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Functoriality for Lagrangian correspondences in Floer theory

Katrin Wehrheim and Chris T. Woodward1

Abstract. We associate to every monotone Lagrangian correspondence a functor between
Donaldson–Fukaya categories. The composition of such functors agrees with the functor
associated to the geometric composition of the correspondences, if the latter is embedded.
That is “categorification commutes with composition” for Lagrangian correspondences. This
construction fits into a symplectic 2-category with a categorification 2-functor, in which all
correspondences are composable, and embedded geometric composition is isomorphic to the
actual composition. As a consequence, any functor from a bordism category to the symplectic
category gives rise to a category valued topological field theory.
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1. Introduction

Correspondences arise naturally as generalizations of maps in a number of different
settings: A correspondence between two sets is a subset of the Cartesian product of
the sets – just like the graph of a map. In symplectic geometry, the natural class is

1We gratefully acknowledge partial support by NSF grants DMS0904358, DMS0706967, and
DMS0844188.
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that of Lagrangian correspondences, that is, Lagrangian submanifolds in the product
of two symplectic manifolds (with the symplectic form on the first factor reversed).
Lagrangian correspondences appear in Hörmander’s generalizations of pseudodif-
ferential operators [7], and were investigated from the categorical point of view by
Weinstein [24]. In gauge theory Lagrangian correspondences arise as moduli spaces
of bundles associated to cobordisms [25].

One would hope that various constructions associated to symplectic manifolds,
which are compatible with symplectomorphisms, can also be made functorial for
Lagrangian correspondences. The constructions considered by Hörmander and We-
instein correspond to various notions of quantization, by which a symplectic manifold
is replaced by a linear space; one then tries to attach to a Lagrangian correspondence
a linear map. More recently, categorical invariants associated to a symplectic mani-
fold have been introduced by Donaldson and Fukaya, see for example [5] and [15].
To the symplectic manifold is associated a category whose objects are certain La-
grangian submanifolds, and whose morphisms are certain chain complexes or Floer
cohomology groups. The composition in this category gives a way to understand
various product structures in Floer theory, and plays a role in the homological mirror
symmetry conjecture of Kontsevich [8].

In this paper we associate to every (compact monotone or geometrically bounded
exact) symplectic manifold .M;!/ a category Don#.M/, which is a slight enlarge-
ment of the usual Donaldson–Fukaya category. Its objects are certain sequences of
(compact, oriented, relatively spin, monotone or exact) Lagrangian correspondences
and its morphisms are quilted Floer cohomology classes, as introduced in [22]. Given
two symplectic manifolds M0 and M1 of the same monotonicity type and an admis-
sible Lagrangian correspondence L01 � M�

0 �M1 we construct a functor

ˆ.L01/ W Don#.M0/ ! Don#.M1/:

On objects it is given by concatenation, e.g. ˆ.L01/.L0/ D .L0; L01/ for a La-
grangian submanifold L0 � M0. On morphisms the functor is given by a relative
Floer theoretic invariant constructed from moduli spaces of pseudoholomorphic quilts
introduced in [21].

Given a triple M0, M1, M2 of symplectic manifolds and admissible Lagrangian
correspondencesL01 � M�

0 �M1 andL12 � M�
1 �M2, the algebraic composition

ˆ.L01/ Bˆ.L12/ W Don#.M0/ ! Don#.M2/ is always defined. On the other hand,
one may consider the geometric composition introduced by Weinstein [24]

L01 B L12 ´ �02.L01 �M1
L12/ � M�

0 �M2;

given by the image under the projection �02 W M�
0 �M1 �M�

1 �M2 ! M�
0 �M2

of
L12 �M1

L01 ´ .L01 � L12/ \ .M�
0 ��1 �M2/: (1)

If we assume transversality of the intersection then the restriction of �02 to L01 �M1

L12 is automatically an immersion, see [6], [22]. Using the strip-shrinking analysis
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from [20] we prove that if L01 �M1
L12 is a transverse intersection and embeds by

�02 into M�
0 �M2 then

ˆ.L01/ Bˆ.L12/ Š ˆ.L01 B L12/: (2)

This is the “categorification commutes with composition” result alluded to in the
abstract. If M1 is not spin, there is also a shift of relative spin structures on the
right-hand side.

There is a stronger version of this result, expressed in the language of 2-categories
as follows. (See e.g. Section 8 for an introduction to this language.) We construct a
Weinstein–Floer 2-category Floer# whose objects are symplectic manifolds, 1-mor-
phisms are sequences of Lagrangian correspondences, and 2-morphisms are Floer co-
homology classes. (Again, we impose monotonicity and certain further admissibility
assumptions on all objects and 1-morphisms.) The composition of 1-morphisms in
this category is concatenation, which we denote by #. The construction of the functor
ˆ.L01/ above extends to a categorification 2-functor to the 2-category of categories

Floer# ! Cat : (3)

On objects and elementary 1-morphisms (i.e. sequences consisting of a single corre-
spondence) it is given by associating to every symplectic manifoldM its Donaldson–
Fukaya category Don#.M/, and to every Lagrangian correspondenceL01 the associ-
ated functorˆ.L01/. The further 1-morphisms are concatenations of elementary La-
grangian correspondences, mapped to the composition of functors. The 2-morphisms
are quilted Floer homology classes, to which we associate natural transformations.
A refinement of (2) says that the concatenation L01 # L12 is 2-isomorphic to the
geometric composition L01 B L12 as 1-morphisms in Floer#. The formula (2) then
follows by combining this result with the 2-functor axiom for 1-morphisms in (3).

Alternatively, one could identify the 1-morphisms L01 #L12 and L01 BL12 if the
latter is a transverse, embedded composition. This provides an elementary construc-
tion of a symplectic category Symp# explained in Section 2. It consists of symplec-
tic manifolds and equivalence classes of sequences of Lagrangian correspondences,
whose composition is always defined and coincides with geometric composition in
transverse, embedded cases.

The categorical point of view fits in well with one of the applications of our
results, which is the construction of topological field theories associated to various
gauge theories. A corollary of our categorification functor (3) is that any functor
from a bordism category to the (monotone subcategory of the) symplectic category
Symp# gives rise to a category valued TFT. For example, in [18] we investigate the
topological quantum field theory with corners (roughly speaking; not all the axioms
are satisfied) in 2C1C1 dimensions arising from moduli spaces of flat bundles with
compact structure group on punctured surfaces and three-dimensional cobordisms
containing tangles. In particular, this gives rise to SU.N / Floer theoretic invariants
for 3-manifolds that should be thought of as Lagrangian Floer versions of gauge-
theoretic invariants investigated by Donaldson and Floer, in the case without knots,
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and Kronheimer–Mrowka [9] and Collin–Steer [3], in the case with knots. The
construction of such theories was suggested by Fukaya in [4] and was one of the
motivations for the development of Fukaya categories.

Many of our results have chain-level versions, that is, extensions to Fukaya cate-
gories. These will be published in [11], which is joint work with S. Ma’u. To each
monotone Lagrangian correspondence with minimal Maslov number at least three we
define an A1 functor‰.L01/ W Fuk#.M0/ ! Fuk#.M1/ between extended versions
of the Fukaya categories. Moreover, we are working on extending this construction
to an A1 functor

Fuk#.M0;M1/ ! Fun.Fuk#.M0/;Fuk#.M1//;

where the Fukaya category on the left hand side should be a chain-level version of
the morphism space of Floer# between M0 and M1, i.e. its objects are Lagrangian
correspondences and sequences thereof, starting atM0 and ending atM1. On homol-
ogy level, for the Donaldson–Fukaya categories, this functor is given as part of the
2-categorification functor (3). On chain level, it would finalize the proof of homolog-
ical mirror symmetry for the four-torus by Abouzaid and Smith [1]. It should be seen
as the symplectic analogue of the quasi-equivalence of dg-categories [17] in algebraic
geometry Db1.X �X/ ' Fun.Db1.X/;Db1.X// for (somewhat enhanced) derived
categories of coherent sheaves on a projective varietyX . Abouzaid and Smith utilize
the conjectural symplectic functor to prove that a given subcategory A (for which a
fully faithful functor to a derived category of coherent sheaves is known) generates
the Fukaya category Fuk#.T 4/, by resolving the diagonal� � .T 4/� � T 4 in terms
of products of Lagrangians in A.

We thank Paul Seidel and Ivan Smith for encouragement and helpful discussions.

2. Symplectic category with Lagrangian correspondences

We begin by summarizing some results and elementary notions from [22]. Restricted
to linear Lagrangian correspondences between symplectic vector spaces, the geo-
metric composition of Lagrangian correspondences defined in (1) is a well defined
composition and defines a linear symplectic category [6]. In general, however, even
when the intersection (1) is transverse, the geometric composition only yields an
immersed Lagrangian. While it may be natural to allow immersed Lagrangian corre-
spondences (and attempt a definition of Floer cohomology for these), a construction
of a symplectic category based on geometric composition would require the inclu-
sion of perturbation data. A simple resolution of the composition problem is given by
passing to sequences of Lagrangian correspondences and defining a purely algebraic
composition. Here and throughout we will writeM for a symplectic manifold .M;!/
consisting of a manifold with symplectic 2-form; and we denote byM� ´ .M;�!/
the same manifold equipped with the symplectic form �!.
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Definition 2.1. Let M;M 0 be symplectic manifolds. A generalized Lagrangian
correspondence L from M to M 0 consists of

(a) a sequence N0; : : : ; Nr of any length r C 1 � 2 of symplectic manifolds with
N0 D M and Nr D M 0 ,

(b) a sequence L01; : : : ; L.r�1/r of Lagrangian correspondences with L.j�1/j �
N�
j�1 �Nj for j D 1; : : : ; r .

Definition 2.2. Let L from M to M 0 and L0 from M 0 to M 00 be two generalized
Lagrangian correspondences. Then we define composition

.L;L0/ ´ �
L01; : : : ; L.r�1/r ; L0

01; : : : ; L
0
.r 0�1/r 0

�
as a generalized Lagrangian correspondence from M to M 00.

We will however want to include geometric composition into our category – if
it is well defined. For the purpose of obtaining well defined Floer cohomology we
will restrict ourselves to the following class of compositions, for which the resulting
Lagrangian correspondence is in fact a smooth submanifold.

Definition 2.3. We say that the compositionL01 BL12 is embedded if the intersection
.L01�L12/ t .M�

0 ��1�M2/ is transverse and the projection�02 W L12�M1
L01 !

L01 B L12 � M�
0 �M2 is injective (and hence automatically an embedding).

Using these notions we can now define a symplectic category Symp# which in-
cludes all Lagrangian correspondences. An extension of this approach, using Floer
cohomology spaces to define a 2-category, is given in Section 8.

