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Abstract. While topologists have had possession of possible counterexamples to the smooth
4-dimensional Poincaré conjecture (SPC4) for over 30 years, until recently no invariant has
existed which could potentially distinguish these examples from the standard 4-sphere. Ras-
mussen’s s-invariant, a slice obstruction within the general framework of Khovanov homology,
changes this state of affairs. We studied a class of knots K for which nonzero s.K/ would yield
a counterexample to SPC4. Computations are extremely costly and we had only completed
two tests for those K, with the computations showing that s was 0, when a landmark posting
of Akbulut [3] altered the terrain. His posting, appearing only six days after our initial posting,
proved that the family of “Cappell–Shaneson” homotopy spheres that we had geared up to study
were in fact all standard. The method we describe remains viable but will have to be applied
to other examples. Akbulut’s work makes SPC4 seem more plausible, and in another section
of this paper we explain that SPC4 is equivalent to an appropriate generalization of Property
R (“in S3, only an unknot can yield S1 � S2 under surgery”). We hope that this observation,
and the rich relations between Property R and ideas such as taut foliations, contact geometry,
and Heegaard Floer homology, will encourage 3-manifold topologists to look at SPC4.
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1. Introduction

The smooth 4-dimensional Poincaré conjecture (SPC4) is the “last man standing”
among the great problems of classical geometric topology.1 Manifold topology has
been transformed by contact with physics and geometry so much that few of the
questions studied today would have been recognizable fifty years ago; SPC4 is the
exception. The “conjecture” can be formulated as:

Conjecture 1.1 (SPC4). A smooth four dimensional manifold † homeomorphic to
the 4-sphere S4 is actually diffeomorphic to it, † D S4.

The opinion of researchers in this area tends to lean in the direction that the
conjecture is false. There are three reasons for this. First, Donaldson theory and
Seiberg–Witten theory produce a myriad of examples of multiple smooth structures on
closed simply connected 4-manifolds (although all of these have second homology).
Second, there are several constructions which give potential counterexamples. Only
a small subset of these have been “killed,” that is, proved standard. Third, the best
known tool for constructing diffeomorphisms, the h-cobordism theorem, is broken,
that is it fails for smooth h-cobordisms between 4-manifolds.2

In the other direction, there are two strands of research that could provide a positive
argument (that is, that the conjecture is true). The first derives from a theorem of
Gromov [22], §0.3.C, which states that any symplectic structure on † � pt. which is
standard near the deleted point is actually symplectomorphic to dp1dq1 C dp2dq2

on T �R2 D R4. Perhaps punctured homotopy 4-spheres can be given a symplectic
structure standard at infinity. Because the existence of a symplectic structure is not
always preserved by homeomorphisms, the argument would have to be special to
homotopy spheres.

A second possible avenue will be explained in Section 3 of this paper. We show
that SPC4 is implied by an appropriate generalization of Gabai’s Property R theorem
([12], Corollary 8.3):

“In S3, only an unknot can yield S1 � S2 under surgery.”

It should not be a huge surprise that some generalization of Property R implies SPC4,
since if † has a handle decomposition consisting of exactly one k-handle for each

1The 3-dimensional Schoenflies problem (Does a smooth 3-sphere imbedded in R4 bound a smooth
4-ball?) is a special case. It asks if there are invertible homotopy spheres.

2Perhaps in light of recent developments, one should say that Akbulut [3] and even more recent work
[17] of the second author suggest that a direct handle-by-handle approach or possibly a combinatoric
approach organized by the concept of “broken Lefschetz fibrations” might be fruitful.
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index k D 0; 2; 3; 4 and no handles of index 1, then † D S4. To see this, let N

= @.0; 2-handles/ be the boundary after the 0- and 2-handles are attached. In order
to attach a 3-handle (to the essential 2-cycle), it is necessary that N have the form
N D S1 � S2 # †3. But for @.0; 2; 3-handles/ to be S3 so that the 4-handle can
be attached, we see N D S1 � S2. By Property R, the 2-handle must attach to the
unknot, i.e., in a standard way. Similarly, up to isotopy there is a unique 2-sphere in
N for the 3-handle to attach to. The core, pt. � S2, and co-core, S1 � pt. meet in one
point so the Morse Lemma cancels the 2- and 3-handles. The result is the standard
Morse function on †, showing † D S4. In fact, a Property R-like statement can be
tailored to be equivalent to SPC4. We hope that this observation will open SPC4 to
3-manifold specialists.

But let us suppose, again, that SPC4 is false. One would expect a proof of this to
calculate some invariant sensitive to smooth structure. The Donaldson polynomial
and their Seiberg–Witten analogs seem ill suited to homotopy spheres since they ad-
dress how families of self-dual connections (or harmonic spinors obeying a quadratic
constraint) specialize to 2-cycles in the 4-manifold. We report here the results of a
model large scale computer calculation of a different invariant which – with the proper
example in hand – may have the power to distinguish certain homotopy 4-spheres
from the standard 4-sphere.

We studied two homotopy 4-spheres † produced by Cappell and Shaneson in 1978
[9] and extracted a local problem: the slice problem for certain knots K, of whether
K bounds an imbedded disk in 1

2
R4. This can be answered affirmatively if † D S4.

We thus shifted attention from 4-manifold invariants to knot invariants which give an
obstruction to the slice problem. Our proposed invariant is exactly Rasmussen’s [37]
s-invariant associated to the Khovanov homology [24], [5], [6] of a knot K. Half the
absolute value 1

2
js.K/j of the s-invariant serves as a lower bound for the genus of

smoothly embedded surfaces in 1
2
R4 bounding K � R3. In the usual formulation,

the s-invariant is extra information beyond the Khovanov homology, and comes from
the spectral sequence relating Khovanov homology and Lee’s [32] variation thereof.
For some knots, however, including our K, it is possible to extract the s-invariant
directly form the Khovanov homology. The invariant js.K/j is an obstruction to
the slice problem, but 766 hours of computer calculation show s.K/ D 0, yielding
no information. Akbulut’s recent posting [3] eliminates the best known subfamily
of CS-homotopy spheres (indexed by the integers), by proving them to be standard.
This is precisely the family we had geared up to compute, incidentally confirming
our calculation that s.K/ D 0. At the end of Section 2 we give more information
regarding how our method could be applied to other potential counterexamples to
SPC4.

Localizing the problem to “slicing a knot K” is necessitated by the limits of present
knowledge. Perhaps current work on ‘blob homology’ by two of us, Morrison and
Walker, will allow a Khovanov homology skein module A.†4/ to be defined, com-
puted, and compared to A.S4/. Even if possible, exponential scaling will make the
brute force study of examples nearly impossible. Theoretical tools will be needed.
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Since we do localize to a slice problem, the reader may wonder if the known localiza-
tions of gauge theory to slice obstructions, in particular the � -invariant, could be used
in place of s. (The � -invariant also gives a lower bound, of 1

2
j�.K/j, and when the

s-invariant was discovered it was conjectured to coincide with � , on the basis of small
examples, although this was later proved false in [23].) The answer however is no.
Gauge theory invariants will not see the difference between slicing in an exotic versus
standard 4-ball. The gauge theoretic lower bounds to 4-ball genus are localizations of
adjunction formulas (relative to special classes) and these, by standard neck stretch
arguments are insensitive to the smooth structure near a single point. In particular, if
K is slice in any homotopy 4-ball, then �.K/ D 0.

Khovanov homology is newer and less well understood than gauge theory. The
only definitions we know involve the coordinate structure of space – in three dimen-
sions, projections are used to define the homology groups and s-invariant, and in four
dimensions, “movies” of projections establish what the s-invariant measures. Thus,
it is possible that Khovanov homology has the power to distinguish an exotic 4-ball
(which will have no smooth radius function with 3-sphere levels) from the standard
one, a possibility too tempting to overlook. Although the first computer calculation
yielded s D 0, it may be possible to produce additional, computationally feasible,
test cases. If there are general reasons why Khovanov homology is insensitive to the
smooth structure on a ball, they are presently unknown.

The authors would like to thank Dror Bar-Natan, Nathan Dunfield, Rob Kirby and
Martin Scharlemann for interesting and useful conversations relating to this paper.
Robert Gompf was partially supported by NSF grant DMS-0603958 during this work,
and Michael Freedman, Scott Morrison and KevinWalker were at Microsoft Station Q.

2. Historical background and potential counterexamples

In 1976, both Cappell and Shaneson [9] and Gordon [20] studied ways to produce
homotopy spheres † by a two step process. Start with a closed 3-manifold M and a
self-diffeomorphism � to produce a mapping torus

M � I

�.M � 1/ � M � 0
:

Then surger a cross-section circle; this often produces a homotopy sphere. The
two possible circle framings yield homotopy spheres which are related by the Gluck
construction (described below) on the dual 2-sphere. Since the original interest was
on producing a distinct pair of 2-knots with identical complement, some effort was
expended, particularly in [20], to achieve a stronger theorem by ensuring that † was
recognizably diffeomorphic to S4, not just a homotopy sphere.

