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Abstract. We apply the yoga of classical homotopy theory to classification problems of G-
extensions of fusion and braided fusion categories, where G is a finite group. Namely, we
reduce such problems to classification (up to homotopy) of maps from BG to classifying
spaces of certain higher groupoids. In particular, to every fusion category C we attach the
3-groupoid BrPic.C/ of invertible C -bimodule categories, called the Brauer–Picard groupoid
of C , such that equivalence classes ofG-extensions of C are in bijection with homotopy classes
of maps fromBG to the classifying space of BrPic.C/. This gives rise to an explicit description
of both the obstructions to existence of extensions and the data parametrizing them; we work
these out both topologically and algebraically.

One of the central results of the article is that the 2-truncation of BrPic.C/ is canonically
equivalent to the 2-groupoid of braided auto-equivalences of the Drinfeld center Z.C/ of C . In
particular, this implies that the Brauer–Picard group BrPic.C/ (i.e., the group of equivalence
classes of invertible C -bimodule categories) is naturally isomorphic to the group of braided
auto-equivalences of Z.C/. Thus, if C D VecA, where A is a finite abelian group, then
BrPic.C/ is the orthogonal group O.A ˚ A�/. This allows one to obtain a rather explicit
classification of extensions in this case; in particular, in the case G D Z2, we re-derive
(without computations) the classical result of Tambara andYamagami. Moreover, we explicitly
describe the category of all .VecA1

;VecA2
/-bimodule categories (not necessarily invertible

ones) by showing that it is equivalent to the hyperbolic part of the category of Lagrangian
correspondences.
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1. Introduction

Fusion categories (introduced in [12]) form a class of relatively simple tensor cate-
gories. It would be very interesting to give a classification of fusion categories but
this seems to be out of reach at the moment. A more feasible task is to come up
with some new examples and constructions of such categories. In this article we are
making a step in this direction. Namely, for a finite group G there is a natural notion
ofG-graded fusion category; see § 2.3 below.1 The trivial component of aG-graded
fusion category is itself a smaller fusion category and we say that a G-graded fusion
category is G-extension of its trivial component. The goal of this article is to apply
classical homotopy theory to classify G-extensions of a given fusion category.

To do so, we introduce the Brauer–Picard groupoid of fusion categories BrPic.
By definition, this is a 3-groupoid, whose objects are fusion categories, 1-morphisms
from C to D are invertible .C ;D/-bimodule categories, 2-morphisms are equiv-
alences of such bimodule categories, and 3-morphisms are isomorphisms of such
equivalences. This 3-groupoid can be truncated in the usual way to a 2-groupoid
BrPic and further to a 1-groupoid (i.e., an ordinary groupoid) BrPic; the group of
automorphisms of C in this groupoid is the Brauer–Picard group BrPic.C/ of C ,
which is the group of equivalence classes of invertible C -bimodule categories.

We also define the 2-groupoid EqBr, whose objects are braided fusion categories,
1-morphisms are braided equivalences, and 2-morphisms are isomorphisms of such
equivalences. It can be truncated in the usual way to an ordinary groupoid EqBr; the
group of automorphisms of a braided fusion category B in this groupoid is the group
EqBr.B/ of isomorphism classes of braided auto-equivalences of B.

Let C and D be fusion categories. Any invertible .C ;D/-bimodule category M

naturally gives rise to a Morita equivalence between C and D . Hence, by the result of
Müger [28] it defines a braided equivalence of the Drinfeld centers Z.M/ W Z.C/ !
Z.D/. This implies that the operation Z of taking the Drinfeld center is a 2-functor
BrPic ! EqBr.

Our first main result, which is a strengthening of [13], Theorem 3.1, is

1We note that one can find in the literature a different (but related) notion of graded monoidal category,
see [15], [4].
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Theorem 1.1. The 2-functor Z is a fully faithful embedding BrPic ! EqBr. In par-
ticular, for every fusion category C we have a natural group isomorphism BrPic.C/ Š
EqBr.Z.C//.

This result allows one to calculate the group BrPic.C/ in the case C D VecA, the
category of vector spaces graded by a group A. In particular, we immediately get the
following corollary of Theorem 1.1:

Corollary 1.2. IfA is an abelian group and C D VecA then BrPic.C/ D O.A˚A�/,
the split orthogonal group of A ˚ A� (i.e., the group of automorphisms of A ˚ A�
preserving the hyperbolic quadratic form q.a; f / D f .a/).

To apply the above to classifying extensions, we recall that to the 3-groupoid BrPic
one can attach its classifying space BBrPic, defined up to homotopy equivalence.
This space falls into connected components, labeled by Morita equivalence classes of
fusion categories. Each connected component BBrPic.C/ corresponding to a fusion
category C is a 3-type, i.e., it has three nontrivial homotopy groups: its fundamental
group �1 is BrPic.C/, �2 is the group of isomorphism classes of invertible objects
of Z.C/, and �3 D k� (the multiplicative group of the ground field).

It then follows from general abstract nonsense that extensions of C by a group G
are parametrized by maps of classifying spacesBG ! BBrPic.C/. Thus, to classify
extensions, one needs to classify the homotopy classes of such maps, which we
proceed to do using the classical obstruction theory. This leads us to our second main
result, which is the following explicit description of extensions of fusion categories
and which is similar to the classical description of group extensions [9] (and is made
more explicit in the body of the article).

Theorem 1.3. Graded extensions of a fusion category C by a finite group G are
parametrized by triples .c;M; ˛/, where c W G ! BrPic.C/ is a group homomor-
phism, M belongs to a certain torsor T 2

c over H 2.G; �2/ (where G acts on �2

via c), and ˛ belongs to a certain torsor T 3
c;M over H 3.G;k�/. Here the data

c;M must satisfy the conditions that certain obstructions O3.c/ 2 H 3.G; �2/ and
O4.c;M/ 2 H 4.G;k�/ vanish.

We also give a purely algebraic proof of Theorem 1.3, which does not rely on
homotopy theory. (This proof spells out the computations that on the topological side
are hidden in the machinery of homotopy theory.) After this, we proceed to examples
and applications. In particular, we give a conceptual proof of the classification of
categorifications of Tambara–Yamagami fusion rings [37] (the original proof is by a
direct computation).2

2We note that the quest for a computation-free derivation of the remarkable result of Tambara and
Yamagami was one of the motivations for this work.
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At the end of the article we discuss a number of related topics. In particular, we
describe explicitly the monoidal 2-category of all bimodule categories over C D VecA

(not necessarily invertible ones). It turns out to be equivalent to a full subcategory of
the category of Lagrangian correspondences for metric groups (abelian groups with
a non-degenerate quadratic form).

1.1. Organization. Section 2 contains background material from the theory of fu-
sion categories and their module categories. There is new material in Section 2.6,
where we give a definition (due to V. Drinfeld) of the special orthogonal group of a
metric group.

The notion of a tensor product of module categories over a fusion category C

plays a central role in this work. It extends categorically the notion of tensor product
of modules over a ring. In Section 3 we define, following [36], the tensor prod-
uct M �C N of a right C -module category M and a left C -module category N

by a certain universal property. We prove its existence and give several equivalent
characterizations of it useful for practical purposes. We also introduce a monoidal
2-category Bimodc.C/ of C -bimodule categories and explicitly describe the product
of bimodule categories over the categories of vector spaces graded by abelian groups.

In Section 4 we study bimodule categories invertible under the above tensor prod-
uct. We introduce for a fusion category C its categorical Brauer–Picard 2-group
BrPic.C/ consisting of invertible C -bimodule categories and for a braided fusion
category B its categorical Picard 2-group Pic.B/ consisting of invertible B-module
categories.

Section 5 contains the proof of Theorem 1.1 and its generalization Theorem 5.2.
In Section 6 we prove that homogeneous components of a fusion category C DL

g2G Cg graded by a finite group G (i.e., a G-extension) are invertible bimodule
categories over the trivial component Ce .

In Section 7 we show that morphisms from a group G to various categorical
groups attached to a (braided) fusion category C (or, equivalently, maps between the
corresponding classifying spaces) are in bijection with fundamental tensor category
constructions involvingG and C : extensions, actions, braidedG-crossed extensions,
etc. Here we also give a topological version of the proof of Theorem 1.3.

In Section 8 we give a detailed algebraic version of the proof of Theorem 1.3.
We give a formula for the associativity constraint obstruction O4.c;M/ in terms of
the Pontryagin–Whitehead quadratic function and prove a divisibility result, Theo-
rem 8.16, for the order of O4.c;M/ in H 4.G;k�/.

In Section 9 we apply our classification of extensions to recover Tambara–Yama-
gami categories [37] as Z=2Z-extensions of the category VecA of A-graded vector
spaces, where A is an abelian group.

In Section 10 we explicitly describe tensor products of .VecA � VecB/-bimodule
categories, where A, B are finite abelian groups. This description is given in terms
of elementary linear algebra and uses the language of Lagrangian correspondences.
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Finally, in the appendix, written by Ehud Meir, it is explicitly shown using the
Lyndon–Hochschild–Serre spectral sequence that in the case of pointed extensions,
our classification of extensions reproduces the usual theory of extensions of groups
with 3-cocycles.

Remark 1.4. 1. We emphasize that the homotopy-theoretic approach to monoidal
categories in the style of this article is not new, and by now is largely a part of folklore.
The principal goal of this article is to use this approach to obtain concrete results about
classification of fusion categories.

2. We expect that the results of this article extend, with appropriate changes, to
the case of not necessarily semisimple finite tensor categories, using the methods of
[14]. One of the new features will be that in the non-semisimple case the groups
Pic.C/, EqBr.B/ need not be finite groups – they may be affine algebraic groups of
positive dimension.

Acknowledgments. We are deeply grateful to V. Drinfeld for many inspiring conver-
sations. Without his influence, this article would not have been written. In particular,
he suggested the main idea – to use homotopy theory of classifying spaces to describe
extensions of fusion categories. We also thank Jacob Lurie for useful discussions (in
particular, for explanations regarding Proposition 7.6), and Fernando Muro for ex-
planations and references. The work of P.E. was partially supported by the NSF
grant DMS-0504847. The work of D.N. was partially supported by the NSA grant
H98230-07-1-0081 and the NSF grant DMS-0800545. The work of V.O. was partially
supported by the NSF grant DMS-0602263.

2. Preliminaries

2.1. General conventions. In this article, we will freely use the basic theory of
fusion categories and module categories over them. For basics on these topics, we
refer the reader to [1], [31], [12], [7]. All fusion categories in this article will be over
an algebraically closed field k of characteristic zero, and all module categories will
be semisimple left module categories (unless noted otherwise). We will also use the
theory of higher categories and especially higher groupoids, for which we refer the
reader to [25]. However, for the reader’s convenience, we recall some of the most
important definitions and facts that are used below.

2.2. Categorical n-groups. For an integer n � 1, a categorical n-group is a
monoidal n-groupoid whose objects are invertible. In particular, a categorical 0-
group is an ordinary group, and a categorical 1-group (or simply a categorical group)
is also called a gr-category (if the corresponding group of objects is abelian, such a
structure is often called a Picard groupoid). Any categorical n-group can be viewed
as an .nC 1/-groupoid with one object, and vice versa.
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Note that any categorical n-group can be truncated to a categorical .n � 1/-
group by forgetting the n-morphisms and identifying isomorphic .n�1/-morphisms.
Conversely, any categorical .n � 1/-group can be regarded as a categorical n-group
by adding the identity n-morphism from every .n � 1/-morphism to itself.

2.3. Graded tensor categories and extensions. Let G be a finite group. Recall
that a G-grading on a tensor category C is a decomposition

C D L
g2G

Cg

into a direct sum of full abelian subcategories such that the tensor product ˝ maps
Cg � Ch to Cgh for all g; h 2 G. In this case, the trivial component Ce is a full tensor
subcategory of C , and each Cg is a Ce-bimodule category. We will always assume
that the grading is faithful, i.e., Cg ¤ 0 for all g 2 G.

Definition 2.1. AG-extension of a fusion category D is aG-graded fusion category
C whose trivial component is equivalent to D .

2.4. Quadratic forms, bicharacters, metric groups, and Lagrangian subgroups.
Let E be a finite abelian group. A bicharacter on E with values in k� is a biadditive
map b W E � E ! k�. A symmetric bicharacter on E (also called an inner product
or a symmetric bilinear form) is a bicharacter b such that b.x; y/ D b.y; x/. A
skew-symmetric bicharacter on E (also called a skew-symmetric bilinear form) is a
bicharacter b such that b.x; x/ D 1.

Let E� D Hom.E;k�/ be the character group of E. By acting on its first
argument, any bicharacter b on E defines a group homomorphism Ob W E ! E�.
We say that b is non-degenerate if Ob is an isomorphism. Note that if E admits a
non-degenerate skew-symmetric bicharacter, then jEj is a square.

A quadratic form on E is a function q W E ! k� such that q.x/ D q.x�1/,
and bq.x; y/ ´ q.x C y/=q.x/q.y/ is a symmetric bilinear form. If the order of
the group E is odd, the assignment q ! bq defines a bijection between symmetric
bilinear forms and quadratic forms, but in general, it is not a bijection.

We will say that a quadratic form q is non-degenerate if the bilinear form bq is
non-degenerate. In this case we say that .E; q/ is a metric group. To every metric
group .E; q/, one can attach its orthogonal group O.E; q/, which is the group of
automorphisms of E preserving q. For example, if A is any finite abelian group then
A ˚ A� is a metric group, with hyperbolic quadratic form q.a; f / ´ f .a/. To
simplify notation, we will denote the corresponding orthogonal group by O.A˚A�/.

IfE is a finite abelian group with a bicharacter b, andN � E is a subgroup, then
the orthogonal complement N? is the set of a 2 E such that b.x; a/ D 1 for any
x 2 N . If b is non-degenerate, thenN? is identified withE=N , so jN j � jN?j D jEj.

Let .E; q/ be a metric group. We say that a subgroup L of E is isotropic if
q.a/ D 1 for any a 2 L. This implies that bq.L/ � .E=L/�, which implies that
jLj2 � jEj. We say that an isotropic subgroup L of E is Lagrangian if jLj2 D jEj.
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2.5. Frobenius–Perron dimensions in module categories. Let C be a fusion cate-
gory and let M be a C -module category. Recall that for a pair of objectsM;N 2 M

their internal Hom is the object of C , denoted by Hom.M;N /, determined by the
natural isomorphism

HomC .X;Hom.M;N // Š HomM.X ˝M;N/; X 2 C :

We use this notion to define canonical Frobenius–Perron dimensions of objects of
M. Let K0.C/, K0.M/ be the Grothendieck ring of C and the Grothendieck group
of M. It follows from [12] that there is a unique K0.C/-module map

FPdim W K0.M/ ! R

determined by

FPdim.Hom.M;N // D FPdim.M/FPdim.N / (1)

for all objects M;N 2 M.
Let M be an indecomposable left C -module category. Let O.C/ and O.M/

denote the sets of isomorphism classes of simple objects in C and M.

Proposition 2.2.
P

M2O.M/ FPdim.M/2 D FPdim.C/.

Proof. Let RC ´ P
X2O.C/ FPdim.X/X 2 K0.C/ be the virtual regular object of

C . We choose a Frobenius–Perron dimension function d W K0.M/ ! R as in [12],
Proposition 8.7, normalized by

P
M2O.M/

d.M/2 D FPdim.C/

and let RM ´ P
M2O.M/ d.M/M . We compute

P
M 2O.M/

FPdim.M/2 D FPdim.
L

M2O.M/ Hom.M;M//

D P
M2O.M/

ŒRC ˝M W M�

D P
M2O.M/

d.M/ŒRM W M�

D P
M2O.M/

d.M/2 D FPdim.C/;

as required.

Remark 2.3. The Frobenius–Perron dimensions in M defined in (1) are completely
determined by the following properties:

(i) FPdim.M/ > 0 for all M 2 O.M/,
(ii) FPdim.X ˝M/ D FPdim.X/FPdim.M/ for all X 2 C , M 2 M,
(iii)

P
M 2O.M/ FPdim.M/2 D FPdim.C/.
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2.6. The special orthogonal group. Let .M; q/ be a metric group. If L1; L2 � M

are Lagrangian subgroups, define d.L1; L2/ 2 Q�
>0=.Q

�
>0/

2 to be the image of the
number jL1j=jL1 \ L2j D jL2j=jL1 \ L2j D jM j1=2=jL1 \ L2j 2 N. Clearly
d.L2; L1/ D d.L1; L2/ D d.L1; L2/

�1 and d.L;L/ D 1.
The following proposition and its proof were provided to us by V. Drinfeld.

Proposition 2.4. d.L1; L2/d.L2; L3/ D d.L1; L3/ for any Lagrangian subgroups
L1; L2; L3 � M .

The proposition follows from Lemmas 2.5–2.6 below.

Lemma 2.5. d.L1; L2/d.L2; L3/=d.L1; L3/ 2 Q�
>0=.Q

�
>0/

2 is the image of
jA=Bj 2 N, where A ´ .L1 C L2/ \ L3, B ´ .L1 \ L3/C .L2 \ L3/.

Proof. By definition, d.L1; L2/d.L2; L3/=d.L1; L3/ 2 Q�
>0=.Q

�
>0/

2 is the image
of

jL1j � jL2j � jL3j � jL1 \ L2j�1 � jL1 \ L3j�1 � jL2 \ L3j�1 2 N:

On the other hand,

jBj D jL1 \ L3j � jL2 \ L3j=jL1 \ L2 \ L3j;
jAj D jL1 C L2j � jL3j=jL1 C L2 C L3j

D jL1j � jL2j � jL3j � jL1 \ L2j�1 � jL1 C L2 C L3j�1:

Finally, L1 \L2 \L3 D .L1 CL2 CL3/
?, so jL1 \L2 \L3j � jL1 CL2 CL3j D

jM j D jLi j2 is a square.

By Lemma 2.5, proving Proposition 2.4 amounts to showing that jA=Bj is a square.
To this end, it suffices to construct a non-degenerate skew-symmetric bicharacter
c W .A=B/ � .A=B/ ! k�.

Here is the construction. Let x; y 2 A ´ .L1 C L2/ \ L3. Represent x and y
as

x D x1 C x2; y D y1 C y2; xi ; yi 2 Li ;

and set c.x; y/ ´ b.x1; y2/ D b.x; y2/ D b.x1; y2/, where b W M � M ! k� is
the symmetric bicharacter associated to q. It is easy to see that c W A � A ! k� is a
well-defined bicharacter.

Lemma 2.6. (i) c.x; x/ D 1.
(ii) The kernel of c W A � A ! k� equals B .

Proof. (i) c.x; x/ D b.x1; x2/ D q.x/q.x1/
�1q.x2/

�1 D 1 because x 2 L3,
x1 2 L1, and x2 2 L2.

(ii) An element x 2 A belongs to the kernel of c if and only if b.x; y/ D 1 for all
y 2 L2 \ .L1 CL3/. The orthogonal complement of L2 \ .L1 CL3/ with respect
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to b W M �M ! k� equals L2 C .L1 \ L3/, so Ker c D A \ .L2 C .L1 \ L3//.
SinceA � L3 we see that Ker c � .L2 \L3/C .L1 \L3/ D B . On the other hand,
B � A and B � L2 C .L1 \ L3/, so B � Ker c.

Now for a metric group E and g 2 O.E; q/ define det.g/ 2 Q�
>0=.Q

�
>0/

2 to be
the image of j.g � 1/Ej 2 N.

Proposition 2.7. The map det W O.E; q/ ! Q�
>0=.Q

�
>0/

2 is a homomorphism.

