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1. Introduction

In this paper we categorify the Beilinson–Lusztig–MacPherson idempotented modi-
fication PU.sln/ of Uq.sln/ for any n, generalizing [21], [22], where such categori-
fication was described for n D 2, and using constructions and results of [16], [17]
which contain a categorification of U� for any Cartan datum. More generally, we
define a 2-category associated to any root datum. The categorification of PU.sln/ is
given by the 2-category associated to the root system An�1.

In [24] Lusztig associates a quantum group U to any root datum; the latter consists
of a perfect pairing h ; i between two free abelian groups X and Y , embeddings of
the set I of simple roots into X , Y , and a bilinear form on ZŒI � subject to certain
compatibility and integrality conditions. Lusztig’s definition is slightly different from
the original ones due to Drinfeld [9] and Jimbo [13]. Lusztig then modifies U to the
nonunital ring PU which contains a system of idempotents f1�g over all weights� 2 X
as a substitute for the unit element,

PU D
M
�;�2X

1� PU1�:

In the sln case PU was originally defined by Beilinson, Lusztig, and Macpherson [2]
and then appeared in [23], [14] in greater generality. It is clear from Lusztig’s work
that the Q.q/-algebra PU is natural for at least the following reasons:

(1) A PU -module is the same as a U-module which has an integral weight decom-
position. These modules are of prime importance in the representation theory
of U.

(2) PU has analogues of the comultiplication, the antipode, and other standard sym-
metries of U.

(3) PU is a U-bimodule.
(4) The Peter–Weyl theorem and the theory of cells can be intrinsically stated in

terms of the algebra PU .
(5) PU has an integral form A

PU , a ZŒq; q�1�-lattice closed under multiplication and
comultiplication. The integral form comes with a canonical basis PB. Con-
jecturally, multiplication and comultiplication in this basis have coefficients in
NŒq; q�1� when the Cartan datum is symmetric.

(6) The braid group associated to the Cartan datum acts on PU .

Moreover, PU appears throughout the categorification program for quantum groups.
Representations of quantum groups that are known to have categorifications all have
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integral weight decompositions, and thus automatically extend to representations of
PU . In most or all of these examples, see [3], [7], [10], [31], [33], the weight decom-

position of representations lifts to a direct sum decomposition of categories, so one
obtains a categorification of the idempotent 1� as the functor of projection onto the
corresponding direct summand (the only possible exception is the categorification of
tensor products via the affine Grassmannian [5], [6]). In the categorification of tensor
powers of the fundamental Uq.sl2/-representation [3], [10], each canonical basis el-
ement of PU acts as an indecomposable projective functor or as the zero functor. The
idea that PU rather than U should be categorified goes back to Crane and Frenkel [8].
PU is generated by elements Ei1�, Fi1�, and 1�, where � 2 X is an element of

the weight lattice and i is a simple root. We will often write ECi instead of Ei and
E�i instead of Fi . We have

E˙i1� D 1�E˙i1�;

where, in our notations, explained in Section 2.1, � D �˙ iX , and iX is the element
of X associated to the simple root i . Algebra PU is spanned by products

Ei1�´ E˙i1E˙i2 : : : E˙im1� D 1�E˙i1E˙i2 : : : E˙im1�;

where i D .˙i1; : : : ;˙im/ is a signed sequence of simple roots, and � D �C iX .
The integral form A

PU � PU is the ZŒq; q�1�-algebra generated by divided powers

Ei.a/1�
D 1

Œa�i Š
Eai 1�:

Note that PU can, alternatively, be viewed as a pre-additive category with objects
� 2 X and morphisms from � to � being 1� PU1�. Of course, any ring with a
collection of mutually orthogonal idempotents as a substitute for the unit element can
be viewed as a pre-additive category and vice versa. From this perspective, though,
we can expect the categorification of PU to be a 2-category.

In Section 3.1 we associate a 2-category U to a root datum. The objects of this
2-category are integral weights � 2 X , the morphisms from � to � are finite formal
sums of symbols Ei 1�ftg, where i D .˙i1; : : : ;˙im/ is a signed sequence of simple
roots such that the left weight of the symbol is � (Ei1� D 1�Ei1�), and t 2 Z is
a grading shift. When i consists of a single term, we get 1-morphisms ECi1� and
E�i1�, which should be thought of as categorifying elements Ei1� and Fi1� of PU ,
respectively. Grading shift ftg categorifies multiplication by qt . The 1-morphism
Ei 1� W �! � should be thought of as a categorification of the elementEi1�. When
the sequence i is empty, we get the identity morphism 1� W �! �, a categorification
of the element 1�.

Two-morphisms between Ei 1�ftg and Ej 1�ft 0g are given by linear combinations
of degree t � t 0 diagrams drawn on the strip R � Œ0; 1� of the plane. The diagrams
consist of immersed oriented one-manifolds, with every component labelled by a
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simple root, and dots placed on the components. Labels and orientations at the
lower and upper endpoints of the one-manifold must match the sequences i and j ,
respectively. Integral weights label regions of the plane cut out by the one-manifold,
with the rightmost region labelled �. Each diagram has an integer degree assigned
to it. We work over a ground field k, and define a 2-morphism between Ei 1�ftg and
Ej 1�ft 0g as a linear combination of such diagrams of degree t � t 0, with coefficients
in k, modulo isotopies and a collection of very carefully chosen local relations. The
set of 2-morphisms U.Ei 1�ftg;Ej 1�ft 0g/ is a k-vector space. We also form graded
vector space

HOMU.Ei 1�;Ej 1�/´
M
t2Z

U.Ei 1�ftg;Ej 1�/:

Vertical composition of 2-morphisms is given by concatenation of diagrams, hori-
zontal composition consists of placing diagrams next to each other.

In each graded k-vector space HOMU.Ei 1�;Ej 1�/we construct a homogeneous
spanning set Bi ;j ;� which depends on extra choices. The Laurent power series
in q, with the coefficient at qr equal to the number of spanning set elements of
degree r , is proportional to suitably normalized inner product hEi1�; Ej 1�i, where
the semilinear form h ; i is a mild modification of the Lusztig bilinear form on PU .
The proportionality coefficient � depends only on the root datum.

We say that our graphical calculus is non-degenerate for a given root datum and
field k if for each i ; j and � the homogeneous spanning set Bi ;j ;� is a basis of
the k-vector space HOMU.Ei 1�;Ej 1�/. Nondegeneracy will be crucial for our
categorification constructions.

The 2-category U is k-additive, and we form its Karoubian envelope PU, the small-
est 2-category which contains U and has splitting idempotents. Namely, for each
�;� 2 X , the category PU.�; �/ of morphisms � ! � is defined as the Karoubian
envelope of the additive k-linear category U.�; �/. The split Grothendieck cat-
egory K0. PU/ is a pre-additive category with objects �, and the abelian group of
morphisms from � to � is the split Grothendieck groupK0. PU.�; �// of the additive
category PU.�; �//. The grading shift functor on PU.�; �/ turns K0. PU.�; �// into a
ZŒq; q�1�-module. This module is free with the basis given by isomorphism classes
of indecomposable objects of PU.�; �/, up to grading shifts. The split Grothendieck
categoryK0. PU/ can also be viewed as a nonunital ZŒq; q�1�-algebra with a collection
of idempotents Œ1�� as a substitute for the unit element.

In Section 3.6 we set up a ZŒq; q�1�-algebra homomorphism

� W A
PU ! K0. PU/

which takes 1� to Œ1�� andEi 1� to ŒEi 1��, for any “divided power” signed sequence i .
The main results of this paper are the following theorems.

Theorem 1.1. The map � is surjective for any root datum and field k.
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Theorem 1.2. The map � is injective if the graphical calculus for the root datum and
field k is non-degenerate.

Theorem 1.3. The graphical calculus is non-degenerate for the root datum of sln
and any field k.

The three theorems together immediately imply

Proposition 1.4. The map � is an isomorphism for the root datum of sln and any
field k.

The last result establishes a canonical isomorphism

A
PU.sln/ Š K0. PU.sln//

and allows us to view PU.sln/ as a categorification of PU.sln/.
Theorem 1.1, proved in Section 3.8, follows from the results of [16], [17], [21]

and basic properties of Grothendieck groups and idempotents. Theorem 1.2, proved
in Section 3.9, follows from the non-degeneracy of the semilinear form on PU and its
pictorial interpretation explained in Section 2.2. To prove theorem 1.3 we construct
a family of 2-representations of PU and check that the elements of each spanning
set Bi ;j ;� act linearly independently on vector spaces in these 2-representations,
implying non-degeneracy of the graphical calculus. Sections 4–6 are devoted to
these constructions.

Indecomposable 1-morphisms, up to isomorphism and grading shifts, constitute
a basis of K0. PU.sln// Š A

PU.sln/, which might potentially depend on the ground
field k. The multiplication in this basis has coefficients in NŒq; q�1�. It is an open
problem whether this basis coincides with the Lusztig canonical basis of A

PU.sln/.
The answer is positive when n D 2, see [21].

Another major problem is to determine for which root data the graphical calculus
is non-degenerate. Nondegeneracy immediately implies, via Theorems 1.1 and 1.2,
that PU categorifies PU for a given root datum.

We believe that PU will prove ubiquitous in representation theory. This 2-category
or its mild modifications is expected to act on parabolic-singular blocks of highest
weight categories for slN in the context of categorification of sln representations [7],
[10], [31], on derived categories of coherent sheaves on Kronheimer–Nakajima [20]
and Nakajima [26] quiver varieties and on their Fukaya–Floer counterparts, on cat-
egories of modules over cyclotomic Hecke and degenerate Hecke algebras [1], [19],
on categories of perverse sheaves in Zheng’s categorifications of tensor products [33],
on categories of modules over cyclotomic quotients of rings R.�/ in [16], [17], on
categories of matrix factorizations that appear in [18, Section 11], etc. A possible
approach to proving that the calculus is non-degenerate for other root systems is
to show that PU acts on a sufficiently large 2-category and verify that the spanning
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set elements act linearly independently. It would also be interesting to relate our
constructions with those of Rouquier [29], [30].

Categories of projective modules over ringsR.�/, defined in [16], [17], categorify
U� weight spaces. A subset of our defining local relations on 2-morphisms gives the
relations for ringsR.�/. This subset consists exactly of the relations whose diagrams
have no critical points (U-turns) on strands and have all strand orientations going in
the same direction. In other words, the relations on braid-like diagrams allow us to
categorify U�, while the relations without these restrictions lead to a categorification
of the entire PU , at least in the sln case. Informally, the passage from a categorification
of U� to a categorification of PU is analogous to generalizing from braids to tangles.

Acknowledgments. M. K. was partially supported by the NSF grant DMS-0706924
and, during the early stages of this work, by the Institute for Advanced Study.

2. Graphical interpretation of the bilinear form

2.1. Quantum groups

2.1.1. Algebras f and U . We recall several definitions, following [24]. A Cartan
datum .I; �/ consists of a finite set I and a symmetric Z-valued bilinear form on ZŒI �,
subject to conditions

� i � i 2 f2; 4; 6; : : : g for i 2 I ,
� dij ´ �2 i �ji �i 2 f0; 1; 2; : : : g for any i 6D j in I .

Let qi D q i �i
2 , Œa�i D qa�1

i Cqa�3
i C� � �Cq1�a

i , Œa�i Š D Œa�i Œa�1�i : : : Œ1�i . Denote
by 0f the free associative algebra over Q.q/ with generators 	i , i 2 I , and introduce
q-divided powers 	 .a/i D 	ai =Œa�i Š. The algebra 0f is NŒI �-graded, with 	i in degree i .
The tensor square 0f ˝ 0f is an associative algebra with twisted multiplication

.x1 ˝ x2/.x0
1 ˝ x0

2/ D q�jx2j�jx0
1

jx1x0
1 ˝ x2x0

2

for homogeneous x1, x2, x0
1, x0

2. The assignment r.	i / D 	i ˝ 1C 1˝ 	i extends
to a unique algebra homomorphism r W 0f ! 0f ˝ 0f .

The algebra 0f carries a Q.q/-bilinear form determined by the conditions1

� .1; 1/ D 1,
� .	i ; 	j / D ıi;j .1 � q2i /�1 for i; j 2 I ,
� .x; yy0/ D .r.x/; y ˝ y0/ for x; y; y0 2 0f ,
� .xx0; y/ D .x ˝ x0; r.y// for x; x0; y 2 0f .

The bilinear form . ; / is symmetric. Its radical I is a two-sided ideal of 0f . The form
. ; / descends to a non-degenerate form on the associative Q.q/-algebra f D 0f=I .

1Our bilinear form . ; / corresponds to Lusztig’s bilinear form f ; g, see Lusztig [24, 1.2.10].
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Theorem 2.1. The ideal I is generated by the elementsX
aCbDdij C1

.�1/a	 .a/i 	j 	
.b/
i

over all i; j 2 I , i 6D j .

It seems that the only known proof of this theorem, for a general Cartan datum,
requires Lusztig’s geometric realization of f via perverse sheaves. This proof is given
in his book [24, Theorem 33.1.3]. Less sophisticated proofs exist when the Cartan
datum is finite.

We see that f is the quotient of 0f by the quantum Serre relationsX
aCbDdij C1

.�1/a	 .a/i 	j 	
.b/
i D 0:

Let Af be the ZŒq; q�1�-subalgebra of f generated by the divided powers 	 .a/i ,
over all i 2 I and a 2 N.

A root datum of type .I; �/ consists of

� free finitely generated abelian groupsX , Y and a perfect pairing h ; i W Y �X !
Z;

� inclusions I � X (i 7! iX ) and I � Y (i 7! i ) such that hi; jX i D 2 i �ji �i D �dij
for all i; j 2 I .

This implies hi; iX i D 2 for all i . We write iX , rather than Lusztig’s i 0, to denote the
image of i in X .

The quantum group U associated to a root datum as above is the unital associative
Q.q/-algebra given by generators Ei , Fi , K� for i 2 I and � 2 Y , subject to the
relations

i) K0 D 1, K�K�0 D K�C�0 for all �;�0 2 Y ,
ii) K�Ei D qh�;iX iEiK� for all i 2 I , � 2 Y ,

iii) K�Fi D q�h�;iX iFiK� for all i 2 I , � 2 Y ,

iv) EiFj � FjEi D ıij QKi � QK�i

qi �q�1
i

, where QK˙i D K˙.i �i=2/i ,

v) for all i ¤ jP
aCbD�hi;jX iC1

.�1/aE.a/i EjE
.b/
i D 0 and

P
aCbD�hi;jX iC1

.�1/aF .a/i FjF
.b/
i D 0:

If f .	i / 2 I for a polynomial f in noncommutative variables 	i , i 2 I , then
f .Ei / D 0 and f .Fi / D 0 in U . This gives a pair of injective algebra homomor-
phisms f ! U .

2.1.2. Some automorphisms of U . Let N be the Q-linear involution of Q.q/which
maps q to q�1. U has the following standard algebra (anti)automorphisms:
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� the Q.q/-antilinear algebra involution  W U ! U given by

 .Ei / D Ei ;  .Fi / D Fi ;  .K�/ D K��;  .f x/ D Nf  .x/

for f 2 Q.q/ and x 2 U ;
� the Q.q/-linear algebra involution ! W U ! U given by

!.Ei / D Fi ; !.Fi / D Ei ; !.K�/ D K��I
� the Q.q/-linear algebra antiinvolution 
 W U ! U given by


.Ei / D Ei ; 
.Fi / D Fi ; 
.K�/ D K�I
� the Q.q/-linear algebra antiinvolution � W U ! U given by

�.Ei / D qi QKiFi ; �.Fi / D qi QK�iEi ; �.K�/ D K�;

we denote by N� the Q.q/-linear antiinvolution  � W U ! U ;
� the Q.q/-antilinear antiautomorphism � W U ! U defined as the composite
� D  �,

�.Ei / D q�1
i
QK�iFi ; �.Fi / D q�1

i
QKiEi ; �.K�/ D K��:

2.1.3. PU and the bilinear form. The Q.q/-algebra PU is obtained from U by ad-
joining a collection of orthogonal idempotents 1� for each � 2 X ,

1�1�0 D ı�;�01�0 ;

such that

K�1� D 1�K� D qh�;�i1�; Ei1� D 1�CiXEi ; Fi1� D 1��iXFi :

The algebra PU decomposes as direct sum of weight spaces

PU D
M
�;�02X

1�0 PU1�:

We say that �, respectively �0, is the right, respectively left, weight of x 2 1�0 PU1�.
The algebra A

PU is the ZŒq; q�1�-subalgebra of PU generated by products of divided
powers E.a/i 1� and F .a/i 1�, and has a similar weight decomposition

A
PU D

M
�;�02X

1�0.A PU/1�:
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The following identities hold in PU and A
PU :

.EiFj � FjEi /1� D ıi;j Œhi; �i�i1�;
E
.a/
i 1� D 1�CaiXE

.a/
i ; F

.a/
i 1� D 1��aiXF

.a/
i ;

E
.a/
i F

.b/
i 1� D

min.a;b/X
tD0

�
a � b C hi; �i

t

�
i
F
.b�t/
i E

.a�t/
i 1�;

F
.b/
i E

.a/
i 1� D

min.a;b/X
tD0

��aC b � hi; �i
t

�
i
E
.a�t/
i F

.b�t/
i 1�:

The (anti) automorphisms  , !, 
 , � and � all naturally extend to PU and A
PU if

we set

 .1�/ D 1�; !.1�/ D 1��; 
.1�/ D 1��; �.1�/ D 1�; �.1�/ D 1�:
Taking direct sums of the induced maps on each summand 1�0 PU1� allows these maps
to be extended to PU . For example, the antiautomorphism � induces for each � and �0
in X an isomorphism 1�0 PU1� ! 1� PU1�0 . Restricting to the ZŒq; q�1�-subalgebra
A
PU and taking direct sums, we obtain an algebra antiautomorphism � W A

PU ! A
PU

such that �.1�/ D 1�, �.1�CiXEi1�/ D q�1�hi;�i
i 1�Fi1�CiX , and �.1�Fi1�CiX / D

q
1Chi;�i
i 1�CiXEi1� for all � 2 X .

The following result is taken from Lusztig [24, 26.1.1], but our bilinear form is
normalized slightly differently from his.

Proposition 2.2. There exists a unique pairing . ; / W PU � PU ! Q.q/ with the prop-
erties:

(i) . ; / is bilinear, i.e., .f x; y/ D f .x; y/, .x; fy/ D f .x; y/ for f 2 Q.q/ and
x; y 2 PU ,

(ii) .1�1
x1�2

; 1�0
1
y1�0

2
/ D 0 for all x; y 2 PU unless �1 D �0

1 and �2 D �0
2,

(iii) .ux; y/ D .x; N�.u/y/ for u 2 U and x; y 2 PU ,

(iv) .x1�; x01�/ D .x; x0/ for all x; x0 2 f Š UC and all � (here .x; x0/ is as in
Section 2.1.1),

(v) .x; y/ D .y; x/ for all x; y 2 PU .

Definition 2.3. Define a semilinear form h ; i W PU � PU ! Q.q/ by

hx; yi ´ . .x/; y/ for all x; y 2 PU :

Proposition 2.4. The map h ; i W PU � PU ! Q.q/ has the following properties:

(i) h ; i is semilinear, i.e., hf x; yi D Nf hx; yi, hx; fyi D f hx; yi for f 2 Q.q/
and x; y 2 PU ,
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(ii) h1�1
x1�2

; 1�0
1
y1�0

2
i D 0 for all x; y 2 PU unless �1 D �0

1 and �2 D �0
2,

(iii) hux; yi D hx; �.u/yi for u 2 U and x; y 2 PU ,

(iv) hx1�; x01�i D . .x/; x0/ for x; x0 2 f and � 2 X ,

(v) hx; yi D h .y/;  .x/i for all x; y 2 PU .

Proof. Immediate.

Proposition 2.5. The bilinear form . ; / and the semilinear form h ; i are both non-
degenerate on PU .

Proof. Nondegeneracy of . ; / is implicit throughout [24, Chapter 26] and follows for
instance from Theorem 26.3.1 of [24].

The bilinear and semilinear forms restrict to pairings

. ; / W A
PU � A

PU ! ZŒq; q�1�; h ; i W A
PU � A

PU ! ZŒq; q�1�:

2.1.4. Signed sequences. Throughout the paper we write ECi for Ei and E�i for
Fi and need notation for products of these elements. By a signed sequence i D
."1i1; "2i2; : : : ; "mim/, where "1; : : : ; "m 2 fC;�g and i1; : : : ; im 2 I , we mean a fi-
nite sequence of elements of I with signs. We may also write i as "1i1; "2i2; : : : ; "mim
or even "1i1"2i2 : : : "mim. Let ji j DPm

kD1 "kik , viewed as an element of ZŒI �. The
length of i , denoted kik, is the number of elements in the sequence i (m in the above
notations). Define SSeq to be the set of signed sequences. Let

Ei ´ E"1i1E"2i2 : : : E"mim 2 U ;

Ei1�´ E"1i1E"2i2 : : : E"mim1� 2 PU :
Recall that iX 2 X denotes the image of i under the embedding I ! X . Let

iX ´ "1.i1/X C � � � C "m.im/X 2 X:
Then Ei1� D 1�CiXEi1�, so that �, respectively �C iX , is the right, respectively
left, weight of Ei1�.

A sequence i is positive if all signs "1; : : : ; "m D C. We may write a positive
sequence as .i1; : : : ; im/ or even i1 : : : im. Denote by SSeqC the set of all positive
sequences. As in [16], for � 2 NŒI �, � D P

�i � i ; denote by Seq.�/ the set of all
sequences i D i1 : : : im such that i appears �i times in the sequence. There is an
obvious bijection

SSeqC Š `
�2NŒI �

Seq.�/:

A sequence is negative if all signs "1; : : : ; "m D �. For a positive sequence i denote
by�i the corresponding negative sequence. For any signed sequence i denote by�i
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the sequence given by reversing all signs in i . We write concatenation of sequences
i and j as ij , attaching˙i to the left of i as˙ii , etc.

By a divided powers signed sequence (dpss for short) we mean a sequence

i D ."1i .a1/
1 ; "2i

.a2/
2 ; : : : ; "mi

.am/
m /

where "’s and i ’s are as before anda1; : : : ; am 2 f1; 2; : : : g. Let ji j DPm
kD1 "kakik 2

ZŒI � and define kik, the length of i , as
Pm
kD1 ak 2 N. For a dpss i let Oi be a signed

sequence given by expanding i

Oi D ."1i1; : : : ; "1i1; "2i2; : : : ; "2i2; : : : ; "mim; : : : ; "mim/
D .."1i1/a1."2i2/

a2 : : : ."mim/
am/;

with term "1i1 repeating a1 times, term "2i2 repeating a2 times, etc.

Define

E"i.a/ ´ E
.a/
"i D

Ea"i
Œa�i Š

2 U ;

the quantum divided powers of generators E"i . Then

E"i.a/1� D E.a/"i 1� 2 PU

has left weight �C "aiX . More generally, for a dpss i ,

Ei ´ E
.a1/
"1i1

E
.a2/
"2i2

: : : E
.am/
"mim

2 U

and

Ei1�´ E
.a1/
"1i1

E
.a2/
"2i2

: : : E
.am/
"mim

1� 2 PU ;

with left weight �CPm
rD1 "rar.ir/X .

