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We consider strongly degenerate convection-diffusion equations which mix possible parabolic and
hyperbolic behaviour. We prove some qualitative properties of the solutions, in the one-dimensional
case. In particular we study the evolution in time of the number of connected components of parabolic
and hyperbolic regions and the continuity of the interfaces between the two phases.
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1. Introduction

We consider the following strongly degenerate parabolic problem:

Uy — bWy + Pu)y =0 iNR:=(0,L) x (0, T),
u(x,0) = uo(x) in [0, L], @)
u@,0) =u_(), u(L,t)=uy() in[0,T].

The functions® and b are Lipschitz continuous and represent respectively the convection and
the diffusion term of the equation, moreoveis assumed to be nondecreasing. In particular we
consider situations in which this function is constant in some intervals of the state varjatae

that the equation could degenerate into a hyperbolic conservation law. This kind of equations of
mixed parabolic-hyperbolic type appear in different applicative models ($éel[9, 10,]11, 19]) and
have attracted much interest in the last few years. A large number of papers have been devoted
to the question of existence and uniqueness of solutions in a suitable formulation. In fact, due
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to the possible hyperbolic character, it is necessary to introduce entropy conditions in the spirit
of [25] in order to prove that such problems are well posed. This was done, in much generality
and for the multidimensional case, in [14] for homogeneous boundary data, and [n [27, 29] for
general nonhomogeneous Dirichlet conditions. In all the above warksontraction principles

were established with different variants of Kkov’s doubling variable technique, while existence
was proved with different approaches, respectively through semigroup tHedry [14], vanishing
viscosity limits [27] and numerical schemes [29]. A kinetic approach to approximate strongly
degenerate problems was developedin[8, 22], where it is shown that the solution of the hyperbolic-
parabolic equation can be obtained as a singular limit of a semilinear relaxation system. Numerical
approximation schemes are analyzed i [1/17, 18].

Despite this large amount of references, it seems that very few results are known concerning
qualitative properties of solutions 0] (1) in its full generality. Of course, there is a wide literature
on the porous media equation (see e.gL[2, 4| 12, 13, 15, 20, 24] and references therein) as well as
on Stefan problems (see [3,[5,6/ 7] 21]). In particulaf I [3, 7, 21] the effect of nonincreasing and
disappearance of the mushy region is studied.

For the analysis of a parabolic-hyperbolic phase transition, we refér to [26] where the author
studies a PDE in the class (1) for@ function b having exactly one bounded interval of
degeneration.

In this paper, we are interested in qualitative properties of the solutions in the one-dimensional
case. Our purpose is, roughly speaking, to understand whether and how one can separate the
parabolic and hyperbolic regions. More precisely, when the solutitakes values in an interval
whereb is constant (respectively, wheteis strictly increasing) we say that the solution is in a
hyperbolic(respectivelyparabolic) region We are interested in the evolution in time of the different
connected components of parabolic and hyperbolic regions. This can be thought of as a study of the
“lap number” of the solution in the spirit of [28]. Basically we prove that the number of connected
components of parabolic regions nonincreases in time, so that one can actually separate the evolution
of different zones. Precise results are given in Thedrerh 3.2, the main tool being the maximum
principle.

We then look at the interface functigrir) between a parabolic and a hyperbolic region, and we
give sufficient and necessary conditions for the continuity.dfollowing [20], our arguments use
local comparison with super- and subsolutions of travelling wave form.

The paper is organized in three further sections. In the following one, the precise definition of
entropy solution of probleni[1) is stated, existence and uniqueness results are recalled and moreover
a maximum principle for this equation is given, which is our basic tool for studying the structure
of the solutions. Section 3 is devoted to the analysis of evolution of connected components of
hyperbolic and parabolic phases. Section 4 contains the results on continuity of the interfaces.

2. Existence and uniqueness

In this section we state the main known results concerning problem (1). We assume
[H1] @, b € Lip(R), b nondecreasing.

We consider the following definition of entropy solution (se€ [14]27, 29]).

NOTATION. H*(s) := %(sgr(s) + 1) and [s]4 denotes the positive/negative partsof
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DEFINITION 2.1 LetT > 0 andug € L*°(0, L), u+ € L*(0, T) be given.
A functionu € L>°((0, L) x (0, T)) is said to be aentropy solutiorof problem [(1) if

() (regularity) b(u) € L2(0, T; H1(0, L)) and
bw)(©,t) =bu—_(t)) and bu)(L,t) =bus(t)) a.e.in[QT];
(ii) (entropy conditioh for anyy € H((0, L) x (0, T)), ¥ > 0, such that
VH - = Bloxor =0 and ¥ H* s —blizyxo7) =0,

we have

L T L
L[ =+ kEwbpdedr o+ [ o —iavdr> 0 @)
for anyk € R, where
KEu, k) := HX(u — k) (@ (u) — D (k) — b(u)y).