Proof. Let g; h 2 O.E; q/, and let M D E ˚ E with quadratic form Q.x; y/ D
q.y/=q.x/, x; y 2 E. Let L1; L2; L3 � M be the graphs of Id, g�1, and h.
They are Lagrangian, and L1 \ L2 D Ker.g � 1/, so d.L1; L2/ D det.g/. Sim-
ilarly, d.L1; L3/ D det.h/, and d.L2; L3/ D det.gh/. Thus, by Proposition 2.4,
det.gh/ D det.g/ det.h/.

Proposition 2.8. If L is a Lagrangian subgroup of E then det.g/ D d.L; g.L//.

Proof. First, note that by Proposition 2.4, d.L; g.L// is independent on the choice
of L. So let us call this function ı.g/. Next, note that ı.g/ D ı.g; 1/, where
.g; 1/ 2 O.E ˚E; q�1 ˚ q/. Finally, note that

ı.g; 1/ D d.Ediag; .g; 1/.Ediag// D det.g/;

where Ediag is the diagonal copy of E.

Definition 2.9. The kernel of the homomorphism

det W O.E; q/ ! Q�
>0=.Q

�
>0/

2

is called the special orthogonal group and denoted by SO.E; q/.

Remark 2.10. IfE is a vector space over Fp with p > 2, then it is easy to see that det
is the usual determinant (so Definition 2.9 agrees with the familiar one from linear
algebra). Indeed, in this case any orthogonal transformation is the composition of
reflections, and it is clear that on reflections the two definitions of the determinant
coincide. On the other hand, if E is a vector space over F2 and q takes values ˙1
(i.e., in F2), then det.g/ coincides with the Dickson invariant of g [8] (which is also
known as Dickson’s pseudodeterminant [20]), while the usual determinant is trivial.

2.7. Module categories over VecG . Let G be a finite group and let C ´ VecG

be the fusion category of G-graded vector spaces. We will denote simple objects of
VecG simply by g 2 G.

Recall that equivalence classes of indecomposable left VecG-module categories
correspond to pairs .H; / where H � G is a subgroup and  2 Z2.H;k�/ is a 2-
cocycle (modulo cohomological equivalence). Namely, let M be an indecomposable
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left VecG-module category, and let Y be a simple object of M. Set H ´ fx 2 G j
x ˝ Y Š Y g and choose an isomorphism ux W x ˝ Y ��!� Y for any x 2 H . Let
 .x1; x2/, x1; x2 2 H , be the scalar such that the map

Y
u�1

x1x2����! .x1 ˝ x2/˝ Y ��!� x1 ˝ .x2 ˝ Y /
idx1

˝ux2������! x1 ˝ Y
ux1��! Y

is given by  .x1; x2/idY . Then  2 Z2.H;k�/ and we constructed a pair .H; /
corresponding to M (observe that a different choice of isomorphisms ux would pro-
duce  0 cohomologous to  ). Note that the set of isomorphism classes of simple
objects of M D M.H; / is in bijection with the setG=H of right cosets ofH inG.

For any x 2 G set Hx ´ xHx�1 and define  x 2 Z2.Hx;k�/ by

 x.xy1x
�1; xy2x

�1/ ´  .y1; y2/; y1; y2 2 H:
Two VecG-module categories M.H; / and M.H 0;  0/ are equivalent if and only if
there is x 2 G such that H 0 D xHx�1 and  0 is cohomologous to  x .

If H is abelian, then H 2.H;k�/ is the group of skew-symmetric bicharacters of
H . Thus, ifA is a finite abelian group, then the indecomposable left module categories
over VecA are M.H; /, where H � A is a subgroup and  is a skew-symmetric
bicharacter of H .

Let A;B be abelian groups, � W B ! A be a group homomorphism (not nec-
essarily injective), and � be a skew-symmetric bicharacter of B with coefficients in
k�. Let K D Ker �, K? be the orthogonal complement of K in B under � , and
H D �.K?/. It is easy to show that � descends to a skew-symmetric bicharacter of
H , which we will denote by  .

Proposition 2.11. Let N be the category ofA-graded vector spaces which are right-
equivariant under the action of B (via �) with 2-cocycle � . Then, as a left VecA

module, N Š m � M.H; /, where

m D jKj � jK?j
jBj D jK \ Rad.�/j:

Proof. The simple objects of N are obviously parameterized by pairs .z; �/, where
z 2 A=�.B/, and � is an irreducible projective representation ofK with cohomology
class �jK , which implies that the number of simple objects of N andm � M.H; / is
the same.

Now consider the stabilizer S of a pair .z; �/ in A. Obviously, S is contained in
�.B/ since an element of S must preserve z. Further, if g 2 B , the action of �.g/ on
� is by tensoring with the character �.g; � /. So the condition that �.g/ fixes � is that
�.g; k/ D 1 for any k 2 Rad.�jK/ D K?\K, i.e., g 2 KCK? (indeed, we have the
equality .K\K?/? D K?? CK? D KCK? sinceK?? D KC Rad.�/ andK?
contains Rad.�/). Thus S D H . It is straightforward to check that the corresponding
second cohomology class on S is exactly  . The proposition is proved.
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We also have the following proposition, the proof of which is easy and omitted.

Proposition 2.12. Let A be a finite abelian group, H;B � A subgroups, and let
 2 H 2.H;k�/ be a skew-symmetric bicharacter. Then one has an equivalence of
left VecB -module categories

M.H; /jVecB
Š m � M.H \ B; jH\B/;

where m is the index of B CH in A.

2.8. The center of a bimodule category. Let C be a fusion category with unit object
1 and associativity constraint ˛X;Y;Z W .X ˝ Y /˝ Z ��!� X ˝ .Y ˝ Z/, and let M

be a C -bimodule category. The following definition was given in [18].

Definition 2.13. The center of M is the category ZC .M/ of C -bimodule functors
from C to M.

Explicitly, the objects of ZC .M/ are pairs .M; �/, where M is an object of M

and

� D f�X W X ˝M ��!� M ˝XgX2C

is a natural family of isomorphisms making the following diagram commutative:

X ˝ .M ˝ Y /
˛�1

X;M;Y �� .X ˝M/˝ Y

�X ˝idY

��
X ˝ .Y ˝M/

idX ˝�Y

��

˛�1
X;Y;M

��

.M ˝X/˝ Y

.X ˝ Y /˝M
�X˝Y

�� M ˝ .X ˝ Y /,

˛�1
M;X;Y;

��

where the ˛’s denote the associativity constraints in M.
Indeed, a C -bimodule functor F W C ! M is completely determined by the pair

.F.1/; f�XgX2C /, where � D f�XgX2C is the collection of isomorphisms

�X W X ˝ F.1/ ��!� F.X/ ��!� F.1/˝X

coming from the C -bimodule structure on F .

Remark 2.14. ZC .M/ is a semisimple abelian category. It has a natural structure of
a Z.C/-module category. Also it is clear that ZC .C/ D Z.C/.
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2.9. The opposite module category. Let C be a fusion category and M a right
C -module category. Let Mop be the category opposite to M. Then Mop is a left
C -module category with the C -action ˇMop given by X ˇMop M ´ M ˝ �X and
the associativity constraint given by

.X ˝Y /ˇMop M D M ˝ �.X ˝Y / D .M ˝ �Y /˝ �X D X ˇMop .Y ˇMop M/:

Similarly, if N is a left C -module category, then N op is a right C -module category,
with the C -action ˇN op given by N ˇN op X ´ X� ˝ N . Note that .Mop/op is
canonically equivalent to M as a C -module category. Indeed, the identity functor
M ! .Mop/op has an obvious structure of module functor since

M ˇ.Mop/op X D X� ˇMop M D M ˝ �.X�/ D M ˝X:

More generally, given a .C ;D/-bimodule category M, the above definitions make
Mop a .D ;C/-bimodule category.

3. Tensor product of module categories

3.1. Definition of the tensor product of module categories over a fusion category.
Let C , D be fusion categories. By definition, a .C ;D/-bimodule category is a module
category over C � D rev, where D rev is the category D with reversed tensor product.

Let M D .M; m/ be a right C -module category and let N D .N ; n/ be a left
C -module category. Here m and n are the associativity constraints:

mM;X;Y W M ˝ .X ˝ Y / ! .M ˝X/˝ Y;

nX;Y;N W .X ˝ Y /˝N ! X ˝ .Y ˝N/;

where X; Y 2 C ;M 2 M; N 2 N .
Let A be a semisimple abelian category.

Definition 3.1. Let F W M � N ! A be a bifunctor additive in every argument. We
say that F is C -balanced if there is a natural family of isomorphisms

bM;X;N W F.M ˝X;N/ Š F.M;X ˝N/

satisfying the commutative diagram

F.M ˝ .X ˝ Y /;N /

bM;X˝Y;N

��

mM;X;Y �� F..M ˝X/˝ Y;N /

bM˝X;Y;N

��
F.M; .X ˝ Y /˝N/ F.M ˝X; Y ˝N/

bM;X;Y ˝N�����������������

F.M;X ˝ .Y ˝N//

n�1
X;Y;N

�����������������

(2)
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for all M 2 M, N 2 N , X; Y 2 C .

Remark 3.2. A bifunctor M � N ! A as above canonically extends to a functor
M�N ! A, where M�N is the Deligne product of abelian categories [6]. Clearly,
one can formulate the balancing property in terms of functors M � N ! A.

We define tensor product of C -module categories by “categorifying” the definition
of a tensor product of modules over a ring. This extends the notion of Deligne’s
tensor product of abelian categories (i.e., module categories over Vec) to the context
of module categories over tensor categories. In the setting of additive k-linear (not
necessarily abelian) categories the notion of tensor product of module categories was
given by D. Tambara in [36].

Definition 3.3. A tensor product of a right C -module category M and a left C -module
category N is an abelian category M �C N together with a C -balanced functor

BM;N W M � N ! M �C N (3)

inducing, for every abelian category A, an equivalence between the category of C -
balanced functors from M � N to A and the category of functors from M �C N

to A:
Funbal.M � N ;A/ Š Fun.M �C N ;A/:

Remark 3.4. Equivalently, the bifunctor (3) is universal for all C -balanced bifunctors
from M � N to abelian categories. In other words, for any C -balanced functor
F W M � N ! A there exists a unique additive functor F 0 W M �C N ! A making
the following diagram commutative

M � N

BM;N

��

F

���������������

M �C N
F 0

������ A:

(4)

If M and N are C -bimodule categories then so is M �C N .

3.2. Tensor product as a category of module functors. Let us show that the tensor
product of bimodule categories introduced in Definition 3.3 does exist.

Let C be a fusion category, let M be a right C -module category and N be a left
C -module category. There is an obvious equivalence

M � N ��!� Fun.Mop;N / W M �N 7! HomM.‹;M/˝N: (5)

Observe that the equivalence (5) sends .M ˝X/�N and M � .X ˝N/ to

HomM.‹;M ˝X/˝N D HomM.‹˝ �X;M/˝N D HomM.XˇMop‹;M/˝N
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and
HomM.‹;M/˝ .X ˝N/ D X ˝ .HomM.‹;M/˝N/;

respectively. Thus under the equivalence (5) C -balanced functors M � N ! A

correspond to functorsF W Fun.Mop;N / ! A endowed with a natural isomorphism

F.T .X ˝ ‹// Š F.X ˝ T .‹//; where T W Mop ! N ; X 2 C ; (6)

satisfying a coherence condition similar to diagram (2) (by abuse of notation we use
here ˝ instead of ˇMop ).

Proposition 3.5. There is an equivalence of abelian categories

M �C N Š FunC .M
op;N /: (7)

Proof. Let F W M � N ! A be the extension of some C -balanced bifunctor as in
Remark 3.2 and let G W A ! M � N be its right adjoint. Using the equivalence
(5) and coherence (6) one can check that for every A 2 A the functor G.A/ in
Fun.Mop;N / has a canonical structure of a C -module functor. Thus, G factors
through the obvious forgetful functor U W FunC .M

op;N / ! Fun.Mop;N /:

Fun.Mop;N /

FunC .M
op;N /

U

��

A.
G0

��� � � �

G

		�������������

Taking left adjoints we recover diagram (4).

Remark 3.6. (i) It is easy to see that if M is a .D ;C/-bimodule category and N is a
.C ;E/-bimodule category, then (7) is an equivalence of .D ;E/-bimodule categories.

(ii) Let M be a right C -module category, N a .C ;D/-bimodule category, and K a
left D-module category. Then there is a canonical equivalence .M �C N /�D K Š
M �C .N �D K/ of categories. Hence the notation M �C N �D K will yield no
ambiguity.

We refer the reader to the work of J. Greenough [19] for an alternative proof
of Proposition 3.5. It is shown in [19] that for any fusion category C its bimodule
categories equipped with the tensor product �C form a (non-semi-strict) monoidal
2-category in the sense of Kapranov and Voevodsky [23]. We denote this monoidal
2-category by Bimodc.C/.

More generally, one can define the tricategory Bimodc of bimodule categories
over fusion categories, in which 1-morphisms from C to D are .C ;D/-bimodule cat-
egories (with composition being the tensor product of bimodule categories as defined
above), 2-morphisms are bimodule functors between such bimodule categories, and
3-morphisms are morphisms of such bimodule functors. Then Bimodc.C/ consists
of 1-morphisms from C to C in Bimodc, and the corresponding 2-morphisms and
3-morphisms.
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Remark 3.7. The tricategory Bimodc is a categorification of the 2-category Bimod,
whose objects are rings, 1-morphisms are bimodules, and 2-morphisms are homo-
morphisms of bimodules.

3.3. Tensor product as the center of a bimodule category. Let C be a fusion
category. Below we describe the tensor product of C -module categories in a way
convenient for computations. Recall that the center of a C -bimodule category was
defined in Section 2.8.

As before, let M be a right C -module category and let N be a left C -module
category. The category M � N has a natural structure of a C -bimodule category. It
turns out that its center ZC .M � N / can be identified with M �C N .

Let F W M � N ! A be a C -balanced functor. Let xF W M � N ! A be the
extension of F and let G W A ! M � N be the functor right adjoint to xF . Let

i W HomA. xF .V /;W / Š HomM�N .V;G.W //

be the adjunction isomorphism. Let

cX;G.A/ W G.A/˝ .X � 1/ Š .1 �X/˝G.A/; A 2 A;

be the image under i of the isomorphism

bV;�X W F.V ˝ .�X � 1// Š F..1 � �X/˝ V /; V 2 M:

Then G.A/ is an object of ZC .M � N / and the functor G0 W A ! ZC .M � N /:
A 7! G.A/ satisfies UG0 D G, where

U W ZC .M � N / ! M � N

is the obvious forgetful functor. Let

IM;N W M � N ! ZC .M � N /

be the right adjoint of U .

Proposition 3.8. There is a canonical equivalence

M �C N Š ZC .M � N /

such that IM;N W M � N ! ZC .M � N / is identified with the extension of the
universal bifunctor BM;N W M � N ! M �C N .

Proof. From the above discussion we have a commutative diagram

M � N

ZC .M �C N /

U

��

A.
G0

��� � � �

G

		�������������

Taking the adjoint diagram gives the result.
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Remark3.9. There is yet one more description of M�C N . Namely, letA 2 C�C rev

be the object representing the functor ˝W C � C rev ! C . Then A D L
X X

� � X

(summation taken over simple objects of C ) is an algebra in C � C rev, and M �C N

is equivalent to the category of left A-modules in M � N . The canonical functor

M � N ! M �C N

is identified with the middle multiplication by A.

3.4. Tensor product of module categories over a braided category. Let B be
a braided fusion category. Since every left (or right) B-module category is auto-
matically a B-bimodule category (using the braiding in B), one can tensor any two
such categories to get a third one. Let Modc.B/ denote the monoidal 2-category of
(left) B-module categories. Clearly, Modc.B/ is a full subcategory of the monoidal
2-category Bimodc.B/ of all B-bimodule categories.

Remark 3.10. The monoidal 2-category Modc.B/ is a categorification of the mo-
noidal category Mod.A/ of modules over a commutative ring A. Note that unlike
Mod.A/ the monoidal 2-category Modc.B/ is, in general, not symmetric or braided;
in fact, in this category, X ˝ Y may be non-isomorphic to Y ˝X .

Let C be a fusion category. Recall [14] that there is a 2-equivalence

ZC W Bimodc.C/ ��!� Modc.Z.C// W M 7! ZC .M/; (8)

where the center ZC .M/ is defined in Section 2.8.
The next proposition is proved in [19]. We include its proof for the reader’s

convenience.

Proposition 3.11. The 2-equivalence ZC is monoidal. That is, for any pair M;N

of C -bimodule categories we have a natural equivalence

ZC .M �C N / Š ZC .M/�Z.C/ ZC .N / (9)

which satisfies appropriate compatibility conditions.

Proof. By Proposition 3.8 the left hand side of (9) is identified as a Z.C/-module
category with ZC�C rev.M�N /where the left and right actions of the objectX�Y 2
C � C rev on M �N 2 M � N are given by

.X � Y /˝ .M �N/ ´ .X ˝M/� .Y ˝N/;

.M �N/˝ .X � Y / ´ .M ˝ Y /� .N ˝X/:

On the other hand, combining Proposition 3.5 and the 2-equivalence (8) we obtain a
sequence of Z.C/-module category equivalences

ZC .M/�Z.C/ ZC .N / Š FunZ.C/.ZC .M/op;ZC .N //

Š FunC�C rev.Mop;N /

Š ZC�C rev.M � N /;
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where the bimodule action of C � C rev on M � N is the same as the one described
above.

Remark 3.12. It is possible to show that (8) is an equivalence of monoidal 2-
categories.

Corollary 3.13. Any Morita equivalence between fusion categories C1 and C2

canonically gives rise to an equivalence of monoidal 2-categories Bimodc.C1/ and
Bimodc.C2/.

Proof. By [28], the Morita equivalence between C1 and C2 gives rise to an equiva-
lence Z.C1/ Š Z.C2/ as braided fusion categories, and so the result follows from
Proposition 3.11.

The next statement was formulated in [7], Section 4.3.

Corollary 3.14. Let C1 and C2 be Morita equivalent fusion categories. Let Ki ,
i D 1; 2; be the 2-category of fusion categories C equipped with a tensor functor
Ci ! C . Then K1 and K2 are 2-equivalent.

Proof. This follows from the observation that Ki can be interpreted as the 2-category
of algebras in Ci , i D 1; 2 (cf. [7], Remarks 4.38 (i)).

3.5. Tensor product of module categories over VecA , where A is a finite abelian
group. Let A be an abelian group and C D VecA. Since C is a symmetric category,
any left C -module category can be viewed as a right C -module category, and thus the
dual Mop of a left C -module category M is again a left C -module category. Also,
the tensor product over C of two left C -module categories is again a left C -module
category.

For any subgroupH � A and a skew-symmetric bicharacter onH let M.H; /

be the C -module category constructed in Section 2.7. The following Lemma is easy,
and its proof is omitted.

Lemma 3.15. One has M.H; /op D M.H; �1/.

Now let us give an explicit description of the tensor product of C -module cate-
gories.

We repeat the construction preceding Proposition 2.11. Let H1;H2 � A be
subgroups of a finite abelian groupA and let  1,  2 be skew-symmetric bicharacters
on them. Consider the groupH1\H2 embedded antidiagonally (i.e., byh 7! .�h; h/)
into H1 ˚H2. Let .H1 \H2/

? be the orthogonal complement of this group under
the bicharacter  1 �  2 on H1 ˚ H2. Let H be the image of .H1 \ H2/

? in
H1 CH2 � A, under the map .h1; h2/ 7! h1 C h2. We have an exact sequence

0 ! Rad.. 1 �  2/jH1\H2
/ ! .H1 \H2/

? ! H ! 0:
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Therefore, the bicharacter . 1� 2/j.H1\H2/? descends to a bicharacter onH , which
we will denote by  .