Definition 2.4. The symplectic category Symp# is defined as follows:

(a) The objects of Symp# are smooth symplectic manifolds M D .M;!/.

(b) The morphisms Hom.M;M 0/ of Symp# are generalized Lagrangian correspon-
dences from M to M 0 modulo the equivalence relation � generated by�

: : : ; L.j�1/j ; Lj.jC1/; : : :
� � �

: : : ; L.j�1/j B Lj.jC1/; : : :
�

for all sequences and j such that L.j�1/j B Lj.jC1/ is embedded.

(c) The composition of morphisms ŒL� 2 Hom.M;M 0/ and ŒL0� 2 Hom.M 0;M 00/
is defined by

ŒL� B ŒL0� ´ Œ.L;L0/� 2 Hom.M;M 00/:

Note that a sequence of Lagrangian correspondences in Hom.M;M 0/ can run
through any sequence .Ni /iD1;:::;r�1 of intermediate symplectic manifolds of any
length r � 1 2 N0. Nevertheless, the composition of two such sequences is always
well defined. In (c) the new sequence of intermediate symplectic manifolds for
L BL0 is .N1; : : : ; Nr�1; Nr D M 0 D N 0

0; N
0
1; : : : ; N

0
r 0�1/. This definition descends

to the quotient by the equivalence relation � since any equivalences within L and L0
combine to an equivalence within L B L0.
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Remark 2.5. (a)The composition in Symp# is evidently associative: ŒL�BŒL0�BŒL00� D
Œ.L;L0; L00/�.

(b) The identity in Hom.M;M/ is the equivalence class Œ�M � of the diagonal
�M � M� � M . It composes as identity since e.g. L.r�1/r B �Mr

D L.r�1/r is
always smooth and embedded.

(c) In order to make Symp# a small category, one should fix a set of smooth mani-
folds, for example, those embedded in Euclidean space. Any smooth manifold can
be so embedded by Whitney’s theorem. For a fixed manifold, the possible symplec-
tic forms again form a set, hence we have a set of objects. Given two symplectic
manifolds, the finite sequences of objects .Ni /iD1;:::;r�1 again form a set, and for
each fixed sequence the generalized Lagrangian correspondences between them can
be exhibited as subsets satisfying submanifold, isotropy, and coisotropy conditions.
Finally, we take the quotient by a relation to obtain a set of morphisms.

Lemma 2.6. (a) If La; Lb � M� �M 0 are distinct Lagrangian submanifolds, then
the corresponding morphisms ŒLa�; ŒLb� 2 Hom.M;M 0/ are distinct.

(b) The composition of smooth Lagrangian correspondences L � M� �M 0 and
L0 � M 0� �M 00 coincides with the geometric composition, ŒL� B ŒL0� D ŒL B L0� if
L B L0 is embedded.

Proof. To see that La ¤ Lb � M� � M 0 define distinct morphisms note that the
projection to the (possibly singular) Lagrangian �.ŒL�/ ´ L01 B � � � B L.r�1/r �
M� �M 0 is well defined for all ŒL� 2 Hom.M;M 0/. The rest follows directly from
the definitions.

Remark 2.7. Lagrangian correspondences appeared in the study of Fourier integral
operators by Hörmander and others. Any immersed homogeneous1 Lagrangian cor-
respondence L01 ! T �Q�

0 � T �Q1 gives rise to a class of operators FIO�.L01/
depending on a real parameter � > 1=2, mapping smooth functions on Q0 to dis-
tributions on Q1. These operators satisfy the composability property similar to
(2). Namely, Theorem 4.2.2 in [7] shows that if a pair L01 ! T �Q�

0 � T �Q1,
L12 ! T �Q�

1 � T �Q2 satisfies

L01 � L12 intersects T �Q�
0 ��T �Q1

� T �Q2 transversally and
the projection from the intersection to T �Q�

0 � T �Q2 is proper,
(4)

then the corresponding operators are composable and

FIO�.L01/ B FIO�.L12/ � FIO�.L01 B L12/: (5)

Hence, similar to our construction of Symp#, one could define a category Hörm#,
whose

1 An immersed Lagrangian correspondence L01 is called homogeneous if its image lies in the com-
plement of the zero sections, L01 ! .T �Q�

0 n 0Q0
/� .T �Q1 n 0Q1

/, and if it is conic, i.e. invariant
under positive scalar multiplication in the fibres.
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� objects are compact smooth manifolds,
� morphisms are sequences of pairs .L01; P01/ of immersed homogeneous La-

grangian correspondences (between cotangent bundles) together with opera-
tors P01 2 FIO�.L01/, modulo the equivalence relation that is generated by
.: : : ; .L01; P01/; .L12; P12/; : : :/ � .: : : ; .L01 B L12; P01 B P12/; : : :/ for L01,
L12 satisfying (4).

A morphism in this category might be called a generalized Fourier integral operator.

3. Donaldson–Fukaya category of Lagrangians

Throughout this paper we will use the notation and constructions for (quilted) Floer
homology and relative invariants introduced in [22], [21]. In particular, we will
be using the following standing assumptions on symplectic manifolds, Lagrangian
submanifolds, and gradings; see [22] for details.

(M1): .M;!/ is monotone, that is Œ!� D �c1.TM/ for some � � 0.

(M2): If � > 0 thenM is compact. If � D 0 thenM is (necessarily) noncompact
but satisfies “bounded geometry” assumptions as in [15].

(L1): L � M is monotone, that is the symplectic area and Maslov index are
related by 2A.u/ D �I.u/ for all u 2 �2.M;L/, where the � � 0 is
(necessarily) that from (M1).

(L2): L is compact and oriented.

(L3): L has minimal Maslov number NL � 3.

(G1): M is equipped with a Maslov covering LagN .M/ for N even, and the
induced 2-fold Maslov covering Lag2.M/ is the one given by oriented
Lagrangian subspaces.

(G2): L � M is equipped with a grading �NL W L ! LagN .M/, and the induced
2-grading L ! Lag2.M/ is the one given by the orientation of L.

In the following we review the construction of the Donaldson–Fukaya category
Don.M/ for a symplectic manifold .M;!/ satisfying (M1) and (M2). The “closed”
analog of this category, whose morphisms are symplectomorphisms, was introduced
by Donaldson in a seminar talk (see [13], 12.6). Subsequently Fukaya introduced
an A1 category involving Lagrangian submanifolds. Here we describe the category
arising from the Fukaya category by taking homology.

We fix a Maslov cover LagN .M/ ! M as in (G1), which will be used to grade
Floer cohomology groups, and a background class b 2 H 2.M;Z2/, which will be
used to fix orientations of moduli spaces and thus define Floer cohomology groups
with Z coefficients. In our examples, b will be either 0 or the second Stiefel–Whitney
class w2.M/ of M .
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Definition 3.1. We say that a Lagrangian submanifold L � M is admissible if it
satisfies (L1)–(L3), (G2), and the image of �1.L/ in �1.M/ is torsion.

The assumption on�1.L/ guarantees that any collection of admissible Lagrangian
submanifolds is monotone with respect to any surface in the sense of [22]. Alterna-
tively, one could work with Bohr–Sommerfeld monotone Lagrangians as described
in [22]. The assumption (L3) implies that the Floer cohomology of any sequence is
well-defined, and can be relaxed toNL � 2 by working with matrix factorizations as
explained in [19].

Definition 3.2. A brane structure on an admissible L consists of an orientation, a
grading, and a relative spin structure with background class b, see [22], [23] for
details. An admissible Lagrangian equipped with a brane structure will be called a
Lagrangian brane.

Remark 3.3. (a) We have not included in the definition of Lagrangian branes the
data of a flat vector bundle, in order to save space. The extension of the constructions
below to this case should be straight forward and is left to the reader.

(b) If one wants only Z2-gradings on the morphism spaces of the Donaldson–
Fukaya category, then the assumptions (G1) and (G2) may be ignored.

(c) If one wants only Z2 coefficients, then the background class and relative spin
structures may be ignored.

Definition 3.4. The Donaldson–Fukaya category

Don.M/ ´ Don.M;LagN .M/; !; b/

is defined as follows:

(a) The objects of Don.M/ are Lagrangian branes in M .

(b) The morphism spaces of Don.M/ are the ZN -graded Floer cohomology groups
with Z coefficients Hom.L;L0/ ´ HF.L;L0/ constructed using a choice of
perturbation datum consisting of a pair .J;H/ of a time-dependent almost com-
plex structure J and a Hamiltonian H , as in e.g. [22].

(c) The composition law in the category Don.M/ is defined by

Hom.L;L0/ � Hom.L0; L00/ ! Hom.L;L00/;
.f; g/ 7! f B g ´ ˆP .f ˝ g/;

where ˆP is the relative Floer theoretic invariant associated to the “half-pair of
pants” surface P , that is, the disk with three markings on the boundary (two
incoming ends, one outgoing end) as in Figure 1.
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L00 L

L0 L

Figure 1. Composition and identity in the Donaldson–Fukaya category.

Remark 3.5. (a) Associativity of the composition follows from the standard gluing
theorem (see, e.g., Theorem 2.7 in [21]) applied to the surfaces in Figure 2: The
two ways of composing correspond to two ways of gluing the pair of pants. The
resulting surfaces are the same (up to a deformation of the complex structure), hence
the resulting compositions are the same.

L1

L2 L0

L3

L0

L1L2

L3

L0

L1L3

L2

D D

Figure 2. Associativity of composition.

(b) The identity 1L 2 Hom.L;L/ is the relative Floer theoretic invariant 1L ´
ˆS 2 HF.L;L/ associated to a disk S with a single marking (an outgoing end),
see Figure 1. The identity axiom 1L0

B f D f D f B 1L1
follows from the same

gluing argument applied to the surfaces on the left and right in Figure 3. Here –
in contrast to the strips counted towards the Floer differential, where the equations
are R-invariant – the equation on the strip need not be R-invariant and solutions are
counted without quotienting by R. However, as in the strip example (Example 2.5 in
[21] one can choose R-invariant perturbation data to make the equation R-invariant.
Then the only isolated solutions contributing to the count are constant, and hence the
relative invariant is the identity.

Remark 3.6. The category Don.M/ is independent of the choices of perturbation
data involved in the definition of Floer homology and the relative invariants, up to
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L1 L0L1 L0

L0
D D

L1 L0

L1

f

ff

Figure 3. Identity axiom.

isomorphism of categories: The relative invariants for the infinite strip with pertur-
bation data interpolating between two different choices gives an isomorphism of the
morphism spaces, see e.g. [22]. The gluing theorem implies compatibility of these
morphisms with compositions and identities.

3.1. Functor associated to symplectomorphisms. Next, we recall that any graded
symplectomorphism (see [15] or [22] for the grading)  W M0 ! M1 induces a
functor between Donaldson–Fukaya categories.

