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When the theories meet: Khovanov homology as Hochschild
homology of links

Jozef H. Przytycki1

Abstract. We show that Khovanov homology and Hochschild homology theories share a
common structure. In fact they overlap: Khovanov homology of the .2; n/ torus link can be
interpreted as a Hochschild homology of the algebra underlining the Khovanov homology. In
the classical case of Khovanov homology we prove the concrete connection. In the general case
of Khovanov–Rozansky sl.n/ homology and their deformations we conjecture the connection.
The best framework to explore our ideas is to use a comultiplication-free version of Khovanov
homology for graphs developed by L. Helme-Guizon and Y. Rong and extended here to the
M-reduced case, and in the case of a polygon extended to noncommutative algebras. In this
framework we prove that for any unital algebra A the Hochschild homology of A is isomorphic
to graph cohomology over A of a polygon. We expect that this paper will encourage a flow
of ideas in both directions between Hochschild/cyclic homology and Khovanov homology
theories.
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1. Hochschild homology and cyclic homology

We recall in this section definitions of Hochschild homology and cyclic homology
and sketch two classical calculations for tensor algebras and symmetric tensor alge-
bras. More calculations are reviewed in Section 4 in which we use our main result,
Theorem 1.3, to obtain new results in Khovanov homology, in particular solving some
conjectures from [8]. We follow [21] in our exposition of Hochschild homology.

Let k be a commutative ring and A a k-algebra (not necessarily commutative).
Let M be a bimodule over A that is a k-module on which A operates linearly on the
left and on the right in such a way that .am/a0 D a.ma0/ for a; a0 2 A and m 2 M.
The actions of A and k are always compatible (e.g., m.�a/ D .m�/a D �.ma/).

1The author was partially supported by the NSA grant (# H98230-08-1-0033), by the Polish Scientific
Grant: Nr. N N201387034, by the GWU REF grant, and by the CCAS/UFF award.
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When A has a unit element 1 we always assume that 1m D m1 D m for all m 2 M.
Under this unital hypothesis, the bimodule M is equivalent to a right A˝Aop-module
via m.a0 ˝ a/ D ama0. Here Aop denotes the opposite algebra of A that is A and
Aop are the same as sets but the product a � b in Aop is the product ba in A. The
product map of A is usually denoted � W A ˝ A ! A, �.a; b/ D ab.

In this paper we work only with unital algebras. We also assume, unless otherwise
stated, that A is a free k-module, however in most cases, it suffices to assume that A

is k-projective, or less restrictively, that A is flat over k. Throughout the paper the
tensor product A ˝ B denotes the tensor product over k, that is, A ˝k B.

Definition 1.1 ([11], [21]). The Hochschild chain complex C�.A; M/ is defined as

� � � b�! M ˝ A˝n b�! M ˝ A˝n�1 b�! � � � b�! M ˝ A
b�! M;

where Cn.A; M/ D M ˝ A˝n and the Hochschild boundary is the k-linear map
b W M ˝ A˝n ! M ˝ A˝n�1 given by the formula b D Pn

iD0.�1/idi , where the
face maps di are given by

d0.m; a1; : : : ; an/ D .ma1; a2; : : : ; an/;

di .m; a1; : : : ; an/ D .m; a1; : : : ; aiaiC1; : : : ; an/ for 1 � i � n � 1;

dn.m; a1; : : : ; an/ D .anm; a1; : : : ; an�1/:

In the case when M D A the Hochschild complex is called the cyclic bar complex.
By definition, the n-th Hochschild homology group of the unital k-algebra A with
coefficients in the A-bimodule M is the n-th homology group of the Hochschild
chain complex, denoted by Hn.A; M/. In the particular case M D A we write
C�.A/ instead of C�.A; A/ and HH�.A/ instead of H�.A; A/.

The algebra A acts on Cn.A; M/ by a �.m; a1; : : : ; an/ D .am; a1; : : : ; an/. If A

is a commutative algebra then the action commutes with boundary map b, therefore
Hn.A; M/ (in particular, HH�.A/) is an A-module.

If A is a graded algebra and M a coherently graded A-bimodule, and the boundary
maps are grading preserving, then the Hochschild chain complex is a bigraded chain
complex with b W Ci;j .A; M/ ! Ci�1;j .A; M/, and H��.A; M/ is a bigraded k-
module. In the case of commutative A and A-symmetric M (i.e., am D ma),
H��.A; M/ is bigraded A-module. The main examples coming from the knot theory
are Am D ZŒx�=.xm/ (truncated polynomials over integers) and M the ideal in Am

generated by xm�1.
We complete this survey by describing, after [21], two classical results in Hoch-

schild homology – the computation of Hochschild homology for a tensor algebra and
for a symmetric tensor algebra.

Theorem 1.2. Let V be any k-module and let A D T .V / D k ˚ V ˚ V ˝2 ˚ � � �
be its tensor algebra. We denote by �n W V ˝n ! V ˝n the cyclic permutation,
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�n.v1; : : : ; vn�1; vn/ D .vn; v1; : : : ; vn�1/. Then the Hochschild homology of A D
T .V / is:

HH0.A/ D L
i�0 V ˝i=.1 � �i /;

HH1.A/ D L
i�1.V ˝i /�i , where .V ˝i /�i is the space of invariants, that is, the

kernel of 1 � �i ;
HHn.A/ D 0 for n � 2.

