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1. Introduction

Khovanov homology is a refinement of the Jones polynomial [Jon85] which was dis-
covered by Mikhail Khovanov [Kho00] in the year 1999, and which was subsequently
generalized through the work Eun Soo Lee [Lee05] and Dror Bar-Natan [BN05a]. In
2003, the author [Weh03] discovered a series of examples of mutant links [Con70]
with different (integer coefficient) Khovanov homology. Despite this discovery, the
question whether there are mutant knots with different Khovanov homology remained
open. In this paper, we partially answer this question. We prove:

Theorem 1.1. The graded homotopy type of Kh.L/ is invariant under component-
preserving link mutation.

In this theorem, Kh.L/ stands for a variant of Bar-Natan’s formal Khovanov
bracket [BN05a], which generalizes both Khovanov homology with F2 coefficients
and Lee homology [Lee05] with F2 coefficients. To prove the theorem, we will
employ an argument that was outlined by Bar-Natan in 2005 [BN05b]. While Bar-
Natan’s argument had some gaps, the author realized that these gaps can be filled if
one works over F2 coefficients. In 2007, the author presented a complete proof of
Theorem 1.1 at the ‘Knots in Washington XXIV’conference in Washington D.C., and
at the ‘Link homology and categorification’ conference in Kyoto [Weh07].

More recently, Jonathan Bloom [Blo10] discovered an alternative and completely
independent proof of mutation invariance. Bloom’s proof has the advantage that it
works not only over F2 coefficients, but rather extends to a proof showing that the
odd version of the integer coefficient Khovanov homology (defined as in [ORS07])
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is invariant under arbitrary link mutations. On the other hand, the proof given in this
paper has the advantage that it also implies that Lee homology with F2 coefficients is
invariant under component-preserving link mutation.

The paper is organized as follows. In Section 2, we show that every component-
preserving link mutation can be realized by a finite sequence of crossed z-mutations
and isotopies. In Section 3, we introduce the variant of the formal Khovanov bracket
that we will use throughout this paper. This variant takes values in a category whose
morphisms are formal F2-linear combinations of properly embedded 2-cobordisms,
decorated by finitely many distinct dots, and considered up to some relations. In
Section 4, we discuss algebraic operations for manipulating the dots that appear in
a decorated cobordism, and in Section 5, we use these operations to prove that our
variant of the formal Khovanov bracket is invariant under crossed z-mutation.

2. Conway mutation

Let U � R2 be the closure of a domain in R2, and let P � @U a finite subset of @U .
A tangle above .U; P / is a properly embedded compact 1-manifold T � U � R with
@T D P � f0g. To represent a tangle above .U; P /, we use a plane diagram T � U

with @T D P . In the case where T is a plane diagram of a tangle T above the unit disk
U D D ´ fz 2 C D R2 W jzj � 1g, and P is the set P ´ fa; b; c; dg � @D where
a; b; c; d are the points exp.i�n=4/ 2 C D R2 for n D 1; 3; 5; 7 (in this order), then
we denote by Rx.T /, Ry.T /, Rz.T / the plane diagrams of the tangles obtained by
rotating T � D � R � R3 by 180ı around the x-, y- and z-axis, respectively.

T

b a

c d

T

b a

c d

T

b a

c d

Rx Ry Rz

Figure 1. Rotations Rx , Ry , Rz .

Let Dc ´ R2nInt.D/ and P ´ fa; b; c; dg. If T is a tangle over .D ; P /, and T 0
is a tangle over .Dc ; P /, then the union T [T 0 is a link L D T [T 0 � R2 �R D R3.

Definition 2.1. Two links L and L0 are called elementary Conway mutants of each
other [Con70] if there is a rotation R 2 fRx; Ry ; Rzg and two tangle diagrams
T � D and T 0 � Dc with @T D @T 0 D P and such that T [ T 0 is a diagram for L

and R.T / [ T 0 is a diagram for L0. Depending on whether R D Rx , Ry or Rz , we
say that the diagrams T [ T 0 and R.T / [ T 0 are related by x-, y- or z-mutation.
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Remark 2.2. If L and L0 are oriented, then we require that T [ T 0 is a diagram for
L, and R.T / [ T 0 or R.�T / [ T 0 (whichever of the two is oriented consistently) is
a diagram for L0.

Definition 2.3. We say that T [ T 0 and R.T / [ T 0 are related by a crossed mutation
if the tangle corresponding to T 0 � Dc has crossed connectivity, i.e., if one of its arcs
has endpoints at fag � f0g and fcg � f0g, and the other arc has endpoints at fbg � f0g
and fdg � f0g.

Definition 2.4. We say that L D T [ T 0 and L0 D R.T / [ T 0 are related by a
component-preserving mutation if the union R.˛/ [ ˛0 is a connected component of
L0 if and only if the union ˛ [ ˛0 is a connected component of L, for any two arc
components ˛ � T and ˛0 � T 0.

The following lemma allows us to reduce Theorem 1.1 to Proposition 2.6 below.

Lemma 2.5. Let L and L0 be two links that are related by component-preserving
mutation, and let D be a planar diagram of L and D0 a planar diagram of L0. Then
D can be transformed into D0 by a sequence of Reidemeister moves and crossed
z-mutations.