Definition 3.7. Let ˆ. / W Don.M0/ ! Don.M1/ be the functor defined

(a) on the level of objects by L 7!  .L/,

(b) on the level of morphisms by the map HF.L0; L1/ ! HF. .L0/;  .L1//
induced by the obvious map of chain complexes

CF.L0; L1/ ! CF. .L0/;  .L1//; hxi 7! h .x/i
for all x 2 �.L0; L1/. (Here we use the Hamiltonians H 2 Ham.L0; L1/ and
H B  �1 2 Ham. .L0/;  .L1//.)

Note that ˆ. / satisfies the functor axioms

ˆ. /.f B g/ D ˆ. /.f / Bˆ. /.g/; ˆ. /.1L/ D 1 .L/:

Furthermore if  01 W M0 ! M1 and  12 W M1 ! M2 are symplectomorphisms then

ˆ. 12 B  01/ D ˆ. 01/ Bˆ. 12/:
In terms of Lagrangian correspondences this functor is L 7! L B graph on ob-
jects. This suggests that one should extend the functor to more general Lagrangian
correspondences L01 � M�

0 � M1 by L 7! L B L01 on objects. However, these
compositions are generically only immersed, so one would have to allow for singular
Lagrangians as objects in Don.M1/. Moreover, it is not clear how to extend the
functor on the level of morphisms, that is Floer cohomology groups. In the following
sections we propose some alternative definitions of functors associated to general
Lagrangian correspondences.
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3.2. First functor associated to Lagrangian correspondences. We now define a
first functor associated to a Lagrangian correspondence. Fix an integerN > 0 and let
AbN be the category of ZN -graded abelian groups. Let Don.M/_ be the category
whose objects are functors from Don.M/ to AbN , and whose morphisms are natural
transformations.

Let .M0; !0/ and .M1; !1/ be symplectic manifolds satisfying (M1) and (M2),
equipped with N -fold Maslov coverings LagN .Mj / as in (G1) and background
classes bj 2 H 2.Mj ;Z2/, and let L01 � M�

0 � M1 be an admissible Lagrangian
correspondence in the sense of Definition 3.1, equipped with a grading as in (G2) and
a relative spin structure with background class ���

0 b0 C ��
1 b1.

Definition3.8. The contravariant functorˆL01
W Don.M0/ ! Don.M1/

_ associated
to L01 is defined as follows:

(a) On the level of objects, for every Lagrangian L0 � M0 we define a functor
ˆL01

.L0/ W Don.M1/ ! AbN by

L1 7! HF.L0; L01; L1/ D HF.L0 � L1; L01/
on objects L1 � M1, and on morphisms

HF.L1; L
0
1/ ! Hom.HF.L0; L01; L1/;HF.L0; L01; L

0
1//

f 7! ˚
g 7! ˆS1

.g ˝ f /
�

is defined by the relative invariant for the quilted surface S1 shown in Figure 4,

ˆS1
W HF.L0; L01; L1/˝ HF.L1; L

0
1/ ! HF.L0; L01; L

0
1/:

L1

L01

L0

L0
1

f

g

S1 W
M0

M1

g

f

L0

L1

L0
0

S0 W

M0

M1
L01

Figure 4. Lagrangian functor for morphisms.

(b) The functor on the level of morphisms associates to every f 2 HF.L0; L0
0/ a

natural transformation

ˆL01
.f / W ˆL01

.L0
0/ ! ˆL01

.L0/;
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which maps objects L1 � M1 to the AbN -morphism

ˆL01
.f /.L1/ W HF.L0

0; L01; L1/ ! HF.L0; L01; L1/

g 7! ˆS0
.f ˝ g/

defined by the relative invariant for the quilted surface S0 shown in Figure 4,

ˆS0
W HF.L0; L

0
0/˝ HF.L0

0; L01; L1/ ! HF.L0; L01; L1/:

The composition axiom for the functors ˆL01
.L0/ and the commutation axiom

for the natural transformations follow from the quilted gluing theorem ([21], Theo-
rem 3.13)2 applied to Figures 5 and 6.

L01

g f

L01

L00
1

L0
1

L0

L1

L0

g f
L0
1

D
L00
1 L1

ˆL01
.L0/.f B g/ D .ˆL01

.L0/f / B .ˆL01
.L0/g/

Figure 5. Composition axiom for Lagrangian functors.

L1

f1

L0 L0
0

L0
1

L

f0

L0
1

f1

L0
0

f0

D L01

L0

L1

ˆL01
.f0/.L

0
1/ BˆL01

.L0
0/.f1/ D ˆL01

.L0/.f1/ BˆL01
.f0/.L1/

01

Figure 6. Commutation axiom for Lagrangian functors.

Clearly the functor ˆL01
is unsatisfactory, since given two Lagrangian corre-

spondences L01 � M�
0 � M1, L12 � M�

1 � M2 it is not clear how to define
the composition of the associated functors ˆL01

W Don.M0/ ! Don.M1/
_ and

2A complete account of the gluing analysis for quilted surfaces can be found in [12].
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ˆL12
W Don.M1/ ! Don.M2/

_. As a solution (perhaps not the only one) we will
define in Section 4 a category sitting in between Don.M/ and Don.M/_. This will al-
low for the definition of composable functors for general Lagrangian correspondences
in Section 5.

4. Donaldson–Fukaya category of generalized Lagrangians

In this section we extend the Donaldson–Fukaya category Don.M/ to a category
Don#.M/ which has generalized Lagrangian submanifolds as objects. Therefore
Don#.M/ sits in between Don.M/ and Don.M/_. One might draw an analogy here
with the way square-integrable functions sit between smooth functions and distribu-
tions. Don#.M/ admits a functor to Don.M/_, whose image is roughly speaking
the subcategory of Don.M/_ generated by objects of geometric origin. This exten-
sion of the Donaldson–Fukaya category is particularly natural in our application to
2 C 1-dimensional topological field theory: One expects to associate a Lagrangian
submanifold to any three-manifold with boundary, but our constructions in fact yield
generalized Lagrangian submanifolds that arise naturally from a decomposition into
elementary cobordisms (or compression bodies).

Let .M;!/ be a symplectic manifold satisfying (M1) and (M2) with monotonicity
constant � � 0. We fix a Maslov cover LagN .M/ ! M as in (G1) and a background
class b 2 H 2.M;Z2/.

Definition 4.1. (a) A generalized Lagrangian submanifold of M is a generalized
Lagrangian correspondence L from fptg to M , in the sense of Definition 2.1. That
is, L D .L.�r/.�rC1/; : : : ; L.�1/0/ is a sequence of Lagrangian correspondences
L.i�1/i � N�

i�1 �Ni for a sequence N�r ; : : : ; N0 of any length r � 0 of symplectic
manifolds with N�r D fptg a point and N0 D M .

(b) We call a generalized Lagrangian L admissible if each Ni satisfies (M1) and
(M2) with the monotonicity constant � � 0, eachL.i�1/i satisfies (L1)–(L3), and the
image of each �1.L.i�1/i / in �1.N�

i�1 �Ni / is torsion.

Again, one could replace the torsion assumption on fundamental groups by Bohr–
Sommerfeld monotonicity as described in [22]. Note that an (admissible) Lagrangian
submanifold L � M is an (admissible) generalized Lagrangian with r D 0. We
picture a generalized Lagrangian L as a sequence

fptg L.�r/.�rC1/��������! N�r
L.�rC1/.�rC2/����������! � � � L.�2/.�1/������! N�1

L.�1/0����! N0 D M:

Given two generalized LagrangiansL;L0 ofM we can transpose one and concatenate
them to a sequence of Lagrangian correspondences from fptg to fptg,

fptg L.�r/.�rC1/��������! � � � L.�1/0����! N0 D M D N 0
0

.L0
.�1/0

/t

������! � � �
.L0

.�r0/.�r0C1/
/t

�����������! fptg:
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The Floer cohomology of this sequence (as defined in [22]) is the natural general-
ization of the Floer cohomology for pairs of Lagrangian submanifolds. Hence we
define

HF.L;L0/ ´ HF.L.�r/.�rC1/; : : : ; L.�1/0; .L0
.�1/0/

t ; : : : ; .L0
.�r 0/.�r 0C1//

t /: (6)

Note here that every such sequence arising from a pair of admissible generalized
Lagrangians is automatically monotone by Section 4.3 of [22].

Definition 4.2. The generalized Donaldson–Fukaya category

Don#.M/ ´ Don#.M;LagN .M/; !; b/

is defined as follows:

(a) Objects of Don#.M/ are admissible generalized Lagrangians of M , equipped
with orientations, a grading, and a relative spin structure (see [22]).

(b) Morphism spaces of Don#.M/ are the ZN -graded Floer cohomology groups
(see (6))

Hom.L;L0/ ´ HF.L;L0/Œd �; d D 1

2

�X
k

dim.Nk/C
X
k0

dim.N 0
k0/

�
;

given by choices of a perturbation datum and widths as described in [22] and
degree shift d . For Z-coefficients the Floer cohomology groups are modified by
the inclusion of additional determinant lines as below in (7).

(c) Composition of morphisms in Don#.M/,

Hom.L;L0/ � Hom.L0; L00/ ! Hom.L;L00/
.f; g/ 7! f B g ´ ˆP .f ˝ g/

is defined by the relative invariantˆP associated to the quilted half-pair of pants
surface P in Figure 7, with the following orderings: The relative invariant is
independent of the ordering of the patches with one outgoing end by Remark 3.11
in [21]. The remaining patches with two incoming ends are ordered from the
top down, that is, starting with those furthest from the boundary.

Remark 4.3. (a) Identities 1L 2 Hom.L;L/ are furnished by relative invariants
1L ´ ˆS 2 Hom.L;L/ associated to the quilted disk S in Figure 8, with patches
ordered from the bottom up, that is, starting with those closest to the boundary.
The identity and associativity axioms are satisfied with Z2 coefficients by the quilted
gluing theorem ([21], Theorem 3.13) applied to the quilted versions of Figures 2, 3.

(b) Both the identity and composition are degree 0 by Remark 3.10 in [21].
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M : : :
L.�r/.�rC1/

: : :

L00
.�2/.�1/

L0
.�2/.�1/

L0
.�1/0

L0
.�r0/

.�r0C1/

N 0
�1

N 00
�1

N00
�r00C1

N 0
�r0C1

L.�1/0

N�1
N�rC1

L00
.�r00/.�r00C1/

L00
.�1/0

L.�2/.�1/

L00 L

L0

μ

Figure 7. Quilted pair of pants.

(c) Don#.M/ is a small category. The objects form a set by the same arguments
as in Remark 2.5 (c); the morphisms are evidently constructed as set.

