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Piazzale Aldo Moro n. 5, I-00185 Roma, Italy

A. PORRETTA‡

Dipartimento di Matematica, Università di Roma “Tor Vergata”,
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We consider strongly degenerate convection-diffusion equations which mix possible parabolic and
hyperbolic behaviour. We prove some qualitative properties of the solutions, in the one-dimensional
case. In particular we study the evolution in time of the number of connected components of parabolic
and hyperbolic regions and the continuity of the interfaces between the two phases.
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1. Introduction

We consider the following strongly degenerate parabolic problem:ut − b(u)xx +Φ(u)x = 0 inR := (0, L)× (0, T ),
u(x,0) = u0(x) in [0, L],
u(0, t) = u−(t), u(L, t) = u+(t) in [0, T ].

(1)

The functionsΦ and b are Lipschitz continuous and represent respectively the convection and
the diffusion term of the equation, moreoverb is assumed to be nondecreasing. In particular we
consider situations in which this function is constant in some intervals of the state variableu, so
that the equation could degenerate into a hyperbolic conservation law. This kind of equations of
mixed parabolic-hyperbolic type appear in different applicative models (see [9, 10, 11, 19]) and
have attracted much interest in the last few years. A large number of papers have been devoted
to the question of existence and uniqueness of solutions in a suitable formulation. In fact, due
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to the possible hyperbolic character, it is necessary to introduce entropy conditions in the spirit
of [25] in order to prove that such problems are well posed. This was done, in much generality
and for the multidimensional case, in [14] for homogeneous boundary data, and in [27, 29] for
general nonhomogeneous Dirichlet conditions. In all the above works,L1-contraction principles
were established with different variants of Kružkov’s doubling variable technique, while existence
was proved with different approaches, respectively through semigroup theory [14], vanishing
viscosity limits [27] and numerical schemes [29]. A kinetic approach to approximate strongly
degenerate problems was developed in [8, 22], where it is shown that the solution of the hyperbolic-
parabolic equation can be obtained as a singular limit of a semilinear relaxation system. Numerical
approximation schemes are analyzed in [1, 17, 18].

Despite this large amount of references, it seems that very few results are known concerning
qualitative properties of solutions to (1) in its full generality. Of course, there is a wide literature
on the porous media equation (see e.g. [2, 4, 12, 13, 15, 20, 24] and references therein) as well as
on Stefan problems (see [3, 5, 6, 7, 21]). In particular in [3, 7, 21] the effect of nonincreasing and
disappearance of the mushy region is studied.

For the analysis of a parabolic-hyperbolic phase transition, we refer to [26] where the author
studies a PDE in the class of (1) for aC2 function b having exactly one bounded interval of
degeneration.

In this paper, we are interested in qualitative properties of the solutions in the one-dimensional
case. Our purpose is, roughly speaking, to understand whether and how one can separate the
parabolic and hyperbolic regions. More precisely, when the solutionu takes values in an interval
whereb is constant (respectively, whereb is strictly increasing) we say that the solution is in a
hyperbolic(respectivelyparabolic) region. We are interested in the evolution in time of the different
connected components of parabolic and hyperbolic regions. This can be thought of as a study of the
“lap number” of the solution in the spirit of [28]. Basically we prove that the number of connected
components of parabolic regions nonincreases in time, so that one can actually separate the evolution
of different zones. Precise results are given in Theorem 3.2, the main tool being the maximum
principle.

We then look at the interface functionξ(t) between a parabolic and a hyperbolic region, and we
give sufficient and necessary conditions for the continuity ofξ . Following [20], our arguments use
local comparison with super- and subsolutions of travelling wave form.

The paper is organized in three further sections. In the following one, the precise definition of
entropy solution of problem (1) is stated, existence and uniqueness results are recalled and moreover
a maximum principle for this equation is given, which is our basic tool for studying the structure
of the solutions. Section 3 is devoted to the analysis of evolution of connected components of
hyperbolic and parabolic phases. Section 4 contains the results on continuity of the interfaces.

2. Existence and uniqueness

In this section we state the main known results concerning problem (1). We assume

[H1] Φ, b ∈ Lip(R), b nondecreasing.

We consider the following definition of entropy solution (see [14, 27, 29]).

NOTATION. H±(s) := 1
2(sgn(s)± 1) and [s]± denotes the positive/negative part ofs.
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DEFINITION 2.1 LetT > 0 andu0 ∈ L∞(0, L), u± ∈ L∞(0, T ) be given.
A functionu ∈ L∞((0, L)× (0, T )) is said to be anentropy solutionof problem (1) if

(i) (regularity) b(u) ∈ L2(0, T ;H 1(0, L)) and

b(u)(0, t) = b(u−(t)) and b(u)(L, t) = b(u+(t)) a.e. in [0, T ];

(ii) (entropy condition) for anyψ ∈ H 1((0, L)× (0, T )), ψ > 0, such that

ψH±(u− − k)|{0}×(0,T ) = 0 and ψH±(u+ − k)|{L}×(0,T ) = 0,

we have ∫ L

0

∫ T

0
{[u− k]±ψt +K±

x (u, k)ψx} dx dt +
∫ L

0
[u0 − k]±ψ dx > 0 (2)

for anyk ∈ R, where

K±
x (u, k) := H±(u− k)(Φ(u)−Φ(k)− b(u)x).

