coupled to relative tangential motion of the grains along the grain
boundary. Coupling leads to relative rotation of the crystal axes of the two grains and requires
shape accommodation; we assume that the necessary mass transport for shape accommodation is
by diffusion confined to the grain boundary. We include the recently discovered fact that different
modes of coupling with different coupling factors are crystallographically possible and do occur in
molecular dynamic simulations.

Several results are deduced from the equations we derive. When there is a mirror plane symmetry
to the crystal’s initial shape, this symmetry plane remains and rotates at half the rate of rotation of
the enclosed crystal’s crystal axes relative to the surrounding crystal’'s axes. Sliding along the grain
boundary is essential for shape change: when there is no sliding, we show that, although the inner
crystal rotates and shrinks, its shape remains the same. If the cross-section of the enclosed crystal
is large with a large aspect ratio and diffusion is relatively slow, then the rotation rate is initially
diffusion controlled and very slow compared to nearly circular cylindrical crystals of the same
cross-sectional area. In this case, and when sliding is relatively easy, the resulting normal motion
is essentially mobility-controlled motion by weighted mean curvature; when sliding is intermediate
in difficulty between mobility and diffusion, we have instead sliding-controlled motion by weighted
mean curvature. As crystals become rounder and smaller in cross-section, all the kinetic factors
become involved.

1. Introduction
1.1 Overview

We employ a new variational method to formulate and study a free boundary problem with many
interacting, possibly non-linear, kinetic effects in which the available free energy and its dissipations
can be formulated. The method is an extension of a variational approach for curvature driven flows
[2,16,[13]. The free boundary problem arises from the discovery that a moving grain boundary, which
is an interface between two crystals of the same material, shears the material it traverses [4, 11]. This
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FIG. 1. Time snapshots from an unpublished 3D molecular simulation by S. G. Srinivasan in circa 2000 [10] of the shrinking
of an enclosed grain which is initially an elliptical cylinder with a small misorientation between the grains. Dislocations
are centered on the disturbances seen in the pattern and they collectively mark the grain boundary. The top left-hand figure
shows the cross-section of the initial bicrystal, shortly after the start of the simuldtienl). As the enclosed grain shrinks

the axis of the cylinder rotates, the misorientation between the grains increases to more°’thamd3fe enclosed grain
becomes rounder.

causes the axes of a shrinking crystal embedded in another crystal to[rotate [5] (see Figure 1), and
in general will require material transport for shape accommodation. In this paper we assume that
the mechanism for the material transport is by diffusion confined to the grain boundary. We thus
study grain boundary motion which incorporates coupling via a misorientation-dependent multi-
valued coupling factop, shape accommodation via surface diffusion, and dynamics that include
mobility and sliding. The diffusion along the surface is solely of the material required for shape
accommodation in rotation; the flux is proportional to the rotation rate and does not directly involve
the curvature, so there is no Laplacian of curvature anywhere in the motion laws we derive. Indeed,
because there is no difference in density or composition between the two crystals, there cannot be
any curvature-driven surface diffusion. The grain boundary motion laws we deduce form a new type
of geometric crystal growth [1.4].

The understanding of the static and dynamic properties of interfaces between two crystalline
solids is of great importance for many materials problems, but poses many difficulties. For dynamic
properties it had long been assumed that the study of motion of grain boundaries in a system of
just one chemical component would be simpler than general crystal growth. The realization that
grain boundary motion is coupled to shear and that this leads to grain rotation is a complicating
factor. In this paper as in our previous papér [5], the problem is made simpler by studying special
bicrystals in which there are no triple junctions and only tilt boundaries—that is, in studying
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embedded cylindrical grains, where the cylinder axis coincides with a crystallographic axis common
to both crystals. The previous paper considered only isotropic circular cylindrical grains. The major
complication we address in this paper is the mass redistribution needed for a non-circular cylinder;
we also consider other issues such as non-linear mobility.

We derive various results in Section 5. Among them are: If the grain shape has a plane of mirror
symmetry, then in a coordinate system fixed to the axes of either grain that mirror plane rotates
at half the rate of the axes of the other crystal. Motion with a variety of rates is seen to arise with
coupling, not just motion by weighted curvature with mobility as the coefficient, as happens without
coupling. In particular, one might have motion proportional to weighted mean curvature but with
the coefficient proportional to the sliding coefficient and inversely proportional to the square of the
coupling coefficient. If diffusion and sliding are difficult enough, then for nearly circular crystals
can have entirely diffusion-controlled motion, proportional fo-3rather than 1r. See equations
(23)-[26). We end with a section on some obvious open problems.

1.2 Choice of problem and assumptions

As in the previous paper][5] we work entirely in two dimensions. We consider only two cryatals,
and B, also calledgrains with B embedded im and the interface curv€ between them referred

to as a grain boundary. We think 8f as being the cross-section of a cylinder stretching to infinity
and thus continue to use the language of three dimensions (we think®the surface free energy

per unit area of the cylinder rather than the line free energy of the atirgee grain boundary is
everywhere a tilt grain boundary because the rotation axis is parallel to the cylinder axis, etc.) The
crystals differ only by a rotation of their axes. Only two angles are needed to characterize an element
of the boundary, the angteof misorientation between the crystals, and the “inclination” apnghé

the directed tangent to some specified directed line. We assume that the motion is driven entirely by
the reduction in the total free energ"g(t) y ds, wherey is a given positive real-valued function of

« andf.

At various inclinationsx and allg, a set of “ideal” coupling factors can be computed from a
simple model of the possible crystallographic ways that atoms can be rearranged as they move from
one crystal to the other. These describe simple shears which couple possible tangential velocities
V,, of the lattice ofB relative to that ofA, to the normal grain boundary velocity of A growing
into B. Thus we assume we are given one or more continuous scalar coupling furgtiéns),

i =1...,5, withs > 1, where with pure couplingy, = B;vn for somei. These functions are
shown as the two curves in Figure 2 with Mode [ as 1 and Mode Il ag = 2. Our sign convention
is that if the normal points up from below to B above and the normal velocity is positive (up),
then the tangential velocity is positive wh8mmoves to the right relative td.