L

L.�2/.�1/

L.�r/.�rC1/

: : :

L.�1/0

M

N�1

N�rC1

μ

Figure 8. Quilted identity.

Remark 4.4. To obtain the axioms with Z coefficients requires a modification of the
Floer cohomology groups, incorporating the determinant lines in a more canonical
way. This will be treated in detail in [23], so we only give a sketch here: For each
intersection point x 2 �.L;L0/ we say that an orientation for x consists of the fol-
lowing data: A partially quilted surface3 S with a single end, complex vector bundles
E overS , and totally real subbundles F over the boundaries and seams, such that near
infinity on the strip-like ends E and F are given by .Txi

Mi / and TxL; TxL0; a real
Cauchy–Riemann operatorDE;F ; an orientation on the determinant line det.DE;F /.

3See [23] for the definition of partial quilts. For example, the standard cup orientation for x D
.x1; : : : ; xN / will use unquilted cups Si associated to each Txi

Mi , and identified via seams on the
strip-like ends.
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We say that two orientations for x are isomorphic if the two problems have isomorphic
bundles E, and the surfaces, boundary and seam conditions are deformation equiv-
alent after a possible re-ordering of boundary components etc., and the orientations
are related by the isomorphism of determinant lines arising from re-ordering. Let
O.x/ denote the space of isomorphism classes of orientations for x. Define

fCF.L;L0/ D
M

x2�.L;L0/

O.x/˝Z2
Z: (7)

The Floer coboundary operator extends canonically to an operator of degree 1 onfCF.L;L0/, and let fHF.L;L0/ denote its cohomology. This is similar to the definition
given in e.g. Seidel [15], Section (12f), except that we allow more general surfaces.
The group fHF.L;L0/ is of infinite rank over Z, but it has finite rank over a suitable
graded-commutative Novikov ring generated by determinant lines.

The relative invariants extend to operators ẑ
S operating on the tensor product

of (extended) Floer cohomologies. In particular, the quilted pair of pants defines an
operator

ẑ
P W fHF.L;L0/˝ fHF.L0; L00/ ! fHF.L;L00/:

If we fix orientations for each generator hxi, as in the definition of HF, then the gluing
sign for the first gluing (to the second incoming end) in the proof of associativity,
Figure 2, is C1. For the second gluing (to the first incoming end) when applied to

hx1i˝hx2i˝hx3i the sign is .�1/jx3j 1
2

P
i dim.N .1/

i
/. HereN .j /

i denotes the sequence
of symplectic manifolds underlying the generalized Lagrangian correspondence Lj .
In addition, the two gluings induce different orderings of patches in the glued quilted

surface, which are related by the additional sign .�1/
�

1
2

P
i dim.N .1/

i
/
��

1
2

P
i dim.N .2/

i
/
�
.

Combined together, these factors cancel the sign arising from the re-ordering of
determinants in the definitions of ẑ

P .
ẑ
P .hx1i ˝ hx2i/ ˝ hx3i/ and ẑ

P .hx1i ˝
ẑ
P .hx2i ˝ hx3i//.

The identity axiom involves gluing a quilted cup with a quilted pair of pants; the
orderings of the patches for the quilted cup and quilted pants above are chosen so
that the gluing sign for gluing the quilted cup with quilted pants to obtain a quilted
strip is C1 for gluing into the second argument, and .�1/jxj 1

2

P
i dim.Ni / for gluing

into the first argument. Again, the additional sign is absorbed into the isomorphism
of determinant lines induced by gluing.

Convention 4.5. To simplify pictures of quilts we will use the following conven-
tions indicated in Figure 9: A generalized Lagrangian submanifold L of M can
be used as “boundary condition” for a surface mapping to M in the sense that the
boundary arc that is labeled by the sequence L D .L.�r/.�rC1/; : : : ; L.�1/0/ of
Lagrangian correspondences from fptg to M is replaced by a sequence of strips
mapping to N�1; : : : ; N�rC1, with seam conditions in L.�1/0; : : : ; L.�rC2/.�rC1/
and a final boundary condition in L.�r/.�rC1/. Similarly, a generalized Lagrangian
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correspondence L between M� and MC can be used as “seam condition” between
surfaces mapping to M˙ in the sense that the seam that is labeled by the sequence
L D .L01; : : : ; L.r�1/r/ of Lagrangian correspondences from M� to MC is re-
placed by a sequence of strips mapping to M1; : : : ;Mr�1 with seam conditions in
L01; : : : ; L.r�1/r .

WDL

L. rC1/. rC2/

N rC1

L. r/. rC1/

N rC2

M

L. 1/0

L. 2/. 1/
N 1

M

:::
:::

WD
Mr 1

M

L01

M1

M

:::
:::L

MC

MC
L.r 1/r

L12

Figure 9. Conventions on using generalized Lagrangians and Lagrangian correspondences as
boundary and seam conditions.

Remark 4.6. As for Don.M/, the category Don#.M/ is independent of the choices
of perturbation data and widths up to isomorphism of categories, see Remark 3.6 and
the proofs of independence of quilted Floer cohomology and relative quilt invariants
in [22], [21].

Proposition 4.7. The map L 7! L_, for a generalized Lagrangian L ofM given by

L_.L0/ ´ Hom.L;L0/ D HF.L�r.�rC1/; : : : ; L.�1/0; L0/Œd �
for all Lagrangian submanifoldsL0 � M and with degree shift d D 1

2

P
k dim.Nk/,

extends to a contravariant functor Don#.M/ ! Don.M/_:

Proof. The functor L_ W Don.M/ ! AbN can be defined on morphisms by

L_ W Hom.L1; L
0
1/ ! Hom.Hom.L;L1/;Hom.L;L0

1//

f 7! ˚
g 7! g B f D ˆP .g ˝ f /

�
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using the composition on Don#.M/. To morphisms f 2 Hom.L;L0/ of Don#.M/

we can then associate the natural transformation f _ W L0_ ! L_, which maps every
object L1 � M of Don.M/ to the following AbN -morphism f _.L1/:

Hom.L0; L1/ ! Hom.L;L1/; g 7! f B g D ˆP .f ˝ g/;

again given by composition on Don#.M/. The axioms follow from the quilted gluing
theorem ([21], Theorem 3.13) applied to jazzed-up versions of Figures 5 and 6 (which
show the example L D .L0; L01/, L0 D .L0

0; L01/). In this case the orientations are
independent of the ordering of patches since all have one boundary component and
one outgoing end.

5. Composable functors associated to Lagrangian correspondences

Let M0 and M1 be two symplectic manifolds satisfying (M1) and (M2) with the
same monotonicity constant � � 0. We fix Maslov covers LagN .Mi / ! Mi as in
(G1) and background classes bi 2 H 2.Mi ;Z2/. Given an admissible Lagrangian
correspondence L01 � M�

0 � M1 in the sense of Section 6, we can now define a
functor ˆ.L01/ W Don#.M0/ ! Don#.M1/. More precisely, we assume that L01
satisfies (L1)–(L3), and the image of �1.L01/ in �1.M�

0 �M1/ is torsion.

Definition 5.1. The functorˆ.L01/ W Don#.M0/ ! Don#.M1/ is defined as follows:

(a) On the level of objects, ˆ.L01/ is concatenation of the Lagrangian correspon-
dence to the sequence of Lagrangian correspondences: For a generalized La-
grangian L D .L�r.�rC1/; : : : ; L.�1/0/ of M0 with corresponding sequence of
symplectic manifolds .fptg; N�rC1; : : : ; N�1;M0/ we put

ˆ.L01/.L/ ´ .L;L01/ ´ .L.�r/.�rC1/; : : : ; L.�1/0; L01/

with the corresponding symplectic manifolds .fptg; N�rC1; : : : ; N�1;M0;M1/;

(b) On the level of morphisms, for any pairL;L0 of generalized Lagrangians inM0,

ˆ.L01/ ´ ˆS W Hom.L;L0/ ! Hom.ˆ.L01/.L/;ˆ.L01/.L
0//

is the relative invariant associated to the quilted surface S with two punctures
and one interior circle, as in Figure 10.

Remark 5.2. In the case thatM1 is a point, the map for morphisms is the dual of the
pair of pants product.

For composable morphisms f 2 Hom.L;L0/, g 2 Hom.L0; L00/ one shows
ˆL01

.f B g/ D ˆL01
.f / B ˆL01

.g/ by applying the quilted gluing theorem ([21],
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L01

L
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�

2
/
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1
/

L
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/
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/
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L
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2
/
.
�

1
/

L
.
�

r
/
.
�

r
C

1
/

L
0 .
�

r
0 /

.
�

r
0 C

1
/

N
�

r
C

1

N
�

1

N
0 �

1

N
0 �

r
0 C

1

L
M0

M1

L0

L01 D

Figure 10. The Lagrangian correspondence functor ˆ.L01/ on morphisms.

Theorem 3.13) to the gluings shown in Figure 11 (simplifying the picture by Conven-
tion 4.5), which yield homotopic quilted surfaces. The gluing signs for both gluings
are positive. Similarly, the second gluing shows that ˆ.L01/.1L/ D 1ˆ.L01/.L/

,
since we have ordered the patches of the quilted cup from the outside in.

M1M0

L

L01

L00
M0

M1

L01

L0

L

L00

DL0

f

g

g

f

M0

L

M1

L01

M1

L01

D M0

L

Figure 11. The functor axioms for ˆL01
.

Remark 5.3. The surfaces of the first gluing in Figure 11 can equivalently be repre-
sented as degenerations of one quilted disk. The corresponding one-parameter family
in Figure 12 is the one-dimensional multiplihedron of Stasheff, see [16], [10], p. 113,
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to which we will return in [11].

Figure 12. Degeneration view of the first functor axiom.

With this new definition, any two functors associated to smooth, compact, admis-
sible Lagrangian correspondences,

ˆ.L01/ W Don#.M0/ ! Don#.M1/

and

ˆ.L12/ W Don#.M1/ ! Don#.M2/;

are clearly composable. More generally, consider a sequence

L0r D .L01; : : : ; L.r�1/r/

of Lagrangian correspondencesL.j�1/j � M�
j�1�Mj . (That is,L0r is a generalized

Lagrangian correspondence from M0 to Mr in the sense of Definition 2.1.) Assume
that L0r is admissible in the sense of Section 6 below. We can then define a functor
by composition

ˆ.L0r/ ´ ˆ.L01/ B � � � Bˆ.L.r�1/r/ W Don#.M0/ ! Don#.Mr/: (8)

Remark 5.4. On the level of morphisms, the functorˆ.L0r/ is given by the relative
invariant associated to the quilted surface S in Figure 13,

ˆ.L0r/ D ˆS W Hom.L;L0/ ! Hom.ˆ.L0r/.L/;ˆ.L0r/.L
0//

for all generalized Lagrangian submanifolds L;L0 2 Obj.Don#.M0//, with patches
with two outgoing ends ordered from bottom up. This follows from the quilted gluing
theorem applied to the gluing shown in Figure 13.