Let SSeqd be the set of all dpss. Elements Ei1�, over all i 2 SSeqd and � 2 X ,
span A

PU as a ZŒq; q�1�-module. For � 2 NŒI �, Seqd.�/was defined in [16] as the set
of all expressions i .a1/

1 : : : i
.am/
m such that

Pm
rD1 ar ir D �. Each element of Seqd.�/

gives a positive divided power sequence, and

SSeqdC Š `
�2NŒI �

Seqd.�/:

The length kik of a dpss is defined as the sum a1 C a2 C � � � C am in the above
notation.
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For the reader’s convenience our notations for sequences are collected below:

SSeqd
divided powers

signed sequences

SSeq
signed sequences.

SeqC

positive sequences

SSeqdC

positive divided power
signed sequences

Seqd.�/
positive divided

powers sequences
of weight �

Seq.�/
positive sequences

of weight �

��

��

� � ��

� � �� � � ��

� � ��

��

��

��

��

2.2. Geometric interpretation of the bilinear form. Markm points 1�f0g, 2�f0g,
…, m � f0g on the lower boundary R � f0g of the strip R � Œ0; 1� and k points
1 � f1g; 2 � f1g; : : : ; k � f1g on the upper boundary R � f1g. Assuming m C k is
even, choose an immersion of mCk

2
strands into R � Œ0; 1� with these mC k points

as the endpoints. Orient each strand and label it by an element of I . Then endpoints
inherit orientations and labels from the strands:

��

��

�� ��

i

j

i

`

�!

� � � �

� � � �

C � � C
i j i i

C � C �
` j i `

k D 4

m D 4.

Orientation and labels at lower and upper endpoints define signed sequences i ; j 2
SSeq. In the above example, i D .C`;�j;Ci;�`/ and j D .Ci;�j;�i;Ci/. We
consider immersions modulo boundary-preserving homotopies and call them pairings
between sequences i and j , or simply .i ; j /-pairings.

Clearly, .i ; j /-pairings are in a bijection with complete matchings of m C k

points such that the two points in each matching pair share the same label and their
orientations are compatible. Denote by p0.i ; j / the set of all .i ; j /-pairings.

A minimal diagramD of a .i ; j /-pairing is a generic immersion that realizes the
pairing such that strands have no self-intersections and any two strands intersect at
most once. We consider minimal diagrams up to boundary-preserving isotopies. A
.i ; j /-pairing has at least one minimal diagram, in the example below it has two.

��

		

 ��

i

j i

`

��

		

 ��

i i j

`
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Here is an immersion which is not a minimal diagram.

��





��

i

j

i

`

��

Given � 2 X , color the regions of a minimal diagram D by elements of X such
that the rightmost region is colored �, and the two regions between the two sides on
an i -labelled strand differ by iX :

��

i

�.�C iX

Isotope D so that the strands at each crossing are either both oriented up or down,
and define the degree deg.D; �/ ofD relative to � as the integer which is the sum of
contributions from all crossings, local maxima and minima of D:

����

i �

����

i � ����

i
�

����

i
�

����

i j

�
����

i j
�

deg cCi;� c�i;� cCi;� c�i;� �i � j �i � j
;

where

c˙i;�´ i � i
2
.1˙ hi; �i/: (2.1)

Notice that
qc˙i;� D q1˙hi;�i

i :

In the simply-laced case we have qi D q and c˙i;� D 1˙ hi; �i.
The degrees of the other crossings are determined from the rules above:

deg

� ��

��i

j �
�
´ deg

0
BBB@

��

�
�� ��

����

j i

ji

1
CCCA D deg

0
BBB@

��

�
����

�� ��

ij

i j

1
CCCA D 0;

deg

�
��

��

i

j�
�
´ deg

0
BBB@

��

�
����

�� ��

ji

j i

1
CCCA D deg

0
BBB@

��

�
�� ��

����

i j

ij

1
CCCA D 0:
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Since both of these crossings have degree zero, we will refer to them as balanced
crossings.

Proposition 2.6. deg.D; �/ depends only on � and on the .i ; j /-pairing realized
by D. Thus, deg.D; �/ is independent of the choice of a minimal diagram for a
pairing.

Proof. Invariance under cancellation of U-turns can be shown as follows:

deg

0
B@ �� �� ��

��C iX 1
CA D i � i

2
.1C hi; �i/C i � i

2
.1 � hi; �C iX i/

D 0 D deg

0
B@ ��

��C iX 1
CA:

Invariance of deg.D; �/ under other isotopies of D is straightforward and is left
to the reader. Any two minimal diagrams of the same .i ; j /-pairing are related
by a sequence of isotopies and “triple-crossing” moves for various orientations, see
examples below.

����

����

����

�

i j k

$
�� ��

�� ��

�� ��

�

kji

;
����

��

����

��

�

i j k

$
��

��

�� ��

��

�� �

kji

The invariance under these moves is manifestly obvious.

From now on, for each .i ; j /-pairing we choose one minimal diagram D rep-
resenting this pairing and denote by p.i ; j / the set of these diagrams. Recall the
pairings . ; / and h ; i on PU from Section 2.1. The following theorem generalizes
similar results from [16], [17].

Theorem 2.7. For any i ; j 2 SSeq and �;� 2 X we have

.Ei1�; Ej 1�/ D hEi1�; Ej 1�i D ı��
X

D2p.i ;j /
qdeg.D;�/

Y
i2I

1

.1 � q2i /�i
; (2.2)

where 
i is the number of i -colored strands inD.
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For example,

p ..�j;Ci;Cj;�i/; .Ci;�i//

D

8̂̂̂
<̂
ˆ̂̂̂:

��

�� 



i

j i

�

;

��

��

��
i

j i

�

9>>>>=
>>>>;

so that

.E.�j;Ci;Cj;�i/1�; E.Ci;�i/1�/

D �q2c�i;�CcCj;��i �j C qcCj;��iX

� 1

.1 � qi /2
1

.1 � qj /
D �q2.1�hi;�i/

i q
.1Chj;�i/
j q�i �j C q.1Chj;�i/

j q�i �j � 1

.1 � qi /2
1

.1 � qj / :

The product term in (2.2) is independent of D since 2
i is the number of times
label i appears in the sequence ij .

Proof. The first equality in (2.2) is obvious sinceEi1� is invariant under the involution
 . For i , j , �, � as in Theorem 2.7 define

.Ei1�; Ej 1�/
0 D ı��

X
D2p.i ;j /

qdeg.D;�/
Y
i2I

1

.1 � q2i /�i
: (2.3)

During the proof we viewEi1� andEj 1� in .Ei1�; Ej 1�/
0 as formal symbols rather

than elements of PU , since we have not yet proved that . ; /0 descends to PU . We want
to show

.Ei1�; Ej 1�/
0 D .Ei1�; Ej 1�/

for all i , j , � and �.
The nontrivial case is � D �. We can also interpret the formula .Ei1�; Ej 1�/

0 D
0 for� ¤ � via the sum of diagrams, since then the rightmost region must be colored
by both � and �, which is not allowed.

��

		

 ��

i

j i

`

�

�

Notice that in the absence of .i ; j /-pairings the right-hand side of (2.2) is zero,
since there are no diagrams to sum over. If the left weights of Ei1� and Ej 1� are
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different the inner product .Ei1�; Ej 1�/ D 0 and .Ei1�; Ej 1�/
0 D 0 as well since

the set of .i ; j /-pairings is empty in this case.
Assume that both i and j are positive. Then any minimal .i ; j /-diagram can be

isotoped to be braid-like, with the strands going upward.

���� ��

��

����

�

������

j1
::: jm

i1 ::: im

 ����

����

����

�

��
j1

::: jm

i1 ::: im

Moreover, in this case k D m, otherwise p.i ; j / is empty. The sum on the right-
hand side of (2.2) describes the canonical bilinear form on UC Š f evaluated on
Ei D Ei1 : : : Eim and Ej D Ej1

: : : Ejm
, see [25], [27], [16], [17].

In view of property (iv) of Lusztig’s bilinear form, we obtain the following:

Lemma 2.8. If i , j are positive,

.Ei1�; Ej 1�/
0 D .Ei1�; Ej 1�/

for any � 2 X .

Thus, for positive i , j , the geometrically defined bilinear form . ; /0 coincides
with . ; /.

Lemma 2.9. Equation (2.2) holds for the pair .˙ii ; j / if and only if it holds for the
pair .i ;�ij /.
Proof. Attaching a U-turn gives a bijection between p.˙ii ; j / and p.i ;�ij /.

D

��		 ��

��

„ ƒ‚ …

j

˙i

‚ …„ ƒ

i

D

��		 ��

��

„ ƒ‚ …

j‚ …„ ƒ

i

�i

We have

deg. D; �/ D deg.D; �/C i � i
2
.1˙ hi; �� iX i/ D deg.D; �/� i � i

2
.1� hi; �i/;

where the additional term matches the power of q in the formula N�.1�E˙i / D
q
1�hi;�i
i E�i1�.
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The previous lemma implies that it is enough to check the equality

.Ei1�; Ej 1�/
0 D .Ei1�; Ej 1�/

when j is the empty sequence. The next three lemmas show that

.Ei1�; 1�/
0 D .Ei1�; 1�/

for any i and �.

Lemma 2.10. Equation (2.2) holds for all pairs ..�j /i ;;/ with i , j positive.

Proof. Bending up �j by adding U-turns transforms the pair ..�j /i ;;/ to .i ; j /
for which (2.2) holds (see Lemma 2.8). We have

.E.�j /i1�; 1�/ D q˛.Ei1�; Ej 1�/; .E.�j /i1�; 1�/
0 D q˛.Ei1�; Ej 1�/

0;

˛ being the power ofq in the formula N�.E�j 1�CiX / D �.E�j 1�CiX / D q˛1�CiXEj .

Lemma 2.11. For i; j 2 I , i ¤ j
.Ei 0˙i�j i 001�; 1�/

0 D .Ei 0˙i�j i 001�; 1�/

if and only if

.Ei 0�j˙ii 001�; 1�/
0 D .Ei 0�j˙ii 001�; 1�/:

Proof. Attach a crossing at the˙i�j location to a diagramD in p.i 0˙ i�j i 00;;/.

�� ��

˙i �j

D �

„ ƒ‚ …
i 0

„ ƒ‚ …
i 00

�!

˙i�j

����

D0 �

„ ƒ‚ …
i 0

„ ƒ‚ …
i 00

The resulting diagramD0 is minimal if the˙i and�j strands ofD do not intersect.
Otherwise, it is not minimal, but the homotopy

��

��

�! ����

will make it minimal (the orientations in the picture are for theCi � j case).
We get a bijection

p.i 0 ˙ i � j i 00;;/ ��!Š p.i 0 � j ˙ ii 00;;/
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which preserves the degree of a diagram, for any �, since deg

�
��

��

�
�
D 0 for

any �. Hence,
.Ei 0˙i�j i 001�; 1�/

0 D .Ei 0�j˙ii 001�; 1�/
0:

Since Ei 0˙i�j i 001� D Ei 0�j˙ii 001� in PU , we see that

.Ei 0˙i�j i 001�; 1�/ D .Ei 0�j˙ii 001�; 1�/

and the lemma follows.

Lemma 2.12. Assume that .Ei 0i 001�; 1�/
0 D .Ei 0i 001�; 1�/. Then

.Ei 0Ci�ii 001�; 1�/
0 D .Ei 0Ci�ii 001�; 1�/

if and only if
.Ei 0�iCii 001�; 1�/

0 D .Ei 0�iCii 001�; 1�/:

Proof. Decompose the diagrams in p.i 0 C i � ii 00;;/ into three classes:

(1) Ci and �i strands do not intersect ��
��

Ci �i

(2) Ci and �i strands intersect   ��

Ci �i

(3) a strand connectsCi and �i   

Ci �i
.

Likewise, decompose the diagrams in p.i 0 � i C ii 00;;/ into three classes:

(1) �i andCi strands do not intersect !!
  

�i Ci

(2) �i andCi strands intersect �� ��

�i Ci

(3) a strand connects �i andCi ��

�i Ci
.
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Set up a bijection

p.i 0 C i � ii 00;;/ ��!Š p.i 0 � i C ii 00;;/
that takes diagrams from class (1) in the first set to diagrams of class (2) in the second
set by adding a crossing, diagrams of class (2) to diagrams of class (1) by removing

the crossing

� ��

��Ci �i

�
, and diagrams of class (3) to diagrams of class (3) by

reversing the orientation of theCi �i strand.
Let Ei 0Ci�ii 001� D Ei 0Ci�i1�Ei 001�, that is, � D � C i 00

X is the weight of the
region to the right of the strand near �i .

�� ��

Ci �i

�

We have in PU
Ei 0Ci�ii 001� D Ei 0�iCii 001� C Œhi; �i�iEi 0i 001�:

Therefore,

.Ei 0Ci�ii 001�; 1�/ D .Ei 0�iCii 001�; 1�/C Œhi; �i�i .Ei 0i 001�; 1�/:

Since deg

�
��

��

�
�
D deg

� ��

��

�
�
D 0, a diagram of class (1), respec-

tively class (2), contributes to .Ei 0Ci�ii 001�; 1�/
0 as much as its image in class (2),

respectively class (1), contributes to .Ei 0�iCii 001�; 1�/
0.

A diagrams of class (3) inp.i 0Ci�ii 00;;/ comes from some diagram inp.i 0i 00;;/
by adding a .Ci � i/ cap to the correct position. Similarly, a diagram of class (3) in
p.i 0 � i C ii 00;;/ comes from a diagram in p.i 0i 00;;/ by adding a .�i C i/ cap.
Thus, the only contribution to the difference .Ei 0Ci�ii 001�; 1�/

0� .Ei 0�iCii 001�; 1�/
0

comes from class .3/ and is given by

.Ei 0Ci�ii 001�; 1�/
0 � .Ei 0�iCii 001�; 1�/

0

D q

deg

�
����

i ��

1 � q2i
.Ei 0i 001�; 1�/

0 � q
deg

�
��""

i ��

1 � q2i
.Ei 0i 001�; 1�/

0

or

.Ei 0Ci�ii 001�; 1�/
0 D .Ei 0�iCii 001�; 1�/

0 C q
1�hi;�i
i � q1Chi;�i

i

1 � q2i
.Ei 0i 001�; 1�/

0

D .Ei 0�iCii 001�; 1�/
0 C q

hi;�i
i � q�hi;�i

i

qi � q�1
i

.Ei 0i 001�; 1�/
0;
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where the coefficient of .Ei 0i 001�; 1�/
0 in the last term is easily recognized as Œhi; �i�i ,

completing the proof of the lemma.

We can finish the proof that

.Ei1�; 1�/
0 D .Ei1�; 1�/

by induction on kik, the length of i . During the induction step we move all negative
entries of i to the left of all positive entries, sometimes adding terms .Ej 1�; 1�/

0,
respectively .Ej 1�; 1�/withkj k D kik�2 to the equation. We can then reduce to the
case when all negative entries of i precede all positive entries, which is Lemma 2.10.
Theorem 2.7 follows.

We can turn this proof around to define PU in a more geometric way than in
Lusztig [24]. Start with the Q.q/-algebra 0U with mutually orthogonal idempotents
1� and basis fEi1�gi;�, over all finite signed sequences i 2 SSeq and � 2 X . The
multiplication is

Ei 01�Ei1� D
´
Ei 0i1� if � D �C iX ;

0 otherwise.

When i is the empty sequence, E;1� D 1�.
Define a Q.q/-bilinear form . ; /0 on 0U via the sum over diagrams, formula (2.3).

Let � � 0U be the kernel of this bilinear form. Then

� D
M
�;�2X

��� ; ��� ´ � \ �0U�;

where �0U� is spanned by Ei1� for all i such that � D �C iX . It follows from the
definition of the bilinear form that � is an ideal of 0U .

It is not hard to check that

PU Š 0U=� and . ; /0 D . ; /;
following the above proof of Theorem 2.7. This definition is not too far off from
Lusztig’s original definition, which utilizes f Š U˙, defined as the quotient of the
free associative algebra 0f by the kernel of a bilinear form on 0f . The latter bilinear
form is the restriction of . ; /0 on 0U to 0f � 0U . Here we map 0f ! 0U by sending
	i D 	i1 : : : 	im to Ei1� D ECi1 : : : ECim1� for each positive sequence i (this map
is not a homomorphism), alternatively we can send 	i to E�i1�.

0f f Af

0U PU A
PU

� �

��

� �

��

� �

��

�� ��

�� ��

� �##

� �##

„ ƒ‚ …
Q.q/-algebras

„ ƒ‚ …
ZŒq; q�1�-algebras

(vertical arrows do not
respect the algebra structure)
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For each � 2 X there are two inclusions (corresponding to UC and U�) of the lower
half of the diagram to the upper half. Restricting to weight spaces, we get the diagram

0f� f� Af�

�˙�X 0U� �˙�X PU� �˙�X .A PU/�

� �

��

� �

��

� �

��

�� ��

�� ��

� �##

� �##

„ ƒ‚ …
Q.q/-vector spaces

„ ƒ‚ …
ZŒq; q�1�-modules

where �˙�X PU� D 1�˙�X PU1�, etc.

3. Graphical calculus for PU categorification

3.1. The 2-category U

3.1.1. Definition. We define a 2-category U for any root datum .Y;X; h ; i; : : : /
of type .I; �/. This 2-category has the structure of an additive k-linear 2-category,
see [12] and [21, Section 5]. Thus the hom sets between any two objects form a k-
linear category, and composition and identities are given by additive k-linear functors.
The 2-morphisms in U are represented graphically using string diagrams, see [21,
Section 4] and the references therein. The categorified sl2 relations in the definition
of U are taken from [21], and theR.�/ relations are taken from [16], [17]. A different
notion of a categorical sl2 action appeared earlier in [7].

Definition 3.1. Let .Y;X; h ; i; : : : / be a root datum of type .I; �/. U is an additive
k-linear 2-category. The 2-category U consists of

� objects: � for � 2 X .

The homs U.�; �0/ between two objects �, �0 are additive k-linear categories con-
sisting of the following.

� Objects2 of U.�; �0/: a 1-morphism in U from � to �0 is a formal finite direct
sum of 1-morphisms

Ei 1�ftg D 1�0Ei 1�ftg
for any t 2 Z and signed sequence i 2 SSeq such that �0 D �C iX .

� Morphisms of U.�; �0/: for 1-morphisms Ei 1�ftg;Ej 1�ft 0g 2 U, hom sets
U.Ei 1�ftg;Ej 1�ft 0g/ of U.�; �0/ are graded k-vector spaces given by linear

2We refer to objects of the category U.�; �0/ as 1-morphisms of U. Likewise, the morphisms of
U.�; �0/ are called 2-morphisms in U.
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combinations of degree t � t 0 diagrams, modulo certain relations, built from
composites of the following.

i) Degree zero identity 2-morphisms 1x for each 1-morphism x in U. The
identity 2-morphisms 1ECi 1�

ftg and 1E�i 1�
ftg, for i 2 I , are represented

graphically by

1ECi 1�ftg 1E�i 1�ftg

��

i

i

��C iX ��

i

i

�� � iX

deg 0 deg 0

and more generally, for a signed sequence i D "1i1"2i2 : : : "mim, the iden-
tity 1Ei 1�ftg 2-morphism is represented as

: : :

i1 i2 im

i1 i2 im

��C iX

where the strand labelled i˛ is oriented up if "˛ D C and oriented down if
"˛ D �. We will often place labels with no sign on the side of a strand and
omit the labels at the top and bottom. The signs can be recovered from the
orientations on the strands as explained in Section 2.2.

ii) For each � 2 X the 2-morphisms

Notation:
��

�
i;� ��

�
i;�

$$�����
%%����� i;j;� &&��

��
�
''

��
��

�

i;j;�

2-morphism:
��

i

�
��C iX ��

i

�
� �C iX ����

i j

�
����i j

�

Degree: i � i i � i �i � j �i � j

Notation: ��

i;�

��

i;�
�� i;� �� i;�

2-morphism:
�� ((

i �

))**

i �
++,,

i �
-- ..

i �

Degree: cCi;� c�i;� cCi;� c�i;�
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with c˙i;� defined in (2.1), such that the following identities hold.

– The sl2 relations3 (all of the strands are labelled by i ):

a) 1�CiX ECi1� and 1�E�i1�CiX are biadjoint, up to grading shifts:

�� �� ��

�

�C iX
D ��

��C iX
�� �� ��

�C iX

�

D ��

�C iX�

(3.1)

������

�

�C iX
D ��

��C iX
������

�C iX

�

D ��

�C iX�

(3.2)

b)

��

��

��

�C iX

�

�

i

D
��

�
� �C iX

i

D ��

��

��

�C iX

�

�

i

(3.3)

c) All dotted bubbles of negative degree are zero. That is,

i
����

�̨

�

D 0 if ˛ < hi; �i � 1
i

����

�̨

�

D 0 if ˛ < �hi; �i � 1 (3.4)

for all ˛ 2 ZC, where a dot carrying a label ˛ denotes the ˛-fold iterated
vertical composite of

��

�
i;�

or
��
�
i;�

depending on the orientation. A dotted

bubble of degree zero equals 1:

i
����

�hi;�i�1

�

D 1 for hi; �i � 1,
i

����

��hi;�i�1

�

D 1 for hi; �i 	 �1.

d) For the following relations we employ the convention that all summations

3The vertical ii-crossing was represented by the diagram
�� //

in [21], [22]. Here we use a standard
crossing for simplicity.
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are increasing, so that
P˛
fD0 is zero if ˛ < 0.

���

��

��

��

i

D �
�hi;�iX
fD0

�
��

i

i
����

�
hi;�i�1Cf

� �hi;�i�f

� ��

��

��

i

�� D
hi;�iX
gD0

�

��

i

i
����

�
�hi;�i�1Cg

� hi;�i�g
(3.5)

i i

�� �� �� D � ����

��

��

�

i i

C
hi;�i�1X
fD0

fX
gD0

�

��//�f �g

))�� �hi;�i�1�f
i

����

��hi;�i�1Cg

i i

�� �� �� D � ��

��

��

��

�

i i

C
�hi;�i�1X
fD0

fX
gD0

����
�f �g

--00 ��hi;�i�1�f
i

����

�hi;�i�1Cg

�

(3.6)

for all� 2 X . Notice that for some values of� the dotted bubbles appearing
above have negative labels. A composite of

��

�
i;�

or
��
�
i;�

with itself a

negative number of times does not make sense. These dotted bubbles with
negative labels, called fake bubbles, are formal symbols inductively defined
by the equation

�
i ���� ��hi;�i�1

�

C i ���� ��hi;�i�1C1

�

t C � � � C i ���� ��hi;�i�1C˛

�

t˛ C � � �
�

�
�
i

����

�hi;�i�1

�

C � � � C i
����

�hi;�i�1C˛

�

t˛ C � � �
�
D 1:

(3.7)

and the additional condition

i
����

��1

�

D
i

����

��1

�

D 1 if hi; �i D 0:

Although the labels are negative for fake bubbles, one can check that the
overall degree of each fake bubble is still positive, so that these fake bubbles
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do not violate the positivity of dotted bubble axiom. The above equation,
called the infinite Grassmannian relation, remains valid even in high degree
when most of the bubbles involved are not fake bubbles. See [21] for more
details.

e) NilHecke relations:

����

����

�

i i

D 0;
����

����

����

i i i

� D
�� ��

�� ��

�� ��

i ii

�; (3.8)

����

�

i i
D

��

�
��

i i

� �
�����

i i

� D
�����

i i

� �
����

�i i

� : (3.9)

We will also include (3.10) for i D j as an sl2-relation.