The coupling observed in simulations at low to intermediate temperatures with certain fixed
a are seen as points in Figure 2 and fit this model with high accuracy, following eidther
B2 [3]. We will call the coupling “ideal” if there is such agreement between simulation and the
geometric model. (In the appendix, there is a compilation of some other data on coupling obtained
through simulation.) Furthermore, if th& are in fact the ideal coupling factors for alland6,
then eachg; should be independent of an assumption we will sometimes make in this paper.
The variational formulation we introduce in this paper allows not only for the choice of which
to use at each time but also for the possibility of different choices lnding made at different
points on the curve. We know of no examples where making different choices at different points is
optimal.
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FIG. 2. Misorientation dependence pf(Yuri Mishin data). Data from MD simulations for symmetric boundaries (constant
o« = 0), published in[[4], demonstrating the excellent fit to the two coupling funci#ag, 0) andB» (0, 0), as discussed in
the appendix, and the fact that the system chooses to jump frors tméhe other. The misorientation is characterized by

At higher temperatures some rigid body sliding is also seen along the boundary. The magnitude
and direction of sliding along the boundary is defined as the difference between that predicted from
whichever coupling functior; applies and the tangential motion observed, e, — V. If a
linear response is assumed, sliding is governed by a given sliding coeffiielepending o
andw. Otherwise, the non-linearity is described by a functiynvhich should be zero or increasing
and have the same sign as its argument.

Motion of atoms into and out of the lattices, whether by dislocation climb for low angle
boundaries or by what is often called attachment-detachment kinetics for higher angle boundaries,
entails a dissipation. For linear kinetics its rate is governed by a given positive mobility constant
M; which depends on the geometric mechanism as specified by the couplingdadtogeneral,
mobility may be a non-linear functia®; of the driving force. For each M; should be increasing
and have the same sign as its argument. We do NOT usually assum¢ isatdependent af or 6
and indeed know that it cannot be for some intervalg.dh fact, for flat interfaces, by Theorem 1,
p1is chosen ovep, if M1p2 — M»p2 > 0, and the locus of misorientatioAsvherep; switches to
B2 is sometimes known to depend erior reasons of symmetry; see the appendix.

We assume that the rigidity of the grains is high enough for us to neglect any elastic distortion
of grains so that the rotating grain undergoes pure Euclidian rigid body motion. This is a reasonable
assumption, since the energy of any significant elastic distortion is large compared to the boundary
energies in the system and elastic distortion would become huge with any significant rotation of non-
round crystals. As a result,at any instant is the same all along the grain boundary (and in the inte-
rior), and a non-round crystal that rotates will no longer fit into its previous hole without shape ac-
commodation. Observe that no accommodation problem would be encountered if the “orientation”
of a grain could change without a rigid rotation of the material of the grain and its crystal axes. For
example, if magnetostriction is ignored, no shape accommodation arises when the direction of mag-
netization of a ferromagnetic domain rotates independent of any rotation of the crystal axes. Com-
putational models which do not account for shape accommodation, because “orientation” is treated
as an order parametér |15], are more appropriate to such problems than to rotating crystalline grains.

We will assume that the redistributions, to accomplish the shape changes that are required by
the rotation, occur by lateral diffusion along the grain boundary (“surface” diffusion). For linear
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FiG. 3. Signed fraction of coupled motion versiisData from MD simulations on flat symmetric grain boundaries (fixed

at higher temperatures. Sliding is indicated by the fact that as temperature in¢og@s€s is first constant (no sliding), then
decreasing (partial sliding), then zero (total sliding); the temperature at which sliding begins to be significant is a function
of 6.

diffusion, the rate is controlled by a diffusion coefficiebt for non-linear, a functiorD is given,
which should be increasing and have the same sign as its argument. Locally the material is assumed
to deposit smoothly and continuously on each grain at the grain boundary.

For simplicity, we make some assumptions ondhdependence of andg;. We assume that
for each value o, y is a twice continuously differentiable function@fand the equilibrium crystal
shape for each (computed via the Wulff construction using i.e. W = {x : x - (COSa, Sina) <
y () for all «} has no corners. We also assume tiat= 9y /96 exists for everyx except ath = 0.
For much of the paper, we assume that egctioes not depend an We assume that/, S, andD
(or their non-linear analogs) all depend continuouslyron

Other limitations are that we consider only a fixed center of rotation. We also use a fixed
temperature; it is worth noting thaf; andS depend strongly on this temperature (Figure 3).

1.3 Comparison with earlier work

In [5] we discussed coupled motion with planar grain boundaries, where the motion is driven by an
applied stress. We also discussed motion with circular grain boundaries and linear kinetics where
everything was independent @f here coupling produced rotation of crystal axes, with the motion

laws
dr y — By’ do dr y’
—=-M[—), — =—-B——-5=. 1
( r " dr a7 @)

In this paper, we study shape accommodation for non-circular grain boundaries and include
non-linear kinetics and anisotropy. The new variational formulation is given for the linear case in
(8) and for the general nonlinear [ (9). The resulting equations for the linear cagelare (18)and (19),
and for the non-linear casg, (20) apd](21).

In [5], where we studied circular crystals whose lattices have square symmetry, we knew by
symmetry that the coupling would have to change sign between 0 andx/2 and mistakenly
assumed thgs was a continuous, single-valued functiontofwe ignored any dependence an
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in that paper). We now know that for such crystals there are at least four geometrically determined
functions forg, but only two, one positive and one negative, are found to occur ferd0 < /2
(which can be taken to be the entire range of misorientation, by symmetry). In addition [5] contained
some sign errors: equation (22) there should begin wjitk: rdo/dt, not with—v, = rd¢/dt, and
equation (30) there should be correspondingly corrected for signs.

