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This paper deals with the classical Bernoulli free boundary problem. We are interested in solving
some shape optimization problems related to this free boundary problem. We prove the continuous
dependence of the solution with respect to the data K , working with Hausdorff convergence. We can
deduce an existence result for a large class of shape optimization problems. Finally, we give some
ideas for a numerical method, based on the use of conformal mappings, to solve such problems in
two dimensions.
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1. Introduction

The Bernoulli free boundary problem is a very classical one in the field of free boundaries. Its
popularity comes from the simplicity of its statement together with the fertility of the mathematical
questions it involves. Roughly speaking, we can present it as follows. For a given bounded domain
K ⊂ R

N , (N � 2, and K is starshaped in this paper), one seeks a larger domain Ω such that the
gradient of the capacitary potential of Ω \K has a prescribed magnitude on ∂Ω (the boundary of Ω ).

The problem arises in various flow laws, and several physical situations, e.g. electrochemical
machining and potential flow in fluid mechanics. Standard references, are [1, 3, 4]; see also [7, 8]
and the references therein. We also refer to the paper of Acker and Meyer [2] for a good account
of applications in general. A complete overview of theoretical results as well as numerical ones is
given in [7].

It is well known that there always exists a solution (at least in a weak sense) to this free boundary
problem, see below. Moreover, it is also known that if a classical solution exists and if K (the data)
is starshaped, then the solution is unique and starshaped, see [19, 20] for the two-dimensional case

†
Email: hayouni@iecn.u-nancy.fr

‡
Email: henrot@iecn.u-nancy.fr

§
Email: samouh@fsmeck.ac.ma

c© Oxford University Press 2001



2 M. HAYOUNI, A. HENROT & N. SAMOUH

and [2] for the general case. In this paper we are interested in the continuous dependence of the solu-
tion of the free boundary problem Ω when K varies. We work with the Hausdorff topology, which is
one of the topologies most often used in the framework of shape optimization. In Section 3, we prove
the continuity of the map K �→ Ω . We deduce an existence result for a large class of shape optimiza-
tion problems involving the pair (K ,Ω). Finally, in Section 4, we give some ideas for a numerical
method to solve such problems in two dimensions. It is based on the use of conformal mappings.

2. Notations and preliminary results

Let D0 be a given bounded and simply connected domain in R
N (N � 2) and Q a non-negative

constant. To any compact set K ⊂ D0 we want to associate an open set ΩK containing K and a
function u (called the capacitary potential of the pair (K ,ΩK )) which solve the following classical
Bernoulli free boundary problem:


∆u = 0 in ΩK \ K ,

u = 1 on ∂K ,

u = 0 and |∇u| = Q on ∂ΩK .

(2.1)

In Remark 2.3, we shall see that for any K ⊂ D0 the open set ΩK is a subset of some regular
bounded and simply connected domain D.

There are at least three different approaches to prove existence of a solution for the problem
(2.1). The first one, initially due to Beurling [4] (see also [12, 14]) uses the original method of
subsolutions and supersolutions. A supersolution is an open set ω containing K such that its
capacitary potential has a gradient smaller than Q on ∂ω. A solution of (2.1) is then constructed
as a minimal set in the class of supersolutions.

The second method presented by Alt and Caffarelli in [3] consists in studying the variational
version of (2.1). For this purpose they introduce the functional J defined on the Sobolev space
H1

0 (D) by

J (v) :=
∫

D
|∇v|2 dx +

∫
D

Q2χ
v dx . (2.2)

The method consists in minimizing J on the set V (D, K ) of functions v in H1
0 (D) which are equal

to 1 quasi-everywhere on K (i.e. the H1-capacity of the subset of K on which v �= 1 vanishes: see,
for example, [9]). Here and througouht the paper χ

v denotes the characteristic function of the set
Ωv := {v > 0}.
L. Caffarelli and H. W. Alt prove existence and regularity of an absolute minimum u. Then Ωu

is a solution of the free boundary problem (2.1), but the condition ‘|∇u| = Q on ∂Ωu’ is to be
understood in the following weak sense:

∀η ∈ W 1,∞
0 (D), lim

ε→0

∫
∂{u>ε}

(|∇u|2 − Q2)ν· η dσ = 0;

where ν and dσ denote respectively the unit outward normal to ∂{u > ε} and the (N − 1)-
dimensional area element in ∂{u > ε}. They prove also that for N = 2, the free boundary is
regular and therefore ‘|∇u| = Q on ∂Ωu’ is satisfied in a classical sense (see below). Note that
in [3] Q is a non-negative function.
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A third method has been developed by Acker: it is called the trial free boundary method; see
e.g. [1, 2]. We will not use it here.