– All 2-morphisms are cyclic4 with respect to the above biadjoint structure. This
is ensured by the relations (3.3), and the relations

����

����
�

����

�� ��

ji

j i

D
�� ��

i j

� D
�� ��

�� ��
�

�� ��

����

i j

ij

: (3.10)

The cyclic condition on 2-morphisms expressed by (3.3) and (3.10) ensures that
diagrams related by isotopy represent the same 2-morphism in U.
It will be convenient to introduce degree zero 2-morphisms:

��

��i

j � ´
��

�
�� ��

����

j i

ji

D
��

�
����

�� ��

ij

i j

; (3.11)

��

��

i

j� ´
��

�
����

�� ��

ji

j i

D
��

�
�� ��

����

i j

ij

; (3.12)

where the second equality in (3.11) and (3.12) follow from (3.10).

4See [21] and the references therein for the definition of a cyclic 2-morphism with respect to a biadjoint
structure.
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– For i ¤ j ,

����

��

��

�

i j

D ���� �

i j

; ��

��

��

��

�

i j

D ���� �

i j

: (3.13)

– The R.�/-relations:

a) For i ¤ j ,

����

����

�

i j

D

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

���� �

i j

if i � j D 0,

���� �
�dij

i j

C ���� �
�dji

i j

if i � j ¤ 0,

(3.14)

�����

i j

� D
��

�
��

i j

� ;

�����
i j

� D
����

�i j

� : (3.15)

b) Unless i D k and i � j ¤ 0,

����

����

����

�

i j k

D
�� ��

�� ��

�� ��

�

kji

: (3.16)

For i � j ¤ 0,

����

����

����

�

i j i

�
�� ��

�� ��

�� ��

�

iji

D
dij �1X
aD0

����

�a
��

� dij �1�a

�

i j i

: (3.17)

For example, for any shift t there are 2-morphisms

��

�
�

i

i

W ECi1�ftg ) ECi1�ft � i � ig;

����

i j

�

W ECiCj 1�ftg ) ECjCi1�ft � i � j g;
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�� ((

i �
W 1�ftg ) E�iCi1�ft � cCi;�g;

-- ..

i �
W E�iCi1�ftg ) 1�ft � c�i;�g

in U, and the diagrammatic relation

����

����

����

i i i

� D
�� ��

�� ��

�� ��

i ii

�

gives rise to relations in U
�
Ei i i1�ftg;Ei i i1�ft C 3i � ig

�
for all t 2 Z.

– The additive k-linear composition functor U.�; �0/�U.�0; �00/! U.�; �00/ is
given on 1-morphisms of U by

Ej 1�0ft 0g � Ei 1�ftg 7! Eji 1�ft C t 0g
for iX D � � �0, and on 2-morphisms of U by juxtaposition of diagrams.0

BBBBB@
""

�

��

�

��

�

��

�
��

��
����

��

����

�
����

� �0�00

1
CCCCCA �

0
BBBBB@ �

�
�

�� �� ��

�

��0

1
CCCCCA

7�!

""

�

��

�

��

�

��

�
��

��
����

��

����

�
����

�
�
�
�

�� �� ��

�

�

Remark 3.2. By choosing an orientation of the graph associated to Cartan datum
.I; �/ the R.�/-relations above can be modified by replacing them with signed R.�/
relations determined by invertible elements �ij , �j i chosen for each edge of the graph
(see [17] for more details).

U has graded 2-homs defined by

HOMU.x; y/´
M
t2Z

HomU.xftg; y/:

Also define graded endomorphisms

ENDU.x/´ HOMU.x; x/:
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The 2-category with the same objects and 1-morphisms as U and 2-homs given by
HOMU.x; y/ is denoted U�, so that

U�.x; y/ D HOMU.x; y/:

U� is a graded additive k-linear 2-category with translation [21, Section 5.1].

3.1.2. Relations in U. We now collect some other relations that follow from those
above. These relations simplify computations in the graphical calculus and can be
used to reduce complex diagrams into simpler ones (see the proofs of Proposition 3.6
and Lemma 3.9).

Proposition 3.3 (Bubble slides). The following identities hold in U:

�

��

j

i
����

�
�hi;�i�1C˛

D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
:̂

P̨
fD0

.˛ C 1 � f /
�C jX

��

j

i
����

�
�hi;�CiX i�1Cf

� ˛�f
if i D j;

�C jX
��

j

i
����

�
�hi;�CjX i�1C˛

C
�C jX

��

j

i
����

�
�hi;�CjX i�2C˛

�
if i � j D �1;

�C jX
��

j

i
����

�
�hi;�i�1C˛

if i � j D 0:

�

��

j

i
����

�
hi;�CjX i�1C˛

D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

P̨
fD0

.˛ C 1 � f /
�

��

j

i
����

�
.hi;�i�1/Cf

� ˛�f
if i D j;

�

��

j

i
����

�
.hi;�i�1/C˛�1

�
C

�

��

j

i
����

�
.hi;�i�1/C˛

if i � j D �1;

�

��

j

i
����

�
.hi;�i�1/C˛

if i � j D 0:
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Proof. For i D j the proof appears in [21]. For i ¤ j the equation follows from
decomposing

��

��

�

����

�
�hi;�CjX i�2C˛

j

i

D ��

��

�

����

�
�hi;�CjX i�2C˛

j

i

;
��

��

�

����

�
hi;�CjX i�1C˛

j

i

D ��

��

�

����

�
hi;�CjX i�1C˛

j

i

using the relations (3.13) and (3.14).

Proposition 3.4 (More bubble slides). The following identities hold in U:

�

��

j

i
����

�
.hi;�i�1/C˛

D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

�C iX
��

j

i
����

�
.hi;�iC1/C.˛�2/

� 2
� 2

�C iX
��

j

i
����

�
.hi;�iC1/C.˛�1/

�
C

�C iX
��

j

i
����

�
.hi;�iC1/C˛

if i D j;

P̨
fD0

.�1/f
�C jX

��

j

i
����

�
hi;�CjX i�1C.˛�f /

� f
if i � j D �1;

�C jX
��

j

i
����

�
�hi;�CjX i�1C˛

D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

�

��

j

i
����

�
.�hi;�i�1/C.˛�2/

� 2
� 2

�

��

j

i
����

�
.�hi;�i�1/C.˛�1/

�
C

�

��

j

i
����

�
.�hi;�i�1/C˛

if i D j;

P̨
fD0

.�1/f
�

��

j

i
����

�
.�hi;�i�1/C.˛�f /

� f
if i � j D �1:

Proof. These equations follow from the previous proposition.

Proposition 3.5. Unless i D k D j we have

����

��

����

��

�

i j k

D
��

��

�� ��

��

�� �

kji

; (3.18)
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and when i D j D k we have

����

��

����

��

�

i i i

�
��

��

�� ��

��

�� �

iii

D
X 11 �

f1

22 �f3

i ����

��hi;�i�3Cf4

��

�f2

�

C
X

��

�g2 33 ���g1

**00�
g3

i
����

�hi;�i�1Cg4

�

where the first sum is over all f1; f2; f3; f4 � 0 with f1Cf2Cf3Cf4 D hi; �i and
the second sum is over all g1; g2; g3; g4 � 0 with g1 C g2 C g3 C g4 D hi; �i � 2.
Recall that all summations in this paper are increasing, so that the first summation
is zero if hi; �i < 0 and the second is zero when hi; �i < 2.

Reidemeister 3-like relations for all other orientations are determined from (3.16),
(3.17), and the above relations using duality.

Proof. For (3.18) if i ¤ j post-compose both sides with the isomorphism
��

��

�

j k i

;

then use that i D j ¤ k to apply (3.16) on the right term and establish the equality.
If i D j then we may assume that j ¤ k. In this case we pre-compose with the
isomorphism

��

��
�

i k j
;

then use (3.16) on the left side to establish the identity.
The case i D j D k appears in [21, Section 5.4].

3.2. Spanning sets of HOMs in U. Given two Laurent power series f .q/ DPC1
kDa fkqk and h.q/ DPC1

kDa with fk; hk 2 Z we say that f .q/ 	 h.q/ if fk 	 hk
for all k. For a graded vector space V D ˚a2ZVa define the graded dimension as

gdim V D
X
a2Z

qa dim Va:

3.2.1. Endomorphisms of 1�. For any root datum and � 2 X define a graded
commutative ring …� freely generated by symbols

i
����

�hi;�i�1C˛

�

for hi; �i � 0 and
i

����

��hi;�i�1C˛

�

for hi; �i < 0 (3.19)

of degree ˛i � i over all i 2 I and ˛ > 0.

Proposition 3.6. Interpreting these generators of …� as elements of HOMU.1�; 1�/
induces a surjective graded k-algebra homomorphism

…� ! HOMU.1�; 1�/: (3.20)
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Proof. By induction on the number of crossings of a closed diagram D representing
an endomorphism of 1� one can reduce D to a linear combination of crossingless
diagrams following the methods of [21, Section 8]. Crossingless diagrams that con-
tain nested bubbles can be written as linear combinations of crossingless nonnested
diagrams using the bubble slide equations in Propositions 3.3 and 3.4. Using the
Grassmannian relations (3.7) all dotted bubbles with the same label i can be made to
have the same orientation given by (3.19).

The image of the monomial basis of …� under surjective homomorphism (3.20)
is a homogeneous spanning set of the graded vector space HOMU.1�; 1�/. Denote
this spanning set by B;;;;�.

Let

� D
Y
i2I

1Y
aD1

1

1 � q2ai
: (3.21)

� depends only on the root datum (on the values of i � i over all i 2 I ). The graded
dimension of …� is � .

Corollary 3.7. gdim HOMU.1�; 1�/ 	 � and HOMU.1�; 1�/ is a local graded
ring.

Remark 3.8. …� is not Noetherian.

We call monomials in this basis of…� and their images in HOMU.1�; 1�/ bubble
monomials.

3.2.2. Homs between Ei 1� and Ej 1� for positive i and j . Recall the ringsR.�/,
for � 2 NŒI �, from [16], [17] defined by unoriented dotted braid-like diagrams D
modulo local relations that can be read off from equations (3.8)–(3.9) and (3.14)–
(3.17) by forgetting the orientation. There is a decomposition

R.�/ D
M

i ;j 2Seq.�/

jR.�/i ;

where jR.�/i is spanned by diagrams D with i , j being the lower and upper se-
quences of D. Adding upward orientations to a diagram D in R.�/, placing it to the
left of a collection of bubbles representing a monomial in …�,

�
�
�

�� �� ��

�

„ ƒ‚ …

‚ …„ ƒ

i

j

i
����

�hi;�i�1C˛2

j
����

��hj;�i�1C˛4

i
����

�hi;�i�1C˛1

j
����

��hj;�i�1C˛3

k
����

�hk;�i�1C˛5

�

;



32 M. Khovanov and A. D. Lauda

and viewing the result as a 2-morphism from Ei 1� to Ej 1� induces a grading-
preserving k-linear map

'i ;j ;� W jR.�/i ˝k …� �! HOMU.Ei 1�;Ej 1�/:

Lemma 3.9. 'i ;j ;� is surjective.

Proof. Start with a diagram D that represents an element in HOMU.Ei 1�;Ej 1�/.
The relations in our graphical calculus allow us to inductively simplifyD by reducing
the number of crossings if a strand or a circle of D has a self-intersection or if D
contains two strands that intersect more than once. Bubble sliding rules allow moving
bubbles to the far right of the diagram. Eventually,D reduces to a linear combination
of diagrams which are products of diagrams representing elements of jR.�/i and
monomials in …�.

The elements in HOMU.Ei 1�;Ej 1�/ given by diagrams without circles, with no
two strands intersecting more than once, and with all dots at the bottom are precisely
the image under'i ;j ;� of the basis jBi of jR.�/i described in [16]. Denote byBi ;j ;�

the image under'i ;j ;� of the product basis jBi�fmonomials in …�g in jR.�/i�…�.
The lemma implies that Bi ;j ;� is a spanning set in HOMU.Ei 1�;Ej 1�/.

Let
E�1�´

M
i2Seq.�/

Ei 1�; E��1�´
M

i2Seq.�/

E�i 1�:

E�1� and E��1� are 1-morphisms in U. Summing 'i ;j ;� over all i ; j 2 Seq.�/, we
obtain a homomorphism

'�;� W R.�/˝k …� �! ENDU.E�1�/ D EndU�.E�1�/: (3.22)

Proposition 3.10. The homomorphism '�;� of graded k-algebras is surjective.

Adding a downward orientation to a diagramD in R.�/, multiplying it by .�1/a
where a is the number of crossings of identically colored lines, and placing it to the
left of a collection of bubbles representing a monomial in …� induces a surjective
homomorphism

'��;� W R.�/˝k …� �! ENDU.E��1�/:

3.2.3. Spanning sets for general i and j . We now describe a spanning set Bi ;j ;�

in HOMU

�
Ei 1�;Ej 1�

�
for any i , j , �. Recall that p0.i ; j / denotes the set of

.i ; j /-pairings, and p.i ; j / is a set of minimal diagrammatic representatives of these
pairings. For each diagramD 2 p.i ; j / choose an interval on each of the arcs, away
from the intersections. The basisBi ;j ;� consists of the union, over allD, of diagrams
built out of D by putting an arbitrary number of dots on each of the intervals and
placing any diagram representing a monomial in …� to the right of D decorated
by these dots. Notice that Bi ;j ;� depends on extra choices, which we assume are
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made once and for all. For example, for i D .�j;Ci;Cj;�i/ and j D .Ci;�i/
the choice of minimal diagrams is unique, see example following Theorem 2.7. The
choice of intervals for the dots is not unique, though. Choosing these intervals as
shown below

��

� �

��

� �
��

�	

�

Ci �i

�j Ci Cj �i

��






��

�
�

��

�	

�

Ci �i

�j Ci Cj �i
results in the spanning set B.�j;Ci;Cj;�i/;.Ci;�i/;� whose elements are

��

�
a1

��

�a3

��

�a2

Ci �i

�j Ci Cj �i

i
����

�hi;�i�1C˛2

j
����

��hj;�i�1C˛4

i
����

�hi;�i�1C˛1

j
����

��hj;�i�1C˛3

k
����

�hk;�i�1C˛5
�

„ ƒ‚ …
bubble monomial in …�

��

�a1

��

�a3

��

�a3

Ci �i

�j Ci Cj �i

i
����

�hi;�i�1C˛2

j
����

��hj;�i�1C˛4

i
����

�hi;�i�1C˛1

j
����

��hj;�i�1C˛3

k
����

�hk;�i�1C˛5
�

„ ƒ‚ …
bubble monomial in …�

over all nonnegative integers a1; a2; a3 and over all diagrammatic monomials in…�

(bubble orientations are for the case hi; �i � 0, hj; �i < 0, hk; �i � 0).

Proposition 3.11. For any intermediate choices made, the set Bi ;j ;� spans the k-
vector space HOMU.Ei 1�;Ej 1�/.

Proof. Relations on 2-morphisms in U.E�1�/ allow arbitrary homotopies of colored
dotted diagrams modulo lower order terms, i.e., terms with fewer crossings, fewer
circles, etc. Detailed discussion in [21, Section 8] generalizes to the present situation
without difficulty.

For each s 2 Bi ;j ;� its degree deg.s/ is an integer, determined by the rules in
Section 3.1.
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Proposition 3.12. For � as in (3.21) and any i , j , and � we have

�.Ei1�; Ej 1�/ D
X

s2Bi ;j ;�

qdeg.s/: (3.23)

Proof. The left-hand side of equation (3.23) equals � times the RHS of the formula
(2.2). This � is matched in the right-hand side of (3.23) by the summation over all
monomials in…�, since q to the degree of these monomials add up to � . The product
term in the right-hand side of (2.2) is matched by the contribution to the right-hand
side of (3.23) by all possible placements of dots. For each i -labelled strand dots
contribute 1X

aD0
qa.i �i/ D 1

1 � qi �i D
1

1 � q2i
to the product, since the degree of a dot is i � i , and the sum is over all ways to put
some number a of dots on this strand. Finally, the sums over all minimal diagrams
D 2 p.i ; j / give equal contributions to the two sides of (3.23).

Remark 3.13. In view of the first equality in (2.2), we can restate the above propo-
sition via h ; i in place of . ; / on the left-hand side.

Notice that

gdimk.HOMU.Ei 1�;Ej 1�// D
X

s2Bi ;j ;�

qdeg.s/

if and only if Bi ;j ;� is a basis of HOMU

�
Ei 1�;Ej 1�

�
.

Corollary 3.14. For any sequences i ; j and � 2 X we have

gdimk.HOMU.Ei 1�;Ej 1�// 	 �hEi1�; Ej 1�i:
Definition 3.15. We say that our graphical calculus is non-degenerate for a given root
system and field k if for all i ; j ; � the set Bi ;j ;� is a basis of HOMU.Ei 1�;Ej 1�/.

Thus, a calculus is non-degenerate if the equality holds in Corollary 3.14 for all
i , j , �.

Remark 3.16. Nondegeneracy holds if the above condition is true for all � 2 X and
all pairs of positive sequences i , j .

Simple non-degeneracy observations. We can assume that k is only a commutative
ring, work over this ring from the start, and say that the calculus is non-degenerate
over k if U�.Ei 1�;Ej 1�/ is a free k-module with a basisBi ;j ;� for all j , i and�. We
do not know any examples of a root datum and ring k when the calculus is degenerate.
Over a field the non-degeneracy of the calculus depends only on the root datum and
the characteristic of k. If the calculus is non-degenerate over Q, it is non-degenerate
over Z and over any commutative ring k.
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3.2.4. Endomorphisms of E�;��01� . For �; �0 2 NŒI � let

E�;��01�´
M

i2Seq.�/

j 2Seq.�0/

Ei�j 1�:

Consider the graded ring ENDU.E�;��01�/. A spanning set for this ring is given
by dotted minimal diagrams of .i .�i 0/; j .�j 0//-pairings over all i ; j 2 Seq.�/,
i 0; j 0 2 Seq.�0/ times bubble monomials in …�.

""
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�
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��

�

����

��

i
����

�hi;�i�1C˛2

j
����

��hj;�i�1C˛4

i
����

�hi;�i�1C˛1

j
����

��hj;�i�1C˛3

k
����

�hk;�i�1C˛5

�

„ ƒ‚ …
i

„ ƒ‚ …
i 0

‚ …„ ƒj ‚ …„ ƒj 0

Let ��;��0;� be the subspace spanned by diagrams which contain a U-turn, i.e., an
arc with both endpoints on R � f1g or on R � f0g.

Proposition 3.17. ��;��0;� is a 2-sided homogeneous ideal of ENDU.E�;��01�/
which does not depend on choices of minimal diagrams for pairings.

Proof. Left to the reader.

Denote by R�;��0;� ´ ENDU.E�;��01�/=��;��0;� the graded quotient ring, and
by ˇ the quotient map. There is a homomorphism

˛ W R.�/˝k R.�
0/˝k …� �! ENDU.E�;��01�/

given by placing diagrams representing elements in R.�/, R.�0/, …� in parallel

.�1/a D

�� �� ��

D0

�� �� �� ��

i
����

�hi;�i�1C˛2

j
����

��hj;�i�1C˛4

i
����

�hi;�i�1C˛1

j
����

��hj;�i�1C˛3

k
����

�hk;�i�1C˛5

�

;

orienting diagrams forR.�/ upwards and diagrams forR.�0/ downwards, and multi-
plying by .�1/a, where a is the number of crossings inD0 of equally labelled strands.
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The composition ˇ˛ of this homomorphism with the quotient map is surjective. The
diagram below contains an exact sequence of a ring, its 2-sided ideal, and the quotient
ring:

R.�/˝R.�0/˝…�

ˇ˛

44 44














˛

��

0 �� ��;��0;�
�� ENDU.E�;��01�/

ˇ
�� R�;��0;�

�� 0.

(3.24)

Remark 3.18. If the graphical calculus is non-degenerate, ˇ˛ is an isomorphism,
and the sequence splits

0 �� ��;��0;�
�� ENDU.E�;��01�/

ˇ
��
R.�/˝R.�0/˝…�

˛
## �� 0:

A split ring homomorphism induces a split exact sequence of Grothendieck groups [28,
Section 1.5],

0 �� K0.��;��0;�/ �� K0.ENDU.E�;��01�//

K0.ˇ/ ��
K0
�
R.�/˝R.�0/˝…�

�
K0.˛/

## �� 0,

leading to a canonical decomposition of the middle term as the sum of its two neigh-
bors.

3.3. Properties and symmetries of 2-category U

3.3.1. Almost biadjoints. The 1-morphism ECi1� does not have a simultaneous left
and right adjoint E�i1�CiX because the units and counits which realize these biad-
joints in U� are not degree-preserving. However, if we shift E�i1�CiX by f�cCi;�g,
then the unit and counit for the adjunction ECi1� a E�i1�CiX f�cCi;�g become
degree-preserving. More generally, we have ECi1�ftg a E�i1�CiX f�cCi;� � tg in
U since the units and counits have degree

deg

�
�� ((

i �

�i Ci ft�cCi;��tg� D cCi;� C .�cCi;�/ D 0;

deg

�
-- ..

i
�C iX

Ci �i ft�cCi;��tg

�
D .c�i;�CiX // � .�cCi;�/ D 0

and still satisfy the zigzag identities. Similarly, ECi1�ftg possesses a left adjoint
E�i1�CiX fcCi;�� tg in U. One can check that with these shifts the units and counits



A categorification of quantum sl.n/ 37

of the adjunction E�i1�CiX fcCi;� � tg a ECi1�ftg become degree zero and are
compatible with the zigzag identities.

The left adjoint E�i1�CiX fcCi;�� tg and the right adjoint E�i1�CiX f�cCi;�� tg
of ECi1�ftg only differ by a shift. We call morphisms with this property almost
biadjoint. This situation is familiar to those studying derived categories of coherent
sheaves on Calabi–Yau manifolds. Functors with these properties are called ‘almost
Frobenius functors’ in [15] where several other examples of this phenomenon are also
given.

It is then clear that ECi1�ftg and E�i1�ftg have almost biadjoints in U for all
t 2 Z and � 2 X with

1�E�i1�CiX fcCi;� � tg a 1�CiX ECi1�ftg a 1�E�i1�CiX f�cCi;� � tg;
1�ECi1��iX fc�i;� � tg a 1��iX E�i1�ftg a 1�ECi1��iX f�c�i;� � tg: (3.25)

Every 1-morphism in U is a direct sum of composites of ECi1�ftg’s and E�i1�ftg’s
together with identities; by composing adjunctions as explained in [21, Section 5.5],
the right and left adjoints of Ei 1�ftg can be computed. Thus, it is clear that all
1-morphisms in U have almost biadjoints.