But quickly the emphasis shifted to the more exciting possibility that some of the
homotopy spheres produced in this fashion might be exotic. The Cappell–Shaneson
examples come from suitable self-diffeomorphisms � of the 3-torus. Up to obvious
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equivalences, there are finitely many such � for each trace (and only one for each
trace between �4 and 9 [1]). Thus most research has focused on the representative
family †m determined by the matrices

Am D
0
@

0 1 0

0 1 1

1 0 m C 1

1
A ; m 2 Z;

and the “harder” choice of framed 1-surgery. (Aitchison and Rubenstein [1] showed
that the other choice of framing yields S4.) The study of such examples by explicit
handle descriptions was initiated by Akbulut and Kirby [4], who produced an elegant
diagram of †0 without 3-handles. Subsequently, one of us [15] was able to show that
†0 D S4 by introducing a .2; 3/-handle pair into the Morse function. (This .2; 3/

pair has significance for generalizing Property R which we will discuss in Section 3.)
The manifolds †m, m ¤ 0, remained mysterious until proven standard in [3].

It should be mentioned that ten or twenty years earlier, two other sources of ho-
motopy spheres were known. At the end of this section we comment on adapting our
approach to the study of these examples. First, given a balanced presentation P , e.g.,
hx; y j xyx D yxy; x4 D y5i, for the trivial group, let C be the corresponding 2-
complex. Embed C into R5 and let N .C / be a regular neighborhood. The boundary
@N D † is a homotopy sphere, uniquely determined by P . If P is Andrews–Curtis
equivalent to the empty presentation, it is easy to see that † D S4, otherwise the
situation is unclear. However, various apparently nontrivial presentations, such as
the one above, are now known to generate the standard 4-sphere, as a consequence of
study of the Cappell–Shaneson examples [15], [3]. The second source of examples
is the Gluck construction [13]. For any knotted 2-sphere in S4, remove its tubu-
lar neighborhood S2 � D2 and reglue it by the nontrivial but homologically trivial
diffeomorphism of S2 � S1, rotating S2 once as we travel around S1. The result
is a homotopy sphere that is not known to be S4 in general. However, it is known
to be trivial for many 2-knots, such as twist-spun knots [20], [36], doubles of rib-
bon disks [19], and various 2-knots arising from the Cappell–Shaneson construction
(those trivialized in [15], [3] and [17]).

Returning to the family †m, for thirty years these examples patiently awaited
the development of an invariant that might separate them from S4. (They are now
known to be standard [3], but we nevertheless explain our general approach in their
context for it was in †�1 and †1 that we did our computations.) As explained
in the introduction, gauge theory was not up to the task. Recently, the Khovanov
homology link invariant [24], [5], [6], a categorification of the Jones polynomial,
has presented itself as a possibility in the form of Rasmussen’s s-invariant [37]. The
reason it is possible that this is the right tool to separate standard from exotic 4-spheres
(or equivalently 4-balls) is that the definitions we have for Kh and s are coordinate
intensive. Projections are used to define Kh and s, and “movies” of projections are
used to prove the properties of s. It should be admitted at the outset that a less
combinatorial, more abstract formulation of Kh – perhaps analogous to Witten’s [42]
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reformulation of the Jones polynomial – might establish general properties of Kh
that would make it useless in detecting homotopy spheres. However, nothing of this
sort is known so we feel the problem of testing homotopy spheres against computer
calculations of s is irresistible.

The s-invariant is a lower bound to the 4-ball genus of a knot K,

1

2
js.K/j � genus4.K/: (2.1)

Let us explain how we localize the problem by showing that the condition †1 D S4

implies, for a certain knot K W S1 ,! S3, that K is slice, i.e., has genus4.K/ D 0.
The handle structure (drawn in detail in Section 4) of †1 consists of: 0-handle [ two
(1-handles) [ two (2-handles) [ (4-handle). Since there are no exotic diffeomor-
phisms of @.4-handle/ D S3, we may without loss of generality pull off the 4-handle
and ask if the remaining homotopy ball B1 (with boundary equal to S3) is standard,
that is “is B1 D B4?” Recall some terminology: a four dimensional k-handle is a
pair .Bk � B4�k; @Bk � B4�k/ which is to be glued onto the boundary of the union
of lower index handles along @Bk � B4�k . Bk � 0 is called the “core” and 0 � B4�k

is called the “co-core.”
The co-cores of the two 2-handles in B1 are a pair of disjoint disks bounding a

two component link L � @B1 D S3. These disks show that L is “slice” in B1. But
if B1 ¤ B4 then there is a possibility that L is not a slice link in the conventional
sense of bounding disjoint imbedded disks in B4. It is this possibility that we study
via the s invariant.

Now L is a two component link and the s invariant is defined for knots; is this a
problem? Actually, there is a generalization of s to links3 so the strongest approach
would be to compute the “generalized s” of L. Unfortunately, L is well beyond the
reach of any computer (unless a better algorithm is discovered). The picture (Figures 8
and 9) we draw for L has 222 crossings and (more importantly) girth � 24.

Any knot Kb obtained from L by joining its two components by a rectangular
band b will bound an embedded disk in B1 (the band sum of the pair of disks with
boundary L). In this sense, Kb is slice in B1 but again might fail to be slice in B4. In
a sense, calculating s.Kb/, for any band b, provides information: if some s.Kb/ ¤ 0,
then B1 ¤ B4 as Kb is slice in B1 but not in B4. Although information may be lost
in passing from L to Kb , our only hope seems to be to seek out bands so that Kb is
small enough to compute s.

In the end we found three promising bands b1, b2, and b3 so that the resulting
knots K1, K2, and K3 satisfy:

apparent crossing # apparent girth comment
K1 67 14 ribbon
K2 78 14
K3 86 16

3See [8] for an integer valued invariant; there is also a stronger version, unpublished. Neither is
immediately computable by the method described in § 5.
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The first knot K1 is useless to us since ribbon knots are slice. We ultimately
computed (766 hours on a dual core AMD Opteron 285 with 32gb of RAM) that
s.K2/ D 0, so unfortunately it too failed to distinguish B1 from B4. The last knot
K3 appears to require an order of magnitude more space and time to compute. The
calculation was discontinued when Akbulut proved Bm D B4 for all m. Shortly
thereafter, Nathan Dunfield contacted us with a better presentation of K3, see § 4.2,
which would probably make the calculation (indeed, of the full Khovanov homology,
not just the s-invariant) feasible.

Our other, shorter calculation, done in B�1 is briefly discussed in Section 4.3.
To summarize, suppose B 0, @B 0 D S3, is a homotopy 4-ball consisting of a 0-

handle, k 1-handles and k 2-handles. Suppose K � S3 is the result of band summing
the k cocore circles into a single knot:

Fact 2.1. If s.K/ ¤ 0 then B 0 ¤ B4 and the SPC4 is false.

Fact 2.2. If s.K/ ¤ 0, then theAndrews–Curtis conjecture is false for thek generator,
k relation presentation P of the trivial group given by the handle decomposition of B 0.

Proof. The handle structure of B 0 defines the presentation P of the trivial group.
The handle structure on B 0 stabilizes to a handle structure on B 0 � I also with k

1-handles and k 2-handles, giving the identical presentation P . If P is Andrews–
Curtis equivalent to the empty presentation, then there is no geometric obstruction
in 5-dimensions to covering the AC moves with handle slides (and births/deaths of
(1-handle, 2-handle) pairs). This means that B 0 � I D B5. But then

Double.B 0/ D .B 0 [ D4/ # . SB 0 [ D4/ D @.B 0 � I / D @B5 D S4:

This implies B 0 # . SB 0 [ D4/ D B4. Since K bounds a disk � imbedded in
B 0, which we may assume misses the region of the connected sum, K also bounds
�0 � B 0 # . SB 0 [ D4/ D B4. But s.K/ ¤ 0 implies that there is no imbedded disk
�0 � B4 with @�0 D K. This contradiction shows that P cannot be AC equivalent
to the empty presentation.

The examples †m are now all known to be trivial [3], and the second author has
found a simpler and more conceptual proof that an even larger family of Cappell–
Shaneson homotopy 4-spheres is standard [17]. The latter method may eventually
show that all Cappell–Shaneson spheres are standard, raising the possibility that
SPC4 may actually be true. In any case, none of the remaining Cappell–Shaneson
spheres are currently known to admit handle presentations without 3-handles. There
is one remaining source of interesting homotopy spheres without 3-handles known
to the authors, originating in Melvin’s thesis [34]: If a knotted 2-sphere in S4 admits
a height function with at most two local minima, then such an example arises by
Gluck construction. (A simpler proof from [16] also appears as Exercise 6.2.12(d)
of [19], along with an algorithm for constructing the dual link diagram without 1-
handles.) As discussed previously, many knots are known only to produce S4 by
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Gluck construction, so to proceed in this direction, one should first find a clever way
to generate 2-knots that seem likely to be interesting. On the other hand, our method
can in principle be used in the presence of 3-handles, by locating a knot bounding a
surface of some genus in a homotopy ball, then trying to prove that this genus cannot
be realized in B4.