Proof. It is easy to see that the three different types of mutation (x-, y- and z-
mutation) are topologically equivalent. Indeed, Figure 2 shows how a y-mutation can
be obtained by performing a Reidemeister move of type II, followed by a z-mutation,
followed by an isotopy in R3, and analogously, an x-mutation can be reduced to a

T

TT

b a

dc

(1) (2) (3)

b a

c d

yR  (T)

Figure 2. Decomposing a y-mutation into three steps: (1) a Reidemeister move of type II;
(2) a z-mutation along the dashed circle; (3) an isotopy in R3 that rotates T around the x-axis
and thus untwists the crossings on either side of T .

z-mutation. Thus, we can assume without loss of generality that D and D0 are related
by a z-mutation, i.e., D D T [T 0 and D0 D Rz.T /[T 0 for suitable tangle diagrams
T � D and T 0 � Dc . If T 0 has crossed connectivity, then there is nothing to prove,
and if T has crossed connectivity, then we can interchange the roles of T and T 0 by
applying a planar isotopy which moves T 0 into D and T out of D . Thus, we only need
to care about the case where neither T nor T 0 has crossed connectivity. In this case,
either T or T 0 must have horizontal connectivity (i.e., represent a tangle that contains
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an arc with endpoints at fag�f0g and fbg�f0g), for otherwise the mutation would not
be component-preserving. After interchanging the roles of T and T 0 if necessary, we
can assume that T 0 has horizontal connectivity. But then the z-mutation in Step (2)
of Figure is a crossed z-mutation, and hence Figure shows that D D T [ T 0 can be
transformed into Ry.T / [ T 0 by Reidemeister moves and a crossed z-mutation. A
similar argument shows Ry.T / [ T 0 can be transformed into Ry.T / [ Rx.T 0/ by
Reidemeister moves and a crossed z-mutation, and since Rz D Rx B Ry , the latter
diagram is isotopic to Rx

�
Ry.T / [ Rx.T 0/

� D Rz.T /[T 0 D D0, whence the proof
is complete.

The following proposition is the main result of this paper. Its proof will be given
in Section 5.

Proposition 2.6. If two link diagrams are related by a crossed z-mutation, then their
formal Khovanov brackets are isomorphic.

3. Bar-Natan’s formal Khovanov bracket

In this section, we briefly review the definition of Bar-Natan’s formal Khovanov
bracket. For more details, we refer the reader to [BN05a].

3.1. Chain complexes and chain maps in pre-additive categories. Let C be a
pre-additive category. To C , one can associate an additive category Mat.C/, called
the matrix extension or additive closure of C and defined as follows. An object
of Mat.C/ is a finite tuple .O1; : : : ; Om/ of objects Oi 2 C (where m can be any
non-negative integer). A morphism F W .O1; : : : ; On/ ! .O 0

1; : : : ; O 0
m/ is a matrix

F D .Fij / of morphisms Fij 2 HomC .Oj ; O 0
i /. The composition of two morphisms

F D .Fik/ and G D .Gkl/ is modelled on ordinary matrix multiplication: .F B
G/ij ´ P

k Fik B Gkj . Direct sums are defined by concatenation: .O1; : : : ; On/ ˚
.O 0

1; : : : ; O 0
m/ ´ .O1; : : : ; On; O 0

1; : : : ; O 0
m/. By identifying an object O 2 C with

the 1-tuple .O/ 2 Mat.C/, one can embed C into Mat.C/ as a full subcategory.
In particular, one can write every object .O1; : : : ; Om/ 2 Mat.C/ as a direct sum
.O1; : : : ; Om/ D Lm

iD1 Oi .

Definition 3.1. A bounded chain complex in C is a pair C D .C �; d �/, where
C � D fC igi2Z is a sequence of objects C i 2 Mat.C/, such that C i D 0 for
ji j � 0, and d � D fd igi2Z is sequence of morphisms d i W C i ! C iC1 such that
d iC1 B d i D 0 for all i 2 Z.

Definition 3.2. A chain map F W .C �
1 ; d �

1 / ! .C �
2 ; d2�/ is a sequence of morphisms

F i W C i
1 ! C i

2 such that F iC1 B d i
1 D d i

2 B F i for all i 2 Z.
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We denote by Kom.C/ the category whose objects are bounded chain complexes
in C and whose morphisms are chain maps.

Remark 3.3. If F W C1 ! C2 is an additive functor between two pre-additive cat-
egories C1 and C2, then F can be extended to an additive functor F W Mat.C1/ !
Mat.C2/ by setting F..O1; : : : ; Om// ´ .F.O1/; : : : ; F.Om// and F.F / ´ .F.Fij //

for every object .O1; : : : ; Om/ 2 Mat.C1/ and every morphism F D .Fij /. Simi-
larly, F can be extended to an additive functor F W Kom.C1/ ! Kom.C2/ by setting
F..C �; d �//i ´ .F.C i /; F.d i // and F.F �/i ´ F.F i /. In this paper, we make no
distinction between the notation for the functor F W C1 ! C2 itself, and the notation
for the extensions of F.

3.2. Decorated cobordisms. In the following, U is the closure of a domain in R2,
and P is a finite subset of @U .

Let O1; O2 � U be two properly embedded unoriented compact 1-submanifolds
in U with @O1 D @O2 D P . A cobordims between O1 and O2 is a compact properly
embedded unoriented surface S � U � Œ0; 1� whose bottom boundary is O1 and
whose top boundary is O2, and whose intersection with .@U / � Œ0; 1� consists of the
vertical segments P � Œ0; 1�. A decorated cobordism is a cobordism decorated by
finitely many (possibly zero) distinct points or dots, which lie in the interior of S . Let
DC.O1; O2/• be the set of isotopy classes of decorated cobordisms between O1 and
O2. Moreover, let DC.O1; O2/•=` be the quotient of the F2-vector space spanned the
elements of DC.O1; O2/• modulo the following local relations, called respectively
the sphere relation, the dot relation and the neck-cutting relation:

(S) t S D 0; (D) t S D S;

(N) D C :

Figure 3. Local relations in DC.O1; O2/•=`.

