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Abstract. We give a diagrammatic presentation of the A2-Temperley–Lieb algebra. General-
izing Jones’ notion of a planar algebra, we formulate an A2-planar algebra motivated by Ku-
perberg’s A2-spider. This A2-planar algebra contains a subfamily of vector spaces which will
capture the double complex structure pertaining to the subfactor for a finite SU.3/ADE graph
with a flat cell system, including both the periodicity three coming from the A2-Temperley–
Lieb algebra as well as the periodicity two coming from the subfactor basic construction. We
use an A2-planar algebra to obtain a description of the (Jones) planar algebra for the Wenzl
subfactor in terms of generators and relations.
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1. Introduction

A braided inclusion N � M , where there is a braided system of SU.3/k endomor-
phisms NXN on the factorN , yields a nimrep (non-negative integer matrix represen-
tation) of the right action of the N -N sectors NXN on the M -N sectors MXN via
the theory of ˛-induction [9], [10], [11]. This nimrep defines a classifying graph G ,
which is of ADE type. One can build an Ocneanu cell systemW on an ADE graph
G [54], which attaches a complex number to each closed path of length three on the
edges of G . A cell system W naturally gives rise to a representation of the Hecke
algebra, or more precisely, of the A2-Temperley–Lieb algebra [21], [22], which is a
quotient of the Hecke algebra given by the fixed point algebra of

N
NM3 under the

action of SU.3/k . This A2-Temperley–Lieb algebra has an inherent periodicity of
three coming from the representation theory of SU.3/.

To each pair .G ; W /, consisting of an SU.3/ADE graph G and a cell systemW

on G , there is associated a subfactor N � M , or rather, a subfactor double complex
(cf. [19]), which has a periodicity of three in the horizontal direction, coming from
the A2-Temperley–Lieb algebra, and a periodicity of two in the vertical direction,
coming from the subfactor basic construction of Jones [30], or equivalently, from the
(usual) Temperley–Lieb algebra. The subfactor double complex contains the tower of
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higher relative commutants N 0 � Mi as its initial column, where N � M � M1 �
M2 � � � � is the tower obtained by iterating the basic construction. However, it also
contains the SU.3/ structure captured by theA2-Temperley–Lieb operators, which is
lost in the tower of higher relative commutants, or indeed in the standard invariant.

The main goal of this paper is to provide a framework for an A2 version of a
planar algebra which describes the subfactor double complex. We begin by giving
a diagrammatic presentation of the A2-Temperley–Lieb algebra, consisting of A2-
tangles which are a special class of Kuperberg’s A2 webs [44]. The A2-Temperley–
Lieb algebra is the underlying algebra in our A2-planar algebra, which is a family of
vector spaces which carry an action of the A2-tangles.

The main result of the paper is Theorem 6.4, where for any pair .G ; W / we
explicitly associate to the corresponding subfactor double complex an A2-planar
algebra, that is, there is an action of the A2-tangles on each finite-dimensional vector
space in the subfactor double complex. As an immediate corollary we obtain a
description of the (usual) planar algebra for Wenzl’s Hecke subfactor in terms of
generators and relations [70]. This work provides a framework for studying subfactor
double complexes, even in the continuous SU.3/ regime beyond index nine.

2. Preliminaries

A subfactor encodes symmetries. These can be understood and studied from a number
of vantage points and directions which have interlocking ideas. In a subfactor’s most
fundamental setting, these symmetries may arise from a group, a group dual or a Hopf
algebra, and their actions on a von Neumann algebra M , but subfactor symmetries
go far beyond this, and beyond quantum groups. The symmetries of a group G and
group dual may be recovered from the position of the fixed point algebra MG in the
ambient algebra M and the position of M in the crossed product M Ì G. More
generally, the symmetry or quantum symmetry is encoded by the position of a von
Neumann algebra in another. Subfactors encode data, algebraic, combinatorial and
analytic, and the question arises as to how to recover the data from the subfactor
N � M and vice versa.

Iterating the basic construction of Jones [30] in the type II1 setting, one obtains a
towerN � M � M1 � M2 � � � � . The standard invariant is obtained by considering
the tower of relative commutants M 0

i \Mj , which are finite-dimensional in the case
of finite index. Different axiomatizations of the standard invariant are given by
Ocneanu with paragroups [51], emphasising connections and their flatness, and by
Popa with �-lattices and a more probabilistic language which permit reconstruction
of the (extremal finite index) subfactor under certain amenable conditions [60]. Jones
[31] produced another formulation using planar algebras, a diagrammatic incarnation
of the relative commutants, closed under planar contractions or carrying operations
indexed by certain planar diagrams, such that any extremal subfactor gives a planar
algebra. Conversely, using the work of Popa on �-lattices, every planar algebra, with
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suitable positivity properties, produces an extremal finite index subfactor. Recent
work of [28], this time with a free probabilistic input of ideas, has recovered the
characterisation of Popa.

The most fundamental symmetry of a subfactor is through the Temperley Lieb
algebra [68]. The Jones basic constructionMi�1 � Mi � MiC1 is through adjoining
an extra projection ei arising from the projection or conditional expectation ofMi onto
Mi�1. These projections satisfy the Temperley–Lieb relations of integrable statistical
mechanics. They are contained in the tower of relative commutants of any finite index
subfactor and are in some sense the minimal symmetries. The planar algebra of a
subfactor also has to encode what else is there, but in the case of the Temperley–Lieb
algebra its planar algebra corresponds to Kauffman’s diagrammatic presentation of the
Temperley–Lieb algebra. The Temperley–Lieb algebra has a realization from SU.2/,
from the fixed point algebras of quantum SU.2/ on the Pauli algebra and special
representations of Hecke algebras of type A. These SU.2/ subfactors generalize to
SU.3/ (and beyond [70], [69]). These subfactors can be used to understand SU.3/
orbifold subfactors, conformal embeddings and modular invariants [19], [71], [9],
[10], [11], [22].

Here we give a planar study of subfactors which encodes the representation theory
of quantum SU.3/diagrammatically. TheTemperley–Lieb algebra is then generalized
to the following. The Hecke algebraHn.q/, q 2 C, is the algebra generated by unitary
operators gj , j D 1; 2; : : : ; n � 1, satisfying the relations

.q�1 � gj /.q C gj / D 0; (1)

gigj D gjgi ; ji � j j > 1; (2)

gigiC1gi D giC1gigiC1: (3)

When q D 1, the first relation becomes g2
j D 1, so that Hn.1/ reduces to the group

ring of the symmetric, or permutation, group Sn, where gj represents a transposition
.j; j C 1/. Writing gj D q�1 � Uj where jqj D 1, and setting ı D q C q�1, these
relations are equivalent to the self-adjoint operators 1; U1; U2; : : : ; Un�1 satisfying
the relations

H1:

H2:

H3:

U 2
i D ıUi ;

UiUj D UjUi ; ji � j j > 1;
UiUiC1Ui � Ui D UiC1UiUiC1 � UiC1;

where ı D q C q�1.
To any � in the permutation group Sn, decomposed into transpositions of nearest

neighbours � D Q
i2I�

�i;iC1, we associate the operator g� D Q
i2I�

gi , which is
well defined because of the braiding relation (3). Then the commutant of the quantum
group SU.N /q is obtained from the Hecke algebra by imposing an extra condition,
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which is the vanishing of the q-antisymmetrizer [17]:P
�2SN C1

.�q/jI� jg� D 0:

For SU.2/ it reduces to the Temperley–Lieb condition UiUi˙1Ui � Ui D 0, whilst
for SU.3/ it is

.Ui � UiC2UiC1Ui C UiC1/ .UiC1UiC2UiC1 � UiC1/ D 0: (4)

The A2-Temperley–Lieb algebra will be the algebra generated by a family fUng of
self-adjoint operators which satisfy the Hecke relations H1–H3 and the extra condition
(4) (cf. [47], [15]). The A2-Temperley–Lieb algebra is the fixed point algebra ofN

NM3 under the product action of
N

N Ad.�/ of SU.3/ or its quantum version
SU.3/q . There is an inherent periodicity three which comes from the representation
theory of SU.3/, which is reflected in the Bratteli diagram of the McKay graph of
the fusion of the fundamental representation. The A2-Temperley–Lieb algebra is
isomorphic to the path algebra of the SU.3/ graph A.1/ [21], Figure 4, which is
tripartite, or three-colourable, so that all closed paths on A.1/ have lengths which
are multiples of three.

2.1. Background on Jones’planar algebras. Jones introduced the notion of a pla-
nar algebra in [31] to study subfactors. Let us briefly review the essential construction
of Jones’ planar algebras. A planar k-tangle consists of a discD in the plane with 2k
vertices on its boundary, k � 0, and n � 0 internal discs Dj , j D 1; : : : ; n, where
the discDj has 2kj vertices on its boundary, kj � 0. One vertex on the boundary of
each disc (including the outer discD) is chosen as a marked vertex, and the segment
of the boundary of each disc between the marked vertex and the vertex immediately
adjacent to it as we move around the boundary in an anti-clockwise direction is la-
belled either C or �. For a disc which has no vertices on its boundary, we label its
entire boundary by C or �. InsideD we have a collection of disjoint smooth curves,
called strings, where any string is either a closed loop, or else has as its endpoints the
vertices on the discs, and such that every vertex is the endpoint of exactly one string.
Any tangle must also allow a checkerboard colouring of the regions insideD, which
are bounded by the strings and the boundaries of the discs, where every region is
coloured black or white such that any two regions which share a common boundary
are not coloured the same, and any region which meets the boundary of a disc at the
segment marked C, � is coloured black, white respectively.

A planar k-tangle with an internal disc Dj with 2kj vertices on its boundary can
be composed with a kj -tangle S , giving a new k-tangle T Bj S , by inserting the
tangle S inside the inner disc Dj of T such that the vertices on the outer disc of S
coincide with those on the disc Dj , and in particular the two marked vertices must
coincide. The boundary of the discDj is then removed, and the strings are smoothed
if necessary. The collection of all diffeomorphism classes of such planar tangles,
with composition defined as above, is called the planar operad.
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A planar algebra P is then defined to be an algebra over this operad, i.e., a family
P D .PC

k
; P�

k
I k � 0/ of vector spaces with P˙

k
� P˙

k0 for k < k0, and with the
following property. For everyk-tangleT withn internal discsDj labelled by elements
xj 2 Pkj

, j D 1; : : : ; n, there is an associated linear mapZ.T / W Nn
j D1 Pkj

! Pk ,
which is compatible with the composition of tangles and re-ordering of internal discs.

These planar algebras gave a topological reformulation of the standard invariant,
described in terms of relative commutants in the standard tower of a subfactor. More
precisely, the standard invariant of an extremal subfactor N � M is a (subfactor)
planar algebra P D .Pk/k�0 with Pk D N 0 \ Mk�1. Conversely, every planar
algebra can be realised by a subfactor [60], [31] (see also [28], [36], [41]). The index
[30] is a crude measure of the complexity of a subfactor – those subfactors with index
< 4 being the simplest. Since every relative commutant contains the Temperley–Lieb
algebra, another notion of complexity is the number of non-Temperley–Lieb elements
that are required to generate the relative commutants. In the planar algebra set-up,
planar algebras P generated by a single element, for which the dimension of P3 is
at most 13, were classified in [8]. In the recent work of [42] it was shown that any
subfactor planar algebra P of depth k is generated by a single element in Pt , for
some t � k C 1.

In [33] Jones studied annular tangles, that is, tangles with a distinguished in-
ternal disc. He introduced the notion of modules over a planar algebra, which are
modules over an annular category whose morphisms are given by such annual tan-
gles, and gave a description of all irreducible Temperley–Lieb modules. A more
general planar algebra is the graph planar algebra of a bipartite graph [32]. Jones
and Reznikoff obtained the decomposition of the graph planar algebras for the ADE
graphs into irreducible Temperley–Lieb modules [33], [64]. A similar notion to an
tangle is that of an affine tangle. Affine Temperley–Lieb algebras were studied in
[35], [65].

One way to construct planar algebras is by generators and relations. One problem
that arises with this method is to determine whether or not a set of generators and
relations will produce a finite-dimensional planar algebra, that is, a planar algebra
P where each Pk , k > 0, is finite-dimensional. Landau [45] obtained a condition
called an exchange relation, which guarantees that a planar algebra is in fact finite-
dimensional, and this condition was extended and generalized in [26]. A bigger
problem is to show whether or not the trace defined on the planar algebra is positive
definite. The graph planar algebras have a positive definite trace. A recently published
result in [34], Corollary 4.2, says that every finite-depth subfactor planar algebra is
a planar subalgebra of the graph planar algebra of its principal graph. If a planar
algebra can be found as a planar subalgebra of a graph planar algebra then the trace
it inherits from the graph planar algebra will be automatically positive definite. This
motivated the construction of the planar algebra for the ADE subfactors in terms of
generators and relations [4], [49], and more recently for the Haagerup subfactor [58],
and the extended Haagerup subfactor [5] where planar algebras were used to show
the existence of the extended Haagerup subfactor for the first time.
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The planar algebras associated to different constructions of subfactors have been
described: the planar algebra associated to subfactors arising from the outer actions
on a factor by a finite-dimensional Kac algebra [39], by a semisimple and cosemisim-
ple Hopf algebra [40] and more recently by the actions of finite groups or finitely
generated, countable, discrete groups [27], [29], [6], [7]. Planar algebras associated
to the action of compact quantum groups on finite quantum spaces were studied in [2].