The following results hold:

THEOREM 2.2 (see [14, 27, 29, 9]) There exists a unique entropy solution to problem (1).
Moreover, the solutionu is the a.e. limit of solutionsuε of the parabolic approximating problemsu

ε
t − bε(u

ε)xx +Φ(uε)x = 0 inR := (0, L)× (0, T ),
uε(x,0) = u0(x) in [0, L],
uε(0, t) = u−(t), uε(L, t) = u+(t) in [0, T ],

(3)

wherebε is such thatb′
ε > ε > 0 andbε(·) → b(·) uniformly on compact sets ofR asε → 0+.

In particular in [9] it is proved thatb(u) is continuous in(0, L)× (0, T ) (see also [26], [16]).

As an immediate consequence of Theorem 2.2 and the comparison properties valid for parabolic
equations we obtain

PROPOSITION2.3 Letu, v be solutions of problem (1) with datau0, v0, u±, v±, respectively. If
u0 6 v0 a.e. in(0, L) andu− 6 v−, u+ 6 v+ a.e. in(0, T ), thenu 6 v a.e. inR.

Later on, we will use the following consequence of the (weak) maximum principle.

PROPOSITION2.4 Letx1, x2 ∈ (0, L), x1 < x2 and letγ be a continuous, simple curve, entirely
contained in(0, L)× (0, t ] for somet > 0 with end-points(x1, t) and(x2, t). Finally, letD be the
domain bounded byγ and the segment{(ξ, t) : ξ ∈ [x1, x2]}. Then

min
(y,s)∈γ

b(u(y, s)) 6 b(u(x, t)) 6 max
(y,s)∈γ

b(u(y, s)) ∀(x, t) ∈ D. (4)

Proof. Let bε be a sequence of functions satisfying

(i) b′
ε(s) > ε > 0 in R;

(ii) bε(·) converges uniformly tob(·) on any compact subset ofR asε → 0.
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Denoting byuε the solution of problem (3), since the classical maximum principle applies to the
uniformly parabolic equation in (3), we have

min
(y,s)∈γ

bε(u
ε(y, s)) 6 bε(u

ε(x, t)) 6 max
(y,s)∈γ

bε(u
ε(y, s)) ∀(x, t) ∈ D. (5)

Sincebε(uε) converges uniformly tob(u) on compact subsets ofR (see [23]), the proof is obtained
by passing to the limit asε → 0 in (5). 2

We will mainly consider comparison with solutions that are piecewise smooth (and, additionally,
are local travelling wave solutions). Hence it is useful to characterize piecewise regular functions
that are entropy solutions of problem (1). To this end, consideru = u(x, t) regular over allR except
on a smooth curve. More precisely, assume that there exists aC1 curveΓ ⊂ R with normal vector
ν = (νx, νt ) such thatu ∈ C2(R \ Γ ) (the orientation ofν can be chosen arbitrarily). Moreover we
assume that the following limits exist and are finite:

u±(x, t) := lim
ε→0±

u(x + ενx, t + ενt ),

b(u)±x (x, t) := lim
ε→0±

b(u)x(x + ενx, t + ενt ),
(x, t) ∈ Γ. (6)

PROPOSITION2.5 Letu ∈ C2(R\Γ ) be such that (6) holds. Thenu satisfies the entropy condition
(2) for everyψ ∈ C1

0(R), ψ > 0, if and only if

(i) in the sense of distributions, inR \ Γ ,

ut (x, t)− b(u(x, t))xx +Φ(u(x, t))x = 0;

(ii) (Rankine–Hugoniot condition) in Γ ,

[u]νt + [−b(u)x +Φ(u)] · νx = 0, (7)

where [f ] = f+
− f− is the jump off onΓ ;

(iii) in Γ , for anyk betweenu− andu+,

[|u− k|]νt + [−|b(u)− b(k)|x + sgn(u− k)(Φ(u)−Φ(k))] · νx 6 0. (8)

Conditions (ii) and (iii) can be rewritten as a single one:

(iv) in Γ , for anyk ∈ R,

[|u− k|]νt + [−|b(u)− b(k)|x + sgn(u− k)(Φ(u)−Φ(k))] · νx 6 0.

The proof of Proposition 2.5 is classical and follows the lines of the analogous proof for
hyperbolic conservation laws. Here, for completeness, we give a sketch of the proof under the
additional smoothness assumptionsb(u) ∈ C2(R \ Γ ) andΦ(u) ∈ C1(R \ Γ ).

Proof of Proposition 2.5. Summing the equations withH+ andH− in (2) gives∫
Ω

{|u− k|ψt +Kx(u, k)ψx} dx dt > 0 (9)
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for everyψ ∈ C1
0(R), where

Kx(u, k) := sgn(u− k)((Φ(u)−Φ(k))− b(u)x) = sgn(u− k)(Φ(u)−Φ(k))− |b(u)− b(k)|x .

Suppose thatu is an entropy solution of (1). LetP0 ≡ (x0, t0) ∈ R \ Γ be fixed, and letξn =

ξn(x, t) > 0 be a sequence of functions inC∞

0 (R) with support inB(P0,1/n) approximating the
Dirac distributionδP0 concentrated atP0.

Choosingk < −‖u‖∞ (resp.k > ‖u‖∞) in (9) and integrating by parts we obtain∫
Ω

{ut − b(u)xx +Φ(u)x}ξn dx dt 6 0 (resp. > 0).