5.1. Functors associated to composed Lagrangian correspondences and graphs.
The next two strip-shrinking results are summarized from [20], [22], [21]. The first
theorem describes the isomorphism of Floer cohomology under geometric composi-
tion, while the second describes the behavior of the relative invariants.
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M2

D D

L0
M0

L
L0 M0

L

L02

M2

M1
L01

L12

M2

L12

L0 M0 L

M1

L01

Figure 13. The composition ˆ.L01/ B � � � Bˆ.L.r�1/r / is given by a relative invariant for the
sequence L0r D .L01; : : : ; L.r�1/r /. (Here r D 2.).

Theorem 5.5. Let L D .L01; : : : ; Lr.rC1// be a cyclic sequence of Lagrangian
correspondences between symplectic manifoldsM0; : : : ;MrC1 D M0. Suppose that

(a) the symplectic manifolds all satisfy (M1) and (M2) with the same monotonicity
constant � ;

(b) the Lagrangian correspondences all satisfy (L1)–(L3),

(c) the sequence L is monotone, relatively spin, and graded;

(d) for some 1 � j � r the compositionL.j�1/j BLj.jC1/ is embedded in the sense
of Definition 2.3.

Then with respect to the induced relative spin structure, orientation, and grading on
the modified sequence L0 D .L01; : : : ; L.j�1/j B Lj.jC1/; : : : ; Lr.rC1// there exists
a canonical isomorphism of graded groups

HF.L/ D HF.: : : L.j�1/j ; Lj.jC1/ : : :/
��!� HF.: : : L.j�1/j B Lj.jC1/ : : :/ D HF.L0/;

induced by the canonical identification of intersection points.

Theorem 5.6. Consider a quilted surface S containing a patch S`1
that is diffeo-

morphic to R � Œ0; 1� and attached via seams �01 D f.`0; I0/; .`1;R � f0g/g and
�12 D f.`1;R � f1g/; .`2; I2/g to boundary components I0; I2 of other surfaces
S`0

; S`2
. Let M be symplectic manifolds (satisfying (M1) and (M2), (G1) with the

same � � 0 and N 2 N) labeling the patches of S , and L be Lagrangian boundary
and seam conditions forS such that all Lagrangians in L satisfy (L1)–(L3), (G2), and
L is monotone and relative spin in the sense of [21]. Suppose that the Lagrangian
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correspondencesL�01
� M�

`0
�M`1

,L�12
� M�

`1
�M`2

associated to the boundary
components of S`1

are such that L�01
B L�12

is embedded.
Let S 0 denote the quilted surface obtained by removing the patch S`1

and cor-
responding seams and replacing it by a new seam �02 ´ f.`0; I0/; .`2; I2/g. We
define Lagrangian boundary conditions L0 for S 0 by L�02

´ L�01
B L�12

. Then
the isomorphisms in Floer cohomology ‰e W HF.Le/ ! HF.L0

e/ for each end
e 2 E.S/ Š E.S 0/ intertwine with the relative invariants:

ˆS 0 B
� O
e2E�

‰e

�
D

� O
e2EC

‰e

�
BˆS Œn`1

d�:

Here 2n`1
is the dimension of M`1

, and d D 1; 0; or � 1 according to whether the
removed strip S`1

has two outgoing ends, one in- and one outgoing, or two incoming
ends.

As a first application of these results we will show that the composed functor
ˆ.L01/ B ˆ.L12/ W Don#.M0/ ! Don#.M2/ is isomorphic to the functor ˆ.L01 B
L12/ of the geometric compositionL01 BL12 � M�

0 �M2, if the latter is embedded.
More precisely and more generally, we have the following result.

Theorem 5.7. Let L0r D .L01; : : : ; L.r�1/r/ and L0
0r 0 D .L0

01; : : : ; L
0
.r 0�1/r 0/ be

two admissible generalized Lagrangian correspondence from M0 to Mr D Mr 0 .
Suppose that they are equivalent in the sense of Section 2 through a series of em-
bedded compositions of consecutive Lagrangian correspondences and such that each
intermediate generalized Lagrangian correspondence is admissible. Then for any
two admissible generalized Lagrangian submanifoldsL;L0 2 Obj.Don#.M0// there
is an isomorphism

‰ W Hom.ˆ.L0r/.L/;ˆ.L0r/.L
0// ! Hom.ˆ.L0

0r 0/.L/;ˆ.L
0
0r 0/.L

0//

which intertwines the functors on the morphism level,

‰ Bˆ.L0r/ D ˆ.L0
0r 0/ W Hom.L;L0/ ! Hom.ˆ.L0

0r 0/.L/;ˆ.L
0
0r 0/.L

0//:

Proof. By assumption there exists a sequence of admissible generalized Lagrangian
correspondences Lj connecting L0 D L0r to LN D L0

0r 0 . In each step two consec-
utive Lagrangian correspondences L�, LC in the sequence Lj D .: : : ; L�; LC; : : :/
are replaced by their embedded compositionL� BLC inLj˙1 D .: : : ; L� BLC; : : :/.
To eachLj we associate seam conditions for the quilted surfaceSj on the right of Fig-
ure 13. Replacing the consecutive correspondences by their composition corresponds
to shrinking a strip in this surface. So Theorem 5.6 provides an isomorphism ‰

e
j
C

associated to the outgoing end ejC of each surface Sj such that‰
e

j
C

BˆSj D ˆSj ˙1 .

Figure 14 shows an example of this degeneration. The isomorphism ‰ is given by
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concatenation of the isomorphisms ‰
e

j
C

(and their inverses in case the composition

is between Lj and Lj�1). It intertwines ˆS0 D ˆ.L0r/ and ˆSN D ˆ.L0
0r 0/ as

claimed.

�
ı!0

L0 M0
L L0

M0

L

L01 B L12
M2

M1

ı

L01

L12

M2

Figure 14. Isomorphism between the functors ˆ.L01/ Bˆ.L12/ and ˆ.L01 B L12/.

Next, let  W M0 ! M1 be a symplectomorphism and graph � M�
0 �M1 its

graph. The functor ˆ. / defined in Section 3.1 extends to a functor

ˆ. / W Don#.M0/ ! Don#.M1/

defined on the level of objects by

L D .L�r.�rC1/; : : : ; L�10/ 7! .L�r.�rC1/; : : : ; .1N�1
�  /.L�10// μ  .L/:

On the level of morphisms, the functor

ˆ. / W Hom.L;L0/ ! Hom.ˆ. /.L/;ˆ. /.L0//

is defined by

h.x�r ; : : : ; x�1; x0; x0�1; : : : ; x0�r 0/i 7! h.x�r ; : : : ; x�1;  .x0/; x0�1; : : : ; x0�r 0i
on the generators �.L;L0/ of the chain complex. As another application of Theo-
rem 5.6 we will show that this functor is in fact isomorphic to the functor
ˆ.graph / W Don#.M0/ ! Don#.M1/ that we defined for the Lagrangian corre-
spondence graph .

Proposition 5.8. ˆ. / andˆ.graph / are canonically isomorphic as functors from
Don#.M0/ to Don#.M1/. More precisely, there exists a canonical natural transfor-
mation ˛ W ˆ. / ! ˆ.graph /, that is ˛.L/ 2 Hom.ˆ. /.L/;ˆ.graph /.L//
for everyL 2 Obj.Don#.M0// such that ˛.L/Bˆ.graph /.f / D ˆ. /.f /B˛.L0/
for all f 2 Hom.L;L0/, and all ˛.L/ are isomorphisms in Don#.M1/.
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Proof. Let L D .L.�r/.�rC1/; : : : ; L.�1/0/ 2 Obj.Don#.M0// be a generalized La-
grangian submanifold. By Theorem 5.5 we have canonical isomorphisms from

Hom.ˆ. /L;ˆ.graph /L/

D Hom. .L/; .L; graph //

D Hom.: : : .1 �  /.L.�1/0/; .graph /t ; .L.�1/0/t : : :/

to all three of

Hom.: : : .1 �  /.L.�1/0/; .L.�1/0 B .graph //t : : :/ D Hom. .L/;  .L//;

Hom.: : : L.�1/0; graph ; .graph /t ; .L.�1/0/t : : :/

D Hom..L; graph /.L; graph //;

Hom.: : : .1 �  /.L.�1/0/ B graph. �1/; .L.�1/0/t : : :/ D Hom.L;L/;

see Figure 15.4 The isomorphisms are by . .x/; x/ 7!  .x/, .x;  .x0/; x/, or
x, respectively, on the level of perturbed intersection points x D .x�r ; : : : ; x0/ 2
�.L;L/. The first two isomorphisms also intertwine the identity morphisms 1 .L/ Š
1.L;graph / by Theorem 5.5 and the degeneration of the quilted identity indicated in

ı D ı1 D ı3 ! 0

ı

2 2 2

HF. .L/;  .L// Š HF.L;L/HF. .L/; .L; graph // Š HF..L; graph /; .L; graph // Š

1.L;graph / 1L1 .L/

ı1 ! 0 ı3 ! 0 ı2 ! 0

ı1 ı2 ı3ı2ı1

2

˛.L/

 .L/  .L/ L LL   .L/ L   L

Figure 15. Natural isomorphisms of Floer cohomology groups and definition of the natural
transformation ˛: The light and dark shaded surfaces are mapped to M0 and M1 respectively
and we abbreviate graph by  and ˆ. /.L/ by  .L/.

4 Strictly speaking, one has to apply the shift functor‰M0
of Definition 5.10 to adjust the relative spin

structure on L. However, HF.‰M0
.L/;‰M0

.L// is canonically isomorphic to HF.L;L/.



Functoriality for Lagrangian correspondences in Floer theory 153

Figure 15; this is the identity axiom for the functor ˆ.graph /. The identity axiom
for ˆ. / implies that the above isomorphisms (their composition which coincides
with ˆ. / W Hom.L;L/ ! Hom. .L/;  .L//) also intertwine 1L with 1 .L/. We
define ˛.L/ 2 Hom.ˆ. /L;ˆ.graph. //L/ to be the element corresponding to the
identities 1ˆ. /.L/ Š 1ˆ.graph /.L/ Š 1L under these isomorphisms.

Now each ˛.L/ is an isomorphism since we have ˛.L/ B f D I1.f / for all
f 2 HF.ˆ.graph /L;L00/ and f B ˛.L/ D I2.f / for all f 2 HF.L00; ˆ. /L/,
with the isomorphisms from Theorem 5.5

I1 W HF..L; graph /;L00/ ! HF. .L/; L00/;
I2 W HF.L00;  .L// ! HF.L00; .L; graph //:

These identities can be seen from the gluing theorem in [21] and Theorem 5.5, applied
to the gluings and degenerations indicated in Figure 16. The quilted surfaces can be
deformed to a strip resp. a quilted strip (which corresponds to a strip in M�

0 �M1).
These relative invariants both are the identity since the solutions are counted without
quotienting by R, see the strip example (Example 2.5 in [21]).