3. Taking Jones’ planar algebras to the A2 setting

Our planar description naturally begins in this section with the spiders of Kuperberg
[44] who developed some of the basic diagrammatics of the representation theory
of A2 and other rank two Lie algebras. Here we give a diagrammatic presentation
of the A2-Temperley–Lieb algebra using Kuperberg’s A2 spider, and show that the
A2-Temperley–Lieb algebra is isomorphic to Wenzl’s quotient of the Hecke algebra
[70]. In Section 4 we introduce and study the notion of a general A2-planar algebra
and in Section 4.3 the notion of an A2-planar algebra and the notion of flatness.
In Section 5 we describe particular subspaces that we are interested in, which will
correspond exactly to the double complex associated to the SU.3/-subfactors.

The SU.3/ADE graphs appear as nimreps for the SU.3/modular invariants [21],
[22]. For each graph there is a construction of a subfactor via a double complex of
finite-dimensional algebras (cf. �-lattice in what one could call the SU.2/ setting)
which relies on the existence of a cell system which defines a connection or Boltz-
mann weight. The series of the commuting squares in these double complexes are
not canonical in the sense of Popa, because although these double complexes have
period 2 vertically (coming from the subfactor basic construction) they have period 3
horizontally (coming from the underlying A2-Temperley–Lieb algebraic structure).
These double complexes were used by Evans and Kawahigashi [19] to understand
the Wenzl subfactors and their orbifolds, and in particular to compute their principal
graphs. The main result of the paper is Theorem 6.4 in Section 6, where we show how
the subfactor, or associated double complex, for a finite ADE graph with a flat cell
system diagrammatically gives rise to a flatA2-C*-planar algebra. Jones’(A1-)planar
algebra is contained in theA2-planar algebra, as the algebra over a certain suboperad
of our A2-planar operad. In Section 6.2 we obtain an A2-planar algebra description
of the Wenzl subfactor, and as a corollary we have a construction of Jones’ planar
algebra for the Wenzl subfactor in terms of generators and relations which come from
the A2-planar algebra.

In [21] we computed the numerical values of the Ocneanu cells, announced by
Ocneanu (e.g. [54], [55]), and consequently representations of the Hecke algebra,
for the SU.3/ ADE graphs. These cells assign a numerical weight to Kuperberg’s
diagram of trivalent vertices – corresponding to the fact that the trivial representation is
contained in the triple product of the fundamental representation of SU.3/ through the
determinant. They will yield, in a natural way, representations of an A2-Temperley–
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Lieb or Hecke algebra. For bipartite graphs, the corresponding weights (associated to
the diagrams of cups or caps), arise in a more straightforward fashion from a Perron–
Frobenius eigenvector, giving a natural representation of the Temperley–Lieb algebra
or Hecke algebra.

In the sequel [23] we introduce the notion of modules over an A2-planar algebra,
and describe certain irreducible Hilbert A2-TL-modules. A partial decomposition
of graph A2-planar algebras for the ADE graphs is achieved. The graph A2-planar
algebra P G of an ADE graph is anA2-C*-planar algebra with dim.P G

0 / > 1, which
is a generalization of the bipartite graph planar algebra to theA2 setting. These graph
A2-planar algebras are diagrammatic representations of another double complex of
finite-dimensional algebras, where now the initial space in the double complex is Cn

where n > 1 (note that n D 1 for the initial space in the double complex associated
to an SU.3/-subfactor).

The bipartite theory of the SU.2/ setting has to some degree become a three-
colourable theory in our SU.3/ setting. This theory is not completely three-colourable
since some of the graphs are not three-colourable – namely the graphs A.n/� asso-
ciated to the conjugate modular invariants, n � 4, D.n/ associated to the orbifold
modular invariants, n ¤ 0 .mod 3/, and the exceptional graph E.8/�. The figures
for the complete list of the ADE graphs are given in [3], [21].

We have laid the foundations for a planar algebra formulation of an SU.3/ theory
which may help resolve some of the unanswered questions left open in the programme
which we set out on in [21], [22] to understand SU.3/ modular invariants and their
representation by braided subfactors. We realised all SU.3/ modular invariants by
braided SU.3/ subfactors [22] but did not classify their associated nimreps or claim
that the known list is exhaustive. In the case of one of the exceptional modular
invariants, we could not identify the nimrep. We verified that all known candidate
nimrep graphs carried Ocneanu cell systems [21], apart from one exceptional graph
E

.12/
4 . However, we did not determine when such a cell system yields a local braided

subfactor, but speculated that this should correspond to type I cell systems, that is,
cell systems such that the connection defined by equations (19), (20) in the present
paper is flat. This is only known for the A and D graphs at present [19].

The question of whether all nimreps have been realised is open. There are some
nimreps which do not have braided subfactors. We also want to go beyond the ADE

classification to study subfactors for more exotic graphs which support a cell system,
just as Jones’ planar algebras facilitated the study of the Haagerup and extended
Haagerup subfactors. The tools being drawn up in this paper may aid these further
studies.

3.1. Orbifolds. The orbifold construction is a standard procedure in operator alge-
bras, in C*-algebras and subfactor theory in von Neumann algebras, as well as in
integrable statistical mechanics and conformal field theory. A finite abelian group
action on the underlying structure can bring about an orbifold, by suitably dividing
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out by the group elements (usually called simple currents in conformal field the-
ory) which may or may not describe completely different theory from the original
one. This usually depends on having fixed points, and understanding their role or the
resolution of these singularities is the key.

For example, in the theory of C*-algebras, the fixed point algebra of the irrational
rotation algebra by a flip on the generators or the underlying two-dimensional torus
has an AF fixed point algebra, and so has a completely different character to the
ambient noncommutative torus which has non trivial K1. This is reviewed with
full references in [20], notes to Ch. 3, pp. 125–146. The invariants involved in
understanding or comparing orbifolds, the fixed point algebras or crossed products,
with the original algebras being K-theory or equivariant K-theory. Partly motivated
by this, orbifold methods were introduced into subfactor theory [19], but first we
digress to the underlying statistical mechanics and conformal field theories.

In statistical mechanics, Date, Jimbo, Miwa and Okado [16] introduced integrable
models associated with the level k-integrable models of the Kac–Moody algebra of
SU.n/. The Boltzmann weights lie in the fixed point algebra of the infinite tensor
product of Mn under the action of SU.n/k .

The notion of an orbifold of such a model by dividing out by a subgroup Z of
the centre of SU.n/were introduced by Pasquier [57], Fendley and Ginsparg [24] for
n D 2 and by Di Franceso and Zuber [17] for n D 3, borrowing from an orbifold
notion in conformal field theory [18]. In the Wess–Zumino–Witten model, a two-
dimensional conformal field theory arises from classical fields taking values in the
target SU.n/ models and their orbifolds by Z are meant to be those living in the
quotient SU.n/=Z.

With all this mind, the orbifold construction was introduced in subfactor theory in
[19], with the Boltzmann weights being in the relevant fixed point algebras and hence
naturally satisfy the Yang–Baxter equation, and the subfactors introduced through
the action of the subgroup Z of the centre as a group of automorphisms and crossed
products. It is still a question whether one is really finding a new subfactor, as in
the N D 2 case, one cannot simply take the orbifold of the A4m�1-principal graph
which would be D2mC1, as only Dm for m even can arise as a principal graph of a
subfactor. For the SU.3/ subfactor the action of the center Z3 of SU.3/ introduces
an action for each integer level k on NXN , a system of endomorphisms of a type III
factor N represented by the vertices of the truncated diagram A.kC3/.

These orbifolds are best understood through ˛-induction in subfactor theory [10],
Section 3, [11], Section 6.2, [12], Section 8, which we summarize here.

Simple currents [66] are primary fields with unit quantum dimension and appear
in the subfactor framework as automorphisms in the system NXN . They form a
closed abelian group under fusion. Simple currents give rise to modular invariants,
and all such invariants have been classified [25], [43]. We are focussing on SU.n/
here for n D 2; 3, and so will only consider cyclic simple current groups Zn.

By taking a generator Œ�� of the cyclic simple current group Zn we can construct
the crossed product subfactor N � M D N Ì Zn whenever we can choose a
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representative � in each such simple current sector such that we have exact cyclicity
�n D 1 (and not only as sectors). Rehren’s lemma [63] states that such a choice is
possible if and only if the statistics phase !� is an n-th root of unity, i.e., if and only
if the conformal weight h� is an integer multiple of 1=n. This construction gives
rise to a non-trivial subfactor and in turn to a modular invariant. For SU.n/k the
simple current group Zn corresponds to weights kƒ.j /, j D 0; 1; : : : ; n � 1. The
conformal dimensions are hkƒ.j /

D kj.n� j /=2n, which by Rehren’s Lemma [63]
allow for full Zn extensions except when n is even and k is odd in which case the
maximal extension is N � M D N Ì Zn=2 because we can only use the even labels
j . (This reflects the fact that e.g. for SU.2/ there are no D-invariants at odd levels.)
Thus Rehren’s lemma has told us that extensions are labelled by all the divisors of
n unless n is even and k is odd in which case they are labelled by the divisors of
n=2. This matches exactly the simple current modular invariant classification of [25],
[43]. An extension by a simple current subgroup Zm, with m a divisor of n or n=2,
is moreover local, if the generating current (and hence all in the Zm subgroup) has
integer conformal weight, hkƒ.q/

2 Z, where n D mq. This happens exactly if
kq 2 2mZ if n is even, or kq 2 mZ if n is odd [11]. For SU.2/ this corresponds to
the Deven series whereas the Dodd series are non-local extensions. For SU.3/, there
is a simple current extension at each level, but only those at k 2 3Z are local. For
the case of SU.3/ at level 3p, the crossed product N � N Ì Z3 with canonical
endomorphism Œ� � D Œ�.0;0/�˚ Œ�.3p;0/�˚ Œ�.0;3p/�, the procedure of alpha induction
[10], p. 89, yields from h˛�; ˛�i D h��; �i that at the fixed point f D .p; p/,

Œ f̨ � D Œ˛
.1/

f
� ˚ Œ˛

.2/

f
� ˚ Œ˛

.3/

f
� splits into three irreducibles whilst otherwise Œ˛��

is irreducible and identified with Œ˛���, � 2 Z3, under the action of the centre Z3

or simple currents. Thus under alpha induction, the Verlinde algebra or the tensor
category of SU.3/ at level 3p, represented by a system of endomorphisms NXN is
taken to its orbifold NXṄ , and taking the dual action reverses this procedure. The
principal graphs (the fusion graphs of Œ˛.1;0/�) are the orbifold graphs D3pC3.

Müger [50] and Bruguières [14] have subsequently introduced an orbifold pro-
cedure which can handle non abelian groups, and this procedure is sometimes de-
scribed as equivariantization/deequivariantization in the category oriented literature.
We pointed out in [21] recent work in condensed matter physics [1] where we see that
˛-induction is playing a key role. For example, the computation of pages 8–9 is ˛-
induction for an orbifold embedding of SU.2/4 which gives fusion graph D4. Other
examples are the conformal embedding of SU.2/4 � SU.3/1 on pages 14–15, which
again gives fusion graph D4, and the conformal embedding SU.2/10 � SO.5/1 on
pages 15–16, which gives fusion graph E6.

3.2. A2-tangles. In [44], Kuperberg defined the notion of a spider, which is an ax-
iomatization of the representation theory of groups and other group-like objects. The
invariant spaces have bases given by certain planar graphs. These graphs are called
webs, hence the term spider. In [44] certain spiders were defined in terms of genera-
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tors and relations, isomorphic to the representation theories of rank two Lie algebras
and the quantum deformations of these representation theories. This formulation
generalized a well-known construction for A1 D su.2/ by Kauffman [37].

For the A2 D su.3/ case, we have the A2 webs, illustrated in Figure 1. We will
call these webs incoming and outgoing trivalent vertices respectively. We call the
oriented lines strings. We may join the A2 webs together by attaching free ends of
outgoing trivalent vertices to free ends of incoming trivalent vertices, and isotoping
the strings if needed so that they are smooth.

Figure 1. A2 webs.

We are now going to systematically define an algebra of web tangles, and express
this in terms of generators and relations.

Definition 3.1. AnA2-tangle will be a connected collection of strings joined together
at incoming or outgoing trivalent vertices (see Figure 1), possibly with some free ends,
such that the orientations of the individual strings are consistent with the orientations
of the trivalent vertices.

Definition 3.2. We call a vertex a source vertex if the string attached to it has orien-
tation away from the vertex. Similarly, a sink vertex will be a vertex where the string
attached has orientation towards the vertex.

Definition 3.3. For m; n � 0, an A2-.m; n/-tangle will be an A2-tangle T on a
rectangle, where T has mC n free ends attached to m source vertices along the top
of the rectangle and n sink vertices along the bottom such that the orientation of the
strings is respected. Ifm D n we call T simply an A2-m-tangle, and we position the
vertices so that for every vertex along the top there is a corresponding vertex directly
beneath it along the bottom.