In comparing the results of this paper with the previous pager [5], observe that what was called
therev, is called hereV, , and likewise forV, . The lower-case lettens, andv, are reserved here
for the velocities divided by (see @5)).

2. Variational formulations involving mobility
2.1 Linear problems

There are several equivalent ways to derive the law of motion for the normal veloeftg curve
C, in the case where the velocity is assumed proportional, via a mobility fa€tdo the driving
force:

(i) If we write d(F + W)/dt, the rate change of free energyplus reversible worl¥ done, in the
form fC(—Xvn +Y)ds (soX is the coefficient ob, andY is everything else), the driving force
for moving the grain boundary is defined Es Assuming linear kinetics with mobility/, we
set

Un = MX. (2)
Since we do not consider applied stresses in this paper, we Vékd:do be zero.
(ii) We could instead add a terrf). ﬁvﬁ ds to [~(—Xvn + Y) ds and then minimize with respect
to vn. This yields equatiorj {2) by a different route.

This is more than a mathematical trick. Approach (i) can be thought of as a surface version of the
Lagrange equation for massless particles with a Rayleigh dissipation fud€tioonsider particles

with positions{q;}, massegm;} and velocitiegg;}. The internal energ¥ is assumed to depend

only on{g;}, and the kinetic energy is %qu'jz. Then with Lagrangiaik = T — E, the Lagrange
equations arel([7])

d ( oL ) oL  dF
N +-—-—=0
dr\dg; ) 9q; 94,
We setF = [ frudu = §4-4? and effectively assume alt; = O (that is, we assume there is no
“mass” or momentum associated to the interface), thereby obtaining
M oE
qj = 36]]' s

the particle version of equatioh](2). Approach (ii) can now be identified as finding critical points
of F + dE/dt, again assumin@ = 0. Although it is a variational principle, it is not Hamilton’s
principle, which involves variation over a time interval and yields an extra, unwanted, term when
there is dissipation.

The dissipationfunction is F; the dissipationrate under these assumptions isF2 The
dissipation rate is NOT the dissipation function, and the dissipation rate will look even less like the
dissipation function with dissipation functions corresponding to non-linear kinetics, as discussed
below.

These ideas will be further discussed[inl[12].
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2.2 Extension to non-linear mobility

More generally, for non-linear mobility, we assume we have a mobility functibandv, = M(X)
for the driving forceX . The dissipation functiotF should bej. 6’” M~Y(u) du ds. The dissipation
rate isvd F/dv. All the approaches still apply and resultip = M (X).
In extending this approach to additional sources of dissipation, the key is to identify them and
to express them as an overall dissipation function.

3. Variational formulation for coupled motion with diffusional shape accommodation

We propose here an expansion of the variational approach in which one minimizes the sum of the
rate of energy increase and the rates of dissipation due to grain boundary motion and relative grain
rotation. After fixing some notation we derive the rate for each energy change and the dissipation
functions.

3.1 Geometric preliminaries

We consider a poinP on a smooth 2D grain boundafy, between graind andB at timet. We will
consider only the case wheg can be written in polar coordinates from its center of rotatign

P — O = R(t, $)(cosp, sing).

In this paper, we assume is fixed (e.g., by reason of symmetry). Letoe the normal direction
of the grain boundary aP in C,, pointing from grainA to grain B, andt the tangential direction,
chosen to be rotated clockwise franby 90°.

Because we assume there is no elastic distortion, at any given time the oriemtatmn
the lattice ofA is the same at all points o and the orientatiomp of the lattice of B is the
same throughouB. Since a rotation of the whole system leaves the system invariant, only the
misorientatiort = 65 — 64 matters and is constant at each time. We may without loss of generality
choosed, as we wish. Although it might seem most natural to chofyse= 0, so thatB rotates
inside a fixed crystal, it is more convenient to choége= —6z = —6/2.

We define a set of local velocities At In general, when a non-circular cylindrical grain rotates,
the rate of relative translation of the crystalsPahas to include a normal component as well as a
tangential component. Let the vecl\zsl;g“t 4 (P) be the local velocity of the lattice of crystal as

seen from a coordinate system imbedded in the lattice of crys(m'g“tA(P) = —V'j;‘ltB(P)). Itis
specified by a rotation rateddds about the centeD. Let V, be the local rate of relative tangential
translation of the crystal B (into which points), positive if in the direction. ThenV, (P) =
viat .t andV,(P) := V'8, . n. The rate of volume increase per unit grain boundary are®, at
which has to be removed by an accommodation process such as surface diffusion, is diten by
Let vy be the normal velocity of the grain boundary, relative to the latticé ahd positive if in the
direction ofn, andvg be the normal velocity of the grain boundary, relative to the lattic8 ahd
again positive if in the direction aof; thenV, = v4 — vg. We also define a mean normal velocity
of the grain boundary as, := 3(va + vg).

All of these local velocities can then be specified in terms of the relative rotatiofi rated R
and its partial derivative® = 9R/dr andR’' = dR/d¢. In particular,
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v';’;‘ltA(P) = OR(—sing, cosp),
va = —RR/~RZ+ R? 4+ RR'6/(2VRZ + R?), (3)
vg = —RR/R>+ R? — RR'6/(2v/R?2 + R7).
Thus i
V. = RR'0/~/R?+ R,
V, = R%/vRZ+ R?, (4)
vn = —RR/(VRZ+ R?).
Observe that indeed the volume which has to be accommodated over an angular inceateht d
per unit time and per unit cylinder heightd® R’ dp = RR’/~/R2 + R'?ds = V, ds, where d is
the arc increment/ R2 + R’2 dg.
The surface divergence of the diffusional fluxalong the grain boundary (volume per unit
time across a unit length of the grain boundary}-ig, = v4 — vp, the rate of volume removal

(accumulation) required to make up the difference betweegandvg. In polar coordinates about
the center of rotation aB this is, using[(#),