 .L/L00

 

L

f ˛.L/ f

L00

 

L

D f

L00L00

f˛.L/

 

L  .L/

 .L/

D f

f

I2I1

Figure 16. ˛.L/ is an isomorphism in Don#.M1/.

For f 2 Hom.L;L0/ this already shows the first equality inˆ. /.f / B ˛.L0/ D
I.f / D ˛.L/ Bˆ.graph /.f / with the isomorphism

I W HF.L;L0/ ! HF. .L/; .L0; graph //:

More precisely, on the chain level for x 2 �.L;L0/

ˆ. /.x/ B ˛.L0/ D . .x/; x/ D ˛.L/ Bˆ.graph /.x/:

The second identity is proven by repeatedly using Theorem 5.6 and the quilted gluing
theorem ([21], Theorem 3.13) see Figure 17.

Remark 5.9. There is an analytically easier proof of the previous Proposition 5.8
since it deals only with the special case when one of the Lagrangian correspondences
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x

 

L

 .L/L0 L0  .L/

 

L

D

˛.L/ ˛.L/

�
I

x x

L0 L

D x

Figure 17. Isomorphism of functors for a symplectomorphism and its graph, using shrinking
strips.

is the graph of a symplectomorphism: Instead of shrinking a strip as in Theorems 5.5
and Theorem 5.6 one can apply the symplectomorphism to the whole strip; for a
suitable choice of perturbation data it then attaches smoothly to the other surface in
the quilt, and the seam can be removed.

The functor ˆ.IdM0/ associated to the identity map on M0 clearly is the identity
functor on Don#.M0/. So Proposition 5.8 gives a (rather indirect) isomorphism
between the functor for the diagonal and the identity functor. To be more precise,
taking into account the relative spin structure of the diagonal, we need to introduce
the following shift functor.

Definition 5.10. We define a shift functor

‰M0
W Don#.M0;LagN .M0/; !0; b0/ ! Don#.M0;LagN .M0/; !0; b0 � w2.M0//:

(a) On the level of objects,‰M0
maps every generalized LagrangianL 2 Don#.M0/

to itself but shifts the relative spin structure to one with background class b0 �
w2.M0/, as explained in [23].

(b) On the level of morphisms, ‰M0
W Hom.L;L0/ ! Hom.‰M0

.L/;‰M0
.L0// is

the canonical isomorphism for shifted spin structures from [23].

Remark 5.11. Let � � M�
0 �M0 denote the diagonal. Throughout, we will equip

� with the orientation and relative spin structure that are induced by the projection
to the second factor (see [23]). Then � is an admissible Lagrangian correspondence
from M0 to M1, where M1 D M0 with the same symplectic structure !1 D !0
and Maslov cover LagN .M1/ D LagN .M0/, but with a shifted background class



Functoriality for Lagrangian correspondences in Floer theory 155

b1 D b0 � w2.M0/. In other words, � is an object in the category Don#
�
M0;M1/

that is introduced in Section 6 below.

In the following, we will drop the Maslov cover and symplectic form from the
notation.

Corollary 5.12. The functor ˆ.�/ W Don#.M0; b0/ ! Don#.M0; b0 � w2.M0//

associated to the diagonal is canonically isomorphic to the shift functor ‰M0
.

6. Composition functor for categories of correspondences

The set of generalized Lagrangian correspondences forms a category in its own right,
which we define in close analogy to the generalized Donaldson category in Section 4.
We will then be able to define a composition functor for these categories.

Let Ma and Mb be symplectic manifolds satisfying (M1) and (M2) with the
same monotonicity constant � � 0. We fix an integer N > 0, N -fold Maslov
covers LagN .M.�// ! M.�/ as in (G1), and background classes b.�/ 2 H 2.M.�/;Z2/.
Recall from Definition 2.1 that a generalized Lagrangian correspondence from Ma

to Mb is a sequence L D .L01; L12; : : : ; L.r�1/r/ of Lagrangian correspondences
L.i�1/i � N�

i�1 � Ni for a sequence N0; : : : ; Nr of any length r � 0 of symplectic
manifolds with N0 D Ma and Nr D Mb . We picture L as sequence

Ma D N0
L01���! N1

L12���! � � � L.r�1/r�����! Nr D Mb:

As in Definition 4.1 we call a generalized Lagrangian correspondence L from Ma

to Mb admissible if each Ni satisfies (M1) and (M2) with the monotonicity constant
� � 0, each L.i�1/i satisfies (L1)–(L3), and the image of each �1.L.i�1/i / in
�1.N

�
i�1 �Ni / is torsion.

Definition 6.1. The Donaldson–Fukaya category of correspondences

Don#.Ma;Mb/ ´ Don#.Ma;Mb;LagN .Ma/;LagN .Mb/; !a; !b; ba; bb/

is defined as follows:

(a) The objects of Don#.Ma;Mb/ are admissible generalized Lagrangian correspon-
dences from Ma to Mb , equipped with orientations, gradings, and relative spin
structures.5

5 In the previous notation, a grading onL is a collection ofN -fold Maslov covers LagN .Nj / ! Nj

for j D 0; : : : ; r and gradings of the Lagrangian correspondences L.j �1/j . Here the gradings on
N0 D Ma andNr D Mb are the fixed ones. A relative spin structure onL is a collection of background
classes bj 2 H2.Nj ;Z2/ for j D 0; : : : ; r and relative spin structures on L.j �1/j with background
classes ���

j �1
bj �1 C��

j
bj . Here b0 D ba and br D bb are the fixed background classes inMa and

Mb . See [22] for more details.
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(b) The morphism spaces of Don#.Ma;Mb/ are the ZN -graded Floer cohomology
groups (defined in [22])

Hom.L;L0/ ´ HF.L;L0/Œd �;

where the second group is shifted by d D 1
2

� P
k dim.Nk/ C P

k0 dim.N 0
k0/

�
.

For Z-coefficients one has to introduce determinant lines as in Remark 4.4. See
Figure 18 for views of the quilted holomorphic cylinders which are counted
(modulo R-shift) as Floer trajectories.
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L0

L

Mb
Ma

Mb

Ma

LL0 ˝

Mb

Ma

DD L0
12

L0
10

L0
.r 0�1/r 0

L.r�1/r

L01

:::

:::
L12˝

Figure 18. Floer trajectories for pairs of generalized Lagrangian correspondences.

(c) The composition of morphisms in Don#.Ma;Mb/,

Hom.L;L0/ � Hom.L0; L00/ ! Hom.L;L00/
.f; g/ 7! f B g ´ ˆP .f ˝ g/

is defined by the relative invariant ˆP associated to the quilted pair of pants
surface P (this time the pair of pants is an honest one, not just the front) in
Figure 19, where the patches without outgoing ends are ordered fromMa toMb .

Mb

Ma

L0
L00

˝
L

L˝L00 L0

Ma

Mb

D

Figure 19. Quilted pair of pants: Composition of morphisms for Lagrangian correspondences.
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Convention 6.2. In Figure 18 and the following pictures, the outer circles will always
be outgoing ends. The inner circles are usually incoming ends, indicated by a ˝ or
marked with the incoming morphism. Ends at the top resp. bottom of pictures will
always be outgoing resp. incoming, unless otherwise indicated by arrows.

Remark 6.3. (a) The identity 1L 2 Hom.L;L/ for a generalized Lagrangian corre-
spondenceL is given by the relative invariant 1L ´ ˆS associated to the quilted cap
in Figure 20, where the patches without outgoing ends are ordered from Mb to Ma.

LD

Ma

L

Mb

Mb

Ma

Figure 20. Quilted cap: Identity for Lagrangian correspondences.

(b)The associativity and identity axiom for Don#.Ma;Mb/ follow from the quilted
gluing theorem ([21], Theorem 3.13) applied to the gluings (indicated by dashed lines)
in Figure 21. Note that – in contrast to Figure 18 – the solutions on the quilted annulus

fgh

Ma

Mb

L000 L00 L0 L fgh

Ma

Mb

L000 L00 L0 L

Ma

Mb

L0 L L0
Ma

MbMb

Ma

L0 L LD Df ff

f B .g B h/ D .f B g/ B h

D

1L B f D f f D f B 1L0

Figure 21. Axioms for Donaldson–Fukaya category of correspondences.

(i.e. cylinder) are counted without quotienting by R, hence as in the strip example
(Example 2.5 in [21]) this relative invariant is the identity.
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(c) Don#.Ma;Mb/ is a small category by the same arguments as in Remark 2.5 (c).

Remark 6.4. Consider the case where the symplectic manifolds Ma D Mb D M

agree (including Maslov cover and background class). Then for any admissible
generalized Lagrangian correspondence L 2 Obj.Don#.M;M// the composition
of morphisms in (c) defines a ring structure on Hom.L;L/, and (d) provides an
identity element. Another application of the strip shrinking theorems shows that this
ring structure is isomorphic under embedded compositions of correspondences: Let
L and L0 be two admissible generalized Lagrangian correspondences from M to
itself. Suppose that they are equivalent in the sense of Section 2 through a series
of embedded compositions of consecutive Lagrangian correspondences, and such
that each intermediate generalized Lagrangian correspondence is admissible. Then
there is a canonical ring isomorphism

�
Hom.L;L/; B� ' �

Hom.L0; L0/; B�
which

intertwines the identity elements 1L and 1L0 .
Indeed, by assumption there exists a sequence of admissible generalized La-

grangian correspondences Lj connecting L0 D L to LN D L0 as in the proof of
Theorem 5.7. In each step two consecutive Lagrangian correspondences in the se-
quence Lj D .: : : ; L�; LC; : : :/ are replaced by their embedded, monotone com-
position in Lj˙1 D .: : : ; L� B LC; : : :/. Theorem 5.5 provides isomorphisms
‰j W HF.Lj ; Lj / ! HF.Lj˙1; Lj˙1/ by shrinking the strip between L� and LC.
Theorem 5.6 applies to the corresponding strips in the pair of pants surface and the
quilted cap surface of Definition 6.1 (c) and (d) and shows that the isomorphisms‰j

intertwine the ring structures and identity morphisms. The full ring isomorphism is
given by a composition of these isomorphisms or their inverses.