In the first two relations, S stands for an arbitrary decorated cobordism, and in the
third relation, the three pictures stand for three decorated cobordisms, which are iden-
tical everywhere except in a small ball B3 � U � Œ0; 1� where they differ as shown.
Using the above relations, one can deduce the important double dot relation:

(DD) D t t:

Figure 4. The double dot relation.
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In the (DD) relation, t stands for a 2-sphere decorated by exactly three dots.
Thus, the (DD) relation says that we can remove any pair of dots lying on the same
component of a decorated cobordism, at the expense of adding a 2-sphere decorated by
exactly three dots. We can endow DC.O1; O2/•=` with the structure an F2Œt �-module
by defining tnS to be the disjoint union of S with n disjoint copies of t .

Definition 3.4. Let Cob.U; P /•=` be the pre-additve category whose objects are un-
oriented properly embedded compact 1-manifolds O � U with @O D P , and whose
morphism sets are the F2-vector spaces DC.O1; O2/•=`. Composition of morphisms
S1 W O1 ! O2 and S2 W O2 ! O3 is given by stacking S2 on top of S1.

Let Mat.U; P / ´ Mat.Cob.U; P /•=`/ and Kom.U; P / ´ Kom.Cob.U; P /•=`/.

3.3. Quantum grading. To incorporate the quantum grading (or j -grading) of
Khovanov homology, one has to redefine the objects of Cob.U; P /•=` as being pairs
.O; n/ where O � U is a properly embedded compact 1-manifold with @O D P

as before, and n is an integer. A morphism S W .O1; n1/ ! .O2; n2/ is given by
a morphism S W O1 ! O2, i.e., by an element S 2 DC.O1; O2/•=`. The quantum
degree of a morphism is defined by:

deg.S/ ´ e.S/ � 2d.S/ C n2 � n1;

where e.S/ ´ �.S/ � jP j=2 is the Euler measure of S , and d.S/ is the number
of dots on S . Let Cob.U; P /0

•=`
denote the category which has the same objects

as Cob.U; P /•=`, but whose morphisms S W .O1; n1/ ! .O2; n2/ are required to
satisfy deg.S/ D 0. Let Mat.U; P /0 ´ Mat.Cob.U; P /0

•=`
/ and Kom.U; P /0 ´

Kom.Cob.U; P /0

•=`
/. For each integer m, let fmg denote the degree shift functor

given by .O; n/fmg ´ .O; m C n/. Identifying .O; 0/ with O , we will henceforth
write Ofng instead of .O; n/.

3.4. Formal Khovanov bracket. Now let T � U be a tangle diagram with @T D
P . Let � be the set of crossings of T and f0; 1g� the set of all maps � W � ! f0; 1g.
A crossing c 2 � (looking like: ) can be resolved in two possible ways,

�

and �
called its 0-resolution and its 1-resolution, respectively. Given � 2 f0; 1g�, denote by
T� the crossingless tangle diagram obtained from T by replacing every c 2 ��1.0/

by its 0-resolution, and every c 2 ��1.1/ by its 1-resolution. For �; �0 2 f0; 1g�

and c 2 �, we will write � <c �0 iff � and �0 satisfy �.c/ D 0 and �0.c/ D 1, and
�.c0/ D �0.c0/ for all c0 2 � with c0 ¤ c. For such �; �0, there is a preferred cobordism
S�0� W T� ! T�0 containing no dots, such that S�0;� \ .Nbd.c/ � Œ0; 1�/ is a saddle
cobordism between

�

and �, and S�0;� n .Nbd.c/ � Œ0; 1�/ is the identity cobordism.
For �; �0 2 f0; 1g� and c 2 �, let .dc/�0� W T� ! T�0 be the morphism defined by
.dc/�0� ´ S�0;� if � <c �0, and .dc/�0� ´ 0 otherwise. Let d�0� ´ P

c2�.dc/�0�

and j�j ´ j��1.1/j D P
c2� �.c/. Suppose T is oriented and let nC (n�) be the
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number of positive (negative) crossings in T . If � and �0 satisfy j�j D i C n� and
j�0j D i C 1 C n� for an i 2 Z, then we set d i

�0� ´ d�0� .

Definition 3.5. The formal Khovanov bracket of T is the chain complex Kh.T / ´
.Kh.T /�; d �/ 2 Kom.U; P /0 defined by Kh.T /i ´ L

j�jDiCn�

T�fi C nC � 2n�g
and d i ´ .d i

�0�/.

Definition 3.5 is justified by the following lemma:

Lemma 3.6. d iC1 B d i D 0 for all i 2 Z.

Proof. Ignoring differentials and gradings for a moment, we can identify Kh.T / with
the object Kh.T / D L

�2f0;1g� T� 2 Mat.U; P /. We can then identify the differential
in Kh.T / with the endomorphism d ´ .d�0�/ of Kh.T / 2 Mat.U; P / (with d�0�

defined as above). For c 2 �, let dc be the endomorphism of Kh.T / 2 Mat.U; P /

defined by dc ´ ..dc/�0�/. We have dc B dc D 0 because for any three elements
�; �0; �00 2 f0; 1g�, at least one of the two matrix entries .dc/�00�0 and .dc/�0� is equal
to zero. We also have dc B dc0 D dc0 B dc for all c; c0 2 � because distant saddles can
be time-reordered by isotopy. Since d D P

c2� dc , this implies d B d D 0, and thus
the lemma follows.

The following theorem was proved by Bar-Natan [BN05a].

Theorem 3.7. The graded homotopy type of Kh.T / is a tangle invariant.