Passing to the limit asn → ∞ we get property (i).
Now letP0 ∈ Γ . Forn sufficiently large,B(P0,1/n) = B−∪B+ ⊂ R, whereB± = B∩{(x, t) :

(x, t) = (y, τ )± εν for some(y, τ ) ∈ Γ, ε > 0}.
Then the left hand side of (9) can be written as the sum of two integrals overB− andB+. Set

ΓB = Γ ∩ B. Then, integrating by parts both the terms and applying the divergence theorem, we
get∫
ΓB

{|u−
− k|νt − {|b(u)− b(k)|−x + sgn(u−

− k)(Φ(u−)−Φ(k))} · νx}ξn

−

∫
ΓB

{|u+
− k|νt − {|b(u)− b(k)|+x + sgn(u+

− k)(Φ(u+)−Φ(k))} · νx}ξn > 0

(note thatν points outward fromB− and inward fromB+). Passing to the limit asn → ∞ yields

|u+
− k|νt − |u−

− k|νt − (|b(u)− b(k)|x · νx)
+

+ (|b(u)− b(k)|x · νx)
−

+ sgn(u+
− k)(Φ(u+)−Φ(k)) · νx − sgn(u−

− k)(Φ(u−)−Φ(k)) · νx 6 0

for anyk ∈ R. This is condition (iv). Now suppose thatu ∈ C2(R \Γ ) and satisfies (iv) Then using
the divergence theorem in the first member of (9) and reasoning as above, we can prove that this is
> 0. In the same way we can see thatu is a distributional solution of (1) (weak solution). Using this
information we deduce (2). 2

Condition (iii) can be interpreted geometrically. Assumeu+ < u− and choosek ∈ (u+, u−). Then
the above condition (taking into account (ii)) reads

(k − u+)νt + (− sgn(b(u+)− b(k))b(u)+x +Φ(k)−Φ(u+)) · νx 6 0.

SetΦν(s) = Φ(s) · νx for anys ∈ R. Then

Φν(k) 6 Φν(u
+)+ sgn(b(u+)− b(k))b(u)+x · νx − (k − u+)νt .

Similarly,
Φν(k) 6 Φν(u

−)− sgn(b(u−)− b(k))b(u)−x · νx − (k − u−)νt .

Then we have

Φν(k) 6 Φν(u
+)− b(u)+x · νx − (k − u+)νt ∀k ∈ (u+, u−),
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or, equivalently,

Φν(k) 6 Φν(u
−)− b(u)−x · νx − (k − u−)νt ∀k ∈ (u+, u−).

Note that, lettingk → u±, we deduce thatb(u)±x · νx 6 0.
Observe that, by the Rankine–Hugoniot condition,

νt =
Φν(u

+)− b(u)+x · νx −Φν(u
−)+ b(u)−x · νx

u+ − u−
.

These conditions can be represented graphically, giving an Oleı̆nik-like condition for entropic
discontinuity. In this case the straight line is not the graph of the straight line connecting the end

u+ u−

x
+ νx

x
−νx

−b(u)

−b(u)

FIG. 1. The geometrical interpretation of the entropy condition.

points of the flux, but it connects some higher points. This means that nonadmissible hyperbolic
discontinuities can be admissible in the degenerate parabolic situation thanks to the presence of the
diffusive termb(u)xx . The interpretation is easy: admissibility of a jump is the analytical translation
of compression due to the end states. The presence of diffusion (measured by−b(u)x) raises the
compression strength of the end states, hence admissibility is possible even in cases in which it was
not for the corresponding hyperbolic equation.

The caseu− < u+ can be dealt with similarly.

3. Evolution of parabolic/hyperbolic zones

Let u0 ∈ BV(0, L). We assume the additional hypotheses

[H2] u−(t) = u0(0) =: u− ∈ R andu+(t) = u0(L) =: u+ ∈ R for anyt ;
[H3] there existIi = [αi, βi ], i = 1, . . . , k, such thatb ∈ C1(R \ {αi, βi}) and

(i) βi < αi+1 for anyi,
(ii) b′

≡ 0 in Ii for anyi,
(iii) b′ > 0 in R \

⋃k
i=1 Ii .

DEFINITION 3.1 The intervalsIi are calledhyperbolic zones, and the intervalsPi where

P1 := (−∞, α1], Pi := (βi−1, αi), i = 2, . . . , k, Pk+1 := (βk,∞),

are calledparabolic zones.
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α i βi α i+1 βi+1

c i

c i+1

Pi I i Pi+1 I i+1 Pi+2

FIG. 2. The graph of the functionb.

If we setci := b(u) ∈ R for anyu ∈ Ii , then for anyu ∈ Pi andi ∈ {2, . . . , k}, ci−1 < b(u)

< ci .
For everyt ∈ [0, T ], we introduce the sets

Ni(t) = {x ∈ [0, L] : u(x, t) ∈ Pi}, i = 1, . . . , k + 1,

Hi(t) = {x ∈ [0, L] : u(x, t) ∈ Ii}, i = 1, . . . , k.

From the continuity ofb(u(x, t)) we deduce thatNi(t) andHi(t) are unions of disjoint intervals.
The intervals ofNi(t) are open in [0, L] so they can be of these types:(µ, η), [0, η), (µ,L], [0, L],
with µ, η ∈ (0, L). We denote byni(t), hi(t) ∈ N ∪ {∞} the number of connected components
of Ni(t) andHi(t). Moreover, we let the components beNi,j (t) (j = 1, . . . , ni(t)) andHi,j (t)
(i = 1, . . . , hi(t)), so that

Ni(t) =

ni (t)⋃
j=1

Ni,j (t) and Hi(t) =

hi (t)⋃
j=1

Hi,j (t).

Let us state the main result of this section:

THEOREM 3.2 Assume[H1]–[H3] . Then the functionsni = ni(t) andhi = hi(t) are nonin-
creasing in [0, T ] for any i.

Proof. First we establish the monotonicity ofni . Fix s < t and, without loss of generality, assume
ni(s) < ∞. To simplify notation, we suppress the dependence on the indexi.