Summary. The existence of any non-slice knot (or link) L in the boundary 3-sphere
of a homotopy ball with an equal number of 1 and 2-handles, L built from the 2-handle
co-core boundaries by attaching a forest (disjoint collection of trees) of bands implies
the failure of both SPC4 and AC. Khovanov homology (or its variants categorifying
the sl3 polynomial [27], [33], [35] or sln polynomials [29], [30], [43]) may hold
promise for establishing that a link L is not slice. More generally, if 3-handles are
present in the handle decomposition there is still a vast array of knots and links which
are seen to bound a system of surfaces of known genus. Inequalities such as 2.1
can then, in principle, show that the ambient space holding these surfaces is not the
standard 4-ball. On the other hand, the very steep (super exponential?) escalation
of computational costs, both in time and space, for computing such invariants may
limit such explorations. Because computation may be limited to girth � 14 and
# crossings � 90, the correct strategy may be to simplify the boundary knot (or link)
with additional bands. That is, to not necessarily seek to produce the boundary K of
a surface in a homotopy ball of the smallest possible genus. The disadvantage of such
an approach is that to detect a homotopy ball one would have to find js.K/j >> 0;
the advantage is that with additional bands, many knots could be generated in a size
range, say girth � 12, crossings � 60, where each calculation of s could be done in
tens of seconds.

3. Generalizing Property R

Property R is now identified with Gabai’s theorem [12].

Theorem 3.1 (Property R). If surgery on K � S3 is S1 � S2 then K is the unknot.

Gabai actually proved that any spherical class in the surgered manifold would
imply that K is trivial. This theorem has had tremendous importance in Floer theory
and contact geometry, and has close relations to Property P (if surgery on K yields S3

then K unknotted). Its proof showcased taut foliation and sutured manifold techniques
and is central to 3-manifold topology. We hope these powerful 3-dimensional methods
might be imported to study the SPC4. In fact, this section will describe some possible
generalizations of Property R, one of which is equivalent to SPC4. Unfortunately,
these generalizations do not statically discuss a single knot or link but rather address
the consequences of some set of “moves,” so a direct generalization of Gabai’s proof
does not seem likely.
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To relate Property R to SPC4, we need to recall a 4-dimensional version of Kirby’s
“calculus” theorem [31] (see also [19]). First, some notation: A connected 4-manifold
M has a handle decomposition with one 0-handle whose boundary is the “black-
board.” The 1-handles are drawn (assuming orientability and following Akbulut) as
an unlink with a dot on each component; 0-surgery on this p-component unlink is
the boundary Sp D #p copies S1 � S2 of .0-handle/ [ p.1-handles/. (By convention,
S0 D S3.) The 2-handles are drawn as a framed link in the complement of the
dotted unlink. Each framing is represented by an integer, namely the linking number
of the component with its pushoff via the framing (which is also the coefficient of
the resulting surgery on the boundary 3-manifold, measured in the background S3).
Assuming M is closed, the 3- and 4-handles comprise a regular neighborhood of a
wedge of q circles in M that attaches in essentially a unique way to the boundary Sq

of the union of 0-, 1-, and 2-handles. Thus, we need not bother to keep track of the
q 3-handles and 4-handle.

Theorem 3.2. Let M and M 0 be 4-manifolds given as above by links L and L0,
respectively, with each link component dotted or framed. If M and M 0 are diffeo-
morphic (preserving orientations) then L and L0 are related by compositions of the
moves in Figure 1. Here, n can be any integer, so the framing in (1) is arbitrary. How-
ever, we can require n to be zero (so the framing is tangent to the obvious spanning
disk) if (i) both L and L0 have a component with odd framing or (ii) all framings are
even and H1.M I Z2/ D 0 (or more generally if the given diffeomorphism preserves
the induced spin structures).

0

n

;

;.1/

.2/

(3) (a), (b), (c)

Figure 1. (1) birth/death of a 1-handle, 2-handle pair, (2) birth/death of a 2-handle, 3-handle
pair (3-handle omitted), (3) handle slides.

The three versions, (a), (b), (c) of (3) deserve comment. 1-handles are often
represented (cf. [19]) by pairs of deleted balls whose boundaries are to be glued
across a mirror. The separating sphere S has one hemisphere realized as the disk
spanning �� in our notation and the other is present after the longitude is filled in by
surgery (Figure 2).
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Figure 2

The obvious rule for sliding 1-handles on the deleted ball representation becomes
band summing of one dotted circle with a parallel copy of the other, where the band
is disjoint from a fixed collection of spanning disks for the dotted circles. This is
case (a) of 1-handle slides. (Exercise: the dotted circle representation of 1-handle
slides is contravariant.) Case (b) is sliding a 2-handle (undotted circle) over a dotted
circle. Here, there is no restriction on the band. The slide is nothing but an isotopy of
the attaching region of the 2-handle in the boundary after the 1-handles are attached.
(To compare the two notations, it is helpful to keep track of the arc along which we
are to bring the two balls together to make a dotted unknot. Then these slides occur
as attaching circles isotope through the connecting arc.) In Figure 3 we show an
example in both notations.

Figure 3. A handle slide of the trefoil over the triangle is shown in the two different notations.
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Finally, (c) is the familiar sliding of one 2-handle over another. Recall that when
we slide one component over another, the former changes its framing coefficient to
the sum of the two coefficients plus twice the linking number of the components
(oriented so that the two parallel curves point in the same direction). The same rule
applies in 3 (b) where the dotted circle has coefficient 0.

Proof of Theorem 3.2. This is almost implicit in [31]. By Cerf theory, the two handle
decompositions are related by handle moves, and 0- and 4-handles need not be created.
The remaining moves translate into (1)–(3) (arbitrary n). Only the parity of n is
significant, since it changes by 2 when the framed circle is slid over the dotted
circle in (1) (move 3 (b)). Similarly, moves 3 (a), (b) allow us to assume the framed
circle in (1) is knotted and linked with other components (i.e., the introduction of
“circumcision pairs” [38] is redundant in this setting, see Figure 4). If L has an
odd-framed component K, we can now change the parity of n in move (1) by sliding
the n-framed unknot over K and simplifying. If both L and L0 have odd-framed

Figure 4. Circumcision pairs [38] are redundant in the presence of move 3 (b).

components, it now suffices to take n D 0 in each move (1). (Use the above procedure
to generate move (1) with n D 1 in both diagrams L and L0. We now have an extra
Hopf link with an odd framing throughout the computation, so we can generate odd-
parity moves (1) from the n D 0 case as needed.) If all framings of L and L0 are even,
then the diagrams determine spin structures on M and M 0. If H1.M I Z2/ D 0 then
the spin structure on M is unique, so the given equivalence preserves spin structures.
This latter condition allows us to translate the Cerf theory into diagrams respecting
the spin structure, so all framings are even throughout. (Note that the condition is
necessary since odd framings cannot be created from an even diagram without an odd
move (1).)

We can now restate SPC4 in a form generalizing Property R.

Conjecture 3.3. Let L D L1 [ L2 be a link in S3 with L1 a dotted p-component
unlink and L2 a framed link of p C q components. Suppose that L2 normally
generates �1.S3 � L1/, and that surgery on L (with dotted components 0-framed)
is diffeomorphic to Sq D #qS1 � Sq . Then (a) there is a sequence of moves (1), (2),
and (3) as above transforming L to the empty diagram, and (b) if all framings on L2

are even, we can require n D 0 in each move (1).
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Note that for p D 0 and q D 1, Property R is precisely the assertion that a
single move .2/�1 suffices. When p D 0, L must be a q-component link with all
framings and linking numbers zero. In general, the linking matrix of L presents a
homomorphism with cokernel H1.Sq/ D Zq , and the diagonal elements (framings)
can be arranged by (1)–(3) to be all even (since the corresponding homotopy 4-sphere
has H 2.†I Z2/ D 0 and so admits a spin structure). Note that it is essential to restrict
the number of 2-handles. Fewer than p C q cannot yield a closed, simply connected
4-manifold (which must have Euler characteristic 	 2), whereas a sufficient excess
would allow as a connected summand an exotic, closed, 1-connected 4-manifold, so
no recognition theorem could then be possible. (For a weaker statement in this case,
see Conjecture 3.5.) Also note that while our hypothesis involves simple connectivity,
it does so in the benign context where a new trivial relation (move (2)) can be added
at will. Thus, we would not expect to meet subtle presentation issues such as the
Andrews–Curtis Conjecture in analyzing the scope of the moves.

Proposition 3.1. Both (a) and (b) of Conjecture 3.3 are equivalent to SPC4.