Two A2-.m; n/-tangles are equivalent if one can be obtained from the other by
an isotopy which moves the strings and trivalent vertices, but leaves the boundary
vertices unchanged. We define T

A2
m;n to be the set of all (equivalence classes of)

A2-.m; n/-tangles.

The composition TS 2 T
A2

m;k
of an A2-.m; n/-tangle T and an A2-.n; k/-tangle

S is given by gluing S vertically below T such that the vertices at the bottom of T
and the top of S coincide, removing these vertices, and isotoping the glued strings if
necessary to make them smooth. The composition is clearly associative.

Definition 3.4. We define the vector space V
A2
m;n to be the free vector space over

C with basis T
A2

m;n. Then V
A2
m;n has an algebraic structure with multiplication given
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by composition of tangles. In particular, we will write V
A2
m for V

A2
m;m, and VA2 DS

m�0 V
A2
m . For n < m we have V

A2
n � V

A2
m , with the inclusion of an n-tangle

T 2 T
A2

n in T
A2

m given by adding m � n vertices along the top and bottom of the
rectangle after the rightmost vertex, with m � n downwards oriented vertical strings
connecting the extra vertices along the top to those along the bottom. The inclusion
for V

A2
n in V

A2
m is the linear extension of this map.

Note that T
A2

m;n is infinite, and thus the vector space V
A2
m;n is infinite-dimensional.

However, we will take a quotient of V
A2
m;n which will turn out to be finite-dimensional.

Let K1–K3 denote the following relations on local parts of tangles, for ˛; ı 2 C [44]:

K1:

K2:

K3:

Definition 3.5. We define Im;n � V
A2
m;n to be the ideal of V

A2
m;n which is the linear

span of the relations K1–K3.

By the linear span of the relations K1–K3 is meant the linear span of the differences
of the left-hand side and the right hand side of each of the relations, as local parts of
the tangles, where the rest of the tangle is identical in each term in the difference. We
will denote Im;m by Im. Note that Im � ImC1.

Definition 3.6. The algebra V A2
m is defined to be the quotient of the space V

A2
m by

the ideal Im, and V A2 D S
m�0 V

A2
m .

A basis ofV A2
m is given by allA2-m-tangles which do not contain the local pictures

which appear on the left-hand side of K1–K3 (which Kuperberg calls elliptic faces).

We will call the local picture a digon, and an embedded square. We could
replace the Kuperberg relation K1 by the more general relations:

K10:

Although it now appears that we have three independent parameters ˛1, ˛1, ı, we
actually have only one, as shown in the following lemma:
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Lemma 3.7. For afixed complex number ı ¤ 0wemust have either˛1 D ˛2 D ı2�1
or ˛1 D ˛2 D 0.

Figure 2. 3-tangles B1, B2, E.

Proof. LetB1 be the 3-tangle illustrated in Figure 2, which is the composition of three
basis tangles in V A2

3 . Let B2 be a 3-tangle which comes from a similar composition,
and E a basis tangle in V A2

3 , both also illustrated in Figure 2. Reducing B1 using
K2 twice, we get B1 D ı2E. On the other hand, if we reduce B1 using K3, we get
an anticlockwise oriented closed loop, which by K10 contributes a scalar factor ˛1.
Then we also have B1 D E C ˛1E. If E ¤ 0, then ı2 D 1C ˛1, and by the same
argument onB2 we also obtain ı2 D 1C˛2. Suppose now thatE D 0. Let yE be the
tangle given by composition of E (embedded in V A2

6 ) with three nested caps above
and three nested cups below, i.e., yE is the tangle

If we use K2 to remove the left digon, we obtain an anticlockwise oriented loop,
and so the diagram counts as the scalar ˛1ı. If instead we used K2 to remove the
right digon we would obtain the scalar ˛2ı. Since yE D 0 and ı ¤ 0, we have
˛1 D ˛2 D 0.

Form 2 Z, we define the quantum integer Œm�q by Œm�q D .qm�q�m/=.q�q�1/,
where q 2 C. Note that if ı D Œ2�q , then by Lemma 3.7 ˛ D ı2 � 1 D Œ3�q (or zero).
When q is an nth root of unity, q D e2�i=n, we will usually write Œm� for Œm�q .

There is a braiding on V A2 , defined locally by the following linear combinations
of local diagrams in V A2 , for a choice of third root q1=3, q 2 C (see [44], [67]):
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(5)

(6)

The braiding satisfies the following properties locally, provided that ı D Œ2�q and
˛ D Œ3�q:

(7)

(8)

where we also have relation (8) with the crossings all reversed.
We call the local pictures illustrated on the left-hand sides of relations (5), (6)

respectively a negative, positive crossing respectively. With this braiding, kinks (or
twists) contribute a scalar factor of q8=3 for those involving a positive crossing, and
q�8=3 for those involving a negative crossing, as shown in Figure 3.

Figure 3. Removing kinks.

We now define a �-operation on V
A2
m , which is an involutive conjugate linear

map. For an m-tangle T 2 T
A2

m , T � is the m-tangle obtained by reflecting T about
a horizontal line halfway between the top and bottom vertices of the tangle, and
reversing the orientations on every string. Then � on V

A2
m is the conjugate linear

extension of � on T
A2

m . Note that the �-operation leaves the relation K2 invariant if
and only if ı 2 R. For ı 2 R, the �-operation leaves the ideal Im invariant due to
the symmetry of the relations K1–K3. Then � passes to V A2

m , and is an involutive
conjugate linear anti-automorphism.

3.3. Diagrammatic presentationof theA2-Temperley–Liebalgebra. From now
on we let ı be real, so that ı D Œ2�q for some q, and we set ˛ D Œ3�q (cf. Lemma 3.7).
We define the tangle 1m to be the m-tangle with all strings vertical through strings.
Then 1m is the identity of the algebra V

A2
m : 1ma D a D a1m for all a 2 V

A2
m . We

also define Wi to be the m-tangle with all vertices along the top connected to the
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vertices along the bottom by vertical lines, except for the i th and .i C 1/th vertices.
The strings attached to the i th and .i C 1/th vertices along the top are connected at
an incoming trivalent vertex, with the third string coming from an outgoing trivalent
vertex connected to the strings attached to the i th and .i C 1/th vertices along the
bottom. The tangle Wi is illustrated in Figure 4.

Figure 4. The m-tangle Wi , i D 1; : : : ; m � 1.

For m 2 N [ f0g we define the algebra A2- TLm to be alg.1m; wi ji D 1; : : : ;

m � 1/, where wi D Wi C Im. The wi ’s in A2- TLm are clearly self-adjoint, and
satisfy the relations H1–H3, as illustrated in Figures 5, 6 and 7.

Figure 5. w2
i

D ıwi .

Figure 6. wiwj D wjwi for ji � j j > 1.

Let Fi be the m-tangle illustrated in Figure 8, and define fi D Fi C Im so that
fi D wiwiC1wi � wi D wiC1wiwiC1 � wiC1. By drawing pictures, it is easy to
see that

fifi˙1fi D ı2fi ; fifiC2fi D ıfiwiC3;

and

fifi�2fi D ıfiwi�2:

We also find that the wi satisfy the SU.3/ relation (4):

.wi � wiC2wiC1wi C wiC1/fiC1 D 0:
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Figure 7. wiwiC1wi � wi D wiC1wiwiC1 � wiC1.

Figure 8. The m-tangle Fi , i D 1; : : : ; m � 2.

The following lemma is found in [56], Lemma 3.3, p. 385:

Lemma 3.8. Let T be a basis A2-.m; n/-tangle. Then T must satisfy one of the
following three conditions:

(1) There are two consecutive vertices along the top which are connected by a cup
or whose strings are joined at an (incoming) trivalent vertex,

(2) There are two consecutive vertices along the bottom which are connected by a
cap or whose strings are joined at an (outgoing) trivalent vertex,

(3) T is the identity tangle.

Thus for any basisA2-m-tangle which is not the identity tangle, there must be two
(consecutive) vertices along the top or bottom whose strings are joined at an incoming
or outgoing trivalent vertex respectively. In fact, by a Euler characteristic argument,
this must be true for two vertices along both the top and bottom.

Then we have the following lemma which says that the A2-Temperley–Lieb
algebra A2- TL is equal to the algebra V A2 of all A2-tangles subject to the rela-
tions K1–K3. This is the A2 analogue of the fact that the Temperley–Lieb algebra
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TLn D alg.1; e1; e2; : : : ; en�1/ is isomorphic to Kauffman’s diagram algebra [37],
which is the algebra generated by the elements E1; E2; : : : ; En�1 on n strings, illus-
trated in Figure 9, along with the identity tangle 1n where every vertex along the top
is connected to a vertex along the bottom by a vertical through string. This lemma
appeared in [61], and also independently with an alternate proof in [62], Theorem 2.2.

Figure 9. The n-diagram Ei , i D 1; : : : ; m � 1.

Lemma 3.9. The algebra V A2
m is generated by 1m andWi 2 V A2

m , i D 1; : : : ; m�1.
So V A2

m Š A2- TLm.

Proof. Let T be a basis m-tangle which is not the identity. Then by Lemma 3.8,
T has (at least) one pair of vertices along the top whose strings are connected at an
incoming trivalent vertex. For an incoming trivalent which is only connected to two
vertices along the top, the third strand of this trivalent vertex must be connected to an
outgoing trivalent vertex, since it cannot be connected to another incoming trivalent
vertex or a vertex along the bottom due to its orientation. Suppose these two vertices
along the top are consecutive vertices. We isotope the strings so that we pull out this
pair of trivalent vertices from the rest of the tangle as shown in Figure 10, where T1

is the resulting m-tangle contained inside the rectangle. We repeat this procedure
for all incoming trivalent vertices connected to exactly two vertices along the top,
where these two vertices are consecutive. We also perform a similar procedure for all
outgoing trivalent vertices connected to exactly two vertices along the bottom, where
these two vertices are consecutive.

Figure 10

For any remaining trivalent vertices with only two of its strands connected to
vertices along the top, these two vertices must not be consecutive. The region bounded
by these two strands and the top of the tangle is a closed region which contains a
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non-zero number of vertices (in fact this number must necessarily be a multiple of
three). The braiding is a linear combination of the identity tangle and Wi ’s. Thus by
composing with the braiding we can move the pair of vertices along the top to the
left side of the tangle so that these two vertices are consecutive. The strings may be
isotoped in such a way so that once the braided part along the top has been removed to
give a linear combination of the identity tangle and Wi ’s, the resulting diagram does
not contain any crossings. The third strand at this incoming trivalent vertex must again
be connected to an outgoing trivalent vertex, and we pull out this pair of vertices as
before, giving a factor ofW1. We repeat this procedure and the one described above for
all the remaining incoming trivalent vertices connected to exactly two vertices along
the top, and similarly for all the remaining outgoing trivalent vertices connected to
exactly two vertices along the bottom.

If the resulting tangle is not the identity, then by Lemma 3.8 there will again be
a pair of vertices along the top whose strings are connected at an incoming trivalent
vertex. Since all the incoming trivalent vertices which are connected to exactly
two vertices along the top have been removed, this trivalent vertex must have all its
strands connected to vertices along the top. By a similar argument there will also be
an outgoing vertex which is connected to three vertices along the bottom. Then using
the braiding we move this pair of trivalent vertices to the left of the diagram, which
gives a factor F1. Repeating this procedure we remove all the remaining trivalent
vertices in the tangle, and we are done.

3.4. Trace on V
A2
n . The following proposition is from [56], Proposition 1.2, p. 375:

Proposition 3.10. The quotientV A2

0 D A2- TL0 of the free vector space of all planar
0-tangles by the Kuperberg relations K1–K3 is isomorphic to C.

We define a trace Tr on V
A2
m as follows. For an A2-m-tangle T 2 V

A2
m , we form

the 0-tangle Tr.T / as in Figure 11 by joining the last vertex along the top of T to the
last vertex along the bottom by a string which passes round the tangle on the right-hand
side, and joining the other vertices along the top to those on the bottom similarly.
Then Tr.T / gives a value in C by Proposition 3.10. We could define the above
trace as a right trace, and define a left trace similarly where the strings pass round
the tangle on the left-hand side. However, by the comments after Proposition 4.8,
the right and left traces are equal. The trace of a linear combination of tangles is
given by linearity. Clearly Tr.ab/ D Tr.ba/ for any a; b 2 V

A2
m , as in Figure 12.

For any x 2 Im we have Tr.x/ D 0, which follows trivially from the definition
of Tr. Then Tr is well defined on V A2

m . We define a normalized trace tr on V
A2
m by

tr D ˛�m Tr, so that tr.1m/ D 1. Then tr is a Markov trace onV A2 since forx 2 V A2

k
,

tr.Wkx/ D ı˛�1 tr.x/, as illustrated in Figure 13, and in particular tr.Wi / D ı˛�1.
The Markov trace tr is positive by Lemma 3.11 and [70], Theorem 3.6 (b).
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Figure 11. Tr.T /. Figure 12. Tr.ab/ D Tr.ba/.

Figure 13. Markov trace on V A2 .

For each non-negative integer m we define an inner-product on V
A2
m by

hS; T i D tr.T �S/; (9)

which is well defined on V A2
m since tr is.