Since we are interested in studying dependence properties of the solution of (2.1) with respect
to the data K , it is convenient to work in a context where we have uniqueness of the solution. The
larger class for which we know we have uniqueness is the class of starshaped domains.

THEOREM 2.1 Let K be a compact set in R
N and δ > 0 a fixed positive number, we assume that

K is starshaped with respect to all points in some ball Bδ(x0). Then the problem (2.1) has a unique
solution ΩK , which is classical, i.e.

ΩK is of class C∞, u ∈ C0(ΩK \ K ), u = 1 on K and

∀x ∈ ∂ΩK , lim
y→x

y∈ΩK

|∇u(y)| = Q.

Moreover, ΩK is starshaped with respect to all points in the ball B(x0, δ).

Proof. See Theorem 3.2 in [2] (uniqueness comes from the classical Lavrent’ev principle). �

REMARK 2.1 Let us remark that in the case N = 2, we do not need to assume the starshapedness
with respect to all the points of the ball. Starshapedness w.r.t a single point is enough to obtain the
same result. More precisely, we shall distinguish two cases. In the first one, K = {x} which is of
zero H1-capacity and then V (D, K ) = H1

0 (D); thus u = 0 is the minimizer of J and then one can
consider that ΩK = ∅ even if it does not contains K . The second case is that of starshaped compact
sets such that K \ {x} �= ∅. Thanks to the starshapedness property, for any y ∈ K \ {x}, K contains
the segment [x, y]. Thus, the H1-capacity of K could not vanish. Moreover, since Ω \K satisfies the
so-called segment property in two dimensions (see e.g. [6]), the capacitary potential u is continuous
up to the boundary.

In the sequel, we use the following notations.
Let r0 > 0 be a fixed number and let us consider the family of compact sets KN defined as

follows:

• for N = 2,

K2 := {
K ⊂ D0; ∃x ∈ K such that K is starshaped with respect to x

};
• for N � 3,

KN := {
K ⊂ D0; ∃x ∈ K such that K is starshaped with respect to B(x, r0)

};
where B(x, r0) denotes the ball of radius r0 centred at x .

REMARK 2.2 When N � 3 the compact sets of KN are uniformly Lipschitz since they satisfy the
ε-cone property: see, for instance, [11] or [18].

In this paper, we want to study the map

K ∈ KN �−→ ΩK , (2.3)

where ΩK is the solution of (2.1) for K . As a first result, we can prove monotonicity of this map,
with respect to set inclusion.
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THEOREM 2.2 Let ΩK1 and ΩK2 denote the solution of (2.1) corresponding to the compact sets K1
and K2. Then

K1 ⊂ K2 �⇒ ΩK1 ⊂ ΩK2 .

REMARK 2.3 Let ρ0 > 0 such that D0 ⊂⊂ B(0, ρ0). By Theorem 2.2, for any K ⊂ D0 ⊂
B(0, ρ0), we have ΩK ⊂ ΩB(0,ρ0)

. But the solution of (2.1) for K = B(0, ρ0) is a ball B(0, ρ)

which can be computed explicitly (see [7]). Therefore, we can take the set B(0, ρ) as a domain D
containing strictly all the solutions ΩK , for any K ⊂ D0.