3.3.2. Positivity of bubbles. The degree of any closed diagram must be greater than
or equal to zero. In particular, U.1�; 1�ftg/ D 0 if t > 0, and U.1�; 1�/ is at most
1-dimensional (isomorphic to k if the calculus is non-degenerate).

3.3.3. Symmetries of U. We denote by Uop the 2-category with the same objects
as U but the 1-morphisms reversed. The direction of the 2-morphisms remain fixed.
The 2-category Uco has the same objects and 1-morphism as U, but the directions
of the 2-morphisms is reversed. That is, Uco.x; y/ D U.y; x/ for 1-morphisms x
and y. Finally, Ucoop denotes the 2-category with the same objects as U, but the
directions of the 1-morphisms and 2-morphisms have been reversed.

Using the symmetries of the diagrammatic relations imposed on U we construct
2-functors on the various versions of U. In Proposition 3.28 we relate these 2-functors
to various ZŒq; q�1�-(anti)linear (anti)automorphisms of the algebra PU . The various
forms of contravariant behaviour for 2-functors on U translate into properties of the
corresponding homomorphism in PU as the following table summarizes.

2-functors Algebra maps

U! U ZŒq; q�1�-linear homomorphisms

U! Uop ZŒq; q�1�-linear antihomomorphisms

U! Uco ZŒq; q�1�-antilinear homomorphisms

U! Ucoop ZŒq; q�1�-antilinear antihomomorphisms
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Rescale, invert the orientation, and send � 7! ��: Consider the operation on
the diagrammatic calculus that rescales the ii-crossing

$$�����
%%����� i;i;�

7! �
$$�����

%%����� i;i;�
for

all i 2 I and � 2 X , inverts the orientation of each strand and sends � 7! ��:

Q!
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� ��

Ci Ck Cj �i �j �j

Cj Ck Ck �j �k �j 1
CCCCCCCCCA
D �

��

�

��

�

��

�
�

��

��

�� ����

i ���� �
j

���� � ����

�i �k �j Ci Cj Cj

�j �k �k Cj Ck Cj

:

This transformation preserves the degree of a diagram, so by extending to sums of
diagrams we get a 2-functor Q! W U! U given by

Q! W U! U; � 7! ��; 1�Ei 1�ftg 7! 1��E�i 1��ftg:
It is straight forward to check that Q! is a strict 2-functor. In fact, it is a 2-isomorphism
since its square is the identity.

Rescale, reflect across the y-axis, and send � 7! ��: The operation on diagrams
that rescales the ii-crossing

$$�����
%%����� i;i;�

7! �
$$�����

%%����� i;i;�
for all i 2 I and � 2 X , reflects

a diagram across the y-axis, sends � to �� and leaves invariant the relations on the
2-morphisms of U. This operation

Q
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Ci Ck Cj �i �j �j

Cj Ck Ck �j �k �j 1
CCCCCCCCCA
D �
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�
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�

��

�
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�
��

��
// ��

��

i ���� �
j

���� ��� ��

�j �j �i Cj Ck Ci

�j �k �j Ck Ck Cj

is contravariant for composition of 1-morphisms, covariant for composition of 2-
morphisms, and preserves the degree of a diagram. Hence, this symmetry gives a
2-isomorphism

Q
 W U! Uop;

� 7! ��;
1�Es1Es2 : : :Esm�1

Esm1�ftg 7! 1��EsmEsm�1
: : :Es2Es11��ftg;

and on 2-morphisms Q
 maps linear combinations of diagrams to the linear combina-
tion of the diagrams obtained by applying the above transformation to each summand.
The relations on U are symmetric under this transformation, and Q
 is a 2-functor.
The square of Q
 is the identity.
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Reflect across the x-axis and invert orientation: Here we are careful to keep track
of what happens to the shifts of sources and targets:

z 
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��

Ci Ck Cj �i �j �j

Cj Ck Ck �j �k �j f�t 0g

f�tg

:

The degree shifts on the right-hand side are required for this transformation to preserve
the degree of a diagram. This transformation preserves the order of composition of 1-
morphisms, but is contravariant with respect to composition of 2-morphisms. Hence,
by extending this transformation to sums of diagrams we get a 2-isomorphism given
by

z W U! Uco; � 7! �; 1�Ei 1�ftg 7! 1�Ei 1�f�tg;
and on 2-morphisms z reflects the diagrams representing summands across the x-
axis and inverts the orientation. Again, the relations on U possess this symmetry
so it is not difficult to check that z is a 2-functor. Furthermore, it is clear that z is
invertible since its square is the identity.

It is easy to see that these 2-functors commute with each other ‘on-the-nose’. That
is, we have equalities

Q! Q
 D Q! Q
; Q
 z D z Q
; Q! z D z Q!:

The composite 2-functor z Q! Q
 is given by

z Q! Q
 W U! Ucoop;

� 7! �;

1�Es1Es2 : : :Esm�1
Esm1�ftg 7! 1�E�smE�sm�1

: : :E�s2E�s11�f�tg;

and is given on 2-morphisms by rotating diagrams by 180ı.
The following transformation only differs from z Q! Q
 by a shift and is given by

taking adjoints.

Rotation by 180ı (taking right adjoints). This transformation is a bit more subtle
because it uses the almost biadjoint structure of U, in particular, the calculus of mates
(see [21, Section 4.3]). For each 1�x1� 2 U denote its right adjoint by 1�y1�. The
symmetry of rotation by 180ı can also be realized by the 2-functor that sends a
1-morphism 1�x1� to its right adjoint 1�y1� and each 2-morphism � W 1�x1� )
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1�x01� to its mate under the adjunctions 1�x1� a 1�y1� and 1�x01� a 1�y
01�.

That is, � is mapped to its right dual ��. Pictorially,

��

�

�0

x

x0

 ��

�

�0

y0

y

D � ��

�0

�

y0

y

:

This transformation is contravariant with respect to composition of 1-morphisms and
2-morphisms. We get a 2-functor

Q� W U! Ucoop;

� 7! �;

1�Es1Es2 : : :Esm�1
Esm1�ftg 7! 1�E�smE�sm�1

: : :E�s2E�s11�f�t C t 0g;
� 7! ��;

where the degree shift t 0 for the right adjoint 1�E�smE�sm�1
: : :E�s2E�s11�f�t C

t 00g, determined by (3.25), ensures that Q� is degree-preserving. Inspection of the
relations for U will reveal that they are invariant under this transformation so that Q�
is a 2-functor.

We can define an inverse for Q� given by taking left adjoints. We record this
2-morphism here.

Q��1 W U! Ucoop;

� 7! �;

1�Es1Es2 : : :Esm�1
Esm1�ftg 7! 1�E�smE�sm�1

: : :E�s2E�s11�f�t C t 00g;
� 7!� �;

with degree shift t 00 determined from (3.25) and the left dual �� of the 2-morphism �

defined in [21, Section 4.3].

Remark 3.19. The composition Q� z Q! Q
 W U! U gives 2-isomorphism that fixes all
diagrams and only effects the grading shifts.

Remark 3.20. There are degree zero isomorphisms of graded k-vector spaces,

U�.f x; y/! U�.x; Q�.f /y/;
U�.x; gy/! U�. Q��1.g/x; y/;

for all 1-morphisms f , g, x, y in U�, defined at the end of Section 3.1.1.
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3.4. Karoubi envelope, PU, and 2-representations. The Karoubi envelope Kar.C/
of a category C is an enlargement of the category C in which all idempotents split
(see [21, Section 9] and references therein). There is a fully faithful functor C !
Kar.C/ that is universal with respect to functors which split idempotents in C . This
means that if F W C ! D is any functor where all idempotents split in D , then
F extends uniquely (up to isomorphism) to a functor zF W Kar.C/ ! D (see for
example [4], Proposition 6.5.9). Furthermore, for any functor G W C ! D and a
natural transformation ˛ W F ) G, ˛ extends uniquely to a natural transformation
Q̨ W zF ) zG. When C is additive the inclusion C ! Kar.C/ is an additive functor.

Definition 3.21. Define the additive k-linear 2-category PU to have the same objects
as U and hom additive k-linear categories given by PU.�; �0/ D Kar.U.�; �0//. The
fully-faithful additive k-linear functors U.�; �0/ ! PU.�; �0/ combine to form an
additive k-linear 2-functor U ! PU universal with respect to splitting idempotents
in the hom categories PU.�; �0/. The composition functor PU.�; �0/ � PU.�0; �00/ !
PU.�; �00/ is induced by the universal property of the Karoubi envelope from the

composition functor for U. The 2-category PU has graded 2-homs given by

HOM PU.x; y/´
M
t2Z

Hom PU.xftg; y/:

Definition 3.22. A 2-representation of U� is a (weak) graded additive k-linear 2-
functor ‰� W U� ! M�, where M� is a graded additive k-linear 2-category with a
translation.

A 2-representation of U is an additive k-linear 2-functor‰ W U!M that respects
the grading. This happens when there is an additive k-linear 2-functor M ! M�,
with M� a graded additive k-linear 2-category, making the diagram

U

‰

��

�� U�

‰�

��

M �� M�

weakly commutative. Thus, to study 2-representation of U it suffices to study 2-
representation of U� and then restrict to degree-preserving 2-morphisms.

A 2-representation of PU is an additive k-linear 2-functor P‰ W PU!M that respects
the grading.

Denote by M a 2-category as above in which idempotents split. Any 2-represen-
tation‰� W U� !M� gives a unique (up to isomorphism) 2-representation P‰ W PU!
M. The 2-functor P‰ is obtained from ‰� by restricting to the degree-preserving 2-
morphisms of U� and using the universal property of the Karoubi envelope. This is
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illustrated schematically below.

U�

‰�

��

restrict to degree 0
2-morphisms

��
U� �##

‰

��

Karoubian envelope
�� PU

P‰
55���������������������

M� M�
�##

Remark 3.23. The 2-functors Q!, Q
 , z , Q� on U extend to 2-functors on PU, for which
we use the same notations. For example,

Q! W PU! PU;
� 7! ��;

.Ei 1�ftg; e/ 7! . Q!.Ei 1�ftg/; Q!.e//;
� 7! Q!.�/;

and the other 2-morphisms Q
 , z , and Q� are defined analogously. In particular, each
1-morphism in PU has left and right adjoints.

Multigrading. The multigrading introduced at the end of [17] on ringsR.�/ extends
to a multigrading on each hom space U�.Ei 1�;Ej 1�/. The Karoubian envelope
of the corresponding multigraded 2-category should categorify the multi-parameter
deformation of A

PU .

3.5. Direct sum decompositions. Recall that E�1� is the direct sum of Ei 1� over
all i 2 Seq.�/:

E�1�´
M

i2Seq.�/

Ei 1�:

Due to the existence of the homomorphism '�;� in the formula (3.22) any degree
0 idempotent e of R.�/ gives rise to the idempotent '�;�.e/ of E�1� and to the
1-morphism

�
E�1�; '�;� .e/

�
of PU.

Introduce idempotents

eCi;m D

����

�
��

��
��

�
��

2 U.Emi1�;Emi1�/;

e�i;m D .�1/m.m�1/
2

�� ��

�

��

��

��

�
��

2 U.E�mi1�;E�mi1�/
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similar to the idempotent ei;m in [16, Section 2.2] and [17]. Define 1-morphisms
ECi.m/1� and E�i.m/1� in PU by

ECi.m/1�´ .ECim1�; eCi;m/
nm.1 �m/

2

i � i
2

o
;

E�i.m/1�´ .E�im1�; e�i;m/
nm.1 �m/

2

i � i
2

o
:

As in [16], [17], we have direct sum decompositions

ECim1� Š .ECi.m/1�/
˚Œm�i Š; E�im1� Š .E�i.m/1�/

˚Œm�i Š:

For any divided power sequence i D ."1i .a1/
1 ; "2i

.a2/
2 ; : : : ; "mi

.am/
m / define

Ei 1�´ .EOi 1�; ei /;

where Oi is the sequence

."1i1; : : : ; "1i1; "2i2; : : : "2i2; : : : ; "mim : : : ; "mim/

D .."1i1/a1."2i2/
a2 : : : ."mim/

am/;

with term "1i1 repeating a1 times, term "2i2 repeating a2 times, etc., and

ei D e"1i1;a1
� e"2i2;a2

: : : e"mim;am

is the horizontal product of idempotents.
When interested in only one part of a sequence i , we write : : : i 00 : : : instead of

i D i 0i 00i 000 and E:::i 00:::1� instead of Ei 1� D Ei 0i 00i 0001�.

Proposition 3.24. For each i; j 2 I , i ¤ j , and � 2 X there are 2-isomorphisms
of 1-morphisms in PU:

b dC1
2 cM

aD0
E���Ci.2a/CjCi.dC1�2a/:::1� Š

b d
2 cM

aD0
E���Ci.2aC1/CjCi.d�2a/:::1�;

b dC1
2 cM

aD0
E����i.2a/�j�i.dC1�2a/:::1� Š

b d
2 cM

aD0
E����i.2aC1/�j�i.d�2a/:::1�;

where d D dij D �hi; jX i.

Proof. These isomorphisms follow from categorified quantum Serre relations [16,
Proposition 2.13] and [17, Proposition 6] between idempotents in rings R.�/, via
homomorphisms '�;� and '��;�.
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Proposition 3.25. For each i 2 I , � 2 X there are 2-isomorphisms in PU
Ei 0Ci�ii 001� Š Ei 0�iCii 001� ˚Œhi;�i�i Ei 0i 001� if hi; �C i 00

X i � 0;
Ei 0�iCii 001� Š Ei 0Ci�ii 001� ˚�Œhi;�i�i Ei 0i 001� if hi; �C i 00

X i 	 0;
where � D �C i 00

X .

Proof. Set � C i 00
X D �. The decomposition Ei 0Ci�ii 001� Š Ei 0�iCii 001� ˚Œhi;�i�i

Ei 0i 001� for hi; �i � 0 is given by 2-morphisms in U

˛ W Ei 0Ci�ii 001� ! Ei 0�iCii 001� ˚Œhi;�i�i Ei 0i 001�;

˛�1 W Ei 0�iCii 001� ˚Œhi;�i�i Ei 0i 001� ! Ei 0Ci�ii 001�;

where ˛ and ˛�1 consist of matrices of diagrams

˛ D

0
BBB@
�

��

��i i

�

˛0
:::

˛hi;�i�1

1
CCCA ; ˛s ´

sX
jD0

66�� �s�j

i ���� ��hi;�i�1Cj

�

for 0 	 s 	 hi; �i � 1;

˛�1 D
�

��

��

i i

� ���� �hi;�i�1 : : :
���� �hi;�i�1�s : : :

���� 	
:

Note that all bubbles that appear in ˛s above are fake bubbles. One can check that
˛�1˛ D IdEi 0Ci�ii 00 1�

and that ˛˛�1 D IdEi 0�iCii 00 1�˚Œhi;�i�1�
using the sl2-rela-

tions (for details see [21]). Here we have taken

˚Œhi;�i�1� D 1�f1 � hi; �ig ˚ � � � ˚ 1�f2s C 1 � hi; �ig ˚ � � � ˚ 1�fhi; �i � 1g
so that ˛ and ˛�1 have degree zero. The isomorphism

Ei 0�iCii 001� Š Ei 0Ci�ii 001� ˚�Œhi;�i�i Ei 0i 001�

for hi; �C i 00
X i 	 0 is given similarly (see [21]).

Proposition 3.26. For each i; j 2 I , i ¤ j , � 2 X there are 2-isomorphisms

E���Ci�j :::1� Š E����jCi :::1�:

Proof. The degree zero 2-isomorphism E���Ci�j :::1� Š E����jCi :::1� for i ¤ j is
given by maps

��

��i j
� W E���Ci�j :::1� ! E����jCi :::1�;

��

��

j i
� W E����jCi :::1� ! E���Ci�j :::1�:

To see that these maps are isomorphisms use (3.13).
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3.6. K0. PU/ and homomorphism � . K0. PU/ can be viewed as a pre-additive cat-
egory or, alternatively, as an idempotented ring. When thought of as a category, it
has objects �, over all � 2 X . The abelian group of morphisms K0. PU.�; �// is
defined as the (split) Grothendieck group of the additive category PU.�; �/. The split
Grothendieck group K0.A/ of an additive category A has generators ŒP �, over all
objects P of A, and relations ŒP � D ŒP 0�C ŒP 00� whenever P Š P 0 ˚ P 00. In the
case of PU.�; �/ the generators are ŒEi 1�ftg; e�, where � D �C iX , t 2 Z, and

e 2 End PU.Ei 1�ftg/ Š End PU.Ei 1�/ D EndU.Ei 1�/

is an idempotent (degree zero idempotent when viewed as an element of the larger
ring ENDU.Ei 1�/). The defining relations are

ŒEi 1�ftg; e� D ŒEi 01�0ft 0g; e0�C ŒEi 001�00ft 00g; e00�

whenever there is an isomorphism in PU.�; �/
.Ei 1�ftg; e/ Š .Ei 01�0ft 0g; e0/˚ .Ei 001�00ft 00g; e00/:

Moreover, K0. PU.�; �// is a ZŒq; q�1�-module, with multiplication by q coming
from the grading shift

ŒEi 1�ft C 1g; ef1g� D qŒEi 1�ftg; e�:
We write ŒEi 1�� instead of ŒEi 1�; 1�, where 1 is the identity 2-morphism of Ei 1�.

The space of homs between any two objects in PU.�; �/ is a finite-dimensional k-
vector space. In particular, the Krull–Schmidt decomposition theorem holds, and
an indecomposable object of PU.�; �/ has the form .Ei 1�ftg; e/ for some mini-
mal/primitive idempotent e. Any presentation of 1 D e1 C � � � C ek into the sum of
minimal mutually orthogonal idempotents gives rise to a decomposition

Ei 1�ftg Š
kM
rD1

.Ei 1�ftg; er/

into a direct sum of indecomposable objects of PU.�; �/. Any object of PU.�; �/ has
a unique presentation, up to permutation of factors and isomorphisms, as a direct
sum of indecomposables. Choose one representative b for each isomorphism class
of indecomposables, up to grading shifts, and denote by PB.�; �/ the set of these
representatives. Then fŒb�gb is a basis of K0

� PU.�; �/�, viewed as a free ZŒq; q�1�-
module. Composition bifunctors

PU.�; �0/ � PU.�0; �00/ �! PU.�; �00/

induce ZŒq; q�1�-bilinear maps

K0. PU.�; �0//˝K0. PU.�0; �00/
� �! K0. PU.�; �00//
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turning K0. PU/ into a ZŒq; q�1�-linear additive category with objects � 2 X . Alter-
natively, we may view K0. PU/ as a non-unital ZŒq; q�1�-algebraM

�;�2X
K0.U/.�; �/

with a family of idempotents Œ1��. The set PB ´ L
�;�2X PB.�; �/ gives rise to a

basis Œ PB�´ fŒb�g
b2 PB

of idempotented ZŒq; q�1�-algebra K0. PU/. Notice that basis
elements are defined up to multiplication by powers of q; we will not try to choose a
canonical grading normalization here. Multiplication in this basis has coefficients in
NŒq; q�1�.

Both A
PU andK0. PU/ are idempotented ZŒq; q�1�-algebras, with the idempotents

1� and Œ1�� labelled by � 2 X . To relate the two algebras, send 1� to Œ1�� and, more
generally, Ei1� to ŒEi1�� for all i 2 SSeqd.

Proposition 3.27. The assignment Ei1� �! ŒEi1�� extends to a ZŒq; q�1�-algebra
homomorphism

� W A
PU �! K0. PU/:

Multiplication by q corresponds to the grading shift f1g:
Proof. K0. PU/ is a free ZŒq; q�1�-module, so it is enough to check that the assignment
above extends to a homomorphism of Q.q/-algebras

�Q.q/ W PU ! K0. PU/˝ZŒq;q�1� Q.q/

(A
PU is also a free ZŒq; q�1�-module, but this fact is not needed in the proof). Propo-

sitions 3.24, 3.25, and 3.26 show that defining relations of PU lift to 2-isomorphisms
of 1-morphisms in PU and, therefore, descend to relations in the Grothendieck group
K0. PU/. Restricting �Q.q/ to A

PU gives a homomorphism of ZŒq; q�1�-algebras with
the image of the homomorphism lying in K0. PU/.

For each �;� 2 X , the homomorphism � restricts to a homomorphism of
ZŒq; q�1�-modules

1�.A PU/1� �! K0. PU.�; �//:
Proposition 3.28. The homomorphism � intertwines (anti)automorphisms  , !, 
 ,
� of A

PU with (anti)automorphisms Œ z �, Œ Q!�, Œ Q
�, and Œ Q�� ofK0. PU/, respectively, i.e.,
the following diagrams commute:

A
PU �

��

 

��

K0. PU/
Œ z �
��

A
PU �

�� K0. PU/,

A
PU �

��

!

��

K0. PU/
Œ Q!�
��

A
PU �

�� K0. PU/,
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A
PU �

��

	

��

K0. PU/
ŒQ	�
��

A
PU �

�� K0. PU/,

A
PU �

��




��

K0. PU/
ŒQ
�
��

A
PU �

�� K0. PU/.

Œ z � denotes the induced action of z on the Grothendieck group, etc.

Proof. The proof follows from definitions and our construction of � .

The 2-isomorphisms Q!, Q
 , z on U� give isomorphisms of graded k-vector spaces

U�.x; y/ Š U�. Q!.x/; Q!.y//;
U�.x; y/ Š .U�/op. Q
.x/; Q
.y// D U�. Q
.x/; Q
.y//;
U�.x; y/ Š .U�/co. z .x/; z .y// D U�. z .y/; z .x//:

On Grothendieck rings these isomorphisms give equalities

hx; yi D h!.x/; !.y/i;
hx; yi D h
.x/; 
.y/i;
hx; yi D h .y/;  .x/i;

which should be compared with Propositions 26.1.4 and 26.1.6 in [24] and property
(v) of the semilinear form. The last equality expressed in terms of the bilinear form
. ; /, with x replaced by  .x/, gives the identity .x; y/ D .y; x/.

3.7. Idempotented rings. An idempotented ring A is an associative ring, not nec-
essarily unital, equipped with a system of idempotents f1xg, over elements x of some
set Z. We require orthogonality 1x1y D ıx;y1x and decomposition

A D
M
x;y2Z

1yA1x :

By a (left) A-module we mean an A-module M such that

M D
M
x2Z

1xM:

In this paper three collections of idempotented rings appear:

� Lusztig’s PU and its integral form A
PU . Here Z D X , the weight lattice,

PU D
M
�;�2X

1� PU1�; A
PU D

M
�;�2X

1�.A PU/1�:
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� The Grothendieck groups K0.Kar.U�// and K0. PU/, the latter defined in Sec-
tion 3.6. Again, the parameterizing set Z D X . We only study

K0. PU/ D
M
�;�2X

Œ1��K0. PU/Œ1��;

with fŒ1��g�2X being the system of idempotents in K0. PU/. The map

� W A
PU ! K0. PU/

is a homomorphism of idempotented rings.
� For each �;� 2 X the Z-graded ring

�U
�
�´

M
i ;j

HOMU.Ei 1�;Ej 1�/;

where the sum is over all i ; j 2 SSeq with iX ; jX D � � �. Thus, the sum is
over all sequences such thatEi1�,Ej 1� have left weight�. The parameterizing
set Z D fi 2 SSeq j iX D � � �g.