The following results hold:

THEOREM 2.2 (seel[14, 27,29/ 9]) There exists a unique entropy solution to problém (1).
Moreover, the solution is the a.e. limit of solutions?® of the parabolic approximating problems

ui —be(u)xx + @), =0 inR:=(0,L) x (0, T),
uf(x,0) = upg(x) in [0, L], 3)
u?(0,t) =u_(@), u®(L,t) =u4(t) in[0,T],

whereb, is such thab, > ¢ > 0 andb.(-) — b(-) uniformly on compact sets @& ass — 0*.
In particular in[9] it is proved thab(u) is continuous in0, L) x (0, T) (see also [26],[16]).

As an immediate consequence of Theofer 2.2 and the comparison properties valid for parabolic
equations we obtain

PROPOSITION2.3 Letu, v be solutions of problen [1) with data, vo, u+, v+, respectively. If
up < vopa.e.in(O, L) andu_ < v_,uy < vy a.e.in(,T), thenu < v a.e.ink.

Later on, we will use the following consequence of the (weak) maximum principle.

PROPOSITION2.4 Letx1, x2 € (0, L), x1 < x2 and lety be a continuous, simple curve, entirely
contained in(0, L) x (0, ¢] for somet > 0 with end-pointgx1, t) and(x2, t). Finally, let D be the
domain bounded by and the segments, 7) : & € [x1, x2]}. Then

min b(u(y,s)) < bu(x,t)) < max b(u(y,s)) V(x,t)e€ D. 4)
(v.9)ey (v.s)ey

Proof. Letb, be a sequence of functions satisfying

(i) b.(s) > e>0iInR;
(i) be(-) converges uniformly té(-) on any compact subset Bfase — O.
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Denoting byx* the solution of problen{ {3), since the classical maximum principle applies to the
uniformly parabolic equation i [3), we have

min by (u®(y, s)) < be(u®(x, 1)) < max be(u®(y,s)) V(x,1) € D. (5)
(v,s)ey (v,s)ey

Sinceb, (u®) converges uniformly té(x) on compact subsets & (seel[23]), the proof is obtained
by passing to the limit as — 0 in (5). O

We will mainly consider comparison with solutions that are piecewise smooth (and, additionally,
are local travelling wave solutions). Hence it is useful to characterize piecewise regular functions
that are entropy solutions of probleftj (1). To this end, consideru (x, r) regular over allR except

on a smooth curve. More precisely, assume that there ex@tscarveI” ¢ R with normal vector

v = (vy, v;) such thats € C2(R \ I') (the orientation of can be chosen arbitrarily). Moreover we
assume that the following limits exist and are finite:

ut(x,1) = Iimi u(x + evy, t +€vy),

e—0
b(u)f(x, t) = Iirrc}i b(u)y(x +&evy, t +ev), x,0) el ©6)
E—>

PROPOSITION2.5 Letu € C2(R\I") be such that]6) holds. Thersatisfies the entropy condition
@) for everyy € C3(R), ¥ > 0, if and only if

(i) in the sense of distributions, iR \ I,
ur(x, 1) —b(u(x, 1)xx + Pu(x, 1)) =0
(i) (Rankine—Hugoniot conditign in I",
[ulve + [=b()x + @W)] - vy =0, (7

where [f] = fT — f~ isthe jump off onI;
(i) in I, for anyk betweernu™ andu™,

[lu — klJve + [=1b() — b(k)|x + sgn(u — k) (D (u) — @ (k)] - vy <O. 8
Conditions (ii) and (i) can be rewritten as a single one:
(iv) in I, for anyk € R,

[lu — kl]v: + [—1b@) — b(K)|x + sgn(u — k) (D () — @ (k))] - vx < 0.

The proof of Propositiofi 25 is classical and follows the lines of the analogous proof for
hyperbolic conservation laws. Here, for completeness, we give a sketch of the proof under the
additional smoothness assumptidis) € C2(R \ I') and® (u) € CL(R\ I).

Proof of Propositiofi 25 Summing the equations witH, and H_ in () gives

/{|u—k|¢,+1<x<u,k>wx}dxdr>o ©)
22
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for everyy € C3(R), where
Ky (u, k) = sgnu — k) (D (u) — (k) — b(u)x) = sgnu — k)(P(u) — (k) — |b(u) — b(k)|x.

Suppose thai is an entropy solution of {1). LePy = (xo,70) € R \ I" be fixed, and leg, =
€.(x,1) > 0 be a sequence of functions @§° (R) with support inB(Po, 1/n) approximating the
Dirac distributions p, concentrated afo.