Proof. Given L as in the conjecture, it is easy to verify that the corresponding closed
4-manifold is simply connected with Euler characteristic 2, so it is a homotopy 4-
sphere. Thus, SPC4 implies it is diffeomorphic to S4. Theorem 3.2 now implies L can
be transformed to the empty link in both cases (a) and (b). Conversely, any homotopy
4-sphere has a handle decomposition given by a diagram as in the conjecture, so the
latter ((a) or (b)) implies the sphere is standard.

Remark. There is evidence that moves (1) and (2) (in the direction increasing the
number of link components) cannot be dispensed with, although there is currently no
proof. More precisely, it seems unlikely that the condition pq D 0 can always be
preserved when simplifying a link as in the conjecture. This evidence arises from the
handle decomposition of the homotopy 4-sphere †0 introduced in [4] and mentioned
in the previous section. Failure of theAndrews–Curtis Conjecture for the presentation
hx; y j xyx D yxy; x4 D y5i would imply that that handle decomposition cannot
be trivialized without introducing a .2; 3/-handle pair, i.e., a move (2) with p D 2,
q D 0, increasing q to 1. The explicit trivialization in [15] via such a pair can also be
reinterpreted as a move (1), with n D 0, p D 0, q D 2 (increasing p to 1), that is likely
to be indispensable. The resulting trivialization of a 2-component link is exhibited
explicitly in [18] in the context of Property 2R, a generalization of Property R to
two-component links in S3.

A natural approach to SPC4 is to study related conjectures. We can try to prove
weaker conjectures such as Conjecture 3.3 with the added hypothesis that p D 0 and
possibly a bound on q, e.g., q � 2. As we have already seen, it is unlikely that we
can always simplify to the unlink while preserving these hypotheses, but one might
still hope to make progress by increasing p and q with moves (1) and (2). See [39],
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[18] for further discussion. In the other direction, we can try to disprove stronger
conjectures. We close this section with two such candidates.

First we consider the relation of stable diffeomorphism, that is, diffeomorphism
up to connected sum with sufficiently many copies of S2 � S2. Such a connected
sum is given in Kirby calculus by Figure 5.

;

Figure 5. The extra move in the Kirby calculus, generating stable diffeomorphism.

Thus, adding this fourth link move to our other three generates the relation of stable
diffeomorphism of the associated 4-manifolds. A traditional question, on which
there has been little progress, asks when a stable diffeomorphism can be destabilized
to an ordinary diffeomorphism. Since closed, simply connected 4-manifolds are
stably diffeomorphic (via the h-cobordism theorem) whenever they are homotopy
equivalent, we do know that the link in Conjecture 3.3 can be reduced to the empty
link via moves of type (1), (2), (3), and (4). Conjecture 3.3 says that use of type (4)
can be avoided under the given hypotheses. We can now weaken our �1 assumption.
Probably due to merely a lack of techniques, we know of no pairs of integral homology
4-spheres which are stably diffeomorphic but not diffeomorphic. This means that we
could make a stronger Conjecture 3.4 (probably dubious), equivalent to the assertion
that for homology 4-spheres, stable diffeomorphism implies diffeomorphism.

Conjecture 3.4. Let L D L1 [L2 be as in Conjecture 3.3, but with L2 only given to
generate H1.S3 �L1I Z/ (rather than �1.S3 �L1/). Suppose L0 is obtained from L

by moves (1)–(4) (and their inverses), with the same number of occurrences of move
(4) and its inverse. Then L0 can also be obtained from L by moves (1)–(3).

Since integral homology 4-spheres admit unique spin structures, the conjecture
can be interpreted in two equivalent ways: We can allow arbitrary n in move (1),
or require n D 0 and all framing coefficients even. If L2 normally generates
�1.S3 � L1/, we know from above that L can be transformed to the empty link
by moves (1)–(4), so Conjecture 3.4 implies Conjecture 3.3. Since closed, oriented
4-manifolds are stably diffeomorphic whenever they are homeomorphic [14], Con-
jecture 3.4 has the (unlikely?) consequence that homology 4-spheres cannot admit
exotic smooth structures. The conjecture clearly becomes false if we allow L2 to have
more than p C q components, even when L2 normally generates �1.S3 � L1/, since
many simply connected 4-manifolds (including large connected sums of S2 �S2) do
admit exotic smooth structures. In particular, there are links that are transformable
to the empty link by moves (1)–(4), but not if we disallow move (4) in the direction
increasing the number of link components.
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Our other strengthening of SPC4 involves odd-index handles. A manifold built
without 1-handles is obviously simply connected, and a closed 4-manifold without
3-handles can be alternatively presented without 1-handles (by reversing the sign of
the Morse function). It is an old open question whether every simply connected,
closed 4-manifold has a handle decomposition without odd-index handles. Such a
decomposition would have b2.M/ 2-handles, so an affirmative answer would imply
SPC4 and (via Property P) nonexistence of exotic smooth structures on CP2. An
affirmative answer has always seemed unlikely, due to an abundance of potential
counterexamples. However, the best known example has recently been shown to
admit such a handle structure [2]. This, together with recent progress on Cappell–
Shaneson spheres [3], [17], seems to increase the likelihood that such handle structures
always exist. We translate the assertion into a conjecture about links:

Conjecture 3.5. Let L D L1 [ L2 be as in Conjecture 3.3, but with no restriction
on the number of components of L2. If p C q ¤ 0 then L can be transformed by
moves (1)–(3) to a similar link with a smaller value of p C q.

This is easily seen to be equivalent to the conjecture that all closed, simply con-
nected 4-manifolds have decompositions without odd-index handles. Unlike previous
conjectures, this one becomes weaker if we add the restriction that all framings must
be even – the previous statement becomes restricted to spin manifolds. Either way, it
is easy to see directly that the conjecture implies Conjecture 3.3.

4. Bands and isotopies

Recall that in [16] the second author gave a handle presentation of the Cappell–
Shaneson spheres †m with no 3-handles. This is reproduced as Figure 6 here.

0

_

1
m_

Figure 6. Figure 17 from [16], showing the handle presentation of the Cappell–Shaneson
sphere †m.

We want to interpret this as a complicated handle presentation of the standard
boundary 3-sphere (after we have removed the 4-handle), and perform a sequence
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of Kirby moves turning this into the trivial presentation. As we do this, we need to
follow along the two meridian loops around the 2-handles; this link in the 3-sphere is
the one we hope (or had hoped, until [3]) is not slice. This link can be read off from
Figure 9 of [16], reproduced in Figure 7. Ignoring the component labelled by xy

there, the remaining two component link is what we are after, and we will call that
Lm throughout. Note that the unknotted circle appearing in that diagram as a dashed
line is not a third component, but notation for a full positive twist.

m

xy
xy

˛

xy
0

xy

0
xz

˛

0

1 twist

[ 3
4
3 _ h

_ h

Figure 7. Figure 9 from [16], showing the two component cocore link Lm. What appears to be
a third, unknotted, component drawn with a dashed line is actually notation for a full positive
twist on the strands passing through it.

We will first simplify this picture of Lm, making the twist circle lie flat. In our
pictures, the twist circle in shown in blue, to help distinguish it from the actual link,
which appears in black and green. (For grayscale readers, there is a small ‘b’ and ‘g’
in the diagrams indicating the black and green components.) At each step, the part
of the knot we are about to move is marked with dashes (and red, if you are reading
this in color), and often its destination is indicated with a thin dashed line.
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(4.1)

Finally, specializing to m D 1, we obtain the link L1 in Figure 8.

Figure 8. The two component cocore link with m D 1.

It is difficult to work directly with these pictures; we will first perform a series of
isotopies to ensure that all the strands passing through the ‘twist circle’ are parallel.
Omitting several steps, we obtain the link in Figure 9. Note that we have chosen an
arbitrary orientation, both because we are about to write down the Gauss code, which
needs an orientation, and because Khovanov homology is an invariant of oriented links
(although only depending weakly on the orientation, like the Jones polynomial).

This presentation has 222 crossings. (112 are outside the twist circle, and 11 �
10 D 110 are in the full twist.) It has Gauss code (first the green component, then
the black, in each case starting at the orientation arrow)
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Figure 9. Another picture of the two component cocore link with m D 1. Now all the strands
passing through the twist circle are parallel.