The category PU.�; �/ is equivalent to the category of right finitely generated
graded projective �U�

�
-modules and grading preserving homomorphisms. The equiv-

alence functor
PU.�; �/! pmod-�U

�
�

takes Ei 1� to

i ;�P ´
M
j 2Z

HOMU.Ei 1�;Ej 1�/;

and, more generally, an object .Ei 1�; e/ to

i ;�;eP ´
M
j 2Z

HOM PU..Ei 1�; e/;Ej 1�/:

The Grothendieck group K0. PU.�; �// is isomorphic to the Grothendieck group of
pmod-�U�

�
.

Notice that we get idempotented rings from the 2-category PU in various ways:

1) as the Grothendieck ring/pre-additive category K0. PU/ of PU,
2) as rings associated to categories PU.�; �/.

The 2-category PU can itself be viewed as an idempotented monoidal category.
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We encode these observations into a diagram.

(small) pre-additive
2-categories

��

Grothendieck
category/ring

��

idempotented additive
monoidal categories

##

Categories/rings of
homs between objects

��
(small) pre-additive categories �� idempotented rings##

3.8. Surjectivity of � . To prove surjectivity of � we will analyze the diagram of
K-groups and their homomorphisms induced by the diagram (3.24) and trace mini-
mal idempotents there, but first recall some basics of Grothendieck groups of finite-
dimensional algebras (as a model example) and graded algebras.

3.8.1. K0 of finite-dimensional algebras. A homomorphism of rings ˛ W A ! B

induces a homomorphism of K0-groups

K0.˛/ W K0.A/! K0.B/

of finitely generated projective modules. For definition and properties ofK0 we refer
the reader to [28], [32, Chapter II].

Assume that A and B are finite-dimensional k-algebras, for a field k, and ˛ is
a k-algebra homomorphism. If ˛ is surjective then K0.˛/ is surjective as well. On
the level of idempotents, if 1 D e1 C � � � C ek is a decomposition of 1 2 A into a
sum of mutually orthogonal minimal idempotents, then Aes is an indecomposable
projective A-module, K0.A/ is a free abelian group with a basis fŒAer �gr2S , for a
subset S � f1; : : : ; kg. S is any maximal subset with the property that Aes © Aet
as left A-modules for any s; t 2 S , s ¤ t . Applying ˛ to the above decomposition
results in the equation

B 3 1 D ˛.e1/C � � � C ˛.ek/:
where each ˛.es/ is either 0 or a minimal idempotent in B (the minimality of ˛.es/
follows from the idempotent lifting for ˛, by first reducing to the case of semisimple
B by quotienting out by the Jacobson radical of B). Relabel minimal idempotents
so that ˛.e1/; : : : ; ˛.em/ ¤ 0, ˛.emC1/ D � � � D ˛.ek/ D 0 (elements of S get
permuted as well). Then 1 D ˛.e1/C � � � C ˛.em/ is a decomposition of 1 2 B into
a sum of mutually orthogonal minimal idempotents, B˛.er/ is an indecomposable
projective B-module, 1 	 r 	 m, and

fŒB˛.er/�gr2S\f1;:::;mg

is a basis of K0.B/.
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Remark 3.29. IfA is a finite-dimensional k-algebra, the quotient mapA! A=J.A/,
where J.A/ is the Jacobson radical of A, induces an isomorphism of K0-groups

K0.A/ Š K0.A=J.A//:

Indeed, J.A/ is a nilpotent ideal, J.A/N D 0 for sufficiently large N , and the
quotient by a nilpotent ideal induces an isomorphism of K0’s; see [32], Lemma 2.2
in Chapter II.

Proposition 3.30. If A;B are finite-dimensional k-algebras such that all simple A-
and B-modules are absolutely irreducible over k, then

K0.A/˝Z K0.B/ Š K0.A˝k B/

via an isomorphism that takes ŒP �˝ ŒQ� for projective A, respectively B , modules
P andQ to ŒP ˝k Q�.

Proof. By passing to A=J.A/, B=J.B/ and using the above remark, we reduce to
the case of semisimple A and B . Then both A and B are finite products of the field
k and the proposition follows.

3.8.2. K0 of graded algebras. From here on we only consider Z-graded k-algebras,
for a field k. For a Z-graded k-algebra A D ˚a2ZAa denote by K0.A/ the
Grothendieck group of finitely generated graded left projective A-modules. K0.A/
is a ZŒq; q�1�-module.

Throughout this subsection we assume that all weight spacesAa are finite-dimen-
sional, and the grading is bounded below: Aa D 0 for all a
 0.

Let PI.A/ be the set of isomorphism classes of indecomposable graded projective
A-modules, up to a grading shift. We can normalize the grading and choose one
representative Q for each element of PI.A/ so that 0 is the lowest nontrivial degree
of Q. We write Q 2 PI.A/.

Proposition 3.31. For A as above, K0.A/ is a free ZŒq; q�1�-module with the basis
fŒQ�gQ2PI.A/.

Proof. Since each weight space of A is finite-dimensional, the Krull–Schmidt prop-
erty holds for graded projective finitely generated A-modules. Any such module has
a unique, up to isomorphism, decomposition as a direct sum of indecomposables,
and K0.A/ is a free abelian group with a basis labelled by isomorphism classes of
indecomposable projectives. Boundedness of A from below ensures that an inde-
composable projective is not isomorphic to itself with a shifted grading, implying
that K0.A/ is a free ZŒq; q�1�-module and the rest of the proposition.

We say that a 2-sided homogeneous ideal J of A is virtually nilpotent if for any
a 2 Z the weight space .JN /a D 0 for sufficiently large N .
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Proposition 3.32. For A as above and J a virtually nilpotent ideal of A the quotient
map A! A=J induces an isomorphism K0.A/ Š K0.A=J /.

Proof. Proposition follows from the lifting idempotents property. This is the graded
version of Lemma 2.2 in [32, Chapter 2].

Proposition 3.33. Let ˛ W A ! B be a surjective homomorphism of finite-dimen-
sional graded k-algebras. Then the induced map K0.˛/ is surjective.

Proof. The argument is essentially the same as in the nongraded case discussed earlier.
In the bases of K0.A/ and K0.B/ given by indecomposable projective modules, the
map K0.˛/ sends some basis elements of K0.A/ to 0 and the rest go bijectively to
the basis of K0.B/ (possibly after grading shifts).

Finally, we discussK0 of graded idempotented algebras. Let A be an associative
graded k-algebra, possibly nonunital, with a family of mutually orthogonal degree 0
idempotents 1x 2 A, x 2 Z, such that

A D
M
x;y2Z

1yA1x

(compare with the definition of idempotented ring in Section 3.7). We say that A
is a graded idempotented k-algebra. By a graded finitely generated projective A-
module we mean a homogeneous direct summand of a finite direct sum (with finite
multiplicities) of graded left A-modules A1xftg, over x 2 Z and t 2 Z. By K0.A/
we denote the corresponding Grothendieck group, which is again a ZŒq; q�1�-module.

We assume that for each x; y 2 Z the graded k-vector space 1yA1x is bounded
below and has finite-dimensional weight spaces.

Proposition 3.34. For A as above, K0.A/ is a free ZŒq; q�1�-module with a basis
given by isomorphism classes of indecomposables, up to grading shifts.

Proof. The proof is essentially the same as that of Proposition 3.31. The difference
is in the absence of a canonical grading normalization for a representative Q of an
isomorphism class of indecomposables up to grading shifts. This normalization can
be chosen ad hoc, of course.

3.8.3. A triangle of K0’s. We will work in the graded case, so that the rings are Z-
graded and K0 are ZŒq; q�1�-modules. Consider the diagram of ZŒq; q�1�-modules

K0.R.�/˝R.�0/˝…�/

K0.˛/

��

K0.ˇ˛/

77���������������

K0.ENDU.E�;��01�//
K0.˛/

�� K0.R�;��0;�/

(3.26)
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given by applying the K0 functor to the commutative triangle in (3.24).
Recall that in [16], [17] we constructed an isomorphism of ZŒq; q�1�-modules

K0.R.�// Š Af� ;

where Af� is the weight � summand of the ZŒq; q�1�-algebra Af . Likewise,

K0.R.�
0// Š Af�0 :

R.�/, respectively R.�0/, is a free finite rank graded module over its center
Z.R.�// Š Sym.�/, respectively Sym.�0/, isomorphic to the k-algebra of poly-
nomials in several homogeneous generators, all of positive degree. Hence, R.�/˝
R.�0/˝…� is a free finite rank graded module over the central graded polynomial al-
gebra Sym.�/˝Sym.�0/˝…�. This algebra contains a homogeneous augmentation
ideal SymC of codimension 1. Let

J D .R.�/˝R.�0/˝…�/ SymC

be the corresponding 2-sided ideal ofR.�/˝R.�0/˝…�, and consider the quotient
algebra

R´ R.�/˝R.�0/˝…�=J

Š .R.�/=.R.�/ � SymC.�///˝ .R.�0/=.R.�0/ � SymC.�0///:

R is a finite-dimensional k-algebra, and the quotient map

˛0 W R.�/˝R.�0/˝…� �! R

induces an isomorphism of K0-groups

K0.˛
0/ W K0.R.�/˝R.�0/˝…�/ �! K0.R/;

since the ideal J is virtually nilpotent, see Proposition 3.32.
We proved in [16], [17] that any simple graded R.�/-module is absolutely irre-

ducible for any field k, same for simple graded R.�/=
�
R.�/ SymC �-modules. Also

note that K0.…�/ Š ZŒq; q�1�, since …� is a graded local ring. The chain of iso-
morphisms

K0
�
R.�/˝R.�0/˝…�

� Š K0.R/ Š K0.R.�//˝K0.R.�0// Š Af� ˝ Af�0

establishes the following result:

Proposition 3.35. There is a canonical isomorphism

K0.R.�/˝R.�0/˝…�/ Š Af� ˝ Af�0

induced by isomorphisms K0.R.�// Š Af� and K0.R.�0// Š Af�0 constructed in
[16], [17].
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This proposition gives us a grip on the top term in the diagram (3.26).

Proposition 3.36. K0.ˇ˛/ is surjective.

Proof. Since ˇ˛ is surjective, ˇ˛.J / is a 2-sided ideal of R�;��0;�. Start with a
commutative square of surjective algebra homomorphisms

R.�/˝R.�0/˝…�

=J
����

ˇ˛
�� �� R�;��0;�

=ˇ˛.J /
����

R �� �� R�;��0;�=.ˇ˛.J //

and apply functor K0 to obtain a commutative diagram

K0.R.�/˝R.�0/˝…�/

=J

��

K0.ˇ˛/ �� K0.R�;��0;�/

=ˇ˛.J /

��

K0.R/ �� K0.R�;��0;�=.ˇ˛.J ///.

The vertical arrows are isomorphisms since J and ˇ˛.J / are virtually nilpotent
ideals. The bottom arrow is surjective, by Proposition 3.33, since R and R�;��0;� are
finite-dimensional over k. Surjectivity of the top arrow follows.

Corollary 3.37. K0.ˇ/ is surjective.

These observations are summarized in the following enhancement of (3.26).

K0.R.�/˝R.�0/˝…�/ Š Af� ˝ Af�0

K0.˛/

��

K0.ˇ˛/

88 88���������������������

K0.ENDU.E�;��01�//
K0.˛/

�� �� K0.R�;��0;�/.

3.8.4. Idempotents in PU. Let 1 D e1 C � � � C ek and 1 D e0
1 C � � � C e0

k0 be a
decomposition of 1 2 End PU.E�1�/ Š R.�/0 and of 1 2 End PU.E��01�/ Š R.�0/0,
respectively, into the sum of minimal mutually orthogonal idempotents. Here R.�/0
denotes the degree 0 subalgebra of R.�/. Each term in the decomposition

1 D
kX
rD1

k0X
r 0D1

er ˝ e0
r 0 ˝ 1

of 1 2 R.�/˝R.�0/˝…� is a minimal degree 0 idempotent in view of the discussion
preceding Proposition 3.35.
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Let
er;r 0 ´ ˛.er ˝ e0

r 0 ˝ 1/ 2 End PU.E�;��01�/

be the corresponding idempotent in the endomorphism algebra of E�;��01� which
may not be minimal. Then

er;r 0 D
k.r;r 0/X
r 00D1

er;r 0;r 00 (3.27)

can be decomposed into a sum of minimal mutually orthogonal degree zero idempo-
tents er;r 0;r 00 2 End PU.E�;��01�/.

The homomorphism ˇ˛ induces a surjection of Grothendieck groups and maps
each minimal idempotent er˝e0

r 0˝1 either to 0 or to a minimal degree 0 idempotent
inR�;��0;� (Proposition 3.36). Consequently, for each .r; r 0; r 00/ the image ˇ.er;r 0;r 00/

is either 0 or a minimal idempotent in R�;��0;�. Moreover, for each .r; r 0/ at most
one of ˇ.er;r 0;r 00/ ¤ 0 in R�;��0;�. We can relabel idempotents so that ˇ.er;r 0;1/ ¤ 0
and ˇ.er;r 0;r 00/ D 0 for r 00 > 1 whenever ˇ˛.er ˝ e0

r 0 ˝ 1/ ¤ 0. Necessarily,
ˇ.er;r 0;r 00/ D 0 for all r 00 if ˇ˛.er ˝ e0

r 0 ˝ 1/ D 0.
If ˇ.er ˝ e0

r 0 ˝ 1/ D 0 then er;r 0;r 00 2 ��;��0;�. A homogeneous element
a 2 ��;��0;� can be written as a finite sum a DPu

sD1 a0
sas , where as; a0

s are homo-
geneous,

as 2 U�.E�;��1�;Ei .s/1�/; a0
s 2 U�.Ei .s/1�;E�;��1�/;

and i .s/ 2 SSeq with ki .s/k < k�k C k�0k. Indeed, an element of ��;��0;� can be
written as a linear combination of diagrams with U-turns. Cutting each diagram in
the middle allows us to view it as composition

E�;��01� ! Ei .s/1� ! E�;��01�;

with the length ki .s/k of the sequence i .s/ strictly less than the sum of lengths
k�k C k�0k.

""

�

��

�

��

�

��

�
��

��
��

�

����

��

i .s/

�

Choose such a decomposition for each

er;r 0;r 00 2 ��;��0;�; er;r 0;r 00 D
uX
sD1

a0
sas;

where in the notations we suppress dependence of u.r; r 0; r 00/, as.r; r 0; r 00/ and
a0
s.r; r

0; r 00/ on the three parameters. Multiplication by er;r 0;r 00 is the identity en-
domorphism of .E�;��01�; er;r 0;r 00/. We can view this indecomposable 1-morphism
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of PU as an indecomposable projective module (call it P ) over the graded idempo-
tented ring �U

�
�

, � D �C �X � �0
X . Then the identity endomorphism of P factors

through projective module Q corresponding to the direct sum
Lu
sD1 Ei .s/1�ftsg

P ��

Id

��
Q �� P

for some ts 2 Z. Therefore, P is isomorphic to a direct summand of Q, and
the 1-morphism .E�;��01�; er;r 0;r 00/ of PU is isomorphic to a direct summand ofLu
sD1 Ei .s/1�ftsg.
Define the width kP k of an indecomposable 1-morphism P 2 Ob. PU.�; �// as

the smallest m such that P is isomorphic to a direct summand of Ei 1�ftg for some
i 2 SSeq, kik D m and t 2 Z.

For example, ifP has width 0, thenP is isomorphic to a direct summand of 1�ftg
for some � and t . The 1-morphism 1�ftg is indecomposable, since its endomorphism
ring PU.1�ftg; 1�ftg/ D k, or 0 (a possibility if the calculus is degenerate). This
implies that any width zero 1-morphism is isomorphic to 1�ftg.

Lemma 3.38. If P has width m then P is isomorphic to a direct summand of
E�;��01�ftg for some �; �0 2 NŒI �, k�k C k�0k D m, � 2 X , and t 2 Z.

Proof. If i; j 2 I and i D i 0 � i C j i 00 has length m, then P is direct summand of
Ei 1�ftg if and only if it is a direct summand of Ei 0Cj�ii 001�ftg. Indeed, these two 1-
morphisms are either isomorphic (if i ¤ j ) or differ by direct summands Ei 0i 001�ft 0g,
all whose indecomposable summands have width at most m � 2, and thus cannot be
isomorphic to P . By assumption, P is isomorphic to a direct summand of Ei 1�ftg
with kik D m. Moving all positive terms of i to the left of all negative terms produces
a sequence j .�j 0/ with j , j 0 positive, kj k C kj 0k D m and P being a summand
of Ej .�j /1�ftg. But this 1-morphism is a direct summand of E�;��01�ftg with �,
respectively �0, being the weight of j and j 0, respectively.

Proof of Theorem 1.1. We show that ŒP � is in the image of � W A
PU ! K0. PU/ by

induction on the length of P . Let P have length m. Then P is a direct sum-
mand of E�;��01�ftg for �; �0 as above. By shifting the degree of P down by t ,
P Š .E�;��01�; er;r 0;r 00/ for at least one minimal idempotent er;r 0;r 00 . We must have
r 00 D 1 and ˇ.er;r 0;r 00/ ¤ 0, for otherwise P is isomorphic to a direct summand
of
L
s Ei .s/1�ftsg, and since ki .s/k D m � 2, the width of P is at most m � 2, a

contradiction. Thus r 00 D 1 and ˇ.er;r 0;r 00/ ¤ 0.
From (3.27) We have

ŒP � D ŒE�;��01�; er;r 0;1�;
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and
k.r;r 0/X
r 00D1

ŒE�;��01�; er;r 0;r 00 � D ŒE�;��01�; er;r 0 �:

For r 00 > 1 we have ˇ.er;r 0;r 00/ D 0, and .E�;��01�; er;r 0;r 00/ is isomorphic to a direct
summand of a finite sum of Ei 1�ftg, for sequences i of length m � 2. Each inde-
composable summand of .E�;��01�; er;r 0;r 00/ has length at most m� 2. By induction
hypothesis, ŒE�;��01�; er;r 0;r 00 � belongs to the image of � for all 2 	 r 00 	 k.r; r 0/.
Thus,

ŒP � D ŒE�;��01�; er;r 0;1� D ŒE�;��01�; er;r 0 � �
k.r;r 0/X
r 00D2

ŒE�;��01�; er;r 0;r 00 �

2 ŒE�;��01�; er;r 0 �C �.A PU/:
It now suffices to show that ŒE�;��01�; er;r 0 � belongs to image of � . But the idem-

potent er;r 0 is the image of er˝ er 0˝1 inR.�/˝R.�0/˝…�, and the Grothendieck
group of the latter is isomorphic to Af .�/ ˝ Af .�0/. Therefore, ŒE�;��0 ; er;r 0 � is in
the image of Af .�/˝ Af .�0/ under the composition map

Af .�/˝ Af .�0/ �! 1�.A PU/1� ���! K0. PU.�; �//;
x ˝ y �! xCy�1�;

x 7! xC W Af .�/! UC; y 7! y� W Af .�0/! U�:
This completes the proof of surjectivity of � .

3.9. Injectivity of � in the non-degenerate case. Assume that our graphical cal-
culus is non-degenerate for a given root datum and field k, so that Bi ;j ;� is a basis
of HOMU.Ei 1�;Ej 1�/ for all i , j and �. Then

gdim HOMU.Ei 1�;Ej 1�/ D
X
t2Z

qt dimk
PU.Ei 1�ftg;Ej 1�/:

Since the calculus is non-degenerate,

gdim HOMU.Ei 1�;Ej 1�/ D �hEi1�; Ej 1�i;

and Ei1�, over all i , �, span PU , the Q.q/-algebra homomorphism

�Q.q/ W PU ! K0. PU/˝ZŒq;q�1� Q.q/

intertwines the Q.q/-semilinear forms �h ; i on PU and gdim HOMU. ; / onK0. The
latter form, which we denote h ; i� , is given by

hŒP �; ŒQ�i� ´
X
t2Z

qt gdim. PU.P ftg;Q// (3.28)
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for any two 1-morphismsP;Q 2 PU.�; �/, and extends to the entireK0. PU/˝ZŒq;q�1�

Q.q/ via Q.q/-semilinearity and the orthogonality condition hx; yi� D 0 for x 2
K0
� PU.�; �/�, y 2 K0. PU.�0; �0// unless � D �0 and � D �0.
By Proposition 2.5, h ; i is non-degenerate on PU . Therefore, �Q.q/ is injective,

implying that � is injective.

4. Categorification of PU for sln

4.1. Formsofquantumsln. We consider various forms of the quantized enveloping
algebra of sln corresponding to the root datum of the Dynkin graph

ı ı ı ı1 2 3 n�1: : : :

For this root datum, any weight � 2 X can be written as � D .�1; �2; : : : ; �n�1/,
where �i D hi; �i.

The algebra Uq.sln/ is the Q.q/-algebra with 1 generated by the elements Ei ,
Fi and K˙1

i for i D 1; 2; : : : ; n � 1, with the defining relations

KiK
�1
i D K�1

i Ki D 1; KiKj D KjKi ;
KiEjK

�1
i D qi �jEj ; KiFjK

�1
i D q�i �jFj ;

where i � i D 2, i � j D �1 if j D i ˙ 1 and i � j D 0 otherwise,

EiFj � FjEi D ıij Ki �K
�1
i

q � q�1 ;

E2i Ej � .q C q�1/EiEjEi CEjE2i D 0 if j D i ˙ 1;
F 2i Fj � .q C q�1/FiFjFi C FjF 2i D 0 if j D i ˙ 1;

EiEj D EjEi ; FiFj D FjFi if ji � j j > 1:
Recall that PU.sln/ is obtained from Uq.sln/ by adjoining a collection of orthog-

onal idempotents 1� indexed by the weight lattice X of sln,

1�1�0 D ı��01�;

such that if � D .�1; �2; : : : ; �n�1/, then

Ki1� D 1�Ki D q�i1�; Ei1� D 1�CiXEi ; Fi1� D 1��iXFi ;

where

�C iX D

8̂<
:̂
.�1 C 2; �2 � 1; �3; : : : ; �n�2; �n�1/ if i D 1;
.�1; �2; : : : ; �n�2; �n�1 � 1; �n�1 C 2/ if i D n � 1;
.�1; : : : ; �i�1 � 1; �i C 2; �iC1 � 1; : : : ; �n�1/ otherwise:

(4.1)
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The ZŒq; q�1�-algebra A
PU.sln/ is the integral form of PU.sln/ generated by prod-

ucts of divided powers E.a/i 1� ´ Ea
i

Œa�Š
1�, F .a/i 1� ´ F a

i

Œa�Š
1� for � 2 X and i D

1; 2; : : : ; n � 1. The relationships are collected below:

Uq.sln/

add
idempotents

�� PU.sln/ A
PU.sln/

� �

integral
form## :

4.2. The 2-category U!.sln/. We introduce a 2-category U! that is defined anal-
ogously to U in the sln-case, but theR.�/-relations have been modified to the signed
R.�/-relations given in [17]. Namely, the R.�/-relations in U are replaced in U!
by the signed R.�/-relations obtained from the oriented graph

ı ı ı ı�� �� �� ��
1 2 3 n�1: : : ; (4.2)

with vertices enumerated by the set f1; 2; : : : ; n� 1g, using signs �ij D �j i D �1 for
all edges. It was observed in [17] that the resulting ringR
 .�/ is isomorphic toR.�/.
In Section 4.2.1, following the definition of U!, we extend this isomorphism to an
isomorphism U! U! of 2-categories. The 2-category U! is more convenient for
constructing a representation on iterated flag varieties in Section 6.