Choosingk < —|lulloo (respk > |lul«) in (9) and integrating by parts we obtain

/ {ur —bW)xx + @)y}, dxdr <0 (resp. > 0).
2

Passing to the limit as — oo we get property (i).
Now let Py € I'. Forn sufficiently large B(Po, 1/n) = B_UB, C R,whereBL = BN{(x, 1) :
(x,t) = (y, ) = evforsome(y,t) e I', ¢ > 0}.
Then the left hand side df](9) can be written as the sum of two integralskvend B,.. Set
I's = I' N B. Then, integrating by parts both the terms and applying the divergence theorem, we
get

. {lu™ —klve = {Ib(u) — b(K)[; +sgnu™ — k) (P (u™) — @(k))} - vi}én
- /. {lu® = klve = {1b@) = b)Y +sgnu™ — k) (@ u™) — @ (k)} - v )&, >0
B

(note thatv points outward fromB_ and inward fromB..). Passing to the limit as — oo yields
lut — k|, — |u™ — klv; — (1) = bk - vi) ™t + (b(w) = bk) |y - ve)~
+8gnu™ — k) (@) — D(k)) - vy —SgNu™ — k)(P(u™) — P(k) - v, <O

for anyk € R. This is condition (iv). Now suppose thate C?(R \ I') and satisfies (iv) Then using

the divergence theorem in the first member ¢f (9) and reasoning as above, we can prove that this is
> 0. In the same way we can see thas a distributional solution of {1) (weak solution). Using this
information we deducg [2). O

Condition (iii) can be interpreted geometrically. Assume < u~ and choosé& e (u™, u™). Then
the above condition (taking into account (ii)) reads

(k —ut)vr + (—sgnb™) — b(k)bw) + @ (k) — @ @™)) - v, <O0.
Setd,(s) = @(s) - v, foranys € R. Then
@, (k) < Py(u™) +8gnb(u™) — b(k)b(w)y - vy — (k —u)v,.

Similarly,
Pyk) < Py(u™) —sgnb(u™) —b(k)b(u), - vy — (k —u")v;.

Then we have

@y (k) < @y (™) = b vy — (k—u)v  Vke @ um),
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or, equivalently,
®,(k) < D) —bw); vy — (k—u")v;  Vke @t u).

Note that, lettinge — u*, we deduce that(u)* - v, <O0.
Observe that, by the Rankine—Hugoniot condition,

Dyt = b vy — @y (uT) + b))y - vy

Vt
ut —u-

These conditions can be represented graphically, giving ami®@kke condition for entropic
discontinuity. In this case the straight line is not the graph of the straight line connecting the end

§I—b(u§vx

—b(ui'(vx I

\

u, s
FIG. 1. The geometrical interpretation of the entropy condition.
points of the flux, but it connects some higher points. This means that nonadmissible hyperbolic
discontinuities can be admissible in the degenerate parabolic situation thanks to the presence of the
diffusive termb(u), .. The interpretation is easy: admissibility of a jump is the analytical translation
of compression due to the end states. The presence of diffusion (measurddihy) raises the
compression strength of the end states, hence admissibility is possible even in cases in which it was

not for the corresponding hyperbolic equation.
The case:_ < u, can be dealt with similarly.

3. Evolution of parabolic/hyperbolic zones
Letuo € BV(0, L). We assume the additional hypotheses

[H2] u_(t) = uo(0) =: u_ € Randu, (t) = uo(L) =: u+ € R for anyz;
[H3] there existl; = [«;, Bil,i =1, ..., k, such thab € C1(R\ {«;, B;}) and

() Bi < a;y1 foranyi,
(i) ¥’ =0inI; foranyi,
(i) b’ >0inR\ | J‘_; 1.

DEFINITION 3.1 The intervald; are callechyperbolic zongsand the interval®; where
Py = (—o0,a1], Pi=PBi—1,), i=2,....k,  Pry1:= Bk, 00),

are calledparabolic zones
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FIG. 2. The graph of the functioh.
If we setc; := b(u) € R foranyu € I;, then foranyu € P; andi € {2,...,k}, ci—1 < b(u)

< (.
For everyr € [0, T], we introduce the sets

Ni(t) ={xe€[0,L]:ulx,t)e P}, i=1,...,k+1,
Hi(t)={xe[0,L]:ux,t)e;}, i=1,... k.

From the continuity ob(u(x, r)) we deduce thal;(¢t) and H; (z) are unions of disjoint intervals.
The intervals ofV; (¢) are open in [QL] so they can be of these typedsc, 1), [0, n), (1, L], [0, L],
with u, n € (0, L). We denote by, (¢), h;(t) € N U {oo} the number of connected components
of N;(¢) and H;(t). Moreover, we let the components bg ;(r) (j = 1,...,n;(t)) and H; ; (1)
i=1,...,h(®),sothat

ni(t) hi (1)
Nty = | Nij) and Hi(t) = | Hi ;).
j=1 j=1

Let us state the main result of this section:

THEOREM 3.2 AssumegH1]-{H3]. Then the function®; = n;(t) andh; = h;(¢t) are nonin-
creasing in [0T] for anyi.