Proposition 3.16. One has

M.H1;  1/�C M.H2;  2/ D m � M.H; /;

where

m D j.H1 \H2/
?j � jH1 \H2j

jH1j � jH2j D jH1 \H2 \ Rad. 1 �  2/j:

Proof. Using Lemma 3.15, we get

M.H1;  1/�C M.H2;  2/ D FunC .M.H1;  
�1
1 /;M.H2;  2//:

According to [31], this category can be described as the category of A-graded vector
spaces which are left equivariant under the action ofH1 with 2-cocycle  1 and right
equivariant under the action of H2 with 2-cocycle  2. Since A is abelian, this is the
same as considering A-graded vector spaces which are right-equivariant under the
action of H1 ˚ H2 with cocycle  1 �  2. So the result follows immediately from
Proposition 2.11.

Corollary 3.17. (i) The C -module category M.H; / is invertible (in the sense of
§ 4.4 below) if and only if  is non-degenerate.

(ii) The group of equivalence classes of invertible C -module categories is natu-
rally isomorphic to the groupH 2.A�;k�/ of skew-symmetric bicharacters of A� via
M.H; / 7!  _jA� , where _ is the bicharacter onH� dual to (i.e., c _ D y �1).

Proof. This follows from Proposition 3.16 via a direct calculation.

Example 3.18. Assume that H1 D H2 D A, and  1,  2 are such that  1 2 is a
non-degenerate bicharacter. In this case, Proposition 3.16 implies that H D A and

y D � 1 B .1 1 2/
�1 B � 2 D � 2 B .1 1 2/

�1 B � 1:

Note that if  1,  2 are themselves non-degenerate, this is a special case of Corol-
lary 3.17.

3.6. Tensor product of bimodule categories. Let us now compute the tensor prod-
uct of bimodule categories over the categories of vector spaces graded by finite abelian
groups.

Let A1, A2, A3 be finite abelian groups. Let H � A1 ˚ A2, H 0 � A2 ˚ A3

be subgroups, and let  ,  0 be skew-symmetric bicharacters ofH , H 0, respectively.
Let us repeat, with some modifications, the construction preceding Proposition 2.11.
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Namely, let H BH 0 be the subgroup of elements .a1;�a2; a2; a3/ in H ˚H 0, and
let H \H 0 � A2 be the intersection of H and H 0 with A2. We regard H \H 0 as a
subgroup ofH BH 0 via the antidiagonal embedding h ! .�h; h/ and let .H \H 0/?
denote the orthogonal complement ofH\H 0 inH BH 0 with respect to the bicharacter
. � 0/jHBH 0 . Finally, letH 00 be the image of .H \H 0/? in A1 ˚A3. Obviously,
the bicharacter . �  0/jHBH 0 descends to a skew-symmetric bicharacter of H 00,
which we denote by  00.

Let M.H; / (respectively M.H 0;  0/ and M.H 00;  00/) be the module category
over VecA1˚A2

D VecA1
� VecA2

(respectively over VecA2˚A3
and VecA1˚A3

) as
described in § 2.7. Since Vecrev

Ai
D VecAi

for i D 2; 3, we can consider M.H; /

(respectively M.H 0;  0/ and M.H 00;  00/) as .VecA1
;VecA2

/-bimodule (respectively
as .VecA2

;VecA3
/-bimodule and .VecA1

;VecA3
/-bimodule) category. Then we have

the following proposition, whose proof is parallel to the proof of Proposition 3.16.
For a subgroup B � A of a finite abelian group A write B? for the annihilator

of B in A� (to avoid confusion with the orthogonal complement with respect to a
bicharacter, we use a subscript rather than a superscript).

Proposition 3.19. M.H; /�VecA2
M.H 0;  0/ D m � M.H 00;  00/; where

m D jH \H 0j � j.H \H 0/?j � jA2j
jH j � jH 0j D jH \H 0j � j.H \H 0/?j � jH? \H 0?j

jH BH 0j :

Proof. Let B ´ H ˚H 0 ˚ A2, and � W B ! A1 ˚ A2 ˚ A2 ˚ A3 be the homo-
morphism given by the formula �.h; h0; a/ D .h; h0/ C .0; a;�a; 0/. Let � denote
the bicharacter  �  0 � 1 of B .

Using Lemma 3.15, we get

N ´ M.H; /�VecA2
M.H 0;  0/ D FunVecA2

.M.H; �1/;M.H 0;  0//:

Thus, according to [31], N can be described as the category of A1 ˚A2 ˚A2 ˚A3-
graded vector spaces which are right equivariant under the action B with cocycle � .
By Proposition 2.11, this means that as a left VecA1˚A2˚A2˚A3

-module category, N

is equivalent to r � M.E; �/, withE D �.K?
B /, � D �jE (the pushforward of � toE,

which is obviously well defined), and

r D jKj � jK?
B j

jH j � jH 0j � jA2j ;

where K D Ker.�/ D H \H 0 embedded into H ˚H 0 ˚ A2 via a 7! .a;�a; a/.
(Here K?

B stands for the orthogonal complement of K in B .) Thus, by Proposi-
tion 2.12, as a left VecA1˚A3

-module category, N is indeed a multiple of M.H 00;  00/.
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It remains to prove the formulas for the coefficient m. From the above we get

m D jH \H 0j � jK?
B j

jH j � jH 0j � jA2j jCoker.K?
B ! A2 ˚ A2/j

D jH \H 0j � jA2j
jH j � jH 0j j Ker.K?

B ! A2 ˚ A2/j

D jH \H 0j � jA2j
jH j � jH 0j j.H \H 0/?j;

which is the first formula for m. To get the second formula, note that we have an
exact sequence

0 ! H BH 0 ! H ˚H 0 ! A2 ! .H? \H 0?/� ! 0;

so
jA2j

jH j � jH 0j D jH? \H 0?j
jH BH 0j :

Substituting this into the first formula, we get

m D jH \H 0j � jH? \H 0?j
jH BH 0j j.H \H 0/?j;

which is the second formula for m.

4. Higher groupoids attached to fusion categories

4.1. Invertible bimodule categories and the Brauer–Picard 3-groupoid. Let C ,
D be fusion categories. Recall from Section 2.9 that given a .C ;D/-bimodule cate-
gory M its opposite Mop is a .D ;C/-bimodule category.

Definition 4.1. We will say that a .C ;D/-bimodule category M is invertible if there
exist bimodule equivalences

Mop �C M Š D and M �D Mop Š C :

Let M be a .C ;D/-bimodule category. We will denote FunC .M;M/ (respectively
Fun.M;M/D ) the category of left (respectively right) module endofunctors of M.
Note that these categories FunC .M;M/ and Fun.M;M/D are at the same time
multifusion categories and bimodule categories (over D and C , respectively).

Note that for any object X in D (respectively C ) the right (respectively left)
multiplication by X gives rise to a left (respectively right) C -module (respectively
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D-module) endofunctor of M denoted R.X/ (respectively L.X/). Thus, we have
tensor functors

R W X 7! R.X/ W D rev ! FunC .M;M/ (10)

and

L W X 7! L.X/ W C ! Fun.M;M/D : (11)

Proposition 4.2. Let M be a .C ;D/-bimodule category. The following conditions
are equivalent:

(i) M is invertible.

(ii) There exists a D-bimodule equivalence Mop �C M Š D .

(iii) There exists a C -bimodule equivalence M �D Mop Š C .

(iv) The functor (10) is an equivalence.

(v) The functor (11) is an equivalence.

Proof. By definition, (i) is equivalent to (ii) and (iii) combined.
Recall that, by Proposition 3.5, Mop �C M Š FunC .M;M/ as D-bimodule

categories. We also have M �D Mop Š FunD.M
op;Mop/ D Fun.M;M/D as

C -bimodule categories. So (iv) implies (ii) and (v) implies (iii).
Next suppose that M is invertible and let� W D Š FunC .M;M/ be a D-bimodule

equivalence. Let F D �.1/. Then any functor in FunC .M;M/ is isomorphic to
F B R.X/ for some X 2 D . This is only possible when R is an equivalence. Thus,
(ii) implies (iv). The proof that (iii) implies (v) is completely similar.

It remains to show that (iv) is equivalent to (v). If (10) is an equivalence then
D rev is the dual C�

M
of C with respect to M and the functor (11) identifies with the

canonical tensor functor C ! .C�
M
/�
M

. By [14], Theorem 3.27, this functor is an
equivalence. So (iv) implies (v). The opposite implication is completely similar.

Remark 4.3. In view of Proposition 4.2 invertible .C ;D/-bimodule categories can
be thought of as Morita equivalences C ! D .

Corollary 4.4. An invertible .C ;D/-bimodule category is indecomposable as both
a left C -module category and a right D-module category.

Definition 4.5. The Brauer–Picard groupoid of fusion categories BrPic is a 3-
groupoid, whose objects are fusion categories, 1-morphisms from C to D are invert-
ible .C ;D/-bimodule categories, 2-morphisms are equivalences of such bimodule
categories, and 3-morphisms are isomorphisms of such equivalences.

In other words, BrPic is the subcategory of Bimodc obtained by extracting the
invertible morphisms at all levels.

The 3-groupoid BrPic can be truncated (by forgetting 3-morphisms and iden-
tifying isomorphic 2-morphisms) to a 2-groupoid BrPic, and further truncated (by
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forgetting 2-morphisms and identifying isomorphic 1-morphisms) to a 1-groupoid
(i.e., an ordinary groupoid) BrPic.

In particular, for every fusion category C we have the following hierarchy of
objects:

� the categorical 2-group BrPic.C/ of automorphisms of C in BrPic (which is
obtained by extracting invertible objects and morphisms at all levels from
Bimodc.C/);

� the categorical group BrPic.C/ of automorphisms of C in BrPic;
� the group BrPic.C/ of automorphisms of C in BrPic, which we will call the

Brauer–Picard group of C .

Remark 4.6. For any pair of isomorphic objects in BrPic.C/ the set of morphisms
between them is a torsor over the group Inv.Z.C// of invertible objects of Z.C/.

Remark 4.7. The 3-groupoid BrPic is a categorification of the 2-groupoid Pic, whose
objects are rings, 1-morphisms from A to B are invertible .A;B/-bimodules, and 2-
morphisms are isomorphisms of such bimodules. In particular, the Brauer–Picard
group BrPic.C/ is a categorical analog of the classical Picard group Pic.A/ of a
ring A.

Remark 4.8. The terminology “Brauer–Picard group” is justified by the following
observation.

For a moment, let k be any field (not necessarily algebraically closed).

Proposition 4.9. BrPic.Veck/ is isomorphic to the classical Brauer group Br.k/.

Proof. First of all, note that bimodule categories over C D Veck is the same thing as
module categories.

Let R be a finite dimensional simple algebra over k. Then M.R/ ´ R-mod is
an indecomposable module category over C . It is easy to see that MatN .R/-mod is
naturally equivalent to R-mod as a module category, and that

M.R/�C M.S/ D M.R˝k S/:

Also, any indecomposable semisimple module category over C is of the form M.R/

for a finite dimensional simple k-algebra R, determined uniquely up to a Morita
equivalence. This implies that M.R/ is invertible if and only if R is central simple,
which implies the claim.

Proposition 4.10. Let C1, C2 be two fusion categories of relatively prime Frobenius–
Perron dimensions. Then

BrPic.C1 � C2/ D BrPic.C1/ � BrPic.C2/:

Proof. This follows from [12], Proposition 8.55.



Fusion categories and homotopy theory 231

4.2. Integral bimodule categories. Let C be an integral fusion category, i.e., a
category such that the Frobenius–Perron dimension of any simple object of C is
an integer. Recall that the Frobenius–Perron dimensions in module categories were
defined in Section 2.5. It is clear that the Frobenius–Perron dimension of any object
in a C -module category is a square root of an integer.

Definition 4.11. We say that a C -module category M is integral if FPdim.M/ 2 Z
for every object M 2 M.

Equivalently, M is integral if for every simple object M 2 M the number
FPdim.Hom.M;M// is the square of an integer.

Now let M be an invertible C -bimodule category. To avoid possible confusion
let us agree that we compute Frobenius–Perron dimensions in M by regarding it as a
one-sided (left or right) C -module category. In particular,

P
M2O.M/

FPdim.M/2 D FPdim.C/:

Definition 4.12. We will say that an invertible C -bimodule category M is integral if
it is integral as one-sided (left or right) module category.

It is clear that here the choice of left or right C -module structure is not important
since the Frobenius–Perron dimensions in M defined using these structures coincide.

Proposition 4.13. Let C be an integral fusion category. If M, N are invertible
integral C -bimodule categories then M �C N is integral.

Proof. It is easy to see that according to our conventions the canonical C -bimodule
functor F W M � N ! M �C N satisfies

FPdim.F.M �N// D FPdim.M/FPdim.N / for all M;N 2 M:

Since this functor F is surjective, we conclude that M �C N is integral. Indeed, no
integer can be equal to a sum of non-integer square roots.

It is easy to show that equivalence classes of invertible integral C -bimodule cat-
egories form a normal subgroup of BrPic.C/, denoted by BrPicC.C/, such that
BrPic.C/=BrPicC.C/ is an elementary abelian 2-group. It gives rise to a full cate-
gorical 2-subgroup BrPicC.C/ of the categorical 2-group BrPic.C/.

4.3. The categorical 2-group of outer auto-equivalences a fusion category. Let
C be a fusion category. Let us say that an invertible C -bimodule category M is
quasi-trivial if it is equivalent to C as a left module category. It is easy to see that
if M is quasi-trivial, then there exists a tensor auto-equivalence � W C ! C such
that M D C with the left action of C by left multiplication, and the right action
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of C by right multiplication twisted by �. Moreover, � is uniquely determined up
to composing with conjugation by an invertible object of C . In other words, it is
uniquely determined as an outer auto-equivalence.

Now define the categorical 2-group Out.C/ to be the 2-subgroup of BrPic.C/
which includes only the quasi-trivial invertible bimodule categories (and all the cor-
responding equivalences and isomorphisms). This 2-group can be truncated to a
1-group Out.C/ and further to the usual group Out.C/ of isomorphism classes of
outer tensor auto-equivalences of C (i.e., auto-equivalences modulo conjugations by
invertible objects).

4.4. The Picard 2-groupoid of a braided fusion category. Let B be a braided
fusion category. The monoidal 2-category Modc.B/ contains a categorical 2-group
Pic.B/, obtained by extracting invertible objects and morphisms at all levels, which
we will call the Picard 2-group of B. This categorical 2-group is a categorical
analog of the categorical 1-group of invertible modules over a commutative ring A
(or, more generally, of the Picard 1-group, or groupoid, of a scheme). By truncating
it one obtains a categorical 1-group Pic.B/ and an ordinary group Pic.B/, called the
Picard group of the braided category B.

Remark 4.14. If B is a braided fusion category then BrPic.B/ contains Pic.B/ as a
full categorical 2-subgroup (of bimodule categories in which the left and right action
are related via the braiding).

4.5. The 2-groupoid of equivalences. Following [16], we define the 2-groupoid
Eq, whose objects are fusion categories, 1-morphisms are tensor equivalences, and 2-
morphisms are isomorphisms of such equivalences. It can be truncated to an ordinary
groupoid Eq. So for every fusion category C , we obtain the groupoid Eq.C/ of tensor
auto-equivalences of C and the corresponding group Eq.C/ of isomorphism classes
of tensor auto-equivalences of C .

4.6. The 2-groupoid of braided equivalences. Here is the braided version of the
construction of the previous subsection. We define the 2-groupoid EqBr, whose
objects are braided fusion categories, 1-morphisms are braided equivalences, and 2-
morphisms are isomorphisms of such equivalences. It can be truncated to an ordinary
groupoid EqBr. So for every braided fusion category B we obtain the groupoid
EqBr.B/ of braided auto-equivalences of B and the corresponding group EqBr.B/
of isomorphism classes of braided auto-equivalences of B.

4.7. The finiteness theorem

Theorem 4.15. The groups BrPic.C/, Out.C/, Eq.C/, EqBr.B/, Pic.B/ are finite.

Proof. This follows from the finiteness results from [12] (Theorem 2.31, Corol-
lary 2.35).
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5. Proof of Theorem 1.1

It is sufficient to prove for every fusion category C the functor Z W BrPic.C/ !
EqBr.Z.C// is an equivalence.

5.1. A monoidal functor ˆ W BrPic.C / ! EqBr.Z.C //. Let M be an indecom-
posable right C -module category. Let C�

M
denote the dual of C with respect to M,

i.e., the category of right C -module endofucnctors of M. By [31] C�
M

is a fusion
category. We can regard M as a C�

M
� C rev-module category. Its C�

M
� C rev-module

endofunctors can be identified, on the one hand, with functors of left multiplication
by objects of Z.C�

M
/ and, on the other hand, with functors of right multiplication by

objects of Z.C/. Combined, these identifications yield a canonical equivalence of
braided categories

Z.C/ ��!� Z.C�
M/: (12)

This result is due to Schauenburg; see [35].
Now suppose that M is an invertible C -bimodule category. Let us view it as a

right C -module category. By Proposition 4.2 and Remark 4.3 we have an equivalence
of tensor categories

C�
M Š C (13)

obtained by identifying right C -module endofunctors of M with the functors of left
multiplication by objects of C .

Thus, we have a braided tensor equivalence

ˆ.M/ W Z.C/ ��!� Z.C�
M/ ��!� Z.C/; (14)

where the first equivalence is (12) and the second one is induced from (13).
Clearly, a C -bimodule equivalence between M;N 2 BrPic.C/ gives rise to an

isomorphism of tensor functors ˆ.M/ and ˆ.N /.
To see that the functor (14) is monoidal, observe that the C -bimodule functor

of right multiplication by an object Z 2 Z.C/ on M �C N is isomorphic to the
well-defined functor of “middle” multiplication by .ˆ.N //.Z/, which, in turn, is
isomorphic to the functor of left multiplication by .ˆ.M/ B ˆ.N //.Z/. This gives
a natural isomorphism of tensor functors ˆ.M/ B ˆ.N / Š ˆ.M �C N /, i.e., a
monoidal structure on ˆ.

5.2. A functor ‰ W EqBr.Z.C // ! BrPic.C /. Let ˛ be a braided tensor auto-
equivalence of Z.C/. Below we recall a construction of an invertible C -bimodule
category from ˛ given in [13].

Let F W Z.C/ ! C and I W C ! Z.C/ denote the forgetful functor and its
adjoint. Given an algebra A in C let A-modC and A-bimodC denote the categories
of left A-modules and A-bimodules in C , respectively.
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The object I.1/ is a commutative algebra in Z.C/ and so is

L ´ ˛�1.I.1//: (15)

Furthermore, there is a tensor equivalence

C ��!� L-modZ.C/ W X 7! I.X/: (16)

Note thatL is indecomposable in Z.C/ but might be decomposable as an algebra
in C , i.e.,

L D L
i2J

Li ;

where Li , i 2 J , are indecomposable algebras in C such that the multiplication of
L is zero on Li ˝ Lj , i ¤ j . Here and below we abuse notation and write L for an
object of Z.C/ and its forgetful image in C .

For any i 2 J let
‰i .˛/ ´ Li -modC : (17)

Clearly, it is a right C -module category. We would like to show that‰i .˛/ is, in fact,
an invertible C -bimodule category.

