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Shape accommodation of a rotating embedded crystal
via a new variational formulation
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We use an expanded variational approach based on dissipation to study the motion of the boundary
of a non-circular cylindrical, and thus essentially 2-dimensional, crystalline grain of arbitrary
cross-section enclosed in another grain of the same material under conditions where the normal
grain boundary motion is coupled to relative tangential motion of the grains along the grain
boundary. Coupling leads to relative rotation of the crystal axes of the two grains and requires
shape accommodation; we assume that the necessary mass transport for shape accommodation is
by diffusion confined to the grain boundary. We include the recently discovered fact that different
modes of coupling with different coupling factors are crystallographically possible and do occur in
molecular dynamic simulations.

Several results are deduced from the equations we derive. When there is a mirror plane symmetry
to the crystal’s initial shape, this symmetry plane remains and rotates at half the rate of rotation of
the enclosed crystal’s crystal axes relative to the surrounding crystal’s axes. Sliding along the grain
boundary is essential for shape change: when there is no sliding, we show that, although the inner
crystal rotates and shrinks, its shape remains the same. If the cross-section of the enclosed crystal
is large with a large aspect ratio and diffusion is relatively slow, then the rotation rate is initially
diffusion controlled and very slow compared to nearly circular cylindrical crystals of the same
cross-sectional area. In this case, and when sliding is relatively easy, the resulting normal motion
is essentially mobility-controlled motion by weighted mean curvature; when sliding is intermediate
in difficulty between mobility and diffusion, we have instead sliding-controlled motion by weighted
mean curvature. As crystals become rounder and smaller in cross-section, all the kinetic factors
become involved.

1. Introduction

1.1 Overview

We employ a new variational method to formulate and study a free boundary problem with many
interacting, possibly non-linear, kinetic effects in which the available free energy and its dissipations
can be formulated. The method is an extension of a variational approach for curvature driven flows
[2, 6, 13]. The free boundary problem arises from the discovery that a moving grain boundary, which
is an interface between two crystals of the same material, shears the material it traverses [4, 11]. This
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FIG. 1. Time snapshots from an unpublished 3D molecular simulation by S. G. Srinivasan in circa 2000 [10] of the shrinking
of an enclosed grain which is initially an elliptical cylinder with a small misorientation between the grains. Dislocations
are centered on the disturbances seen in the pattern and they collectively mark the grain boundary. The top left-hand figure
shows the cross-section of the initial bicrystal, shortly after the start of the simulation (T = 1). As the enclosed grain shrinks
the axis of the cylinder rotates, the misorientation between the grains increases to more than 30◦, and the enclosed grain
becomes rounder.

causes the axes of a shrinking crystal embedded in another crystal to rotate [5] (see Figure 1), and
in general will require material transport for shape accommodation. In this paper we assume that
the mechanism for the material transport is by diffusion confined to the grain boundary. We thus
study grain boundary motion which incorporates coupling via a misorientation-dependent multi-
valued coupling factorβ, shape accommodation via surface diffusion, and dynamics that include
mobility and sliding. The diffusion along the surface is solely of the material required for shape
accommodation in rotation; the flux is proportional to the rotation rate and does not directly involve
the curvature, so there is no Laplacian of curvature anywhere in the motion laws we derive. Indeed,
because there is no difference in density or composition between the two crystals, there cannot be
any curvature-driven surface diffusion. The grain boundary motion laws we deduce form a new type
of geometric crystal growth [14].

The understanding of the static and dynamic properties of interfaces between two crystalline
solids is of great importance for many materials problems, but poses many difficulties. For dynamic
properties it had long been assumed that the study of motion of grain boundaries in a system of
just one chemical component would be simpler than general crystal growth. The realization that
grain boundary motion is coupled to shear and that this leads to grain rotation is a complicating
factor. In this paper as in our previous paper [5], the problem is made simpler by studying special
bicrystals in which there are no triple junctions and only tilt boundaries—that is, in studying
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embedded cylindrical grains, where the cylinder axis coincides with a crystallographic axis common
to both crystals. The previous paper considered only isotropic circular cylindrical grains. The major
complication we address in this paper is the mass redistribution needed for a non-circular cylinder;
we also consider other issues such as non-linear mobility.

We derive various results in Section 5. Among them are: If the grain shape has a plane of mirror
symmetry, then in a coordinate system fixed to the axes of either grain that mirror plane rotates
at half the rate of the axes of the other crystal. Motion with a variety of rates is seen to arise with
coupling, not just motion by weighted curvature with mobility as the coefficient, as happens without
coupling. In particular, one might have motion proportional to weighted mean curvature but with
the coefficient proportional to the sliding coefficient and inversely proportional to the square of the
coupling coefficient. If diffusion and sliding are difficult enough, then for nearly circular crystalsvn
can have entirely diffusion-controlled motion, proportional to 1/r3 rather than 1/r. See equations
(23)–(26). We end with a section on some obvious open problems.

1.2 Choice of problem and assumptions

As in the previous paper [5] we work entirely in two dimensions. We consider only two crystals,A

andB, also calledgrains, with B embedded inA and the interface curveC between them referred
to as a grain boundary. We think ofB as being the cross-section of a cylinder stretching to infinity
and thus continue to use the language of three dimensions (we think ofγ as the surface free energy
per unit area of the cylinder rather than the line free energy of the curveC, the grain boundary is
everywhere a tilt grain boundary because the rotation axis is parallel to the cylinder axis, etc.) The
crystals differ only by a rotation of their axes. Only two angles are needed to characterize an element
of the boundary, the angleθ of misorientation between the crystals, and the “inclination” angleα of
the directed tangent to some specified directed line. We assume that the motion is driven entirely by
the reduction in the total free energy

∫
C(t)

γ ds, whereγ is a given positive real-valued function of
α andθ .

At various inclinationsα and allθ , a set of “ideal” coupling factors can be computed from a
simple model of the possible crystallographic ways that atoms can be rearranged as they move from
one crystal to the other. These describe simple shears which couple possible tangential velocities
V

||
, of the lattice ofB relative to that ofA, to the normal grain boundary velocityvn of A growing

into B. Thus we assume we are given one or more continuous scalar coupling functionsβi(θ, α),
i = 1, . . . , s, with s > 1, where with pure coupling,V

||
= βivn for somei. These functions are

shown as the two curves in Figure 2 with Mode I asi = 1 and Mode II asi = 2.Our sign convention
is that if the normal points up fromA below toB above and the normal velocity is positive (up),
then the tangential velocity is positive whenB moves to the right relative toA.