Proof. First we establish the monotonicity of. Fix s < ¢ and, without loss of generality, assume
n;(s) < oco. To simplify notation, we suppress the dependence on the index

In order to prove Theorenj 3.2, we introduce a relation between the Sejs =
{N1(2), ..., Nary(©)} andS(s) := {N1(s), ..., Ny (s)}. We recall that every element 61z) and
S(s) is aninterval. FolV € S(¢) andN € S(s) we write N > N if there exists a continuous function
h(t) defined in §, 7] such that

(i) h(s) € N, h(t) € N;
(i) u(h(r), r) € P foreveryr € [s,1],

This could be seen as a “genealogy” relatiohs N means than is the “father” of N. As 7 grows,
we go back in the genealogy and, essentially, assign to any int§¥nital ancestors. The proof of
the monotonicity consists in showing that this procedure is uniquely defined.
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As an immediate consequence of the definition, the relatimtransitive: if N; € S(t;) for
i=1,2, 3withyy <1 <13, then

N3> No, No> N1 = N3 Ni.
Moreover, Proposition 214 guarantees the validity of the implication
N1, Ny € 5(1), N1>N, N2[>1\7 = N1 = No. (20)

Indeed, ifN1 > N and N2> N with Ny # N>, then there exist two functiorig andh; satisfying (i)
and (ii) and it is not restrictive to assume < hy. As a consequence, it is possible to construct a
continuous simple curve with end-points(k1(¢), t) € N1 and(h2(1), t) € Nz such that|, € P.
Applying Propositio 2}4, we deduce thatx, r) € P for anyx € [h1(z), h2(1)]. This means that
N1 and N, are the same connected component.

CLAIM. Lets <t. Then
VN € S(r), 3N € S(s) suchthat N> N. (11)

Properties[(10) and (11) imply thatis nonincreasing. The proof of the Claim is divided into
three steps.

STEP1 GivenN € S(¢), let
t* :=inf{r € (0,¢] : 3N € S(r) with N > N}.

By continuity of b(u), there exist$ > 0 such that for every € (¢ — 8, ¢) there iSN € S(r) such
that N = N, hencer* < t. We shall show that* = 0, thus proving the Claim. IN = [0, ) or
(u, L], itis possible to choosk = 0 orh = L, sot* = 0. Hence, in the following we can consider
the casav c (0, L).

STEP2 If t* > 0, then there exists > 0 such that for any € (t*,t* + §) and any1\7 e S(1)
such thatV > N we haveb(u(&, t)) = b(u(n, T)) whereN = (&, n).

Indeed, if this is not the case, then for anye b(P), there exists a sequenge N\ t* and
xn € N € S(t,), N> N, such thab(u(x,, t,)) = c. Extracting a subsequence we obtajin— x*
andb(u(x*, t*)) = c. Thisimplies thatx*, r*) € N e S(t*) such thatVeN. This is a contradiction,
since by continuity ofb(u) if t* > 0, thens* does not belong to the s¢t € (0,¢) : aN €
S(t) with N > N}.

STEP3 *=0.

Assume, by contradiction;* > 0. By Step 2, without loss of generality, we can assume that
N = (u,n) C (0,L) andb(u(u,t)) = b(u(n,t)) = c¢;—1. Denote byD the arcwise connected
component of the sdtx, s) € (0, L) x (0,¢] : b(u)(x, s) > ¢;—1} which intersectsv.

We claim from Step 2 thab ¢ »~1{P;}, and moreover using > 0 and(x, ) C (0, L) that
D CR.

Indeed, using the fact thaiu) < ¢; on N and a standard maximum principle argument (see
Proposition 2.4) we find that there exists> 0 such thatD N (r — o, 1) C u~1{P;}. Set

f=infls: DN (s, 1) Cu P}



STRONGLY DEGENERATE PARABOLIC PROBLEMS 271

Thenf = 0. Indeed, if not there would exist e (0, L) such that(x, 7) € D andb(u(x, 1)) = c;;
consider the poinkg = inf{x : (x,X) € D N[t = f]}; by continuity ofb(«) we havexg < X,
and eithem (u(xg, 7)) = ci_1 or xo = 0. In the first case, sincB N (7, 1) C u~1{P;}, this would
give rise to an interval = (xo, %) such thatV - N buth(u) does not have constant value @N,
contradicting Step 2. In the second case, using the boundand, the segment0, x) and an arc
in D, a simple application of Proposition 2.4 will contradict the fact tNatc (0, L) (i.e. N does
not include the boundary points).

ThereforeD ¢ u~1{P;}; moreover, similar arguments and the facts tfiat 0 andN c (0, L)
prove thatD c R.

For anys > O letu® be a solution of[(8) such that

|be(u®) —b(u)| <& inD.