For ı < 2 (so ı D Œ2�q D Œ2� where q D e�i=n, n 2 N), we define yV A2
m to be the

quotient of V A2
m by the zero-length vectors in V A2

m with respect to the inner-product
defined in (9). Then the following lemma gives an identification between (a subal-
gebra of) the algebra of A2-tangles and �.H1.q// where � is one of Wenzl’s Hecke
representations for SU.3/ (see [70]). This lemma will be used later in Section 6.2.

Lemma 3.11. For ı � 2, there is a C* representation � of H1.q2/ such that
�.Hm.q

2// Š V
A2

m . The representation � is equivalent to Wenzl’s representation
	 of the Hecke algebra, and consequently V A2 is isomorphic to the path algebra for
A.1/. For ı D Œ2�q , q D e�i=n, there is a C* representation � of H1.q2/ such
that �.Hm.q

2// Š yV A2
m . In this case the representation � is equivalent to Wenzl’s

representation 	.3;n/ of the Hecke algebra, and consequently V A2 is isomorphic to
the path algebra for A.n/.

Proof. Clearly ı�1Wi , i D 1; : : : ; m � 1, is a self-adjoint projection in V A2
m , so � is

a C*-representation of Hm.q
2/ for any real q � 1 or q D e�i=n. When q D ex ,

x � 0, we have 
 D .1 � q2.�kC1//=.1 C q2/.1 � q�2k/ D sinh..k � 1/x/=

2 cosh.x/ sinh.kx/ D Œk�1�q=Œ2�qŒk�q , whilst for q D e�i=n, 
 D sin..k�1/	=n/=
2 cos.	=n/ sin.k	=n/ D Œk � 1�=Œ2�Œk�. Then for k D 3, 
 D Œ3��1

q so that the

Markov trace on V A2
m satisfies the condition in [70], Theorem 3.6.
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Then the algebra V A2
m is finite-dimensional for all finite m since the mth level of

the path algebra for A.n/ is finite-dimensional.

4. A2-planar algebras

4.1. General A2-planar algebras. We will now define an A2-version of Jones’
planar algebra, using tangles generated by Kuperberg’s A2-webs. Under certain
assumptions, theseA2-planar algebras will correspond to certain subfactors of SU.3/
ADE graphs which have flat connections. The best way to describe planar algebras
is in terms of operads (see [31], [48]).

Definition 4.1. An operad consists of a sequence .C.n//n2N of sets. There is a unit
element 1 in C.1/, and a function C.n/˝ C.j1/˝ � � � ˝ C.jn/ ! C.j1 C � � � C jn/

called composition, given by .y ˝ x1 ˝ � � � ˝ xn/ ! y B .x1 ˝ � � � ˝ xn/, satisfying
the following properties:

� associativity: y B .x1 B .x1;1 ˝ � � � ˝ x1;k1
/˝ � � � ˝ xn B .xn;1 ˝ � � � ˝ xn;kn

// D
.y B .x1 ˝ � � � ˝ xn// B .x1;1 ˝ � � � ˝ x1;k1

˝ � � � ˝ xn;1 ˝ � � � ˝ xn;kn
/;

� identity: y B .1˝ � � � ˝ 1/ D y D 1 B y.

Let � D �1 : : : �m be a sign string, �j 2 f˙g. An A2-planar � -tangle will be
the unit disc D D D0 in C together with a finite (possibly empty) set of disjoint
sub-discs D1;D2; : : : ;Dn in the interior of D. Each disc Dk , k � 0, will have
mk � 0 vertices on its boundary @Dk , whose orientations are determined by sign
strings � .k/ D �

.k/
1 : : : �

.k/
mk

where ‘C’ denotes a sink and ‘�’ a source, and such
that the difference between the number of ‘C’ and ‘�’ is 0 .mod 3/. The disc Dk

will be said to have pattern � .k/. InsideD we have an A2-tangle where the endpoint
of any string is either a trivalent vertex (see Figure 1) or one of the vertices on the
boundary of a disc Dk , k D 0; : : : ; n, or else the string forms a closed loop. Each
vertex on the boundaries of theDk is the endpoint of exactly one string, which meets
@Dk transversally. An example of an A2-planar � -tangle is illustrated in Figure 14
for � D � C � C � C �C.

The regions inside D have as boundaries segments of the @Dk or the strings.
These regions ar labelled N0, N1 or N2, called the colouring, such that if we pass from a
region R of colour Na to an adjacent region R0 by passing to the right over a vertical
string with downwards orientation, then R0 has colour aC 1 .mod 3/. We mark the
segment of each @Dk between the last and first vertices with �bk

, bk 2 f0; 1; 2g, so
that the region inside D which meets @Dk at this segment is of colour Sbk , and the
choice of these �bk

must give a consistent colouring of the regions. For each � we
have three types of tangle, depending on the colour Nb of the marked segment, or of
the marked region near @D for � D ¿.
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Figure 14. A2-planar � -tangle for � D � C � C � C �C.

We define zP� .L/ to be the free vector space generated by orientation-preserving
diffeomorphism classes ofA2-planar � -tangles with labelling setsL. The diffeomor-
phisms preserve the boundary of D, but may move the Dk’s, k � 1. Let P� .L/ be
the quotient of zP� .L/ by the Kuperberg relations K1–K3. The A2-planar operad
P .L/ is defined to be P .L/ D S

� P� .L/. We will usually simply write P for
P .L/.

We define composition in P as follows. Given an A2-planar � -tangle T with an
internal discDl with pattern �l D � 0, and anA2-planar � 0-tangleS with external disc
D0 and �D0 D �Dl

, we define the � -tangle T Bl S by isotoping S so that its boundary
and vertices coincide with those of Dl , joining the strings at @Dl and smoothing if
necessary. We then remove @Dl to obtain the tangle T Bl S whose diffeomorphism
class clearly depends only on those of T and S . This gives P the structure of a
coloured operad, where each Dk , k > 0, is assigned the colour �k , and composition
is only allowed when the colouring of the regions match (which forces the orientations
of the vertices to agree). TheDk’s, k � 1 are to be thought of as inputs, andD D D0

is the output.
The most general notion of anA2-planar algebra will be an algebra over the operad

P , i.e., a general A2-planar algebra P is a family

P D .P Na
� ; for all sign strings �and all a 2 f0; 1; 2g/

of vector spaces with the following property: for every labelled � -tangleT 2 P� with
internal discs D1;D2; : : : ;Dn, where Dk has pattern �k and outer disc marked by

�bk
, there is associated a linear map Z.T / W Nn

kD1 P
xbk

�k
! P

Nb
� which is compatible

with the composition of tangles in the following way. If S is a �k-tangle with internal
discsDnC1; : : : ;DnCm, whereDk has pattern �k , then the composite tangle T Bl S is
a� -tangle withnCm�1 internal discsDk , k D 1; 2; : : : ; l�1; lC1; lC2; : : : ; nCm.
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Figure 15. Composition of planar tangles.

From the definition of an operad, associativity means that the diagram

.
Nn

kD1
k¤l

P
xbk

�k
/˝ .

NnCm
kDnC1 P

xbk
�k
/

id˝Z.S/

��
Z.T Bl S/

�����������������

Nn
kD1 P

xbk
�k Z.T /

�� P
Nb

�

(10)

commutes so that Z.T Bl S/ D Z.T 0/, where T 0 is the tangle T with Z.S/ used
as the label for disc Dl . We also require Z.T / to be independent of the ordering of
the internal discs, that is, independent of the order in which we insert the labels into
the discs. If � D ¿, we adopt the convention that the empty tensor product is the
complex numbers C. By using the tangle
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we see that eachP Na
¿ (sometimes denoted byP Na

0 ) is a commutative associative algebra,
a 2 f0; 1; 2g. Each P Na

� has a distinguished subset, given by the elements Z.T /
for all � -tangles without internal discs, with outer disc marked by �a. This is the
unital operad (see [48]). Following Jones’ terminology, we call the linear map Z the
presenting map for P .

Jones’ planar algebra is contained in the A2-planar algebra in the following way.
Let .˙; n/ denote the alternating sign string of length n, where the first sign is ˙. If
we consider the sub-operad Q D S

Qn where Qn is the subset of P.˙;n/ generated
by tangles with no trivalent vertices (and hence no crossings) and where each internal
disc Dk only has pattern .˙; nk/, then Q is the coloured planar operad of Jones in
[31], where instead of the three colours a D 0; 1; 2 of the A2-planar algebras, in Q

there are now only two colours, usually called black and white. Jones’ planar algebra
is then Q D Z.Q/.

4.2. Partial braiding. We now introduce the notion of a partial braiding in our A2-
planar operad. We will allow over and under crossings in our diagrams, which are
interpreted as follows. For a tangle T with n crossings c1; : : : ; cn, choose one of
the crossings ci and, isotoping any strings if necessary, we enclose ci in a disc b, as
shown in Figure 16 for ci a (i) negative crossing and (ii) positive crossing (up to some
rotation of the disc).

(i) (ii)

Figure 16. Disc b for (i) negative crossing, (ii) positive crossing.

Let b1, b2 be the discs illustrated in Figure 17. We form two new tangles S .1/
1 and

T
.1/
1 which are identical to T except that we replace the disc b by b1 forS .1/

1 and by b2

forT .1/
1 . If ci is a negative crossing thenT is equal to the linear combination of tangles

Figure 17. Discs b1 and b2.

q�2=3S
.1/
1 � q1=3T

.1/
1 , and if ci is a positive crossing T D q2=3S

.1/
1 � q�1=3T

.1/
1 ,

where q > 0 satisfies q C q�1 D ı (cf. (5) and (6)). Then for both S .1/
1 and

T
.1/
1 we consider another crossing cj and repeat the above process to obtain S .1/

1 D
r1S

.2/
1 � r 0

1T
.2/
1 , T .1/

1 D r2S
.2/
2 � r 0

2T
.2/
2 , where r1; r2 2 fq˙2g and r 0

1; r
0
2 2 fq˙1g



A2-planar algebras I 343

depending on whether cj is a positive or negative crossing. Since this expansion of
the crossings is independent of the order in which the crossings are selected, repeating

this procedure we obtain a linear combination T D P2.n�1/

iD1 .siS
.n/
i C s0

iT
.n/
i /, where

the si , s0
i are powers of q˙1=3.

With this definition of a partial braiding, two tangles give identical elements of the
planar algebra if one can be deformed into the other using relations (7), (8). It is not
a braiding as we cannot in general pull strings over or under labelled inner discsDk .

The tangles I� 2 P� illustrated in Figure 18 have pattern � on the inner and outer
discs and all strings are through strings. For any � -tangle T these tangles satisfy
I� B T D T , and also inserting I�k

inside every inner disc Dk with pattern �k also
gives the original tangle T . Then I� is the unit element (see Definition 4.1). We let
I� .x/ denote the tangle I� with x 2 P� as the label for the inner disc.

Figure 18. Tangle I� .

The condition dim.P Na
0 / D 1, a D 0; 1; 2, implies that there is a unique way to

identify each P Na
0 with C as algebras, with Z.�a/ D 1, a D 0; 1; 2, where �a

is the empty tangle with no vertices or strings at all, with the interior coloured a.
By Lemma 3.7 there is thus also one scalar, or parameter, associated to a general
A2-planar algebra:

Z.}/ D ˛ (11)

where the inner circle is a closed loop not an internal disc.
It follows from the compatability condition (10) that Z is multiplicative on con-

nected components, i.e., if a part of a tangle Y can be surrounded by a disc so that
T D T 0 Bl S for a tangle T 0 and 0-tangle S , thenZ.T / D Z.S/Z.T 0/whereZ.S/ is
a multilinear map from P Na

0 into the field C, where the region which meets the outer
boundary of S is coloured a, a 2 f0; 1; 2g.

Every general A2-planar algebra contains the A2-planar subalgebra PTL, the
planar A2-Temperley–Lieb algebra, which is defined by PTL� D P� .¿/, i.e., there
is no labelling set. We have PTL Na

0 Š C. The presenting map Z is just the identity
map. Note that the partial braiding defined above is a genuine braiding in PTL. The
A2-Temperley–Lieb algebra, introduced in Section 3.2, is a subalgebra of PTL, given
by A2- TLn D PTL�nCn , where Cn denotes the sign string C C � � � C (n copies),
and �n D � � � � � � (n copies). The action of an A2-planar � -tangle T on PTL is
given by filling the internal discs of T with basis elements of PTL, where we ignore
the colouring of the regions in T . The resulting tangle may then contain digons
or embedded squares, which are removed using K2 and K3, and closed curves are
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removed using (11). The result is a linear combination of elements of PTL. In the
A1 case, the planar algebra for which there is no labelling set is the Temperley–Lieb
algebra itself, Pn.¿/ D TLn.

Suppose that � is a sign string. We define �� to be the sign string obtained by
reversing the string � and flipping all its signs.

We define multiplication tangles M��� W P��� 	 P��� ! P��� by

Each P��� is then an associative algebra, with multiplication being defined by
x1x2 D Z.M���.x1; x2//, where M���.x1; x2/ has xk 2 P��� as the insertion in
disc Dk , k D 1; 2. The multiplication is also clearly compatible with the inclusion
tangles, as can be seen by drawing pictures.

An annular tangle with outer disc with pattern � and inner disc with pattern � 0
will be called an annular .�; � 0/-tangle. An example of an annular .�; � 0/-tangle is
illustrated in Figure 19, where � D � � � C � C CC, � 0 D � C �C.