In general it is a poor practice to set up an isomorphism rather than an equivalence
of categories, not to mention 2-categories. However, having an isomorphism U !
U! is justified, since U and U! have the same objects, morphisms, and generating
2-morphisms.

Definition 4.1. U!.sln/ is a additive k-linear 2-category with translation. The 2-
category U!.sln/ has objects, morphisms, and generating 2-morphisms as defined
in (3.1), but some of the relations on 2-morphisms are modified.

� The sl2 relations and the shift isomorphism relations are the same as before; see
equations (3.1)–(3.9).

� All 2-morphisms are cyclic with respect to the biadjoint structure as before; see
(3.3) and (3.10).

� The relations (3.13) hold.
� The signed R.�/ relations are:

(a) For i ¤ j , the relations

����

����

�

i j

D

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

���� �
i j

if i � j D 0;

.i � j /
 

���� ��
i j

� ���� ��
i j

!
if i � j D �1:
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(b) For i ¤ j , the relations
�����

i j

� D
��

�
��

i j

� ;

�����
i j

� D
����

�i j

�

for all �.
(c) Unless i D k and j D i ˙ 1

����

����

����

�

i j k

D �� ��

�� ��

�� ��

�

kji

:

For j D i ˙ 1

���� �� �

i j i

D .i � j /
0
@

����

����

����

�

i j i

� �� ��

�� ��

�� ��

�

iji

1
A :

4.2.1. The 2-isomorphism † W U ! U!. Define an isomorphism of 2-categories
† W U ! U! on objects by mapping � 7! �, and on hom categories by graded
additive k-linear functors

† W U.�; �/ �! U!.�; �/;

Ei 1� 7�! Ei 1�;

�� �

i1 i˛ im

�: : : : : : 7�! .�1/i˛ �� �

i1 i˛ im

�: : : : : : ;

����

�: : : : : :

i1 i˛ i˛C1 im

7�!

8̂̂̂
<̂
ˆ̂̂̂:
.�1/i˛C1

����

�: : : : : :

i1 i˛ i˛C1 im

if i˛ D i˛C1
or i˛ ! i˛C1;

����

�: : : : : :

i1 i˛ i˛C1 im

otherwise;

�: : : : : :

i1 i˛ i˛C1 im

7�! �: : : : : :

i1 i˛ i˛C1 im

for all orientations;

�: : : : : :

i1 i˛ i˛C1 im

7�! �: : : : : :

i1 i˛ i˛C1 im

for all orientations:
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Above, the i˛ in .�1/i˛ refers to the enumeration of the vertex i˛ in (4.2). One can
check that the above transformations respects the sl2-relations and the cyclic condi-
tion. Furthermore, † maps the R.�/-relations to their signed analogs by rescaling
the generators as above. † is a 2-functor and an isomorphism of 2-categories.

Remark 4.2. Since the 2-categories U and U! are isomorphic, by the universal
property of the Karoubi envelope, their Karoubi envelopes are isomorphic as well.

Define U�! to be the graded additive k-linear category which has the same objects
and 1-morphisms as U! and 2-morphisms

U�!.x; y/´
M
t2Z

U!.xftg; y/:

4.2.2. Relation to rings R.�/. Regard the graded k-algebra R.�/ with system of
idempotents f1i g as a pre-additive k-linear category whose objects are fi j i 2
Seq.�/g. The k-vector space of morphisms from i to i 0 is i 0R.�/i . The composition
i 00R.�/i 0 ˝ i 0R.�/i ! i 00R.�/i is given by multiplication in R.�/.

For any weight � there is a graded additive k-linear functor

�� W R.�/ �! U�!.�; �C �X / (4.3)

that takes object i to Ei 1�, and is given on generators of homs by

jR.�/i �! U�!.Ei 1�;Ej 1�/;

i1

: : : �
i˛

: : :

im

7�! .�1/i˛ �� ���� �

i1 i˛ im

�: : : : : : ;

i1

: : :

i˛ i˛C1

: : :

im

7�!

8̂̂̂
<̂
ˆ̂̂̂:
.�1/i˛C1

����

���� �: : : : : :

i1 i˛ i˛C1 im

if i˛ D i˛C1
or i˛ ! i˛C1;

����

���� �: : : : : :

i1 i˛ i˛C1 im

otherwise:

Linear combination of diagrams inR.�/ get sent to the corresponding rescaled linear
combination in U�!.�; �C �X / with the weight � labelling the far right region. In
what follows we will refer to those diagrams in the image of �� as R.�/ generators.
The image of R.�/ is spanned by diagrams with all strands upward pointing and no
caps or cups.
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5. Iterated flag varieties

5.1. Cohomology of n-step varieties. The material in this section generalizes that
of [21, Section 6]. The reader is encouraged to start there for more examples and
greater detail in the sl2 case. We enumerate by I D f1; 2; : : : ; n � 1g the vertex set
of the Dynkin diagram of sln,

ı ı ı ı1 2 3 n�1: : : :

Fix N � 0, and consider the variety Fl.n/ of n-step partial flags F

F D .0 D F0 � F1 � � � � � Fn D CN /

in CN . The dimensions of the subspaces Fi are conveniently expressed as a vector,

dimF D .dimF0; dimF1; dimF2; : : : ; dimFn/:

The connected components of Fl.n/ are parameterized by non-negative integers

k D .k0; k1; k2; : : : ; kn/
such that 0 D k0 	 k1 	 k2 	 � � � 	 kn D N . The connected component Fl.k/
corresponding to k consists of all flags F such that dimF D k. Throughout this
section we refer to the terms k˛ of k with the convention that

k˛ D
´
0 if ˛ 	 0;
N if ˛ � n:

The cohomology algebra of Fl.k/ is ZC-graded,

Hk ´ H�.Fl.k/;k/ D
M

0�`�k1.k2�k1/:::.N�kn�1/

H 2`.Fl.k/;k/:

For 1 	 j 	 n, 0 < ˛ 	 kj � kj�1, let x.k/j;˛ be a formal variable of degree 2˛.
The ring Hk is isomorphic to the quotient ring

� nO
jD1

kŒx.k/j;1; x.k/j;2; : : : ; x.k/j;kj �kj �1
�
	
=Ik;N ;

where Ik;N is the ideal generated by the homogeneous terms in the equation

nY
jD1

.1C x.k/j;1t C x.k/j;2t2 C � � � C x.k/j;kj �kj �1
tkj �kj �1/ D 1: (5.1)

Above, t is a formal variable used to keep track of the degrees. For notational
convenience we add variables x.k/j;0 and set x.k/j;0 D 1. Furthermore, we set

x.k/j;˛ D 0 if ˛ > kj � kj�1: (5.2)
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It is helpful to express the above relation in an alternative form. Let x.k/i;˛ denote
the homogeneous term of degree 2˛ in the product

nY
jD1;j¤i

.1C x.k/j;1t C x.k/j;2t2 C � � � C x.k/j;kj �kj �1
tkj �kj �1/: (5.3)

For example, if n D 4 and k D .1; 3; 4; 7/, then equation (5.1) becomes

.1C x.k/1;1t /.1C x.k/2;1t C x.k/2;2t2/.1C x.k/3;1t /
.1C x.k/4;1t C x.k/4;2t2 C x.k/4;3t3/ D 1

and the terms x.k/2;˛ are given by omitting the second term and multiplying out the
rest

.1C x.k/1;1t /.1C x.k/3;1t /.1C x.k/4;1t C x.k/4;2t2 C x.k/4;3t3/
so that

x.k/2;0 D 1;
x.k/2;1 D x.k/1;1 C x.k/3;1 C x.k/4;1;
x.k/2;2 D x.k/1;1x.k/3;1 C x.k/1;1x.k/4;1 C x.k/3;1x.k/4;1 C x.k/4;2;
x.k/2;3 D x.k/1;1x.k/3;1x.k/4;1 C x.k/1;1x.k/4;2

C x.k/3;1x.k/4;2 C x.k/4;3;
x.k/2;4 D x.k/1;1x.k/3;1x.k/4;2 C x.k/1;1x.k/4;3 C x.k/3;1x.k/4;3;
x.k/2;5 D x.k/1;1x.k/3;1x.k/4;3;

and x.k/2;˛ D 0 for ˛ > 5. It is clear that (5.1) can be written

X̨
fD0

x.k/j;f x.k/j;˛�f D ı˛;0 (5.4)

for any 1 	 j 	 n, where ı˛;0 is the Kronecker delta. We call the elements x.k/j;˛
dual generators in light of (5.4).

For 1 	 i 	 n � 1 let

Cik D ..Cik/0; .Cik/1; .Cik/2; : : : ; .Cik/n/;
0 D .Cik/0 	 .Cik/1 	 � � � 	 .Cik/n D N;

be the sequence obtained from the sequence k by increasing the i th term by one

Cik´ .k0; k1; k2; : : : ; ki�1; ki C 1; kiC1; : : : ; kn/
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if ki C 1 	 kiC1, or by setting the sequence to the empty sequence ; if ki D kiC1.
Namely, .Cik/j D kj if j ¤ i and .Cik/i D ki C 1 if ki C 1 	 kiC1.

When ki C 1 	 kiC1 thenH
Cik is the cohomology ring of the partial flag variety

consisting of flags F with dimF D Cik. The ring H
Cik is given by

H
Cik D

� nO
jD1

kŒx.Cik/j;1; x.Cik/j;2; : : : ; x.Cik/j;.Cik/j �.Cik/j �1
�
	
=I

Cik;N

D
O

j¤i;iC1
kŒx.Cik/j;1; : : : ; x.Cik/j;kj �kj �1

�

˝ kŒx.Cik/i;1; : : : ; x.Cik/ki �ki�1C1�
˝ kŒx.Cik/iC1;1; : : : ; x.Cik/kiC1�ki �1�=ICik;N ;

where I
Cik;N is the ideal generated by the homogeneous terms in

nY
jD1

�X
˛�0

x.Cik/j;˛ t˛
	
D 1:

We define H; D 0.
Going back to the example of n D 4 and k D .1; 3; 4; 7/, then C3k D .1; 3; 5; 7/,

so that

H
C3k D kŒx.C3k/1;1; x.C3k/2;1; x.C3k/2;2;

� x.C3k/3;1; x.C3k/3;2; x.C3k/4;1; x.C3k/4;2�=IC3k;7;

where I
C3k;7 is the ideal generated by the homogeneous terms in

.1C x.C3k/1;1/.1C x.C3k/2;1 C x.C3k/2;2/.1C x.C3k/3;1
C x.C3k/3;2/.1C x.C3k/4;1 C x.C3k/4;2/ D 1:

Similarly, we write �ik D .k0; k1; k2; : : : ; ki�1; ki � 1; kiC1; : : : ; kn/ for the
sequence k where we have subtracted one from the i th position whenever ki�1 	
ki � 1. The cohomology ring of the flag variety Fl.�ik/ is H

�ik , which can be
expressed explicitly in terms of generators as above. When ki�1 D ki then �ik D ;
and H

�ik ´ H; D 0.

5.1.1. Flag varieties for the action of Ei and Fi . For 1 	 i 	 n � 1, define

kCi D
´
.k0; k1; k2; : : : ki ; ki C 1; kiC1; : : : ; kn�1; kn/ if kiC1 � ki C 1;
; otherwise;

k�i D
´
.k0; k1; k2; : : : ki�1; ki � 1; ki ; : : : ; kn�1; kn/ if ki � 1 � ki�1;
; otherwise:
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For k˙i ¤ ; the variety Fl.k˙i / is the component of Fl.n C 1/ consisting of
flags F such that dimF D k˙i . The cohomology ring of Fl.k˙i / will be denoted by
H
k˙i . The cohomology ring H

kCi is

H
kCi D

O
j¤iC1

kŒx.kCi /j;1; : : : ; x.kCi /j;kj �kj �1
�˝ kŒ�i �

˝ kŒx.kCi /iC1;1; : : : ; x.kCi /iC1;kiC1�ki �1�=IkCi ;N
;

where I
kCi ;N

is the ideal generated by the homogeneous terms in

.1C �i t /.1C x.kCi /iC1;1t C : : :C x.kCi /iC1;kiC1�ki �1tkiC1�ki �1/

�
Y

j¤iC1

� kj �kj �1X
fD0

x.kCi /j;f tf
	
D 1:

The forgetful maps

Fl.k/
p1 � Fl.kCi /

p2�! Fl.Cik/

induce maps of cohomology rings

Hk
p�

1��! H
kCi

p�
2 �� H

Cik

that makeH
kCi a rightHk˝HCik-module. Since the algebraH

Cik is commutative,
we can turn a rightH

Cik-module into a leftH
Cik-module. Hence, we can makeH

kCi

into a .H
Cik;Hk/-bimodule. In fact, H

kCi is free as a graded Hk-module and as a
graded H

Cik-module.
These inclusions making H

kCi a .H
Cik;Hk/-bimodule are given explicitly as

follows:

Hk ,�! H
kCi ;

x.k/j;˛ 7�! x.kCi /j;˛ for j ¤ i C 1;
x.k/iC1;˛ 7�! �i � x.kCi /iC1;˛�1 C x.kCi /iC1;˛;

(5.5)

and

H
Cik ,�! H

kCi ;

x.Cik/j;˛ 7�! x.kCi /j;˛ for j ¤ i ;
x.Cik/i;˛ 7�! �i � x.kCi /i;˛�1 C x.kCi /i;˛:

(5.6)

Notice that x.k/j;˛ and x.Cik/j;˛ for j ¤ i; i C 1 are mapped to the same element
of H

kCi . Using these inclusions we identify these elements of Hk and H
Cik with



A categorification of quantum sl.n/ 65

their images in the bimoduleH
kCi . Furthermore, we can also express the generators

x.kCi /i;˛ and x.kCi /iC1;ˇ of H
kCi as the images of certain generators in Hk or

H
Cik . Thus we can write H

kCi as

H
kCi D

O
j¤iC1

kŒx.k/j;1; : : : ; x.k/j;kj �kj �1
�

˝ kŒx.Cik/iC1;1; : : : ; x.Cik/iC1;kiC1�ki �1�˝ kŒ�i �=IkCi ;N

or equivalently

H
kCi D

O
j¤i

kŒx.Cik/j;1; : : : ; x.Cik/j;kj �kj �1
�

(5.7)

˝ kŒx.k/i;1; : : : ; x.k/i;ki �ki�1
�˝ kŒ�i �=IkCi ;N

;

where I
kCi ;N

is the ideal described above. Therefore, �i is the only generator ofH
kCi

that is not identified with a generator of Hk or H
Cik under the above inclusions.

Remark 5.1. The generators x.k/j;˛ , x.Cik/j;˛ , �i of H
kCi correspond to Chern

classes of tautological bundles over the variety Fl.kCi /. The generator �i corresponds
to the line bundle Fki C1=Fki

associated to the subspaces Fki
� Fki C1 created by

the subspace insertion kCi .

Definition 5.2. The set of multiplicative generators �i and

x.k/i;˛i
for 0 < ˛i 	 ki � ki�1;

x.Cik/iC1;˛iC1
for 0 < ˛iC1 	 kiC1 � ki � 1;

x.k/j; j̨
D x.Cik/j; j̨

2 H
kCi for j ¤ i; i C 1; and 0 < j̨ 	 kj � kj�1;

for the ring H
kCi , corresponding to the Chern class of the tautological line bundle,

and to the canonical inclusions (5.5) and (5.6) of generators in H
Cik and Hk into

H
kCi , are called the canonical generators of H

kCi .

Using commutativity we can regard H
kCi as an .Hk;HCik/-bimodule. The

generators of Hk and H
Cik that are not mapped to canonical generators can be

expressed in terms of canonical generators as follows:

x.k/iC1;˛ D �i � x.Cik/iC1;˛�1 C x.Cik/iC1;˛;
x.Cik/i;˛ D �i � x.k/i;˛�1 C x.k/i;˛;

(5.8)

for all values of ˛.
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5.2. Graphical calculus for iterated flag varieties

5.2.1. Rings Hk. All of what has been described can be easily visualized using
a shorthand notation in which the generators of Hk are drawn as labelled bubbles
floating in a region carrying a label � called the weight. The label �will be important
when we relate partial flag varieties to the 2-category PU categorifying A

PU.sln/. More
precisely, � will correspond to a weight of the irreducible representation of A

PU.sln/
with highest weight .N; 0; 0; : : : ; 0/.

To a sequence k D .k0; k1; k2; : : : ; kn/ as above associate

� D �.k/ D .�1; �2; : : : ; �n�1/ 2 Zn�1

where
�˛ D �k˛C1 C 2k˛ � k˛�1:

The weight corresponding to the sequence Cik is defined analogously, where ki is
replaced by kiC1. Comparing with (4.1) it is clear that �.Cik/ D �C iX . Similarly,
�.�ik/ D � � iX .

With this convention, the generators of Hk and H
Cik are depicted as

x.k/j;˛ ´
�

j;˛

x.Cik/j;˛ ´
�C iX

j;˛

where the identity is depicted by the empty region of the appropriate weight. Products
of generators are depicted by a bubble in the plane for each generator present in the
product. Diagrams are only considered up to planar isotopy. A generic element in
Hk can be depicted as a formal linear combination of such diagrams. For example,
if n D 4, k D .1; 3; 4; 7/ then the element x.k/1;1x.k/4;3 C 5 � x.k/3;1 2 Hk is
represented as

�

1;1 4;3 C 5
�

3;1 :

If we depict the dual generators x.k/j;˛ of Hk defined in (5.3) as

x.k/j;˛ D
�

,j;˛

then the defining relations (5.4) for Hk become the equations

X̨
fD0

�

j;f j;˛�f D
X̨
gD0

�

j;˛�g j;g D ı˛;0

�

(5.9)
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for ˛ � 0 and 1 	 j 	 n. Notice that
�

j;0 D
�

j;0 D 1;
�

j;˛ D 0

if ˛ < 0, or kj � kj�1 < ˛; see (5.2) and the comments preceding (5.2).

5.2.2. Bimodules H
kCi . The identity element in H

kCi is represented by a vertical
line labelled i ,

H
kCi 3 1 ´

i

��C iX ;

where the orientation indicates that we are regardingH
kCi as an .H

Cik;Hk/-bimod-
ule. The � on the right-hand side is the weight corresponding to k. Hence, having
� on the right-hand side of the diagram indicates the right action of Hk on H

kCi .
Similarly, the �C iX on the left indicates the left action of H

Cik on H
kCi .

When regarding H
kCi as an .Hk;HCik/-bimodule we depict it in the graphical

calculus with the opposite orientation (a downward pointing arrow).

H
kCi 3 1 ´

i

�C iX� :

We will often omit the weights from all regions but one, with it understood that
crossing an upward pointing arrow with label i from right to left changes the weight
by iX , and crossing a downward pointing arrow from right to left changes the weight
by �iX .

Equations (5.7) show that all of the generators from H
kCi except for �i can be

interpreted as either generators ofHk orH
Cik under the natural inclusions. This fact

is represented in the graphical calculus as follows:

H
kCi 3 x.k/j;˛ ´

i

j;˛

�
, j ¤ i C 1; (5.10)

H
kCi 3 x.Cik/j;ˇ ´

i

j;ˇ

�
, j ¤ i;

H
kCi 3 �i ´

i

� �
,

where each of the diagram inherits a grading from the Chern class it represents
(deg x.k/j;˛ D 2˛, deg x.Cik/j;ˇ D 2ˇ, and deg �i D 2). Equation (5.10) is meant
to depicts the generator x.k/j;˛ 2 HkCi as the element x.k/j;˛ 2 Hk acting on
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the identity of H
kCi . Likewise, the generator x.Cik/j;ˇ 2 HkCi is depicted as

the element x.Cik/j;ˇ 2 HCik acting on the identity of H
kCi . The generator �i is

represented by a dotted line so that �˛i is represented by ˛ dots on a line, but for
simplicity we write this using a single dot and a label to indicate the power.

The identification (5.5) and (5.6) of x.k/j;˛ with x.Cik/j;˛ in H
kCi for

j ¤ i; i C 1 leads to the graphical identity

i

j;˛

�
D

i

j;˛

�
for j ¤ i; i C 1: (5.11)

Similarly, (5.8) provides the identities

i

iC1;˛

�
D

i

�
iC1;˛�1

�
C

i

iC1;˛

�
(5.12)

i

i;˛

�
D

i

�
i;˛�1

�
C

i

i;˛

�
(5.13)

expressing non-canonical generators in terms of canonical generators. It is sometimes
helpful to express the canonical generators in terms of non-canonical generators:

i

iC1;˛

�
D

X̨
fD0

.�1/f
i

� f
iC1;˛�f

�
(5.14)

i

i;˛

�
D

X̨
fD0

.�1/f
i

� f
i;˛�f

�
; (5.15)

which can be verified using (5.12) and (5.13). From these equations we can derive
other useful identities:

i

� ˛ �
D .�1/˛

X̨
fD0 i

iC1;˛�f iC1;f

�
(5.16)

i

� ˛ �
D .�1/˛

X̨
gD0

i

i;˛�g i;g

�
: (5.17)
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Proposition 5.3.

i

j;˛

�
D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂:

i

j;˛

�
if j ¤ i; i C 1;

i

�
i;˛�1

�
C

i

i;˛

�
if j D i;

P˛
fD0 .�1/f

i

� f
iC1;˛�f

�
if j D i C 1;

(5.18)

i

j;˛

�
D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
:̂

i

j;˛

�
if j ¤ i; i C 1;

P˛
fD0 .�1/f

i

� f
i;˛�f

�
if j D i;

i

�
iC1;˛�1

�
C

i

iC1;˛

�
if j D i C 1:

(5.19)

Proof. Recall that the elements x.k/j;˛ are sums of homogeneous symmetric terms
in all variables except for x.k/j;ˇ . By (5.11) all terms x.k/`;˛ for ` ¤ i; i C 1 can
be slid across the line labelled i . The case when j ¤ i; i C 1 then reduces to the
problem of sliding symmetric combinations

Pˇ

fD0 x.k/i;f x.k/iC1;ˇ�f across a line
labelled i . Such slides are determined by the following calculation in H

kCi :

ˇX
fD0

x.k/i;f x.k/iC1;ˇ�f

(5.15)D
ˇX

fD0

fX
gD0

.�1/gx.Cik/i;f �g �gi x.k/iC1;ˇ�f

(5.12)D
ˇX

fD0

fX
gD0

.�1/gx.Cik/i;f �g x.Cik/iC1;ˇ�f �1 �gC1
i

C
ˇX

fD0

fX
gD0

.�1/gx.Cik/i;f �g x.Cik/iC1;ˇ�f �gi :

Change variables to f 0 D f C 1, and g0 D g C 1 in the first summation, so that all
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terms cancel except for g D 0 term in the second summation; this term is equal to

ˇX
fD0

x.Cik/i;f x.Cik/iC1;ˇ�f :

Hence, when j ¤ i; i C 1 the elements x.k/j;˛ and x.Cik/j;˛ can be slid across a
line labelled i .