Then there exists an intervalc (u, n) such thab, (u®) > ¢;_1 + ¢ on [ (for anye small enough).
Denote byD, the arcwise connected component of the{éets) € (0, L) x (0, #] : b (u®)(x, s) >
ci—1 + e} which containg . Clearly,b, (u®) = ¢j—1 + e ondD,. Moreover,Dg c D and we deduce
thato D, does not intersect the limre= 0, nor the boundary = 0, x =

We now apply to the parabolic equatn[r]l (3) the strong maximum pr|n0|ple @n@( uf)(x,s)
is assumed at a poinito, 7o) € D, or ats = r, we deduce thai, (u®)(x, s) is constant on the whole
lines =tyors =t;sincedD, N {t = tp} # ¥ andb,(u®) = c;_1 + ¢ on d D, we conclude that
maxg_ be(u®) = c¢j_1 + ¢, and in particulab, (u®) < c¢i—1 + ¢ on the segment C (i, n). We
deduce thab(u) < ci—1 + 2¢ on . Lettinge — 0 we findb(u) = ¢;_1 onI C N, which is a
contradiction.

This impliest* = 0 and the Claim is proved.

It remains to prove that also the functiolsare nonincreasing. Loosely speaking, we need to
prove the hyperbolic version of properti¢s]|(10) gnd (11) just proved for the parabolic regions.

Let us drop again the index Lett > O be such that there exist two connected components
Hi = [n1, &1] and Hz = [12, &2] of the same hyperbolic region with < &1 < n2 < &. Then there
existsN € (&1, n2) belonging to some parabolic regidh By the result proved for the parabolic
regions,N is such that for any < ¢ there existsV with N > N. Hence there cannot exist any
hyperbolic connected componefitat times such that1> H and Ho- H . This proves the analogue

of (10).
Similarly, by the maximum principle and the results already proved for parabolic regions, it can
be proved that als¢ (11) holds for the hyperbolic intervals. O

4. Continuity of the interfaces

In this section we are interested in the study of the interface curves between parabolic and hyperbolic
regions.

For fixedi, consider a connected componentMf(0) = {x : b(ug(x)) € (¢i—1,¢;)}, say
N; ¢(0) = (&i.¢(0), &i.¢(0)). To simplify notation we can assume that andu are in hyperbolic
regions so that the connected components are open. Set

T* :=supt :AN(t) > Ni(0)},

wheres is as in the previous section. By continuity lofu), T* > 0. MoreoverN (¢), whenever it
exists, is unique (see the proof of Theo@ 3.2); we denote Ny = (& ¢(?), ¢i.¢(?)). Note that
if & ¢, ¢i ¢ are defined at time, then they are also defined at timéor anys € (0, 7).
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. | N(t) /
2

ty

N; (0)

FiG. 3. The setsV;¢(0), N () and the interfaceg (1), ¢; ¢ ()

For anyiy, iz, ¢, m and forany > 0,&;, ¢(0) < &;,,,(0) andg;, ¢(0) < &ip.m (0) IMply &y (1) <
&ipm (1) @ndg;, ¢ (1) < Gipm (1), With < in place of< if i1 # io.

Moreover, since parabolic intervals can coalesce in finite time, it can happeg; tigt =
& m(t) for somer (herel # m). Similarly for ¢; o. These functions; ¢, ¢; . represent the interface
curves between hyperbolic and parabolic regions. In the following, for simplicity we drop the indices
i, j and we consider the left interfagér), r < T*.

For simplicity, we consider initial/lboundary data with image contained in two zones: a
hyperbolic one and a parabolic one. More precisely, we consider the case

I=[a,fl, P=@B.y) uEn’ =84,
b() =b()=c, b(y)=d,
with ug(x), u+ C [«, y) foranyx € (0, L).
PrRoOPOSITION4.1 For anyp > 0, we have Iirp_)to_ E(t) = &(1p).

Proof. STEP1 We have

limsup&(r) < &(ro) and liminf¢(r) > ¢(to).
=1y 1=ty

Indeed, by continuity ob(u), any point(x, o) with x € (£(tp), ¢(t0)) has a neighbourhood
entirely contained in the parabolic region, and therefore there exist® such that(r) < x <
t(t) foranyr € (1o — 6, rp). This implies

limsupé(r) < x < liminf ¢ ().
t%tof [%107

Sincex is arbitrarily chosen i (z0), ¢ (t0)), this implies the claim.

Step2 If there exist, 1o asn — oo such that
lim &(t,) = £ < &(10), (12)
n—>oo

thenu(x, tp) = B for anyx € (¢, £(tp)).
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Indeed, by Step 1, liminf, o ¢(t,) > ¢(to) > E(tp). Thus, by continuityp(u(x, tg)) € [c, d]
for anyx € (¢, £(t)). If b(u(xo, 10)) € (c,d) for somexg € (¢, £(1p)), then there exist8 > 0
such thab(u(xg, 1)) € (c, d) for everyr € (19 — 6, tg) andxg is in (£(z,), ¢ (¢,,)) for any sufficiently
largen. This implies thatc € (£(fo), ¢ (t0)), which is a contradiction. Hendgu (xo, tp)) € {c, d}.