3.5. Relation with Khovanov homology and Lee homology. If T is a link diagram
(i.e., @T D ;), then the formal Khovanov bracket of T refines both the F2-coefficient
Khovanov homology [Kho00] and the F2-coefficient Lee homology [Lee05] of T .
Indeed, let Hom.;; �/ be the functor which maps an object O 2 Cob.U; ;/•=` to
the graded morphism set Hom.;; O/, regarded as a graded F2Œt �-module via the
(DD) relation. Then the F2-coefficient Khovanov homology of T is the homology of
the chain complex FKh.Kh.T //, where FKh.�/ ´ Hom.;; �/ ˝tD0 F2, and the F2-
coefficient Lee homology of T is the homology of the chain complex of FLee.Kh.T //,
where FLee.�/ ´ Hom.;; �/ ˝tD1 F2.

3.6. Tensor products. In this subsection, we describe a special case of the ‘cate-
gorified planar algebra’structure of Kh.T / that was introduced in [BN05a, Section 5].
Assume that we have the following situation:

� U 0 and U 00 are the closures of two disjoint domains in R2 and U ´ U 0 [ U 00.
� P1 and P2 are finite subsets of .@U 0/ n U 00 and .@U 00/ n U 0, respectively.
� P0 is a finite subset of U 0 \ U 00.
� P 0 ´ P0 [ P1 and P 00 ´ P0 [ P2 and P ´ P1 [ P2.
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In this situation, there is a natural functor

Cob.U 0; P 0/•=` � Cob.U 00; P 00/•=` �! Cob.U; P /•=`

which takes a pair of objects .O 0; O 00/ (or morphisms .S 0; S 00/) to the union O 0 [ O 00
(or S 0 [ S 00). We write this functor as a tensor product, and we extend it to a
functor Mat.U 0; P 0/ � Mat.U 00; P 00/ ! Mat.U; P / by declaring that the tensor
product distributes over direct sums, i.e., .O 0

1 ˚ O 0
2/ ˝ .O 00

1 ˚ O 00
2 / ´ .O 0

1 ˝ O 00
2 / ˚

.O 0
1 ˝ O 00

2 / ˚ .O 0
2 ˝ O 00

2 / ˚ .O 0
2 ˝ O 00

2 / and .F 0 ˝ F 00/i˝k;j ˝l D F 0
ij ˝ F 00

kl
.

Given two chain complexes C 0 2 Kom.U 0; P 0/ and C 00 2 Kom.U 00; P 00/, we define
C 0 ˝ C 00 2 Kom.U; P / to be the chain complex whose underlying object is the
tensor product C 0 ˝ C 00 2 Mat.U; P /, and whose differential is the endomorphism
(in Mat.U; P /) given by

dC 0˝C 00 ´ dC 0 ˝ 1C 0 C 1C 00 ˝ dC 00 ;

where dC 0 , dC 00 , 1C 0 , 1C 00 are the differentials and the identity morphisms of C 0 and
C 00, respectively. As for the gradings, it is understood that both the homological
grading and the quantum grading are additive under tensor products. The following
theorem was shown (in greater generality) in [BN05a, Section 5].

Theorem 3.8. Let T 0 � U 0 and T 00 � U 00 be tangle diagrams with @T 0 D P 0 and
@T 00 D P 00. Then Kh.T 0 [ T 00/ is canonically isomorphic to Kh.T 0/ ˝ Kh.T 00/.

3.7. Delooping. Let ‘	’ denote the connected 1-manifold consisting of a single
circle. More generally, let ‘	n’denote the 1-manifold consisting of n disjoint circles,
and let ;f1g and ;f�1g denote degree-shifted copies of the empty 1-manifold. The
following lemma is well-known (see e.g. [BN07, Lemma 4.1]).

Lemma 3.9. The objects 	 and ;f1g ˚ ;f�1g are isomorphic in Mat.U; ;/0.

Proof. Let V ´ ;f1g ˚ ;f�1g, and let G W 	 ! V and H W V ! 	 be the mor-
phisms given by the matrices .G11; G21/t and .H11; H12/, where G11; G21; H11; H12

are cobordisms homeomorphic to disks, with G21 and H11 containing no dots, and
G11 and H12 containing a single dot each. Using the local relations shown in Fig-
ure 3, one can easily check that G B H and H B G are the identity morphism of V

and 	, respectively.

Let C � Cob.U; P /•=` be the full subcategory containing of all objects of the
form Ofng, where O is a 1-manifold without closed components, and n 2 Z is an
arbitrary integer (in fact, we will henceforth drop the fng from the notation). Note
that every object O 2 Cob.U; P /•=` can be written in the form O D O 0 ˝ 	n,
where O 0 2 C and n 
 0, and the tensor product ‘˝’ denotes a disjoint union. (This
notation is consistent with the one used in the previous subsection for P0 D ;). By
applying the isomorphism G W 	 ! V defined in the proof of Lemma 3.9 repeatedly
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to each circle in O D O 0 ˝ 	n, we can define a functor which sends the object
O 2 Mat.U; P / to an isomorphic object in Mat.C/. Formally, this functor is defined
as follows.

Definition 3.10. The delooping functor D W Mat.U; P / ! Mat.C/ sends an object
O D O 0 ˝ 	n (with O 0 2 C ) to the object D.O/ ´ O 0 ˝ V ˝n, and a morphism
S W O 0

1 ˝	n1 ! O 0
2 ˝	n2 to the morphism D.S/ ´ .1˝G˝n2/BS B .1˝H ˝n1/

where V and G; H are as in the proof of Lemma 3.9, and 1 stands for the identity
morphism of either O 0

1 or O 0
2.

4. Operations involving dots

In this section, we define algebraic operations for manipulating the dots that decorate
a decorated cobordism.

4.1. Dot multiplication. Let U be the closure of a domain in R2 and P be a finite
subset of @U . Let O � U be an object of the pre-additive category Cob.U; P /•=`

defined in Section 3.2, and let p 2 O be an arbitrary point on O .