(1, 2, 3, 4, 5, 6, 7, -8, -9, -10, -11, -12, -13, -14, 15,
-16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28,
29, -30, 31, -32, 33, -34, -35, -36, -37, -38, -39, 40, -6,
-41, -42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, -53, -54,
-55, -56, -57, -58, -59, -40, -7, 41, 60, 61, 62, 63, -64,
65, 66, -67, -48, -68, -69, 70, -71, 72, -73, 74, -75, 76,
77, 78, 79, 80, 81, 22, -23, -82, -83, -84, -85, -86, 87,
88, 89, 90, 35, 12, 91, 92, 93, 94, -95, -45, -96, -62, -97,
-2, 98, 57, -99, -100, -101, -102, -88, -103, -104, -105,
-29, 28, 106, 107, 108, -109, 110, -111, 84, -79, 112, -113,
114, -115, 116, -117, 118, -119, -120, -93, -121, 122, 123,
10, 37, 124, 125, 101, 126, -127, -74, -128, -129, -114,
-130, -131, -19, 18, 132, 133, 115, 134, 135, 73, 136, 137,
-138, 139, -140, -141, -50),

(55, -142, -143, 144, -145, -139, -146, -70, -147, -148,
-118, -149, -150, -15, 14, 151, 152, 119, 153, 154, 69, 155,
140, 156, -157, -52, 53, 143, 158, 100, 159, 160, 38, 9,
-123, -161, -91, -162, 163, -164, -151, 150, -165, 166,
-132, 131, -167, 168, -81, 82, -169, 170, -171, 172, -106,
105, -173, 174, 32, -33, -175, -90, -176, -124, -160, -177,
59, 178, -4, 179, 97, 180, -181, -65, 182, 67, -49, -183,
-155, 146, -184, 185, -136, 127, 75, 186, 187, 113, 188,
167, 20, -21, -168, -189, -112, -190, -191, -76, 192, 102,
193, 176, 36, 11, 161, 194, 121, 195, -196, -44, -197, -61,
-179, -3, 198, 58, -199, -159, -125, -193, -89, -200, -174,
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-31, 30, 173, 104, -107, 201, -202, 203, -204, 83, -80, 189,
-188, 130, -133, 205, -206, 149, -152, 164, -163, -207, -92,
-194, -122, 8, 39, 177, 199, 99, 208, 142, 54, -51, -209,
-156, 145, 138, 184, 71, 210, 211, 117, 206, 165, 16, -17,
-166, -205, -116, -212, -213, -72, -185, -137, 214, -158,
-208, 56, -98, -198, -178, -5, -60, -215, -43, 196, 95, 216,
217, 68, 183, 141, 209, 157, -144, -214, -126, -192, -87,
-218, -108, -201, -172, -27, 26, 171, 202, 109, 219, -220,
85, -78, 190, -187, 129, -134, 212, -211, 148, -153, -221,
-94, -195, 42, 215, 197, 96, 222, 64, 181, -66, -182, -47,
-217, -154, 147, -210, 213, -135, 128, -186, 191, -77, 86,
220, 111, 204, 169, 24, -25, -170, -203, -110, -219, 218,
103, 200, 175, 34, 13, 162, 207, 120, 221, -216, -46, -222,
-63, -180, -1).

We never seriously considered giving it directly to our Khovanov homology com-
puter programs. (We have found an ordering of the crossings in this presentation
that results in a girth of 24. It might be possible to do better, but probably not by
much. See Section 5.1 for a discussion of girth as an obstacle to Khovanov homology
calculations.)

Instead, we decided to look for some bands that can be added to the link, hoping
to form a much simpler knot. If the original two component link is slice, of course
every such knot must be slice too, and so an obstruction for any knot obtained by
adding a band will do. Of course, we might be throwing the baby out with the bath
water here!

As mentioned in the introduction, we considered three different bands on L1,
resulting in knots K1, K2 and K3:

 D K1,

 D K2,

and

 D K3.
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The first two bands take place in the lower right corner of Figure 8, while the
last takes places near the centre of the diagram. It is relatively easy to see that K1 is
actually ribbon; we will leave this as an exercise to the reader, and spend the rest of
this section producing nicer isotopy representatives for the knots K2 and K3.

4.1. The knot K2. The knot K2 easily isotopes to

:

We will show an explicit sequence of isotopies rearranging this knot so that the strands
passing through the twist circle become parallel, performing some simplifications
along the way. As before, at each step the isotopy we are performing is indicated
with thick dashed red arcs showing what we are moving, and thin dashed black arcs
showing where we are going.
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This knot has 86 crossings, and we have given it the orientation consistent with
the orientation of the black component of the link in Figure 9. Its Gauss code (again,
starting from the orientation arrow) is

(-1, -2, -3, 4, 5, -6, -7, 8, 9, -10, -11, -12, -13, 14, 15,
16, 17, -18, 19, -20, 21, -22, -23, 24, 25, 26, 6, 27, -28,
-29, -8, -30, -31, 32, -33, -34, 35, 36, 20, 37, 38, 39,
-40, -41, -42, -19, -43, 44, 30, 45, -46, 23, 47, 48, 49, 1,
50, -51, -52, -53, -4, -25, -54, 46, 55, 31, 56, -35, -57,
-21, -58, -59, -60, 61, 62, 63, 22, 64, 34, 33, -32, -56,
-44, -9, -65, -66, 67, 52, 68, 3, -48, -62, 59, -38, 41,
-69, 70, -15, 12, -71, 72, 73, -74, -75, 66, 28, 76, 7, 77,
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54, -24, -47, -63, 58, -37, 42, -78, 79, -16, 11, 71, 80,
-81, -72, -82, 65, 29, -76, -27, 83, 53, -68, -84, -50, 75,
82, 10, -17, -79, -70, -85, 86, 69, 78, 18, 43, -36, 57,
-64, -55, -45, -77, -26, -5, -83, -67, 51, 84, 2, -49, -61,
60,-39, 40, -86, 85, -14, 13, -80, 81, -73, 74).

It is actually easy to do a few more simplifications, reducing the number of cross-
ings to 74. Mysteriously, however, our programs seemed to like this presentation
more, so we will not bother investigating those simplifications here.

4.2. The knot K3. Alternatively, we can start with the knot K3, and perform the
following sequence of isotopies.
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This knot has 83 crossings, and its Gauss code is
(1, 2, 3, 4, 5, 6, -7, -8, 9, -10, -11, -12, -6, 13, -14,
15, -16, 17, 18, -19, -20, -1, 21, 22, 10, -9, 23, 24, 25,
-26, -27, -28, 29, 30, -31, 32, -33, -34, -17, -35, -36, 37,
38, 20, 39, 40, -41, -29, 28, 42, -43, 44, 45, 46, -47, -39,
-48, 49, 34, -50, 51, 14, 52, 53, -54, -55, -13, -56, 26,
57, 58, 43, -44, 59, 60, -21, -61, -62, -4, 54, -53, 63,
-64, 36, 65, -66, -37, -3, 62, 67, 12, 7, 68, -25, -69, -70,
-59, -45, -40, -71, 72, 33, 50, 16, 73, 64, -63, -74, -15,
-51, 56, -68, -75, -23, -76, 77, 70, -58, 78, 27, -30, -79,
71, 48, 19, 80, 66, -65, -81, -18, -49, -72, -32, 31, 79,
41, -42, -78, -57, 69, 82, 76, -22, -83, -67, -5, 55, -52,
74, -73, 35, 81, -80, -38, -2, 61, 83, 11, 8, 75, -24, -82,
-77, -60, -46, 47).

After the initial release of this paper on the arXiv, Nathan Dunfield contacted us
with a ‘better’ presentation of K3 (with girth 14 rather than 16, see § 5.1 below). Its
Gauss code is



Man and machine thinking about the smooth 4-dimensional Poincaré conjecture 193

(-64, -63, -62, 48, 24, 20, 17, -1, -2, 5, 8, 12, -40, -41,
-42, -43, -44, -45, -46, -47, -48, 84, 91, 90, 88, 82, -76,
-75, -74, -73, -10, -11, -12, -13, -14, -15, -16, 22, 26,
-28, -29, -30, -31, -32, -33, 40, 49, 68, 73, -91, 85, -80,
-79, -78, -77, 72, 67, 61, 51, 42, 39, 33, 13, 7, 4, 2, 19,
-24, -25, -26, -27, 29, 35, 46, 55, 57, 63, 79, 87, -88,
-89, 74, 69, 50, 41, -39, -38, -37, -36, -35, -34, 25, 21,
-17, -18, -19, -84, -85, -86, -87, 81, 77, 65, 59, 53, 44,
37, 31, 15, -6, -7, -8, -9, 10, -68, -69, -70, -71, -72, 66,
60, 52, 43, 38, 32, 14, 6, 3, 1, 18, -20, -21, -22, -23, 30,
36, 45, 54, 58, 64, 78, -81, -82, -83, 75, 70, -61, -60,
-59, -58, -57, 56, 47, 34, 28, 27, 23, 16, -3, -4, -5, 9,
11, -49, -50, -51, -52, -53, -54, -55, -56, 62, 80, 86, -90,
89, 83, 76, 71, -67, -66, -65).

Although this presentation has 91 crossings, an easy isotopy reduces it to only 80.

4.3. The m D �1 case. Finally, for completeness we will briefly describe the
m D �1 case. Starting with the diagram from Equation (4.1) we can specialize to
m D �1, obtaining

(Note that when m is negative, the strands spiral in the opposite direction.) The entire
link still appears to be too hard to calculate with, but we experimented with one band
that gives a knot that is not obviously ribbon. The band is the ‘same’ one as we used
to produce K2 in the m D 1 case, but we will not show the isotopy here; hopefully
a Gauss code for the resulting 39 crossing knot is enough if anyone is interested in
trying further computations.