Finally, b(u(xo, t0)) # d, since this would imply the existence af < (xp, £(fp)) with
b(u(x1,19)) € (c,d). Henceb(u(xo,t9)) = ¢ for anyx € (¢,&(tp)). Sinceu € [B, y] for
x € (£, E(tp)), we conclude that (x, tg) = B for anyx € (£, £(tg)).

Step3 Construction of (local) travelling waves.Let#, 1o asn — oo be such tha{(12) holds
and letc > Lip @. Then there exist > 0 andng € N such that

@ b(s)
thzes fH B~ — (@B —cp) > =50 (13)

u@+et) >2a—e Vte |ty ),

the latter being a consequence of Step 2 and of continuity(@f. Moreover, without loss of
generality, we can assurgér,,) < £ + ¢ andc(tp — 1,) < ¢ foranyn > no.

Letx > &£(fg) andu > B be suchthat(x, r) > u for everyr > 1,,. We define a travelling wave
solutionU,, in the domain(¢ + ¢, x) x (t,, to). To this end, sefi, := inf{u(x, ;) : x € (£ + ¢, %)}
and define

Mp o= MiN(iL,, n) and v, = @ (un) — citn.
Since&(r,) < ¢ + &, we haveu,, > B. Moreover,@(s) — cs is a decreasing function, hence
@D (s) — cs > y, foranys € (o — ¢, uy,). Therefore we can set

o b/(s)
X Z=Z+8~I—/ —_— .
" a—s P(s) —cs —

The functionU,, = U, (x — ct) implicitly defined by

U, 4
/ Lds:x—xn—dl—ln) if x > xp 4 c(t — 1),
B

D(s)—cs —
Un b'(s) ,
/ —  ds=x—x,—clt—1t,) fx<x,+clt—1),
a P@)—cs—

is an increasing travelling wave with jump discontinuityat x, +c(z —1t,) froma to 8. Moreover,
U, satisfies both the Rankine—Hugoniot and entropy condifipn[([7)—(8) (giice— cs > y, for
s € (a, B)), and, thanks to Propositi¢n 2.5, it is an entropy solution. By definition, of

Un(e—i_gst)ga_ggu(g—i_gst) er(lmto),

inceftn __ b
and sincefs" G-

ds = oo,
Uy < pp < Minfu(x, t,), u(x, 1) ix € € +¢,%), t € (ty, 10)}.

We conclude thal/,, < u on the boundary of the domagh+¢, x) x (¢, t0), and, by the comparison
principle (Propositiof 2]4)/, < u in (£ +&,X) x (t,, to). In particular, we get

u(x,t) > B V(x,t)suchthatc > x,, + c(t — t,).
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By (I3) and sinced (s) — cs is decreasing we can estimate

o b/(s)
x,,—l—c(to—tn)<£+8+/ mds—i—s
o b/(s)
<“28+/H S) —cs — (@B —cp =0

so we conclude that(£(10), 10) > B, getting a contradiction. Thu§ (12) cannot hold true, and
therefore lim, ~, &(t,) = &(10). |

The same argument as for the previous proposition can be used to prove the existence of the limit
from above.

PROPOSITION4.2 For anytg > 0, the limit Iimt_)to+ &(1) exists.

Proof. Assume by contradiction that there exist two decreasing sequén¢esd{z,} such that
t, < 1, and

lim &@,) =liminf&@) = € <m =Ilimsupé@) = lim &(1,).
tn—> 1y t—>lo+ [_>[0+ Tn_”ar

Since, as in Step 2 in the proof of Proposition 4.1, we fhawug(x, 1) = c for anyx € (I, m), there
existsng such thau(l 4 ¢, 1) > a — e for anyt € [1g, 7,,). Similarly there exisk > m andu > B
such that(x, r) > p for everyr € [1, 7,,). We can use the same travelling wave solutignof
PropositiohE]l in the domaiid+ ¢, x) x (t,, 74,), ONCe we choosg, such thai«(x, ;) > u, > B
for everyx € (I + ¢, x). Sincem > ¢ we can take such that(z, —t,) < ¢ and

o b/(s)
Creed /a_g o6~ — @B —cp =™

Comparingy andU,, we find thatu(x, t) > g if

x>c(t—t)+/a b's)
Y Jame @(5) —cs — (@ (B) — cB)

ds +1 +e.
Since&(t,) — m, the previous inequality is satisfied by= &(z,), t = 1, as soon ag is large
enough, hence we geté(z,), 7,) > B, which is a contradiction. |

The continuity ofé(¢) atr = #p will depend on the behaviour &f(s) ats = 8 and on the situation
occurring to the left of (1p).