The main idea of the proof is to show that there is a quasi-isomorphism1 from the
Hochschild chain complex of T .V / to the “small” chain complex

C small.T .V // W � � � ! 0 ! A ˝ V
Ob�! A;

where the module A is in degree 0 and where the map Ob is given by Ob.a ˝ v/ D
av � va. Therefore Ob restricted to V ˝n�1 ˝ V is precisely .1 � �n/ W V ˝n ! V ˝n

and Theorem 1.2 follows. See Proposition 3.1.2 and Theorem 3.1.4 of [21].

Theorem 1.3. Let V be amodule over k and let S.V / be the symmetric tensor algebra
over V ; S.V / D k ˚ V ˚ S2.V / ˚ � � � . If V is free of dimension n generated by
x1; : : : ; xn then S.V / is the polynomial algebra kŒx1; : : : ; xn�. Assume that V is a
flat k-module (e.g., a free module). Then there is an isomorphism

S.V / ˝ ƒnV Š HHn.S.V //;

where ƒ�V is the exterior algebra of V . If V is free of dimension n generated by
x1; : : : ; xn then ƒmV is a free

�
n
m

�
-dimensional k-module with a basis fvi1 ^ vi2 ^

� � � ^ vim j i1 < i2 < � � � < img.

The above theorem is a special case of Hochschild–Konstant–Rosenberg theorem
about Hochschild homology of smooth algebras [12], which we discuss in Section 4.
Here we stress, after Loday, that the isomorphism "� W S.V /˝ƒ�V ! HH�.S.V // is
induced by a chain map, which is not true in general for smooth algebras. S.V /˝ƒ�V

is a chain complex with the zero boundary maps. The chain map " W S.V / ˝ ƒnV !
Cn.S.V /; S.V // is given by ".a0 ˝ a1 ^ � � � ^ an/ D "n.a0; a1; : : : ; an/, where "n is
the antisymmetrization map given as the sum

P
�2Sn

sgn.�/�..a0; a1; : : : ; an// and
the permutation � 2 Sn acts by �..a0; a1; : : : ; an// D .a0; a��1.1/; : : : ; a��1.n//.

In Section 2 we describe Khovanov homology of links and its (“comultiplication-
free”) version for graphs introduced in [10]. In order to compare them with Hochschild
homology we offer various generalizations, relaxing the condition that underlying al-
gebra needs to be commutative (in the case of a polygon or a line graph), and allowing
an M-reduced case. Another innovation in our presentation is that we start with co-
homology of a functor from the category of subsets of a fixed set to the category

1A chain map f W C ! C 0 is called a quasi-isomorphism or homologism if the induced map on
homology, f� W Hn.C / ! Hn.C 0/, is an isomorphism for all n.
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of modules. In this setting we describe graph cohomology introduced in [10] and
its generalizations to M-reduced cohomology and to cohomology of a polygon or
a line graphs with a noncommutative underlying algebra. A set in this case is the
set of edges of a graph. Finally, we describe a generalization to “supersets” which
allows homology for signed graphs, link diagrams and, in some cases, links (with
the classical Khovanov homology as the main example). In examples of functors
from “supersets” we utilize comultiplication in the underlying algebra A. Following
Khovanov [14], we assume that A is a Frobenius algebra [1], [18].

In Section 3 we prove our main result relating Hochschild homology HH�.A/ to
graph cohomology and Khovanov homology of links, and the homology Hn.A; M/

to reduced (M-reduced, more precisely) cohomology of graphs and links.
In Section 4 we use our main result to describe graph cohomology of polygons

for various algebras solving, in particular, several problems from [8].
We envision the connection between Connes cyclic homology and Khovanov-type

homology, possibly when analyzing symmetry of graphs and links. For the idea of
cyclic homology it is the best to quote from J-L. Loday [21]:

“… in his search for a non-commutative analogue of de Rham homology
theory, A. Connes discovered in 1981 the following striking phenomenon:

the Hochschild boundary map b is still well defined when one factors out the
module A˝A˝n D A˝nC1 by the action of the (signed) cyclic permutation
of order n C 1. Hence a new complex was born whose homology is now
called (at least in characteristic zero) cyclic homology.”

2. Khovanov homology

We start this section with a very abstract definition based on Khovanov construction
but, initially, devoid of topological or geometric context. In this setting we recall
and generalize the concept of graph cohomology [10] and of classical Khovanov
homology for unoriented framed links. We follow, in part, the exposition in [9],
[10] and [26]. We review, after [8], the connection between Khovanov homology of
links and graph cohomology of associated Tait graphs. We define homology of link
diagrams related to graph cohomology for any commutative algebra2.