The coupling observed in simulations at low to intermediate temperatures with certain fixed
α are seen as points in Figure 2 and fit this model with high accuracy, following eitherβ1 or
β2 [3]. We will call the coupling “ideal” if there is such agreement between simulation and the
geometric model. (In the appendix, there is a compilation of some other data on coupling obtained
through simulation.) Furthermore, if theβi are in fact the ideal coupling factors for allα andθ ,
then eachβi should be independent ofα, an assumption we will sometimes make in this paper.
The variational formulation we introduce in this paper allows not only for the choice of whichβi
to use at each time but also for the possibility of different choices ofi being made at different
points on the curve. We know of no examples where making different choices at different points is
optimal.
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FIG. 2. Misorientation dependence ofβ (Yuri Mishin data). Data from MD simulations for symmetric boundaries (constant
α = 0), published in [4], demonstrating the excellent fit to the two coupling functionsβ1(θ,0) andβ2(θ,0), as discussed in
the appendix, and the fact that the system chooses to jump from oneβ to the other. The misorientation is characterized byθ .

At higher temperatures some rigid body sliding is also seen along the boundary. The magnitude
and direction of sliding along the boundary is defined as the difference between that predicted from
whichever coupling functionβi applies and the tangential motion observed, i.e.βivn − V

||
. If a

linear response is assumed, sliding is governed by a given sliding coefficientS, depending onθ
andα. Otherwise, the non-linearity is described by a functionS, which should be zero or increasing
and have the same sign as its argument.

Motion of atoms into and out of the lattices, whether by dislocation climb for low angle
boundaries or by what is often called attachment-detachment kinetics for higher angle boundaries,
entails a dissipation. For linear kinetics its rate is governed by a given positive mobility constant
Mi which depends on the geometric mechanism as specified by the coupling factorβi ; in general,
mobility may be a non-linear functionMi of the driving force. For eachi,Mi should be increasing
and have the same sign as its argument. We do NOT usually assume thatMi is independent ofα or θ
and indeed know that it cannot be for some intervals ofθ . In fact, for flat interfaces, by Theorem 1,
β1 is chosen overβ2 if M1β

2
1 −M2β

2
2 > 0, and the locus of misorientationsθ whereβ1 switches to

β2 is sometimes known to depend onα for reasons of symmetry; see the appendix.
We assume that the rigidity of the grains is high enough for us to neglect any elastic distortion

of grains so that the rotating grain undergoes pure Euclidian rigid body motion. This is a reasonable
assumption, since the energy of any significant elastic distortion is large compared to the boundary
energies in the system and elastic distortion would become huge with any significant rotation of non-
round crystals. As a result,θ at any instant is the same all along the grain boundary (and in the inte-
rior), and a non-round crystal that rotates will no longer fit into its previous hole without shape ac-
commodation. Observe that no accommodation problem would be encountered if the “orientation”
of a grain could change without a rigid rotation of the material of the grain and its crystal axes. For
example, if magnetostriction is ignored, no shape accommodation arises when the direction of mag-
netization of a ferromagnetic domain rotates independent of any rotation of the crystal axes. Com-
putational models which do not account for shape accommodation, because “orientation” is treated
as an order parameter [15], are more appropriate to such problems than to rotating crystalline grains.

We will assume that the redistributions, to accomplish the shape changes that are required by
the rotation, occur by lateral diffusion along the grain boundary (“surface” diffusion). For linear
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FIG. 3. Signed fraction of coupled motion versusT . Data from MD simulations on flat symmetric grain boundaries (fixedα)
at higher temperatures. Sliding is indicated by the fact that as temperature increases|vn/V||

| is first constant (no sliding), then
decreasing (partial sliding), then zero (total sliding); the temperature at which sliding begins to be significant is a function
of θ .

diffusion, the rate is controlled by a diffusion coefficientD; for non-linear, a functionD is given,
which should be increasing and have the same sign as its argument. Locally the material is assumed
to deposit smoothly and continuously on each grain at the grain boundary.

For simplicity, we make some assumptions on theα-dependence ofγ andβi . We assume that
for each value ofθ , γ is a twice continuously differentiable function ofα and the equilibrium crystal
shape for eachθ (computed via the Wulff construction usingγ , i.e.W = {x : x · (cosα, sinα) 6
γ (α) for all α} has no corners. We also assume thatγ ′ := ∂γ /∂θ exists for everyα except atθ = 0.
For much of the paper, we assume that eachβi does not depend onα. We assume thatM, S, andD
(or their non-linear analogs) all depend continuously onα.

Other limitations are that we consider only a fixed center of rotation. We also use a fixed
temperature; it is worth noting thatMi andS depend strongly on this temperature (Figure 3).

1.3 Comparison with earlier work

In [5] we discussed coupled motion with planar grain boundaries, where the motion is driven by an
applied stress. We also discussed motion with circular grain boundaries and linear kinetics where
everything was independent ofα; here coupling produced rotation of crystal axes, with the motion
laws

dr

dt
= −M

(
γ − βγ ′

r

)
, r

dθ

dt
= −β

dr

dt
− S

γ ′

r
. (1)

In this paper, we study shape accommodation for non-circular grain boundaries and include
non-linear kinetics and anisotropy. The new variational formulation is given for the linear case in
(8) and for the general nonlinear in (9). The resulting equations for the linear case are (18) and (19),
and for the non-linear case, (20) and (21).

In [5], where we studied circular crystals whose lattices have square symmetry, we knew by
symmetry that the coupling would have to change sign betweenθ = 0 andπ/2 and mistakenly
assumed thatβ was a continuous, single-valued function ofθ (we ignored any dependence onα
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in that paper). We now know that for such crystals there are at least four geometrically determined
functions forβ, but only two, one positive and one negative, are found to occur for 0< θ < π/2
(which can be taken to be the entire range of misorientation, by symmetry). In addition [5] contained
some sign errors: equation (22) there should begin withv

||
= rdθ/dt , not with−v

||
= rdθ/dt , and

equation (30) there should be correspondingly corrected for signs.
In comparing the results of this paper with the previous paper [5], observe that what was called

therev
||

is called hereV
||
, and likewise forV⊥. The lower-case lettersv

||
andv⊥ are reserved here

for the velocities divided bẏθ (see (6)).