PROPOSITION4.3 Letb(s) satisfy

B+e 1,/
/ b ) ds = o0 forsomee > 0. (14)
p S8

Then for anyrg > 0, £(¢) is discontinuous at = rg if and only if there existsg < £(fp) such that
u(x, to) > B for everyx € (xo, £(10)).
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Proof. The necessity is trivial. Indeed, §f(z) is discontinuous at = rg, then there exist a point
xo0 < &(p) and a sequencg — ta' such that(r,) — xo. Sinceu(x, t,) € (8,y) foranyx €
(x0, £(tp)) andn large enough, by continuity @f(x) and since)’(s) > 0 fors € (8, y) we deduce
thatu(x, rg) > B for x € (xo, £(10)).

Assume conversely that(x, t1g) > B for x € (xg, £(tp)); let &9 > &£(¢p) be such that (&, 1) >
w > p for ¢ sufficiently close tap. Since forr close torg we haveu(xg, t) > @ — &, we can compare
u in (xg, &) x (o, t) with a travelling wave solutio/ taking values betweem — ¢ and 8, and
conclude that there exidt> 0 andx1 € (xo, £(fp)) such that

u(x1,t) = BVt €[, 10+ 9).
Without loss of generality we can assume that- £(70) < £(fp) — x1. Let nowt, be a sequence

converging tag and letc, = —2(&p — &(t0))/(t, — to). Note thatc, — —oo, so that the function
@ (s) — cus is increasing for large. Since by assumptign (14),

. ® b (s)
lim / ds = o0
y=0Jg @(s) —cps — (P(B) —cuB) +¥
for everyn there exists a constap > 0 such that

b'(s)

ds Vn.
D(s) —cps — (P(B) —cuB) + v

%
2(50 — &(0)) < /ﬁ

Define a travelling waveé/, = U, (x — ¢, t) by

D(s) —cps — (P(B) —cuB) + v

U, b/
l/ (s) ds =x —cyt —&+cuto ifx =& + ¢, (t — 1p),
B
U, = B* if x <& + ¢, (t — tg),

where® (8*) — ¢, 8* = ®(B) — cuB — yn. Observe that sincé (s) — ¢,s is increasing we have
B* < g andU, is nondecreasing. The travelling wal/g satisfies Conditionﬂ7E(8), hence itis an
entropy solution.

Sincexy — ¢, (ty — t0) = x1+ 2(50 — £(t0)) < &0, Un(x1 — cpt) = B* for anyt € [t09 In).
Moreover, since for < 1,,

b'(s)
D(s) —cs —(P(B) —cnB) + v

’

"
—cp (t —10) < —cp (ty —t0) = 2(50 — £(t0)) < //;

we also havd/,, (&0, 1) < u < u(&p, t) for anyr € [r, t,). Clearly atr = 1o we haveU, (x, tg) =
B* < u(x, to) for all x € (x1, &). ThereforeU,, < u on the parabolic boundary of the rectangle
(x1, &0) X [to, t,), and, by the comparison principl€,, < u inside it. In particular

u(x,t) > B V(x,t)suchthat > ¢, (t — 10) + &o.

If £(t2) — &(t0), sincecy (t, — 10) + &0 = &0 — 2(60 — &(70)) < &(t0), we haveu(&(1,), 1) > B for
n large enough, which contradicts the definitiortéf,). Hences (¢) is discontinuous at = 1. [
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Propositior] 4.3 gives necessary and sufficient conditions for the formation of a discontinuity at
time 7p. In specific situations, it is possible to deduce that the necessary condition is not satisfied for
any positive time, so that the continuity ®is ensured. We give an example of such a situation.

EXAMPLE. Assume additionally’(8+) = by > 0 and® e C2. Consider the Cauchy problem
given by the initial data

o, x<0oré1 <x <1+ 4o,
up(x) = 1 B, 0<x </,
vo(x), x> {1+ 4>,

wherevg(x) > B for anyx. For which {1, £2 andug is the interfaces continuous for any time?
The interface curvé starts from the point; + ¢2. A discontinuity of¢ at some positive time
to is possible if and only if«(x, 70) = B for anyx € (£(t0) — 6, £(t0)). Hence if the interval in
which the solutior: takes the valu@ disappears before intersecting the interface, the funétisn
continuous for any.
The interval in which the solution takes the value is obtained by solving two Riemann
problems. This interval is bounded by the straight lines

X = (b{:onv(ﬁ) t, x=41+ ¢t/:onc(:3)t

where®qqn and®conc denote respectively the convex and concave envelopeésfa, 8]. Hence
thetimelife T of g is
4
T := ,
¢éonv(/3) - ¢éonc(ﬁ)

if @ is not affine in f, B]; if @ is affinein [, B], thenT = oc.