Proof. To prove that ΩK1 ⊂ ΩK2 it is enough to establish that ΩK2 is a supersolution (in the sense
of Beurling) for the problem (2.1) with the data K1 (because ΩK1 is the minimal set amongst all the
supersolutions).
Let v2 and u2 the capacitary potential of ΩK2 with respect to K1 and K2 respectively. Since K1 ⊂ K2
we have ΩK2 \ K2 ⊂ ΩK2 \ K1; then, using maximum principle we get v2 � u2 in ΩK2 \ K2. This
implies that

∀x ∈ ∂ΩK2 , lim sup
y→x

y∈ΩK2

|∇v2(y)| � lim sup
y→x

y∈ΩK2

|∇u2(y)|,

because both of v2 and u2 vanishes on ∂ΩK2 . Now since u2 is in fact a solution of (2.1), we get

∀x ∈ ∂ΩK2 , lim sup
y→x

y∈ΩK2

|∇v2(y)| � Q;

what means that ΩK2 is a supersolution. This finishes the proof. �
Now, to be able to claim the result of continuity, we need to recall some basic facts about the

Hausdorff convergence of sets.
For compact sets, we define the Hausdorff metric by

d(K1, K2) := max
(

max
x∈K1

min
y∈K2

|x − y|, max
x∈K2

min
y∈K1

|x − y|
)
.

If (Kn) (resp. (Ωn)) is a sequence of compact (resp. open) subsets of D, we say that (Kn) (resp.
(Ωn)) converges in the Hausdorff sense to a compact set K (resp. to an open set Ω ) and we write

Kn
H−−−−→

n→+∞ K

(
resp. Ωn

Hc−−−−→
n→+∞ Ω

)

if lim
n→∞ d(Kn, K ) = 0 (resp. lim

n→∞ d(Ω c
n ,Ω c) = 0), where Ω c := D \ Ω .

The main properties of the Hausdorff metric are given in [11, 18]. Below, we recall some of them
we will use in this paper.

LEMMA 2.1 Let (Kn) (resp. (Ωn)) be a sequence of compact (resp. open) subsets of D. Then there
exists a compact set K (resp. open set Ω ) and a subsequence (Knk ) (resp. (Ωnk )) such that

Knk

H−−−−→
k→+∞ K

(
resp. Ωnk

Hc−−−−→
k→+∞ Ω

)
.

Moreover, if Kn
H−−−−→

n→+∞ K then
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• K = {x; ∃xn ∈ Kn such that lim
n→+∞ xn = x}.

• for all x in R
N , d(x, Kn) → d(x, K ) when n → ∞

• for all open set ω we have: (K ⊂ ω) �⇒ (∃nω, n � nω �⇒ Kn ⊂ ω).

It is also an easy exercise to prove the following lemma.

LEMMA 2.2 Let (Kn) be a sequence of compact sets in KN . Assume that Kn
H−→ K . Then K

belongs to KN .

3. Continuity

3.1 The continuity result

The main result of this section is the following theorem.

THEOREM 3.1 Let (Kn) be a sequence in KN which converges, in the Hausdorff sense to a compact
K . Let us denote by ΩKn and ΩK the solutions of the Bernoulli problem (2.1) associated to Kn and
K respectively. Then

ΩKn

Hc−−−−→
n→+∞ ΩK .

REMARK 3.1 In the particular case of K = {x} ∈ K2, Theorem 3.1 is a consequence of Theorem

2.2. Indeed, if Kn
H−→ {x} with Kn ∈ K2 then Kn ⊂ B(x, rn) where rn = max{|x − y|; y ∈

Kn} −−→
n→0

0. As in Remark 2.3, we have ΩKn ⊂ B(x, Rn) where Rn is given by rn = Rn exp ( −1
Q Rn

).

Therefore, Rn −−→
n→0

0 and ΩKn

Hc−→ ∅ = ΩK .

Consequently, when N = 2 we shall prove Theorem 3.1 only in the case of K ∈ K2 with
K \ {x} �= ∅.

Before proving Theorem 3.1 let us recall some useful results.
For any open set ω ⊂ D and any f ∈ H−1(D) ⊂ H−1(ω) we denote by uω, f ∈ H1

0 (D) the unique
solution of the Dirichlet problem:

−∆u = f in ω, u ∈ H1
0 (ω),

that we extend by 0 on D \ ω.
We say that a sequence (ωn) of open sets ωn ⊂ D γ -converges to ω ⊂ D if for any f ∈

H−1(D), uωn , f −→ uω, f in H1
0 (D). It is easy to see that ωn γ -converges to ω if and only if H1

0 (ωn)

converges in the Mosco sense to H1
0 (ω) in the Hilbert space H1

0 (D) (see [11, 17]), i.e.