2.1. Cohomology of a functor on sets. Let k be a commutative ring and E a finite
set.

Definition 2.1. Let ˆ be a functor from the category of subsets of E (i.e., subsets
of E are objects and inclusions are morphisms) to the category of k-modules. We
define the “Khovanov cohomology” of the functor, Hi .ˆ/, as follows. We start
from the graded k-module fC i .ˆ/g, where C i .ˆ/ is the direct sum of ˆ.s/ over all

2We can extend the definition to noncommutative algebras in the case of .2; n/-torus link diagrams.
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s � E of i elements (jsj D i ). To define d W C i .ˆ/ ! C iC1.ˆ/ we first define
face maps de.s/ D ˆ.s � s [ e/.s/ for e 2 E � s (notice that s � s [ e is the
unique morphism in Mor.s; s [ e/). Now, as usual,3 d.s/ D P

e…s.�1/t.s;e/de.s/,
where t .s; e/ requires ordering of elements of E and is equal the number of elements
of s smaller then e. Because ˆ is a functor, we have de2

de1
.s/ D de1

de2
.s/ for

any e1; e2 … s. The sign convention guarantees that d 2 D 0 and .fC i .ˆ/g; d / is
a cochain complex. Now we define, in a standard way, cohomology as Hi .ˆ/ D
ker.d.C i .ˆ/ ! C iC1.ˆ//=d.C i�1.ˆ//. The standard argument shows that Hi .ˆ/

is independent on ordering of E.

In the case when E are edges of a graph G we can define specific functors in
various ways taking into account a structure of G. We construct below our main
example: a generalization of a graph cohomology, defined in [10], to M-reduced
case and its translation to homology of alternating diagrams. In the case of the
algebra A2 D ZŒx�=.x2/, this homology agrees partially with the classical Khovanov
homology (see Theorem 2.7). To deal with all link diagrams we will later expand
Definition 2.1 to “supersets” (Definition 2.4) in a construction which can incorporate
multiplication and comultiplication in A (Example 2.5).

Definition 2.2 (Cohomology introduced in [10] and extended to M-reduced case).
(1) We define here M-reduced cohomology denoted by H�

A;M.G; v1/. If we as-
sume that M D A we obtain (comultiplication-free) cohomology of graphs, H�

A.G/,
defined in [10].

Let G be a graph with an edge set E D E.G/, and a chosen base vertex v1. Fix a
commutative k-algebra A and an A-module M. We define a functor ˆ on a category
of subsets of E as follows:

Objects: To define the functor ˆ on objects s � E, we define it more generally
on any subgraph H � G, starting from a connected H , to be ˆ.H/ D M if v1 2 H ,
and ˆ.H/ D A if v1 … H . If H has connected components H1; : : : ; Hk then we
define ˆ.H/ D ˆ.H1/ ˝ � � � ˝ ˆ.Hk/. Finally, ˆ.s/ D ˆ.ŒG W s�/, where ŒG W s�

is a subgraph of G containing all vertices of G and edges s.
In what follows k.s/ is the number of components of ŒG W s�.
Morphisms: It suffices to define ˆ.s � s [ e/ where e … s. The definition

depends now on the position of e with respect to ŒG W s�, as follows:

(i) Assume that e connects different components of ŒG W s�:
(i0) If e connects components ui and uiC1 not containing v1 then we define

ˆ.s � s [ e/.m; a1; : : : ; ai ; aiC1; : : : ; ak.s/�1/

D .m; a1; : : : ; aiaiC1; : : : ; ak.s/�1/:

(i00) If e connects a component of ŒG W s� containing v1 with another com-
ponent of ŒG W s�, say u1, then we put ˆ.s � s [ e/.m; a1; : : : ; ak.s/�1/ D
.ma1; : : : ; ak.s/�1/.

3We build a cochain complex from a presimplicial category.
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(ii) Assume that e connects vertices of the same component of ŒG W s�, then ˆ.s �
s [ e/ is the identity map on ˆ.s/ D ˆ.s [ e/ D M ˝ A˝k.s/�1

In the proof that ˆ is a functor commutativity of A is important (compare (3)).
(2) We can modify the functor ˆ from (1) to a new functor, ŷ , which differs from

ˆ only in the rule (1) (ii). That is, in the case in which e connects vertices of the same
component of ŒG W s� we put ŷ .s � s [ e/ equal to zero. We denote by yH�

A;M.G; v1/

the cohomology yielded by the functor ŷ . For M D A this cohomology, yH�
A.G/, is

introduced in [10].
(3) For a polygon or a line graph the cohomology yH�

A;M.G; v1/ is also defined
for a noncommutative algebra A and any A-bimodule M. We consider a polygon
or a line graph as a directed graph: from left to right (in the case of a line graph,
Figure 3.1) and in the anti-clockwise orientation (in the case of a polygon). In the
formula for the morphism, ŷ .s � s [ e/, of Definition 2.2 (2) we use the product
xy if x is the weight of the initial point of the directed edge e connecting different
components of ŒG W s�. We use this graph cohomology of the directed polygon when
comparing graph cohomology with Hochschild homology.

Notice that cohomology described in (1) and (2) coincide to certain degree.

Namely Hi
A;M.G; v1/ D yHi

A;M.G; v1/ for all i < ` � 1, where ` is the girth of
G, that is, the length of the shortest cycle in G.

Furthermore, if k is a principal ideal domain (e.g., k D Z) and A and M are free

k-modules then Tor.Hi
A;M.G; v1// D Tor.yHi

A;M.G; v1// for i D ` � 1 (compare
Theorem 2.7).

Remark 2.3. (i) One can generalize4 construction in Definition 2.2 (1) and (2) by
choosing the sequence of elements f1; f2; f3; : : : ; fjE j in A and modifying functors
ˆ and Ô on morphisms to get the functors ˆ0 and Ô 0. We put ˆ0.s � s [ e/ D
fjsjC1ˆ.s � s [ e/ and, similarly, ŷ 0.s � s [ e/ D fjsjC1

ŷ .s � s [ e/.
(ii) If A is not commutative and we work with cohomology of a line graph or a poly-

gon (as in Definition 2.2 (3)) we have to assume, in order to have d 2 D 0, that fi ’s are
in the center of A. We define f �.m; a1; : : : ; ak.s/�1/.s/ D .f m; a1; : : : ; ak.s/�1/.s/.