Definition 4.1. The dot multiplication map is the endomorphism Xp W O ! O given
by the cobordism O � Œ0; 1�, decorated by a single dot lying in the interior of the
segment fpg � Œ0; 1� � O � Œ0; 1�. If p is a point of @O D P , then we move the dot
slightly into the interior of O � Œ0; 1�, so that the result is a decorated cobordism in
the sense of Section 3.2.

If O1; O2 � U are two objects of Cob.U; P /•=` containing a point p 2 O1 \O2,
and S W O1 ! O2 is a decorated cobordism commuting with Xp , then we define

xpS ´ Xp B S D S ı Xp:

The above definitions extend to Mat.U; P / as follows. Let O D .O1; : : : ; Om/ be an
object in Mat.U; P / and p 2 T

Oi . Then the dot multiplication map Xp W O ! O

is the endomorphism whose off-diagonal entries are zero and whose diagonal entry
.Xp/i i is the decorated cobordism xp.Oi � Œ0; 1�/. Similarly, if F W O ! O 0 is
a morphism commuting with Xp for a point p 2 T

Oi \ T
O 0

j , then we define
xpF ´ Xp B F D F B Xp .

Definition 4.2. The endpoint ring F2ŒP � is the commutative polynomial ring with
coefficients in F2 in formal variables xp , one for each p 2 P .

Since every morphism in Cob.U; P /•=` contains the segment fpg � Œ0; 1� and
hence commutes with Xp for all p 2 P , the endpoint ring F2ŒP � acts on morphism
sets of Cob.U; P /•=` (or Mat U; P ) by xp � S ´ xpS D Xp B S D S B Xp .
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4.2. Dot derivation. Let O1; O2 � U be two compact embedded 1-manifolds with
@O1 D @O2 D P , and let S 2 DC.O1; O2/• be a decorated cobordism containing
m 
 0 dots.

Definition 4.3. The derivative of S with respect to the dot is the sum

@•S ´ S1 C � � � C Sm 2 DC.O1; O2/•=`;

where Si is the decorated cobordism obtained from S by removing the i th dot.

Lemma 4.4. The map @• W S 7! @•S descends to a linear endomorphism of
DC.O1; O2/•=`.

Proof. We have to check that @• is compatible with the local relation shown in Figure 3.
Applying @• to the two sides of the (S) relation yields zero on both sides, and so there
is nothing to prove in this case. Applying @• to the (D) relation yields zero on the
right-hand side and an undecorated sphere on the left-hand side. But an undecorated
sphere is equivalent to zero by the (S) relation, whence @• is also compatible with the
(D) relation. Compatibility with the (N) relation follows because @• applied to the
left-hand side of (N) gives zero, and @• applied to the right-hand side of (N) yields a
sum of two identical term, which is zero because we are working with F2 coefficients.

The above lemma implies that @• acts on the morphism sets of Cob.U; P /•=`, and
the following lemma says that @• satisfies Leibniz’ rule with respect to composition
of morphisms.

Lemma 4.5. We have @•.S B S 0/ D .@•S/ B S 0 C S B @•S
0.

Proof. Obvious from the definition of @•.

Corollary 4.6. If S satisfies S B S D 0, then S commutes with @•S .

Proof. Since coefficients are in F2 and since @• satisfies Leibniz’ rule by Lemma 4.5,
we can write the commutator of S with @•S as ŒS; @•S� D S B @•S C .@•S/ B S D
@•.S B S/, and thus the corollary follows.

We extend @• to morphisms of Mat.U; P / (or Kom.U; P /) by setting @•.Fij / ´
.@•Fij /. It is easy to see that Lemma 4.5 and Corollary 4.6 remain true for this
extended version of @•.

Remark 4.7. Note that @• raises the quantum degree by 2 and satisfies @• B @• D 0

(again we are using that coefficients are in F2). Thus, the subcategory Cob.U; P /ev

•=`
�

Cob.U; P /•=`, which has the same objects as Cob.U; P /•=` but whose morphisms
are required to have even quantum degree (i.e., deg.S/ 2 2Z), becomes a differential
graded category when equipped with the derivation @•.
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4.3. Dot rotation. In this subsection, we assume that U D D is the closed unit
disk in R2 and P � @U is the set P D fa; b; c; dg defined in Section 2. As in
Section 2, we denote by Rz the self map of D � Œ0; 1� � R3 given by 180ı rotation
around the z-axis. Since Rz.P / D P , the rotation Rz acts on objects and morphisms
of Cob.D ; P /•=` by sending an object O � D to the rotated object Rz.O/, and
a morphism S � D � Œ0; 1� to the rotated morphism Rz.S/. Since this action is
compatible with the composition of morphisms, it defines a functor

Rz W Cob.D ; P /•=` �! Cob.D ; P /•=`:

The goal of this subsection is to re-express this functor in terms of the algebraic
operations introduced in the previous two subsections. To do this, we first define

rz W F2ŒP � �! F2ŒP �

to be the ring automorphism induced by mapping xp 2 F2ŒP � ´ F2Œxa; xb; xc ; xd �

to rz.xp/ ´ xRz.p/ 2 F2ŒP � for all p 2 P . Explicitly, rz exchanges xa with xc and
xb with xd . The following lemma is obvious.

Lemma 4.8. Rz.f S/ D rz.f /Rz.S/ for every morphism S in C and every f 2
F2ŒP �.

Now let C be the full subcategory of Cob.D ; P /•=` containing all objects without
closed components, and let D W Mat.D ; P / ! Mat.C/ be the delooping functor
defined as in Section 3.7. The subcategory C contains two preferred objects: O0 ´
Œa; d � [ Œb; c� and O1 ´ Œa; b� [ Œc; d �, where Œp; q� � D denotes the straight line
segment connecting the points p; q 2 P . Let C 0 be the full subcategory of C over the
objects O0 and O1. (More precisely, C 0 contains all objects that are of the form Ofng
where O 2 fO0; O1g and fng is a grading shift by an arbitrary n 2 Z). Since every
object in C is isotopic relative to the boundary (and hence isomorphic in C ) to exactly
one of the two objects O0 and O1, we can define a natural functor S W C ! C 0 by
sending O 2 C to O0 or O1, whichever of the two is isomorphic to O . Of course, this
functor extends to Mat.C/ (or Kom.C/), and we will also write S for this extended
functor.