The dual generator x.k/j;˛ contains symmetric homogeneous combinations of
variables x.k/`;ˇ for ` ¤ j . When j D i in (5.18) all terms in x.k/i;˛ slide
across lines labelled i except for the variables x.k/iC1;ˇ . Using (5.12) to slide these
across establishes (5.18) for the case j D i . Similarly, when j D i C 1 all terms
in x.k/iC1;˛ slide from right to left across lines labelled i except for the variables
x.k/i;ˇ . Using (5.15) to slide these completes the proof of (5.18). Equation (5.19)
is proven similarly.

By duality, analogous equations as those above hold for downward pointing ar-
rows. For example, equation (5.17) implies

i

� ˛�
D .�1/˛

X̨
gD0

i

i;g i;˛�g

�
: (5.20)

5.2.3. Bimodules H
ki . For the remainder of this paper we write a signed sequence

i D "1i1"2i2 : : : "mim as i D s1s2 : : : sm with s˛ D "˛i˛ . For s˛ D "˛i˛ write s˛k
for the sequence obtained from k D .k0; k1; k2; : : : ; kn/ by increasing the ki˛ by 1 if
"˛ D C and ki˛ < ki˛C1

, decreasing the sequence by 1 if "˛ D � and ki˛�1
< ki˛ ,

and setting the sequence to ; otherwise. Then ik is either set to ;, or else it denotes
the sequence obtained from k with the .i˛/th term increased by one if s˛ D Ci˛ ,
or decreased by one if s˛ D �i˛ , sequentially for each s˛ in the signed sequence i ,
reading from the right. It is clear that the sequence ik is equal to the sequence jk

whenever i ; j 2 SSeq with iX D jX 2 X and ik ¤ ; and jk ¤ ;.
We write H

ki for the .H
ik
;Hk/-bimodule

H
ki ´ H

s2s3:::smk
s1 ˝Hs2s3:::sm k

� � � ˝Hsm�1sm k
H

smk
sm�1 ˝Hsm k

Hksm : (5.21)

This bimodule can also be described as the cohomology ring of the variety of mC n
step iterated partial flags corresponding to the sequence obtained fromk by the ordered
insertion of subspaces determined from the signed sequence i .

The .H
ik
;Hk/-bimodule H

ki can be understood using the graphical calculus.
A general signed sequence i D s1s2 : : : sm is represented by a sequence of lines
coloured by the sequence i1i2 : : : im, where the line coloured by i˛ is oriented upward
if s˛ D Ci˛ and oriented downward if s˛ D �i˛ .
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Examples. (1) For the signed sequenceCjCi 2 SSeq consider the .H
Cj Cik;Hk/-

bimodule
H
kCj Ci D H

Cik
Cj ˝H

Ci k
H
kCi :

As explained in the previous section, the identity elements of the .H
Cik;Hk/-bimod-

ule H
kCi and the .H

CiCj k;HCik/-bimodule H
Cik

j are depicted as

i

��C iX and

j

�C iX�C iX C jX

respectively.
The identity element of H

kCj Ci is represented by the diagram

j i

��C iX�C iX C jX :

The region in the middle of the two lines is labelled by the weight�CiX corresponding
to Cik. The tensor product over the action of H

Cik is represented diagrammatically
by the fact that a labelled bubble in the region with weight �C iX can be equivalently
regarded as an element ofH

Cik acting on the line corresponding toH
kCi , or the line

corresponding to H
Cik

j .

Action of Hk Action of H
Cik Action of H

Cj Cik

j i

`;˛

�

j i

`;˛

�

j i

`;˛

�
.

The weight � on the far right, and the weight of �C iX C jX on the far left, indicate
that this diagram is describing an .H

Cj Cik;Hk/-bimodule where the various actions
are depicted as above.

(2) For i D Ci1 C i2 C i3 � � � C ir the identity element of the bimodule H
ki is

depicted by a sequence of upward oriented labelled lines

H
ki 3 1 D

i1 i2 i3

: : :

im�1 im

�
:

The canonical generators �i˛ of each term in the tensor product (5.21) are repre-
sented graphically by a dot on the line labelled i˛ ,

H
ki 3 1˝ 1˝ : : : 1˝ �i˛ ˝ 1 � � � ˝ 1 D

i1 i2

: : :

i˛

� : : :

im

�
:
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Likewise, the tensor product over the ringsH
s˛s˛C1:::smk

is represented by the regions
between lines. Again, the weights on the far left and right of the diagram indicate the
bimodule structure.

Action of Hk Action of H
i˛:::imk

Action of H
Cik

i1 i2

: : :

im

j;ˇ

�

i1

: : :
j;ˇ

i˛

: : :

im

�

i1 i2

: : :

im

j;ˇ

�

(3) Consider the .Hk;Hk/-bimodule corresponding to the tensor product

H
kCi ˝H

Ci k
H
kCi

where in the first factor we are regarding H
kCi as a .Hk;HCik/-bimodule. The

identity element of this bimodule is represented by the diagram

i i

��C iX� :

5.2.4. Identities arising from tensor products. Bubbles with a given label .j; ˛/
can pass from right to left, or left to right, through a line coloured by i as long as
j ¤ i; i C 1. If j D i or j D i C 1 then a bubble can move through a line subject to
the rules (5.12)–(5.15). Furthermore, dots on a line can be exchanged for bubbles in
the neighboring regions using (5.16) and (5.17). Dual bubbles corresponding to dual
generators can be slid across lines using the rules (5.18) and (5.19).

The following Lemma is needed for the definition of the 2-representation � given
in the next section. In particular, parts (i) and (ii) are used to provide two equivalent
definitions of

�

�
�� ((

i �

�
; �

�
** ))

i �

�
;

and (iii) and (iv) are used to show that

�

�
� ((

i �

�
D �

�
�� �
i �

�
; �

�
� ))

i �

�
D �

�
** �
i �

�
:

Lemma 5.4. The following identities hold.
i) Equivalent definitions of cups labelled i : in the ring H

kCi ˝H
Ci k

H
kCi we

haveP̨
fD0

.�1/˛�f

i

� f

i

i;˛�f

�
D P̨
gD0

.�1/˛�g

i i

� g
i;˛�g

�
;

P̨
fD0

.�1/˛�f �fi ˝ x.k/i;˛�f D
P̨
gD0

.�1/˛�g x.k/i;˛�g ˝ �gi
(5.22)
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for all ˛ 2 N.

ii) In the ringH
�ik

Ci ˝H
�i k

H
�ik

Ci we have

P̨
fD0

.�1/˛�f

i

� f

i

iC1;˛�f

�
D P̨
gD0

.�1/˛�g

i i

� g
iC1;˛�g

�
;

P̨
fD0

.�1/˛�f �fi ˝ x.k/iC1;˛�f D
P̨
gD0

.�1/˛�g x.k/iC1;˛�g ˝ �gi

for all ˛ 2 N.

iii) Dot slide formulas for cups: in the ringH
kCi ˝H

Ci k
H
kCi we have

Pki �ki�1

fD0
.�1/ki �ki�1�f �fC1

i ˝ x.k/iC1;ki �ki�1�f

D Pki �ki�1

gD0
.�1/ki �ki�1�g �gi ˝ x.k/iC1;ki �ki�1�g � �i :

iv) Dot slide formulas for cups: In the ringH
�ik

Ci ˝H
�i k

H
�ik

Ci we have

PkiC1�ki

fD0
.�1/kiC1�ki �f �fC1

i ˝ x.k/iC1;kiC1�ki �f

D PkiC1�ki

gD0
.�1/kiC1�ki �g �gi ˝ x.k/iC1;kiC1�ki �g � �i :

Proof. Part i) follows from the chain of equalities below

X̨
fD0

.�1/˛�f

i

� f

i

i;˛�f

�
(5.20)D

X̨
fD0

fX
gD0

.�1/˛ i;g

i

i;f �g

i

i;˛�f

�

If we re-index by letting f 0 D ˛ � f and switch the order of summation we have

D
X̨
gD0

˛�gX
f 0D0

.�1/˛ i;g

i

i;.˛�g/�f 0

i

i;f 0
�

(5.17)D
X̨
gD0

.�1/g
i i

� ˛�g
i;g

�

which after re-indexing completes the proof of part i). Part ii) is proven similarly.
Part iii) follows from part i) by letting f 0 D f C 1 and adding and subtracting the
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term .�1/˛C11˝ x.k/i;˛C1, so that

X̨
fD0

.�1/˛�f �fC1
i ˝ x.k/i;˛�f

D
˛C1X
f 0D0

.�1/˛C1�f 0
�
f 0

i ˝ x.k/i;˛C1�f 0 � .�1/˛C11˝ x.k/i;˛C1

part i)D
˛C1X
gD0

.�1/˛C1�gx.k/i;˛C1�g ˝ �gi � .�1/˛C11˝ x.k/i;˛C1:

Pulling off the g D 0 term and re-indexing g0 D g � 1 we have

X̨
g0D0

.�1/˛�g0
x.k/i;˛�g0 ˝ �g0C1

i C .�1/˛C1.x.k/i;˛C1 ˝ 1 � 1˝ x.k/i;˛C1/:

But the term with the summation is equal toP̨
g0D0

.�1/˛�g0
�
g0

i ˝ x.k/i;˛�g0 � �i

by part i), and the remaining terms .�1/˛C1.x.k/i;˛C1˝1�1˝x.k/i;˛C1/, are zero
when ˛ D ki � ki�1 since x.k/i;˛C1 is zero for ˛ � ki � ki�1, see (5.2). Part iv) is
proven similarly using part ii).

Corollary 5.5. The assignments (see Definition 6.1)

�
� ��

i;�

� W Hk �! .H
kCi ˝H

Ci k
H
kCi /f1C ki�1 � kiC1g;

1 7�! Pki �ki�1

fD0
.�1/ki �ki�1�f �fi ˝ x.k/i;ki �ki�1�f ;

and

�
���

i;�

� W Hk �! .H
�ik

Ci ˝H
�i k

H
�ik

Ci /f1C ki�1 � kiC1g;

1 7�! PkiC1�ki

gD0
.�1/kiC1�ki �g �gi ˝ x.k/iC1;kiC1�ki �g ;

define morphisms of graded bimodules of degree 1C �i D 1 � ki�1 C 2ki � kiC1
and 1 � �i D 1C ki�1 � 2ki C kiC1, respectively.

Proof. For the first claim it suffices to check that the left action of each generator of
Hk on �

� ��

i;�

�
.1/ 2 .H

kCi ˝H
Ci k

H
kCi / is equal to right action of this generator.

The Corollary follows since bubbles can slide across lines by (5.12)–(5.15) at the cost
of introducing powers of �i on one of the tensor factors; by Lemma 5.4 (iii) and (iv),
factors of �i can be slid across tensor factors in the above sums. The second claim is
proven similarly and the degrees of these bimodule maps are easily computed.
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5.3. The 2-category FlagN . Bim is a 2-category whose objects are graded rings,
whose 1-morphisms are graded bimodules, and 2-morphisms are degree-preserving
bimodule homomorphisms. Idempotent bimodule homomorphisms split in Bim, so
that any 2-representation ‰ W U! Bim extends uniquely (up to isomorphisms) to a
2-representation PU! Bim; see Section 3.4.

Graded 2-homs between graded bimodules M1 and M2 are given by

HOMBim.M1;M2/´
M
t2Z

HomBim.M1ftg;M2/:

Let Bim� be the 2-category with the same objects and 1-morphisms as Bim and
2-morphisms given by

Bim�.M1;M2/´ HOMBim.M1;M2/:

We now define a sub 2-category FlagN of the 2-category Bim for each integer
N 2 ZC.

Definition 5.6. The additive k-linear 2-category FlagN is the idempotent completion
inside of Bim of the 2-category consisting of:

� Objects: the graded rings Hk for all k D .k0; k1; k2; : : : ; kn/ with 0 	 k1 	
k2 � � � 	 kn D N .

� Morphisms: generated by the graded (Hk ,Hk)-bimodule Hk , the graded
(H

Cik ,Hk)-bimodulesH
kCi and the graded (Hk ,H

Cik)-bimoduleH
kCi for all

i 2 I , together with their shifts Hkftg, HkCi ftg, and H
kCi ftg for t 2 Z. The

bimodules Hk D Hkf0g are the identity 1-morphisms. Thus, a morphism from
Hk to H

ik
is a finite direct sum of graded .H

jk
;Hk/-bimodules of the form

H
kj ftg ´ H

s2s3:::smk
s1˝Hs2s3:::sm k

� � �˝Hsm�1sm k
H

smk
sm�1˝Hsm k

Hksm ftg

for signed sequences j D s1s2 : : : sm with iX D jX 2 X .
� 2-morphisms: degree-preserving bimodule maps.

There is a graded additive subcategory Flag�
N of Bim� with the same objects and

1-morphisms as FlagN , but with

Flag�
N .M1;M2/´

M
t2Z

FlagN .M1ftg;M2/:

In Section 6 we show that Flag�
N provides a2-representation of U�!; using the isomor-

phism † W U� ! U�! and restricting to degree zero 2-morphisms, the subcategory
FlagN provides a 2-representation of U.
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6. Representing U�
! on the flag 2-category

In this section we define for each positive integer N a 2-representation �N W U�! !
Flag�

N . The 2-functor �N is degree-preserving so that it restricts to a weak 2-functor
� W U! FlagN . We will sometimes shorten �N to � for simplicity.

6.1. Defining the 2-functor �N . On objects the 2-representation �N W U�! !
Flag�

N sends � D .�1; �2; : : : ; �n�1/ to the ring Hk when � D �.k/, i.e., when
�˛ D �k˛C1 C 2k˛ � k˛�1.

�N W U! ! Flag�
N

� 7!
´
Hk if � D �.k/;
0 otherwise:

Morphisms of U! get mapped by �N to graded bimodules:

�N W U! ! Flag�
N ;

1�ftg 7!
´
Hk¹tº if �˛ D �k˛C1 C 2k˛ � k˛�1;
0 otherwise;

ECi1�ftg 7!
´
H
kCi ¹t C 1C ki�1 C ki � kiC1º if �˛ D �k˛C1 C 2k˛ � k˛�1;

0 otherwise;

E�i1�ftg 7!
´
H
k�i ¹t C 1 � kiº if �˛ D �k˛C1 C 2k˛ � k˛�1;

0 otherwise:

HereH
k�i ftC1�kig is the bimoduleH

k�i with the grading shifted by tC1�ki
so that

.H
kCi ft C 1 � kig/j D .HkCi /j�.tC1�ki /:

More generally, the 1-morphism

Ei 1�ftg D Es11�C.s2/X C���C.sm�1/X C.sm/X B � � � BEsm�1
1�C.sm/X BEsm1�ftg (6.1)

is mapped by �N to the graded bimoduleH
kCi with grading shift ftC t 0g, where t 0 is

the sum of the grading shifts for each terms of the composition in (6.1). Formal direct
sums of morphisms of the above form are mapped to direct sums of the corresponding
bimodules.

6.1.1. Biadjointness

Definition 6.1. The 2-morphisms generating biadjointness in U�! are mapped by �
to the following bimodule maps.
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�

�
�� ((

i
�

�
W

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

Hk �! .H
kCi ˝H

Ci k
H
kCi /f1C ki�1 � kiC1g;

� 7�! Pki �ki�1

fD0
.�1/ki �ki�1�f

i

� f

i

i;ki �ki�1�f

�
;

1 7�! Pki �ki�1

fD0
.�1/ki �ki�1�f �fi ˝ x.k/i;ki �ki�1�f ;

�

�
))**

i
�

�
W

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

Hk �! .H
�ik

Ci ˝H
�i k

H
�ik

Ci /f1C ki�1 � kiC1g;

� 7�! PkiC1�ki

fD0
.�1/kiC1�ki �f

i

� f

i

iC1;kiC1�ki �f

�

;

1 7�! PkiC1�ki

fD0
.�1/kiC1�ki �f �fi ˝ x.k/iC1;kiC1�ki �f ;

�

�
++,,

i �
�
W

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

.H
kCi ˝H

Ci k
H
kCi /f1C ki�1 � kiC1g ! Hk;

i

� ˛2

i

� ˛1 �
7�! .�1/˛1C˛2C1Cki �kiC1 � iC1;˛1C˛2C1Cki �kiC1

�

;

�
˛1

i ˝ �˛2

i 7�! .�1/˛1C˛2C1Cki �kiC1 � x.k/iC1;˛1C˛2C1Cki �kiC1
;

�

�
-- ..

i �
�
W

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

.H
�ik

Ci ˝H
�i k

H
�ik

Ci /f1C ki�1 � kiC1g ! Hk;

i

� ˛2

i

� ˛1 �
7�! .�1/˛1C˛2C1Cki�1�ki � i;˛1C˛2C1Cki�1�ki

�

;

�
˛1

i ˝ �˛2

i 7�! .�1/˛1C˛2C1Cki�1�ki � x.k/i;˛1C˛2C1Cki�1�ki
:

Corollary 5.5 shows that the cups above are bimodule maps. It is clear that the
caps are bimodule maps. These definitions preserve the degree of the 2-morphisms of
U�! defined in Section 3.1. By Lemma 5.4, the clockwise oriented cap and cup have
degree 1� �i and the counter-clockwise oriented cap and cup have degree 1C �i so
that these assignments are degree-preserving.

6.1.2. R.�/ generators

Definition 6.2. The 2-morphisms
��

�
i;�

and
��
�
i;�

in U�! are mapped by �N to the
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graded bimodule maps:

�

0
BB@ ��

i

�
��C iX

1
CCA W

´
H
kCi ¹1C ki�1 � kiC1º �! H

kCi ¹1C ki�1 � kiC1º;
�˛i 7! �˛C1

i ;

(6.2)

�

0
BB@ ��

i

�
� �C iX

1
CCA W

´
H
kCi ¹1C ki�1 � kiC1º �! H

kCi ¹1C ki�1 � kiC1º;
�˛i 7! �˛C1

i :

Note that these assignment are degree-preserving since these bimodule maps are
degree 2.

The2-morphisms
$$�����

%%����� i;j;�
and

&&��
��

�
''

��
��

�

i;j;�
are mapped by� to the graded bimodule

maps:

�

� ����

i j

�

�
W H

Cj k
Ci ˝H

Cj k
H
kCj ! H

Cik
Cj ˝H

Ci k
H
kCi ;

�
˛1

i ˝ �˛2

j 7�!

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

�
˛2

j ˝ �˛1

i if i � j D 0;P˛1�1

fD0
�
˛1C˛2�1�f
i ˝ �fi �

P˛2�1

gD0
�
˛1C˛2�1�g
i ˝ �gi if i D j;

.�
˛2

j ˝ �˛1C1
i � �˛2C1

j ˝ �˛1

i /f�1g if ı ı��
j i

;

.�
˛2

j ˝ �˛1

i /f1g if ı ı��
i j

:

(6.3)

�

�
�� ��i j

�

�
W H

�j k
�i ˝H

�j k
H
k�j ! H

�ik
�j ˝H

�i k
H
k�i ;

�
˛1

i ˝ �˛2

j 7�!

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
:

�
˛2

j ˝ �˛1

i if i � j D 0;P˛2�1

fD0
�
˛1C˛2�1�f
i ˝ �fi �

P˛1�1

gD0
�
˛1C˛2�1�g
i ˝ �gi if i D j;

.�
˛2

j ˝ �˛1

i /f�1g if ı ı��
j i

;

.�
˛2C1
j ˝ �˛1

i � �˛2

j ˝ �˛1C1
i /f1g if ı ı��

i j
:

It is straightforward to see that these assignments define bimodule maps of degree
�i � j . In the case when i D j the bimodule map is just the divided difference
operator acting on �i and �j .
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6.2. Checking the relations of U!. In this section we show that the relations on
the 2-morphisms of U�! are satisfied in Flag�

N , thus establishing that � is a graded
additive k-linear 2-functor. From the definitions in the previous section it is clear that
� preserves the degrees associated to generators. For this reason, we often simplify
our notation in this section by omitting the grading shifts ftg when no confusion is
likely to arise.

Proposition 6.3. � preserves the sl2-relations of U�!.

Proof. The proof in [21] that the sl2-relations of U�! are preserved by � generalizes
immediately with only minor refinements to grading shifts and summation indices.
In [21] the condition that the dotted bubbles of degree zero are equal to one follows
from [21, equation 8.1]. The proof of this proposition only makes use of (5.9) and
(5.11)–(5.19). For example, to prove biadjointness we must show

�

0
@ �� �� ��

��C iX 1
A D �

0
@ ��

��C iX
1
A ; �

0
@ �� �� ��

�� � iX 1
A D �

0
@ ��

�� � iX
1
A ;

�

0
@ ������

��C iX

1
A D �

0
@ ��

��C iX

1
A ; �

0
@ ������

�� � iX

1
A D �

0
@ ��

�� � iX

1
A :

for all strings labelled by i . We will prove the first equality by computing the bimod-
ules maps on elements �˛i 2 HkCi .

�

0
@ �� �� ��

��C iX 1
A W �˛i 7�! Pki �ki�1

fD0
.�1/˛ i;˛�.ki �ki�1�f /

i

i;ki �ki�1�f

�
:

But Pki �ki�1

fD0
.�1/˛ i;˛�.ki �ki�1�f /

i

i;ki �ki�1�f

�
(5.17)D �˛i :

since the sum can be taken to ˛ by removing terms that are equal to zero when
˛ < ki �ki�1, or by adding terms that are equal to zero if ˛ > ki �ki�1. The others
are proven similarly.

Lemma 6.4.

�

0
B@ ��

�C iX
�� ��

����

i j

ij

1
CA D

´
H
kCj ˝Hk

H
kCi ! H

CiCj k
Ci ˝H

CiCj k
H

Cik
Cj ;

�
˛1

j ˝ �˛2

i 7! �
˛2

i ˝ �˛1

j ;

(6.4)
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�

0
B@ ��
�C iX

����

�� ��

ji

j i

1
CA D

´
H

Cj Ci Cik ˝HCj Ci k
H

Cj k
Ci ! H

kCi ˝Hk
H
kCj ;

�
˛1

j ˝ �˛2

i 7! �
˛2

i ˝ �˛1

j :

These bimodule maps have degree zero for all i; j 2 I and all weights �.