We can define Khovanov cohomology on an alternating link diagram, D, by
considering associated plane graph G.D/ (Tait graph; compare Figure 2.1) and its
cohomology described in Definition 2.2 and Remark 2.3.

In order to define Khovanov cohomology on any link diagram (and take both mul-
tiplication and comultiplication into account) we have to define cohomology on any
signed planar graph. We can start, as in Definition 2.1, from the very general setting

4We are motivated here by [25] and to catch more of the spirit of [25] we can consider two sets of
constants: f1; f2; : : : ; fjEj and f 0

1; f 0
2; : : : ; f 0

jEj
so that fi f 0

iC1
D f 0

i
fiC1. We use the constant fi

in the case the set s has i elements and e is connecting different components of ŒG W s�. We use the
constant f 0

i
in the case the set s has i elements and e has endpoints on the same component of ŒG W s�.
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(again cohomology of a functor) and produce specific examples of a cohomology of
signed planar graphs using a coherent algebra and coalgebra structures (Frobenius
algebra).

Definition 2.4. Let k be a commutative ring and E D EC[E� a finite set divided into
two disjoint subsets (positive and negative sets). We consider the category of subsets
of E (E � s D sC [ s� where s˙ D s \ E˙). The set Mor.s; s0/ is either empty or
has one element if s� � s0� and sC � s0C. Objects are graded by �.s/ D js�j � jsCj.
Let us call this category the superset category (as the set E is initially Z2-graded).
We define “Khovanov cohomology” for every functor, ˆ, from the superset category
to the category of k-modules. We define cohomology of ˆ in the similar way as for
a functor from the category of sets (which corresponds to the case E D E�). The
cochain complex corresponding to ˆ is defined to be fC i .ˆ/g where C i .ˆ/ is the
direct sum of ˆ.s/ over all s � E with �.s/ D i . To define d W C i .ˆ/ ! C iC1.ˆ/

we first define face maps de.s/ where e D e� … s� (e� 2 E�) or e D eC 2 sC. In
such a case de�

.s/ D ˆ.s � s [ e�/.s/ and deC
.s/ D ˆ.s � s � eC/. We define

d.s/ D P
e…s.�1/t.s;e/de.s/, where t .s; e/ requires ordering of elements of E and is

equal the number of elements of s� smaller then e plus the number of elements of sC
bigger than e. We obtain the cochain complex whose cohomology does not depend
on ordering of E.

Example 2.5. Let G be a signed plane graph with an edge set E D EC [ E�, where
EC is the set of positive edges and E� is the set of negative edges. We define the
functor from the superset category E using the fact that G is the (signed) Tait graph
of a link diagram D.G/ with the infinite white region; see Figure 2.1 for conventions.

Figure 2.1

To define the functor ˆ we fix a Frobenius algebra A with multiplication � and
comultiplication � (the main example used by Khovanov is the algebra of truncated
polynomials Am D ZŒx�=.xm/ with a coproduct �.xk/ D P

iCj Dm�1Ck xi ˝ xj ).
To get our functor on objects, ˆ.s/, we consider the Kauffman state defined by s (so
also denoted by s) and we associate A to every circle of Ds obtained from D.G/ by
smoothing every crossing according to s and then taking tensor product of these copies
of A (compare [26]). Define ˆ on generating morphisms via product or coproduct
depending on whether Ds has more or less circles than Ds0 . For A2 we obtain the
classical Khovanov homology.

Remark 2.6. One can also extend Example 2.5 to include the concept of M -reduced
cohomology. We can, for example, consider M to be an ideal in A with �.M/ �
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M ˝ M . An example, considered by Khovanov, is Am with M generated by xm�1

(in which case �.xm�1/ D xm�1 ˝ xm�1).

One can build more delicate (co)homology theory for ribbon graphs (flat vertex
graph) using the fact that they embed uniquely into the closed surface. For A D
A2 it can be achieved using the approach presented in [3], while for more general
(Frobenius) algebras it is not yet done (most likely one should not use Frobenius
algebra alone but its proper enhancement like in A2 case).

In [8] we proved the following relation between graph cohomology and classical
Khovanov homology of alternating links.

Theorem 2.7. Let D be the diagram of an unoriented framed alternating link and let
G be its Tait graph. Let ` be the length of the shortest cycle in G. For all i < ` � 1,
we have

Hi;j

A2
.G/ Š Ha;b.D/ with

´
a D E.G/ � 2i;

b D E.G/ � 2V.G/ C 4j;

where Ha;b.D/ are the Khovanov homology groups of the unoriented framed link
defined by D, as explained in [26]. Furthermore, Tor.Hi;j

A2
.G// D Tor.Ha;b.D// for

i D ` � 1.

We also speculate that for general sl.m/ Khovanov–Rozansky homology [16],
[17] the graph cohomology of an n-gon with A D Am D ZŒx�=.xm/ keeps essential
information on sl.m/-homology of torus links of type .2; n/.