(i) ∀ϕ ∈ H1
0 (ω), ∃ϕn ∈ H1

0 (ωn) such that ϕn
H1

0 (D)−−−→ ϕ;

(ii) ∀ϕnk ∈ H1
0 (ωnk ),

(
ϕnk −−−⇀ ϕ in H1

0 (D)
) �⇒ ϕ ∈ H1

0 (ω).

We shall use the following sufficient conditions which ensure γ -convergence.

• If (ωn) is a sequence of uniformly Lipschitz domains which converge in the Hausdorff sense to
a domain ω, then ωn γ -converge to ω, see for instance [5, 11, 18]. Note that this is the case when

ωn = D \ Kn , ω = D \ K , Kn, K ⊂ KN (N � 3) and Kn
H−→ K according to Remark 2.2.
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• In two dimensions, if the number of connected component of the complementary of ωn denoted
by #ωc

n , is uniformly bounded and if (ωn) converge in the Hausdorff sense to a domain ω then
ωn γ -converges to ω, see [11, 22]. Note that this is the case when ωn = D \ Kn , ω = D \ K ,

Kn, K ⊂ K2 and Kn
H−→ K . Indeed, ωc

n = ∂ D ∪ Kn and since D is simply connected and Kn

is starshaped and included in D0 ⊂ D we have #ωc
n = 2.

REMARK 3.2 Consequently, for any open subset Ω of D containing all the compact sets Kn and
K , we have that Ω \ Kn γ -converges to Ω \ K . Indeed, extending by 0 the functions in H1

0 (Ω \ K )

we get H1
0 (Ω \ K ) = H1

0 (Ω) ∩ H1
0 (D \ K ) and similarly, H1

0 (Ω \ Kn) = H1
0 (Ω) ∩ H1

0 (D \ Kn).
Then we conclude using the equivalence between the γ -convergence and the convergence in the
sense of Mosco.

To prove Theorem 3.1 we need the following Lemma:

LEMMA 3.1 Let (Kn) be a sequence of compact sets in KN and K ∈ KN such that Kn
H−→ K . Let

Ω be an open set containing K . Let vn (resp. v) denotes the capacitary potential of Kn (resp. K )
relatively to Ω then vn −→ v in H1

0 (Ω).

Proof of Lemma 3.1. For δ > 0 small enough, consider the compact set:

Kδ := {x ∈ Ω; d(x, K ) � δ}.
According to Lemma 2.1, there exists nδ ∈ N such that Kn ⊂ Kδ for n � nδ . Let ϕ0 ∈ V (Ω , Kδ)

(i.e. ϕ0 ∈ H1
0 (Ω); ϕ0 = 1 on Kδ) so that ϕ0 ∈ V (Ω , Kn) for n � nδ . Setting f := ∆ϕ0 ∈ H−1(Ω)

we see that for n � nδ , the functions u = vn − ϕ0 and u = v − ϕ0 solve respectively the Dirichlet
problems {

−∆un = f in Ω \ Kn,

un ∈ H1
0 (Ω \ Kn)

and

{
−∆u = f in Ω \ K ,

u ∈ H1
0 (Ω \ K ).

By the γ -convergence of Ω \ Kn to Ω \ K (see Remark 3.2), we get the strong convergence of the
sequence un to u in H1

0 (Ω). Hence, vn −→ v in H1
0 (Ω).

Proof of Theorem 3.1. Throughout the proof, we shall denote ΩKn by Ωn . Let us recall that from
the variational approach used in [3], for a fixed Kn , the solution ΩKn is obtained as Ωn = {un > 0}
where un is the minimum on V (D, Kn) = {v ∈ H1

0 (D); v = 1 quasi everywhere on Kn} of

J (v) :=
∫

D
|∇v|2 + Q2χ

v dx .