Consider the following commutative diagram of tensor functors:

Z.C/

Z 7!L˝Z

��

Z 7!Li ˝Z �� Z.Li -bimodC /

Fi

��
L-modZ.C/

F �� LLi -bimodC � L-bimodC

�i �� Li -bimodC :

(18)

Here Fi W Z.Li -bimodC / ! Li -bimodC is the forgetful functor and �i is a projec-
tion from L-bimodC D L

ij .Li � Lj /-bimodC to its .i; i/ component. We have
�i .L˝X/ D Li ˝X for allX 2 C . The top arrow is an equivalence and the forgetful
functor Z.Li -bimodC / ! Li -bimodC (the right down arrow) is surjective. Hence,
the composition Gi ´ �iF of the functors in the bottom row is surjective. But Gi

is a tensor functor between fusion categories of equal Frobenius–Perron dimension
and hence it is an equivalence by [14], Proposition 2.20.

In view of (16) this gives a tensor equivalence between C and C�
‰i .˛/

. Hence,
‰i .˛/ is a C -bimodule category. It is easy to see that the above functor Gi identifies
with (11) when M D ‰i .˛/, therefore ‰i .˛/ is invertible by Proposition 4.2.

We claim that definition (17) does not depend on a choice of i 2 J .

Lemma 5.1. For all i; j 2 J there is an equivalence of C -bimodule categories
‰i .˛/ and ‰j .˛/.

Proof. Let us consider the category D ´ L-modC . It is a multifusion category in
the sense of [12], Section 2.4, i.e., it has a decomposition

D D L
ij 2J

Dij
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such that Di i is a fusion category and Dij is a .Di i ;Djj /-bimodule category for all
i; j 2 J . Furthermore for X 2 Dij and Y 2 Dkl we have X ˝ Y 2 Dil if j D k

and X ˝ Y D 0 if j ¤ k.
It follows from the result of Schauenburg [35], Corollary 4.5, that Z.D/ Š Vec

as a tensor category. Therefore, Dij Š Vec for all i; j 2 J , i.e., simple objects of D

can be labeledEij in such a way that the tensor product ˝L satisfies the usual matrix
multiplication rules:

Eij ˝L Ekl D ıjkEil ; i; j; k; l 2 J:
It follows that Li D Ei i and Li -modC is spanned by Eik , k 2 J . Thus, the functor

X 7! Ej i ˝L X W Li -modC ! Lj -modC ; i; j 2 J;
is an equivalence of C -bimodule categories.

Let us choose a C -bimodule category ‰.˛/ 2 BrPic.C/ in the equivalence class
of C -bimodule categories ‰i .˛/, i 2 J .

Letf W ˛ ��!� ˛0 be an isomorphism in EqBr.Z.C//. It gives rise to an equivalence
of the corresponding algebras L, L0 in Z.C/ and, consequently, to a C -bimodule
equivalence ‰i .f / W ‰i .˛/ ��!� ‰i .˛

0/. By Lemma 5.1 we obtain a C -bimodule
equivalence ‰.f / W ‰.˛/ ��!� ‰.˛0/.

Thus, we have a functor

‰ W EqBr.Z.C// ! BrPic.C/:

It remains to check that ‰ is an inverse of the monoidal functor ˆ introduced in
Section 5.1.

5.3. Equivalences ˆ B ‰ Š IdEqBr.Z.C// and ‰ B ˆ Š IdBrPic.C/. First we prove
an equivalence ˆ B ‰ Š IdEqBr.Z.C//. Given ˛ 2 EqBr.Z.C// let M D ‰.˛/ Š
Li -modC , where the algebra Li is defined as in Section 5.2. From (14) we see that
ˆ.M/ is defined by

ˆ.M/ W Z.C/
Z 7!Li ˝Z�������! Z.Li -bimodC /

��! Z.C/;

where the second equivalence 	 is induced from the inverse of the equivalence in the
bottom row of (18). Since C Š I.1/-modZ.C/ we have

	�1.Z/ D �iF˛
�1I.Z/ D �iF˛

�1.I.1/˝Z/ D Li ˝ ˛�1.Z/

for all Z 2 Z.C/. Therefore, ˆ B‰.˛/ Š ˛.
Next, we prove that ‰ B ˆ Š IdBrPic.C/. Take M 2 BrPic.C/. Let A 2 C be an

algebra such that M Š A-modC as a right C -module category. Since M is invertible,
we have an equivalence C Š A-bimodC by Proposition 4.2.
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Construct a braided auto-equivalence ˛ ´ ˆ.M/ 2 EqBr.Z.C// as in (14).
Upon the identification Z.C/ Š Z.A-bimodC / we have

˛.Z/ D A˝Z; Z 2 Z.C/;

where A ˝ Z has an obvious structure of a central object in the category of A-
bimodules. So the algebra L in Z.C/ defined by (15) is identified with the algebra
A ˝ I.1/ in Z.A-bimodC /. Hence, the category of L-modC is identified with the
category zM of A � I.1/-bimodules in C (recall that I.1/ is a commutative algebra
in Z.C/). Indecomposable components of zM are equivalent to A-modC and so they
are identified with M as C -bimodule categories, i.e., ‰ Bˆ.M/ Š M, as required.

It is easy to check that ˆ and ‰ are bijective on morphisms (cf. Remark 4.6).
This completes the proof of Theorem 1.1.

5.4. Generalization. Let B be a non-degenerate braided fusion category (see [7],
Definition 2.28). By [7], Proposition 3.7, this means that the braiding on B induces
an equivalence B � Brev ' Z.B/. Now let M be an invertible module category
over B (see Section 4.4) and let B�

M
D FunB.M;M/. Combining the equivalence

above with (12) we get an equivalence B � Brev ' Z.B�
M
/. The compositions

˛C W B D B � 1 � B � Brev ' Z.B�
M/ ! B�

M;

and

˛� W B D 1 � Brev � B � Brev ' Z.B�
M/ ! B�

M

are called alpha-induction functors; see e.g. [31]. Proposition 4.2 says that invert-
ibility of M is equivalent to ˛C and ˛� being tensor equivalences. Thus

˛C D ˛� B �M

where �M W B ! B is an auto-equivalence. One verifies directly that �M is actually
a braided auto-equivalence of B. Furthermore, the same argument as the one in the
end of Section 5.1 shows that �M naturally extends to a functor Pic.B/ ! EqBr.B/.

Conversely, let � 2 EqBr.B/. Then id � � 2 EqBr.B � Brev/ D EqBr.Z.B//.
Thus Theorem 1.1 assigns to � an invertible B-bimodule category M� . It follows
immediately from definitions that right and left actions of B on M� are related by
the braiding, so M� is an invertible module category over B. It is clear that this
assignment � 7! M� extends naturally to a functor EqBr.B/ ! Pic.B/. A careful
examination of the constructions involved shows the following result:

Theorem 5.2. For a non-degenerate braided fusion category B the functors above
are mutually inverse equivalences of Pic.B/ and EqBr.B/.

Details of the proof of Theorem 5.2 will be given in a subsequent article.
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Remark5.3. (i)We notice that the construction of �M above makes sense for arbitrary
braided fusion category B; see [31]. Thus, we have a monoidal functor

‚ W Pic.B/ ! EqBr.B/ W M 7! �M: (19)

However it is clear that (19) does not produce an equivalence as in Theorem 5.2. For
example it is clear that for a symmetric braided fusion category ˛C D ˛� for any M,
so �M D idB for any M in this case.

(ii) For a fusion category C the braided category Z.C/ is non-degenerate; see
[7], Corollary 3.9. Thus combining Theorem 1.1 and Proposition 3.11 we get an
equivalence Pic.Z.C// ' EqBr.Z.C// in this case. One verifies that this equivalence
and equivalence from Theorem 5.2 are canonically identified.

Remark 5.4. Given a braided category B we have a monoidal functor‚ W Pic.B/ !
EqBr.B/ given by (19). Recall that in Section 5.1 we constructed a monoidal equiv-
alence ˆ W BrPic.C/ ! EqBr.Z.C// for any fusion category C . The following
conceptual explanation of these functors were suggested to us by V. Drinfeld.

Namely, let A be a monoidal 2-category (see [23]). Then the monoidal category
End.1A/ of endofunctors of the unit object of A has a canonical structure of a braided
category (this is a higher categorical version of the well-known fact that endomor-
phisms of the unit object in a monoidal category form a commutative monoid). The
categorical group A� of invertible objects of A acts on End.1A/ by tensor conjuga-
tion. Hence, we have a monoidal functor

A� ! EqBr.End.1A//: (20)

For A D Bimodc.C/, the monoidal 2-category of C -bimodule categories over a
fusion category C , one has End.1A/ D Z.C/ and the above functor (20) is precisely
the functorˆ W BrPic.C/ ! EqBr.Z.C// from Section 5.1. For A D Modc.B/, the
monoidal 2-category of module categories over a braided fusion category B, it gives
the functor (19).

5.5. The truncation of the categorical 2-group of outer auto-equivalences of a
fusion category. For any fusion category C , we have a natural homomorphism of
categorical groups � W Eq.C/ ! Out.C/, attaching to every tensor auto-equivalence
its class of outer auto-equivalences.

Proposition 5.5. If C has no nontrivial invertible objects, then � is an isomorphism
of Eq.C/ onto the truncation Out.C/.

Proof. Let M be a quasi-trivial invertible bimodule category over C . Then there exists
a unique, up to an isomorphism, equivalence of left module categories C ! M, so
we may assume that M D C as a left module category. Then the right action of
C is given by some uniquely determined auto-equivalence �. Then we can define
��1.M/ D �.
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6. Invertibility of components of graded fusion categories

Let G be a finite group and let
C D L

g2G

Cg

be a graded fusion category, cf. Section 2.3. The trivial component Ce is a tensor
subcategory of C , and each Cg is a Ce-bimodule category. It follows that for all
g; h 2 G the tensor product of C restricts to a Ce-balanced bifunctor

˝W Cg � Ch ! Cgh;

which gives rise to a functor

Mg;h W Cg �Ce
Ch ! Cgh: (21)

Theorem 6.1. Let C D L
g2G Cg be a G-extension. Then:

(i) each Cg , g 2 G, is an invertible Ce-bimodule category;

(ii) the functor Mg;h W Cg �Ce
Ch ! Cgh, g; h 2 G, is an equivalence of Ce-bi-

module categories.

Proof. For each g 2 G let us pick a non-zero object Yg in Cg . Then Ag D Yg ˝ Y �
g

is an algebra in Ce (and, therefore, in C ). By [14], [31] the regular left C -module
category C is equivalent to the category of right Ag -modules in C , and the left
Ce-module category Cg is equivalent to the category of right Ag -modules in Ce .
Furthermore, there are tensor equivalences

Fg W C ��!� Ag -bimodules in C W X 7! Yg ˝X ˝ Y �
g ; g 2 G:

LetRg , g 2 G, denote the restriction of Fg to Ce . It establishes a tensor equivalence

Rg W Ce ��!� Ag -bimodules in Ce Š FunCe
.Cg ;Cg/:

It is straightforward to see thatRg coincides with the functor defined in (10). Passing
from right to leftAg -modules, one gets an equivalenceLg W C rev

e ��!� Fun.Cg ;Cg/Ce
.

By Proposition 4.2, Cg is an invertible Ce-bimodule category. This proves (i).
To prove (ii), note that tensor equivalences Fg , g 2 G, make the category of

.Ag ; Ah/-bimodules in C into a C -bimodule category, with the left (respectively
right) action of an objectX in C by multiplication byFg.X/ (respectively byFh.X/).
Thus we have C -bimodule equivalences

Fg;h W C Š .Ag � Ah/-bimodules in C W X 7! Yg ˝X ˝ Y �
h ; g; h 2 G:

Therefore, the restriction of Fg�1;h to Cgh establishes a Ce-bimodule equivalence
between Cgh and the category of .Ag�1 ; Ah/-bimodules in Ce . The latter category
is equivalent to FunCe

.Cg�1 ;Ch/ Š Cg �Ce
Ch.
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Thus, we have constructed a Ce-bimodule equivalence

Cg �Ce
Ch ! Cgh; g; h 2 G:

It is easy to see that it coincides with the functor (21) induced by the Ce-balanced
bifunctor ˝W Cg � Ch ! Cgh. Indeed, both functors are identified with

Cgh ! FunCe
.Cg�1 ;Ch/ W X 7! ‹˝X;

so the proof is complete.

Corollary 6.2. The dual category of Ce � C rev
e with respect to each Ce-bimodule

category Cg , g 2 G, is equivalent to the center Z.Ce/ of Ce:

.Ce � C rev
e /�Cg

Š Z.Ce/:

Proof. This follows by [14], Theorem 3.34, since .Ce/
�
Cg

Š C rev
e by Theorem 6.1.

Thus, a G-extension C defines a group homomorphism

c W G ! BrPic.Ce/:

The tensor product and associator of C give rise to an additional data which we will
investigate next.

7. Classification of extensions (topological version)

7.1. The classifying space of a categorical n-group. It is well known that any
categorical n-group G gives rise to a (connected) classifying space BG (well defined
up to homotopy), which determines the equivalence class of G uniquely (so that BG

carries the same information as G ). Moreover, the homotopy groups of BG are as
follows: �i .BG / D MoriC1.Xi ; Xi / for any i -morphism Xi for i D 1; : : : ; nC 1,
and �i .BG / D 0 if i � nC 2.

A convenient model for the space BG is the simplicial complex given by the
well-known “nerve” construction. For the convenience of the readers, we recall this
construction in the case of n D 2 (which is the highest value of n we will need). For
brevity we omit associativity isomorphisms.

Step 0. We start with one 0-simplex.
Step 1. For every isomorphism class x of objects of G , we pick an object repre-

senting x (which we also call x, abusing the notation) and add a 1-simplex sx .
Step 2. For every isomorphism classes of objects x1, x2 and an isomorphism class

of 1-morphisms f W x1 ˝ x2 ! x1x2, where x1x2 is the representative of x1 ˝ x2

chosen in the previous step, we pick a 1-morphism representing f (which we also call
f , abusing the notation), and add a 2-simplex sf such that @sf D sx1

C sx2
� sx1x2

.
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Step 3. For each isomorphism classes of objects x1, x2, x3, isomorphism classes
of 1-morphisms f1;2 W x1 ˝x2 ! x1x2, f2;3 W x2 ˝x3 ! x2x3, f12;3 W x1x2 ˝x3 !
x1x2x3, f12;3 W x1 ˝ x2x3 ! x1x2x3, where x1x2, x1x2x3, etc. are representatives
of tensor products chosen in Step 1, and a 2-morphism

g W f12;3 B .f1;2 ˝ id3/ ! f1;23 B .id1 ˝ f2;3/

we add a 3-simplex sg such that @sg D sf1;2
� sf1;23

C sf12;3
� sf2;3

.
Step 4. Given isomorphism classes of objects x1, x2, x3, x4, isomorphism classes

of 1-morphisms f1;2 W x1 ˝ x2 ! x1x2, f2;3 W x2 ˝ x3 ! x2x3, f3;4 W x3 ˝ x4 !
x3x4, f12;3 W x1x2 ˝ x3 ! x1x2x3, f1;23 W x1 ˝ x2x3 ! x1x2x3, f23;4 W x2x3 ˝
x4 ! x2x3x4, f2;34 W x2 ˝ x3x4 ! x2x3x4, f1;234 W x1 ˝ x2x3x4 ! x1x2x3x4,
f123;4 W x1x2x3 ˝ x4 ! x1x2x3x4, f12;34 W x1x2 ˝ x3x4 ! x1x2x3x4, and
2-morphisms

g1;2;3 W f12;3 B .f1;2 ˝ id3/ ! f1;23 B .id1 ˝ f2;3/;

g2;3;4 W f23;4 B .f2;3 ˝ id4/ ! f2;34 B .id2 ˝ f3;4/;

g1;23;4 W f123;4 B .f1;23 ˝ id4/ ! f1;234 B .id1 ˝ f23;4/;

g12;3;4 W f123;4 B .f12;3 ˝ id4/ ! f12;34 B .id12 ˝ f3;4/;

g1;2;34 W f12;34 B .f1;2 ˝ id34/ ! f1;234 B .id1 ˝ f2;34/

such that

.11 ˝ g2;3;4/ B g1;23;4 B .g1;2;3 ˝ 14/ D g1;2;34 B g12;3;4;

we add a single 4-simplex s whose boundary is

@s D sg1;2;3
� sg1;2;34

C sg1;23;4
� sg12;3;4

C sg2;3;4
:

Step k, k � 5. Any boundary of a k-simplex, k � 5, is filled in with a k-simplex.
Note that the obtained model is a Kan complex.

7.2. Homotopy groups of classifying spaces of higher groupoids attached to fu-
sion categories

Proposition 7.1. Let C be a fusion category and let BrPic.C/ be its Brauer–Picard
2-group introduced in Section 4.1. We have:

(i) �1.BBrPic.C// D BrPic.C/;
(ii) �2.BBrPic.C// D Inv.Z.C//, the group of isomorphism classes of invertible

objects in the Drinfeld center of C ;
(iii) �3.BBrPic.C// D k�;
(iv) �i .BBrPic.C// D 0 for all i � 4.
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Proof. (i) is clear. To prove (ii), we need to calculate the group of equivalence classes
of automorphisms of any object. Take the object C regarded as a C -bimodule. Its
endomorphisms as a C -bimodule is the dual category to C with respect to C � C rev,
so it is Z.C/ [14], Corollary 3.37. Thus the automorphisms are the invertible objects
in Z.C/. To prove (iii), we need to compute the group of automorphisms of any
1-morphism. Take this 1-morphism to be the neutral object in Z.C/. Then the group
of automorphisms is k�. (iv) is clear since by construction we have killed all the
homotopy groups of degree � 4.

Proposition 7.2. Let C be a fusion category, and let Out.C/ its categorical 2-group
of outer auto-equivalences introduced in Section 4.3. We have:

(i) �1.BOut.C// D Out.C/;
(ii) �2.BOut.C// D Inv.Z.C//;
(iii) �3.BOut.C// D k�;
(iv) �i .BPic.C// D 0 for i � 4.

Proposition 7.3. Let B be a braided fusion category, and let Pic.B/ its Picard
2-group introduced in Section 4.4. We have:

(i) �1.BPic.B// D Pic.B/;
(ii) �2.BPic.B// D Inv.B/, the group of isomorphism classes of invertible objects

of B;
(iii) �3.BPic.B// D k�;
(iv) �i .BPic.B// D 0 for i � 4.

Proposition 7.4. Let C be a fusion category, and let Eq.C/ be the categorical group
of auto-equivalences of C introduced in Section 4.5. We have:

(i) �1.BEq.C// D Eq.C/;
(ii) �2.BEq.C// D Aut˝.IdC /, the group of tensor isomorphisms of the identity

functor of C ;
(iii) �i .BEq.C// D 0 for i � 3.

Proposition 7.5. Let B be a braided fusion category, and let EqBr.B/ be the cat-
egorical group of braided auto-equivalences of B introduced in Section 4.6. We
have:

(i) �1.BEqBr.B// D EqBr.B/;
(ii) �2.BEqBr.B// D Aut˝.IdB/;
(iii) �i .BEqBr.B// D 0 for i � 3.

The proofs of Propositions 7.2, 7.3, 7.4 and 7.5 are analogous to that of Proposi-
tion 7.1.
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7.3. The Whitehead half-square and the braiding. Recall that for any i; j > 1

we have the Whitehead bracket Œ ; � W �i ��j ! �iCj �1 on homotopy groups of any
topological space. Also, since there is a map S3 ! S2 of Hopf invariant 1, we have
the Whitehead half-square mapW W �2 ! �3 such thatW.xCy/�W.x/�W.y/ D
Œx; y�.