In order to prove Theorem 3.2, we introduce a relation between the setsS(t) :=
{N1(t), . . . , Nn(t)(t)} andS(s) := {N1(s), . . . , Nn(s)(s)}. We recall that every element ofS(t) and
S(s) is an interval. ForN ∈ S(t) andN̂ ∈ S(s) we writeN F N̂ if there exists a continuous function
h(τ) defined in [s, t ] such that

(i) h(s) ∈ N̂ , h(t) ∈ N ;
(ii) u(h(τ), τ ) ∈ P for everyτ ∈ [s, t ],

This could be seen as a “genealogy” relation:N F N̂ means thatN is the “father” ofN̂ . As t grows,
we go back in the genealogy and, essentially, assign to any intervalN its ancestors. The proof of
the monotonicity consists in showing that this procedure is uniquely defined.
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As an immediate consequence of the definition, the relationF is transitive: ifNi ∈ S(ti) for
i = 1,2,3 with t1 6 t2 6 t3, then

N3 FN2, N2 FN1 ⇒ N3 FN1.

Moreover, Proposition 2.4 guarantees the validity of the implication

N1, N2 ∈ S(t), N1 F N̂, N2 F N̂ ⇒ N1 = N2. (10)

Indeed, ifN1 F N̂ andN2 F N̂ with N1 6= N2, then there exist two functionsh1 andh2 satisfying (i)
and (ii) and it is not restrictive to assumeh1 6 h2. As a consequence, it is possible to construct a
continuous simple curveγ with end-points(h1(t), t) ∈ N1 and(h2(t), t) ∈ N2 such thatu|γ ∈ P .
Applying Proposition 2.4, we deduce thatu(x, t) ∈ P for anyx ∈ [h1(t), h2(t)]. This means that
N1 andN2 are the same connected component.

CLAIM . Let s < t . Then

∀N ∈ S(t), ∃N̂ ∈ S(s) such that N F N̂ . (11)

Properties (10) and (11) imply thatn is nonincreasing. The proof of the Claim is divided into
three steps.

STEP 1 GivenN ∈ S(t), let

t∗ := inf{τ ∈ (0, t ] : ∃Ñ ∈ S(τ) with N F Ñ}.

By continuity ofb(u), there existsδ > 0 such that for everyτ ∈ (t − δ, t) there isÑ ∈ S(τ) such
thatN F Ñ , hencet∗ < t . We shall show thatt∗ = 0, thus proving the Claim. IfN = [0, η) or
(µ,L], it is possible to chooseh ≡ 0 orh ≡ L, sot∗ = 0. Hence, in the following we can consider
the caseN ⊂ (0, L).

STEP 2 If t∗ > 0, then there existsδ > 0 such that for anyτ ∈ (t∗, t∗ + δ) and anyN̂ ∈ S(τ)

such thatN F N̂ we haveb(u(ξ, τ )) = b(u(η, τ )) whereN̂ = (ξ, η).

Indeed, if this is not the case, then for anyc ∈ b(P ), there exists a sequencetn ↘ t∗ and
xn ∈ Ñ ∈ S(tn), N F Ñ , such thatb(u(xn, tn)) = c. Extracting a subsequence we obtainxn → x∗

andb(u(x∗, t∗)) = c. This implies that(x∗, t∗) ∈ N̂ ∈ S(t∗) such thatNFN̂ . This is a contradiction,
since by continuity ofb(u) if t∗ > 0, thent∗ does not belong to the set{τ ∈ (0, t) : ∃Ñ ∈

S(τ) with N F Ñ}.

STEP 3 t∗ = 0.

Assume, by contradiction,t∗ > 0. By Step 2, without loss of generality, we can assume that
N = (µ, η) ⊂ (0, L) andb(u(µ, t)) = b(u(η, t)) = ci−1. Denote byD the arcwise connected
component of the set{(x, s) ∈ (0, L)× (0, t ] : b(u)(x, s) > ci−1} which intersectsN .

We claim from Step 2 thatD ⊂ u−1
{Pi}, and moreover usingt∗ > 0 and(µ, η) ⊂ (0, L) that

D ⊂ R.
Indeed, using the fact thatb(u) < ci onN and a standard maximum principle argument (see

Proposition 2.4) we find that there existsσ > 0 such thatD ∩ (t − σ, t) ⊂ u−1
{Pi}. Set

t̃ = inf{s : D ∩ (s, t) ⊂ u−1
{Pi}}.
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Then t̃ = 0. Indeed, if not there would existx̃ ∈ (0, L) such that(x̃, t̃) ∈ D andb(u(x̃, t̃)) = ci ;
consider the pointx0 = inf{x : (x, x̃) ∈ D ∩ [t = t̃ ]}; by continuity ofb(u) we havex0 < x̃,
and eitherb(u(x0, t̃)) = ci−1 or x0 = 0. In the first case, sinceD ∩ (t̃ , t) ⊂ u−1

{Pi}, this would
give rise to an interval̃N = (x0, x̃) such thatN F Ñ but b(u) does not have constant value on∂Ñ ,
contradicting Step 2. In the second case, using the boundaryx = 0, the segment(0, x̃) and an arc
in D, a simple application of Proposition 2.4 will contradict the fact thatN ⊂ (0, L) (i.e.N does
not include the boundary points).

ThereforeD ⊂ u−1
{Pi}; moreover, similar arguments and the facts thatt∗ > 0 andN ⊂ (0, L)

prove thatD ⊂ R.
For anyε > 0 letuε be a solution of (3) such that

|bε(u
ε)− b(u)| < ε in D.