RRO 3]
/R2+R/2 - BS’

which can be integrated by inspection to give a remarkably simple resultifoterms ofR, 6, and
a mean square radigg?) = fco R?ds/length C,) :

J= %(R2 — (R?))6. (5)

(The integration constant isﬁ), which satisfies the conservation conditign/ds = 0 =

Je, (R? = (R?) ds.)
It is convenient to isolate the factors @fWe therefore define

Vi Y .0
vV = —, v, = —, = —. 6
L 0 I i J i ( )

Each of these is purely geometrical, depending onlyR@andR'.
Finally, for completeness and for establishing the sign convention fdhe weighted curvature,
we include its formula in these coordinates:

32
Ky, = (R + R®)73/%(R? + 2R"?> — RR") <y + aT);> (7)

3.2 The changes in the total free energy
The total free energy is the integral pf The rate of change of surface free energy under motion by
normal velocityvn (in this paper, the normail pointsinto the enclosed crysta#) is — [, k), vn ds

wherex,, is given in equatiorﬂ?). For a rotating crystal, writingfor %(a, ), the rate of surface
energy change becomes

/ (¥'0 — i, vn) .
Co
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One way of obtaining this result is as a limit of time steps. Let the grain boundary be the
curve C,. After a time stepAr we consider a comparison crystal shape with boundargnd
misorientatiort + A6. The average rate of surface energy change is

1
—(/ y(nc,é—i—AQ)ds—/ )/(nco,Q)ds)
At C C,

Since we are assuming, is smooth, we may assume that in the reference latticd fdhe image

of C under rotation by);l is the image oC, under the normal velocity4 run for timeAr and take

the limit asAr approaches zero. Similarly, in the reference latticeApthe image ofC under the
rotation@,_;1 is the image ofC, under the normal velocityz run for time Az. There is a potential
issue here, becausg andvp are different. But the curvé€ is the same curve in each case, so the
energy change should be the same in both coordinate systems, and the same as when,we use
oncC.

3.3 The dissipation rates

3.3.1 The dissipation due to normal motion of the grain boundarVhis dissipation is due to
attachment-detachment costs, with the mobility appropriate to the coupling fagtehichi to use

will be decided as part of the minimization process). There is another issue here, hecande g

are different. Sincel and B are grains of the same material, we use the same mobility for crystals

A andB. For consistency with the non-rotating case and because we are counting the cost twice, we
also introduce a factor olf The dissipation function in the linear case becomes

1 02403 1 0% V2 1 [, V2
L ds= [ — A8 LA I P 21 ds,
oo 2 /C 4M,-<<vn+ 2) +<”” 2 S /C o\t )

With non-linearity, the appropriate dissipation function is

1 vn+V1/2 1 n—V,/2 1
/ 5(/ M (u) du +/ M (u)du) ds.
o 0 0

3.3.2 The dissipation due to grain boundary slidingAssumings is non-zero and obeys linear
kinetics, the sliding velocity i% — Bvn and the dissipation function for the sliding is

1
/C ﬁ(VH — Bivn)?ds.

With non-linear sliding, the dissipation function is

VH_ﬁiUn
/ / S Y(u) du ds.
v J0

In both cases, the choice ofs part of the variational formulation.
If $ = 0 (or, in the non-linear casé&,(u) = 0 for everyu), then we require/, — g;vn = 0 at
every point and do not have any sliding dissipation.
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3.3.3 The dissipation due to diffusion along the grain boundaryn the linear case, the
dissipation function for diffusion, using equati¢n (5), is

/ iszs=/ ﬁ(R“—(ﬁ)z)ds
¢, 2D c, 8D ’

whereD is a diffusional mobility defined with units of lengthime/energy.
In the non-linear case, the dissipation function for diffusion is

J
//D*l(u)duds.
C, JO

The case wher§ = 0 (in the non-linear case, = 0) must always be examined separately. We do
not need to examine eithéd = 0 or D = 0 since either condition would prohibit all motion for a
non-round initial grain boundary.

For linear kinetics with§ non-zero, by minimizing

9y (n.0) 1 2 UJZ_éZ 1 : 2 1 5.5
/C[ 0 | o (v”+ 2 )t gl — A 4 55 % ds (8)

3.4 Putting them all together

over all rotational rateg and all mean normal velocitias, and possible coupling factog with
associated mobilitiesZ;, we will determine all velocities, including, vn, V, and V,. Recall that
all coefficients are allowed to depend on the normal direction of the interface at each point, via the
inclinationw, as well ag.

Using non-linear kinetics witls non-zero, the expression to minimize is

1 vA 1 1 VB 1 V”—ﬁivn J
/ {—/ M (u) du + —/ M) du—i—/ S_l(u) du+f D_l(u) du}ds
¢ 12J)o 2 Jo 0 0

oy .
+/;0{%9—Kyvn}ds. (9)
If § = 0 (or, in the non-linear cas&, = 0), we require
v,6 = Biva =0, (10)

and set; = vn/6 = R?/(Bi~/R? + R’). In the linear case, we minimize

dy . . 1 (50 155 1 5:0
—0 — 0+ —\ 2760 —v50 —(j“0 d 11
/(de kyzif + 5o (z, + V6% ) + 55 (6% ) ds (11)

over allé and possiblé. In the non-linear case, we minimize

1 (zi+3v,)é 1 (zi—3v,)6
f {—/ ZH ./\/ll-_l(u)du—l—éf o Mi_l(u)du}ds
o 0 0

2
jé ay .
+/ D—l(u)du+/ —6 —i,unids.  (12)
0 c, | 96

over alld and possiblé.
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It is possible to allow the choice ¢f; to vary from point to point, rather than using one choice
for the whole curve. This issue is addressed in Sections 5.1 and 5.5.