The following proposition was pointed out to us by V. Drinfeld.

Proposition 7.6. Let B be a braided fusion category. For the space BBrPic.B/, the
Whitehead half-square mapW W �2 ! �3 is given by the braiding cZZ on invertible
objects Z 2 B. Therefore, the Whitehead bracket Œ ; � W �2 � �2 ! �3 coincides
with the squared braiding cZY cYZ on invertible objects Y;Z 2 B.

Proof. For any pointed space X , the fundamental groupoid of the double loop space

2.X/ is a braided monoidal category (see [33], Section 2.3). Note that �2.X/ D
�0.


2.X// and �3.X/ D �1.

2.X//. So, the map Z 7! cZZ , where c denotes the

braiding of the above category, defines a map �2.X/ ! �3.X/. We claim that this
map is the Whitehead half-square map. To prove this, it suffices to treat the universal
example X D S2. That is, one needs to show that for X D S2 the map in question
is the map Z D �2.S

2/ ! Z D �3.S
2/ given by n 7! n2. This is done by a

straightforward verification.

In particular, taking B D Z.C/, we find that the Whitehead half-square map and
the Whitehead bracket for BBrPic.C/ are given by the braiding on invertible objects
of Z.C/.

Remark. Proposition 7.6 can also be derived from [2], Chapter IV.

7.4. Classification of extensions. Now we would like to classify G-extensions C

of a given fusion category D . As we have seen in Theorem 6.1, such a category
necessarily defines a group homomorphism c W G ! BrPic.D/. We would like
to study additional data and conditions on them that define a category C given a
homomorphism c.

Theorem 7.7. Equivalence classes of G-extensions C of D are in bijection with
morphisms of categorical 2-groups G ! BrPic.D/, or, equivalently, with homotopy
classes of maps between their classifying spaces: BG ! BBrPic.D/.

Proof. Let us consider what it takes to define a continuous map � W BG!BBrPic.D/,
using the simplicial model of BrPic.D/ described above. Note that since our model
of BBrPic.D/ is a Kan complex, any map � is homotopic to a simplicial map, so it
suffices to restrict our attention to simplicial maps (which we will do from now on).

Step 1. Defining the map � at the level of 1-skeletons (up to homotopy)
obviously amounts to a choice of a set-theoretical map of fundamental groups
c W G ! BrPic.D/. On the categorical side, this is just a choice of an assignment
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g 7! c.g/ D Cg , g 2 G, where Cg is an invertible bimodule category over D . They
can be combined into a single D-bimodule category C D L

g Cg .
Step 2. Extendability of this � to the level of 2-skeletons amounts to the condition

that c is a group homomorphism. On the categorical side, this means that one has
equivalences Cg �D Ch Š Cgh and in particular Ce Š D .

Next, any choice of an extension of � to the level of 2-skeletons amounts to
picking the equivalences Mg;h W Cg �D Ch ! Cgh, which defines a functor ˝ of
tensor multiplication on C .

Step 3. Further, extendability of such a � to the level of 3-skeletons amounts, on
the categorical side, to the condition that there exists a functorial isomorphism

˛ W .� ˝ �/˝ � ! � ˝ .� ˝ �/

(respecting the D-bimodule structure but not necessarily satisfying the pentagon
relation), and once a good M (for which ˛ exists) has been fixed, the freedom of
choosing an extension of � to the level of 3-skeletons is a choice of ˛.

Step 4. Finally, once � has been extended to 3-skeletons, its extendability to the
level of 4-skeletons amounts to the condition that ˛ satisfies the pentagon relation.
Once such an ˛ has been fixed, there is a unique extension of � to the level of 4-
skeletons.

Step 5. Once � has been extended to a map of 4-skeletons, it canonically extends
to a map of skeletons of all dimensions.

The theorem is proved.

7.5. Proof of Theorem 1.3. Theorem 1.3 follows from Theorem 7.7 and classical
obstruction theory in algebraic topology. Let us describe this derivation in more
detail. For brevity we denote the homotopy groups BBrPic.D/ just by �i , without
specifying the space.

Let us go back to the proof of Theorem 7.7. At Step 3, it may be necessary to
modifyM D .Mg;h/ to secure the existence of ˛. But even if we allow modifications
of M , there is an obstruction O3.c/ to the existence of ˛. Let us discuss the nature
of this obstruction.

If we have a map � of 2-skeletons, then the condition for this map to be extendable
to3-skeletons is that for every3-simplex� � BG, �.@�/ represents the trivial element
in the group �2. Thus we get an obstruction which is a 3-cochain of G with values
in �2. It is easy to see that this 3-cochain is actually a cocycle (where G acts on
�2 via the homomorphism c), i.e., we get an obstruction  2 Z3.G; �2/. Now
M can be modified by adding a 2-cochain � on G with coefficients in �2, and this
modification replaces  with  C d�. This implies that the actual obstruction to
extending � to 3-skeletons (allowing the modifications of M ) is the cohomology
class Œ � D O3.c/ 2 H 3.G; �2/.

If the obstructionO3.c/ vanishes, then, as we see from the above, the freedom of
choosing M so that � is extendable to 3-skeletons is in H 2.G; �2/. That is, we can
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modify M by adding a cocycle � 2 Z2.G; �2/, but if � is a coboundary, then the
homotopy class of the extension does not change.

Further, at Step 4, there is an obstructionO4.c;M/ to choosing ˛. Let us discuss
its nature.

If we have a map � of 3-skeletons, then the condition for this map to be extendable
to4-skeletons is that for every4-simplex� � BG, �.@�/ represents the trivial element
in the group �3. Thus we get an obstruction which is a 4-cochain of G with values
in �3. It is easy to see that this 4-cochain is actually a cocycle, i.e., we get an
obstruction 
 2 Z4.G; �3/. Now ˛ can be modified by adding a 3-cochain � on G
with coefficients in �3, and this modification replaces 
 with 
C d� . This implies
that the actual obstruction to extending � to 4-skeletons (allowing the modifications
of ˛) is the cohomology class Œ
� D O4.c;M/ 2 H 4.G; �3/.

If the obstructionO4.c;M/ vanishes, then, as we see from the above, the freedom
of choosing ˛ so that � is extendable to 4-skeletons is in H 3.G; �3/. That is, we
can modify ˛ by adding a cocycle � 2 Z3.G; �3/, but if � is a coboundary, then the
homotopy class of the extension does not change.

This proves Theorem 1.3.

7.6. Classification of group actions on fusion categories

Proposition 7.8. (i) Actions of a group G by auto-equivalences of a fusion category
C , up to an isomorphism, are in natural bijection with homotopy classes of mappings
BG ! BEq.C/.

(ii)Actions of a groupG by braided auto-equivalences of a braided fusion category
B, up to an isomorphism, are in natural bijection with homotopy classes of mappings
BG ! BEqBr.B/.

Proof. (i) We argue as in the previous subsection. Namely, a map between 2-skeletons
of the spaces in question is the same thing as an assignment g ! Fg that attaches
to every g 2 G a tensor equivalence Fg W C ! C and a collection of functorial
isomorphisms 
g;h W Fg BFh ! Fgh, g; h 2 G. This map is extendable to 3-skeletons
if and only if 
g;h satisfies the 2-cocycle condition, i.e., if the data .Fg ; 
g;h/ is an
action ofG on C by tensor auto-equivalences. Note that the extension to 3-skeletons
is unique if it exists, and extends uniquely to skeletons of higher dimensions. So (i)
is proved.

(ii) is proved similarly.

Corollary 7.9 ([16], Theorem 5.5). (i) Actions of a group G by tensor auto-equiva-
lences of a fusion category C , up to an isomorphism, are parametrized by pairs .c; 
/,
where c W G ! Eq.B/ is a homomorphism such that the corresponding first obstruc-
tion O3.c/ 2 H 3.G;Aut˝.IdC // vanishes and 
 D .
g;h/ is the equivalence class
of the identification Fg B Fh ! Fgh belonging to a torsor overH 2.G;Aut˝.IdC //.
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(ii) Actions of a group G by braided auto-equivalences of a braided fusion cat-
egory B, up to an isomorphism, are parametrized by pairs .c; 
/, where c W G !
EqBr.B/ is a homomorphism such that the corresponding first obstruction O3.c/ 2
H 3.G;Aut˝.IdB// vanishes and 
 D .
g;h/ is the equivalence class of the identifi-
cation Fg B Fh ! Fgh belonging to a torsor overH 2.G;Aut˝.IdB//.

7.7. Classification of quasi-trivial extensions. Let G be a finite group, and D a
fusion category. We call aG-extension C of D quasi-trivial if every category Cg is a
quasi-trivial bimodule category over D . This condition is equivalent to the condition
that C is strongly G-graded in the sense of [16], i.e., every category Cg contains an
invertible object.

The following proposition is a corollary of Theorem 7.7.

Proposition 7.10. Quasi-trivial G-extensions of D , up to graded equivalence, are
in natural bijection with homotopy classes of mappings BG ! BOut.D/.

Remark 7.11. Note that a mapping � W BG ! BOut.D/ is representable as � D
B� B�, where � W Eq.D/ ! Out.D/ is defined in Section 5.5 and � W BG ! Eq.D/ if
and only if the corresponding quasi-trivial extension is trivial, i.e., C is the semidirect
product category VecG Ë D for the G-action on D corresponding to �.

7.8. Classification of faithfully graded braided G -crossed fusion categories. Let
G be a finite group. The notion of a braided G-crossed fusion category is due to
Turaev; see [39], [38]. By definition, it is a G-graded category

C D L
g2G

Cg ; (22)

equipped with an action of G such that g.Ch/ D Cghg�1 and a natural family of
isomorphisms

cX;Y W X ˝ Y ��!� g.Y /˝X; g 2 G; X 2 Cg ; Y 2 C ;

called theG-braiding. The above action andG-braiding are required to satisfy certain
natural compatibility conditions. In particular, the trivial component B ´ Ce is a
braided fusion category. We refer the reader to [39], [38] for the precise definition
and to [7], § 4.4.3, for a detailed discussion of braided G-crossed categories.

Below we only consider braidedG-crossed fusion categories with a faithful grad-
ing (22). The general case will be treated elsewhere.

Theorem 7.12. Let B be a braided fusion category. Equivalence classes of braided
G-crossed categories C having a faithfulG-grading with the trivial component B are
in bijection with morphisms of categorical 2-groups G ! Pic.B/, or, equivalently,
with homotopy classes of maps between their classifying spaces BG ! BPic.B/.
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Proof. Since Pic.B/ 	 BrPic.B/, it follows from Theorem 7.7 that a morphism
G ! Pic.B/determines aG-extension C of B. It remains to check that the additional
condition that each Cg , g 2 G, is an invertible B-module category is equivalent to
the existence of an action of G and a G-braiding on C .

Indeed, if the image of G is inside Pic.B/ then for all g; h 2 G the category
FunB.Cg ;Cgh/ of B-module functors from Cg to Cgh is identified, on the one hand,
with functors of right tensor multiplication by objects of Ch and, on the other hand,
with functors of left tensor multiplication by objects of Cghg�1 . So there is an
equivalence g W Ch ! Cghg�1 defined by the isomorphism of B-module functors

‹˝ Y Š g.Y /˝ ‹ W Cg ! Cgh; Y 2 Ch: (23)

Extending it to C by linearity we obtain an action of G by tensor auto-equivalences
of C . Furthermore, evaluating (23) onX 2 Cg we obtain a natural family of isomor-
phisms

X ˝ Y ��!� g.Y /˝X; g 2 G; X 2 Cg ; Y 2 C ;

which gives a G-braiding on C .
To prove the converse, one can follow the proof of Theorem 6.1 to verify that

components of a braided G-crossed category are invertible module categories over
its trivial component.

Remark 7.13. The somewhat similar problem of classifyingG-extensions of braided
2-groups is discussed in by E. Jenkins in [21] (the notion of aG-extension of a braided
2-group is defined in [7], Appendix E, Definition E.8).

8. Classification of extensions (algebraic version)

Now we would like to retell the contents of the previous section in a purely alge-
braic language, without using homotopy theory, and thus give an algebraic proof of
Theorem 1.3.

8.1. Decategorification. We start by recalling a well-known decategorified version
of Theorem 1.3. Let G be a group and let R D L

g2G Rg be a G-graded ring.
Recall that R is called strongly graded if the multiplication map Rg ˝Z Rh ! Rgh

is surjective; in this situation we say that R is strongly G-graded extension of Re .
By [5] for a strongly G-graded ring R the induced maps Rg ˝Re

Rh ! Rgh are
isomorphisms; in particularRg is an invertibleRe-bimodule for any g 2 G. Thus any
strongly G-graded ring R defines a homomorphism g 7! Rg of 2-groupoids G !
Pic.Re/, where Pic.Re/ is the 2-groupoid of invertibleRe-bimodules. Conversely, it
is clear that any homomorphism of 2-groupoids G ! Pic.S/ determines a strongly
G-graded extension of S .
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By definition, the group of 1-morphisms in Pic.S/ is the group of isomorphism
classes of invertible S -bimodules Pic.S/ and the group of 2-endomorphisms of the
unit 1-morphism (which is S considered as an S -bimodule) is the group Z.S/� of
invertible elements of the center Z.S/ of S . Thus the group Pic.S/ acts on the
abelian group Z.S/� and the equivalence class of 2-groupoid Pic.S/ is completely
determined by a class ! 2 H 3.Pic.S/;Z.S/�/. Thus we obtain the following result:

Theorem 8.1 (see [3]). There exists a class ! 2 H 3.Pic.S/;Z.S/�/ such that
strongly G-graded extensions of a ring S corresponding to a homomorphism
� W G ! Pic.S/ form an H 2.G;Z.S/�/�torsor which is nonempty if and only
if ��.!/ D 0 2 H 3.G;Z.S/�/.

8.2. Cohomological data determined by a G -extension. Let

C D L
g2G

Cg

be a G-graded fusion category and let D ´ Ce (i.e., C is a G-extension of D). By
Theorem 6.1 for each pair g; h 2 G there is an equivalence of D-bimodule categories

Mg;h W Cg �D Ch Š Cgh; (24)

which comes from the restriction of the tensor product of ˝W C � C ! C to

˝g;h W Cg � Ch ! Cgh: (25)

For all g; h 2 G let

Bg;h ´ BCg;Ch
W Cg � Ch ! Cg �D Ch

be the canonical functor coming from Definition 3.3. For all f; g; h 2 G consider
the following diagram of D-bimodule categories and functors:

Cf �D Cg � Ch

Mf;g

��
Bg;h



�������
Cf � Cg � Ch

Bf;g�� Bg;h ��

f̋;g
��														

˝g;h



��������������
Cf � Cg �D Ch

Mg;h

��Bf;g
��	 	 	 	 	 	 	

Cfg � Ch

Bfg;h

��
f̋g;h



����������������
Cf �D Cg �D Ch

Mf;g

��	 	 	 	 	 	 	
Mg;h



�������
Cf � Cgh

Bf;gh

��
f̋;gh

��																

Cfg �D Ch
Mfg;h

�� Cfgh Cf �D Cgh.
Mf;gh

��

(26)

In this diagram we will refer to polygons formed by solid lines as those in the “front”
and to polygons formed by dotted lines as the “rear”. The four triangles in the front
commute by the universal property of tensor product of module categories. The square
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in the front commutes up to an associativity constraint, which is an isomorphism of
D-bimodule functors. Hence, the perimeter of the diagram commutes up to a natural
isomorphism of D-bimodule functors. The upper rear quadrangle commutes by
Remark 3.6 (ii) and the left and right rear quadrangles commute since functors Bg;h,
g; h 2 G, come from D-balanced functors. Therefore, the lower quadrangle in the
rear commutes up to a natural isomorphism of D-bimodule functors:

f̨;g;h W Mf;gh.IdCf
�D Mg;h/ Š Mfg;h.Mf;g �D IdCh

/: (27)

Equivalently, the D-bimodule functor

Tf;g;h ´ Mfg;h.Mf;g �D IdCh
/.IdCf

�D M�1
g;h/M

�1
f;gh W Cfgh ! Cfgh (28)

is isomorphic (as a D-bimodule functor) to the identity.
The pentagon axiom for the tensor product in C implies the equality of natural

transformations

Mf;ghk.idf �D ˛g;h;k/ B f̨;gh;k.IdCf
�D Mg;h �D IdCk

/

BMfgh;k. f̨;g;h �D idk/

D f̨;g;hk.IdCf
�D IdCg

�D Mh;k/ B f̨g;h;k.Mf;g �D IdCh
�D IdCk

/

(29)

for all f; g; h; k 2 G (note that we use the notation Id for the identity functor and id
for the identity morphism).

8.3. An action determined by a G -extension. Let C D L
g2G Cg be a G-

extension of Ce μ D . We continue to use the notation introduced in Section 8.3,
see (24) and (25).

For a D-bimodule category M, any D-bimodule functor M ! M is by definition
an object of the dual category .D �D rev/�

M
. Hence by Corollary 6.2 the groupZg ´

AutD.Cg/ of D-bimodule auto-equivalences of Cg is abelian and is isomorphic to
the group Z ´ Ze of isomorphism classes of invertible objects in Z.D/.

Observe that for all g; f 2 G there are group isomorphisms if;g W Zg Š Zgf and
jf;g W Zg Š Zfg defined by

if;g.b/ ´ Mg;f B .b �D IdCf
/ BM�1

g;f ; (30)

jf;g.b/ ´ Mf;g B .IdCf
�D b/ BM�1

f;g (31)

for all b 2 Zg . One can easily check that for all f; h; g 2 G there are equalities

if h;g D ih;gf if;g and jf h;g D jf;hgjh;g : (32)

It follows from (27) that the isomorphisms i and j commute with each other, i.e., for
all f; g; h 2 G there is an equality

if;hgjh;g D jh;gf if;g : (33)
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Define an action of G on Z by � W G ! Aut.Z/ W g 7! �g where

�g ´ ig�1;g jg;1; g 2 G: (34)

Proposition 8.2. The action � W G ! Aut.Z/ depends only on the homomorphism
c W G ! BrPic.Ce/; it does not depend on the choice ofMg;h W Cg �D Ch Š Cgh.

Proof. It suffices to show that isomorphisms if;g , jf;g defined by equations (30) and
(31) do not depend on the choice of equivalences Mg;h.

Indeed, if M 0
g;h

W Cg �D Ch Š Cgh is another D-bimodule equivalence then
M 0

g;h
D Lg;h B Mg;h where Lg;h 2 AutD.Cgh/. It follows that isomorphisms

AutD.Cg/ Š AutD.Cgh/ determined by Mg;h and M 0
g;h

differ by a conjugation by
Lg;h. But since AutD.Cgh/ is abelian, this conjugation is trivial.

The following summarizes Sections 8.2 and 8.3. AG-extension C determines the
following data:

(1) a fusion category D , a collection of invertible D-bimodule categories Cg ; g 2 G
such that Ce Š D , and an action � of G by automorphisms of the group Z of
invertible objects of Z.D/;

(2) a collection of D-bimodule isomorphisms Mgh W Cg �D Ch Š Cgh such that
eachTf;g;h defined by (28) is isomorphic to the identity as a D-bimodule functor;

(3) natural isomorphisms f̨;g;h (27) satisfying identity (29).

In the next few subsections we will investigate when a set of data with the above
properties gives rise to a G-extension.