Then there exists an intervalI ⊂ (µ, η) such thatbε(uε) > ci−1 + ε on I (for anyε small enough).
Denote byDε the arcwise connected component of the set{(x, s) ∈ (0, L)× (0, t ] : bε(uε)(x, s) >
ci−1 + ε} which containsI . Clearly,bε(uε) = ci−1 + ε on∂Dε. Moreover,Dε ⊂ D and we deduce
that∂Dε does not intersect the linet = 0, nor the boundaryx = 0, x = L.

We now apply to the parabolic equation (3) the strong maximum principle: if maxDε
bε(u

ε)(x, s)

is assumed at a point(x0, t0) ∈ Dε or ats = t , we deduce thatbε(uε)(x, s) is constant on the whole
line s = t0 or s = t ; since∂Dε ∩ {t = t0} 6= ∅ andbε(uε) = ci−1 + ε on ∂Dε we conclude that
maxDε bε(u

ε) = ci−1 + ε, and in particularbε(uε) 6 ci−1 + ε on the segmentI ⊂ (µ, η). We
deduce thatb(u) < ci−1 + 2ε on I . Letting ε → 0 we findb(u) = ci−1 on I ⊂ N , which is a
contradiction.

This impliest∗ = 0 and the Claim is proved.

It remains to prove that also the functionshi are nonincreasing. Loosely speaking, we need to
prove the hyperbolic version of properties (10) and (11) just proved for the parabolic regions.

Let us drop again the indexi. Let t > 0 be such that there exist two connected components
H1 = [η1, ξ1] andH2 = [η2, ξ2] of the same hyperbolic region withη1 6 ξ1 < η2 6 ξ2. Then there
existsN ∈ (ξ1, η2) belonging to some parabolic regionP . By the result proved for the parabolic
regions,N is such that for anys < t there existsN̂ with N F N̂ . Hence there cannot exist any
hyperbolic connected componentĤ at times such thatH1FĤ andH2FĤ . This proves the analogue
of (10).

Similarly, by the maximum principle and the results already proved for parabolic regions, it can
be proved that also (11) holds for the hyperbolic intervals. 2

4. Continuity of the interfaces

In this section we are interested in the study of the interface curves between parabolic and hyperbolic
regions.

For fixed i, consider a connected component ofNi(0) = {x : b(u0(x)) ∈ (ci−1, ci)}, say
Ni,`(0) = (ξi,`(0), ζi,`(0)). To simplify notation we can assume thatu− andu+ are in hyperbolic
regions so that the connected components are open. Set

T ∗ := sup{t : ∃N(t) F Ni`(0)},

whereF is as in the previous section. By continuity ofb(u), T ∗ > 0. MoreoverN(t), whenever it
exists, is unique (see the proof of Theorem 3.2); we denote it byN(t) = (ξi,`(t), ζi,`(t)). Note that
if ξi,`, ζi,` are defined at timet , then they are also defined at times for anys ∈ (0, t).
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N(t )2

N(t )1

ξ
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ζ
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2

Nil (0)

FIG. 3. The setsNi`(0),N(t) and the interfacesξi,`(t), ζi,`(t)

For anyi1, i2, `,m and for anyt > 0,ξi1,`(0) 6 ξi2,m(0) andζi1,`(0) 6 ζi2,m(0) imply ξi1,`(t) 6
ξi2,m(t) andζi1,`(t) 6 ζi2,m(t), with< in place of6 if i1 6= i2.

Moreover, since parabolic intervals can coalesce in finite time, it can happen thatξi,`(t) =

ξi,m(t) for somet (here` 6= m). Similarly for ζi,`. These functionsξi,`, ζi,` represent the interface
curves between hyperbolic and parabolic regions. In the following, for simplicity we drop the indices
i, j and we consider the left interfaceξ(t), t < T ∗.

For simplicity, we consider initial/boundary data with image contained in two zones: a
hyperbolic one and a parabolic one. More precisely, we consider the case

I = [α, β], P = (β, γ ), u(ξ(t)+, t) = β,

b(α) = b(β) = c, b(γ ) = d,

with u0(x), u± ⊂ [α, γ ) for anyx ∈ (0, L).

PROPOSITION4.1 For anyt0 > 0, we have limt→t−0
ξ(t) = ξ(t0).

Proof. STEP 1 We have

lim sup
t→t−0

ξ(t) 6 ξ(t0) and lim inf
t→t−0

ζ(t) > ζ(t0).

Indeed, by continuity ofb(u), any point(x, t0) with x ∈ (ξ(t0), ζ(t0)) has a neighbourhood
entirely contained in the parabolic region, and therefore there existsδ > 0 such thatξ(τ ) 6 x 6
ζ(τ ) for anyτ ∈ (t0 − δ, t0). This implies

lim sup
t→t−0

ξ(t) 6 x 6 lim inf
t→t−0

ζ(t).

Sincex is arbitrarily chosen in(ξ(t0), ζ(t0)), this implies the claim.

STEP 2 If there existtn ↗ t0 asn → ∞ such that

lim
n→∞

ξ(tn) = ` < ξ(t0), (12)

thenu(x, t0) = β for anyx ∈ (`, ξ(t0)).
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Indeed, by Step 1, lim infn→∞ ζ(tn) > ζ(t0) > ξ(t0). Thus, by continuity,b(u(x, t0)) ∈ [c, d]
for any x ∈ (`, ξ(t0)). If b(u(x0, t0)) ∈ (c, d) for somex0 ∈ (`, ξ(t0)), then there existsδ > 0
such thatb(u(x0, t)) ∈ (c, d) for everyt ∈ (t0 − δ, t0) andx0 is in (ξ(tn), ζ(tn)) for any sufficiently
largen. This implies thatx0 ∈ (ξ(t0), ζ(t0)), which is a contradiction. Henceb(u(x0, t0)) ∈ {c, d}.