4. The general evolution laws
4.1 The case of no sliding
WhensS = 0, we can rewrite equatiop ([L0) as

oR .
i — = —0R 13
b (13)

by using the expressions fog andV, from @]). The minimum of expressio@ll) occurs at
_ [ ziky —y')ds
[(2+v2/4/M; + j2/D)ds’

for one or more values af Wherez, = R%/(BivVR? + R/ ) andv,; andj are as defined |r[k4) and
@ From this expression fat we computev, using ) Finally, we need find the value(s)iof
which correspond to the smallest value of this minimum. Thus equafiohs (13) gnd (14) are the rate
laws for this case.

Quantity [I2) is minimized when

101 T R VA ST SR 1, 1\
ORI N (R O R CRE T R (CRE B O I

+/ jD_l(jé)ds:/(ziKy —yHds. (15)
c c

(14)

It is not obvious how to solve this fat, nor that it determines a unique Any 6 satisfying this
equation has a correspondifgoy (13).

4.2 Thecases #0

In the linear case, we minimizg|(8) to get the following coupled ODE and PDE:

_ dy ,31 1, 1, 1
0_/;<d9 U )ds+0/<4M J_—l—SvH—i-—] ds, (16)
Bi 1 B
0=—xy — S 0+Un<M,~+? . (17)
From [I7) we get
M;S Bi R? )
- 4+ —=—— 30 ). 18
S + p2M; (KV S VRZ+ R? (19

Multiply Ii by é” fis |, integrate, solve fof,. v v, ds, and plug it into) to get

fSJFMT”gﬁZK),vH ds — [y'ds
v2ds + [ g vi + [ $j2ds

0 =

f S+M ,32 I
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In terms of R and R/, this is

i [ S ﬂZKVRZd(P [v'~RZ+ R2d¢ .
o 1 R4 R2R? 2 _ p2y2/R2 2 dey
fS+Miﬂi2\/m ¢ f4M\/7 ¢+f4D(R — R?) R4+ R’ d¢
Therefore in the linear case, the rate laws are equafiofs (18) gnd (19).
In the non-linear case, the scalarand the functiorv, must satisfy the following coupled
equations:

. 1 1 .
0= /( +v, 87 1(v0—,8,-vn)+§vl/\/lil<vn+§vl9>

— EUJ_M < — %ULé) + jD_l(jé)> ds, (20)

. 1 1 . 1 1 .
0=—ky — BiS (v,6 — Bivn) + 5/\/1;1<vn + EUJ_@) + EMi_l<vn - Evﬁ). (21)
These follow d|rectly from varyingd and v, in expression []8) using the fact that
= &[S WG ) du = G(gv) 2 72 Itis not easy to solve them to exhibit explicidyandun,.

5. Theorems
5.1 General results
5.1.1 Choice ofg;

THEOREM1 For a flat interface between grains with misorientaioand inclination«, when
there is coupling and an imposed , then if there is anip satisfying Mio(e,a)ﬁl?o(e) >

M; (0, a)B2(0) for all i # io, thenv, =V, /Bi,. If the maximum value o; 87 is attained through
the use of more than one thenwvy, is not uniquely determined, and any velocity in the interval
between the corresponding/g; is possible.

Proof. The dissipation function per unit area for moving a flat interface by an impogeuth
couplingg; is v/ M;, andB;v, = vj;. The energy change is zero; therefore the minimum occurs for
all i that produce the smallest value of(d4; ﬂlz) O

COMMENT 1 The value ob whereM; 82 = M,B2 can depend on. Indeed, as discussed in the
appendix, by symmetry it is known that for somdor some crystalsg, is the correct choice at
« = 0 andg; the correct choice at = /4.

CoMMENT 2 Computations for circles with particular assumptions ondtltkependence dfiM;}
indicate that the value af at which onei ceases to be the uniquely best choice depends on the
radius of the circle.

5.1.2 No sliding. Throughout this subsection, assufie:) = 0 for everyu, 6 anda; in the
linear case, this means assuse- 0.

THEOREM2 The samé (i.e. choice of coupling factog;) must be used at every point @hfor
minimizing expressior (11).
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Proof. Becausev, is the normal velocity of the curve, it cannot be discontinuous. Becklse
Bivn = 0 andV, is continuous (by[:(]4)), the choice @ must give a continuous function, and
therefore the samemust be chosen everywhere on the curve. O

THEOREM3 Assume eaclp; depends only o, not «. Assume expressiof ([L1) is uniquely
minimized using = ig att = 0. Let

] 1 d
0) = — .
A2 eXp( /9(0) Bio (1) 1”)

ThenR(¢, 1) = f(O)R(¢, 0) for all # until such time that another value bélso yields a minimum
for expression (11). Therefore

(1) A non-circular initial grain boundarg, does not get rounder, and a circu@y stays circular.
(2) Relative to the crystal axes df, the grain boundary shape rotates at the é@te

Proof. We have assumed that for eagls; is independent of, and from the previous theorem, we
know that at each time, only oriecan be used for the entire curve. Thus we can rewrite equation

@) as

dInR 6
a B
and integrate to get
R(¢,1) = R(¢,0)f (0o, ). (22)

Given our choice of4 = —6/2, if we were to rotate the whole system at the 2, then the
lattice of A would be fixed, the crystak would be rotating at the rat and the shape would be
rotating at the raté /2. So we see that the shape rotates at half the rate of the lattRestétive to
that of A, which is result (2). O

CoMMENT 3 The proof of (1) and (2) uses equatipn|(13) alone,[ndt (14).
CoMMENT 4 For small|f|, i = 1, 81 is approximately, and sof (9) ~ 6(0)/6(t).

CoMMENT 5 We shall show, with more difficulty, that result (2) continues to hold when sliding is
allowed, if there is a convenient shape attribute.

THEOREM4 A family of curvesC(r) exists satisfying equationg (13) arjd](14) and is uniquely
determined up until at least the time when the expresgign (11) has the same minimum value for two
choices ofi. If equations) anl) with = ip have a unique solution fat, then the same
results hold for those equations.