The tangle 1��� 2 P��� illustrated in Figure 20 is called the identity tangle. By
inserting 1��� and x 2 P��� into the discs of the multiplication tangle M��� as in
Figure 21 we see that Z.1���/x D x D xZ.1���/, hence Z.1���/ is the left and
right identity for P��� .

Figure 19. Annular tangle. Figure 20. Identity tangle 1��� 2 P��� .

The following proposition shows that theA2-planar operad P is generated by the
algebra PTL, multiplication tangles M , and annular tangles, which are tangles with
only one internal disc. We note that this result is only one possible choice for the
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Figure 21. Z.1���/x D x D xZ.1���/.

generators of the A2-planar operad and that there is much freedom in the choice of
such generators.

Proposition 4.2. The A2-planar operad P is generated by the algebra PTL, multi-
plication tanglesM , and annular tangles.

Proof. Consider first an arbitrary tangle T 2 P��� which has k inner discs Dl with
labels xl , l D 1; : : : ; k, and where the sign string � is of the form �kCk0

(we can
always insert the tangle T inside an annular tangle which uses the braiding to permute
the vertices if � is not of this form). We isotope the tangle to move all the inner discs
so that the tangle can be divided into horizontal strips in such a way that in any
horizontal strip there is only one disc. Then we may draw T as in Figure 22, where
the Tl are all tangles with one inner disc labelled by xl , l D 1; : : : ; k, and where we
draw the tangles inside rectangles rather than discs.

Figure 22. An arbitrary tangle T 2 P��� , for � D �kCk0
.

Consider first the tangle T1, which has pattern � along the top edge. Using the
braiding we may permute all the strings along the bottom of T1 so that they are of
the form �k1Ck0

1 (reading from left to right), i.e., all the strings with downwards
orientation are moved to the left. Now k C k0

1 
 k0 C k1 .mod 3/, so we have
k � k0 D k1 � k0

1 C 3p, for some p 2 Z. Suppose p > 0. Then we add p double
loops at the bottom of T1 to the left of the leftmost string (and multiply the tangle
T by a scalar factor ˛�pı�p):
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If p < 0 we instead add p double loops at the top of T1 to the right of the rightmost
string and similarly at the bottom of Tk (and multiply T by a scalar factor ˛�2pı�2p).
We now have k � k0 D k1 � k0

1, and the number of vertices along the top and bottom

of T .1/
1 differs by an even integer, i.e., k C k0 D k1 C k0

1 C 2p0, for some p0 2 Z.
Suppose p0 > 0. Then we add p0 concentric closed loops (with anti-clockwise
orientation) beneath T .1/

1 , between the rightmost string with downwards orientation
and the leftmost string with upwards orientation (and multiply the tangle T by a scalar
factor ˛�p0

):

Ifp0 < 0we instead addp0 concentric closed loops (with clockwise orientation) above
T

.1/
1 , between the rightmost string with downwards orientation and the leftmost string

with upwards orientation and similarly at the bottom of Tk (and multiply by a scalar
factor ˛�2p0

). Then we have a multiplication tangleMQ� Q�� surrounded by an annular
.���; Q� Q��/-tangle (where Q� is possibly equal to � ), with T .2/

1 as the insertion for the
first disc of MQ� Q�� , and the rest of the tangle, which we will call T 0, as the insertion
for the second disc. So T 0 is an Q� Q��-tangle with k � 1 inner discs, and by the
above procedure we can write T 0 as a multiplication tangle (possibly surrounded by
an annular tangle), where the insertion for the second disc now only has k � 2 inner
discs. Continuing in this way we see inductively that T is generated by multiplication
tangles and annular tangles. Suppose now that T 2 P� , where � is not of the form
Q� Q�� for some sign string Q� . By using a similar procedure to that given above we can
write the tangle T as T 0 2 PQ� Q�� surrounded by an annular .�; Q� Q��/-tangle. Finally,
tangles with no inner discs are elements of PTL.

Definition 4.3. A general A2-planar algebra P will be called finite-dimensional if
dimP� < 1 for all � .
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Remark 4.4. The algebras A2- TLn are finite-dimensional, since from Section 3.2
we know that they are isomorphic to the path algebra for the SU.3/ graph A.1/.
By Theorem 6.3 in [44] the dimensions of PTL� and PTL� 0 are the same for � 0 any
permutation of � . Thus PTL� is finite-dimensional for any � which is a permutation
of Cn�n. It follows from Corollary 4.10 at the end of Section 4.4 that PTL� is thus
finite-dimensional for all sign strings � .

4.3. A2-planar algebras. We now define an A2-planar algebra P , where unlike
for general A2-planar algebras, there are restrictions on the dimensions of the lowest
graded parts. TheA2-planar algebraP comes with two traces. We will also define no-
tions of non-degeneracy and sphericity in the same way as Jones [31], Definition 1.27,
and the notion of flatness.

Definition 4.5. (1) An A2-planar algebra will be a general A2-planar algebra P
which has dim.P N0

0 / D dim.P N1
0 / D dim.P N2

0 / D 1, and Z.}/ D ˛ non-zero.

(2) We call the presenting map Z the partition function when it is applied to a
closed 0-tangle T with internal discs Dk of pattern �k . We identify P Na

0 with C, so
that Z.T / W ˝k P�k

! C.

(3) LetA� be the set of all 0-tangles with only one internal disc, where the internal
disc has pattern � . AnA2-planar algebra will be called non-degenerate if, for x 2 P� ,
x D 0 if and only if Z.T .x// D 0 for all T 2 A� . An A2-planar algebra will be
called spherical if its partition function is an invariant of tangles on the two-sphere
S2 (obtained from R2 by adding a point at infinity).

(4) Let P be anA2-planar algebra, and � a sign string. Define two traces L Tr���

and R Tr��� on P��� by

For a spherical A2-planar algebra L Tr��� D R Tr��� DW Tr��� . The converse is
also true- if L Tr��� D R Tr��� on P��� for all sign strings � then P is spherical.

The proof of the following proposition given in [31] in the setting of hisA1-planar
algebras yields:

Proposition 4.6. A spherical A2-planar algebra P is non-degenerate if and only if
Tr��� defines a non-degenerate bilinear form on P��� for each sign string � .

Definition 4.7. Let T be any tangle with internal discs Dk , k D 1; : : : ; n. We call
an A2-planar algebra flat if Z.T / D Z.T 0/ where T 0 is any tangle obtained from T

by pulling strings over an internal disc Dk , for any k D 1; : : : ; n. This is illustrated
in Figure 23, where we only show a local part of the tangle.
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Figure 23. Flatness.

We could alternatively have defined a flat A2-planar algebra to be one where
strings can be pulled under internal discs instead of over. Such an A2-planar algebra
is isomorphic to the one defined above, with the isomorphism given by replacing q
by q�1, equivalent to reversing all crossings in any tangle. Note that our definition
of flatness does not imply that we can also pull strings under internal discs, which
in general will not be the case – cf. the relative braiding notion in the theory of
˛-induction as explained in [11], Section 3.3, and [13], Section 2.

Proposition 4.8. A flat A2-planar algebra is spherical.

Proof. Given a 0-tangle, we isotope the strings so that we have a ���-tangle T , where
j� j D n for n 2 N, with the n vertices along the top and bottom of T connected by
closed strings which pass to the left of T . Then the string from the nth vertex along
the top and bottom of T can be pulled over all the other strings and all internal discs
of T , introducing two opposite kinks, which contribute a scalar factor q8=3q�8=3 D 1

(see Figure 24). We may similarly pull the other strings which pass to the left of T
over T .

Figure 24. Flatness gives sphericity.

The A2-planar algebra PTL is clearly flat, since the labelling set L˙ D ¿. Then
by Proposition 4.8 we see that there is only one trace on the algebra V

A2
m in Section 3.2.

4.4. The involution on P . We can define the adjoint T � 2 P��.L/ of a tangle
T 2 P� .L/ , where L has a � operation defined on it, by reflecting the whole tangle
about the horizontal line that passes through its centre and reversing all orientations.
The labels xk 2 L of T are replaced by labels x�

k
in T �. If ' is the map which sends

T ! T �, then every region '.R/ of T � has the same colour as the region R of T .
For any linear combination of tangles in P� .L/ we extend � by conjugate linearity.
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ThenP is anA2-planar �-algebra if eachP� is a �-algebra, and for a � -tangle T with
internal discs Dk with patterns �k , labelled by xk 2 P�k

, k D 1; : : : ; n, we have

Z.T /� D Z.T �/;

where the labels of the discs in T � are x�
k

, and where the definition of Z.T /� is
extended to linear combinations of � -tangles by conjugate linearity. For xj 2 P�j

,
j D 1; 2, we define the tangle m.x1; x2/ 2 P�1�2

by

..

Proposition 4.9. Let P be an A2-planar �-algebra. Then dim.P� / � dim.P���/

for any sign string � .

Proof. Fix an element y 2 PTL�� (i.e., the tangle y does not contain any internal
discs) such that 0 ¤ cy D R Tr.m.y; y�// 2 C. We have an embedding �y W P� ,!
P��� given by �y. � / D Z.m. � ; y//. Let �0y W P��� ! P� be the map defined
by �0y.A/ D c�1

y A.y�/, and the action of P��� on P� is given in Figure 25, for
A 2 P��� , x 2 P� . Then �0y B �y D id on P� , and thus dim.P� / � dim.P���/.

Figure 25. Action of A 2 P��� on x 2 P� .

Corollary 4.10. An A2-planar �-algebra P is finite-dimensional if and only if
dim.P���/ < 1 for any sign string � .

The partition functionZ W P� ! C on anA2-planar algebra will be called positive
if RTr��� .m.x

�; x// � 0, for all x 2 P� , and positive definite if RTr��� .m.x
�; x// >

0, for all non-zero x 2 P� . The proof of [31], Proposition 1.33, in theA1-case carries
over to A2-planar algebras where the only modification is that we allow possibly an
odd number of vertices on discs, and different orientations on the strings.

Proposition 4.11. Let P be an A2-planar �-algebra with positive partition function
Z. The following three conditions are equivalent:

(i) P is non-degenerate,

(ii) RTr��� is positive definite,

(iii) LTr��� is positive definite.
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Then we have the following result, cf. [31], Corollary 1.36.

Corollary 4.12. If P is a non-degenerate finite-dimensional A2-planar �-algebra
with positive partition function then P��� is semisimple for all sign strings � , so
there is a unique norm on P��� making it into a C*-algebra. Each P � is a Hilbert
C*-module over P��� , for the action of P��� on P� given above.

Definition 4.13. We call anA2-planar algebra over R or C anA2-C*-planar algebra
if it is a non-degenerate finite-dimensionalA2-planar �-algebra with positive definite
partition function.

If P is a spherical A2-C*-planar algebra we can define an inner-product on P� ,
for � a sign string of length n, by hx; yi D ˛�n=2 Tr��� .m.x

�; y// for x; y 2 P� .
This inner product is normalized in the sense that h1��� ; 1���i D 1 for any sign
string � .

5. A2-planar i; j -tangles

We will be particularly interested in the vector spaces P� for sign strings � with a
particular form, since these will correspond exactly to the vector spaces in the double
complex associated to the SU.3/-subfactors. We describe these vector spaces in the
next sections, and introduce certain basic tangles which will play an important role
later.

AnA2-planar i; j -tangle will be anA2-planar� -tangle with external discD D D0

and internal discs D1, : : : , Dn, where each disc Dk , k � 0, has pattern � .k/ D
�jk � Q� .k/ � Cjk , where Q� .k/ is the alternating string of length 2ik which begins with
‘�’. We will position the vertices so that the first ik C jk are along the boundary
for the upper half of the disc, which we will call the top edge, and the next ik C jk

vertices are along the boundary for the bottom half of the disc, which we will call
the bottom edge. We will use the convention of numbering the vertices along the
bottom edge in reverse order, so that the 2.ik C jk/-th vertex is called the first vertex
along the bottom edge. The total number of source vertices along the top edge is
bjk C .ik C1/=2c, and the number of sink vertices is bik=2c. For the outer boundary
@D we impose the restriction b0 D 0.

It is important to note that what we here call an i; j -tangle is different from the
.i; j /-tangles of Section 3. In both cases the integers i; j refer to the number of
vertices along the top (and bottom) edge of the disc, however in an .i; j /-tangle the
first i vertices are all sources, and the next j vertices are all sinks.

In the figures which follow we omit the orientation on the strings from the last i
vertices along the top and bottom of an i; j -tangle – these will be alternating.
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5.1. Some basic A2-planar i; j -tangles. The following basic tangles will be of
importance to us:

� Inclusion tangles IRi;j
iC1;j , IRi;j

i;j C1 and �IRi;j

i;j C1, where the orientation of the

rightmost string in IRi;j
iC1;j is downwards for i even and upwards for i odd.

Both IRi;j
i;j C1 and �IRi;j

i;j C1 add a new source vertex along the top immediately
to the right of the first j source vertices, and a sink vertex along the bottom
immediately to the right of the first j sink vertices along the bottom. These new
vertices are regarded as being among the downwards oriented vertices rather than
the alternating vertices. They are connected by a through string, and IRi;j

i;j C1,�IRi;j

i;j C1 differ only in that the through string passes to the right of the inner disc

in IRi;j
i;j C1 and to the left in �IRi;j

i;j C1. We have Z.IRi;j
iC1;j / W Pi;j ! PiC1;j , and

Z.IRi;j
i;j C1/; Z.