We first prove that un
H1

0 (D)−−−→ u where u is a minimum of J on V (D, K ); then we will deduce that

ΩKn

Hc−→ ΩK where ΩK = {u > 0}.
As in the proof of Lemma 3.1, consider the set Kδ := {x ∈ D; d(x, K ) � δ} and ϕ0 ∈ V (D, Kδ).

Since Kn
H−→ K , we have

∃nκ , ∀n � nκ , Kn ⊂ Kδ and ϕ0 ∈ V (D, Kn).
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Thus J (un) � J (ϕ0) which implies, thanks to Poincaré inequality, that (un) is uniformly bounded
in H1

0 (D). Therefore there exists ũ ∈ H1
0 (D) and a subsequence still denoted by (un) such that

un −−−→
n→∞ ũ weakly in H1

0 (D), strongly in L2(D) and a.e. in D.

From the l.s.c. of the norm in H1
0 (D) for the weak convergence, it comes that∫
D
|∇ũ|2 dx � lim inf

n→∞

∫
D
|∇un|2 dx .

Since χun is bounded in L∞(D), there exists γ ∈ L∞(D) such that 0 � γ � 1 and, up to a
subsequence, χun −→ γ weak- star in L∞(D). Then,∫

D
Q2γ dx = lim

n→+∞

∫
D

Q2χun dx;

but from the convergence a.e. we get χ ũ � γ and therefore,

J (ũ) � lim inf
n→∞ J (un). (3.1)

Furthermore, since Kn ∈ KN we get by the same argument as in the proof of Lemma 3.1 that
ũ ∈ V (D, K ). So to get that ũ = u, it remains to prove that, for any v ∈ V (D, K ), J (ũ) � J (v).

Let v ∈ V (D, K ). One can assume without loss of generality that v � 0 because J (v+) � J (v),
where v+ = max(v, 0). Since∫

D

χ
v dx = |Ωv| := inf{|O|; O open set satisfying Ωv ⊂ O ⊂ D},

there exists a sequence of open sets Oε such that |Oε| ↘ |Ωv| as ε → 0 and K ⊂ Ωv ⊂ Oε. This
implies that χ Oε −→χ

v in L1(D), and therefore

lim
ε→0

∫
D

Q2χ Oε dx =
∫

D
Q2χ

v dx . (3.2)

By Lemma 2.1, we have Kn ⊂ Oε for n � nε. Thus, one can consider un
ε the capacitary potential

of Oε relatively to Kn defined by

∀ϕ ∈ V (Oε, Kn),

∫
Oε

|∇un
ε |2 dx �

∫
Oε

|∇ϕ|2 dx .

Extending un
ε by 0 outside Oε, we get un

ε ∈ V (D, Kn). Thus

J (un) � J (un
ε ). (3.3)

Moreover, for any n we have Ωun
ε
⊂ Oε , and from Lemma 3.1, un

ε −→ uε in H1
0 (D) where uε is the

capacitary potential of Oε relatively to K . Letting n → ∞, we get

lim sup
n→∞

J (un
ε ) �

∫
D
|∇uε|2 dx +

∫
D

Q2χ Oε dx .
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Then, from (3.1) and (3.3) it comes that

J (ũ) �
∫

D
|∇uε|2 dx +

∫
D

Q2χ Oε dx .

But, v ∈ V (Oε, K ) because Ωv ⊂ Oε. Thus, by the definition of uε we have∫
D
|∇uε|2 dx �

∫
D
|∇v|2 dx .

From (3.2) we get J (ũ) � J (v) which proves that ũ minimizes the functional J defined in (2.2) for
K .

Now, it remains to prove that Ωn
Hc−→ Ωu = ΩK . By Lemma 2.1, there exists Ω ⊂ D and a

subsequence still denoted by (Ωn) such that Ωn
Hc−→ Ω . Then Ωn \ Kn

Hc−→ Ω \ K , and provided
that Ω \ K �= ∅, we have ∆u = 0 in Ω \ K . Indeed, for any ϕ ∈ C∞

0 (Ω \ K ), i.e. supp(ϕ) ⊂ Ω \ K .
Again by Lemma 2.1, supp(ϕ) ⊂ Ωn \ Kn for n large enough. But ∆un = 0 in Ωn \ Kn . Then∫

D
∇u∇ϕ dx = lim

n→∞

∫
D
∇un∇ϕ dx = 0.