Proof. WhenR(¢, t) = f(0)R(¢, 0) is plugged into), one obtains an equationdatepending
only oné. This is an autonomous first order differential equation for the séadard has a unique
solution. In the non-linear case, pluggi®y¢$,r) = f(©)R(¢,0) into (I8) withi = io gives

an implicit equation for. If it is solved foré, then the resulting equation can be integrated to
geto(r). (]

CoMMENT 6 The behavior when two differerits give the same minimum has not yet been
investigated. See Section 5.5 concerning the consequences of there being more #an one
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5.1.3 With sliding. Existence and uniqueness for the linear and non-linear nonsecurations
have not yet been investigated. The conclusions of the following theorem follow directly from
examining the rate law§ (1.8) arjd {19):

THEOREM5 (1) The rate laws fo§ = 0 are the limits of the rate laws &sapproaches zero.

(2) Suppose&’, has a plane of mirror symmetry; without loss of generality, we may assume it is
¢ = 0, so thatR is an even function op. Assumey, M, S, andg are even functions af,
wherew is measured from the ray = 0 (in our doubly rotating setup). Then is also an even
function of ¢, by .) and therefore at later timgs= 0 is again a mirror. Sincé, = —0z,
the rate of rotation of the mirror relative to the axes of crystas half that of the rotation of
crystal B relative to crystal.

COMMENT 7 If R is zero for allp and ify, M;, andS, as well asB;, are independent af, the
rate laws are the equations (1) for circles studiedlin [5].

5.2 Slightly perturbed circles, linear kinetics

There are several insights easily obtained from the nearly circular®@Be= r(1 + € cogme)).
(The restriction that: > 2 occurs because = 0 gives a circle angh = 1 gives an off-center circle.
A more general perturbed shape would have sine and cosine terms; with cosine terms only the shape
is mirror symmetric aboup = 0.) Assume all coefficients are independentofChanginge to —e
simply rotates the initial grain shape. Since independenceisfassumed, this should not change
the kinetics. The rates of shrinking and rotation should be even functionssafce changing the
sign ofe just rotates the original shape. The rate of approach to a circular shgpeshould be an
odd function ofe, for the same reason. Thus to first ordee ithere is no reduction in either the rate
of shrinking or the rate of rotation.
We therefore expect that such small perturbations of a circle should have little effect. We explore
what those effects are.

5.2.1 CaseS =0. Because the shape remains the same wher0D, we only have to investigate
the effect of the perturbations @rand7; ¢ will remain constant and no new harmonics will appear.
Also, 7 = —6r/B, so6 determines-.

Using equatio4) and keeping terms up to okfewe compute

2 2
_ BiMin(y + 237 — Biv') 1+ €22

2 282_9,,2 . 2,2
r o(m ﬁi 2m4+12 M,hﬂ[r
1+ €2( 8 5. )

whereM;;, and D;, are the harmonic averages defined by 2, = fOZ"(l/Ml-) de and Zr/ Dy, =
[(1/D) da.

COMPUTATIONAL RESULT6 ForR(0) = r(1 + € cogme)) and small enough, the rotation rate
att = 0 is indeed within ordee? of that for a circle, provideds; 8?r?/Dj, is of order 1 for any
minimizingi. If itis much less than 1, surface diffusion has negligible effect; if it is of order 1, then
both M;;, and Dy, play a role. If, howeverM;; 87r?/ D, > €2 > 1, then we obtain

2D 82
—h<y+ﬁ7/ —ﬂJ/> (23)
o

 Birde?
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and surface diffusion entirely dominates the rotation rate, which need not be at all close to that for
circles.

5.2.2 CaseS # 0. With the results forS = 0 in mind, we assume thaf is small enough
compared to appropriate ratios of kinetic coefficients that all terms invokviagde? are in fact
much less than 1, and in particular thdt < D/(r?B2M;) at all «. Since the situation is already
complicated, we assume that noneofM;, S, and D depend onx.

By equation[(1p),

i BM(y — (B+ 715)7) Ly 2B -2 12 M sm? | s
N r2 ¢ 8 2D 8M 2D ) )

If we write R(¢) = (r + r1(t))(1 + (€ + €1(¢)) coSme) + h1(t) co2m¢)) + E(t), wherekE is all
the other terms anch (0) = €1(0) = #1(0) = E(0) = 0, then

R(0) = r1(1 + € cogme)) + r coSmep)éq + r cox2mep)h, + E.

We can writeR (from equation[(18)) in a way so as to identify, ¢, /1, andE:

s (7= BY z 2
R= (M . +8Dr(,32M+S)€)(1+ECOS(m¢))

MSy (m? —2)
r2(B2M + S) )
,(3m? —1)yDMS
2Dr2(B2M + S)

+r Cos(m¢)< —€

+r cog2me) <e > + 0

where

Z = B*M2(m?D + 4Mr?)(—y + By') — (4m® — 4y DMS
+((4m? — 12)DM — m?DS — 4MSr?) (B2 M — By'S)
+283%'M(m?DS + 4Mr?S — (2m® — 6)DM).

COMPUTATIONAL RESULT 7 To first order, the rates of changerof- r1(¢) ando(z), namelyry

andd, are the same as those for circles as given in equon (1). The second order tetnastisr

can be positive, negative, or zero depending on the giveP, M, y andg (all non-zero) as well

as the geometric variablesandr. To second order in, only the co$2m¢) harmonic appears, and

its coefficient is positive, as it must be. The rate of change of the perturbed shape toward circular,
given byé, is negative, as expected, and does not depend tmthird order ine. The implication

is that differences in the rate of lateral displacement from coupled motion driven by gradients in
curvature are accommodated primarily by sliding and not by diffusion; this agrees with=h@

result of no shape change. As would be expected, the rate of shrinking increases with decreasing
distance between features: it depends directly:8n- 2 and inversely om2. Whenpg2M/S > 1,

the rate ceases to dependnand becomes linear ii; conversely, whe2M/S « 1, the rate is
controlled byM, and ceases to depend on eitl§ear 3.
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5.3 Grains with high aspect ratios, linear kinetics

In this section, we assume that none of the parameters depengi.en everything is independent
of the normal to the grain boundary). Therefore these results would need to be re-examined when
0 is close to the interval where the choicegfvaries witha for flat interfaces, in the case where
more than ong; is geometrically possible.