2. Variational formulations involving mobility

2.1 Linear problems

There are several equivalent ways to derive the law of motion for the normal velocityv of a curve
C, in the case where the velocity is assumed proportional, via a mobility factorM, to the driving
force:

(i) If we write d(F +W)/dt , the rate change of free energyF plus reversible workW done, in the
form

∫
C
(−Xvn +Y )ds (soX is the coefficient ofvn andY is everything else), the driving force

for moving the grain boundary is defined asX. Assuming linear kinetics with mobilityM, we
set

vn = MX. (2)

Since we do not consider applied stresses in this paper, we take dW/dt to be zero.
(ii) We could instead add a term

∫
C

1
2M v

2
n ds to

∫
C
(−Xvn + Y )ds and then minimize with respect

to vn. This yields equation (2) by a different route.

This is more than a mathematical trick. Approach (i) can be thought of as a surface version of the
Lagrange equation for massless particles with a Rayleigh dissipation functionF . Consider particles
with positions{qj }, masses{mj } and velocities{q̇j }. The internal energyE is assumed to depend
only on{qj }, and the kinetic energyT is 1

2mj q̇
2
j . Then with LagrangianL = T − E, the Lagrange

equations are ([7])
d

dt

(
∂L

∂q̇j

)
−
∂L

∂qj
+
∂F
∂q̇j

= 0.

We setF =
∫ q̇j

0
1
M
udu =

1
2

1
M
q̇2
j and effectively assume allmj = 0 (that is, we assume there is no

“mass” or momentum associated to the interface), thereby obtaining

q̇j = −M
∂E

∂qj
,

the particle version of equation (2). Approach (ii) can now be identified as finding critical points
of F + dE/dt , again assumingT = 0. Although it is a variational principle, it is not Hamilton’s
principle, which involves variation over a time interval and yields an extra, unwanted, term when
there is dissipation.

The dissipationfunction is F ; the dissipationrate under these assumptions is 2F . The
dissipation rate is NOT the dissipation function, and the dissipation rate will look even less like the
dissipation function with dissipation functions corresponding to non-linear kinetics, as discussed
below.

These ideas will be further discussed in [12].
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2.2 Extension to non-linear mobility

More generally, for non-linear mobility, we assume we have a mobility functionM andvn =M(X)

for the driving forceX. The dissipation functionF should be
∫
C

∫ vn
0 M−1(u)duds. The dissipation

rate isv∂F/∂v. All the approaches still apply and result invn =M(X).
In extending this approach to additional sources of dissipation, the key is to identify them and

to express them as an overall dissipation function.

3. Variational formulation for coupled motion with diffusional shape accommodation

We propose here an expansion of the variational approach in which one minimizes the sum of the
rate of energy increase and the rates of dissipation due to grain boundary motion and relative grain
rotation. After fixing some notation we derive the rate for each energy change and the dissipation
functions.

3.1 Geometric preliminaries

We consider a pointP on a smooth 2D grain boundaryCo between grainsA andB at timet . We will
consider only the case whereCo can be written in polar coordinates from its center of rotationO,

P −O = R(t, φ)(cosφ, sinφ).

In this paper, we assumeO is fixed (e.g., by reason of symmetry). Letn be the normal direction
of the grain boundary atP in Co, pointing from grainA to grainB, andt the tangential direction,
chosen to be rotated clockwise fromn by 90◦.

Because we assume there is no elastic distortion, at any given time the orientationθA of
the lattice ofA is the same at all points ofA and the orientationθB of the lattice ofB is the
same throughoutB. Since a rotation of the whole system leaves the system invariant, only the
misorientationθ = θB − θA matters and is constant at each time. We may without loss of generality
chooseθ̇A as we wish. Although it might seem most natural to chooseθ̇A = 0, so thatB rotates
inside a fixed crystal, it is more convenient to chooseθ̇A = −θ̇B = −θ̇/2.

We define a set of local velocities atP . In general, when a non-circular cylindrical grain rotates,
the rate of relative translation of the crystals atP has to include a normal component as well as a
tangential component. Let the vectorV lat

B|A(P ) be the local velocity of the lattice of crystalB as

seen from a coordinate system imbedded in the lattice of crystalA (V lat
B|A(P ) = −V lat

A|B(P )). It is
specified by a rotation rate dθ/dt about the centerO. Let V

||
be the local rate of relative tangential

translation of the crystal B (into whichn points), positive if in the directiont. ThenV
||
(P ) :=

V lat
B|A · t, andV⊥(P ) := V lat

B|A · n. The rate of volume increase per unit grain boundary area atP ,
which has to be removed by an accommodation process such as surface diffusion, is given byV⊥.
Let vA be the normal velocity of the grain boundary, relative to the lattice ofA and positive if in the
direction ofn, andvB be the normal velocity of the grain boundary, relative to the lattice ofB and
again positive if in the direction ofn; thenV⊥ = vA − vB . We also define a mean normal velocity
of the grain boundary asvn := 1

2(vA + vB).
All of these local velocities can then be specified in terms of the relative rotation rateθ̇ , andR

and its partial derivativeṡR = ∂R/∂t andR′
= ∂R/∂φ. In particular,
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V lat
B|A(P ) = θ̇R(− sinφ, cosφ),

vA = −ṘR/
√
R2 + R′2 + RR′θ̇/(2

√
R2 + R′2),

vB = −ṘR/
√
R2 + R′2 − RR′θ̇/(2

√
R2 + R′2).

(3)

Thus
V⊥ = RR′θ̇/

√
R2 + R′2,

V
||

= R2θ̇/
√
R2 + R′2,

vn = −ṘR/(
√
R2 + R′2).

(4)

Observe that indeed the volume which has to be accommodated over an angular increment dφ atP
per unit time and per unit cylinder height isθ̇RR′ dφ = θ̇RR′/

√
R2 + R′2 ds = V⊥ ds, where ds is

the arc increment
√
R2 + R′2 dφ.

The surface divergence of the diffusional fluxJ along the grain boundary (volume per unit
time across a unit length of the grain boundary) is−V⊥ = vA − vB , the rate of volume removal
(accumulation) required to make up the difference betweenvA andvB . In polar coordinates about
the center of rotation ofB this is, using (4),

RR′θ̇
√
R2 + R′2

=
∂J

∂s
,

which can be integrated by inspection to give a remarkably simple result forJ in terms ofR, θ̇, and
a mean square radius(R2) =

∫
Co
R2 ds/length(Co) :

J =
1

2
(R2

− (R2))θ̇ . (5)

(The integration constant is(R2), which satisfies the conservation condition
∫
J ds = 0 =∫

Co
(R2

− (R2))ds.)