Next we need to estimate the speed of propagation of the integfatere we proceed formally,
the rigorous proof can be obtained by approximating the degenerate parabolic equation with a
uniformly parabolic one.

It is known that

2B —P() b
B—a B—a

£ =
The quantityw = b(u), satisfies

@N(M) 5

wy = b/(lfl)wxx + [b/(u)x - ¢/(Lt)]wx - Ww .

Setu := sup,. g[—@" (u)/b'(w)]. In the following, we consider the cage> 0, the other case being
easier due to a rarefaction effect in the casebofonvex. By comparison, the function sum|
satisfies

suplw|(r) < _ Wy [0,1/uWo) whereW := sup|wo|.
x 1—puWot
Therefore o ® W
s 2B =@ 0 |
B—«a (B—a)(l—uWor)
so that o o L
E) 2 EM) = 4 6 TP 2@, IN(L— uWor).

B—a n(p —a)
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Thus, if T < 1/uWo and @/, (BT < £(T), the interval in which the solution takes the valgie
disappears before intersecting the interfacavhich, as a consequence, is continuous. The second
condition can be rewritten as

D(B)—P
% — Peond ) 4ot In(l n Woty ) -
1tbo+ —F7—— -
¢(/;onv(,3) - ¢(/;onc(/3) M(ﬂ - 0[) ¢(/;onv(,3) - ¢(/;onc(/3)
The first term is positive, hence the relation is satisfied if

€2+;|n<l— #Wola >>o,
n(B —a) CD(/;onv(lg) - ¢éonc(ﬁ)

which is equivalent to

1
Wola < — (PcondB) — Poonc £))(1 - e 1Ptz
Summarizing, the following condition guarantees the continuity of the integface
1 / /
|b(UO)x (X)lzl < ;(éconv(/g) - <D(';onc(,B)) Vx. (15)

By the comparison principle] (I15) guarantees the continuity afso for initial data less than or
equal toug.
In caseb(s) has finite speed of propagation, the following result holds.

PROPOSITION4.4 Letb(s) satisfy

B+e b/
/ ) ds < oo forsomee > 0. (16)
B

5 —
If u(x, tg) < Bforx e (£(tg) — 6, £(1g)) for somes > 0, then&(¢) is continuous afp.

Proof. Assume by contradiction that Ii,rgtg &) < &(1p) (this limit exists by Propositio@.Z).
Then there exists < £(#p) such that«(x, 10) = B if x € (I, £(t9)). Letc > Lip @. By continuity of
b(u), there exist, § > 0 such that

u(€(tg),t) < B+o, ul,t)<pB+o Vteln,to+6).

Sincel < &(tp) we can choose (possibly smallerands such that

B+o / B+o /
/ b (s) ds — / b(s) ds + 2¢8 < £(10) — L.
8 D(s)+cs — (P(B) +cPh) B D(s) —cs —(P(B) —cB) @)

Note that the integrals in the previous inequality are finite thanks to assumiption (16). Next, define
implicitly the functionU = U(x, t) fort < 1o+ 8 by

/U v ds =x —x1+c(t—10) ifx>x1—clt—10)
5 P(s)+es—(@B)+cB) ' ° - >

U=pB ifxpg+cl—1) <x<x1—c(t—1),

s =x —xg—c(t —1y) ifx <xo+c@—tg),

fU b/(s) d
g Ps) —cs —(P(B) —ch)
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where '
_ ~ o b'(s)
x1 = &(10) /ﬁ D(s)+cs — (D(B) + cB) &
B+o b'(s)
xo—=1I— / ds.
g DP(s)—cs—(P(B)—ch)
Since
U0 b'(s) ds —
/ﬂ GGt — @B T ep T
B B+o b'(s)
>§(to)—x1—/ﬁ D(s) +cs — (P(B) +cB) .

it follows thatU (¢(tg),t) > B + o > u(&(to), t) for everyr € [to, to + 8). Similarly U(l,t) >
B+ o > u(, ) for everyr € [ro, 1o + 8). Finally, by constructionl/(x,79) > 8 = u(x, 1p).
Applying the comparison principle in the domain& (p)) x [to, to + 8), we deduce that

ux,t) <B ifxog+ct—1n) <x <x1—cl—rt).
In particular we have
ux,t) < B V(x,t)suchthatg+cd <x <x1—c8, to <t <tfg+54.

Thanks to[(1]7), this range of values is not empty, hence for everjso, 1o + §) there is an interval
I C (1), ¢(1)) such that: < B in I. This contradicts the definition &f(z), thus Iim,_)t0+ E(t) =

£(t0). O

REMARK 4.5 The proofs of Propositiofis 4[1, 4.2 4.3 still holbli§ only Holder continuous.
In particular the necessary and sufficient conditions of Propodition 4.3 apply to cases of fast
diffusion.
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