8.4. Obstruction to the existence of tensor product. Let us consider a situation
opposite to the one studied in Section 8.2. Let G be a finite group. Suppose that we
are given a fusion category D , a group homomorphism c W G ! BrPic.D/, g 7! Cg ,
and there are D-bimodule equivalences

Mg;h W Cg �D Ch Š Cgh

for all g; h 2 G such that isomorphisms (27) exist. Let � W G ! Aut.Z/, where
Z ´ AutD�Dop .D/ be the action of G defined in Section 8.3. By Proposition 8.2,
� depends only on c and not on the choice Mg;h; g; h 2 G. We would like to
parameterize fusion category structures on C D L

g2G Cg which give rise to this
data.

First, let us investigate the existence of aG-graded quasi-tensor category structure
on C . By a quasi-tensor category we mean a category C with a bifunctor ˝W C �C !
C such that ˝ B .˝ � IdC / Š ˝ B .IdC � ˝/ (so we do not yet require existence of
an associativity constraint for ˝).

As before, let Zg D AutD.Cg/. Then Z ´ Ze is the group of invertible objects
in Z.D/. We have isomorphisms ig;1 W Z Š Zg for all g 2 G.
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For all f; g; h 2 G let

Tf;g;h D Mfg;h.Mf;g �D IdCh
/.IdCf

�D M�1
g;h/M

�1
f;gh:

Then xTf;g;h D i�1
fgh;1

.Tf;g;h/ defines a function onG3 with values in the abelian group

Z. One can directly check that xTf;g;h is an element ofZ3.G;Z/, i.e., a 3-cocycle on
G with values in Z (the latter is a G-module via �). Let us find how this function
depends on the choice of equivalences Mg;h.

Suppose that each Mg;h is replaced by M 0
g;h

D Lg;h BMg;h where Lg;h 2 Zgh

as above. Then the corresponding function on G3 with values in Zfgh is

T 0
f;g;h D M 0

fg;h.M
0

f;g �D IdCh
/.IdCf

�D M 0�1
g;h /M

0�1
f;gh

D Lfg;hMfg;h.Lf;gMf;g �D IdCh
/.IdCf

�D M�1
g;hL

�1
g;h/M

�1
f;ghL

�1
f;gh

D Lfg;h ih;fg.Lf;g/ jf;gh.L
�1
g;h/ L

�1
f;gh Tf;g;h:

Let NLg;h ´ i�1
gh;1

.Lg;h/ 2 Z. We compute, using equations (32), (33) and definition
(34) of the action �:

xT 0
f;g;h D i�1

fgh;1.T
0

f;g;h/

D NLfg;h i
�1

fgh;1ih;fg ifg;1. NLf;g/ i
�1

fgh;1jf;ghigh;1. NL�1
g;h/

NL�1
f;gh

xTf;g;h

D NLfg;h
NLf;g �f . NL�1

g;h/
NL�1
f;gh

xTf;g;h:

Thus, the function xT 0 differs from xT by a coboundary. This yields a cohomology
class in H 3.G;Z/ independent on the choice of the equivalences Mg;h.

Definition 8.3. We will call the cohomology class of xT in H 3.G;Z/ the tensor
product obstruction class and denote it O3.c/.

Theorem 8.4. Let G be a finite group and let D be a fusion category. Let

c W G ! BrPic.D/ W g 7! Cg

be a group homomorphism. Then there exist D-bimodule category equivalences
Ce Š D and Cg �D Ch Š Cgh, g; h 2 G, defining a D-bimodule tensor product
˝ on C D L

g2G Cg such that ˝ B .˝ � IdC / Š ˝ B .IdC � ˝/ if and only if the
obstruction class O3.c/ is the trivial element ofH 3.G;Z/.

Proof. Consider the diagram of functors (26). It was explained above that its natural
D-bimodule commutativity is equivalent to the natural D-bimodule isomorphism
Tf;g;h Š IdCfgh

, f; g; h 2 G. The latter is equivalent to xT being cohomologous to 1
in Z3.G;Z/.
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8.5. Construction of a quasi-tensor product

Theorem 8.5. Suppose that the obstruction classO3.c/ vanishes. Then isomorphism
classes of D-bimodule tensor products on C D L

g2G Cg form a torsor over the
second cohomology groupH 2.G;Z/.

Proof. Choose D-bimodule equivalencesMg;h W Cg �D Ch Š Cgh for all g; h 2 G
and natural isomorphisms of D-bimodule functors

f̨;g;h W Mfg;h.Mf;g �D IdCh
/ ��!� Mf;gh.IdCf

�D Mg;h/; (35)

which give rise to a natural isomorphism

˛ W ˝ B.˝ � IdC / ��!� ˝ B .IdC � ˝/:

The computations done in the previous subsection show that replacing eachMg;h by
Lg;h BMg;h where Lg;h 2 Zgh makes the two sides of (35) differ by

NLfg;h
NLf;g �f . NL�1

g;h/
NL�1
f;gh 2 Z:

Thus, substituting Lg;h BMg;h for Mg;h does not affect the existence of an iso-
morphism ˛ as in (35) if and only if NL 2 Z2.G;Z/ is a 2-cocycle. Clearly, two
2-cocycles define isomorphic tensor products if and only if they are cohomologous.

Thus, in the case when O3.c/ is cohomologically trivial, one defines a tensor
product on C D L

g2G Cg as follows. Choose D-bimodule equivalences

Mg;h W Cg �D Ch Š Cgh

and natural isomorphisms f̨;g;h as in (35). Then each Mg;h gives rise to a product
˝g;h W Cg � Ch ! Cgh and f̨;g;h gives rise to an isomorphism

f̋;gh B .IdCf
� ˝g;h/ Š f̋g;h B . f̋;g � IdCh

/:

8.6. Obstruction to the existence of an associativity constraint. We continue to
assume that the tensor product obstruction O3.c/ vanishes, i.e., that c gives rise to a
D-bimodule quasi-tensor product on C D L

g2G Cg .
Let us determine when this quasi-tensor product is in fact a tensor product, i.e.,

when it admits an associativity constraint satisfying the pentagon equation. Choose
a collection of D-bimodule category equivalences

M D fMg;h W Cg �D Ch Š Cghg
and natural isomorphisms f̨;g;h as in (35).
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Definition 8.6. We will call M D fMg;h W Cg �D Ch Š Cghgg;h2G a system of
products.

By Theorem 8.5, M is an element of an H 2.G;Z/-torsor.
Note that each f̨;g;h is determined up to an automorphism of a simple object in

Z.Ce/, i.e., up to a non-zero scalar.
For all f; g; h; k 2 G let us consider the following cube whose vertices are D-

bimodule categories, edges are D-bimodule equivalencesMa;b , and faces are natural
isomorphisms ˛a;b;c ; a; b; c 2 G, see (35) (to keep the diagram readable, only the
faces are labeled):

Cf �D Cg �D Ch �D Ck
��

��

��
























 Cfg �D Ch �D Ck

��
























���
�
�
�
�
�
�

Cf �D Cg �D Chk

��

�� Cfg �D Chk

��

Cf �D Cgh �D Ck
������

��


























 Cfgh �D Ck

��














Cf �D Cghk
�� Cfghk .

˛g;h;k
��������������������

������������������

f̨;g;h



 





























f̨g;h;k

����������

��������f̨;gh;k ���������� ��������

f̨;g;hk

�� ��
��

��
��

�

��
��

��
��

�

The composition of the natural transformations corresponding to faces of this cube
is a D-bimodule automorphism of the functor

Mfgh;k B .Mfg;h �D IdCk
/ B .Mf;g �D IdCh

�D IdCk
/;

i.e., the scalar

�f;g;h;k

´ .Mf;g �D IdCh
�D IdCk

/˛�1
fg;h;k B .IdCf

�D IdCg
�D Mh;k/˛

�1
f;g;hk

BMf;ghk.idf �D ˛g;h;k/ B f̨;gh;k.IdCf
�D Mg;h �D IdCk

/

BMfgh;k. f̨;g;h �D idk/:

(36)

The commutativity of the above cube is equivalent to the existence of an associa-
tivity constraint for C satisfying the pentagon axiom. The cube commutes if and only
if f f̨;g;hgf;g;h2G can be chosen in such a way that �f;g;h;k D 1. See [23] regarding
the notions of composition of faces and commutativity of a polytope.

It is easy to check that the above � is a 4-cocycle on G with values in k�. Let us
determine how � changes when we change the choice of ˛. Let

˛0
f;g;h D f̨;g;h�f;g;h; where �f;g;h 2 k�: (37)

Then the corresponding scalar is

�0
f;g;h;k D �f;g;h;k�

�1
f;g;hk�

�1
fg;h;k�g;h;k�f;gh;k�f;g;h: (38)
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Therefore, there is a canonical element inH 4.G;k�/ (the class of �) which depends
only on c and the choice of M .

Definition 8.7. We will call this element the associativity constraint obstruction class
and denote it O4.c;M/.

Theorem 8.8. Suppose that a homomorphism c W G ! BrPic.D/ is such that C DL
g2G Cg (with Ce D D) admits a D-bimodule quasi-tensor product via a choice

of a system of products M . Then this product admits an associativity constraint
satisfying the pentagon equation if and only if O4.c;M/ is the trivial element of
H 4.G;k�/.

Proof. Clear from the discussion above.

Let C D L
g2G Cg be aG-extension and let ˛X;Y;Z be the associativity constraint

for the tensor product of C , where X , Y , Z are objects in C . Given a 3-cocycle
! 2 Z3.G;k�/ one can define a new associator

˛!
X;Y;Z ´ !.f; g; h/˛X;Y;Z

for all X 2 Cf , Y 2 Cg , Z 2 Ch.
Let ˛0

X;Y;Z be another associativity constraint for the tensor product of C . We will
say that ˛0 is equivalent to ˛ if ˛0 D ˛! for some coboundary !. Clearly, equivalent
associators determine equivalent tensor categories.

Theorem 8.9. Suppose that the obstruction classes O3.c/ and O4.c;M/ vanish.
Then the equivalence classes of associativity constraints for the tensor product of
C D L

g2G Cg coming from the system of products M form a torsor T 2
c over

H 3.G;k�/.

Proof. The proof is similar to the proof of Theorem 8.5. We need to establish a bijec-
tion between the choices of ˛ D f f̨;g;hgf;g;h2G leading to associativity constraints
on C and elements of H 3.G;k�/. If one such ˛ is chosen, any other choice has a
form (37). From equation (38) we see that the corresponding coboundary �0

f;g;h;k
is

equal to 1 precisely when

�f;g;h�f;gh;k�g;h;k D �fg;h;k�f;g;hk; f; g; h; k 2 G;

i.e., when � is a 3-cocycle. Moreover, two 3-cocycles are cohomologous if and only
if the corresponding associators on C are equivalent.

8.7. The associativity constraint and thePontryagin–Whiteheadquadratic func-
tion. Let E be a pointed braided fusion category, and let A be the group of iso-
morphism classes of invertible objects of E . Let G be a finite group acting on
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E by braided auto-equivalences. In this situation we can define a quadratic map
PW W H 2.G;A/ ! H 4.G;k�/, which we call the Pontryagin–Whitehead quadratic
function, as follows.

Let
L W G �G ! A W .f; g/ 7! Lf;g

be a 2-cocycle of G with coefficients in A, i.e., a collection of simple objects of E

such that there exist isomorphisms

�f;g;h W Lfg;h ˝ Lf;g Š Lf;gh ˝ f .Lg;h/; f; g; h 2 G: (39)

Then we can consider the automorphism of Lfgh;k ˝ Lfg;h ˝ Lf;g (identified with
a scalar) �f;g;h;k , given by the composition

Lfgh;k ˝ Lfg;h ˝ Lf;g ! Lfgh;k ˝ Lf;gh ˝ f .Lg;h/

! Lf;ghk ˝ f .Lgh;k/˝ f .Lg;h/ ! Lf;ghk ˝ f .Lg;hk/˝ fg.Lh;k/

! Lfg;hk ˝ Lf;g ˝ fg.Lh;k/ ! Lfg;hk ˝ fg.Lh;k/˝ Lf;g

! Lfgh;k ˝ Lfg;h ˝ Lf;g ;

where we suppress the associativity isomorphisms, and all the maps except the fifth
map are given by the isomorphisms �x;y;z from (39) for appropriate x, y, z, while
the fifth map is given by the braiding acting on Lf;g ˝ fg.Lh;k/.

Proposition 8.10. (i) � is a 4-cocycle of G with coefficients in k�.
(ii) If � is changed by a cochain �x;y;z , then � is multiplied by d� (so the coho-

mology class of � does not change).
(iii) If Lf;g is changed by a coboundary, i.e., replaced by

L0
f;g D Xfg ˝ Lf;g ˝ f .X�1

g /˝X�1
f ;

where .Xf / is a collection of simple objects, then � is changed by a coboundary.

Proof. Straightforward verification.

Definition 8.11. The map PW W H 2.G;A/ ! H 4.G;k�/ is defined by

PW.L/ D �:

Note that if the action of G on E is altered by an element � 2 H 2.G;A�/ (by
changing the isomorphisms 
g;h W Fg B Fh ��!� Fgh), then the map PW is modified
according to the rule

PW0.L/ D PW.L/.L; �/;

where . ; / W H 2.G;A/�H 2.G;A�/ ! H 4.G;k�/ is the evaluation map combined
with the cup product in the cohomology of G.
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Let q be the quadratic form on A defined by the braiding on E (q.Z/ D cZZ),
and bq be the corresponding symmetric bilinear form (bq.Y;Z/ D cYZcZY ). The
following proposition shows that PW is indeed a quadratic function.

Proposition 8.12. PW.L1L2/ D PW.L1/PW.L2/bq.L1; L2/.

Proof. This is verified by a direct computation from the definition, by using the
hexagon relations for the braiding.

Now let us assume that jAj is odd. Then E D VecA, and the braiding on E is
canonically defined by the quadratic form q on A, which is, in turn, determined by
the corresponding symmetric bilinear form bq . Thus, every homomorphism � W G !
O.A; q/ canonically defines an action of G on E . In this case, we can pick the
associativity morphisms and the maps �x;y;z to be the identities, and one gets

�f;g;h;k D cLf;g;fg.Lh;k/: (40)

Proposition 8.13. For the canonical action of G on E , one has

PW.L/ D bq.L
1=2; L/

(i.e., PW.L/ is bq applied to the cup product ofL1=2 withL). Thus, for the canonical
action shifted by � 2 H 2.G;A�/, one has

PW.L/ D bq.L
1=2; L/.L; �/:

Proof. This follows from formula (40).

Remark 8.14. The map PW can be alternatively characterized as follows. Since
G acts on E by braided auto-equivalences, it acts canonically on the Drinfeld center
Z.E/. Note that Z.E/ is a pointed category, and its group of simple objects isA˚A�.
Thus, an element L 2 H 2.G;A/ is nothing but a way to alter the canonical action of
G on Z.E/ (keeping its action on isomorphism classes of objects fixed), so that its
action on E � Z.E/ remains the same. By Theorem 1.1 and Theorem 1.3, having
fixed L, we fix a collection of E-bimodule categories Eg , g 2 G, with a tensor
product functor on them. Then PW.L/ is nothing but the obstructionO4.c; L/ to the
existence of the associativity constraint for this tensor product functor.

Now let D be any fusion category. Let c W G ! BrPic.D/ be a group ho-
momorphism, c.g/ D Cg , and let M D .Mg;h/ be a choice of isomorphisms
Cg �D Ch ! Cgh defining a tensor product functor on C D L

g Cg . Then G
acts on the braided category Z.D/, in particular, on the subcategory of its invertible
objects. Thus, we have the Pontryagin–Whitehead quadratic function

PWM W H 2.G; �2/ ! H 4.G; �3/;

where �2 D Inv.Z.D//, �3 D k�.
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Proposition 8.15. For any L 2 H 2.G; �2/, one has

O4.c; LM/=O4.c;M/ D PWM .L/:

Thus, for L1; L2 2 H 2.G; �2/, one has

O4.c; L1L2M/O4.c;M/

O4.c; L1M/O4.c; L2M/
D ŒL1; L2�;

where Œ ; � is theWhitehead bracket combined with the cup product in the cohomology
of G.

Proof. The first statement follows by replacing M by LM in the commutative cube
in Section 8.6 and applying the definition of PWM . The second statement follows
from the first one and Proposition 8.12.

Remark. A version of the map PW is discussed in [2], ChapterV, and under additional
assumptions the above results can be derived from the statements in [2].

8.8. A divisibility theorem. The following theorem is somewhat analogous to the
Anderson–Moore–Vafa theorem for tensor categories (see [10]).

Theorem 8.16. Let D be the Frobenius–Perron dimension of D . Then the order of
O4.c;M/ inH 4.G;k�/ dividesD4.

Proof. For a 2 G, let Ra D L
X2IrrCa

FPdim.X/X be the regular (virtual) object of
Ca (where the Frobenius–Perron dimensions in Ca are normalized in such a way that
FPdim.Ra/ D D). Let us apply equation (36) to the product Rf ˝ Rg ˝ Rh ˝ Rk

and compute the determinants of both sides (where the determinant is understood in
the sense of [10], Section 2). Since � is a scalar, on the left-hand side we get �D4

f;g;h;k
.

To compute the right-hand side, we use that Ra ˝Rb D DRab . Then the right-hand
side takes the form

det. f̨g;h;k/
�D det. f̨;g;hk/

�D det.˛g;h;k/
D det. f̨;gh;k/

D det. f̨;g;h/
D:

Thus we see that
�D4 D d.det.˛/D/;

where d is the differential in the standard complex ofG with coefficients in k�. This
implies the statement.

9. Examples of extensions

Throughout this section we freely use the notation and terminology from the previous
sections.
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9.1. Extensions of finite groups. LetG be a finite group. The problem of finding all
G-extensions of a fusion category D (i.e.,G-graded fusion categories C D L

g2G Cg

with a prescribed identity component Ce D D) includes, as a special case, the
classical theory of group extensions [9].

Indeed, let H be a finite group and let D D VecH be the fusion category of H -
graded vector spaces with the trivial associator. For any automorphism ˛ 2 Aut.H/
let M˛ be the D-bimodule category which is D as an abelian category, with the
actions given by

kh ˝ kx D k˛.h/x and kx ˝ kh D kxh; h; x 2 H;
where kh; h 2 H are the simple objects of VecH and with the usual vector space
associator. Note that M˛ is a typical example of an indecomposable D-bimodule
category which is equivalent to D as a right D-module category.

It is easy to check that M˛ is isomorphic to the regular D-bimodule category
if and only if ˛ is an inner automorphism and that M˛ �D Mˇ Š M˛ˇ for all
˛; ˇ 2 Aut.H/. In particular, each M˛ is an invertible D-bimodule category.

Thus, in this case a homomorphism c W G ! BrPic.D/ with the property that
each Cg is equivalent to D as a right D-module category is the same thing as a
homomorphism c W G ! Out.H/ to the quotient of Aut.H/ by the subgroup of inner
automorphisms. For such a homomorphism choose a representative �g 2 Aut.H/
from each coset c.g/ and let Cg D M�g

.
If there is a fusion category structure on C D L

g2G Cg then this category is
pointed and hence is equivalent to a category of K-graded vector spaces for some
group K, possibly with a 3-cocycle !. It is clear that this K is an extension of G by
H , i.e., there is a short exact sequence of finite groups

1 ! H ! K ! G ! 1: (41)

In this case the group Z is isomorphic to Z.H/ ˚ Hom.H;k�/, where Z.H/ is
the center of H and Hom.H;k�/ is the group of homomorphisms from H to k�.
Indeed, as we observed earlier, Z is isomorphic to the group of invertible objects of
Z.D/ (D Z.VecH /).