Finally, b(u(x0, t0)) 6= d, since this would imply the existence ofx1 ∈ (x0, ξ(t0)) with
b(u(x1, t0)) ∈ (c, d). Henceb(u(x0, t0)) = c for any x ∈ (`, ξ(t0)). Sinceu ∈ [β, γ ] for
x ∈ (`, ξ(t0)), we conclude thatu(x, t0) = β for anyx ∈ (`, ξ(t0)).

STEP 3 Construction of (local) travelling waves.Let tn ↗ t0 asn → ∞ be such that (12) holds
and letc > LipΦ. Then there existε > 0 andn0 ∈ N such that

`+ 2ε +

∫ α

α−ε

b′(s)

Φ(s)− cs − (Φ(β)− cβ)
ds < ξ(t0),

u(`+ ε, t) > α − ε ∀t ∈ [tn0, t0],

(13)

the latter being a consequence of Step 2 and of continuity ofb(u). Moreover, without loss of
generality, we can assumeξ(tn) < `+ ε andc(t0 − tn) < ε for anyn > n0.

Let x > ξ(t0) andµ > β be such thatu(x, t) > µ for everyt > tn0. We define a travelling wave
solutionUn in the domain(`+ ε, x)× (tn, t0). To this end, set̃µn := inf{u(x, tn) : x ∈ (`+ ε, x)}

and define
µn := min(µ̃n, µ) and γn := Φ(µn)− cµn.

Sinceξ(tn) < ` + ε, we haveµn > β. Moreover,Φ(s) − cs is a decreasing function, hence
Φ(s)− cs > γn for anys ∈ (α − ε, µn). Therefore we can set

xn := `+ ε +

∫ α

α−ε

b′(s)

Φ(s)− cs − γn
ds.

The functionUn = Un(x − ct) implicitly defined by
∫ Un

β

b′(s)

Φ(s)− cs − γn
ds = x − xn − c(t − tn) if x > xn + c(t − tn),∫ Un

α

b′(s)

Φ(s)− cs − γn
ds = x − xn − c(t − tn) if x < xn + c(t − tn),

is an increasing travelling wave with jump discontinuity atx = xn+c(t−tn) fromα toβ. Moreover,
Un satisfies both the Rankine–Hugoniot and entropy condition (7)–(8) (sinceΦ(s) − cs > γn for
s ∈ (α, β)), and, thanks to Proposition 2.5, it is an entropy solution. By definition ofxn,

Un(`+ ε, t) 6 α − ε 6 u(`+ ε, t) ∀t ∈ (tn, t0),

and since
∫ µn
β

b′(s)
Φ(s)−cs−γn

ds = ∞,

Un < µn 6 min{u(x, tn), u(x, t) : x ∈ (`+ ε, x), t ∈ (tn, t0)}.

We conclude thatUn 6 u on the boundary of the domain(`+ε, x)×(tn, t0), and, by the comparison
principle (Proposition 2.4),Un 6 u in (`+ ε, x)× (tn, t0). In particular, we get

u(x, t) > β ∀(x, t) such thatx > xn + c(t − tn).
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By (13) and sinceΦ(s)− cs is decreasing we can estimate

xn + c(t0 − tn) < `+ ε +

∫ α

α−ε

b′(s)

Φ(s)− cs − γn
ds + ε

6 `+ 2ε +

∫ α

α−ε

b′(s)

Φ(s)− cs − (Φ(β)− c β)
ds < ξ(t0),

so we conclude thatu(ξ(t0), t0) > β, getting a contradiction. Thus (12) cannot hold true, and
therefore limtn↗t0 ξ(tn) = ξ(t0). 2

The same argument as for the previous proposition can be used to prove the existence of the limit
from above.

PROPOSITION4.2 For anyt0 > 0, the limit limt→t+0
ξ(t) exists.

Proof. Assume by contradiction that there exist two decreasing sequences{tn} and{τn} such that
tn < τn and

lim
tn→t+0

ξ(tn) = lim inf
t→t+0

ξ(t) =: ` < m := lim sup
t→t+0

ξ(t) = lim
τn→t+0

ξ(τn).

Since, as in Step 2 in the proof of Proposition 4.1, we haveb(u)(x, t) = c for anyx ∈ (l, m), there
existsn0 such thatu(l + ε, t) > α − ε for anyt ∈ [t0, τn0). Similarly there existx > m andµ > β

such thatu(x, t) > µ for everyt ∈ [t0, τn0). We can use the same travelling wave solutionUn of
Proposition 4.1 in the domain(l+ε, x)× (tn, τn0), once we chooseµn such thatu(x, tn) > µn > β

for everyx ∈ (l + ε, x). Sincem > ` we can takeε such thatc(τn − tn) < ε and

`+ 2ε +

∫ α

α−ε

b′(s)

Φ(s)− cs − (Φ(β)− cβ)
ds < m.

Comparingu andUn we find thatu(x, t) > β if

x > c(t − tn)+

∫ α

α−ε

b′(s)

Φ(s)− cs − (Φ(β)− cβ)
ds + l + ε.

Sinceξ(τn) → m, the previous inequality is satisfied byx = ξ(τn), t = τn as soon asn is large
enough, hence we getu(ξ(τn), τn) > β, which is a contradiction. 2

The continuity ofξ(t) at t = t0 will depend on the behaviour ofb(s) at s = β and on the situation
occurring to the left ofξ(t0).