Proof. We compute the bimodule maps directly using the definitions in the previous
section. The case when i D j appears in [21] so we will omit this case here. The
map in (6.4), using (5.22) for the cup, is given by

�

0
B@ ��

�C iX
�� ��

����

i j

ij

1
CA W �˛1

j ˝ �˛2

i

7�!
ki �ki�1X
fD0

.�1/˛2 i;ki �ki�1�f

i j

� ˛1

i;˛2�.ki �kiC1�f /

�C iX
(6.5)

if i � j D 0 or ı ı��
i j

, and

ki �ki�1�1X
fD0

.�1/˛2 i;ki �ki�1�1�f

i j

� ˛1

i;˛2�.ki �kiC1�1�f /

�C iX

�
ki �ki�1�1X
fD0

.�1/˛2�1 i;ki �ki�1�1�f

i j

� ˛1C1
i;˛2�.ki �kiC1�f /

�C iX(6.6)

if ı ı��
j i

. Careful calculation, keeping in mind the weights of each region, will
show that these maps have degree zero. In both cases, the dual generators can slide
across the line labelled j via (5.19). After changing indices, equations (6.5) and (6.6)
both become

.Cj k/i �.Cj k/i�1X
f 0D0

.�1/˛2 i;f 0

i j

� ˛1

i;˛2�f 0

�C iX

where .Cjk/i ,.Cjk/i�1 are the .i � 1/-st and i -th terms in Cjk. By adding or
removing terms that are equal to zero, depending on whether ˛2 is greater than or
less than .Cjk/i � .Cjk/i�1, the above summation can be taken to ˛2, so that the
dual version of (5.17) completes the proof.

Proposition 6.5. The equality

�

0
BB@ ����

����
�
����

�� ��

ij

i j

1
CCA D �

�
�� ��i j

�

�
D �

0
BB@ �� ��

�� ��
�

�� ��

����

j i

ji

1
CCA
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of graded bimodule maps holds in Flag�
N for all weights �.

Proof. By direct calculation, using Lemma 6.4, we have that both the far left and
right bimodule maps are given by

�
˛1

i ˝ �˛2

j 7�!

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

�
˛2

j ˝ �˛1

i if i � j D 0;P˛2�1

fD0
�
˛1C˛2�1�f
i ˝ �fi �

P˛1�1

gD0
�
˛1C˛2�1�g
i ˝ �gi if i D j;

.�
˛2

j ˝ �˛1

i /f�1g if ı ı��
j i

;

.�
˛2C1
j ˝ �˛1

i � �˛2

j ˝ �˛1C1
i /f1g if ı ı��

i j
;

which agrees with �.
&&��

��
�
''

��
��

�

i;j;�CiX CjX /.

Proposition 6.6. The equalities

�

 
����

��

��

�

i j

!
D �

 
���� �

i j

!
; �

 
��

��

��

��

�

i j

!
D �

 
���� �

i j

!

of graded bimodule maps hold in Flag�
N for all weights �.

Proof. This follows immediately from Lemma 6.4.

Proposition 6.7. The equalities

�

� �����

i j

�

�
D �

� ��

�
��

i j

�

�
; �

� �����
i j

�

�
D �

� ����

�i j

�

�

hold in Flag�
N for all weights �.

Proof. Using the definition of the bimodule map�.
$$�����

%%����� i;j;�
/ in (6.3) the proposition

is easily verified.

Proposition 6.8. The equalities

�

 
����

����

�

i j

!
D

8̂̂̂
<̂
ˆ̂̂̂:
�

 
���� �

i j

!
if i � j D 0;

.i � j /�
 

���� ��
i j

� ���� ��
i j

!
if i � j D �1;

(6.7)
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�

0
@

����

����

����

�

i j k

1
A D �

0
@

�� ��

�� ��

�� ��

�

kji

1
A unless i D k and i � j ¤ 0; (6.8)

�

0
@ ���� �� �

i j i

1
A D .i � j /�

0
@

����

����

����

�

i j i

� �� ��

�� ��

�� ��

�

iji

1
A if i � j D �1: (6.9)

of bimodule maps hold in Flag�
N for all weights �.

Proof. To prove the proposition we compute the bimodule maps in (6.7) on the el-
ements of the form �

˛1

i ˝ �˛2

j . Bimodule maps in (6.8) and (6.9) are computed on
elements �˛1

i ˝ �˛2

j ˝ �˛3

k
and �˛1

i ˝ �˛2

j ˝ �˛3

i , respectively. The action on other ele-
ments in the cohomology rings is determined by the fact that the maps are bimodules
morphisms.

The proof of these remaining relations is the same as the proof that ringsR.�/ act
on Po`� (notation as in [16]). Replacing the variables xk.i / 2 Po`i with the Chern
classes of line bundles �k in the corresponding cohomology rings turns formulas in
[16, Section 2.3] for the action of dots and crossings into formulas (6.2) and (6.3),
with the signs taken into account.

Thus, we proved the following result:

Theorem 6.9. �N W U�! ! Flag�
N is a 2-functor and a 2-representation.

6.3. Equivariant representation

6.3.1. Reminders on equivariant cohomology. The GL.N /-equivariant cohomol-
ogy of a point [11] is given by

H�
GL.N/.pt/ D H�.Gr.N;1// D kŒx1; x2; : : : ; xN ; y1; y2; : : : �=IN;1

where IN;1 is the ideal generated by the homogeneous terms in

.1C x1t C x2t2 C : : : xN tN /.1C y1t C y2t2 C : : : yj tj C � � � / D 1:
Thus, H�

GL.N/.pt/ is isomorphic to the polynomial ring

H�
GL.N/.pt/ Š kŒx1; x2; : : : ; xN�1; xN �

with xi in degree 2i .
Given a sequence k D .k0; k1; k2; : : : ; kn/ with 0 	 k1 	 k2 	 � � � 	 kn D N ,

GL.N / acts transitively on Fl.k/, so the equivariant cohomology of Fl.k/ is

H�
GL.N/.Fl.k// D H�

Stab.pt/.pt 2 Fl.k//
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where the stabilizer of a point
�
0 � Ck1 � � � � � Ckn D CN � in FL.k/ is the group

of invertible block
�
k1�.k2�k1/�� � ��.N �kn�1/

�
upper-triangular matrices. This

group is contractible onto its subgroup GL.k1/�GL.k2�k1/�� � ��GL.N �kn�1/.
Hence,

HG
k Š H�

GL.k1/	GL.k2�k1/	���	GL.N�kn�1/
.pt/

Š
nO

jD1
H�

GL.kj �kj �1/
.pt/

Š
nO

jD1
kŒx.k/j;1; x.k/j;2; : : : ; x.k/j;kj �kj �1

�

with deg x.k/j;˛ D 2˛. Thus, the equivariant cohomology of Fl.k/ has the same
generators as the ordinary cohomology ring, but we do not mod out by the ideal Ik;N .

The equivariant cohomology rings HG

Cik
and HG

�ik
of Fl.Cik/ and Fl.�ik/ can

be similarly computed. They have the same generators as the ordinary cohomology
rings H

Cik and H
�ik , but no relations.

The equivariant cohomology HG

kCi of Fl.kCi / also has the same generators as

the ordinary cohomology ring, with no relations. Using the forgetful maps Fl.k/ 
Fl.kCi /! Fl.Cik/ we get inclusions

HG
k ,�! HG

kCi ;

x.k/j;˛ 7�! x.kCi /j;˛ for j ¤ i C 1;
x.k/iC1;˛ 7�! �i � x.kCi /iC1;˛�1 C x.kCi /iC1;˛;

(6.10)

and
HG

Cik
,�! HG

kCi ;

x.Cik/j;˛ 7�! x.kCi /j;˛ for j ¤ i;
x.Cik/i;˛ 7�! �i � x.kCi /i;˛�1 C x.kCi /i;˛;

(6.11)

making HG

kCi a graded .HG

Cik
;Hk/-bimodule, just as in the non-equivariant case.

Using these inclusions we introduce canonical generators of HG

kCi given by identi-

fying certain generators of HG
k

and HG

Cik
with their images in HG

kCi . Thus, we can

identify x.k/j;˛ and x.Cik/j;˛ in HG

kCi when j ¤ i; i C 1, and

HG

kCi D
O
j¤iC1

kŒx.k/j;1 : : : x.k/j;kj �kj �1
�

˝ kŒx.Cik/iC1;1; : : : ; x.Cik/iC1;kiC1�ki �1�˝ kŒ�i �;
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or equivalently

HG

kCi D
O
j¤i

kŒx.Cik/j;1 : : : x.Cik/j;kj �kj �1
�

˝ kŒx.k/i;1; : : : ; x.k/i;ki �ki�1
�˝ kŒ�i �:

The generators of HG
k

and HG

Cik
that are not mapped to canonical generators in

HG

kCi can be expressed in terms of canonical generators as follows:

x.k/iC1;˛ D �i � x.Cik/iC1;˛�1 C x.Cik/iC1;˛;
x.Cik/i;˛ D �i � x.k/i;˛�1 C x.k/i;˛

for all values of ˛.

6.3.2. The2-categoryEqFlagN . The2-category EqFlagN is the equivariant analog
of FlagN .

Definition 6.10. The additive k-linear 2-category EqFlagN is the idempotent com-
pletion inside of Bim of the 2-category consisting of:

� Objects: the graded rings HG
k

for all k D .k0; k1; k2; : : : ; kn/ with 0 	 k1 	
k2 	 � � � 	 kn D N .

� Morphisms: generated by the graded (HG
k

,HG
k

)-bimodule HG
k

, the graded

(HG

Cik
,HG
k

)-bimodules HG

kCi and the graded (HG
k

,HG

Cik
)-bimodule HG

kCi for

all i 2 I , together with their shifts HG
k
ftg, HG

kCi ftg, and HG

kCi ftg for t 2 Z.

The bimodulesHG
k
D HG

k
f0g are the identity 1-morphisms. Thus, a morphism

from HG
k

to HG

ik
is a finite direct sum of graded .HG

jk
;HG

k
/-bimodules of the

form

HG

kj ftg ´ HG

s2s3:::smk
s1˝HG

s2s3:::sm k
� � �˝HG

sm�1sm k
HG

smk
sm�1˝HG

sm k
HG
ksm ftg

for signed sequences j D s1s2 : : : sm with iX D jX 2 X .
� 2-morphisms: degree-preserving bimodule maps.

There is a graded additive subcategory EqFlag�
N of Bim� with the same objects

and 1-morphisms as EqFlagN , and

EqFlag�
N .M1;M2/´

M
t2Z

EqFlagN .M1ftg;M2/:
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6.3.3. Equivariant representation �G
N

. A 2-representation of the 2-category
U�.sl2/ D U�!.sl2/ was constructed in [22] using equivariant cohomology of
partial flag varieties. Here we extend that construction to the sln-case and define a
2-representation �GN W U�! ! EqFlag�

N .
The verification that �N is a 2-representation with the assignments given in Sec-

tion 6.1 used only the relations (5.9) and (5.11)–(5.19), together with Lemma 5.4 and
Corollary 5.5 which both follow from these relations.

To define the equivariant 2-representation �GN ordinary cohomology rings are
replaced by equivariant cohomology rings and bimodule maps associated to 2-mor-
phisms are defined the same way, except that the dual generators x.k/j;˛ must be
redefined. Set x.k/j;0 D 1 and inductively define

x.k/j;˛ D �
X̨
fD1

x.k/j;f x.k/j;˛�f : (6.12)

For example,

x.k/j;1 D �x.k/j;1;
x.k/j;2 D �x.k/j;1x.k/j;1 � x.k/j;2 D x.k/2j;1 � x.k/j;2;
x.k/j;3 D �x.k/3j;1 C 2 x.k/j;1 x.k/j;2 � x.k/j;3:

In the nonequivariant cohomology rings the two definitions (5.3) and (6.12) of dual
generators agree, but not in the equivariant cohomology ring.

Remark 6.11. We could have started with the definition of x.k/j;˛ given in (6.12)
and used this definition to construct the non-equivariant representation in the previous
section. After all, the two definitions (5.3) and (6.12) are equivalent in the non-
equivariant cohomology ring. However, the recursive definition (6.12) makes it more
cumbersome to calculate with in practice and that is why we used (5.3) to construct
the non-equivariant representation.

Lemma 6.12. With x.k/j;˛ redefined as in (6.12) the relations (5.9) and (5.11)–(5.19)
hold in the equivariant cohomology rings:

X̨
fD0

x.k/j;f x.k/j;˛�f D ı˛;0; (6.13)

x.k/j;˛ D x.Cik/j;˛ for j ¤ i; i C 1; (6.14)

x.k/iC1;˛ D �i � x.Cik/iC1;˛�1 C x.Cik/iC1;˛; (6.15)

x.Cik/i;˛ D �i � x.k/i;˛�1 C x.k/i;˛; (6.16)

x.Cik/iC1;˛ D
X̨
fD0

.�1/f �fi x.k/iC1;˛�f ; (6.17)
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x.k/i;˛ D
X̨
fD0

x.Cik/i;˛�f �fi ; (6.18)

.�1/˛�˛i D
X̨
fD0

x.Cik/iC1;˛�f x.k/iC1;f
(6.19)

D
X̨
gD0

x.Cik/i˛�g x.k/i;g ;

x.k/j;˛ D x.Cik/j;˛ if j ¤ i; i C 1; (6.20)

x.k/j;˛ D
8<
:
x.Cik/i;˛�1 �i C x.Cik/i;˛ if j D i;P̨
fD0

.�1/˛x.Cik/iC1;˛�f �fi if j D i C 1; (6.21)

x.Cik/j;˛ D
8<
:
P̨
fD0

.�1/˛x.k/i;˛�f �fi if j D i;
x.k/iC1;˛�1 �i C x.k/iC1;˛ if j D i C 1;

(6.22)

Proof. Equation (6.13) follows from the definition (6.12) of the dual elementsx.k/j;˛ .
Equations (6.14)–(6.16) equate two images of noncanonical generators under the
inclusions (6.10) and (6.11). Equations (6.17) and (6.18) follow from (6.15) and
(6.16). The first equality in (6.19) is proven as follows:

.�1/˛
X̨
fD0

x.Cik/iC1;˛�f x.k/iC1;f

(6.17)D
X̨
fD0

˛�fX
gD0

.�1/˛Cg�gi x.k/iC1;˛�f �g x.k/iC1;f

D
X̨
gD0

.�1/˛Cg�gi
˛�gX
fD0

x.k/iC1;.˛�g/�f x.k/iC1;f

(6.13)D
X̨
gD0

.�1/˛Cg�gi ı˛�g;0 D �˛i :

The second equality above is just a re-indexing of the summation. The second
equation in (6.19) is proven similarly.

Equation (6.20) follows from (6.14) and the definition of x.k/j;˛ . Equations
(6.21) and (6.22) follow from (6.15) and (6.16) and the definition of x.k/j;˛ .

Theorem 6.13. �GN W U�! ! EqFlag�
N is a 2-representation.

Proof. It is clear that �GN preserves the degree associated to 2-morphisms since the
2-representation �N does. The proof that �GN preserves the relations in U�! can be
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copied line by line from the proof the �N preserves the relations. By Lemma 6.12 all
identities used in the proof of Theorem 6.9 hold in EqFlag�

N with the dual elements
redefined according to (6.12).

Theorem 6.14. The 2-representations �N and �GN categorify the irreducible repre-
sentation VN of PU.sln/ with highest weight .N; 0; : : : ; 0/.

Proof. Idempotent bimodule maps split in Bim, so by the universal property of
the Karoubi envelope the additive 2-functors �N W U ! FlagN and �GN W U !
EqFlagN , obtained using the isomorphism† W U� ! U�! and restricting to degree-
preserving 2-morphisms, extend to 2-representations of PU.

The ringsHk andHG
k

are graded local rings so that every projective module is free,
and they both have (up to isomorphism and grading shift) a unique graded indecom-
posable projective module. The Grothendieck group of the category

L
kHk-gmod

(respectively
L
kH

G
k

-gmod) is a free ZŒq; q�1�-module with basis elements ŒHk�

(respectively ŒHG
k
�) over all k, where qi acts by shifting the grading degree by i .

Thus, we have

K0.
M
k

HG
k -gmod/ Š K0.

M
k

Hk-gmod/ Š AVN

as ZŒq; q�1�-modules, where the sums are over all sequences0 	 k1 	 � � � 	 kn D N
and AVN is a representation of A

PU.sln/, an integral form of the representation VN
of PU.sln/.

The bimodules�.1�/,�.ECi1�/,�.E�i1�/ (or equivalently�G.1�/,�G.ECi1�/
and �G.E�i1�/) induce functors on the graded module categories given by tensoring
with these bimodules. The functors

1�´ Hk ˝Hk
�W Hk-gmod! Hk-gmod

Ei1�´ H
kCi ˝Hk

� f1C ki�1 � kiC1g W Hk-gmod! H
Cik-gmod

Fi1�CiX ´ H
kCi ˝H

Ci k
� f�kig W HCik-gmod! Hk-gmod

have both left and right adjoints and commute with the shift functor, so they induce
ZŒq; q�1�-module maps on Grothendieck groups. Furthermore, the 2-functor �N re-
spects the relations of PU, so by Propositions 3.24–3.26 these functors satisfy relations
lifting those of PU .

6.4. Nondegeneracy of U!.sln/

Lemma 6.15. The surjective graded k-algebra homomorphism

…� ! U�.1�; 1�/ Š U�!.1�; 1�/

of Proposition 3.6 is an isomorphism.
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Proof. Injectivity is established by showing that for each M 2 N there exists some
large N such that the images of bubble monomials in U�!.1�; 1�/ in variables of
degree less than M act by linearly independent operators on HG

k
for � D �.k/,

under the 2-functor �GN . By a direct calculation

�G

0
BB@

�

i
����

�
�i �1C˛

1
CCA W 1 �! .�1/˛

min.˛;kiC1�ki /X
fD0

x.k/i;˛�f x.k/iC1;f ;

�G

0
BB@

�

i
����

�
��i �1Cˇ

1
CCA W 1 �! .�1/ˇ

min.ˇ;ki �ki�1/X
gD0

x.k/iC1;˛�g x.k/i;g ;

(6.23)

as bimodule endomorphisms of HG
k

. After expanding the x.k/j;˛ using (6.12) we
have

�G

0
BB@

�

i
����

�
�i �1C˛

1
CCA W 1 �! .�1/˛.x.k/iC1;˛ � x.k/i;˛/

C .products of lower order terms/ ;

�G

0
BB@

�

i
����

�
��i �1Cˇ

1
CCA W 1 �! .�1/˛.x.k/i;ˇ � x.k/iC1;ˇ /

C .products of lower order terms/ :

Only one orientation for dotted bubbles labelled by vertex i is allowed in a bubble
monomial in…�, see (3.19). The image under�G of a bubble monomial is composed
of products of bimodule maps of the above form where, in the equivariant cohomology
ring, sums of products of element of the form .x.k/iC1;˛ � x.k/i;˛/, respectively
.x.k/i;ˇ�x.k/iC1;ˇ / are independent provided˛; ˇ < ki�ki�1 and˛; ˇ 	 kiC1�ki
so that .x.k/iC1;˛ � x.k/iC1;˛/, respectively .x.k/i;ˇ � x.k/iC1;ˇ /, is nonzero. By
taking N large, we can ensure this condition is satisfied for any fixed M . Hence,
images of bubble monomials in U�!.1�; 1�/ are independent.

Lemma 6.16. There is an isomorphism of graded k-algebras,

�0� W R.�/˝…� �! U�!.E�1�;E�1�/;
D ˝D� 7�! ��.D/ �D� ;

with �� given by (4.3) andD� a bubble monomial in…�.

Proof. Surjectivity of �0
�

follows from Lemma 3.9 and the isomorphism † from
Section 4.2.1. Injectivity of �0

�
is established by showing that for each M 2 N there
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exists some largeN such that degreeM elements ��.D/ �D� , asD andD� run over
a basis of R.�/, respectively …�, act by linear independent operators under the 2-
representation �GN . The 2-functor �G must map horizontal composites to horizontal
composites (given by tensor products) in EqFlag�

N , so that

�G.��.D/ �D�/ D �G.��.D//˝HG
k
�G.D�/´ fD ˝HG

k
gD�

for bimodule mapsgD�
W HG

k
! HG

k
andfD W HG

ki
! HG

kj
for some i ; j 2 Seq.�/.

Let

Po`�.�/´
M

i2Seq.�/

Po`i ; Po`i D kŒ�i1
; �i2

; : : : ; �im
�; m D j�j:

For large enoughN , the bimodule �G.E�1�/ contains Po`�.�/ as a subspace. From
the definition of �� (see (4.3)), together with the definitions of the bimodule maps
associated toR.�/ generators (see Section 6.1.2), it is clear that the action on Po`�.�/

given by the 2-functor �G coincides with the action of R.�/ on Po`� defined in
[16]. In particular, bimodule maps fD corresponding to basis elements of R.�/
must act by linear independent operators (see [16, proof of Theorem 2.5]) on the
subspace Po`�.�/ of �G.E�1�/. Furthermore, from the definitions of bimodule
maps associated to R.�/ generators it is also clear that fD fixes all other generators
of �G.E�1�/.

By Lemma 6.15, for largeN the bimodule maps gD�
act by linearly independent

operators on HG
k

. Write

�i;˛ ´

8̂̂̂
<
ˆ̂̂:

i
����

�hi;�i�1C˛

�
for hi; �i � 0;

i ���� ��hi;�i�1C˛

�
for hi; �i < 0:

and let D� D �`1;˛1
�`2;˛2

: : : �`r ;˛r
. Then D� acts on HG

ki
Š HG

ki
˝HG

k
HG
k

via

�G.Id1�
�D�/ D 1˝HG

k
gD�

. From (6.23) we have

1˝HG
k
gD�
W 1˝ 1 7�!

� ˛1X
f1D0

x.k/`1C1;f1
x.k/`1;˛1�f1

	

: : :
� ˛rX
fr D0

x.k/`1C1;fr
x.k/`r ;˛r �fr

	 (6.24)

inHG

ki
. After expanding the x.k/`;˛ using their definition (6.12), we have an expres-

sion for the action of gD�
on HG

ki
strictly in terms of variables x.k/`;˛ .
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The bimodule maps fD ˝HG
k
gD�

are linearly independent operators since the

bimodule maps fD and gD�
are separately independent and act on algebraically

independent generators of HG

ki
:

i1

� ˛1

i2

� ˛2

: : :

im

� ˛m � 7�!
X

ˇ1;:::;ˇm;�1;:::;�k j1

� ˇ1

j2

� ˇ2

: : :

jm

� ˇm

`1;�1 `k;�k

�
: : :

where the sum over the ˇa’s is determined by the action of fD on �˛1

1 ˝ � � � ˝ �˛m
m ,

and the sum over the x.k/`b ;�b
, represented by labelled boxes on the far right, is

determined from (6.24) by expanding the x.k/j;˛ . In particular, fD fixes variables
x.k/`;˛ represented by labelled boxes on the far right and gD acts only on such boxes.

This concludes the proof of Theorem 1.3 stated in the introduction, so that

� W A
PU.sln/ �! K0. PU.sln//

is an isomorphism. Proposition 3.28 allows us to view 2-functors z , Q!, Q
 , and Q� as
categorifications of symmetries ,!, 
 , and � of A

PU.sln/. The graded homs between
1-morphisms in PU.sln/ categorify the semilinear form h ; i� given by (3.28).
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