One can easily check that the obstruction classO3.c/ belongs toH 3.G;Z.H// �
H 3.G;Z.H//˚ Hom.H;k�/ and coincides with the Eilenberg–Mac Lane obstruc-
tion to the existence of extension (41), with a given action G ! Out.H/; see [9].
When this obstruction vanishes, we have a choice of M D .M1;M2/ where M1

belongs to a torsor T1 over H 2.G;Z.H//, and M2 belongs to a torsor T2 over
H 2.G;Hom.H;k�//. One can check that the torsor T1 is exactly the one classifying
group extensions; see [9]. Furthermore, the torsor T2 is canonically trivial, since
every group extension canonically determines a categorical extension. Finally, it is
easy to check that the obstructionO4.c;M1;M2/ is linear inM2, and it follows from
Proposition 8.15 that

O4.c; LM1;M2/

O4.c;M1;M2/
D .L;M2/ 2 H 4.G;k�/
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for any L 2 H 2.G;Z.H//. Thus, our theory of categorical extensions reproduces
the classical theory of group extensions.

Remark 9.1. If H is an abelian group, then it is clear that O3.c/ vanishes and the
torsor T1 is canonically trivial (T1 D H 2.G;H/). In this case, we have

O4.c;M1;M2/ D .M1;M2/ 2 H 4.G;k�/:

9.2. Invertible fiber functors and Tambara–Yamagami categories. Recall that
a fiber functor on a tensor category C is the same thing as a C -module category
structure on Vec.

Let G be a finite group and let C D VecG be the tensor category of G-graded
vector spaces. We will describe all invertible C -bimodule category structures on Vec.
Let � be a 2-cocycle on G � Gop and let M� denote the VecG-bimodule category
based on Vec with the action .a; b/˝ k D k, where k is a one-dimensional vector
space, and an associativity constraint

�..a1; a2/; .b1; b2//idk W ..a1; a2/˝ .b1; b2//˝ k ��!� .a1; a2/˝ ..b1; b2/˝ k/:

Every C -bimodule category structure on Vec is equivalent to M� .
Recall the Schur isomorphism, see [24], 2.2.10,

s W H 2.G �G;k�/ ��!� H 2.G;k�/ �H 2.G;k�/ � .Gab ˝Z Gab/
�;

whereGab D G=G0 is the abelianization ofG. Note that .Gab ˝ZGab/
� is isomorphic

to the group of bicharacters on G (or, equivalently, on Gab).
Below we will abuse notation and identify cocycles with their cohomology classes.

Let us write
s.�/ D .�1; �2; �12/: (42)

Here �1; �2 2 H 2.G;k�/ define the left and right C -module structures on M� and
�12 2 .Gab ˝Z Gab/

� defines its C -bimodule structure.

Remark 9.2. The category .M�/
op is also a C -bimodule category based on Vec. It

is easy to check that .M�/
op Š M Q� where

Q�..a; a0/; .b; b0// ´ �..a0; a/; .b0; b//�1:

Thus, Q�1 D ��1
2 , Q�2 D ��1

1 and Q�12.a; b/ D �12.b; a/, a; b 2 Gab.

Given two 2-cocycles �, �0 onG�G, the category FunC .M� ;M�0/ is equivalent,
as an abelian category, to the category Rep�.G/ of projective representations of G
with the Schur multiplier � D �0

1=�1. This category is acted upon by VecG�Gop via

..a; b/˝ �/.x/ D �12.x; a/�.x/�
0
12.x; b/;

where a; b; x 2 G,� 2 Rep�.G/. The associativity constraint isomorphism between
..a; a0/˝ .b; b0//˝ � and .a; a0/˝ ..b; b0/˝ �/ is given by �2.a; b/�

0
2.b

0; a0/.
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Proposition 9.3. (i) Let G be a finite group and let ! 2 H 3.G;k�/. Let VecG;!

be the corresponding pointed fusion category. If Vec has a structure of an invertible
VecG;!-bimodule category then G is abelian and ! is cohomologically trivial.

(ii) Let G be abelian. Then M� is an invertible VecG-bimodule category if and
only if �12 is a non-degenerate bicharacter on G.

(iii) The category M� has order 2 in BrPic.VecG/ if and only if �1 D ��1
2 and

�12 is a symmetric non-degenerate bicharacter.

Proof. (i) Since VecG;! has a fiber functor, ! must be trivial. By Proposition 4.2 the
dual of VecG with respect to its module category Vec must be pointed, which forces
G to be abelian.

(ii) The computations done before this Proposition show that FunC .M� ;M�/ Š
C as a C -bimodule category if and only if �12 is non-degenerate (there are no condi-
tions on �1, �2).

(iii) This is equivalent to existence of a C -bimodule equivalence M
op
� Š M� , so

we can apply Remark 9.2.

Example 9.4. In [37] D. Tambara and S. Yamagami classified all Z=2Z-graded
fusion categories C D CC ˚ C� in which CC is a pointed category and C� has
a unique simple object. They showed that any such category is determined, up to
a tensor equivalence, by a finite abelian group A, an isomorphism class of a non-
degenerate symmetric bilinear form � W A � A ! k�, and a square root of jAj in
k. The classification of [37] uses direct calculations of associativity constraints as
solutions of a system of pentagon equations.

Let us derive this classification from our description of graded categories in Sec-
tion 8 and Proposition 9.3. Let C D C0˚C1 be a fusion category with Z=2Z-grading
satisfying the above properties. Its trivial component C0 is a pointed fusion category.
By Proposition 9.3 (i), C0 Š VecA, for some finite abelian group A. The invert-
ible VecA-bimodule category C1 has order 2 in BrPic.VecA/. By Proposition 9.3,
C1 Š M� where � is such that �1 D ��1

2 and �12 is a non-degenerate symmetric
bicharacter of A, cf. (42).

We have Z ´ Inv.Z.VecA// D A ˚ A�. Let us identify A with A� using
the bicharacter �12; then we have Z D A ˚ A, and as a Z=2Z-module, Z D
Fun.Z=2Z; A/. Therefore, by the Shapiro lemma, H i .Z=2Z; Z/ D 0 for i > 0.
Thus, O3.c/ D 0, and there is no freedom in choosing M .

Observe that H 4.Z=2Z;k�/ D 0. Thus the associativity constraint obstruction
O4 vanishes and hence there are precisely two non-equivalent tensor category struc-
tures on C corresponding to two elements of the group H 3.Z=2Z;k�/ Š Z=2Z.

Let � be a tensor auto-equivalence of VecA. Let C �
1 denote the VecA-bimodule

category obtained from C1 by twisting the action of VecA by means of � , i.e., by letting
the result of action ofX�Y 2 VecA �Vecrev

A onM 2 M to be .�.X/��.Y //˝M .
Clearly, we can replace C1 by C �

1 without changing the corresponding extension.
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The group of tensor auto-equivalences of VecA is isomorphic to the semidi-
rect product H 2.A;k�/ Ì Aut.A/. Choosing � to be the element corresponding
to .��1

1 ; ˛/, where ˛ is any automorphism of A, we see that � can be chosen in such
a way that �1 D 1 and the choice of �12 matters only up to an automorphism of A.

Thus, we obtain the same parameterization as in [37].

9.3. Categories C graded by a group G of order coprime to FPdim.Ce/. If
jGj and D ´ FPdim.D/ are coprime, the classification of extensions of D by
G simplifies, as the cohomological obstructions O3 and O4 automatically vanish.
Namely, we have the following result.

Theorem 9.5. Let D be a fusion category of Frobenius–Perron dimension D rela-
tively prime to jGj. Then any homomorphism c W G ! BrPic.D/ can be upgraded
to a G-graded fusion category with trivial component Ce D D , and such categories
are parametrized by a torsor T 3

c;M over H 3.G;k�/ (up to a grading-preserving
equivalence).

Proof. This follows from Theorem 1.3 and Theorem 8.16. Indeed, the order of the
group �2 D Inv.Z.D// divides D2 ([12], Proposition 8.15), so it is relatively prime
to jGj. Thus, H i .G; �2/ D 0, i � 1. So O3.c/ vanishes, and there is no freedom
in choosing M . Also, by Theorem 8.16, the obstruction O4.c;M/ vanishes. So the
graded category C exists and the freedom in its construction is just the freedom of
choosing ˛, which lies in a torsor over H 3.G;k�/, as desired.

For applications of this theorem, see [22].

10. Lagrangian subgroups in metric groups and bimodule categories over VecA

Let Bimodab be the category whose objects are categories VecA where A is an finite
abelian group, and morphisms from VecA to VecB are equivalence classes of (not
necessarily invertible) .VecB ;VecA/-bimodule categories, with composition of mor-
phisms being the tensor product of bimodule categories. The goal of this section is
to describe this category explicitly.

First we need to set up some linear algebra, which is well known, but we work
out the details for the reader’s convenience.

10.1. The category of Lagrangian correspondences. Let us define the category
Lag of Lagrangian correspondences. We define the objects of this category to be
metric groups .E; q/. Morphisms from .E1; q1/ to .E2; q2/ are, by definition, formal
ZC-linear combinations of Lagrangian subgroups in .E1 ˚E2; q

�1
1 ˚ q2/.

The composition of morphisms is defined as follows. For Lagrangian subgroups
L 2 Mor..E1; q1/; .E2; q2//, M 2 Mor..E2; q2/; .E3; q3// we define M B L to be
the set of all pairs .a1; a3/ 2 E1 ˚ E3 such that there exists a2 2 E2 for which



Fusion categories and homotopy theory 261

.a1; a2/ 2 L and .a2; a3/ 2 M . Also, let m.M;L/ be the number of such a2. Then
the composition of morphisms is defined by the condition that it is biadditive and

M � L D m.M;L/M B L:
To validate this definition, we must prove the following lemma.

Lemma 10.1. (i) The set M B L is a Lagrangian subgroup of the metric group
.E1 ˚E3; q

�1
1 ˚ q3/.

(ii) The function m satisfies the 2-cocycle condition,

m.N;M B L/m.M;L/ D m.N BM;L/m.N;M/;

so that the operation � is associative.

Proof. (i) First of all, it is easy to check that M B L is an isotropic subgroup. Next,
M BL is the quotient of the intersection of the subgroupL˚M with the diagonal copy
ofE1 ˚E2 ˚E3 inE1 ˚E2 ˚E2 ˚E3 by the groupN D M \L\E2. It is easy to
see that the image of L˚M in E2 ˚E2=E

diag
2 D E2 is the orthogonal complement

N? of N . Thus, the order of the intersection of L ˚ M with E1 ˚ E2 ˚ E3 is
jM j � jLj=jN?j, and hence the order of M B L is jM j � jLj=jE2j D .jE1j � jE3j/1=2,
i.e., M B L is Lagrangian.

(ii) This is a straightforward computation.

Thus, we have defined the category Lag. Note that the identity morphism of .E; q/
in this category is the diagonal subgroup of E ˚E.

Proposition 10.2. The groupoid of isomorphisms in Lag is naturally isomorphic to
the groupoid of isometries of metric groups. In particular, the group of automor-
phisms of .E; q/ in Lag is naturally isomorphic to O.E; q/.

Proof. Let .E; q/; .E 0; q0/ 2 Lag. Let L � E ˚ E 0 be Lagrangian under the form
q�1 ˚ q0. If L defines an isomorphism then L B M D id for some Lagrangian
M � E 0 ˚ E, which implies that the intersection L with E 0 is zero. Similarly,
the intersection of L with E is zero (because M B L D id). This means that L is
the graph of some isomorphism of groups g W E ! E 0, and since L is Lagrangian,
this isomorphism is an isometry. Conversely, if g W E ! E 0 is an isometry then
the graph of g is Lagrangian in E ˚ E 0. It is easy to see that the composition of
Lagrangian subgroups goes under this identification to the composition of isometries.
The proposition is proved.

10.2. Subgroups with a skew-symmetric bicharacter in an abelian group. Let
A be a finite abelian group. Denote by C.A/ the set of pairs .H; /, where H � A

is a subgroup and  is a skew-symmetric bicharacter of H . Also, for a metric group
.E; q/, let L.E; q/ be the set of Lagrangian subgroups of E.

The following proposition is a special case of a more general result proved in [30].
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Proposition 10.3. There is a natural bijection

� W C.A/ ! L.A˚ A�; q/; (43)

where q is the standard hyperbolic quadratic form of A ˚ A� given by q.a; f / D
f .a/. This bijection is given by the formula �.H; / D f.h; z/ j z 2  .h/g, where
 .h/ 2 H� D A�=H? is regarded as a coset ofH? in A�.

Proof. It is clear that the subgroup L D f.h; z/ j z 2  .h/g � A˚ A� is isotropic.
Also, jLj D jH j � jH?j D jAj, so L is Lagrangian. Thus the map � is well defined.
Now we prove that � is invertible by constructing the inverse map. Namely, given a
Lagrangian subgroup L � A˚A�, set �.L/ D .H; /, where H is the image of L
in A and

 .h1; h2/ ´ .h0
1; h2/;

with h0
1 any lifting of h1 into L.

To prove that � is well defined, we need to show that  .h1; h2/ is independent
on the choice of the lifting h0

1. In other words, we must show that if v is an element
of L \ H� then for any h 2 H we have .v; h/ D 1. But this holds because
.v; h/ D .v; h0/ for any lifting h0 of h to L, and .v; h0/ D 1 since v; h0 2 L and bq is
the standard inner product on A˚ A�.

Now we should prove that . .h/; h/ D 1, i.e., that .h0; h/ D 1 if h 2 H and h0 is
a lift of h in L. We have

.h0; h/ D q.h/q.h0/=q.h0 � h/:
Now we see that all three factors on the right-hand side are equal to 1: the first one
because h 2 A, the third one because h0 �h 2 A�, and the second one because h0 2 L
and L is Lagrangian.

Finally, we should check that � is indeed inverse to � . We have .� B �/.H; / D
.H; 0/, where  0.h1; h2/ D .z1; h2/ with z1 2  .h1/. Thus  0 D  , and we are
done (since � is a map of finite sets).

10.3. The structure of the category Bimodab. Now we will define a functorT from
the category Bimodab to the full subcategory Laghyp of Lag, whose objects are groups
of the form A˚A� with the hyperbolic quadratic form q. Namely, recall that ifG is
an abelian group, then equivalence classes of indecomposable left module categories
over VecG are parametrized by the setC.G/ defined in the previous subsection. Now,
for any indecomposable .VecA;VecB/-bimodule category M, regard M as a VecA˚B -
module category via .a; b/˝M D a˝M ˝ b�1 and consider its equivalence class
ŒM� 2 C.A˚ B/. Put

T .M/ ´ ��.ŒM�/ 2 L.A˚ A� ˚ B ˚ B�; qA ˚ q�1
B /;

where � 2 Aut.A ˚ A� ˚ B ˚ B�/ is defined by the formula �.a; a�; b; b�/ D
.a; a�;�b; b�/ and � is defined in (43). ExtendT to decomposable module categories
by additivity.
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Theorem 10.4. The assignment T is a functor, i.e., for any .VecA1
;VecA2

/-bimodule
category N and .VecA2

;VecA3
/-bimodule category N 0 one has

T .N �VecA2
N 0/ D T .N / B T .N 0/:

Proof. Let A1, A2, A3 be abelian groups and let .H; / 2 C.A1 ˚A2/, .H 0;  0/ 2
C.A2 ˚ A3/. We would like to find .H 00;  00/ such that

��.H; / � ��.H 0;  0/ D m � ��.H 00;  00/

and compute the value of m.
By the definition of � , the subgroupL ´ ��.H; / � A1 ˚A�

1 ˚A2 ˚A�
2 is the

set of all .a1; f1; a2; f2/ such that .a1;�a2/ 2 H and .f1; f2/� y .a1;�a2/ 2 H?.
Similarly, the subgroup L0 ´ ��.H 0;  0/ � A2 ˚ A�

2 ˚ A3 ˚ A�
3 is the set of all

.a2; f2; a3; f3/ such that .a2;�a3/ 2 H 0 and .f2; f3/ � b 0.a2;�a3/ 2 H 0?.
Now, L B L0 D m � L00, where L00 is the set of all .a1; f1; a3; f3/ such that there

exist a2, f2 with .a1;�a2/ 2 H , .f1; f2/� y .a1;�a2/ 2 H?, .a2;�a3/ 2 H 0 and
.f2; f3/� b 0.a2;�a3/ 2 H 0?. Moreover,m is the number of pairs .a2; f2/ satisfying
these conditions.

LetL00 D ��.H 00;  00/. It can be checked directly from the above conditions that
H 00,  00 are the same as in Proposition 3.19. Moreover, the number m is the number
of pairs .a2; f2/, so we have

m D jKer..H \H 0/? ! A1 ˚ A3/j � jH? \H 0?j
(the first factor represents the number of choices of a2 and the second one stands for
the number of choices of f2). Thus,

m D j.H \H 0/?j
jH 00j � jH? \H 0?j:

But H 00 D H BH 0=.H \H 0/, so we get

m D j.H \H 0/?j � jH \H 0j
jH BH 0j � jH? \H 0?j;

which coincides with the second formula for m in Proposition 3.19. The theorem is
proved.

Corollary 10.5. T is an equivalence of categories Bimodab ! Laghyp.

Proof. This follows from Theorem 10.4 and Proposition 10.3.

Remark 10.6. Note that we have obtained another (direct) proof of Corollary 1.2,
which does not use Theorem 1.1. (Namely, Corollary 1.2 follows from Theorem 10.4
and Proposition 10.2.) One can check that the two proofs provide the same isomor-
phism

BrPic.VecA/ Š O.A˚ A�/:
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Remark 10.7. The isomorphism of Corollary 1.2 can be understood in topological
terms as follows. Recall that

�2.BBrPic.VecA// D A˚ A�; �3.BBrPic.VecA// D k�;

and by Proposition 7.6 theWhitehead half-square�2 ! �3 is the hyperbolic quadratic
form q on A ˚ A�. Thus, the action of �1 on �2 must preserve this form, i.e., we
have a homomorphism


 W BrPic.VecA/ ! O.A˚ A�/:

One can show that this 
 coincides with the isomorphism of Corollary 1.2, i.e., with
the restriction of T to invertible VecA-bimodule categories.

10.4. The number of simple objects in an invertible bimodule category overVecA

Proposition 10.8. Let g 2 O.A ˚ A�/ and let Cg be the corresponding invertible
bimodule category. Let P be the projection A ˚ A� ! A and K be the kernel of
P BgjA� . Then the number of isomorphism classes of simple objects of Cg equals jKj.

Proof. The Lagrangian subspace L in A˚ A� ˚ A˚ A� corresponding to g is the
set of .a; f; g.a; f //, where a 2 A, f 2 A�. The corresponding subgroup H in
A˚A (such that Cg D M.H; / for some ) is the projection ofL toA˚A. Thus,
H projects onto A (via the first coordinate), and the kernel is the set of possible first
coordinates of g.a; f /, f 2 A�, i.e., the image of P B gjA� . Thus, jH j D jAj=jKj,
and we are done.

10.5. Integral VecA-bimodule categories. Recall that for an integral fusion cate-
gory C we defined in Section 4.2 the categorical 2-subgroup BrPicC.C/ � BrPic.C/
consisting of integral invertible C -bimodule categories.

Proposition 10.9. If A is an abelian group then BrPicC.VecA/ D SO.A˚ A�/.

Proof. This follows easily from Corollary 1.2. Namely, by Proposition 4.10, we may
assume without loss of generality that A is a p-group for some prime p. In this
case, the dimensions of simple objects in a bimodule category are either an integer
or half-integer powers of p.