3. Relation between Hochschild homology and Khovanov homology

The main goal of our paper is to demonstrate a relation between Khovanov homology
and Hochschild homology. Initially I observed this connection by showing that for
every unital commutative algebra A the graph cohomology of .nC1/-gon, Hi

A.PnC1/,
is isomorphic to Hochschild homology of A, Hn�i .A/; 0 < i < n. From this, via
Theorem 2.7, relation between classical Khovanov homology of the .2; n C 1/ torus
link and Hochschild homology of A2 D ZŒx�=.x2/, follows. This relation was also
observed independently by Magnus Jacobsson [13].

In this paper we prove a more general result. In order to formulate it we use an
extended version of (Khovanov-type) graph cohomology (working with noncommu-
tative algebras and M-reduced cohomology):

(i) We can work with a noncommutative algebra, because, as mentioned in Section 2
(Definition 2.2 (3)), for a polygon the graph cohomology is also defined for
noncommutative algebras.
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(ii) We can fix an A-bialgebra M and compare M-reduced Khovanov-type graph
cohomology with the Hochschild homology of A with coefficients in A-bi-
module M.

One can observe that we generalize notion of graph (co)homology while we keep the
original definition of Hochschild homology. Our point is that the graph (co)homology
is the proper generalization of Hochschild homology: from a polygon to any graph.
We have this interpretation only for a commutative A. It seems to be, that if one works
with general graphs and not necessary commutative algebras then these algebras
should satisfy some “multiface” properties. Very likely that planar algebras or operads
provide the proper framework.5

The interpretation of Hochschild homology as a homology of A treated as an
algebra over A ˝ Aop allows us to use the standard tool of homological algebra, that
is we find appropriate (partial) free resolution of A ˝ Aop module A using graph
cochain complex of a line graph (Figure 3.1). The graph cohomology of the polygon
is the cohomology obtained from this resolution. In Theorem 3.1 we use cohomology
yHi

A;M.PnC1/ because we do not assume that A is commutative.

Theorem 3.1. Let A be a unital algebra,6 let M be an A-bimodule and PnC1, the
.n C 1/-gon. Then for 0 < i � n we have

yHi

A;M.PnC1/ D Hn�i .A; M/:

Furthermore, if A is a graded algebra and M a coherently graded module then
yHi;j

A;M.PnC1/ D Hn�i;j .A; M/ for 0 < i � n and every j .

Corollary 3.2. yHi;j

A .PnC1/ D HHn�i;j .A/ for 0 < i � n and every j .

Furthermore, for a commutative A, Hi;j

A
.PnC1/ D yHi;j

A .PnC1/ for 0 < i < n, and

Hn;�
A

.PnC1/ D 0, yHn;j

A .PnC1/ D HH0;�.A/ D A. For a general A, yHn;�
A .PnC1/ D

HH0;�.A/ D A=.ab � ba/.

Poof of Theorem 3.1. We consider graph cohomology for a unital, possibly noncom-
mutative algebra A and any A-bimodule M. There is no difference in the proof
between commutative and noncommutative case except that we have to prove some
property of cohomology given in [10] for a commutative A (Lemma 3.3).

5The author’s idea of working with directed graphs (quivers) seems to apply, as observed by Y. Rong,
only for line graphs and polygons. However, P. Turner demonstrated at Knots in Washington XXVII
Conference how to work with general graphs (http://atlas-conferences.com/cgi-bin/abstract/caxq-22).

6We assume in this paper that A is a free k-module, but one could relax the condition to have A to be
projective or, more generally, flat over a commutative ring with identity k; compare [21]. We require A to
be a unital algebra in order to have an isomorphism M ˝A� A˝nC2 D M ˝ A˝n; the isomorphism is
given by M˝A� A˝nC2 3 .m; a0; a1; : : : ; an; anC1/ ! .anC1ma0; 1; a1; : : : ; an; 1/, which one
can write succinctly as .anC1ma0; a1; : : : ; an/ 2 M˝A˝n. We should stress that in M˝A� A˝nC2

the tensor product is taken over A� D A ˝ Aop, while in M ˝ A˝n the tensor product is taken over k.

http://atlas-conferences.com/cgi-bin/abstract/caxq-22
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The main idea of our proof is to interpret the graph cochain complex of a line
graph as a (partial) resolution of A. It was proved in [10] that Hi

A(line graph)D 0,
i > 0, for a commutative algebra A. We give here the proof for any unital algebra
A. Let Ln be the (directed) line graph of n C 1 vertices (v0; : : : ; vn) and n edges
(e1; : : : ; en), see Figure 3.1.

v0 v1 vne1 e2 en

Ln

: : :

Figure 3.1

Lemma3.3. The graph cochain complex of Ln, C �
A

.Ln/ W C 0 d0

�! C 1 d1

�! C 2 � � � !
C n�1 d .n�1/

����! C n, is acyclic, except for the first term. That is, yHi

A.Ln/ D 0 for i > 0

and yH0

A.Ln/ is usually nontrivial.7

For a line graph yHA D HA so we will use HA to simplify notation. We prove
Lemma 3.3 by induction on n. For n D 0, L0 is the one vertex graph, thus H�

A D
H0

A D A and the Lemma 3.3 holds. Assume that the lemma holds for Lk with
k < n. In order to perform inductive step we construct the long exact sequence
of cohomology of line graphs. For a commutative A it is a special case8 of the
exact sequence of graph cohomology in [10], which in turn resemble the skein exact
sequence of Khovanov homology [26]:

0 ! H0
A.Ln/ ! H0

A.Ln�1/ ˝ A
@�! H0

A.Ln�1/ ! H1
A.Ln/ ! � � �

� � � ! Hi�1
A .Ln�1/ ! Hi

A.Ln/ ! Hi
A.Ln�1/ ˝ A ! � � �

such that @ W H0
A.Ln/ ˝ A ! H0

A.Ln�1/ is an epimorphism. From this exact
sequence the inductive step follows.