Definition 4.9. The enhanced delooping functor is the composition D0 ´ S B D.

Lemma 4.10. D0.O/ is isomorphic to O for every O 2 Mat.D ; P / (or Kom.D ; P )).

Proof. Clear from the definitions of D and S.

Since O0 and O1 are invariant under rotation by 180ı, the functor Rz acts as the
identity on the set Ob.C 0/ D fO0; O1g.
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Definition 4.11. The dot rotation functor is the endofunctor R• W C 0 ! C 0 which
acts as the identity on the set Ob.C 0/ D fO0; O1g and which takes a morphism S to
the morphism

R•.S/ ´ S C .xa C xc/@•S :

Lemma 4.12. Rz.S/ D R•.S/ for every morphism S in C 0.

Proof. Let S � D � Œ0; 1� be a decorated cobordism representing a morphism in C 0.
Using the local relations shown in Figures 3 and 4, we can write as S D S 0 t tn DW
tnS 0, where tn is a disjoint union of n 
 0 two-spheres, each or them decorated
by exactly three dots, and S 0 is a decorated cobordism whose every component is
homeomorphic to a disk and decorated by at most one dot. Let S 00 be the undecorated
cobordism underlying S 0. Then S 00 has to be either a saddle cobordism or one of the
two identity cobordisms O0 � Œ0; 1� or O1 � Œ0; 1� (as these are the only undecorated
cobordisms in C 0 that have the property that all of their connected components are
homeomorphic to disks). In particular, S 00 is invariant under Rz and has at most
two connected components. Moreover, every connected component of S 00 contains
at least one of the two segments fag � Œ0; 1� or fcg � Œ0; 1�, and this means that we
can write S 0 as S 0 D x

na
a x

nc
c S 00 for appropriate na; nc 2 f0; 1g (where e.g. xaxcS 00

denotes the decorated cobordism Xa B Xc B S 00 as in Section 4.1). Writing f for the
monomial tnx

na
a x

nc
c 2 F2Œt; xa; xc� and using Lemma 4.8, we obtain:

Rz.S/ D rz.f /Rz.S 00/ D rz.f /S 00:
One can easily check that @•t D 0, and since S 00 contains no dots, we also have
@•S

00 D 0. Using Lemma 4.5 we therefore obtain @•S D @•.f S 00/ D .@f /S 00, where
@ W F2Œt; xa; xc� ! F2Œt; xa; xc� is the F2Œt �-linear map defined by @ ´ @=@xa C
@=@xc . Thus:

R•.S/ D Œf C .xa C xc/.@f /�S 00:
Comparing the above expressions for Rz.S/ and R•.S/, we see that it suffices to
prove the equivalence rz.f / � f C .xa C xc/.@f / modulo local relations. We do
this by case by case analysis: if f D tn, then rz.f / D f and @f D 0, so the
result follows. If f D tnxa, then rz.f / D tnxc and @f D tn, so rz.f / D tnxc D
2tnxa C tnxc D f C .xa C xc/.@f /; the case f D tnxc is analogous. Finally, if
f D tnxaxc , then rz.f / D f and

.xa C xc/.@f /S 00 D tn.xa C xc/2S 00 D tn.x2
a C x2

c /S 00 D 2tnC1S 00 D 0;

where we have used the (DD) relation and the fact that coefficients are in F2.

Corollary 4.13. R•.D
0.O// is isomorphic to Rz.O/ for all O 2 Mat.D ; P / (or

Kom.D ; P /).

Proof. The functors D and S are clearly equivariant under the rotation Rz , and hence
D0 D S B D commutes with Rz . Using Lemmas 4.10 and 4.12, we thus obtain
Rz.O/ Š D0.Rz.O// D Rz.D0.O// D R•.D

0.O//.
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4.4. Dot migration. Let T 0 be a tangle diagram in Dc ´ fz 2 C D R2 W jzj 

1g with @T 0 D P D fa; b; c; dg. Assume that T 0 has crossed connectivity as in
Proposition 2.6, i.e., that it represents a a tangle T 0 � Dc � R which contains an arc
connecting the endpoints fag � f0g and fcg � f0g. Let ˛ � T 0 be the projection of
this arc, and let c1; : : : ; cm � ˛ be the crossings of T 0 along ˛, enumerated in the
order shown in Figure 5.

4c

3c  D c2

c1

c5

T

b a

dc

˛

Figure 5. Crossings c1; : : : ; cm along the arc ˛ � T 0.

For k D 2; : : : ; m, let ek � ˛ be the connected component of ˛ n S
k ck which

lies between ck�1 and ck , and let pk 2 ek denote the midpoint of ek . Put p1 ´ a

and pmC1 ´ c.

Definition 4.14. Let X1; : : : ; XmC1 be the endomorphisms of
L

i2Z Kh.T 0/i 2
Mat.Dc ; P / defined by Xk ´ Xpk

, where Xpk
is the dot multiplication map defined

in Section 4.1.

As explained in the proof of Lemma 3.6, the differential in Kh.T 0/ can be re-
garded as an endomorphism d of the object

L
i2Z Kh.T 0/i 2 Mat.Dc ; P /, and this

endomorphism can be written as a sum d D P
c2� dc . Recall that the matrix entries

d�0� and .dc/�0� are either zero or given by a saddle cobordism S�0� � Dc �Œ0; 1�. Let
r W Dc � Œ0; 1� ! Dc � Œ0; 1� be the reflection along Dc � f1=2g, and let dk ´ dck

.