It is convenient to isolate the factors ofθ̇ . We therefore define

v⊥ =
V⊥

θ̇
, v

||
=
V

||

θ̇
, j =

J⊥

θ̇
. (6)

Each of these is purely geometrical, depending only onR andR′.
Finally, for completeness and for establishing the sign convention forκγ , the weighted curvature,

we include its formula in these coordinates:

κγ = (R2
+ R′2)−3/2(R2

+ 2R′2
− RR′′)

(
γ +

∂2γ

∂α2

)
. (7)

3.2 The changes in the total free energy

The total free energy is the integral ofγ . The rate of change of surface free energy under motion by
normal velocityvn (in this paper, the normaln pointsinto the enclosed crystalB) is −

∫
C
κγ vn ds

whereκγ is given in equation (7). For a rotating crystal, writingγ ′ for ∂γ
∂θ
(α, θ), the rate of surface

energy change becomes ∫
Co

(γ ′θ̇ − κγ vn)ds.
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One way of obtaining this result is as a limit of time steps. Let the grain boundary be the
curveCo. After a time step∆t we consider a comparison crystal shape with boundaryC and
misorientationθ +∆θ . The average rate of surface energy change is

1

∆t

( ∫
C

γ (nC, θ +∆θ)ds −

∫
Co

γ (nCo , θ)ds

)
.

Since we are assumingCo is smooth, we may assume that in the reference lattice forA, the image
of C under rotation byθ−1

A is the image ofCo under the normal velocityvA run for time∆t and take
the limit as∆t approaches zero. Similarly, in the reference lattice forB, the image ofC under the
rotationθ−1

B is the image ofCo under the normal velocityvB run for time∆t . There is a potential
issue here, becausevA andvB are different. But the curveC is the same curve in each case, so the
energy change should be the same in both coordinate systems, and the same as when we usevn
onC.

3.3 The dissipation rates

3.3.1 The dissipation due to normal motion of the grain boundary.This dissipation is due to
attachment-detachment costs, with the mobility appropriate to the coupling factorβi (which i to use
will be decided as part of the minimization process). There is another issue here, becausevA andvB
are different. SinceA andB are grains of the same material, we use the same mobility for crystals
A andB. For consistency with the non-rotating case and because we are counting the cost twice, we
also introduce a factor of12. The dissipation function in the linear case becomes∫
Co

1

2Mi

v2
A + v2

B

2
ds =

∫
Co

1

4Mi

((
vn +

V⊥

2

)2

+

(
vn −

V⊥

2

)2)
ds =

∫
Co

1

2Mi

(
v2

n +
V 2

⊥

4

)
ds.

With non-linearity, the appropriate dissipation function is∫
Co

1

2

( ∫ vn+V⊥/2

0
M−1

i (u)du+

∫ vn−V⊥/2

0
M−1

i (u)du

)
ds.

3.3.2 The dissipation due to grain boundary sliding.AssumingS is non-zero and obeys linear
kinetics, the sliding velocity isV

||
− βvn and the dissipation function for the sliding is∫

Co

1

2S
(V

||
− βivn)

2 ds.

With non-linear sliding, the dissipation function is∫
Co

∫ V
||
−βivn

0
S−1(u)duds.

In both cases, the choice ofi is part of the variational formulation.
If S = 0 (or, in the non-linear case,S(u) = 0 for everyu), then we requireV

||
− βivn = 0 at

every point and do not have any sliding dissipation.
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3.3.3 The dissipation due to diffusion along the grain boundary.In the linear case, the
dissipation function for diffusion, using equation (5), is∫

Co

1

2D
J 2 ds =

∫
Co

θ̇2

8D
(R4

− (R2)2)ds,

whereD is a diffusional mobility defined with units of length3/time/energy.
In the non-linear case, the dissipation function for diffusion is∫

Co

∫ J

0
D−1(u)duds.

3.4 Putting them all together

The case whereS = 0 (in the non-linear case,S = 0) must always be examined separately. We do
not need to examine eitherM = 0 orD = 0 since either condition would prohibit all motion for a
non-round initial grain boundary.

For linear kinetics withS non-zero, by minimizing∫
Co

[
∂γ (n, θ)
∂θ

θ̇ − κγ vn +
1

2Mi

(
v2

n +
v2
⊥
θ̇2

4

)
+

1

2S
(v

||
θ̇ − βivn)

2
+

1

2D
j2θ̇2

]
ds (8)

over all rotational rateṡθ and all mean normal velocitiesvn and possible coupling factorsβi with
associated mobilitiesMi , we will determine all velocities, includinġθ , vn, V⊥ andV

||
. Recall that

all coefficients are allowed to depend on the normal direction of the interface at each point, via the
inclinationα, as well asθ .

Using non-linear kinetics withS non-zero, the expression to minimize is∫
Co

{
1

2

∫ vA

0
M−1

i (u)du +
1

2

∫ vB

0
M−1

i (u)du+

∫ V
||
−βivn

0
S−1(u)du+

∫ J

0
D−1(u)du

}
ds

+

∫
Co

{
∂γ

∂θ
θ̇ − κγ vn

}
ds. (9)

If S = 0 (or, in the non-linear case,S = 0), we require

v
||
θ̇ − βivn = 0, (10)

and setzi = vn/θ̇ = R2/(βi
√
R2 + R′2). In the linear case, we minimize∫ (

dγ

dθ
θ̇ − κγ zi θ̇ +

1

2Mi

(
z2
i θ̇

2
+

1

4
v2
⊥
θ̇2

)
+

1

2D
(j2θ̇2)

)
ds (11)

over all θ̇ and possiblei. In the non-linear case, we minimize∫
Co

{
1

2

∫ (zi+
1
2v|| )θ̇

0
M−1

i (u)du+
1

2

∫ (zi−
1
2v|| )θ̇

0
M−1

i (u)du

}
ds

+

∫ j θ̇

0
D−1(u)du+

∫
Co

{
∂γ

∂θ
θ̇ − κγ vn

}
ds. (12)

over all θ̇ and possiblei.
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It is possible to allow the choice ofβi to vary from point to point, rather than using one choice
for the whole curve. This issue is addressed in Sections 5.1 and 5.5.

4. The general evolution laws

4.1 The case of no sliding

WhenS = 0, we can rewrite equation (10) as

βi
∂R

∂t
= −θ̇R (13)

by using the expressions forvn andV
||

from (4). The minimum of expression (11) occurs at

θ̇ =

∫
(ziκγ − γ ′)ds∫

((z2
i + v2

⊥
/4)/Mi + j2/D)ds

, (14)

for one or more values ofi, wherezi = R2/(βi
√
R2 + R′2) andv⊥ andj are as defined in (4) and

(6). From this expression foṙθ we computevn using (13). Finally, we need find the value(s) ofi
which correspond to the smallest value of this minimum. Thus equations (13) and (14) are the rate
laws for this case.