Let us remark that the proof is achieved if we prove that Ωu ⊂ Ω . In fact in this case Ωu\K ⊂ Ω\K ;
then ∆u = 0 in Ω \ K , u = 1 on ∂K and u = 0 on ∂Ω . Hence, by the maximum principle we get
u > 0 in Ω , i.e. Ωu = Ω .
Let us prove that Ωu ⊂ Ω . Let us introduce the positive constant δ = d(K ,Ω c

u ) > 0. Taking into
account that Ωu is a starshaped domain, it is enough to prove that

E :=
{

x ∈ Ωu; d(x, K δ
3
) >

δ

3

}
⊂ Ω .

In the above formula and in the sequel of this proof, we use the notation d(x, L) to represent the
distance of a point x to a compact set L (d(x, L) := inf{|x − y|, y ∈ L}). We assume that this
notation is not confusing with the Hausdorff distance already defined.

Note that Kn ⊂ K δ
3

for n sufficiently large, by Hausdorff convergence.

Let x ∈ E ; for n � nx , we have x ∈ Ωn because un(x) −−−→
n→∞ u(x) > 0. We have also,

B(x, d(x,Ω c
n )) ⊂ Ωn . Now, we have the following alternative.

• Either for a subsequence nk , d(x,Ω c
nk

) > d(x, K δ
3
). Thanks to the Hausdorff convergence of

Ωnk to Ω , we get d(x,Ω c) � d(x, K δ
3
) > 0.

• Or, we have for n large enough, d(x,Ω c
n ) � d(x, K δ

3
). Consequently B(x, d(x,Ω c

n )) ⊂ Ωn \Kn

and by Corollary 3.6 in [3], there exists a constant C = C(Q, N ) such that

un(x) � C d(x,Ω c
n ).

Letting n → ∞ we get by the Hausdorff convergence of Ωn to Ω ,

0 < u(x) � C d(x,Ω c).

That is x ∈ Ω and then E ⊂ Ω . Since Ω is the only accumulation point for the sequence Ωn (for
Hausdorff convergence), all the sequence converges to Ω . This finishes the proof. �
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3.2 Application to a shape design problem

One of the physical contexts which leads to a Bernoulli problem like (2.1) is the optimal insulation.
Let K be a given pipeline, then ΩK represents the optimal insulator, in the sense that it minimizes
the heat or current leakage, subject to a given amount of insulating material. It is therefore natural
to ask a question such as:

Find the shape of a pipeline K such that the optimal configuration (K ,ΩK ) satisfies some property
or minimizes some functional.

In the classical framework of optimal shape design, we are led to consider functionals depending
on K through the solution (u,ΩK ) of the free boundary problem (2.1). Namely, we consider a
functional defined as

E(K ) :=
∫
ΩK \K

f (x, u,∇u) dx =
∫

D
f (x, u,∇u)χ [0<u<1] dx

where f satisfies the following assumptions:




• f : D × R × R
N −→ R is a Carathéodory function

(x, s, p) �−→ f (x, s, p)

(i.e. measurable in x , continuous in s and p).

• There exists a0 ∈ L1(D), b0 ∈ R
+, c0 ∈ R

+ such that

| f (x, s, p)| � a0(x) + b0s2 + c0|p|2.

(3.4)

In this section, we restrict ourselves to the class

KN := {
K ⊂ D; ∃x ∈ K/K is starshaped with respect to B(x, r0)

};
even for N = 2. In this class, we have the following property:

LEMMA 3.2 Let (Kn) be a sequence of compact sets in KN . Assume that Kn
H−→ K . Then the

characteristic functions χ Kn converge to χ K in L1(D). Moreover, if ΩKn and ΩK denote the
solutions of (2.1) associated to Kn and K , the characteristic functions χΩKn

converge to χΩK in
L1(D).