Suppose the grain boundary consists of two line segments parallel toetkis, one a distance
€ below it and one a distaneeabove it and each extending from= —a to x = «, together with
semicircular caps at each end. To compare with the case of an approximation to a circle of radius
we should assumes4 = 72 as well ax < a.

The mean square radius is essentiglfy x?dx/2a = a?/3. The denominator of in equation
(I9) is, to ordek,

eazn/4 + # <ga3 + 7'[6126) + % (ji—gas + %Gnea4>.
The numerator isé(MBy — MB%y — Sy'), leading to
_ MBy — B*My' — Sy’
T a2(S + B2M) (g + 1)
to zeroth order ire. Similar expressions are expected for other high-aspect ratio grains.

COMPUTATIONAL RESULT 8 If D is much less thalﬁ%azM, then

, 4D M
T <S+ﬁ2M V)' “

Thus in this case the rotation rate is controlled by diffusion, amkif # is very small, that rotation
rate is very small. In particular, it is slower than that of the circle with areda equal to 4e if
D < (S + MB?)r8/45.

It is therefore reasonable to assume as an approximation to this cage=thdt When sliding
is easy § is large compared t62M), we have motion by weighted curvature with mobility,

un X Mk,. (25)
On the other hand, whesB—? is intermediate betweeW anda?D, then
S
vp = ﬁky' (26)

This is also a version of motion by weighted curvature, but the “mobility” is not determined by
attachment-detachment kinetics but rather by sliding and coupling.

CoMMENT 8 In [8], a different motion was considered, wheretself, rather thanfc y ds, was
required to decrease and there was no coupling, and it considered polycrystals. That paper also
found that far-from-round crystals shrank at a rate inversely proportiorédl to

5.4 Qualitative picture

We now have a qualitative picture of what happens, for an initial shape that is relatively large and not
very round wher may be very small but is not zero and the initial misorientation is not large: the
motion is by weighted curvature, with the rate depending on the relationship bedsgeand s,
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and with the misorientation not changing. In either case, cnstsghrinks and becomes rounder.
Then the diffusion becomes less of a hindrance, and the crystal begins to rotate at an appreciable
rate, and all kinetic factors are important.

Conjecture: If all parameters are independen& pthen we expect a grain of arbitrary initial
shape to become approximately round as it shrinks to a point.

6. Some open problems

Various constraints that were made in this paper should be relaxed. In particular, the restriction
that the center of rotation is fixed ought to be removed, and bulk driving forces as well as external
stresses could be added, aslin [5]. The requirement of smoothnessrfight be lifted; it would

be interesting to see the effects of shape accommodation at the opposite extreme where the Wulff
shape is polyhedral.

More ambitiously, three-dimensional embedded crystals should be studied. Boundaries between
two three-dimensional crystals are characterized by five angles, three to specify the relative
misorientation, and two for the orientation of the plageis a scalar function of these angles,
while other quantities, such #s are tensors.

Also, an attempt might be made to use statistical mechanics to connect the molecular dynamics
simulations to the continuum model proposed. Within the continuum model, it is possible that the
whole variational problem could be set up in terms of finite time steps; this would be particularly
useful when usings with fewer restrictions and in higher dimensions, where singularities can
develop. Seel]1] for the possibilities; there one minimizes with > 0 (and no coupling or
its associated shape accommodation) to obtain approximate flows and then finds a limit of the
approximate flows.

Mathematical questions remaining in the problem studied in this paper range from proving
existence and uniqueness of solutions in the fully non-linear case to determining whether embedded
grains shrink to round points. One might also try to determine whether there are any features that
continue to hold approximately for an evolving grain shape without a mirror symmetry, in analogy
to the conclusion that when there is a mirror symmetry plane initially, a mirror symmetry plane
continues to exist and rotates at half the rate of the change in misorientation.

Many issues will arise when attempting to include coupling and shape accommodation in
polycrystals, with their triple and higher junctions between neighboring grains. As a specific
question, consider a two-dimensional polycrystalline microstructure and focus on one shrinking
“equi-axed” grain surrounded by, say, three other grains and thus having three triple points; what
are the equations of motion, and do our results for slightly perturbed circles hold?

The major materials science question is: what is the effect of coupling on the many processes
in which grain boundary motion is a component, such as grain growth, discontinuous precipitation,
diffusion induced grain boundary motion, etc.? These are complex processes even without coupling.
Grain boundary properties show enormous variations with the five angles which characterize them,
and shape accommodation is a difficult problem. Triple junctions play major roles which have
received little attentiori [8].
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Appendix: Further information about the coupling factor g for square symmetry crystals, 3-d
models, and simulations

In this appendix, we consider planar grain boundaries. We assume the reference lattice for the two
crystals in the bicrystal has square (4 mm) symmetry, with the sides of the square aligned with the
coordinate axes. We orient the bicrystal in laboratory coordinates so that cBy&alotated by

an angle between 0 and/2 and crystald by its negative; we call this angk/2, so thaty is a
misorientation angle and the laboratory veatby0) bisects it. The inclinatior is chosen to be

the angle of the grain boundary fro¢h, 0), i.e., the angle frong0, 1) to the oriented normal from
crystalA to crystalB, measured counterclockwise. Note that all physical properties of the boundary
are periodic irg, of periodr, and in«, of periods /2.