Next, consider a triple of symplectic manifolds Ma;Mb;Mc satisfying (M1)
and (M2) with the same monotonicity constant � , equipped with Maslov covers
LagN .M.�// ! M.�/ (with the sameN ) and background classes b.�/ 2 H 2.M.�/;Z2/.
We denote by Don#.Ma;Mb/�Don#.Mb;Mc/ the product category. That is, objects
are pairs .Lab; Lbc/ of objects of Don#.Ma;Mb/ and Don#.Mb;Mc/. Morphisms
are pairs .f; g/ with f 2 Hom.Lab; L0

ab
/; g 2 Hom.Lbc ; L0

bc
/. Composition is

given by

.f; g/ B .f 0; g0/ ´ .�1/jf 0jjgj.f B f 0; g B g0/

for f 2 Hom.Lab; L0
ab
/, f 0 2 Hom.L0

ab
; L00

ab
/, g 2 Hom.Lbc ; L0

bc
/ and g0 2

Hom.L0
bc
; L00

bc
/.

Definition 6.5. The composition functor

# W Don#.Ma;Mb/ � Don#.Mb;Mc/ ! Don#.Ma;Mc/ (9)

is defined as follows.
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(a) On the level of objects # is defined by concatenation:

Obj.Don#.Ma;Mb// � Obj.Don#.Mb;Mc// ! Obj.Don#.Ma;Mc//

.Lab; Lbc/ 7! Lab # Lbc ;

where

.Lab01 ; : : : ; L
ab
.r�1/r/ # .Lbc01; : : : ; L

bc
.r 0�1/r 0/

´ .Lab01 ; : : : ; L
ab
.r�1/r ; L

bc
01; : : : ; L

bc
.r 0�1/r 0/:

(b) On the level of morphisms, # is defined for Lab; L0
ab

2 Obj.Don#.Ma;Mb//

and Lbc ; L0
bc

2 Obj.Don#.Mb;Mc// by

Hom.Lab; L
0
ab/ � Hom.Lbc ; L

0
bc/ ! Hom.Lab # Lbc ; L

0
ab # L0

bc/

.f; g/ 7! f # g ´ ˆP .f ˝ g/;

whereˆP is the relative invariant associated to the quilted pair of pantsP , where
now every seam connects one of the incoming cylindrical ends to the outgoing
cylindrical end, as in Figure 22.

Mb

L0
abLbcL0

bc
Lab

D

˝

˝
Mb

Mc

Ma

L0
bc Lbc

L0
ab Lab

Mc Ma

Figure 22. Composition functor on Donaldson categories of correspondences.

The composition axiom for the functor # follows from the quilted gluing theo-
rem ([21], Theorem 3.13) applied to the two degenerations of the five-holed sphere
shown in Figure 23: For all f 2 Hom.Lab; L0

ab
/; f 0 2 Hom.L0

ab
; L00

ab
/; g 2

Hom.Lbc ; L0
bc
/; g0 2 Hom.L0

bc
; L00

bc
/ we obtain

#
�
.f; g/ B .f 0; g0/

� D .�1/jf 0jjgj.f B f 0/ # .g B g0/ D .f # g/ B .f 0 # g0/:

The identity axiom for the concatenation functor, 1Lab
# 1Lbc

D 1Lab#Lbc
, follows

similarly from the quilted gluing theorem applied to the degenerations shown in
Figure 24.
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f 0 f

gg0

L00
ab

L00
bc Lbc

LabL0
ab

L0
bc

Mc

Ma

Mb

f 0 f

gg0

L00
ab

L00
bc Lbc

LabL0
ab

L0
bc

Mc

Ma

MbD

Figure 23. Composition axiom for the concatenation functor.

Mc

Lab

Lbc

Ma

Mb Lab # Lbc

Mc

Ma

D

1Lab
# 1Lbc

D 1Lab#Lbc

Figure 24. Identity axiom for the concatenation functor.

Remark 6.6. The construction of functors associated to Lagrangian correspondences
in Section 5 has an obvious extension (8) for generalized Lagrangian correspondences.
For Lab 2 Don#.Ma;Mb/ the functor ˆ.Lab/ W Don#.Ma/ ! Don#.Mb/ acts on
objects L 2 Obj.Don#.Ma// by concatenation ˆ.Lab/ D L # Lab , and on mor-
phisms ˆ.Lab/ W HF.L;L0/ ! HF.L # Lab; L0 # Lab/ is defined by composition
ˆ.L01/ B : : : B ˆ.L.r�1/r/ of the functors associated to the elementary Lagrangian
correspondences .L01; : : : ; L.r�1/r/ D Lab . Alternatively, the mapˆ.Lab/ on mor-
phisms can be defined directly by the relative invariant in Figure 13, see Remark 5.4.
Using the first definition, we have a tautological equality of functors

ˆ.Lab/ Bˆ.Lbc/ D ˆ.Lab # Lbc/ (10)

for any two objects Lab 2 Don#.Ma;Mb/ and Lbc 2 Don#.Mb;Mc/.
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7. Natural transformations associated to Floer cohomology classes

LetMa,Mb be as in the previous section and letLab ,L0
ab

be objects in Don#.Ma;Mb/.

Definition 7.1. Given a morphism T 2 Hom.Lab; L0
ab
/ we define a natural trans-

formation

ˆT W ˆ.Lab/ ! ˆ.L0
ab/

as follows: To any object L in Don#.Ma/ we assign the morphism

ˆT .L/ 2 Hom.ˆ.Lab/.L/;ˆ.L
0
ab/.L//

given by the relative invariant associated to the surface in Figure 25, which is in-
dependent of the ordering of the patches. (Note that the end where T is inserted is
cylindrical in the sense that the strip-like ends glue together to a cylindrical end.)

����������
����������
����������

����������
����������
����������

M0

M1

M2

L02

L01

L12

L0

T TMa

Mb

L

L0
ab

Lab

Figure 25. Natural transformation associated to a Floer cohomology class: General case and
an example, where L consists of a single Lagrangian L0, Lab consists of a single Lagrangian
L02, and L0

ab
consists of a pair .L01; L12/.

To see thatˆT is a natural transformation of functorsˆ.Lab/ ! ˆ.L0
ab
/we must

show that for any two objectsL;L0 in Don#.Ma/ and any morphismf 2 Hom.L;L0/
we have

ˆ.Lab/.f / BˆT .L0/ D .�1/jT jjf jˆT .L/ Bˆ.L0
ab/.f /: (11)

This identity follows from the quilted gluing theorem ([21], Theorem 3.13) applied
to the gluing shown in Figure 26.

Proposition 7.2. The maps Lab 7! ˆ.Lab/ and T 7! ˆT define a functor

Don#.Ma;Mb/ ! Fun.Don#.Ma/;Don#.Mb//:
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Ma

Mb

L0

L

L0
ab

Lab

T

D
Ma

Mb

L0

L

L0
ab

Lab

T

Figure 26. Natural transformation axiom.

Proof. Application of the quilted gluing theorem to the quilted surfaces in Fig-
ure 27 yields the composition axiom ˆT .L/ B ˆT 0.L/ D ˆT BT 0.L/ for all T 2
Hom.Lab; L0

ab
/, T 0 2 Hom.L0

ab
; L00

ab
/, and L 2 Obj.Don#.Ma//. The iden-

tity axiom ˆ1
Lab

.L/ D 1ˆ.Lab/.L/
for T D 1Lab

2 Hom.Lab; Lab/ and L 2
Obj.Don#.Ma// follows from the quilted gluing theorem applied to the quilted sur-
face in Figure 28.

T

T 0

Ma

Mb

L

L00
ab

L0
ab

Lab

D Ma
Mb

L

L00
ab

Lab

L0
ab

T

T 0

Figure 27. Composition axiom for natural transformations.
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D 1ˆ.Lab/.L/Lab Mb

Ma
L

Figure 28. Identity axiom for natural transformations.

Remark7.3. In this remark we discuss the special case of the diagonal� � M��M ,
which gives rise to the so-called open-closed maps in 2D TQFT. By [14] there
is a ring isomorphism between the Floer cohomology of the diagonal HF.�;�/
and the quantum cohomology HF.Id/. Our construction gives for any element
˛ 2 HF.�;�/ ' HF.Id/ an automorphism of the identity functor ˆ.�/ (more
precisely, of the shift functor ˆ.�/ ' ‰M in case w2.M/ ¤ 0). In particular,
we obtain elements ˆ˛.L/ 2 HF..L;�/; .L;�// ' HF.L;L/ for each admissible
Lagrangian submanifold L � M . (Here HF..L;�/; .L;�// ' HF.L;L/ is a ring
isomorphism by Remark 6.4 .) Proposition 7.2 gives ˆ˛Bˇ .L/ D ˆ˛.L/ B ˆˇ .L/:
That is, the closed-open map HF.Id/ ! HF.L;L/ is a ring homomorphism. The
closed-open maps in Floer theory are discussed in more detail in Albers, see Theo-
rem 3.1 in [2].

For any pair of Lagrangians L0; L1 � M , combining the ring homomorphism
HF.Id/ ! HF.Lk; Lk/ with the composition

HF.L0; L0/ � HF.L0; L1/ ! HF.L0; L1/

resp.

HF.L0; L1/ � HF.L1; L1/ ! HF.L0; L1/

gives a module structure on HF.L0; L1/ over HF.Id/. The module structure is
independent ofk D 0; 1, by the natural transformation axiom (11) withLab D L0

ab
D

�. It is equal to the module structure induced by the isomorphism HF.L0�L1; �/ !
HF.L0; L1/ of [23].

Note that if HF.Id/ ! HF.L;L/ is a surjection and HF.Id/ is semisimple then
HF.L;L/ is again semisimple, and in particular nilpotent free.

Next, we show that embedded composition of Lagrangian correspondences gives
rise to isomorphic objects in the Donaldson–Fukaya category. For simplicity we re-
strict to the case of elementary Lagrangian correspondences, i.e. sequences of length 1.
The statement and argument for the general case is analogous.

Theorem 7.4. Let L01 2 Obj.Don#.M0;M1// and L12 2 Obj.Don#.M1;M2// be
admissible Lagrangian correspondences. Suppose thatL01�M1

L12 ! M�
0 �M2 is



164 K. Wehrheim and C. T. Woodward

cut out transversally and embeds to a smooth, admissible Lagrangian correspondence
L02 ´ L01 B L12 2 Obj.Don#.M0;M2//. Then �M0

# L02, L02 # �M2
, and

L01 # L12 are all isomorphic in Don#.M0;M2/.

Remark 7.5. If in Theorem 7.4 we moreover assume w2.M0/ D 0 or w2.M2/ D
0, then we in fact have an isomorphism between L01 # L12 and L01 B L12, by
Proposition 7.6 below.