�IRi;j

i;j C1/ W Pi;j ! Pi;j C1.

For a flat A2-planar algebra, the two right inclusion tangles IRi;j
i;j C1 and �IRi;j

i;j C1

are equal, and we will simply write IRi;j
i;j C1. For a spherical A2-planar algebra

P , we define tr.x/ D ˛�i�j Tri;j .x/ for x 2 Pi;j . Then tr is compatible with
the inclusions Pi;j � Pi;j C1 and Pi;j � PiC1;j , given by IRi;j

i;j C1, IRi;j
iC1;j

respectively, and tr.1/ D 1, and so defines a trace on P itself. If P is a spherical
A2-C*-planar the inner-product defined at the end of Section 4.4 is given on
Pi;j by hx; yi D tr.x�y/ for x; y 2 Pi;j , and is consistent with the inclusions
Pi;j � Pi;j C1 and Pi;j � PiC1;j given above, since tr is.
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� Conditional expectation tangles ERiC1;j
i;j and ERi;j C1

i;j :

(12)

The orientation of the string from vertex iCj C1 on the inner disc of ERiC1;j
i;j is

clockwise for i odd and anticlockwise for i even. We haveZ.ERiC1;j
i;j / WPiC1;j !

Pi;j and Z.ERi;j C1
i;j / W Pi;j C1 ! Pi;j .

Let P
.1/
i;j denote the subset of Pi;j spanned by all tangles where vertices j C 1

along the top and bottom are connected by a through string which passes over
every string it crosses and such that there are no internal discs in the region
between this string and the outer boundary of the tangle to the left of it. If P is a
generalA2-planar algebra with presenting mapZ, we defineP .1/

i;j D Z.P
.1/
i;j / �

Pi;j , and denote by P .1/ � P the subspace P .1/ D S
i;j P

.1/
i;j . We also have

left conditional expectation tangles ELiC1;j
iC1;j and ELi;j C1

i;j C1:

where Z.ELiC1;j
iC1;j / W PiC1;j ! P

.1/
iC1;j .

The justification for calling the tangles in (12) conditional expectation tangles is
seen in the following lemma.

Lemma 5.1. Let P be an A2-C*-planar algebra. For the tangles ERiC1;j
i;j and

ERi;j C1
i;j defined in (12), E1.x/ D Z.ERiC1;j

i;j .x// is the conditional expectation of

x 2 PiC1;j onto Pi;j with respect to the trace, and E2.y/ D Z.ERi;j C1
i;j .y// is the

conditional expectation of y 2 Pi;j C1 onto Pi;j with respect to the trace.
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Proof. We first check positivity of E1.x/ for positive x 2 PiC1;j . As P is an A2-
C*-planar algebra, the inner-product defined above is positive definite. We need
to show that hE1.x/y; yi � 0 for all y 2 Pi;j . From Figure 26 we see that
tr.y�ERiC1;j

i;j .x/�y/ D tr.y0�x�y0/ D hxy0; y0i � 0 for all y 2 Pi;j , where

y0 D 2 PiC1;j . From

we see that E1.axb/ D aE1.x/b, for x 2 PiC1;j , a; b 2 Pi;j . Since also
hE1.x/; yi D hx; y0i,E1 is the trace-preserving conditional expectation fromPiC1;j

onto Pi;j . The proof for E2 is similar.

Figure 26

Similarly, Z.ELiC1;j
iC1;j .x// is the conditional expectation of x 2 PiC1;j onto

P
.1/
iC1;j .

5.2. Dimensions in A2-planar algebras and PTL. We now present some results
regarding the dimensions of the different graded parts of A2-planar algebras. These
will be needed later in Section 6. We define maps ' W P2lC1;j C1.L/ ! P2lC2;j .L/,
! W P2l;j C1.L/ ! P2lC1;j .L/ as in Figure 27 for x1 2 P2lC1;j C1.L/, x2 2
P2l;j C1.L/, where the white circle at the end of a string indicates that this ver-
tex is now regarded as one of the i vertices of Pi;j with alternating orientation
(i D 2l C 2; 2l C 1 for ', ! respectively). The maps ', ! are invertible, with '�1,
!�1 as in Figure 28 for x1 2 P2lC2;j .L/, x2 2 P2lC1;j .L/, where the solid black
circle at the end of a string indicates that this vertex is now regarded as one of the
j C 1 vertices of Pi;j C1 with alternating orientation (i D 2l C 1; 2l for '�1, !�1

respectively).
It is clear that '.P2lC1;j C1.L// � P2lC2;j .L/. Further, since P2lC1;j C1.L/ �

'�1.P2lC2;j .L//, then '.P2lC1;j C1.L// � P2lC2;j .L/. So '.P2lC1;j C1.L// D
P2lC2;j .L/ and ' is a bijection. Similarly the map ! is a bijection and we have
!.P2l;j C1.L// D P2lC1;j .L/. Let Z W Pi;j .L/ ! Pi;j be the presenting map for
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Figure 27. Maps ' W P2lC1;j C1.L/ ! P2lC2;j .L/, ! W P2l;j C1.L/ ! P2lC1;j .L/.

Figure 28. Maps '�1 W P2lC2;j .L/! P2lC1;j C1.L/, !�1 W P2lC1;j .L/! P2l;j C1.L/.

an A2-C*-planar algebra P . We define bijections Q' W P2lC1;j C1.L/ ! P2lC2;j .L/,
z! W P2l;j C1.L/ ! P2lC1;j .L/ by Q'.x1/ D Z.'.x1// and z!.x2/ D Z.!.x2//. Then

dim.Pi;j .L// D dim.PiCk;j �k.L//; (13)

dim.Pi;j / D dim.PiCk;j �k/; (14)

for all integers k such that �i � k � j . Note that (13) follows immediately from
[44], Theorem 6.3.

For L D ¿, we define P T Li;j to be the quotient of PTLi;j D Pi;j .¿/ by the
subspace of zero-length vectors with respect to the inner-product on PTLi;j defined

by hx; yi D bx�y, for x; y 2 PTLi;j , where yT is the tangle defined as in Figure 11.
The element '.x/ is a zero-length vector in PTL2lC2;j if and only if x is a zero-
length vector in PTL2lC1;j C1. Similarly, !.x/ is zero-length vector in PTL2lC1;j

if and only if x is a zero-length vector in PTL2l;j C1. Thus for all integers k with
�i � k � j , dim.P T Li;j / D dim.P T LiCk;j �k/.

6. A2-Planar algebra description of subfactors

We are now going to associate flat A2-planar C*-algebras to the double sequences
of subfactors associated to ADE graphs with flat connections. These double se-
quences were introduced in [19], and have a periodicity three coming from the A2-
Temperley–Lieb algebra in the horizontal direction, and a periodicity two coming



A2-planar algebras I 355

from the subfactor basic construction in the vertical direction. In Section 6.2 we give
a diagrammatic form for the double sequences for the Wenzl subfactors.

Let G be any finite SU.3/ ADE graph with Coxeter number n. Let ˛ D Œ3�q ,
q D ei�=n, be the Perron–Frobenius eigenvalue of G and let .�v/ be the corresponding
eigenvector. Ocneanu [54] defined a cell system W on G by associating a complex
number W

�4.˛ˇ�/
�
, called an Ocneanu cell, to each closed loop of length three

4.˛ˇ�/ in G as in Figure 29, where ˛, ˇ, 
 are edges on G . These cells satisfy two
properties, called Ocneanu’s type I, II equations respectively, which are obtained by
evaluating the Kuperberg relations K2, K3 respectively, using the identification in
Figure 29:

(i) for any type I frame in G we have

(15)

(ii) for any type II frame in G we have

(16)

The existence of these cells for the finite ADE graphs was shown in [21] with the
exception of the graph E

.12/
4 . Using these cells, we define a representation U

�1;�2
�3;�4

of
the Hecke algebra by

U�1;�2
�3;�4

D P
�

��1
s.�1/

��1
r.�2/

W.4.�;�3;�4//W.4.�;�1;�2//; (17)

for edges �1, �2, �3, �4, � of G .

Figure 29. Cells associated to trivalent vertices.
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As in [19], with any choice of distinguished vertex �, we define the double se-
quence .Bi;j / of finite-dimensional algebras by

B0;0 � B0;1 � B0;2 � � � � ! B0;1
\ \ \ \
B1;0 � B1;1 � B1;2 � � � � ! B1;1
\ \ \ \
B2;0 � B2;1 � B2;2 � � � � ! B2;1
\ \ \ \
:::

:::
:::

:::

The Bratteli diagrams for horizontal inclusionsBi;j � Bi;j C1 are given by G . If G is
three-colourable, the vertical inclusionsBi;j � BiC1;j are given by its Nj ; j C 1-part
G Nj ;j C1, where p D �.p/ is the colour of p for p D j; j C 1. We identify B0;0 D C
with the distinguished vertex � of G .

Then for the inclusions

Bi;j � Bi;j C1

\ \
BiC1;j � BiC1;j C1

(18)

with i even, we define a connection by

X�1;�2
�3;�4

D
�1�!

�3

?y ?y�2�!
�4

D q2=3ı�1;�3
ı�2;�4

� q�1=3 U�1;�2
�3;�4

; (19)

We denote by zG the reverse graph of G , which is the graph obtained by reversing the
direction of every edge of G . For the inclusions (18) with i odd, let �1, �4 be edges
on G and let Q�2, Q�3 be edges on the reverse graph zG (so that �2, �3 are edges on G ).
We define the connection by

X
�1; Q�2

Q�3;�4
D

�1�!
Q�3

?y ?y Q�2�!
�4

D
s
�s.�3/�r.�2/

�r.�3/�s.�2/

�4�!
�3

?y ?y�2�!
�1

: (20)

It was shown in [21] that these connections satisfy the unitarity axiom

P
�3;�4

X
�1;�2
�3;�4

X
�0

1
;�0

2
�3;�4

D ı�1;�0
1
ı�2;�0

2
:

Then for the inclusions (18) an element indexed by paths in the basis �� can
be transformed to an element indexed by paths in the basis

�
�using the above

connections: Let .� � � 0 � ˛1 � ˛2; � � � 0 � ˛0
1 � ˛0

2/ be an element in BiC1;j C1 in the
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basis �� , where � is a horizontal path of length j , � 0 is a vertical path of length
i , ˛1, ˛0

1 are vertical paths of length 1, ˛2, ˛0
2 are horizontal paths of length 1, and

r.˛2/ D r.˛0
2/. We transform this to an element in the basis

�
�by

.� �� 0 �˛1 �˛2; � �� 0 �˛0
1 �˛0

2/ D P
ˇi ;ˇ 0

i

ˇ1�!
˛1

?y ?yˇ2�!̨
2

ˇ 0
1�!

˛0
1

?y ?yˇ 0
2�!̨

0
2

.� �� 0 �ˇ1 �ˇ2; � �� 0 �ˇ0
1 �ˇ0

2/

where the summation is over all horizontal paths ˇ1, ˇ0
1 of length 1, and vertical paths

ˇ2, ˇ0
2 of length 1.

The Markov trace on Bi;j is defined as in [19] by

tr..�1; �2// D ı�1;�2
Œ3��k�r.�1/;

for .�1; �2/ 2 Bi;j , where k D i C j . We define Bi;1 to be the GNS-completion ofS
k�0Bi;k with respect to the trace. As in [19], the braid elements

appear as the connection.
If G is three-colourable then its adjacency matrix�G which may be written in the

form

�G D
0@ 0 �01 0

0 0 �12

�20 0 0

1A ;
where�01,�12 and�20 are matrices which give the number of edges between each
0; 1; 2-coloured vertex respectively of G to each 1; 2; 0-coloured vertex respectively.
By a suitable ordering of the vertices the matrix�12 may be chosen to be symmetric.
These matrices satisfy the conditions

�T
01�01 D �20�

T
20 D �2

12; �01�
T
01 D �T

20�20; (21)

which follow from the fact that �G is normal [22].

Lemma 6.1. For the double sequence .Bi;j / defined above, we have dim.Bi;j / D
dim.BiCk;j �k/ for all integers k such that �i � k � j .

Proof. If G is not three-colourable, thenBi;j is the space of all pairs of paths of length
i C j on G , hence the result is trivial. For the three-colourable graphs, let ƒ1

i;j be
the product of j matrices ƒ1

i;j D �01�12�20�01 : : : �j �1; Nj , and ƒ2
i;j the product

of i matrices ƒ2
i;j D � Nj ;j C1�

TNj ;j C1
� Nj ;j C1�

TNj ;j C1
: : : �0, where �0 is � Nj ;j C1 if i

is odd, �TNj ;j C1
if i is even, and Np is the colour of p. Then if ƒi;j D ƒ1

i;jƒ
2
i;j , the
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dimension ofBi;j is given by .ƒi;jƒ
T
i;j /0;0. Using (21) it is easy to show by induction

that ƒi;jƒ
T
i;j D .�01�

T
01/

iCj . So dim.BiCk;j �k/ D .ƒiCk;j �kƒ
T
iCk;j �k

/0;0 D
..�01�

T
01/

iCj /0;0 D dim.Bi;j /.