When6 = 0, the two crystals are in alignment. Wheén= 7 /2, the two crystals (one rotated
by /4 and the other by- /4 from their reference crystal) are again in alignment. Whea 0,
these two types of alignment give rise to two different kinds of symmetric low-angle boundaries
for misorientations near them. The disappearing low-angle boundary th-the0 limit is aligned
with the (1, 0) vector in the reference crystal, while in the— /2 limit it is aligned with the
(1, 1) diagonal of the reference crystal. Low angle boundaries are composed of widely separated
dislocation, and in these two limits the dislocations have different Burgers vectors and different
energies and their motion differs in sign and in the deformation that results.

If & < m/2, then the line at angle/4 is a bisector of the complement &f the angle from
the ray at9/2 to the ray atr/2 — 6/2. If we rotate the entire bicrystal byx /4, then the angle
« is taken tow — /4, the orientation of crystalt becomes-(6/2 + = /4), and the orientation of
crystal B becomes®)/2 — = /4, which is equivalent by the square symmetng§@ + = /4. Thus,
except for its position in laboratory coordinates, the bicrystal describeé,lay) is identical to the
bicrystal described by + /2, « — 7r/4). If there are no laboratory fields that interact differently
with different orientations, then all physical properties should be the sam@ fey and for(® +
/2, a — /4.

This same rotation by /4 takes the ray at angle/2 — 6/2 tor /4 — 6/2, and that at angle
0/2t0—(mr/4—6/2). Thus, except for orientation in laboratory coordinates, the bicrystal described
by (0, «) is identical to that described liyt /2 — 0, « — 7 /4). In the field-free case, whethéror its
complement is chosen as the misorientation does not matter as lang axcremented byt /4 for
the latter compared to the former. For every givethere are two kinds of symmetric boundaries,

a = 0 ande = /4 (and their equivalents under rotationy?2); the (6, = /4) symmetric bicrystal
is equivalent to thér /2 — 6, 0) symmetric bicrystal.

The same symmetries occur for a three-dimensional bicrystal restricted to have a common cube
axis; the two angles have the same definitions and invariances.

In this field-free case, we may therefore restrict consideration to the cas® 0< /2 and
0 < o < 7/4, as all other bicrystals are related to such a pair by the symmetries discussed.

By simple shears, two types of ideal motion are geometrically possible over the & aticy
range:

1 b4

P16, @) = 2tanB/2) > 0, (0, ) = 2tar<§<9 - 5)) =0

with 81 easier to accomplish neér= 0 and (by symmetry}; easier to accomplish neér= /2.

(Two other crystallographically possible valuesfofs(6, a) := 2tan(3( — 7)) andBa(®, a) :=
Ztar(%( — 37”)) are so much more difficult to achieve that they can be ignored, as long as we use
symmetry and take in the interval(0, 7z /2).)
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FIG. 4. Inclination (normal) dependence @®{ Yuri Mishin data). Unpublished datal[9] from MD simulations indicating that
for 6 ~ 19, B1 is an approximately constant functionefThere is no jump t@,.

The simulations in 3D are consistent with these symmetries [3]aFer 0 and not too high
a temperature, they reveal accurate agreement fvith g1 for 0 < 6 < 0.27r andg = B, for
0.27 < 6 < /2, with what seems to be a discontinuitybatz 0.2z (see Figure 2). Similarly, for
6 near zero, the relative motion is approximately constant @ith 8, for all « (see Figure 4); lack
of exact agreement might be due to interactions between dislocations.

Symmetry does not dictate at whiéhthe observe@® should switch froms; to 82. Symmetry
does say that because it is observed to occar@®r whena = 0, it should occur at= (0.5—0.2)
whena = /4. For6 between approximately.Br and 037 a change of sign in the observgd
must occur betweea = 0 andrn/4, becausgg(0,0) = B2(0,0) andg(@, 7/4) = B1(8, 0) for
such@. This is observed, but in a rather unexpected fashion. Where a jump befneesp (0, o)
and B8 = B1(0, ) might be expected whe# is fixed at 2arcta¢l/2) ~ 37° (a special grain
boundary, calledY’5 in the materials science literature; see €.9. [3]xas varied, each of those
being essentially independentwfinstead the rati?, /v, appears to diverge; see Figure 5a. Plotting

(@ 80 - () 15
6.0f ]
4.0+ 4 1.0 .
2.0t §

5; 00 < 0.5¢ 1

20 i i 0.0 :
-4.0- 1 .
-6.0 § 05L ]
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o (degrees)

o (degrees)

FiG. 5. Unpublished preliminary datal[9] from MD simulations indicating thatfee 37°, there is a change from positive

to negative motions with increasing There are only four points, the temperature is fairly high, and the error bars would be
large. This change is discussed in this appendix and appears to involve a jumpdwota +oo, though it might be from a
finite negative value to a finite positive value. In (b,),/V” is instead plotted, useful for comparing with sliding behavior.
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vn/V, as inFigure 5b shows that the normal velocity becomes almost uncoupled from the tangential.
A possible explanation is sliding. Sliding increasgswithout adding tovn. Were it not for its
characteristic behavior in the simulations (as in Figure 3), its presence would seem like an increase
in |81, with pure sliding looking likg 8| = oco.

At very low temperatures, motion of perfect periodic symmetric flat grain boundaries is difficult
to initiate, and at« = 0O initiating motion using the dislocations f@g is more difficult than using
those forB,. In the simulations stress built up until motion occurred, and the motion was by stick-
slip. The stress foB; was greater than fg#, [3]; for small9, with the grains forced to translate, the
motion often initiated withB,. But once motion was initiated and the boundary became less regular,
sometimes part of a boundary would suddenly begin to move gyitlihile the rest moved witis;
eventually it would all move witl1. The relevance of this for more arbitrary boundaries is unclear,
and will be neglected in this paper:f turns out to be the variationally preferred coupling, then
we will assume the system finds a way to accomplish it. Since in this paper we deal with curved
boundaries, these issues should not be so important.

At intermediate temperatures, motion in the simulations changes from stick-slip to being more
continuous. At higher temperatures (the temperature dependiay shding begins to occuf [4];
see Figure 3.
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