To construct the above exact sequence we consider the short exact sequence of
chain complexes (for the notation see Figure 3.1):

0 ! C i�1.Ln=en/
˛�! C i .Ln/

ˇ�! C i .Ln � en/ ! 0:

7From the fact that the chromatic polynomial of Ln is equal to �.� � 1/n it follows that

rank.yH0

A.Ln// D rank.A/.rank.A/ � 1/n; we assume here that k is a principal ideal domain. It
was proven in [10] that for a commutative A decomposable into k1 ˚ A=k one has that H�

A.Ln/ D
H0

A.Ln/ D A ˝ .A=k/˝n.
8One can construct an exact sequence of functor cohomology imitating deleting–contracting exact

sequence. One have to define properly two functors on E [ e, one “covariant” and one “contravariant”
and the exact sequence will be based on a functor on subsets of E and these two additional functors. We
will discuss this idea in a sequel paper.
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This exact sequence is constructed in the same way as in the case of commu-
tative A, that is ˛.a0 ˝ a1 ˝ � � � ˝ an�i /.ej1

; : : : ; eji�1
/ D .a0 ˝ a1 ˝ � � � ˝

an�i /.ej1
; : : : ; eji�1

; en/. Further, ˇ is defined in such a way that if en 2 s then
ˇ.S/ D 0, and if e is not in s then ˇ is the identity map (up to .�1/jsj).

Exactness of the sequence follows from the definition. This exact sequence leads
to the long exact sequence of cohomology:

0 ! H0
A.Ln/ ! H0

A.Ln � en/
@�! H0

A.Ln=en/ ! � � �
� � � ! Hi�1

A .Ln=en/ ! Hi
A.Ln/ ! Hi

A.Ln � en/ ! � � � :

Now Ln�1 D Ln=en and Ln�en is Ln�1 with an additional isolated vertex, therefore
by a Künneth formula (see for Example 1.0.16 of [21]) we have Hi

A.Ln � en/ D
Hi

A.Ln�1/˝A. From this we get the exact sequence used in the proof of Lemma 3.3.
To see surjectivity of @ notice that the map H0

A.Ln�en/ ! H0
A.Ln�1/ is a surjectivity

almost by the definition (we decorate the last vertex of Ln by 1, to see the surjectivity).
More formally, there is a chain map epimorphism @c W C i

A
.Ln�en/ ! C i

A
.Ln�1/

which is obtained by multiplying the weight of component containing vn�1 by
the weight of vn which descends to @. This map possesses a chain map section
@�1

c W C i
A

.Ln�1/ ! C i
A

.Ln � en/ such that in the image vn has always weight 1.
Because @c@�1

c D Id, on the cohomology level @ is a surjectivity.
We can continue now with the proof of Theorem 3.1. The (partially) acyclic chain

complex of Lemma 3.3 is the chain complex of Ae D A ˝ Aop modules. It is a
(partial) free resolution of the Ae-module A. Upon tensoring this resolution with M
considered as a right module over Ae we obtain the cochain complex

fM ˝Ae C ign�1
iD0 W

M ˝Ae C 0 @0

�! M ˝Ae C 1 @1

�! � � � ! M ˝Ae C n�2 @n�1

���! M ˝Ae C n�1 ! 0;

whose cohomology (except possibly H0) are the Hochschild homology of A with
coefficients in M (compare for example [28]). Having in mind relation between
indexing we get that Hi D Hn�i .A; M/ for i > 0. To get exactly the chain complex
of the M-reduced (directed) graph cohomology of Pn, yH�

A;M.Pn/, we extend this
chain complex to

fM ˝Ae C ign
iD0 W

M ˝Ae C 0 @0

�! M ˝Ae C 1 @1

�! � � � ! M ˝Ae C n�1 @n�1

���! M ˝Ae C n D M ! 0;

where the homomorphism @n�1 is the zero map.
To complete the proof of Theorem 3.1 we show that this complex is exactly the

same as the cochain complex of the M-reduced (directed) graph cohomology of Pn.

We consider carefully the map M ˝Ae C j @j

�! M ˝Ae C j C1. In the calculation we
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follow the proof of Proposition 1.1.13 of [21]. The idea is to “bend” the line graph
Ln to the polygon Pn and to show that this corresponds to tensoring over Ae with
M; see Figure 3.2.