Quantity (12) is minimized when

1

2

(
zi −

1

2
v⊥

) ∫
C

(
M−1

i

((
zi −

1

2
v⊥

)
θ̇

)
+

1

2

(
zi +

1

2
v⊥

)
M−1

i

((
zi +

1

2
v⊥

)
θ̇

)
ds

+

∫
C

jD−1(j θ̇)ds =

∫
C

(ziκγ − γ ′)ds. (15)

It is not obvious how to solve this foṙθ , nor that it determines a uniquėθ . Any θ̇ satisfying this
equation has a correspondingṘ by (13).

4.2 The caseS 6= 0

In the linear case, we minimize (8) to get the following coupled ODE and PDE:

0 =

∫
C

(
dγ

dθ
−
βi

S
v

||
vn

)
ds + θ̇

∫
C

(
1

4Mi

v2
⊥

+
1

S
v2

||
+

1

D
j2

)
ds, (16)

0 = −κγ −
βi

S
v

||
θ̇ + vn

(
1

Mi

+
β2
i

S

)
. (17)

From (17) we get

vn =
MiS

S + β2
iMi

(
κγ +

βi

S

R2

√
R2 + R′2

θ̇

)
. (18)

Multiply (17) by Miβi

β2
1M+S

v
||
, integrate, solve for

∫
C
βi
S
v

||
vn ds, and plug it into (16) to get

θ̇ =

∫ Miβ

S+Miβ
2
i

κγ v||
ds −

∫
γ ′ ds∫ 1

S+Miβ
2
i

v2
||

ds +
∫ 1

4Mi
v2
⊥

+
∫ 1
D
j2 ds

.
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In terms ofR andR′, this is

θ̇ =

∫ Miβ

S+Miβ
2
i

κγR
2 dφ −

∫
γ ′

√
R2 + R′2 dφ∫ 1

S+Miβ
2
i

R4
√
R2+R′2

dφ +
∫ 1

4Mi

R2R′2
√
R2+R′2

dφ +
∫ 1

4D (R
2 − R2)2

√
R2 + R′2 dφ

. (19)

Therefore in the linear case, the rate laws are equations (18) and (19).
In the non-linear case, the scalarθ̇ and the functionvn must satisfy the following coupled

equations:

0 =

∫
C

(
dγ

dθ
+ v

||
S−1(v

||
θ̇ − βivn)+

1

2
v⊥M−1

i

(
vn +

1

2
v⊥θ̇

)
−

1

2
v⊥M−1

i

(
vn −

1

2
v⊥θ̇

)
+ jD−1(j θ̇)

)
ds, (20)

0 = −κγ − βiS−1(v
||
θ̇ − βivn)+

1

2
M−1

i

(
vn +

1

2
v⊥θ̇

)
+

1

2
M−1

i

(
vn −

1

2
v⊥θ̇

)
. (21)

These follow directly from varyingθ̇ and vn in expression (8), using the fact that
∂
∂v

∫ g
0 (v)G(u)du = G(g(v)) ∂g

∂v
. It is not easy to solve them to exhibit explicitlẏθ andvn.

5. Theorems

5.1 General results

5.1.1 Choice ofβi

THEOREM 1 For a flat interface between grains with misorientationθ and inclinationα, when
there is coupling and an imposedV

||
, then if there is ani0 satisfying Mi0(θ, α)β

2
i0
(θ) >

Mi(θ, α)β
2
i (θ) for all i 6= i0, thenvn = V

||
/βi0. If the maximum value ofMiβ

2
i is attained through

the use of more than onei, thenvn is not uniquely determined, and any velocity in the interval
between the correspondingV

||
/βi is possible.

Proof. The dissipation function per unit area for moving a flat interface by an imposedv|| with
couplingβi is v2

n/Mi , andβivn = v||. The energy change is zero; therefore the minimum occurs for
all i that produce the smallest value of 1/(Miβ

2
i ). 2

COMMENT 1 The value ofθ whereM1β
2
1 = M2β

2
2 can depend onα. Indeed, as discussed in the

appendix, by symmetry it is known that for someθ for some crystals,β2 is the correct choice at
α = 0 andβ1 the correct choice atα = π/4.

COMMENT 2 Computations for circles with particular assumptions on theα dependence of{Mi}

indicate that the value ofθ at which onei ceases to be the uniquely best choice depends on the
radius of the circle.

5.1.2 No sliding. Throughout this subsection, assumeS(u) = 0 for everyu, θ andα; in the
linear case, this means assumeS = 0.

THEOREM 2 The samei (i.e. choice of coupling factorβi) must be used at every point onC for
minimizing expression (11).
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Proof. Becausevn is the normal velocity of the curve, it cannot be discontinuous. BecauseV
||

−

βivn = 0 andV
||

is continuous (by (4)), the choice ofβi must give a continuous function, and
therefore the samei must be chosen everywhere on the curve. 2

THEOREM 3 Assume eachβi depends only onθ , not α. Assume expression (11) is uniquely
minimized usingi = i0 at t = 0. Let

f (θ) = exp

(
−

∫ θ

θ(0)

1

βi0(ψ)
dψ

)
.

ThenR(φ, t) = f (θ)R(φ,0) for all t until such time that another value ofi also yields a minimum
for expression (11). Therefore

(1) A non-circular initial grain boundaryCo does not get rounder, and a circularCo stays circular.
(2) Relative to the crystal axes ofA, the grain boundary shape rotates at the rate1

2 θ̇ .

Proof. We have assumed that for eachi, βi is independent ofα, and from the previous theorem, we
know that at each time, only onei can be used for the entire curve. Thus we can rewrite equation
(13) as

∂ lnR

∂t
= −

θ̇

βi

and integrate to get
R(φ, t) = R(φ,0)f (θ0, θ). (22)

Given our choice oḟθA = −θ̇/2, if we were to rotate the whole system at the rateθ̇/2, then the
lattice ofA would be fixed, the crystalB would be rotating at the ratėθ , and the shape would be
rotating at the ratėθ/2. So we see that the shape rotates at half the rate of the lattice ofB relative to
that ofA, which is result (2). 2

COMMENT 3 The proof of (1) and (2) uses equation (13) alone, not (14).

COMMENT 4 For small|θ |, i = 1,β1 is approximatelyθ , and sof (θ) ≈ θ(0)/θ(t).