For all i; j � 0 we define operators U�k 2 Bi;j , k D 0; 1; : : : ; j � 1, which
satisfy the Hecke relations H1–H3, by

U�k D P
j�1jDj �2�k;j�0jDi

j�i jDj�i jD1;j�2jDk

U
�2;�2
�1;�1

.�1 � 
1 � 
1 � �2 � �0; �1 � 
2 � 
2 � �2 � �0/;

for 0 � k � j � 2, and

U�j C1 D P
j�jDj �1;j�0jDi�1

j�i jDj�0
i

jD1

U
�2;�2
�1;�1

.� � 
1 � 
0
1 � �0; � � 
2 � 
0

2 � �0/;

where �, � 0 are horizontal, vertical paths respectively, and U
�2;�2
�1;�1

are the Boltzmann
weights for A.n/. The embedding of U�k 2 Bi;j into BiC1;j is U�k , whilst the
embedding of U�k 2 Bi;j into Bi;j C1 is U�k�1. It is clear that Bi;j contains
alg.U�j C1; U�j C2; : : : ; U�1; U0/. However, when G D A.n/, the algebra Bl;j D
alg.U�j C1; U�j C2; : : : ; U�l/ for l D 0; 1 [19].

Lemma 6.2. The square (18) is a commuting square.

Proof. Note that for the A graphs, the result follows by [70], Proposition 3.2. How-
ever, we prove the case for a general SU.3/ADE graph G . By [20], Theorem 11.2,
the square (18) is a commuting square if and only if the corresponding connection
satisfies

X
�2;�4

�r.�2/

q
�s.�3/�s.� 0

3
/

�s.�2/�s.�4/

�1�!
�3

?y ?y�2�!
�4

� 0
1�!

� 0
3

?y ?y�2�!
�4

D ı�1;� 0
1
ı�3;� 0

3
; (22)

where �1, � 0
1 are any edges on the graph of the Bratteli diagram for Bi;j � Bi;j C1,

�3, � 0
3 are any edges on the graph of the Bratteli diagram for Bi;j � BiC1;j , �2

is any edge on the graph of the Bratteli diagram for Bi;j C1 � BiC1;j C1, and �4

is any edge on the graph of the Bratteli diagram for BiC1;j � BiC1;j C1, such that
s.�2/ D r.�1/ D r.� 0

1/ and s.�4/ D r.�3/ D r.� 0
3/. Equation (22) is easily verified

for both connections (19), (20) using equations (15) and (16) and the fact that Œ3� is
the Perron–Frobenius eigenvalue for G . This computation is essentially the algebraic
verification of the first diagrammatic relation given in (7).

Then as in [19], we define the Jones projections in Bi;j , for i D 1; 2; : : : , by

ei�1 D
X

j�jDj;j�0jDi�2

j�0jDj�0jD1

1

Œ3�

p
�r.� 0/�r.�0/

�r.	 0/

.� � �0 � 
 0 � z
 0; � � �0 � 
0 � z
0/; (23)
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where Q� denotes the reverse edge of �. LetEMi�1
be the conditional expectation from

BiC1;1 ontoBi;1 with respect to the trace. Forx 2 BiC1;j ,EMi�1
.x/ is given by the

conditional expectation of x onto Bi;j because of Lemma 6.2. Clearly elx D xel ,
for x 2 Bl�1;1, since x and el live on distinct parts of the Bratteli diagram. It
can be shown that elxel D EMl�1

.x/el for all x 2 Bl;1, and that BlC1;1 is
generated by Bl;1 and el . Then el is the Jones projection for the basic construction
Bl�1;1 � Bl;1 � BlC1;1, l D 1; 2; : : : . By [59], Proposition 1.2, if we set
N D B0;1 and M D B1;1, the sequence B0;1 � B1;1 � B2;1 � B3;1 � � � �
can be identified with the Jones tower N � M � M1 � M2 � � � � . It was shown
in [19] that for G D A.n/, n < 1, if � is now the apex vertex .0; 0/ of A.n/, then
this subfactor is the same as Wenzl’s subfactor in [70] for SU.3/, and we have the
following theorem from [19] (Theorems 3.3, 5.8 and Corollary 3.4):

Theorem 6.3. In the double sequence .Bi;j / above for G D A.n/ or D.n/, n < 1,
with � the vertex with lowest Perron–Frobenius weight, we haveB 0

0;1 \Bi;1 D Bi;0,
i.e., N 0 \Mi�1 D Bi;0. The principal graph for the above subfactors is given by the
01-part G01 of G .

The connection will be called flat [51], [52] if any two elements x 2 Bk;0 and
y 2 B0;l commute. This is equivalent to the following relation:

(24)

for any paths � , � on the graphs G and zG .
Then for graphs where the connection (19) is flat, the higher relative commutants

are given by the Bk;0, that is, B 0
0;1 \ Bk;1 D Bk;0, by Ocneanu’s compactness

argument [52] in the setting of our SU.3/ subfactors. If G is a graph with flat
connection, then the principal graph of the subfactor B0;1 � B1;1 will be the 01-
part G01 of G .

Flatness of the connection for the A, D graphs was shown in Theorem 6.3, where
the distinguished vertex � was chosen to be the vertex with lowest Perron–Frobenius
weight. The flatness of the connection for the exceptional E graphs in not decided
here. The determination of whether the connection is flat in these cases is a finite
problem, involving checking the identity (24) for diagrams of size 2dG01

	2.dG C3/,
where dG is the depth of G and dG01

is the depth of its 01-part G01. This is because for
the vertical paths, the algebras BlC1;j are generated by Bl;j and the Jones projection
el for all l � dG01

, and el does not change its form under the change of basis using the
connection. For the horizontal paths, by [22], Lemma 4.7, we see that the algebras
Bi;lC1 are generated by Bi;l and U�l for l � dG C 3, and the Hecke operators
U�l do not change their form under the change of basis, as is shown in the proof of
Theorem 6.4 below.
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We have not yet been able to determine whether or not the connection defined by
(19), (20) is flat for the E cases, where the vertex � is chosen to be the vertex with
lowest Perron–Frobenius weight, since the number of computations involved, though
finite, is extremely large. We expect that this connection will be flat for the exceptional
graphs E.8/, E

.12/
1 and E.24/, since these graphs appear as theM -N graphs for type I

inclusions N � M . We expect that this connection will not be flat for the remaining
exceptional graphs E

.12/
2 , E

.12/
4 and E

.12/
5 for any choice of distinguished vertex �.

We also expect that the connection will not be flat for the A�, D� graphs, for any
choice of distinguished vertex �. The principal graph for the graphs with a non-flat
connection is given by its flat part, which should be the type I parents given in [22].

6.1. FlatA2-C*-planaralgebra fromSU.3/ ADE subfactors. We will now asso-
ciate a flatA2-C*-planar algebra P to a double sequence .Bi;j / of finite-dimensional
algebras with a flat connection.

We define the tangles W�k , k D 0; : : : ; j � 1, and fl , l D 1; : : : ; i , in Pi;j .¿/
as in Figure 30, where the orientations of the strings without arrows depends on the
parity of i and l .

Figure 30. Tangles W�k and fl .

Let zG denote the graph G with all orientations reversed and let P� be the space
of closed paths on G , zG , where a ‘�’ denotes that an edge is on G and ‘C’ denotes
that an edge is on zG . We will define a presenting map Z W P� .P / ! P� such that
Pi;j Š Bi;j , where we identify a path 
1 � 
2 of length 2m in Pi;j with the pair of
paths .
1; z
2/ of length m (i.e., an element in Bi;j ) by cutting the original path in
half and reversing the path 
2. We define a �-operation on P by 
� D Q
 2 P�� for

 2 P� . For 
1 � 
2 2 Pi;j , .
1 � 
2/

� D Q
2 � Q
1 which is mapped to . Q
2; 
1/ 2 Bi;j

under the isomorphism Pi;j Š Bi;j . Note that . Q
2; 
1/ D .
1; Q
2/
� in Bi;j , so the

�-structure on B is preserved under the isomorphism.
Let T be a labelled tangle in P� with m internal discs Dk with pattern �k and

labels xk 2 P�k
, k D 1; : : : ; m. We define Z.T / as follows. First, convert all

the discs Dk to rectangles (including the outer disc) so that its edges are parallel to
the x; y-axes, and such that all the vertices on its boundary lie along the top edge
of the rectangle. Next, isotope the strings of T so that each horizontal strip only
contains one of the following elements: a rectangle with label xk , a cup, a cap, a
Y-fork, or an inverted Y-fork (see Figures 31, 32 and 33). For a tangle T 2 P� with
l horizontal strips sl , where s1 is the highest strip, s2 the strip immediately below
it, and so on, we define zZ.T / D Z.s1/Z.s2/ : : : Z.sl/, which will be an element
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of P� . We then define Z.T / by Z.T / D zZ.T / if 
 is a path of odd length, and
Z.T / D p

�s.�1/=
p
�r.�k/

zZ.T / if 
 D 
1 � 
2 : : : 
2k is a path of length 2k, where

the 
i are edges on G or zG . Note that we have P N0
� D P

N1
� D P

N2
� . This algebra is

normalized in the sense that for the empty tangle �, Z.�/ D 1. We will need to
show that this definition only depends on T , and not on the decomposition of T into
horizontal strips.

Let C be the set of all strips containing one of these elements except for a la-
belled rectangle. We will use the following notation for elements of C , as shown in
Figures 31, 32 and 33: A strip containing a cup, cap will be [.i/, \.i/ respectively,

Figure 31. Cup [.i/ and cap \.i/.

Figure 32. Y-forks g.i/ and xg.i/.

Figure 33. Inverted Y-forks f.i/ and xf.i/.

where there are i � 1 vertical strings to the left of the cup or cap. A strip containing
an incoming Y-fork, inverted Y-fork will be g.i/, f.i/ respectively, where there are
i � 1 vertical strings to the left of the (inverted) Y-fork. A bar will denote that it is an
outgoing (inverted) Y-fork.

For an element c 2 C we have sign strings �1, �2 given by the endpoints of
the strings along the top, bottom edge respectively of the strip (we will call these
endpoints vertices), where, along the top edge ‘C’ is given by a sink and ‘�’ by a
source, and along the bottom edge ‘C’ is given by a source and ‘�’ by a sink. The
leftmost region of the strip c corresponds to the vertex � of G , and each vertex along
the top (or bottom) with downwards, upwards orientation respectively, corresponds
to an edge on G , zG respectively. Then the top, bottom edge of the strip is labelled by
elements in P�1

, P�2
respectively, which start at �. Then Z.c/ defines an operator

Mc 2 End.P�2
; P�1

/ as follows.
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For a cup [.i/ and paths ˛ D ˛1 � ˛2 : : : j̨ , ˇ D ˇ1 : : : ǰ C2,

.M[.i//˛;ˇ D ı˛1;ˇ1
ı˛2;ˇ2

: : : ı˛i�1;ˇi�1
ı˛i ;ˇiC2

ı˛iC1;ˇiC3
: : :

: : : ı˛m;ˇmC2
ı Q̌

i ;ˇiC1

p
�r.ˇi /p
�s.ˇi /

:
(25)

For a cap \.i/,
M\.i/ D M �

[.i/ : (26)

For an incoming (inverted) Y-fork g.i/ or f.i/,

.Mg.i//˛;ˇ D ı˛1;ˇ1
: : : ı˛i�1;ˇi�1

ı˛iC1;ˇiC2
: : :

: : : ı˛m;ˇmC1

1p
�s.˛i /�r.˛i /

W.4. Q̨i ;ˇi ;ˇiC1//;

.Mf.i//˛;ˇ D ı˛1;ˇ1
: : : ı˛i�1;ˇi�1

ı˛iC2;ˇiC1
: : :

: : : ı˛mC1;ˇm

1p
�s.ˇi /�r.ˇi /

W.4. Q̨i ;ˇi ;ˇiC1//;

where W is a cell system on G satisfying (15) and (16).
For an outgoing (inverted) Y-fork xg.i/ or xf.i/,

Mxg.i/ D M �
f.i/ ; (27)

Mxf.i/ D M �
g.i/ : (28)

For a strip b containing a rectangle with label x D 
 , where 
 is a single path in
P� , we define the operatorMb D Z.b/ as follows. Letp,p0 be the number of vertical
strings to the left, right respectively of the rectangle in strip b, with orientations given
by the sign strings � .p/, � .p0/ respectively. We attach trivial tails � of length p to
x, where � has edges on G , zG as dictated by the sign string � .p/, so that we have
a sum

P
� 
 � � of paths in the basis given by the sign string �� .p/. We use the

connection to transform this to a linear combination of paths in the basis given by
the sign string � .p/� . By flatness of the connection on G , this will be an element of
the form

P
	;� p	� � �, where p	 2 C are given by the connection, � are paths in

P� , and � are again paths in P�.p/ . We then add trivial tails � of length p0 to this
element, where � has edges on G , zG as dictated by the sign string � .p0/. This gives
an element

P
	;�;
 p	� � � � �, which is an element in P�.p/��.p0/ . Then we define

Z.b/ 2 End.P�.p/�.p0/ ; P�.p/��.p0// to be
P

	;�;
 p	 .� � � � �; � � �/. We extend this
definition of Z.b/ linearly to strips b where the label x is a linear combination of
paths in P� . This definition means that Z.b/ is defined as the product Z.s1/Z.s2/,
where s1, s2 are the horizontal strips on the right-hand side of Figure 34. Thus we
see that P is a flat A2-planar algebra.