The proof of the first part of this lemma can be found in [5] or [11]. It relies on the uniform Lipschitz
regularity of the domains Kn and K . For the second part, we use Theorem 3.1 and once again the
first part for the compact sets D \ ΩKn and D \ ΩK .

Now, we claim the existence result.

THEOREM 3.2 Assume that f satisfies hypothesis (3.4) and that

inf{E(K ); K ∈ KN } > −∞.

Then the shape optimization problem

Find K ∗ such that E(K ∗) = min {E(K ); K ∈ KN } (3.5)

has a solution.
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REMARK 3.3 In many problems, the functional E is non-negative (e.g. when it comes from a least
square formulation). So, in such a case, the assumption inf{E(K ); K ∈ KN } > −∞ is trivial.
In other cases, we can use the fact that the solution u takes its values in [0, 1], but it remains to
estimate values taken by the gradient. We refer to [14] for such estimations in the convex case,
where we prove that the maximum of the gradient inside the domain is achieved on the interior
boundary ∂K .

REMARK 3.4 Nothing can be said about uniqueness of minimizers for the functional E (consider
the case of trivial energies E = 0). In general, uniqueness results are very difficult to prove in shape
optimization, see [11].

Proof of Theorem 3.2. We use the standard method of the calculus of variations. Let Kn be a
minimizing sequence; by Lemma 2.1 and 2.2 we can extract a subsequence (still denoted by Kn)
which converges to a compact set K ∈ KN . According to Theorem 3.1 the corresponding solutions
ΩKn converge for the Hausdorff metric to ΩK and the capacitary potentials un converge to u strongly
in H1

0 (D). Now, we can write E(Kn) as

E(Kn) =
∫
ΩKn \Kn

f (x, un,∇un) dx

=
∫

D
f (x, un,∇un) dx −

∫
Kn

f (x, 1, 0) dx −
∫

D\ΩKn

f (x, 0, 0) dx .

Thanks to assumptions (3.4), the map u �−→ ∫
D f (x, u,∇u) dx is continuous on H1

0 (D) (see
e.g. [15]). Therefore ∫

D
f (x, un,∇un) dx −−−→

n→∞

∫
D

f (x, u,∇u) dx .

Moreover, according to Lemma 3.2, we have∫
Kn

f (x, 1, 0) dx =
∫

D

χ Kn f (x, 1, 0) dx −−−→
n→∞

∫
D

χ K f (x, 1, 0) dx =
∫

K
f (x, 1, 0) dx

and similarly ∫
D\ΩKn

f (x, 1, 0) dx −−−→
n→∞

∫
D\ΩK

f (x, 1, 0) dx .

This means that E(Kn) −−−→
n→∞ E(K ) and the theorem is proved. �

4. Numerical analysis of a shape design problem

4.1 Introduction

We want to present a numerical method to solve a shape design problem like (3.5) where E is any
functional of the kind described above.

One of the main tools in such a context is to use shape derivatives (see for instance [21]) together
with some gradient or Newton methods to be able to deform an initial domain into a better one. In
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our case, this method seems to be unrealistic. First of all, the dependence of ΩK on K is quite
implicit. Therefore, if we perturb a domain K to Kt by a transformation Tt = I d + tV (x), it is
not clear that the solution ΩK will also be changed by a transformation T̃t = I d + t Ṽ (x). So,
the expression of the derivative of the functional on the free boundary seems not to be available.
Moreover, from a computational point of view, such an approach would be very expensive since
we would have to compute at each iteration of the algorithm, ΩKn from Kn . That means solving as
many Bernoulli free boundary problems as iterations.

We are going to present a method, specific to the two-dimensional case, which avoids the
drawbacks just mentioned. Roughly speaking, the idea is to use conformal maps to look for both K
and ΩK . More precisely, the unknown becoming the conformal map, we will be able to perform any
minimization algorithm on these conformal maps to reach the optimal configuration (K ∗,ΩK ∗). We
describe the method in the following section.