(1, 2, 3, 4, -5, -6, -7, 8, 9, 10, 11, -12, -13, -14, 15, 5,
16, -3, -17, 18, 19, 20, 21, 22, 6, 23, -8, -24, -25, -26,
27, 28, 29, 7, -23, -15, -30, -31, 32, 33, -34, 13, -10, 25,
-28, -21, -35, -1, -36, -19, 31, -32, 37, -38, 12, -11, 26,
-27, -20, 36, 39, 17, -4, -16, -22, -29, 24, -9, 14, 34, 38,
-37, -33, 30, -18, -39, -2, 35)
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5. Calculations

At this point we are ready to go. We have two interesting knots K2 and K3, and we
have established that if either is not slice, then the smooth 4-dimensional Poincaré
conjecture as well as the Andrews–Curtis conjecture must be false. All that remains
is to calculate the s-invariants, and hope one is nonzero.

But not so fast! We have two obstacles. First, even calculating the two-variable
Khovanov polynomial (that is, the Poincaré polynomial of the doubly graded ho-
mology) of such a large knot as K2 is a formidable computational task. Second, in
general, calculating the s-invariant can be even harder than calculating the polyno-
mial. In the next two sections we will address these problems in turn. Section 5.1
briefly describes the computer program we used. We started with a program written
in Java by Green [21], implementing Bar-Natan’s algorithm described in [7]. We then
made a series of improvements, resulting in both significant reductions in memory
requirements, and significant improvements in speed. This discussion will assume
some familiarity with Bar-Natan’s underlying algorithm. Section 5.2 describes a con-
straint on the Khovanov two-variable polynomial coming from the s-invariant. Under
some circumstances the s-invariant can be determined directly from the polynomial.
However this extraction can itself be a non-trivial computation!

Finally, in Section 5.3, we show the output of the program from Section 5.1 for
K2, and apply the methods of Section 5.2 to extract the s-invariant.

5.1. A faster, smaller implementation of Bar-Natan’s algorithm. The current
‘state of the art’ algorithm for computing Khovanov homology is due to Bar-Natan,
and is described in some detail in his paper [7]. We give a rather schematic outline
of the algorithm here.

To compute the Khovanov homology of a link L, begin by drawing a planar
presentation, say with M crossings. (We will suppose for simplicity that L is not
‘obviously’ split.) Next choose an ordering of the crossings such that each crossing
(except the first) is connected to one of the earlier crossings. This lets us construct a
sequence of subtangles of L, which we will call Tm, so that Tm contains the first m

crossings, all the arcs connecting those crossings, none of the later crossings, and none
of the arcs connecting those later crossings. In particular, each tangle Tm is just the
intersection of the presentation with some disc, and these discs grow monotonically.
See Figure 10 for an example. The last tangle TM is the entire link, so if we can
efficiently calculate the Khovanov homology of TmC1 from that of Tm, we have a
chance.

The invariant of tangles defined in [6] is a complex in a certain category. Just as
tangles form a planar algebra (meaning that we can perform arbitrary planar compo-
sitions of tangles with appropriate boundaries), [6] defines a planar algebra structure
on these complexes, so that Khovanov homology becomes a map between planar al-
gebras. Thus, given the tangle Tm, and the .mC1/-st crossing X , we can produce the
complex Kh.TmC1/ as the planar composition of Kh.Tm/ and the standard complex
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Figure 10. An ordering of the crossings of a presentation of the knot 918, and the result-
ing sequence of increasing subtangles exhausting the diagram. The sequence of girths is
4; 4; 6; 4; 4; 4; 4; 4; 0.

associated to the crossing, Kh.X/. This rule is not complicated; it is essentially just
taking the tensor product of the two complexes.

The real advantage of this scheme comes because in the end, we are only interested
in the homotopy type of the complex associated to the whole link. Since the rule for
planar composition of tangles is in fact well-defined on the homotopy types of the
input tangles, we are free at each step to find a simpler representative of the homotopy
type of Kh.Tm/. That is, rather than produce an enormous complex Kh.TM /, and then
find a simpler homotopy representative, we can perform incremental simplifications
at each step along the way.

What are these simplifications? We just change the complex by simple homo-
topies, that is, we discard contractible direct summands. To identify contractible
direct summands, we use the ‘Gaussian elimination’ lemma of [7], which shows
how, whenever a matrix entry in a differential of the complex is an isomorphism in
the underlying category, we can change bases in order to produce an explicit direct
summand which is contractible.

The difficulty of a Khovanov homology calculation via this algorithm depends
critically on the girth of the link. The girth of a link presentation L with an ordering
of the crossings as above is just the maximum number of boundary points of the
intermediate subtangles Tm. The girth of a link is the minimum of the girths of
its presentations. One expects the girth of a ‘generic’ large knot to scale with the
square root of the number of crossings; the knots K2 and K3 have presentations
with girth 14 and 16 respectively. We had thought it unlikely that there were better
presentations, but have been proved wrong by Nathan Dunfield, who found a girth
14 presentation of K3. Our rough rule of thumb is that any link with girth 12 or less
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is relatively accessible to computer calculations, links of girth 14 might be possible
with sufficient patience and hardware, but that a link of girth 16 or more is probably
impossible. Of course, for a fixed girth more crossings is worse than fewer, but the
relationship between memory requirement and girth in actual calculations is striking.
A partial heuristic explanation for this is that the indecomposable objects in Bar-
Natan’s category are just the Temperley–Lieb diagrams; these are counted by Catalan
numbers which grow exponentially. We do not expect to be able to perform many
simplifications by discarding contractible direct summands, because matrix entry
isomorphisms become increasingly uncommon as the variety of source and target
objects increases.

The existing implementations of this algorithm use the version of Khovanov ho-
mology described in [6], for which the chain complex associated to a tangle lives in
a category of tangle smoothings and cobordisms between them, modulo certain rela-
tions (this category is a categorification of the Temperley–Lieb category). It should
also be possible to use the more algebraic version described in [25], for which the
chain complexes live in categories of bimodules over certain rings. To our knowledge,
however, no such implementation exists.4

Two independent implementations of this algorithm exist to date. The first, written
by Bar-Natan in Mathematica , is available as part of the KnotTheory‘package,
from http://katlas.org. For essentially all purposes, however, it has been made obsolete
by Jeremy Green’s java based implementation which is also available through the
KnotTheory‘package. These implementations will be referred to as FastKh
and JavaKh respectively; these are also the names used within the KnotTheory‘
package. Bar-Natan’s implementation was solely intended as a demonstration of the
algorithm, and no significant attempts were made to optimise the program for either
speed or memory consumption. Green’s implementation is on the order of thousands
of times faster than Bar-Natan’s.

Our implementation is an update of JavaKh. To distinguish the original from
the updated version, we will use the names JavaKh-v1 and JavaKh-v2. Some
code (particularly that dealing with ‘cobordism arithmetic’) remains unchanged, but
most of the ‘outer layers’ have been rewritten. This update has already been used by
other researchers, in particular in published work in [11]. The changes we made fall
into four categories described below.

Interface improvements. Large calculations can now give progress reports, at var-
ious levels of detail. At its most verbose, every matrix entry isomorphism which is
discarded gets reported, along with elapsed time, memory use, and the capacities of
various internals caches. These reports are not available through the Mathematica

4A defect of this version of Khovanov homology for tangles is that it gives operations for stacking
tangles in two directions (via ‘external’ tensor product of bimodules, and tensoring bimodules over the
rings), rather than for arbitrary planar compositions of tangles. Of course, arbitrary planar compositions
can be decomposed into sequences of stacking operations, but nevertheless this would complicate the
algorithm as described in [7] and here.

http://katlas.org
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interface to JavaKh, but only through the direct command-line interface. (See
§ 5.1.1, or just try the switches -i and -d.)

Memory optimizations. A significant number of memory-saving tweaks have been
made throughout the code, for example

� Using arrays of bytes, rather than arrays of ints, to store topological descrip-
tions of surfaces. (It would be possible to go much further here, as at least up to
girth 14 one could package some of this data into arrays of ‘half-bytes’. We had
insufficient enthusiasm for writing this sort of bit-flipping code.)

� Using linked lists or hash-maps instead of pre-allocated arrays for matrix entries
or terms of linear combinations. (More generally, we have made it much easier
to ‘drop in’ a different implementation of a particular storage model, and tried
benchmarking a few different options.)

� Storing each complex on disk, instead of in memory, and only loading a few
relevant homological heights at a time. This feature is not enabled by default, as
it significantly slows computations. It can be enabled on the command line with
the switch -C. This is not as effective as we’d at first hoped; the memory usage
is sharply peaked in the middle of the complex, and so a significant fraction
of the complex must be loaded in memory even to deal with three consecutive
differentials, as required by the Gaussian elimination step of the algorithm. This
was an attempt to work around Java’s infamous unwillingness to use virtual
memory directly. We suspect that even if virtual memory were available, the
Gaussian elimination algorithm would be extremely slow if the entire matrix for
a differential could not be held in memory.