COMMENT 5 We shall show, with more difficulty, that result (2) continues to hold when sliding is
allowed, if there is a convenient shape attribute.

THEOREM 4 A family of curvesC(t) exists satisfying equations (13) and (14) and is uniquely
determined up until at least the time when the expression (11) has the same minimum value for two
choices ofi. If equations (20) and (21) withi = i0 have a unique solution foṙθ , then the same
results hold for those equations.

Proof. WhenR(φ, t) = f (θ)R(φ,0) is plugged into (19), one obtains an equation forθ̇ depending
only onθ . This is an autonomous first order differential equation for the scalarθ and has a unique
solution. In the non-linear case, pluggingR(φ, t) = f (θ)R(φ,0) into (15) with i = i0 gives
an implicit equation forθ̇ . If it is solved for θ̇ , then the resulting equation can be integrated to
getθ(t). 2

COMMENT 6 The behavior when two differenti’s give the same minimum has not yet been
investigated. See Section 5.5 concerning the consequences of there being more than oneβi .
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5.1.3 With sliding. Existence and uniqueness for the linear and non-linear non-zero-S equations
have not yet been investigated. The conclusions of the following theorem follow directly from
examining the rate laws (18) and (19):

THEOREM 5 (1) The rate laws forS = 0 are the limits of the rate laws asS approaches zero.
(2) SupposeCo has a plane of mirror symmetry; without loss of generality, we may assume it is

φ = 0, so thatR is an even function ofφ. Assumeγ , M, S, andβ are even functions ofα,
whereα is measured from the rayφ = 0 (in our doubly rotating setup). Thenvn is also an even
function ofφ, by (18), and therefore at later timesφ = 0 is again a mirror. SincėθA = −θ̇B ,
the rate of rotation of the mirror relative to the axes of crystalA is half that of the rotation of
crystalB relative to crystalA.

COMMENT 7 If R′ is zero for allφ and if γ , Mi , andS, as well asβi , are independent ofα, the
rate laws are the equations (1) for circles studied in [5].

5.2 Slightly perturbed circles, linear kinetics

There are several insights easily obtained from the nearly circular caseR(0) = r(1 + ε cos(mφ)).
(The restriction thatm > 2 occurs becausem = 0 gives a circle andm = 1 gives an off-center circle.
A more general perturbed shape would have sine and cosine terms; with cosine terms only the shape
is mirror symmetric aboutφ = 0.) Assume all coefficients are independent ofα. Changingε to −ε

simply rotates the initial grain shape. Since independence ofα is assumed, this should not change
the kinetics. The rates of shrinking and rotation should be even functions ofε, since changing the
sign ofε just rotates the original shape. The rate of approach to a circular shape−ε̇(t) should be an
odd function ofε, for the same reason. Thus to first order inε there is no reduction in either the rate
of shrinking or the rate of rotation.

We therefore expect that such small perturbations of a circle should have little effect. We explore
what those effects are.

5.2.1 CaseS = 0. Because the shape remains the same whenS = 0, we only have to investigate
the effect of the perturbations oṅθ andṙ; ε will remain constant and no new harmonics will appear.
Also, ṙ = −θ̇ r/β, soθ̇ determineṡr.

Using equation (14) and keeping terms up to orderε2, we compute

θ̇ =
βiMih

(
γ +

∂2

∂α2γ − βiγ
′
)

r2

1 + ε2m2

4

1 + ε2
(m2β2

i −2m2+12
8 +

Mihβ
2
i r

2

2Dh

)
whereMih andDh are the harmonic averages defined by 2π/Mih =

∫ 2π
0 (1/Mi)dα and 2π/Dh =∫

(1/D)dα.

COMPUTATIONAL RESULT 6 ForR(0) = r(1 + ε cos(mφ)) and small enoughε, the rotation rate
at t = 0 is indeed within orderε2 of that for a circle, providedMiβ

2
i r

2/Dh is of order 1 for any
minimizing i. If it is much less than 1, surface diffusion has negligible effect; if it is of order 1, then
bothMih andDh play a role. If, however,Mihβ

2
i r

2/Dh � ε−2
� 1, then we obtain

θ̇ =
2Dh
βir4ε2

(
γ +

∂2

∂α2
γ − βγ ′

)
(23)
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and surface diffusion entirely dominates the rotation rate, which need not be at all close to that for
circles.

5.2.2 CaseS 6= 0. With the results forS = 0 in mind, we assume thatε2 is small enough
compared to appropriate ratios of kinetic coefficients that all terms involvingε andε2 are in fact
much less than 1, and in particular thatε2

� D/(r2β2
iMi) at all α. Since the situation is already

complicated, we assume that none ofγ ,Mi , S, andD depend onα.
By equation (19),

θ̇ =

βM
(
γ −

(
β +

S
Mβ

)
γ ′

)
r2

(
1 + ε2

(
m2β2

− 2m2
+ 12

8
+
Mβ2r2

2D
+
Sm2

8M
+
Sr2

2D

))
.

If we writeR(t) = (r + r1(t))(1 + (ε + ε1(t)) cos(mφ)+ h1(t) cos(2mφ))+ E(t), whereE is all
the other terms andr1(0) = ε1(0) = h1(0) = E(0) = 0, then

Ṙ(0) = ṙ1(1 + ε cos(mφ))+ r cos(mφ)ε̇1 + r cos(2mφ)ḣ1 + Ė.

We can writeṘ (from equation (18)) in a way so as to identifyṙ1, ε̇1, ḣ1, andĖ:

Ṙ = −

(
M
γ − βγ ′

r
+

Z

8Dr(β2M + S)
ε2

)
(1 + ε cos(mφ))

+ r cos(mφ)

(
− ε

MSγ (m2
− 2)

r2(β2M + S)

)
+ r cos(2mφ)

(
ε2 (3m

2
− 1)γDMS

2Dr2(β2M + S)

)
+O(ε3)

where

Z = β4M2(m2D + 4Mr2)(−γ + βγ ′)− (4m2
− 4)γDMS

+ ((4m2
− 12)DM −m2DS − 4MSr2)(β2γM − βγ ′S)

+ 2β3γ ′M(m2DS + 4Mr2S − (2m2
− 6)DM).