4.2 The numerical approach

The starting point is to observe that if K ∈ K and Ω = ΩK , then Ω \ K is a doubly connected
domain which is conformally equivalent to an annulus

CR := {z ∈ C; R < |z| < 1};
(where R is a priori unknown). We denote by Φ the conformal mapping such that Φ(CR) = Ω \ K ,
see [16].
Now, if u solves (2.1), then using the isomorphism x = (x1, x2) ∈ R

2 �→ z = x1 + ix2 ∈ C and
writing u(z) = u(x1, x2), we get that û = u ◦ Φ satisfies:


∆û = 0 in CR,

û = 1 on γR := {z ∈ C; |z| = R},
û = 0 and |∇û| = Q|Φ′| on γ1 := {z ∈ C; |z| = 1},

(4.1)

provided that Φ maps γR on ∂K and γ1 on ∂Ω . But by an explicit computation, we have that for
z = reiθ ∈ CR , û(reiθ ) = ln r

ln R (since it is the unique solution of the Dirichlet problem ∆û = 0 in
CR , û = 1 on γR and û = 0 on γ1). Then we remark that Φ and R must satisfy

|Φ′(eiθ )| = 1

Q| ln R| =
−1

Q ln R
.

Let us now introduce the function defined on CR as

v(x1, x2) := ln |Φ′(x1 + ix2)|. (4.2)

It is easy to see that v solves the Dirichlet problem


∆v = 0 in CR,

v = g(θ) on γR,

v = − ln (Q| ln R|) on γ1,

(4.3)

where g(θ) = ln |Φ′(Reiθ )| for θ ∈ [0, 2π ].
Observe that if g ∈ C0

� ([0, 2π ]) (the set of continuous functions such that g(2π) = g(0)) and R
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(we can prove that for suitable functions g, R is uniquely determined) are given then (4.3) admits a
unique solution v. If, moreover, one can deduce a unique holomorphic function Φ satisfying (4.2)
and such that Φ(CR) is an annulus, taking the form Ω \ K with Φ(γ1) = ∂Ω and Φ(γR) = ∂K ,
then the functional to minimize can be rewritten as follows:

E(g, R) = E(K ) =
∫
Ω\K

f (x, u,∇u) dx

=
∫

CR

f
(
Φ(z), û(z),

∇û(z)

Φ′(z)
)|Φ′(z)|2 dz. (4.4)

So, the problem becomes to minimize a functional E which depends only on the unknown (g, R),
g ∈ C0

� ([0, 2π ]), R ∈ R. Finally, the conformal map Φ is obtained from g thanks to a Fourier
expansion of g and some straight forward calculations.

One of the main difficulties of this method is to be sure that the holomorphic map Φ is one-to-
one. We can prove, using some elementary topologic arguments, that it is the case as soon as Φ is
locally injective (i.e. Φ′ �= 0) and Φ is one-to-one on the boundary of the ring (that is to say the
image of the two circles are simple curves). See [10] for more details on these questions and some
numerical experiments related to this problem.
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6. DAUTRAY, R. & LIONS, J. L. (eds) Analyse Mathématique et Calcul Numérique, vols I and II. Masson,
Paris (1984).

7. FLUCHER, M. & RUMPF, M. Bernoulli’s free boundary problem, qualitative theory and numerical
approximation. J. Reine Angew. Math. 486, (1997) 165–204.

8. FRIEDMAN, A. Variational Principles and Free Boundaries. Wiley, (1982).
9. HEDBERG, L. I. Spectral synthesis in Sobolev spaces. In: BENEDETTO, J. J. (ed), Euclidean Harmonic

Analysis, Lecture Notes in Mathematics 779. Springer, Berlin (1980).
10. HAYOUNI, M., HENROT, A., & SAMOUH, N. A numerical study of some shape optimization

problems, to appear.
11. HENROT, A. & PIERRE, M. Optimisation de forme, to appear.
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13. HENROT, A. & SHAHGHOLIAN, H. Convexity of free boundaries with Bernoulli type boundary

condition. Nonlinear Analysis TMA 28 (5), (1997) 815–823.



ON THE BERNOULLI FREE BOUNDARY PROBLEM 13

14. HENROT, A. & SHAHGHOLIAN, H. Existence of a classical solution to a free boundary problem for the
p-Laplace operator I: the exterior convex case. J. Reine Angew. Math. 521, (2000) 85–97.
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