PROPOSITION4.3 Letb(s) satisfy∫ β+ε

β

b′(s)

s − β
ds = ∞ for someε > 0. (14)

Then for anyt0 > 0, ξ(t) is discontinuous att = t0 if and only if there existsx0 < ξ(t0) such that
u(x, t0) > β for everyx ∈ (x0, ξ(t0)).
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Proof. The necessity is trivial. Indeed, ifξ(t) is discontinuous att = t0, then there exist a point
x0 < ξ(t0) and a sequencetn → t+0 such thatξ(tn) → x0. Sinceu(x, tn) ∈ (β, γ ) for any x ∈

(x0, ξ(t0)) andn large enough, by continuity ofb(u) and sinceb′(s) > 0 for s ∈ (β, γ ) we deduce
thatu(x, t0) > β for x ∈ (x0, ξ(t0)).

Assume conversely thatu(x, t0) > β for x ∈ (x0, ξ(t0)); let ξ0 > ξ(t0) be such thatu(ξ0, t) >
µ > β for t sufficiently close tot0. Since fort close tot0 we haveu(x0, t) > α−ε, we can compare
u in (x0, ξ0) × (t0, t) with a travelling wave solutionU taking values betweenα − ε andβ, and
conclude that there existδ > 0 andx1 ∈ (x0, ξ(t0)) such that

u(x1, t) > β ∀t ∈ [t0, t0 + δ).

Without loss of generality we can assume thatξ0 − ξ(t0) < ξ(t0) − x1. Let now tn be a sequence
converging tot0 and letcn = −2(ξ0 − ξ(t0))/(tn − t0). Note thatcn → −∞, so that the function
Φ(s)− cns is increasing forn large. Since by assumption (14),

lim
γ→0

∫ µ

β

b′(s)

Φ(s)− cns − (Φ(β)− cnβ)+ γ
ds = ∞,

for everyn there exists a constantγn > 0 such that

2(ξ0 − ξ(t0)) <

∫ µ

β

b′(s)

Φ(s)− cns − (Φ(β)− cnβ)+ γn
ds ∀n.

Define a travelling waveUn = Un(x − cn t) by
∫ Un

β

b′(s)

Φ(s)− cns − (Φ(β)− cnβ)+ γn
ds = x − cn t − ξ0 + cnt0 if x > ξ0 + cn(t − t0),

Un = β∗ if x < ξ0 + cn(t − t0),

whereΦ(β∗) − cnβ
∗

= Φ(β) − cnβ − γn. Observe that sinceΦ(s) − cns is increasing we have
β∗ 6 β andUn is nondecreasing. The travelling waveUn satisfies conditions (7)–(8), hence it is an
entropy solution.

Sincex1 − cn(tn − t0) = x1 + 2(ξ0 − ξ(t0)) < ξ0, Un(x1 − cnt) = β∗ for any t ∈ [t0, tn).
Moreover, since fort 6 tn,

−cn (t − t0) 6 −cn (tn − t0) = 2(ξ0 − ξ(t0)) <

∫ µ

β

b′(s)

Φ(s)− cs − (Φ(β)− cnβ)+ γn
ds,

we also haveUn(ξ0, t) 6 µ 6 u(ξ0, t) for any t ∈ [t0, tn). Clearly att = t0 we haveUn(x, t0) =

β∗ 6 u(x, t0) for all x ∈ (x1, ξ0). ThereforeUn 6 u on the parabolic boundary of the rectangle
(x1, ξ0)× [t0, tn), and, by the comparison principle,Un 6 u inside it. In particular

u(x, t) > β ∀(x, t) such thatx > cn (t − t0)+ ξ0.

If ξ(tn) → ξ(t0), sincecn(tn − t0)+ ξ0 = ξ0 − 2(ξ0 − ξ(t0)) < ξ(t0), we haveu(ξ(tn), tn) > β for
n large enough, which contradicts the definition ofξ(tn). Henceξ(t) is discontinuous att = t0. 2



276 C. MASCIA ET AL .

Proposition 4.3 gives necessary and sufficient conditions for the formation of a discontinuity at
time t0. In specific situations, it is possible to deduce that the necessary condition is not satisfied for
any positive time, so that the continuity ofξ is ensured. We give an example of such a situation.

EXAMPLE . Assume additionallyb′(β+) = b0 > 0 andΦ ∈ C2. Consider the Cauchy problem
given by the initial data

u0(x) =

α, x < 0 or`1 < x < `1 + `2,

β, 0< x < `1,

v0(x), x > `1 + `2,

wherev0(x) > β for anyx. For which`1, `2 andv0 is the interfaceξ continuous for any timet?
The interface curveξ starts from the point̀1 + `2. A discontinuity ofξ at some positive time

t0 is possible if and only ifu(x, t0) = β for any x ∈ (ξ(t0) − δ, ξ(t0)). Hence if the interval in
which the solutionu takes the valueβ disappears before intersecting the interface, the functionξ is
continuous for anyt .

The interval in which the solutionu takes the valueβ is obtained by solving two Riemann
problems. This interval is bounded by the straight lines

x = Φ ′
conv(β) t, x = `1 +Φ ′

conc(β) t

whereΦconv andΦconcdenote respectively the convex and concave envelopes ofΦ in [α, β]. Hence
thetimelifeT of β is

T :=
`1

Φ ′
conv(β)−Φ ′

conc(β)
,

if Φ is not affine in [α, β]; if Φ is affine in [α, β], thenT := ∞.
Next we need to estimate the speed of propagation of the interfaceξ . Here we proceed formally,

the rigorous proof can be obtained by approximating the degenerate parabolic equation with a
uniformly parabolic one.