......

bending
e1

e1

en

en
en�1en�1

e2
v0 v1v1

Ln

vn�1 vn�1vn

Pn

v0 D vn

Figure 3.2

Let us order components of ŒG W s� (G is equal to Pn or Ln) in the anti-
clockwise orientation, starting from the component containing v0 (decorated by an
element of M if G D Pn). We denote the elements of C

j

A
.Ln/ and C

j

A;M.Pn/ by
.ai0 ; ai1 ; : : : ; ain�j �1

; ain�j
/.s/ and .m; ai1 ; : : : ; ain�j �1

/.s/, respectively. The ele-
ment .m; ai0 ; ai1 ; : : : ; ain�j �1

; ain�j
/.s/ is sent to .ain�j

mai0 ; ai1 ; : : : ; ain�j �1
/.s/

under the isomorphism M ˝Ae C
j

A
.Ln/ ! C

j

A;M.Pn/ (j < n). It is easily checked
that this yields a cochain map (cf. [21]), so it induces the isomorphism on cohomology.
Note that .m; ai0 ; ai1 ; : : : ; ain�j �1

; ain�j
/ D .ain�j

mai0 ; 1; ai1 ; : : : ; ain�j �1
; 1/ in

M ˝Ae C
j

A
.Ln/. The proof of Theorem 3.1 is completed.

4. Calculations and speculations

There is an extensive literature on Hochschild homology and a lot of ingenious meth-
ods of computing it (e.g., [21], [28], [23], [20]). Our main result, Theorem 3.1, allows
us to use these methods to compute graph cohomology for polygons and, to some
extent, for other graphs (using for example an observation that some properties of
cohomology of a polygon propagate to graphs containing it (cf. [2], [8]). Properties
of Hochschild homology (and, equally well, cyclic homology) should eventually shed
light on Khovanov-type homology of links.

We start from adapting Theorem 1.3 about Hochschild homology of symmetric
tensor algebra. The simplest case of one variable polynomials A D A1 D ZŒx�

allows us to extend Theorem 27 of [8] from the triangle to any polygon. A1 is a
graded algebra with xi being of degree i . Consequently Hochschild homology of A1
is a bigraded module. We treat A1 as a Z-module (an abelian group) and to simplify
description of homology we use the Poincaré polynomial of HH��.A1/ to describe
the free part of homology. Recall that the Poincaré polynomial (or series) of bigraded
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finitely generated Z-modules H�� is PP.t; q/ D PP.H��/.t; p/ D P
i;j ai;j t iqj ,

where ai;j is the rank of the group Hi;j .

Corollary 4.1. For an n-gon Pn the graph cohomology groups Hi;j

A1
.Pn/ are free

abelian with Poincaré polynomial .q Cq2 Cq3 C : : : /3 C tn�2.q Cq2 Cq3 C : : : / D
. q

1�q
/3 C tn�2 q

1�q
.

Proof. From Theorem 3.1 we obtain Hi;j .Pn/ for 0 < i < n � 1. It was observed
in [10] that Hi;j .Pn/ D 0 for i � n � 1. To find H0;�.Pn/ we use the fact that
the chromatic polynomial of Pn is equal to .� � 1/n C .�1/n.� � 1/ and the graph
cohomology categorify the chromatic polynomial. That is, if we substitute t D �1

and 1 C q C q2 C q3 C � � � D � in the Poincaré polynomial we obtain the chromatic
polynomial [10].

Another illustration of the power of our connection is for the algebra A D Ap.x/ D
ZŒx�=.p.x//, where p.x/ is a polynomial in ZŒx�. We discuss the general case later,
here let us notice that the two special cases of p.x/ D xm and p.x/ D xm � 1

are of great interest in knot theory (in Khovanov–Rozansky homology [16] and its
deformations [6]). Let us apply first the knowledge of Hochschild homology for
Am D ZŒx�=.xm/ (cf. [21]) to solving Conjectures 30 and 31 of [8].

Theorem 4.2. (Free) The Poincaré polynomial of HH��.Am/ is equal to

.1 C q C � � � C qm�1/ C t .q C q2 C � � � C qm�1/

C .t2 C t3/.q C q2 C � � � C qm�1/qm

C .t4 C t5/.q C q2 C � � � C qm�1/q2m

C � � � C .t2i C t2iC1/.q C q2 C � � � C qm�1/qim C � � � :

(Torsion) Tor.H��.Am// D L1
iD1 H2i�1;im.Am/, where each summand is isomor-

phic to Zm.

We solve Conjectures 30 and 31 of [8] by applying Theorems 4.2 and 3.1.

Corollary 4.3. (Odd ) For n D 2g C 1 we have

Tor.H�;�
Am

.P2gC1// D Hv�2;m
Am

.P2gC1/ ˚ Hv�4;2m
Am

.P2gC1/ ˚ � � � ˚ H1;gm

Am
.P2gC1/;

with each summand isomorphic to Zm.
The Poincaré polynomial of H�;�

Am
.P2qC1/ is equal to

.q C � � � C qm�1/v

C .q C � � � C qm�1/.tv�2 C .tv�3 C tv�4qm C � � � C .t2 C t /qm.g�1/:
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(Even) For n D 2g C 2 we have

Tor.H�;�
Am

.P2gC2// D Hv�2;m
Am

.P2gC1/ ˚ Hv�4;2m
Am

.P2gC1/ ˚ � � � ˚ H2;gm

Am
.P2gC2/;

with each summand isomorphic to Zm.
The Poincaré polynomial of H�;�

Am
.P2qC2/ is equal to

.q C � � � C qm�1/n C qm.n=2/�1.q C : : : qm�1/

C .q C � � � C qm�1/.tn�2 C .tn�3 C tn�4/qm C � � � C .t3 C t2/qm.g�1/ C tqmg/:

Assume that m D 2 in Corollary 4.3. Then, using Theorem 2.7, we can recover
Khovanov computation of homology of the torus link T2;n [14], [15]. In particular
we get:

Corollary 4.4 ([15]). Let T2;�n be a left-handed torus link of type .2; �n/,
n > 2. Then the torsion part of the Khovanov homology of T2;�n is given by (in the
description of homology we use notation of [26] treating T2;�n as a framed link):

(Odd ) For n odd, all the torsion of H��.T2;�n/ is supported by

Hn�2;3n�4.T2;�n/ D Hn�4;3n�8.T2;�n/ D � � � D H�nC4;�nC8.T2;�n/ D Z2:

(Even) For n even, all the torsion of H��.T2;�n/ is supported by

Hn�4;3n�8.T2;�n/ D Hn�6;3n�12.T2;�n/ D � � � D H�nC4;�nC8.T2;�n/ D Z2:

For a right-handed torus link of type .2; n/, n > 2, we can use the formula for the
mirror image (Khovanov duality theorem; see for example [2], [3]): H�i;�j . xD/ D
.Hij .D/=Tor.Hij .D// ˚ Tor.Hi�2;j .D//.

The result on Hochschild homology of symmetric algebras has a major general-
ization to the large class of algebras called smooth algebras.

Theorem 4.5 ([21], [12]). For any smooth algebra A over k, the antisymmetrization
map "� W ��

Ajk ! HH�.A/ is an isomorphism of graded algebras. Here �n
Ajk D

ƒn�1
Ajk is an A-module of differential n-forms.

We refer to [21] for a precise definition of a smooth algebra, here we only recall
that the following are examples of smooth algebras:

(i) any finite extension of a perfect field k (e.g., a field of characteristic zero);
(ii) the ring of algebraic functions on a nonsingular variety over an algebraically

closed field k, e.g., kŒx�, kŒx1; : : : ; xn�, kŒx; y; z; t �=.xt � yz � 1/ [21].
Not every quotient of a polynomial algebra is a smooth algebra. For example,

C Œx; y�/.x2y3/ or ZŒx�=.xm/ are not smooth. The broadest, to my knowledge,
treatment of Hochschild homology of algebras C Œx1; : : : ; xn�=.Ideal/ is given by
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Kontsevich in [20]. For us the motivation came from one variable polynomials,
Theorem 40 of [8]. In particular we generalize Theorem 40 (i) from a triangle to
any polygon, that is, we compute the graph cohomology of a polygon for truncated
polynomial algebras and their deformations. Thus, possibly, we can approximate
Khovanov–Rozansky sl.n/ homology and their deformations.

Theorem 4.6. (i) HHi .Ap.x// D ZŒx�=.p.x/; p0.x// for i odd and HHi .Ap.x// D
fŒq.x/� 2 ZŒx�=.p.x// j q.x/p0.x/ is divisible byp.x/g for i even i � 2. In both
cases the Z rank of the group is equal to the degree of gcd.p.x/; p0.x//.

(ii) In particular, for p.x/ D xmC1 we obtain homology of the ring of truncated
polynomials, AmC1 D ZŒx�=.xmC1/, for which

HHi .AmC1/ D ZmC1 ˚ Zm for i odd,

HHi .AmC1/ D Zm for i even, i � 2,

and

HH0.AmC1/ D A D ZmC1:

(iii) The graph cohomology Hi
Ap.x/

.Pn/ of a polygon Pn is given by

Hn�2i
Ap.x/

.Pn/ D Ap.x/=.p0.x// for 1 � i � v�1
2

,

and

Hn�2i�1
Ap.x/

.Pn/ D ker.Ap.x/

p0.x/���! Ap.x// for 1 � i � v�2
2

.

Furthermore, Hk
Ap.x/

.Pn/ D 0 for k � n � 1 and H0
Ap.x/

.Pn/ is a free abelian
group of rank .d � 1/n C .�1/n.d � 1/ for n even (d denotes the degree of p.x/)
and it is of rank.d � 1/n C .�1/n.d � 1/ � rank.H1

Ap.x/
.Pn// if n is odd (notice

that .d � 1/n C .�1/n.d � 1/ is the Euler characteristic of fHi
Ap.x/

.Pn/g).

Proof. Theorem 4.6 (i) is proven by considering a resolution of Ap.x/ as an Ae
p.x/

D
Ap.x/ ˝ A

op
p.x/

module,

� � � ! Ap.x/ ˝ Ap.x/

u�! Ap.x/ ˝ Ap.x/

v�! Ap.x/ ˝ Ap.x/

u�! � � � ! Ap.x/;

where u D x ˝ 1 � 1 ˝ x and v D �p.x/.1/ is a coproduct given by �p.x/.1/ DPn
iD0 ai�i .1/, where p.x/ D Pn

iD0 aix
i , and �i .1/ D xi�1 ˝ 1 C xi�2 ˝ x C

� � � C x ˝ xi�2 C 1 ˝ xi�1.

A curious but not accidental observation is that by choosing coproduct �.1/ D v

we define a Frobenius algebra structure on A. In a Frobenius algebra .x ˝1/�.1/ D
.1 ˝ x/�.1/, which makes uv D vu D 0 in our resolution. Furthermore, the
distinguished element of the Frobenius algebra is ��.1/ D p0.x/.
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