Let C D VecA. For g 2 BrPic.C/ D O.A ˚ A�/, let P W A ˚ A� ! A be the
projection, K be the kernel of P B gjA� , and I be the image of P B gjA� . Then by
Proposition 10.8, the dimensions of simple objects of Cg are .jAj=jKj/1=2 D jI j1=2

(as I D A�=K). This is an integer if and only if jI j D pn, where n is even, i.e., if
and only if d.A�; g.A�// D 1, which implies the statement by Proposition 2.8.
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11. Appendix by Ehud Meir: Group extensions as G -graded fusion categories

11.1. Introduction. In this appendix we will discuss a special class of extensions of
a fusion category by a finite group. Let� be a finite group which fits into a short exact
sequence of groups 1 ! N ! � ! G ! 1. Suppose that we have a 3-cocycle
! 2 H 3.�;k�/ and the corresponding fusion category C D Vec�;! . This category
has a subcategory D D VecN;! (where by ! we also mean the restriction of ! to
N ), and C is a G-extension of D . It is possible to classify directly extensions of D

by G which are also pointed; one needs to give an extension � of G by N , and to
give an extension of the cocycle ! onN to a cocycle on � . We will explain here why
this solution and the solution given by the theory of G-extensions developed in the
article are equivalent. We will do so in the following way: we take a parameterization
.c;M; ˛/ of a pointed G-graded extension of D , as in Theorem 1.3, and we explain
why this parameterization is equivalent to giving an extension � of G by N and an
extension of! to a cocycle on � . In order to do so we first study the groups Aut˝.D/

and Out˝.D/ of tensor auto-equivalences and outer tensor auto-equivalences of D ,
respectively, since these two groups will play a decisive role in understanding the
triple .c;M; ˛/. We then describe the group T D Inv.Z.D// of invertible objects
of the center in order to understand the obstruction O3.c/ which lies in H 3.G; T /.
Using this, we explain how to “translate” a triple .c;M; ˛/ to an extension � of G
by N together with a 3-cocycle on � which is an extension of !. If H is any finite
group and ! 2 H 3.H;k�/, we denote the simple objects of VecH;! by fVhgh2H .

11.2. The groups Aut˝.D/ and Out˝.D/. Let ˆ 2 Aut˝.D/. By considering
the way in which ˆ acts on simple objects of D (which correspond to elements of
N ) we get an automorphism � of N . The additional data which we need in order to
turn ˆ into a tensor auto-equivalence of D is an isomorphism, for every a; b 2 N ,

ˆ.V��1.a//˝ˆ.V��1.b// ! ˆ.V��1.a/ ˝ V��1.b//:

This isomorphism is given by a scalar which we denote �ˆ.a; b/. It is easy to see
that the equation that �ˆ should satisfy is

@�ˆ.a; b; c/ D !.��1.a/; ��1.b/; ��1.c//!�1.a; b; c/ D � � !=!:
In other words, in order for � to furnish a tensor auto-equivalence, it is necessary and
sufficient that � � ! D ! in H 3.N;k�/. We denote the subgroup of all such auto-
morphisms by Aut.N; !/. We thus have an onto map � W Aut˝.D/ � Aut.N; !/.
A direct calculation shows that the kernel of this map is H 2.N;k�/. We thus have a
short exact sequence

1 ! H 2.N;k�/ ! Aut˝.D/ ! Aut.N; !/ ! 1:

Notice that in the case ! ¤ 1 this sequence does not necessarily split.
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For every n 2 N we have an auto-equivalence Cn of conjugation by Vn. This
is the auto-equivalence which sends the object Va to .Vn ˝ Va/ ˝ Vn�1 , and the
tensor structure is defined in the obvious way. Notice that in particular this gives us
a canonical 2-cochain tn such that @tn D !.n�1‹n/=!.‹/. As expected, this defines
a homomorphism of groups Con W N ! Aut˝.D/. The image of Con is a normal
subgroup, and we denote the quotient of Aut˝.D/ by im.Con/ by Out˝.D/.

11.3. The group Inv.Z.D//. We now describe the group T D Inv.Z.D//. This
is a special case of Theorem 5.2 of [17], where the group of invertible objects of
a general group-theoretical category was described. An invertible object of Z.D/

would be an invertible object of D (that is Vz for some z 2 N ) such that for every
a 2 N we have an isomorphism Vz ˝ Va ! Va ˝ Vz (and thus, z 2 Z.N/, the
center of N ). The element z should satisfy however another condition. The map
Vz ˝ Va ! Va ˝ Vz (if it exists) is just multiplication by a scalar. Denote this scalar
by r.a/. Then a direct calculation shows that the set of scalars r.a/ define on Vz a
structure of a central object if and only if the equation

r.a/r.b/r.ab/�1 D !.z; a; b/!.a; b; z/!�1.a; z; b/

holds. We have the following fact, which can be easily proved directly.

Fact 11.1. For every z 2 Z.N/, the function

cz.a; b/ D !.z; a; b/!.a; b; z/!�1.a; z; b/

is a 2-cocycle of N with values in k�. The conjugation map Con W N ! Aut˝.D/

maps Z.N/ toH 2.N;k�/ via z 7! cz .

So conjugation by Vz , where z 2 Z.N/, is not necessarily the trivial auto-equiva-
lence of D . It is the auto-equivalence given by the 2-cocycle cz . An object Vz ,
z 2 Z.N/, has a structure of a central object if and only if conjugation by Vz is
trivial, that is, if and only if cz is the trivial cocycle. We denote the kernel of z 7! cz

by Z.N;!/ (so this is also the kernel of N ! Aut˝.D/). Thus, we have an onto
map T � Z.N;!/. What is its kernel? To give V1 a structure of an object of Z.D/

is the same thing as to give a function r W N ! k� which satisfies r.a/r.b/ D r.ab/,
i.e., a 1-cocycle. Since 1-coboundaries are trivial, we can describe T as an extension
of the form

1 ! H 1.N;k�/ ! T ! Z.N;!/ ! 1:

In case ! ¤ 1, this sequence does not necessarily split.
The group Aut˝.D/ acts naturally on T . As objects of T are central in D , it is

easy to see that inner automorphisms would act trivially on T . We therefore have an
induced action of Out˝.D/ on T .
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11.4. The homomorphism c. If C is a pointed extension of D , it is easy to see that,
for every g 2 G, the bimodule category Dg is a quasi-trivial bimodule (as defined in
Section 4.3). It follows that there are auto-equivalencesˆ.g/ 2 Aut˝.D/ for g 2 G
such that Dg Š Dˆ.g/, that is, Dg is the same category as D , but the action of
D � Dop is given by

.Va � Vc/˝ Vb D .Va ˝ Vb/˝ˆ.g/.Vc/:

It can easily be seen that the bimodule category Dg defines the auto-equivalence
ˆ.g/ only up to conjugation by an invertible object of D . So Out˝.D/ is a subgroup
of BrPic.D/, and the image of c W G ! BrPic.D/ lies inside Out˝.D/. For each
g 2 G, choose an auto-equivalence ˆ.g/ of D whose image in Out˝.D/ is c.g/.
We thus have an isomorphism of functors

pg;h W ˆ.g/ˆ.h/ ��!� Cn.g;h/ˆ.gh/; (44)

where n.g; h/ 2 N . Notice that we need to make a choice here as n.g; h/ is defined
only up to a coset ofZ.N;!/ inN . We can think of the morphismpg;h as a 1-cochain
which satisfies a certain boundary condition. We also make a choice in choosing the
pg;h’s. As explained above, we think ofˆ.g/ as an automorphism�.g/ ofN together
with a 2-cochain �g on N which satisfies

@�g D �.g/ � !=!: (45)

Equation (44) simply means that we have the equality �.g/�.h/ D cn.g;h/�.gh/ of
automorphisms of N , where cn means the automorphism of conjugation by n, and
also that the 2-cocycle

Ug;h D �g.�.g/ � �h/t
�1
n.g;h/.cn � ��1

gh /

where tn was described above, is trivial and is equal to @pg;h (this is the boundary
condition that pg;h should satisfy in order to be an isomorphism between the functors
described above).

11.5. The first obstruction. We now explain what the first obstructionO3.c/ looks
like in our context. Recall that O3.c/ is an element of H 3.G; T /. Assume that g,
h, k are elements of G. Let us describe O3.c/.g; h; k/ 2 T . In order to do so we
need to choose equivalences of D-bimodule categories Dg �D Dh Š Dgh for every
g; h 2 G. By the universal property of tensor product of bimodule categories, this
is the same as to give a balanced D-bimodule functor Fg;h W Dg � Dh ! Dgh for
every g; h 2 G such that the universal property from Definition 3.3 holds. We choose

Fg;h.Va � Vb/ D .Va ˝ˆ.g/.Vb//˝ Vn.g;h/:

The isomorphism pg;h of auto-equivalences of D given by equation (44) equips the
functor Fg;h with a structure of a balanced D-bimodule functor. The idea now is
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that we have two functors from Dg � Dh � Dk into Dghk , namely Fg;hkFh;k and
Fgh;kFg;h. As both functors can be used to identify Dghk with Dg �D Dh �D Dk ,
there is an equivalence of D-bimodule categories yg;h;k W Dghk ! Dghk such that
Fg;hkFh;k Š yg;h;kFgh;kFg;h. Since D-bimodule equivalences of Dghk correspond
to elements ofT as explained in Section 8.4, thisyg;h;k corresponds toO3.c/.g; h; k/.
Using these considerations, a more explicit description of O3.c/ is obtained in the
following way: for g; h; k 2 G, the isomorphisms of functors given in equation (44)
provide us the following isomorphism of functors:

Cn.g;h/n.gh;k/n.g;hk/�1�.g/.n.h;k/�1/

Š Cn.g;h/Cn.gh;k/C
�1
n.g;hk/ˆ.g/C

�1
n.h;k/ˆ.g/

�1

Š ˆ.g/ˆ.h/ˆ.gh/�1ˆ.gh/ˆ.k/ˆ.ghk/�1ˆ.ghk/ˆ.hk/�1ˆ.g/�1

ˆ.g/ˆ.hk/ˆ.k/�1ˆ.h/�1ˆ.g/�1

Š Id:

To give an isomorphism of functorsCn Š Id is the same as to give a structure of a cen-
tral object on Vn. This (invertible) central object Vn.g;h/n.gh;k/n.g;hk/�1�.g/.n.h;k/�1/

would be O3.c/.g; h; k/. Notice that choosing different isomorphisms pg;h or dif-
ferent coset representatives n.g; h/ changes O3.c/ only by a coboundary and thus
will give an equivalent cocycle. We will be interested in the case in whichO3.c/ van-
ishes in H 3.G; T /. If it vanishes, we call an element � 2 C 2.G; T / which satisfies
@� D O3.c/ a solution forO3.c/ (and use similar terminology for other obstructions).
The choice of a solution in this case therefore corresponds to the choice of a system
of products. In our case this is equivalent to choosing the elements n.g; h/ and the
morphisms pg;h in such a way that the obstruction we get is the trivial 3-cocycle.
This means that the equation n.g; h/n.gh; k/ D �.g/.n.h; k//n.g; hk/ holds in N
(and not only up to a coset of Z.N;!/), and also that the functions pg;h satisfy a
certain boundary condition which we will consider later.

11.6. Vanishing of the first obstruction, the Eilenberg–Mac Lane obstruction,
and the choice of a solution. The description of T as an extension of Z.N;!/ by
H 1.N;k�/ will help us understand the vanishing of O3.c/ in two steps. Assume
first that we know that the image of O3.c/ in H 3.G;Z.N; !// (which is denoted by
O3.c/) vanishes. This means that we can change the elements n.g; h/ by elements
of Z.N;!/ (that is, to take different coset representatives) in such a way that the
equation

n.g; h/n.gh; k/ D �.g/.n.h; k//n.g; hk/ (46)

holds in N . A solution to O3.c/ in H 3.G;Z.N; !// would therefore be a choice of
coset representatives n.g; h/which satisfy equation (46). This would give us a group
extension

1 ! N ! � ! G ! 1
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We think of elements of � as products of the form n Ng where n 2 N and g 2 G.
The product of two such elements would be n Ngm Nh D n�.g/.m/n.g; h/gh. Equation
(46) is thus equivalent to the associativity of � . It can be checked that the image
of O3.c/ in H 3.G;Z.N // coincides with the Eilenberg–Mac Lane obstruction for
the existence of a group extension of G by N with the given “outer” action Nc W G !
Out˝.D/ ! Out.N /. See [26] for a description of this obstruction. Suppose that
we have chosen a solution � for O3.c/ (and therefore we get a group extension � of
G by N ). Lift � to a 2-cochain Q� of G with values in T . The cocycle O3.c/@ Q��1

has all its values in the subgroup H 1.N;k�/. It is easy to see that the class of this
cocycle in H 3.G;H 1.N;k�// is well defined and does not depend on the choice of
the particular lifting but only on the choice of the solution �. We denote this cocycle
by 1O3.c/	. It is easy to see that the vanishing of O3.c/ is equivalent to the fact that

O3.c/ vanishes, and that we can find for it a solution � such that 1O3.c/	 vanishes
as well. A solution for O3.c/ will then be of the form Q��, where � is a solution for
1O3.c/	. So the situation we will consider from now on is the following: we have a

group extension � of G by N , and we also have 1O3.c/	, the “remainder” of the first
obstruction O3.c/. We next describe the second obstruction O4.c;M/ and see how
all this data corresponds to data from the spectral sequence of the group extension.

11.7. The secondobstruction. Let us now describe the second obstructionO4.c;M/

(we assume that we have a solution � for 1O3.c/	). We “almost have” the extension
N! of ! to � in the following sense: if we knew N!. Ng; Nh; Nk/ for every g; h; k 2 G, we
would have known N!.a; b; c/ for any a; b; c 2 � . This is because the system of prod-
ucts enables us to express any value of N! solely in terms of the values N!. Ng; Nh; Nk/ for
g; h; k 2 G. So choose such values arbitrarily, for example, N!. Ng; Nh; Nk/ D 1 for every
g; h; k 2 G. Now consider the hexagon diagram for Ng, Nh, Nk, Nl , where g; h; k; l 2 G.
It will be commutative up to a scalar, which will be O4.c;M/.g; h; k; l/. A choice
of different arbitrary values would give us a cohomologous cocycle. A solution for
O4.c;M/ means a collection of values N!. Ng; Nh; Nk/ which will make N! a 3-cocycle
on � . By choosing a different solution, we will get another extension of ! to � ,
which differs by a pullback to � of a class ˛ 2 H 3.G;k�/. In the context of the data
.c;M; ˛/, we assume that we have one fixed solution 
 for O4.c;M/, and that we
take the solution 
˛, where ˛ 2 H 3.G;k�/.

11.8. The Lyndon-Hochschild-Serre spectral sequence. We have already seen
that the data .c;M; ˛/ yields an extension � of G by N . We now explain how it
determines the extension N! of ! from N to � . In order to do so we will use the
Lyndon–Hochschild–Serre (abbreviated LHS) spectral sequence

E
p;q
2 D Hp.G;H q.N;k�// ) Ep;q1 D HpCq.�;k�/

A general discussion of this spectral sequence can be found in [34] and in [26]. We
will use this spectral sequence to understand how the vanishing of the obstructions and
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the mere existence of c W G ! Out˝.D/ imply that ! can be extended to a 3-cocycle
on � , and how the choices of c,M and ˛ give us a specific extension of ! to � . The
idea is the following: we consider ! as an element of E0;3

2 D H 0.G;H 3.N;k�//.
Using the theory of spectral sequences, we know that ! is extendable to � if and only
if d2.!/ D 0 in E2;2

2 , d3.!/ D 0 in E3;1
3 and d4.!/ D 0 in E4;0

4 . If this is true, the
theory of spectral sequences also gives us all possible extensions of ! to � . They are
parameterized in the following way: if d2.!/ D 0, this means that a certain equation
has a “solution” (we will soon see this explicitly). We need to choose a solution � ,
and then! and � together will define an element i�;! 2 E3;1

2 D H 3.G;H 1.N;k�//.
This element i�;! is in the kernel of d2, and the image of i�;! inE3;1

3 is d3.!/ (recall
that E3 is the cohomology of .E2; d2/). The fact that d3.!/ D 0 means that the
cocycle i�;! is trivial for some of the solutions � . We need to choose only such � ’s.
Again, the fact that i�;! D 0 means that some equation has a solution, and we need
once again to choose such a solution, which we will denote by p. Exactly like at the
previous step, !, � and p define an element j!;�;p 2 E4;0

2 D H 4.G;H 0.N;k�// D
H 4.G;k�/. The cohomology class j!;�;p is obviously in the kernel of d2 and d3, as
they are trivial onE4;0

2 andE4;0
3 , respectively. The image of j!;�;p inE4;0

4 is exactly
d4.!/. The fact that d4.!/ D 0 is equivalent to the fact that we can choose � and p
such that j!;�;p D 0 in H 4.G;k�/, and we will choose only such � ’s and p’s. The
construction of j!;�;p gives it as a cocycle rather than just as a cohomology class.
Therefore we also need a 3-cochain ˇ 2 C 3.G;k�/ which satisfies @ˇ D j!;�;p ,
that is, we need a solution to this equation. The tuple .�; p; ˇ/ will give us, by the
theory of spectral sequences, the desired extension of ! to � . We will now explain
the connection between the tuple .�; p; ˇ/ and the data .c;M; ˛/. We do so by
considering the different pages of the spectral sequence.

11.8.1. The first differential in page E2. Let us describe d2.!/. The cocycle !
is G-invariant, and therefore for every g 2 G we can find a 2-cochain �g such that
@�g D �.g/ � !=!. Let g; h 2 G. Since �.g/�.h/ D cn.g;h/�.gh/, we have a two
cocycle on N with values in k�,

U
�

g;h
D �gg � �h

tn.g;h/cn � �gh

:

The function which takes .g; h/, for g; h 2 G, to the cocycleU �

g;h
is a 2-cocycle ofG

with values inH 2.N;k�/. Different choices of �g ’s give us cohomologous cocycles.
The cocycle U �

g;h
is trivial if and only if there is a choice of �g ’s for which U �

g;h
is a

coboundary for every g; h 2 G. A direct calculation shows that d2.!/ D U
�

g;h
. We

claim that the existence of ˆ implies that d2.!/ is trivial. This is because we can
choose the �g ’s we have in the definition ofˆ, in equation (45), and for this choice we
know that U �

g;h
D @pg;h. So the “equation” we have here is U �

g;h
D 1 inH 2.N;k�/,

and the solution � is given by ˆ, which comes from the homomorphism c.
This � is the first part of the data needed in order to define the extension of !.
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11.8.2. The second differential in page E3. We consider now the cocycle i�;! 2
H 3.G;H 1.N;k�//. In order to construct i�;! we need to choose 1-cochains pg;h

for every g; h 2 G in such a way that the equation @pg;h D U
�

g;h
holds. We have such

1-cochains given in equation (44). If we take the 1-cochains from equation (44) and
compute i�;! , we get i�;! D 1O3.c/	. So the vanishing of the first obstruction implies
also that d3.!/ D 0, and the second part we need in order to define the extension of
! is the collection of isomorphisms pg;h (which comes from the system of products

M ). Again, p D fpg;hg is a solution to an equation which says that 1O3.c/	 is trivial
(recall that O3.c/ was defined using the pg;h’s).

11.8.3. The third differential in page E4. Finally, consider the cocycle j!;�;p . A
direct calculation shows that this is exactlyO4.c;M/. So the vanishing of the second
obstruction implies that d4.!/ D 0. The last choice we need to make is to choose a
3-cochain ˇ 2 C 3.G;k�/ such that @ˇ D j!;�;p . But the data .c;M; ˛/ determines
such a solution. The solution is ˇ D 
˛, where 
 is the fixed solution for O4.c;M/

we assumed to exist.
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