Proof. By Theorem 5.5, Hom.L01 #L12; �M0
#L02/ resp. Hom.�M0

#L02; L01 #
L12/ is isomorphic to Hom.�M0

#L02; �M0
#L02/; let � resp. denote the inverse

image of the identity1�M0
#L02

. To establish the isomorphismL01#L12 ' �M0
#L02

we show that B� D 1�M0
#L02

and�B D 1L01#L12
for the composition by the pair

of pants products. These are special cases of Theorem 5.6 applied to the degenerations
shown in Figure 29. The isomorphismL01 #L12 ' L02 #�M2

is proven in the same
way.

�
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ı!0

�
ı!0 ı
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�

L02L12

�

L02

M2

M1 ı
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M0
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L12 L02

� L01

L12

M0

�

L02

�

L02

M2

�

L02

M0

M2

L01

L12

M0

M2

�

L02

ıı M1

�

 

 

�

Figure 29. Isomorphism of composition and concatenation.

Proposition 7.6. Suppose thatM0 satisfiesw2.M0/ D 0. Then the diagonal�M0
2

Don#.M0;M0/ is an identity of the composition # up to isomorphism. That is, for
every generalized Lagrangian L 2 Obj.Don#.M0;M1// the objects �M0

# L and
L are isomorphic in Don#.M0;M1/, and for every generalized Lagrangian L 2
Obj.Don#.M1;M0// the objects L # �M0

and L are isomorphic in Don#.M1;M0/.
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Proof. By Theorem 5.5, both Hom.�M0
#L;L/ and Hom.L;�M0

#L/ are isomor-
phic to Hom.L;L/; let � resp.  denote the inverse image of the identity 1L. Then
the identities � B D 1L and � B D 1�M0

#L follow from Theorem 5.6 applied to
the degenerations shown in Figure 30. (Alternatively, as mentioned in Section 5.8,
one could glue the strips instead of shrinking them.) This proves�M0

#L ' L. The
isomorphism L # �M0

' L is proven in the same way.
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�
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M1

M0

M1

L

M0

ı

M1

ıı

�

L

�

 

 

�

Figure 30. Isomorphism of �M0
# L and L.

Corollary 7.7. Under the assumptions of Theorem 7.4 the functors ‰M0
B ˆ.L01 B

L12/,ˆ.L01 BL12/ B‰M2
, andˆ.L01/ Bˆ.L12/ are all isomorphic in the category

of functors from Don#.M0/ to Don#.M2/.

Proof. From Theorem 7.4 and (10) we obtain isomorphisms between ˆ.�M0
#

L02/ D ˆ.�M0
/Bˆ.L02/,ˆ.L02#�M2

/ D ˆ.L02/Bˆ.�M2
/, andˆ.L01#L12/ D

ˆ.L01/ B ˆ.L12/. By Proposition 5.12 the functors ˆ.�Mk
/ are isomorphic to the

shift functors‰Mk
. Since isomorphisms commute with composition of functors, this

proves the corollary.

8. 2-category of monotone symplectic manifolds

We can rephrase and summarize the constructions of the previous sections, using the
language of 2-categories.
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Definition 8.1. A 2-category C consists of the following data:

(a) A class of objects Obj.C/.
(b) For each pair of objects X; Y 2 Obj.C/, a small category Hom.X; Y /.
(c) For each triple of objects X; Y;Z 2 Obj.C/, a composition functor

B W Hom.X; Y / � Hom.Y;Z/ ! Hom.X;Z/:

(d) For every X 2 Obj.C/ an identity functor 1X 2 Hom.X;X/.

These data should satisfy the following axioms:

(Identity) For all X; Y 2 Obj.C/ and f 2 Hom.X; Y /

1X B f D f; f B 1Y D f:

(Associativity) For all composable morphisms f; g; h

f B .g B h/ D .f B g/ B h:
Objects resp. morphisms in Hom.X; Y / are called 1-morphisms resp. 2-mor-

phisms. We say that C has weak identities if equality in the identity axiom is replaced
by 2-isomorphism.

The basic example of a 2-category is Cat, whose objects are small categories,
1-morphisms are functors, and 2-morphisms are natural transformations.

Definition 8.2. A 2-functor F W C1 ! C2 between 2-categories C1 and C2 consists
of

(a) a map F W Obj.C1/ ! Obj.C2/,
(b) for each pair X; Y 2 Obj.C1/, a functor

F .X; Y / W Hom.X; Y / ! Hom.F .X/;F .Y //;

respecting composition and identities.

In the following we restrict ourselves to symplectic manifolds that are spin,
i.e. w2.M/ D 0. Their advantage is that the shift functor ‰M W Don#.M; b/ !
Don#.M; b/ of Definition 5.10 is trivial and the diagonal �M � M� � M is an
object of the category of correspondences Don#.M;M/ from .M; b/ to itself. We
moreover drop the Maslov cover from the data, thus working with ungraded Floer
cohomology groups.

Definition 8.3. Fix a constant � � 0. Let the Weinstein–Floer 2-category Floer#
� be

the category given as follows:

(a) Objects are symplectic manifolds .M;!/ that satisfy (M1) and (M2) with mono-
tonicity constant � and w2.M/ D 0, and that are equipped with a background
class b 2 H 2.M;Z2/.
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(b) The morphism categories of Floer# are the Donaldson categories of Lagrangian
correspondences, Hom.M0;M1/ ´ Don#.M0;M1/; without grading.

(c) Composition is defined by the functor (9),

# W Don#.M0;M1/ � Don#.M1;M2/ ! Don#.M0;M2/:

(d) The diagonal defines a weak identity �M 2 Don#.M;M/.

Remark 8.4. One could define Floer#
� by restricting to nonempty symplectic mani-

folds. However, for future applications, we wish to include the empty set ; as object.
The only elementary Lagrangian correspondence from ; to M is L D ;, but in the
sequence of a generalized Lagrangian correspondences, we must now allow any num-
ber of ; as symplectic manifolds as well as Lagrangian correspondences. However,
the Floer cohomology of any generalized Lagrangian correspondence containing ;
is the trivial group HF.� � � ��!; � � � / D f0g.

The associativity axiom on Floer#
� is immediate on the level of objects: We have

.L01 # L12/ # L23 D L01 # .L12 # L23/ for any triple L01 2 Obj.Don#.M0;M1//,
L12 2 Obj.Don#.M1;M2// L23 2 Obj.Don#.M2;M3//. On the level of mor-
phisms we apply the quilted gluing theorem ([21], Theorem 3.13) to the gluings
indicated by dashed lines in Figure 31 to prove that .f # g/ # h D f # .g # h/

h L23

L12

L01

L0
23

fL0
01

gL0
12

h L23

L12

L01

M0

M3

L0
23

M2

M1

fL0
01

gL0
12 D

M0

M1

M2

M3

Figure 31. Associativity of the concatenation functor.

for all f 2 Hom.L01; L0
01/, g 2 Hom.L12; L0

12/, h 2 Hom.L23; L0
23/. The weak

identity axiom follows from Proposition 7.6. Hence Floer# is a 2-category with weak
identities.

Remark 8.5. Floer#
� is independent up to 2-isomorphism of 2-categories of the

choices of perturbation data and strip widths, as in Remarks 3.6, 4.6, and the proofs
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of independence of quilted Floer cohomology and relative quilt invariants in [22],
[21].

Theorem 7.4 implies that the definition of composition in the Weinstein–Floer
2-category Floer#

� agrees with the geometric definition, in the case that geometric
composition is smooth, embedded, and monotone.

Theorem 8.6. The mapM0 7! Don#.M0/ and the functors

Don#.M0;M1/ ! Fun.Don#.M0/;Don#.M1//

as in Proposition 7.2 define a categorification 2-functor Floer#
� ! Cat for every

� � 0.

Proof. Compatibility with the composition follows from the identity (10). The weak
identities �M 2 Hom.M;M/ are mapped to weak identities ˆ.�/ ' 1Don#.M/ by
Corollary 5.12. Here the shift functor ‰M is the identity since w2.M/ D 0.

Remark 8.7. (a) For any genuinely monotone symplectic manifold (i.e. with � > 0)
we can achieve � D 1 by rescaling. It thus suffices to consider the exact Weinstein–
Floer 2-category Floer#

0 and the monotone Weinstein–Floer 2-category Floer#
1. Note

however that we cannot incorporate Lagrangian correspondences between monotone
symplectic manifolds with different monotonicity constants. This is due to bubbling
effects which in our present setup are true obstructions to the equivalence of algebraic
composition L01 #L12 and embedded geometric composition L01 BL12. We expect
that the A1-setup, incorporating all bubbling effects, has better behavior.

(b) One can define an analogous graded Weinstein–Floer 2-category Floer#
N;� for

any � � 0 and integerN , whose objects are monotone symplectic manifolds with the
additional structure of a Maslov cover LagN .M/ ! M . Its 1-morphisms are graded
generalized Lagrangian correspondences, and its 2-morphism spaces are the graded
Floer cohomology groups.

Remark 8.8. (a) One can define a strong identity 1M 2 Hom.M;M/ by allowing the
empty sequence 1M ´ ; as a generalized Lagrangian correspondence. The various
constructions in this Section extend to the case of empty sequences by allowing
cylindrical ends.

(b) In the case w2.M/ ¤ 0, the diagonal is not an automorphism but a morphism
�M 2 Hom..M; b/; .M; b � w2.M///, see Remark 5.11. Hence

L # �M 2 Hom..M1; b1/; .M; b � w2.M///; L 2 Hom..M1; b1/; .M; b//

lie in different morphism spaces that are not related by a simple shift in the background
class. However, the categorification functor in Theorem 8.6 generalizes directly to
this setup as follows. The functor maps the special Floer#

� 1-morphisms �M 2
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Don#..M; b/; .M; b � w2.M// to Cat 1-morphisms that are isomorphic to the shift
functors ‰M 2 Fun.Don#.M; b/;Don#.M; b � w2.M///.

(c) One can make the diagonal a strong identity by modding out by the equivalence
relation discussed Section 2. Let Brane#

� denote the 2-category whose objects and 1-
morphisms are those of Floer#

� , modulo the equivalence relationL01#L12 � L01BL12
for embedded compositions as in Section 2, and whose 2-morphisms are defined
as follows. Given a pair ŒL01�; ŒL0

01� of 1-morphisms from M0 to M1, define the
space of 2-morphisms Hom.ŒL01�; ŒL0

01�/ by Hom.ŒL01�; ŒL0
01�/ D HF.L01; L0

01/

for some choice of representatives L01; L0
01. Define composition by concatenation

#, as in (9). The equivalence classes of the diagonal Œ�M � define true identities in case
w2.M/ D 0. Our main result, Theorem 5.5, implies that Brane#

� is independent of the
choice of representatives up to 2-isomorphism of 2-categories. Theorem 7.4 implies
that the categorification 2-functor of Theorem 8.6 induces a 2-functor Brane#

� ! Cat
to the 2-category of categories Cat.
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