It is known that

ξ ′(t) =
Φ(β)−Φ(α)

β − α
−
b(u)+x

β − α
.

The quantityw = b(u)x satisfies

wt = b′(u)wxx + [b′(u)x −Φ ′(u)]wx −
Φ ′′(u)

b′(u)
w2.

Setµ := supu>β [−Φ ′′(u)/b′(u)]. In the following, we consider the caseµ > 0, the other case being
easier due to a rarefaction effect in the case ofΦ convex. By comparison, the function supx |w|

satisfies

sup
x

|w|(t) 6
W0

1 − µW0 t
∀t ∈ [0,1/µW0) whereW0 := sup|w0|.

Therefore

ξ ′(t) >
Φ(β)−Φ(α)

β − α
−

W0

(β − α)(1 − µW0t)
,

so that

ξ(t) > ξ̃ (t) := `1 + `2 +
Φ(β)−Φ(α)

β − α
t +

1

µ(β − α)
ln(1 − µW0t).
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Thus, ifT < 1/µW0 andΦ ′
conv(β)T < ξ̃(T ), the interval in which the solution takes the valueβ

disappears before intersecting the interfaceξ , which, as a consequence, is continuous. The second
condition can be rewritten as

Φ(β)−Φ(α)
β−α

−Φ ′
conc(β)

Φ ′
conv(β)−Φ ′

conc(β)
`1 + `2 +

1

µ(β − α)
ln

(
1 −

µW0 `1

Φ ′
conv(β)−Φ ′

conc(β)

)
> 0.

The first term is positive, hence the relation is satisfied if

`2 +
1

µ(β − α)
ln

(
1 −

µW0 `1

Φ ′
conv(β)−Φ ′

conc(β)

)
> 0,

which is equivalent to

W0`1 <
1

µ
(Φ ′

conv(β)−Φ ′
conc(β))(1 − e−µ(β−α)`2).

Summarizing, the following condition guarantees the continuity of the interfaceξ :

|b(v0)x(x)|`1 <
1

µ
(Φ ′

conv(β)−Φ ′
conc(β)) ∀x. (15)

By the comparison principle, (15) guarantees the continuity ofξ also for initial data less than or
equal tou0.

In caseb(s) has finite speed of propagation, the following result holds.

PROPOSITION4.4 Letb(s) satisfy∫ β+ε

β

b′(s)

s − β
ds < ∞ for someε > 0. (16)

If u(x, t0) 6 β for x ∈ (ξ(t0)− δ, ξ(t0)) for someδ > 0, thenξ(t) is continuous att0.

Proof. Assume by contradiction that limt→t+0
ξ(t) < ξ(t0) (this limit exists by Proposition 4.2).

Then there existsl < ξ(t0) such thatu(x, t0) = β if x ∈ (l, ξ(t0)). Let c > LipΦ. By continuity of
b(u), there existσ, δ > 0 such that

u(ξ(t0), t) < β + σ, u(l, t) < β + σ ∀t ∈ [t0, t0 + δ).

Sincel < ξ(t0) we can choose (possibly smaller)σ andδ such that∫ β+σ

β

b′(s)

Φ(s)+ cs − (Φ(β)+ cβ)
ds −

∫ β+σ

β

b′(s)

Φ(s)− cs − (Φ(β)− cβ)
ds + 2cδ < ξ(t0)− l.

(17)
Note that the integrals in the previous inequality are finite thanks to assumption (16). Next, define
implicitly the functionU = U(x, t) for t < t0 + δ by

∫ U

β

b′(s)

Φ(s)+ cs − (Φ(β)+ cβ)
ds = x − x1 + c(t − t0) if x > x1 − c(t − t0),

U = β if x0 + c(t − t0) < x < x1 − c(t − t0),∫ U

β

b′(s)

Φ(s)− cs − (Φ(β)− cβ)
ds = x − x0 − c(t − t0) if x < x0 + c(t − t0),
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where

x1 = ξ(t0)−

∫ β+σ

β

b′(s)

Φ(s)+ cs − (Φ(β)+ cβ)
ds,

x0 = l −

∫ β+σ

β

b′(s)

Φ(s)− cs − (Φ(β)− cβ)
ds.

Since∫ U(ξ(t0),t)

β

b′(s)

Φ(s)+ cs − (Φ(β)+ cβ)
ds = ξ(t0)− x1 + c(t − t0)

> ξ(t0)− x1 =

∫ β+σ

β

b′(s)

Φ(s)+ cs − (Φ(β)+ cβ)
ds,

it follows thatU(ξ(t0), t) > β + σ > u(ξ(t0), t) for every t ∈ [t0, t0 + δ). Similarly U(l, t) >
β + σ > u(l, t) for every t ∈ [t0, t0 + δ). Finally, by constructionU(x, t0) > β = u(x, t0).
Applying the comparison principle in the domain(l, ξ(t0))× [t0, t0 + δ), we deduce that

u(x, t) 6 β if x0 + c(t − t0) < x < x1 − c(t − t0).

In particular we have

u(x, t) 6 β ∀(x, t) such thatx0 + cδ < x < x1 − cδ, t0 6 t < t0 + δ.

Thanks to (17), this range of values is not empty, hence for everyt ∈ [t0, t0 + δ) there is an interval
I ⊂ (ξ(t), ζ(t)) such thatu 6 β in I . This contradicts the definition ofξ(t), thus limt→t+0

ξ(t) =

ξ(t0). 2

REMARK 4.5 The proofs of Propositions 4.1, 4.2 and 4.3 still hold ifb is only Hölder continuous.
In particular the necessary and sufficient conditions of Proposition 4.3 apply to cases of fast
diffusion.
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