� Caching small arrays of bytes and ints. While performing cobordism arith-
metic, many redundant copies of small arrays with small integer entries are
generated. In some circumstances, passing these through a cache upon creation
results in significant memory savings. (At the same time, we disabled caching
routines in the original “JavaKh” implementation which worked at the level of
cobordisms.)

Allowing arbitrary orderings of crossings. Notice in the schematic description of
the algorithm above that we need to choose the order in which we add the crossings to
the ‘inner’ tangle. In both FastKh and the original JavaKh-v1, the first crossing is
chosen essentially arbitrarily (whatever comes first in the PD presentation produced
by Mathematica ), and at each step the next crossing is chosen from amongst those
which are ‘maximally connected’ to the current inner tangle. This should be thought
of as a greedy algorithm attempting to minimise the maximal girth of the intermediate
inner tangles (that is, the number of boundary points). Our update of JavaKh allows
the user to disable this algorithm, and just process the crossings in the order that they
appear in the presentation of the link. We have also written an auxiliary program
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in Mathematica that attempts to order the crossings so as to minimise maximal
girth. This program is not particularly clever; it essentially uses the greedy algorithm
described above, but when there are alternatives (e.g., for the first crossing, or for a
subsequent crossing from amongst those which are equally maximally connected to
the inner tangle) it makes random choices, and tries many times. This is available via
the function FindSmallGirthOrdering in the package KnotTheory‘, and
can be chained with the JavaKh algorithm, for example by the commands

KhŒFindSmallGirthOrderingŒTorusKnotŒ7; 6��;

ExpansionOrder ! False�Œq; t�

or

KhŒFindSmallGirthOrderingŒTorusKnotŒ7; 6�; 1000�;

ExpansionOrder ! False�Œq; t�

to specify that FindSmallGirthOrdering should return the best candidate after
1000 trials.

Canceling blocks of isomorphisms. Bar-Natan’s original algorithm looks for a
matrix entry in the differential which is an isomorphism (that is, a multiple of a
cylinder cobordism), and performs a change of basis so this matrix entry becomes
a contractible direct summand, which is then discarded. This step must be repeated
many times as long as more isomorphisms can be found, and for large tangles this
becomes extremely time-consuming. In JavaKh-v2, we instead look for submatri-
ces of a differential which are diagonal, with all diagonal entries isomorphisms, and
discard the corresponding contractible direct summands. While most of our other
improvements concentrated on optimising memory consumption, this modification
results in a significant speedup in most cases. It might be possible to go further in
this direction, for example by looking for upper triangular submatrices all of whose
diagonal entries are isomorphisms. Computing the inverse of such matrices is very
efficient, but the cost of looking for such matrices rather than just diagonal ones might
limit the improvements available.

5.1.1. Running JavaKh. You have essentially two options for running JavaKh;
via the KnotTheory‘ package in Mathematica , which is convenient but does
not offer access to all functionality, or directly from the command line, which is much
more suitable for long computations in which progress reports are useful. The version
of JavaKh-v2 which was current at the time of writing is included in the arXiv
sources for this article, but it is likely that the version included in the KnotTheory‘
package is more up-to-date. You can always find the latest stable version at

http://katlas.org/svn/KnotTheory/tags/stable/KnotTheory/JavaKh-v2.

http://katlas.org/svn/KnotTheory/tags/stable/KnotTheory/JavaKh-v2
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As long as you have a recent version of the KnotTheory‘ package, the function
Kh automatically uses the JavaKh-v2 implementation. This can be modified using
the Program option; the details of this and other options are summarised below:

Table 1. The options available for the function Kh in the KnotTheory‘ package.

option value description

Program "FastKh" Use the original Mathematica
implementation.

"JavaKh-v1" Use Green’s Java implementa-
tion.

"JavaKh-v2" (default) Use the modified imple-
mentation described here.

JavaOptions e.g. "-Xmx512m" Arguments to pass to the Java
virtual machine. This example al-
lows the heap size to grow to 512
megabytes. Depending on your
hardware and operating system,
increasing this parameter may al-
low computations of larger knots.

ExpansionOrder Automatic (default) Automatically reorder
crossings using an internal greedy
algorithm.

False Do not reorder crossings (ignored
by JavaKh-v1).

Modulus 0 (default) Work over the integers.
p Work over the integers mod p.

Universal True Work in ‘universal mode’. Un-
documented, and not for the
faint-hearted, but see also the
UniversalKh function.

Thus for example we might run

KhŒKnotŒ8; 19�; Program ! "FastKh"; Modulus ! 5�

to compute the mod 5 homology using the original implementation, or

KhŒlargeknot; JavaOptions ! " � Xmx2000m"; ExpansionOrder ! False�

to compute the homology of a diagram in which we have already chosen a good
ordering of the crossings, and allowing Java to use up to 2 gigabytes of physical
memory.
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You can also run JavaKh-v2 from the command line, and this is more suitable for
long calculations. You will need to tell Java where to find the class and library files
(everything in the bin directory), and to execute the class org.katlas.JavaKh.
JavaKh. The available command line options appear in Table 2.

Table 2. Command-line options available for JavaKh-v2.

option description

-i provide more verbose output, including progress reports.
-Z work over integers.
-Q work over the rationals.

-m <prime> work over the integers mod p.
-U run in ‘universal mode’.
-O do not reorder crossings internally.
-C save intermediate results in files in the current directory,

and/or resume from such files (just use ctrl-C to break
out of the computation).

-D (experimental!) switch to a much slower
memory-saving mode (you should also specify
-Djava.io.tmpdir=$TMPDIR on the command
line).

-P (likely to crash!) use multiple CPUs.

Example. This assumes you have a UNIX-like environment, and a copy of the
JavaKh-v2 files (taken from the KnotTheory‘ package, for example) in the
directory �/JavaKh-v2.

JAVAKHHOME=˜/JavaKh-v2
CLASSPATH=$JAVAKHHOME/jars/commons-cli-1.0.jar:

$JAVAKHHOME/jars/commons-logging-1.1.jar:
$JAVAKHHOME/jars/commons-io-1.2.jar:
$JAVAKHHOME/jars/log4j-1.2.12.jar:
$JAVAKHHOME/bin

java -Xmx28000m -classpath $CLASSPATH org.katlas.JavaKh.JavaKh
-O --mod 13 -i -C < pd

The first two lines just prepare the Java classpath. The final line will compute, using
28gb of physical RAM, the Khovanov homology of the diagram in the file pd (in the
PD notation used by the KnotTheory‘ package), without reordering any crossings,
in the integers mod 13, giving verbose output and storing intermediate results to disk.
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5.2. Extracting the s-invariant from a Khovanov polynomial

Theorem 5.1. For any knot K, there is an integer s and a family of two variable
Laurent polynomials fk 2 NŒq˙1; t˙1� for k 	 2, so that

Kh.K/.q; t/ D qs.q C q�1/ C
X
k�2

fk.q; t/.1 C q2kt /:

(Clearly only finitely many of the fk are nonzero, since they have non-negative coef-
ficients.) The integer s is the s-invariant of the knot K.

Although this theorem has not appeared in the literature in this form, it follows
from the discussion at the end of [28], or by thinking about the invariant of a cut-open
knot in the variation of Bar-Natan’s formalism [6] for which the genus 3 surface is
a formal parameter. The function UniversalKh in the KnotTheory‘ package
computes the invariants fk . For us, the point of this theorem is that it is often (and
perhaps always) possible to extract the s-invariant of a knot knowing nothing more
than the graded dimensions of the Khovanov homology. That is, given the two-
variable polynomial, we can often show that for all possible decompositions of the
form in the theorem, the same value of s appears.

Conjecture 5.2. In fact, for any knot K, only the polynomial f2 is nonzero.

Remark. This is not the same as Conjecture 3.9 in [26], which was proved in [28].
Extensive computations by Shumakovitch [40], [41], the authors and others sup-

port this conjecture, and it also holds for our examples (see below). It is easy to see
that decompositions with only f2 nonzero are unique.