COMPUTATIONAL RESULT 7 To first order, the rates of change ofr + r1(t) andθ(t), namelyṙ1
andθ̇ , are the same as those for circles as given in equation (1). The second order terms forṙ1 andθ̇
can be positive, negative, or zero depending on the givenS, D, M, γ andβ (all non-zero) as well
as the geometric variablesm andr. To second order inε, only the cos(2mφ) harmonic appears, and
its coefficient is positive, as it must be. The rate of change of the perturbed shape toward circular,
given byε̇, is negative, as expected, and does not depend onD to third order inε. The implication
is that differences in the rate of lateral displacement from coupled motion driven by gradients in
curvature are accommodated primarily by sliding and not by diffusion; this agrees with theS = 0
result of no shape change. As would be expected, the rate of shrinking increases with decreasing
distance between features: it depends directly onm2

− 2 and inversely onr2. Whenβ2M/S � 1,
the rate ceases to depend onM and becomes linear inS; conversely, whenβ2M/S � 1, the rate is
controlled byM, and ceases to depend on eitherS or β.
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5.3 Grains with high aspect ratios, linear kinetics

In this section, we assume that none of the parameters depend onα (i.e., everything is independent
of the normal to the grain boundary). Therefore these results would need to be re-examined when
θ is close to the interval where the choice ofβi varies withα for flat interfaces, in the case where
more than oneβi is geometrically possible.

Suppose the grain boundary consists of two line segments parallel to thex axis, one a distance
ε below it and one a distanceε above it and each extending fromx = −a to x = a, together with
semicircular caps at each end. To compare with the case of an approximation to a circle of radiusr

we should assume 4εa = πr2 as well asε � a.
The mean square radius is essentially

∫ a
−a
x2dx/2a = a2/3. The denominator oḟθ in equation

(19) is, to orderε,

εa2π/4 +
S + β2M

4M

(
4

3
a3

+ πa2ε

)
+
S + β2M

4D

(
16

45
a5

+
16

9
πεa4

)
.

The numerator is 4a(Mβγ −Mβ2γ − Sγ ′), leading to

θ̇ =
Mβγ − β2Mγ ′

− Sγ ′

a2(S + β2M)
( 1

12M +
a2

45D

)
to zeroth order inε. Similar expressions are expected for other high-aspect ratio grains.

COMPUTATIONAL RESULT 8 If D is much less than12
45a

2M, then

θ̇ ≈
45D

a4

(
Mβ

S + β2M
− γ ′

)
. (24)

Thus in this case the rotation rate is controlled by diffusion, and ifDa−4 is very small, that rotation
rate is very small. In particular, it is slower than that of the circle with areaπr2 equal to 4aε if
D < (S +Mβ2)r6/45.

It is therefore reasonable to assume as an approximation to this case thatθ̇ = 0. When sliding
is easy (S is large compared toβ2M), we have motion by weighted curvature with mobility,

vn ≈ Mκγ . (25)

On the other hand, whenSβ−2 is intermediate betweenM anda2D, then

vn =
S

β2
κγ . (26)

This is also a version of motion by weighted curvature, but the “mobility” is not determined by
attachment-detachment kinetics but rather by sliding and coupling.

COMMENT 8 In [8], a different motion was considered, whereγ itself, rather than
∫
C
γ ds, was

required to decrease and there was no coupling, and it considered polycrystals. That paper also
found that far-from-round crystals shrank at a rate inversely proportional toa4.

5.4 Qualitative picture

We now have a qualitative picture of what happens, for an initial shape that is relatively large and not
very round whenS may be very small but is not zero and the initial misorientation is not large: the
motion is by weighted curvature, with the rate depending on the relationship betweenMβ2 andS,
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and with the misorientation not changing. In either case, crystalB shrinks and becomes rounder.
Then the diffusion becomes less of a hindrance, and the crystal begins to rotate at an appreciable
rate, and all kinetic factors are important.

Conjecture: If all parameters are independent ofα, then we expect a grain of arbitrary initial
shape to become approximately round as it shrinks to a point.

6. Some open problems

Various constraints that were made in this paper should be relaxed. In particular, the restriction
that the center of rotation is fixed ought to be removed, and bulk driving forces as well as external
stresses could be added, as in [5]. The requirement of smoothness forγ might be lifted; it would
be interesting to see the effects of shape accommodation at the opposite extreme where the Wulff
shape is polyhedral.

More ambitiously, three-dimensional embedded crystals should be studied. Boundaries between
two three-dimensional crystals are characterized by five angles, three to specify the relative
misorientation, and two for the orientation of the plane;γ is a scalar function of these angles,
while other quantities, such asβ, are tensors.

Also, an attempt might be made to use statistical mechanics to connect the molecular dynamics
simulations to the continuum model proposed. Within the continuum model, it is possible that the
whole variational problem could be set up in terms of finite time steps; this would be particularly
useful when usingγ with fewer restrictions and in higher dimensions, where singularities can
develop. See [1] for the possibilities; there one minimizes with∆t > 0 (and no coupling or
its associated shape accommodation) to obtain approximate flows and then finds a limit of the
approximate flows.

Mathematical questions remaining in the problem studied in this paper range from proving
existence and uniqueness of solutions in the fully non-linear case to determining whether embedded
grains shrink to round points. One might also try to determine whether there are any features that
continue to hold approximately for an evolving grain shape without a mirror symmetry, in analogy
to the conclusion that when there is a mirror symmetry plane initially, a mirror symmetry plane
continues to exist and rotates at half the rate of the change in misorientation.

Many issues will arise when attempting to include coupling and shape accommodation in
polycrystals, with their triple and higher junctions between neighboring grains. As a specific
question, consider a two-dimensional polycrystalline microstructure and focus on one shrinking
“equi-axed” grain surrounded by, say, three other grains and thus having three triple points; what
are the equations of motion, and do our results for slightly perturbed circles hold?

The major materials science question is: what is the effect of coupling on the many processes
in which grain boundary motion is a component, such as grain growth, discontinuous precipitation,
diffusion induced grain boundary motion, etc.? These are complex processes even without coupling.
Grain boundary properties show enormous variations with the five angles which characterize them,
and shape accommodation is a difficult problem. Triple junctions play major roles which have
received little attention [8].
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Appendix: Further information about the coupling factor β for square symmetry crystals, 3-d
models, and simulations

In this appendix, we consider planar grain boundaries. We assume the reference lattice for the two
crystals in the bicrystal has square (4 mm) symmetry, with the sides of the square aligned with the
coordinate axes. We orient the bicrystal in laboratory coordinates so that crystalB is rotated by
an angle between 0 andπ/2 and crystalA by its negative; we call this angleθ/2, so thatθ is a
misorientation angle and the laboratory vector(1,0) bisects it. The inclinationα is chosen to be
the angle of the grain boundary from(1,0), i.e., the angle from(0,1) to the oriented normal from
crystalA to crystalB, measured counterclockwise. Note that all physical properties of the boundary
are periodic inθ , of periodπ , and inα, of periodπ/2.