Definition 4.15. The dot migration homotopies h1; : : : ; hm are the endomorphisms
of

L
i2Z Kh.T 0/i D L

�2f0;1g� T 0
� 2 Mat.Dc ; P / defined by hk ´ d

�

k
where

.d
�

k
/�0� ´ r..dk/��0/.

Arguing as in the proof of Lemma 3.6, one can easily show:

Lemma 4.16. We have

(1) hk B hk D 0,

(2) hk B hl D hl B hk ,

(3) hk B dc D dc B hk ,

for all k; l D 1; : : : ; m and all crossings c ¤ ck .
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The next lemma says that hk is a homotopy between Xk and XkC1.

Lemma 4.17. d B hk C hk B d D Xk C XkC1.

Proof. Since d D P
c2� dc and since hk commutes with dc for all c 2 � with

c ¤ ck , we have d B hk C hk B d D dk B hk C hk B dk , and so it is enough to
prove dk B hk C hk B dk D Xk C XkC1. Since this is a purely local equation, we
can restrict ourselves to the case where k D 1 and � D fc1g, i.e., where T 0 has only
one crossing. Then Kh.T 0/ D T 0

0 ˚ T 0
1 (here we ignore the homological grading

and the quantum grading), where T 0
0 and T 0

1 are the crossingless diagrams obtained
by replacing the crossing c1 (D ) by its 0-resolution (

�

) and its 1-resolution (�),
respectively. We can regard the differential d D d1 in Kh.T 0/ as an endomorphism of
the object T 0

0 ˚ T 0
1 2 Mat.Dc ; P /. As such, it is given by a 2 � 2 matrix, whose only

non-zero entry is d10 D S10, where S10 is a saddle cobordism (as in Section 3.4).
Similarly, the homotopy h ´ h1 is given by a 2 � 2-matrix whose only non-zero
entry is the saddle cobordism h01 D r.S10/. Thus, .h B d/00 D r.S10/ B S10 and
.d B h/11 D S10 B r.S10/, and all other matrix entries in h B d and d B h are zero. The
cobordism r.S10/ B S10 is a composition of two ‘opposite’ saddle cobordisms, and it
is easy to see that such a composition results in a cobordism looking like the identity
cobordism T 0

0 � Œ0; 1�, except that the two components of

� � Œ0; 1� are connected by
a tube. Applying the (N) relation to this tube, we obtain

.h B d/00 D r.S10/ B S10 D .x1 C x2/.T 0
0 � Œ0; 1�/; D .x1 C x2/100

where 100 is the identity morphism of T 0
0. Similarly, we obtain .d B h/11 D .x1 C

x2/111 where 111 is the identity morphism of T 0
1. Thus, d BhChBd D .x1 Cx2/1 D

X1 C X2, as desired.

Lemma 4.18. hk B d B hk D 0.

Proof. By the previous lemma, we have d Bhk D hk Bd CXk CXkC1, and inserting
this into hk B d B hk , we obtain hk B d B hk D hk B hk B d C hk B .Xk C XkC1/.
The first term on the right-hand side vanishes because hk B hk D 0, and to see that
the second term vanishes, we can assume that T 0 consists of a single crossing, i.e.,
k D 1 and � D fc1g as in the proof of the previous lemma. Then .h1/01 D r.S10/

(as in the proof of the previous lemma), and since the cobordism r.S10/ has only one
connected component, we have x1r.S10/ D x2r.S10/, whence h1 B X1 D h1 B X2.
Using that coefficients are in F2, we get h1 B .X1 C X2/ D 2h1 B X1 D 0.

5. Proof of Proposition 2.6

In this section, we use the notations of Section 2, and we assume that the hypotheses
of Proposition 2.6 are satisfied.
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In particular, T denotes a tangle diagram in the unit disk D � R2, and T 0 a
tangle diagram in Dc ´ R2 n Int.D/. The endpoints of T and T 0 lie in the set
@T D @T 0 D P D fa; b; c; dg � @D . As in Proposition 2.6, we assume that
T 0 represents a tangle T 0 � Dc � R � R3 which has crossed connectivity, i.e.,
contains an arc connecting the endpoints fag � f0g and fcg � f0g. We also assume
that the mutation is a z-mutation, i.e., that it consists in replacing T by Rz.T /. Let
L ´ T [ T 0 and L0 ´ Rz.T / [ T 0 denote the link diagrams before and after
mutation. Using the tensor product theorem (Theorem 3.8), we can write the formal
Khovanov brackets of L and L0 as

Kh.L/ D Kh.T / ˝ Kh.T 0/ and Kh.L0/ D Kh.Rz.T // ˝ Kh.T 0/:

Let C 0 � Cob.D ; P /•=` be the full subcategory generated by the two objects
O0 ´ Œa; d � [ Œb; c� and O1 ´ Œa; b� [ Œc; d � where Œp; q� � D denotes the straight
line segment connecting the points p; q 2 P as in Section 4.3. Let D0 W Mat.D ; P / !
Mat.C 0/ denote the enhanced delooping functor (Definition 4.9) and R• W Mat.C 0/ !
Mat.C 0/ the dot rotation functor (Definition 4.11). By Lemma 4.10, Kh.T / is iso-
morphic to D0.Kh.T //, and hence Kh.L/ is isomorphic to the complex

A ´ D0.Kh.T // ˝ Kh.T 0/:

Since the construction of Kh.T / is equivariant with respect to the rotation Rz , we
have Kh.Rz.T // D Rz.Kh.T //. Moreover, Corollary 4.13 implies that Rz.Kh.T //

is isomorphic to R•.D
0.Kh.T ///, and hence Kh.L0/ is isomorphic to the complex

B ´ R•.D
0.Kh.T /// ˝ Kh.T 0/:

To prove Proposition 2.6, it is now enough to show A is isomorphic to B . By
definition, R• acts as the identity on the set Ob.C 0/ D fO0; O1g, and so we have
A D B if we ignore the differentials in A and B (i.e., if we just consider the objectsL

i2Z Ai and
L

i2Z B i of Mat.R2; ;/ instead of the actual complexes A D .A�; d �
A /

and B D .B�; d �
B/). The differentials in A and B are given by

dA D ı ˝ 1 C 1 ˝ d and dB D R•.ı/ ˝ 1 C 1 ˝ d;

where ı is the differential in D0.Kh.T // and d is the differential in Kh.T 0/, and 1

stands for an identity morphism. To prove that the complexes A and B are isomorphic,
we must therefore construct an automorphism ' of the object A D B 2 Mat.R2; ;/

which satisfies ' B dA D dB B '.
Let T 0 � Dc � R be the tangle represented by T 0 � Dc . Let ˛ � T 0 the

projection of the arc of T 0 connecting fag � f0g to fcg � f0g, and let c1; : : : ; cm

be the sequence of crossings along ˛, as in Figure 5. As in Section 4.4, we denote
h1; : : : ; hm the dot migration homotopies (Definition 4.15) and by X1; : : : ; XmC1

the maps Xk ´ Xpk
(Definition 4.14). For k D 1; : : : ; m, we define 'k to be the

endomorphism of A D B 2 Mat.R2; ;/ given by

'k ´ 1 ˝ 1 C .@•ı/ ˝ hk;
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where @• is the derivative with respect to the dot (Definition 4.3).

Definition 5.1. Let ' be the composition ' ´ '1 B � � � B'm 2 EndMat.R2;;/.A D B/.

Using Lemma 4.16 and the fact that coefficients are in F2, it is easy to check that
'k B 'k D 1 ˝ 1 and 'k B 'l D 'l B 'k for all k, l , and hence also ' B ' D 1 ˝ 1. In
particular, ' is invertible.

Remark 5.2. Since every self-crossing of ˛ appears twice in the list c1; : : : ; cm, every
endomorphism 'k corresponding to a self-crossing of ˛ appears twice in '. Since
'k squares to the identity, we can thus ignore all self-crossings of ˛, and define ' as
the product over all 'k for which ck is not a self-crossing of ˛.

To see that ' satisfies ' B dA D dB B ' as desired, we need several technical
lemmas.

Lemma 5.3. ' commutes with ı ˝ 1.

Proof. Corollary 4.6 tells us that @•ı commutes with ı, and this immediately implies
that each 'k (and hence also ') commutes with ı ˝ 1.

Lemma 5.4. 'k B .1 ˝ d/ B '�1
k

D 1 ˝ d C .@•ı/ ˝ .Xk C XkC1/.

Proof. Direct calculation using 'k D '�1
k

D 1 ˝ 1 C .@•d/ ˝ hk yields

'k B .1 ˝ d/ B '�1
k D 1 ˝ d C .@•ı/ ˝ .d B hk C hk B d/ C .@•ı/2 ˝ .hk B d B hk/

and now the claim follows from Lemmas 4.17 and 4.18.

Corollary 5.5. ' B .1 ˝ d/ B '�1 D 1 ˝ d C .@•ı/ ˝ .Xa C Xc/.

Proof. Recall that Xl D Xpl
D xpl

1 and from this it easily follows that Xl B hk D
xpl

hk D hk BX for all k; l . Thus 'k commutes with .@•ı/˝Xl for all k; l . Recalling
that ' D '�1 D '1 B � � � B'm and using Lemma 5.4 repeatedly, one can now conclude

' B.1˝d/B'�1 D d ˝1C.@•ı/˝ Œ.X1 CX2/C.X2 CX3/C� � �C.Xm CXmC1/�;

and the telescope sum in the square brackets collapses to X1 C XmC1 because all
intermediate terms appear twice and hence cancel. Since p1 D a and pmC1 D c (see
Section 4.4), we have X1 D Xa and XmC1 D Xc , whence X1 C XmC1 D Xa C Xc .

We are now ready to prove Proposition 2.6.
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Proof of Proposition 2.6. We have to show that ' B dA B '�1 D dB . This is now a
direct calculation:

' B dA B '�1 .1/D ' B .ı ˝ 1 C 1 ˝ d/ B '�1

.2/D ı ˝ 1 C ' B .1 ˝ ı/ B '�1

.3/D ı ˝ 1 C 1 ˝ d C .@•ı/ ˝ .Xa C Xc/

.4/D ı ˝ 1 C 1 ˝ d C �
.xa C xc/.@•ı/

� ˝ 1

.5/D R•.ı/ ˝ 1 C 1 ˝ d

.6/D dB :

Equalities (1) and (6) are the definitions of dA and dB , respectively. Equality (5) is the
definition of R•. Equality (2) follows because ' commutes with ı ˝1 by Lemma 5.3.
Equality (3) is Corollary 5.5. To see (4), observe that 1 ˝ Xa D Xa ˝ 1 because
1 ˝ Xa and Xa ˝ 1 are both obtained from the identity morphism 1 ˝ 1 by inserting
a dot into the line segment fag � Œ0; 1� (cf. Definitions 4.1 and 4.14). Therefore

.@•ı/ ˝ Xa D .1 ˝ Xa/ B Œ.@•ı/ ˝ 1� D .Xa ˝ 1/ B Œ.@•ı/ ˝ 1� D .xa@•ı/ ˝ 1;

and similarly .@•ı/ ˝ Xc D .xc@•ı/ ˝ 1.
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