An amusing and straightforward corollary of this conjecture is an easy formula
for the s-invariant:

qs.K/ D Kh.K/.q; �q�4/

q C q�1
:

Finding all possible decompositions as in Theorem 5.1 can become quite difficult!
The smallest example we know of where the decomposition is not unique is the .7; 6/

torus knot.5 Here there are four possible decompositions (all giving the same value
of the s-invariant):

Kh.T .7; 6//.q; t/ D .q C q�1/ C .p?;4.q; t/ C pA;4.q; t//.1 C q4t /

C pA;6.q; t/.1 C q6t /

D .q C q�1/ C .p?;4.q; t/ C pB;4.q; t//.1 C q4t /

C pB;6.q; t/.1 C q6t /

D .q C q�1/ C .p?;4.q; t/ C pC;4.q; t//.1 C q4t /

C pC;6.q; t/.1 C q6t /

5It is unique for all knots with at most 14 crossings, for example.
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D .q C q�1/ C .p?;4.q; t/ C pD;4.q; t//.1 C q4t /

C pD;6.q; t/.1 C q6t /;

where

pA;4.q; t/ D t15q53 C t14q47 C t11q47 C t10q41;

pA;6.q; t/ D 0;

pB;4.q; t/ D t15q53 C t14q47;

pB;6.q; t/ D t11q45 C t10q41;

pC;4.q; t/ D t11q47 C t10q41;

pC;6.q; t/ D t15q51 C t14q47;

pD;4.q; t/ D 0;

pD;6.q; t/ D t15q51 C t14q47 C t11q45 C t10q41;

and

p?;4.q; t/ D t18q53 C t16q51 C t15q51 C t16q49 C t14q49

C t13q49 C t12q47 C 2t12q45 C 2t10q43 C 2t8q41

C t8q39 C t6q39 C t6q37 C t4q37 C t4q35 C t2q33:

Note that for all decompositions we have s D 0, and that the first decomposition
is consistent with the conjecture. We do not know of any examples where different
values of s occur in different decompositions, although this is certainly possible for
arbitrary polynomials in NŒq˙1; t˙1�. For example,

q3 C q C q�1 C q7t D q0.q C q�1/ C q3.1 C q4t /

D q2.q C q�1/ C q�1.1 C q8t /

has decompositions with either s D 0 or s D 2.
For the knots we are interested in, we need a trick to make the task of finding all

decompositions manageable. We will use the following one.
We will say a Laurent polynomial z.q; t/ has a 1-decomposition if it can be

written as in Theorem 5.1, and it has a 0-decomposition if it can be written that way,
but without the initial qs.q C q�1/ term.

Clearly, if u.q; t/ has a 1-decomposition and v.q; t/ has a 0-decomposition, then
u.q; t/ C v.q; t/ has a 1-decomposition.

Lemma 5.3. Any 1-decomposition for Kh.K/.q; t/ D P
j;r aj;rqj t r arises in this

way from a 1-decomposition for u.q; t/, and a 0-decomposition for v.q; t/, where

u.q; t/ D
X
j 2Z
r�0

aj;rqj t r C t�1w.q/ and v.q; t/ D
X
j 2Z
r<0

aj;rqj t r � t�1w.q/

for some Laurent polynomial w 2 NŒq˙1�, so v.q; t/ 2 t�1NŒq˙1; t�1�.



Man and machine thinking about the smooth 4-dimensional Poincaré conjecture 203

Remark. You could think of this as ‘cutting Kh.K/.q; t/ into two pieces, along the
t�1 line’, and the lemma as a statement about ‘fibered products’ of decompositions.
We could cut elsewhere6, but we will only use this case. The proof is easy; just
observe that the polynomials .1 C q2kt / only span 2 different t degrees.

5.3. Results. Computing the two-variable polynomial for K2 took approximately 4

weeks on a dual core AMD Opteron 285 with 32 gb of RAM. At this point, we have
not been able to do the calculation for K3. With the current version of the program,
after about two weeks the program runs out of memory and aborts.

The coefficients of the polynomial K2 are shown in Table 3.
We will now apply Lemma 5.3 to extract the s-invariant. We first observe that

the coefficient of t�1 in Kh.K2/.q; t/ is 3q�5 C 7q�3 C 15q�1 C 5q1 C q3. The
polynomial w.q/ in the lemma must have coefficients no greater than these. In fact,
it must have terms 3q�5 C 7q�3; it is easy to see from Figure 3 that these terms can
not be part of any 0-decomposition of v.q; t/. Moreover, the terms 5q1 C q3 can not
be part of w.q/, since they can not be part of any 1-decomposition of u.q; t/. Thus
we need only consider w.q/ D 3q�5 C7q�3 Ckq�1 for some 0 � k � 15. Happily,
finding 1-decompositions of the resulting u.q; t/ is easily tractable by computer, or
painful-but-tractable by hand. We find that there are exactly 30 such decompositions,
all with k D 6. In all 30 cases, we have s D 0, and so, rather sadly, this must also be
the s-invariant of the knot K2.

Finding 0-decompositions of v.q; t/ seems to be intractable directly, so we can-
not even tell you how many decompositions there are of the whole polynomial!
Presumably one could ‘cut’ v.q; t/ and apply the Lemma again. Nevertheless, it is
easy to see that there is a decomposition satisfying the conjecture 5.2; just divide
Kh.K2/.q; t/ � .q C q�1/ by .1 C q4t /.

Finally, the knot considered in §4.3 coming from the m D �1 case is small enough
that we can use the function UniversalKh to compute the s-invariant directly. We
find that

Kh.KmD�1/.q; t/ D q�23t�14 C q�19t�13 C q�19t�12 C q�17t�11 C q�15t�11

C q�17t�10 C q�13t�10 C 2q�13t�9 C q�15t�8 C q�9t�8

C 2q�11t�7 C q�13t�6 C q�11t�6 C q�7t�6 C 3q�9t�5

C q�7t�5 C 2q�9t�4 C 2q�5t�4 C 2q�7t�3 C 3q�5t�3

C q�7t�2 C q�5t�2 C 3q�3t�2 C q�1t�2 C 4q�3t�1

C q�1t�1 C t�1q C q�3 C 2q�1 C 4q C q�1t C 2qt

C q3t C 2q3t2 C q5t2 C q3t3 C q7t3 C q7t4

6Replace the inequalities in the index of the summation with r � k � 0 and r < k for u and v

respectively, and similarly the seconds terms with Ctk�1w.q/ and �tk�1w.q/.
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Table 3. The coefficients of q`C2r tr in Kh.K2/.q; t/.

` �11 �9 �7 �5 �3 �1 1 3 5 7 9 11 13 15 17 19 21
r

�32 1
�31 1
�30

�29 1
�28 1
�27 1
�26 1 1
�25 1 1
�24 1 2
�23 1 2 1
�22 1 2 1
�21 1 3 1
�20 1 3 2
�19 4 2
�18 1 2 4
�17 4 1 3 1
�16 4 2 6 1
�15 4 5 3 2
�14 1 1 8 1 1
�13 3 6 3 4
�12 1 2 9 5 2
�11 7 4 7
�10 3 7 7 2 1
�9 8 6 9 1
�8 3 5 13 4 2
�7 5 8 9 5 1
�6 5 13 6 4
�5 1 8 11 8 1
�4 2 12 10 6
�3 7 9 12 2
�2 9 12 8 1
�1 3 7 15 5 1
0 3 14 10 6
1 1 5 11 10 2
2 1 8 10 8
3 2 7 10 5
4 4 7 6 3
5 1 4 8 5
6 2 5 7 4
7 1 5 4 3
8 2 4 3
9 3 4 3
10 1 1 3 2
11 1 2 1
12 1 2 1
13 2 1
14 1 1 1
15 1 1 1
16 1
17 1
18 1
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with s D 0,

f2 D q�23t�14 C q�19t�12 C q�17t�11 C q�17t�10 C q�13t�9

C q�15t�8 C q�11t�7 C q�13t�6 C q�11t�6 C 2q�9t�5

C 2q�9t�4 C 2q�7t�3 C q�5t�3 C q�7t�2 C q�5t�2

C q�3t�2 C 3q�3t�1 C q�3 C q�1 C q�1t C qt C q3t2 C q3t3

and all other fk D 0.

5.4. Hyperbolic volume and homology. In [10] Dunfield noticed a correlation
between the hyperbolic volume of a knot and the absolute value of its determinant.
Unfortunately it does not work nearly as well for non-alternating knots as for alternat-
ing knots. In [26], based on the first computations of Khovanov homology available,
Khovanov noticed that the correlation is even better between the hyperbolic value and
the rank of the homology groups. Indeed, for alternating knots it is now known that
jdet Kj D rank.Kh.K//�1, and that jdet Kj � rank.Kh.K//�1 for all knots. These
correlations were noticed by looking at knots up to either 13 (for the determinant) or
11 (for the rank) crossings. Having just completed calculating the Khovanov homol-
ogy calculation of a relatively huge knot, it is interesting to check this correlation.
Unfortunately, it appears to fail. Substituting q D 1, t D 1 into Kh.K2/.q; t/ shows
the rank is 650, and a calculation using Dunfield’s SnapPeaPython shows the
hyperbolic volume is approximately 17:2879:::. Figure 11 shows a plot comparing
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Figure 11. Volumes and ranks of homology groups for a sample of 11–14 crossing knots
(shown as blue, red, green and black points), and also for K2.
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log.rank.Kh.K/// and volume.K/ for a random sample of non-alternating knots of
11, 12, 13 and 14 crossings (blue, red, green and black points, respectively). The extra
point, well outside the obvious cluster, is the corresponding data for K2. Perhaps the
observed correlation is an artifact of sampling knots by crossing number?
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