Whenθ = 0, the two crystals are in alignment. Whenθ = π/2, the two crystals (one rotated
by π/4 and the other by−π/4 from their reference crystal) are again in alignment. Whenα = 0,
these two types of alignment give rise to two different kinds of symmetric low-angle boundaries
for misorientations near them. The disappearing low-angle boundary in theθ → 0 limit is aligned
with the (1,0) vector in the reference crystal, while in theθ → π/2 limit it is aligned with the
(1,1) diagonal of the reference crystal. Low angle boundaries are composed of widely separated
dislocation, and in these two limits the dislocations have different Burgers vectors and different
energies and their motion differs in sign and in the deformation that results.

If θ < π/2, then the line at angleπ/4 is a bisector of the complement ofθ , the angle from
the ray atθ/2 to the ray atπ/2 − θ/2. If we rotate the entire bicrystal by−π/4, then the angle
α is taken toα − π/4, the orientation of crystalA becomes−(θ/2 + π/4), and the orientation of
crystalB becomesθ/2 − π/4, which is equivalent by the square symmetry toθ/2 + π/4. Thus,
except for its position in laboratory coordinates, the bicrystal described by(θ, α) is identical to the
bicrystal described by(θ + π/2, α − π/4). If there are no laboratory fields that interact differently
with different orientations, then all physical properties should be the same for(θ, α) and for(θ +

π/2, α − π/4).
This same rotation by−π/4 takes the ray at angleπ/2 − θ/2 toπ/4 − θ/2, and that at angle

θ/2 to−(π/4− θ/2). Thus, except for orientation in laboratory coordinates, the bicrystal described
by (θ, α) is identical to that described by(π/2− θ, α−π/4). In the field-free case, whetherθ or its
complement is chosen as the misorientation does not matter as long asα is incremented byπ/4 for
the latter compared to the former. For every givenθ , there are two kinds of symmetric boundaries,
α = 0 andα = π/4 (and their equivalents under rotation byπ/2); the(θ, π/4) symmetric bicrystal
is equivalent to the(π/2 − θ,0) symmetric bicrystal.

The same symmetries occur for a three-dimensional bicrystal restricted to have a common cube
axis; the two angles have the same definitions and invariances.

In this field-free case, we may therefore restrict consideration to the case 0< θ < π/2 and
0 6 α < π/4, as all other bicrystals are related to such a pair by the symmetries discussed.

By simple shears, two types of ideal motion are geometrically possible over the entireθ andα
range:

β1(θ, α) := 2 tan(θ/2) > 0, β2(θ, α) := 2 tan

(
1

2

(
θ −

π

2

))
< 0,

with β1 easier to accomplish nearθ = 0 and (by symmetry)β1 easier to accomplish nearθ = π/2.
(Two other crystallographically possible values ofβ, β3(θ, α) := 2 tan

(1
2(θ − π)

)
andβ4(θ, α) :=

2 tan
(1

2

(
θ −

3π
2

))
, are so much more difficult to achieve that they can be ignored, as long as we use

symmetry and takeθ in the interval(0, π/2).)
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FIG. 4. Inclination (normal) dependence ofβ (Yuri Mishin data). Unpublished data [9] from MD simulations indicating that
for θ ≈ 19◦, β1 is an approximately constant function ofα. There is no jump toβ2.

The simulations in 3D are consistent with these symmetries [3]. Forα = 0 and not too high
a temperature, they reveal accurate agreement withβ = β1 for 0 < θ . 0.2π andβ = β2 for
0.2π . θ < π/2, with what seems to be a discontinuity atθ ≈ 0.2π (see Figure 2). Similarly, for
θ near zero, the relative motion is approximately constant withβ = β1 for all α (see Figure 4); lack
of exact agreement might be due to interactions between dislocations.

Symmetry does not dictate at whichθ the observedβ should switch fromβ1 to β2. Symmetry
does say that because it is observed to occur at≈ 0.2π whenα = 0, it should occur at≈ (0.5−0.2)π
whenα = π/4. Forθ between approximately 0.2π and 0.3π a change of sign in the observedβ
must occur betweenα = 0 andπ/4, becauseβ(θ,0) = β2(θ,0) andβ(θ, π/4) = β1(θ,0) for
suchθ . This is observed, but in a rather unexpected fashion. Where a jump betweenβ = β2(θ, α)

and β = β1(θ, α) might be expected whenθ is fixed at 2 arctan(1/2) ≈ 37◦ (a special grain
boundary, calledΣ5 in the materials science literature; see e.g. [3]) asα is varied, each of those
being essentially independent ofα, instead the ratioV

||
/vn appears to diverge; see Figure 5a. Plotting
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FIG. 5. Unpublished preliminary data [9] from MD simulations indicating that forθ ≈ 37◦, there is a change from positive
to negative motions with increasingα. There are only four points, the temperature is fairly high, and the error bars would be
large. This change is discussed in this appendix and appears to involve a jump from−∞ to +∞, though it might be from a
finite negative value to a finite positive value. In (b),vn/V||

is instead plotted, useful for comparing with sliding behavior.
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vn/V||
as in Figure 5b shows that the normal velocity becomes almost uncoupled from the tangential.

A possible explanation is sliding. Sliding increasesv|| without adding tovn. Were it not for its
characteristic behavior in the simulations (as in Figure 3), its presence would seem like an increase
in |β|, with pure sliding looking like|β| = ∞.

At very low temperatures, motion of perfect periodic symmetric flat grain boundaries is difficult
to initiate, and atα = 0 initiating motion using the dislocations forβ1 is more difficult than using
those forβ2. In the simulations stress built up until motion occurred, and the motion was by stick-
slip. The stress forβ1 was greater than forβ2 [3]; for smallθ , with the grains forced to translate, the
motion often initiated withβ2. But once motion was initiated and the boundary became less regular,
sometimes part of a boundary would suddenly begin to move withβ1 while the rest moved withβ2;
eventually it would all move withβ1. The relevance of this for more arbitrary boundaries is unclear,
and will be neglected in this paper: ifβ1 turns out to be the variationally preferred coupling, then
we will assume the system finds a way to accomplish it. Since in this paper we deal with curved
boundaries, these issues should not be so important.

At intermediate temperatures, motion in the simulations changes from stick-slip to being more
continuous. At higher temperatures (the temperature depending onθ ), sliding begins to occur [4];
see Figure 3.
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