The following theorem shows that for an ADE graph with a flat connection,
P D S

� P� is a flat A2-C*-planar algebra such that the subalgebra
S

i;j Pi;j is
given by the subfactor double complex .Bi;j /.
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Figure 34. Z.b/ for horizontal strip b containing a rectangle.

Theorem 6.4. Let G be an ADE graph such that the connections (19), (20) are flat.
The above definition of Z.T / for any A2-planar tangle T makes P D S

� P� into

a flat A2-C*-planar algebra, such that Pi;j Š Bi;j , with dim.P N0
0 / D dim.P N1

0 / D
dim.P N2

0 / D 1. This A2-C*-planar algebra has parameter ˛ D Œ3� (the Perron–
Frobenius eigenvalue for G ), and Z.I���.x// D x, where I���.x/ is the tangle
I��� with x 2 P��� as the insertion in its inner disc. For x 2 Pi;j , i; j � 0, we
have

(i) Z.W�k/ D U�k , k � 0,

(ii) Z.fl/ D ˛el , l � 1,

(iii)

(iv)

(v)

In the first equation of (iii) the first j C 1 vertices along the top and bottom of the
rectangle are joined by loops, and the second equation only holds for i ¤ 0. In the
first, second equation of (iv) respectively, the x on the right-hand side is considered
as an element of PiC1;j , Pi;j C1 respectively.

Proof. First we show that Z.T / does not change if the labelled tangle is changed
by isotopy of the strings. We will use the following notation for products of delta

functions @
˛iCk ; ǰ Ck

˛i ; ǰ
´ ı˛i ; ǰ

ı˛iC1; ǰ C1
: : : ı˛iCk ; ǰ Ck

. The identities are simply
a consequence of the identification in Figure 29 of the Ocneanu cells with trivalent
vertices, and of cups and caps with the Perron–Frobenius weights.
Case (1). Topological moves. We consider the cup-cap simplifications (which Kauff-
man calls Move Zero in [38]) shown in Figure 35. For the first cup-cap simplification
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Figure 35. Two cup-cap simplifications.

of Figure 35 we have

.M[.iC1/M\.i//˛;ˇ D P
�

.M[.iC1//˛;� .M[.i//ˇ;�

D P
�

@
˛i ;�i
˛1;�1

@
˛m;�mC2
˛iC1;�iC3

ı
e�iC1;�iC2

p
�r.�iC1/p
�s.�iC1/

@
ˇi�1;�i�1

ˇ1;�1
@

ˇm;�mC2

ˇi ;�iC2
ı z�i ;�iC1

p
�r.�i /p
�s.�i /

D ı˛;ˇ :

(29)

The second simplification in Figure 35 follows from the first, since

M[.i/M\.iC1/ D .M[.iC1/M\.i//
T D 1: (30)

Case (2). Isotopies involving incoming trivalent vertices. We require the identities
of Figure 36. For (a) we verify that .Mg.i/M\.iC1//˛;ˇ D .Mf.i//˛;ˇ , and similarly
for the identities (b), (c) and (d). For (e) we need to verify that .M[.i�1/Mg.i//˛;ˇ D
.M[.i�1/Mg.i�1//˛;ˇ . The corresponding identities for outgoing trivalent vertices
hold in the same way. Then the identity in Figure 37 follows from the cup-cap
simplifications and identities (a)-(e) for incoming and outgoing trivalent vertices.
Kuperberg relations: Before checking isotopies that involve rectangles, we will show
that the Kuperberg relations K1–K3 are satisfied. For K1, a closed loop gives

.M[.i/M\.i//˛;ˇ D P
�

.M[.i//˛;� .M[.i//ˇ;�

D ı˛;ˇ

P
�i W s.�i /Dr.˛i�1/

�r.�i /

�s.�i /
D ı˛;ˇ Œ3�;

(31)

by the Perron–Frobenius eigenvalue equation ƒx D Œ3�x, where x D .�v/v , and ƒ
is�G or�T

G
depending on whether the loop has anticlockwise, clockwise orientation

respectively. Relations K2 and K3 are essentially Ocneanu’s type I, II formulas (15),
(16) respectively.

Property (ii) and the connection: We obtain

Z.W�k/ D P
j�1jDj �2�k;j�0jDi

j�i jDj�i jD1;j	2jDk

U
�2;�2
�1;�1

�1 � 
1 � 
1 � �2 � �0 � z�0 � z�2 � z
2 � z
2 � z�1;
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(a)

(b)

(c)

(d)

(e)

Figure 36. Isotopies involving an incoming trivalent vertex.

Figure 37. An isotopy involving an incoming and outgoing trivalent vertex.

and we identify the path �1 � 
1 � 
1 � �2 � �0 � z�0 � z�2 � z
2 � z
2 � z�1 2 P��� with the
matrix unit .�1 � 
1 � 
1 � �2 � �0; �1 � 
2 � 
2 � �2 � �0/ 2 End.P� ; P� /. The property (ii)
in the statement of the theorem follows from (17) and the definition of U�k . Since
U�k is given by the tangle W�k , we see that the partial braiding defined in (6) gives
the connection, where (19) is given by and (20) is given by . For the latter
connection, which involves the reverse graph zG , if

a

��

�� b

��
c �� d
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is a connection on the graph G , then

c

��

�� d

��
a �� b

D D
s
�a�d

�b�c

a

��

�� b

��
c �� d

So we have thatZ.T / is invariant under all isotopies that only involve strings (and
the partial braiding). This shows that the operators U�k do not change their form
under the change of basis using the connection, since

Note that we have not used the fact that the connection is flat yet, so the operatorsU�k

do not change their form under the change of basis for any of the SU.3/ADE graphs.

(a )

(d )

(c )

(b )0

0

0

0

Figure 38. Isotopies involving rectangles.

Case (3). Isotopies that involve rectangles. We need to check invariance as in
Figure 38. For (a0), pulling a cup down to the right of a rectangle b is trivial since
M[ commutes with Mb (since b, [ are localized on separate parts of the Bratteli
diagram).

Now consider (b0) . We have for the left-hand side
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where the first equality is the definition of Z.s/ for a horizontal strip s containing
a rectangle b with through strings on its left, and the second equality follows since
Z is invariant under all isotopies that only involve strings and the partial braiding.
Similarly, for the right-hand side we obtain

and the result follows from (a0). The situations for (c0), (d0) are similar to (a0), (b0). We
also have the isotopy in Figure 39. Let x 2 P�1

, y 2 P�2
be given by the paths ˛1, ˛2

respectively, of lengths k2, k4 respectively. The case for general elements x 2 P�1
,

Figure 39. An isotopy involving two rectangles.

y 2 P�2
follows by linearity. Consider first the case where k1 D k3 D k5 D 0.

Then Z.s1/Z.s2/ D .˛1 � ˛2;�/ 2 End.P0; P�1�2
/. For the right-hand side we

have Z.s4/ D .˛1;�/ 2 End.P0; P�1
/ and Z.s3/ D P

�;˛0
2
p˛0

2
.� � ˛0

2; �/ 2
End.P�1

; P�1�2
/, where p˛0

2
2 C are given by the connection. By the flatness

condition (24), p˛0
2

D ı˛0
2

;˛2
, so we have Z.s3/Z.s4/ D P

�.� � ˛2; �/.˛1;�/ D
.˛1 �˛2;�/ D Z.s1/Z.s2/. The cases where k1, k3, k5 are non-zero follow similarly.

Case (4). Rotational invariance. The other isotopy that needs to be checked is the
rotation of internal rectangles by 2	 . We illustrate the case where rectangle b has
kb D 2 vertices along its top edge in Figure 40. We have divided �.x/ into horizontal
strips s1; : : : ; s5.

Letx 2 P�b
be the label of the rectangleb, wherex is the single path
 of lengthkb .

The strip s3 containing the rectangle b gives Y D Z.s3/ D P
�;	;
 p	 .� � � ��; � ��/,

where p	 2 C are given by the connection, and�, � are paths of length kb with edges
on the graphs G or zG as dictated by the sign strings ��

b
, �b respectively.

For a horizontal strip s1 and strip s2 immediately below it, an entry in the operator
Z.s0/ D Z.s1/Z.s2/ is only defined when the path corresponding to the bottom edge
of the strip s1 is equal to the path given by the top edge of s2. So for example, for
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Figure 40. Rotation of internal rectangles by 2	 .

the two strips s1, s2 in Figure 41, even though there are non-zero entries in Z.s1/
for any path ˛ D ˛1 � ˛2 : : : , the entries in Z.s0/ will be zero unless edge ˛i is the
reverse edge ęiC1 of ˛iC1 since the entries in Z.s1/ are only non-zero for the paths

 D 
1 � 
2 : : : such that 
i D e
iC1.

1

2

D

D

Figure 41. Horizontal strips s1, s2.

Let " D "1 � "2 : : : "3kb
, "0 D "0

1 � "0
2 : : : "

0
kb

� "0
2kb

� "0
2kbC1

: : : "0
3kb

be two paths
which label the indices for Y . For simplicity we consider the case kb D 2 as in
Figure 40. By considering the horizontal strip s3 containing the rectangle, we see
that Y";"0 D 0 unless "i D "0

i for i D 1; 2; 5; 6. We see that in �.x/, "1 is the same
string as "4 and "6, but that "4 has the opposite orientation to "1 and "6. We define the
operator yY by yY";"0 D 0 unless "1 D z"4 D "6 and "2 D z"3 D z"5, and yY";"0 D Y";"0

otherwise. Then

�.x/ D M[.1/M[.2/ : : :M[.kb/YM\.kb/M\.kb�1/ : : :M\.1/

D M[.1/M[.2/ : : :M[.kb/
yYM\.kb/M\.kb�1/ : : :M\.1/ :

For any two paths " and "0 such that yY";"0 is non-zero, the caps contribute a scalar
factor

p
�r."2/=

p
�s."1/ D p

�s."1/=
p
�s."1/ D 1, and similarly we have a scalar

factor of 1 from the cups. Now "1 is an edge on G (or zG ) with s."1/ D �, and hence
�.x/ is only non-zero for paths "3 � "4 such that s."3/ D �. By the flatness of the
connection on G , the only path � starting from � for which p	 ¤ 0 is 
 , i.e., the
original element x. Then the resulting operator given by �.x/ will have all entries 0
except for that for 
 , and we have �.x/ D 
 D x.

Then Z.T / is invariant under all isotopies of the tangle T .
Properties (i)–(v): Property (i) follows from the definition of ei in (23), and property
(ii) has already been shown. Now consider property (iii). We start with the first equa-
tion. For any x 2 Pi;j , the left-hand side equalsZ.ELi;0

i;0ERi;1
i;0ERi;2

i;1 : : :ERi;j
i;j �1.x//,
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and so gives is the conditional expectation of x onto P .1/
i;0 (see Section 5.1). We now

show that P .1/
i;0 D M 0 \Mi�1. Embedding the subalgebra P .1/

i;0 � Pi;0 in Pi;1 we
see that it lives on the last i �1 strings, with the rest all vertical through strings. Then
P

.1/
i;0 clearly commutes with M , since the embedding of M D P1;1 in Pi;1 has the

last i � 1 strings all vertical through strings, so we haveM 0 \Mi�1 � P
.1/
i;0 . For the

opposite inclusion, we extend the double sequence .Bi;j / to the left to get

B0;0 � B0;1 � B0;2 � � � � ! B0;1
\ \ \ \

B1;�1 � B1;0 � B1;1 � B1;2 � � � � ! B1;1
\ \ \ \ \

B2;�1 � B2;0 � B2;1 � B2;2 � � � � ! B2;1
\ \ \ \ \
:::

:::
:::

:::
:::

Note thatB1;�1 D B0;0 D C. Since the connection is flat, by Ocneanu’s compactness
argument [52] we have B 0

1;1 \ Bi;1 D Bi;�1. Let x D .˛1; ˛2/ be an element of
Bi;�1. We embed x in Bi;0 by adding trivial horizontal tails of length one, and using
the connection we can write x as x0 D P

� pˇ1;ˇ2
.� �ˇ1; � �ˇ2/, where pˇ1;ˇ2

2 C.
We see that x0 2 Bi;0 D Pi;0 is summed over all trivial edges� of length 1 starting at
�, and hence is given byZ.T / for some T 2 Pi;0 which has a vertical through string
from the first vertex along the top to the first vertex along the bottom, i.e x 2 P .1/

i;0 .

So M 0 \Mi�1 D Bi;�1 � P
.1/
i;0 .

For the second equation of (iii), if x 2 Pi;1 then x ! Z.E
i;1
i�1;1.x// is the

conditional expectation onto Pi�1;1 D Mi�2, and the result for x 2 Pi;j follows by
Lemma 6.2.

Property (iv) is clear. Finally, for (v) let x be an element .˛; ˇ/, where ˛, ˇ are
paths of length k on G . Then

Œ3��kZ. Ox/ D Œ3��kı˛;ˇ

�r.˛/

��
�2� D Œ3��kı˛;ˇ�r.˛/ D tr..˛; ˇ//

since �� D 1, where Ox is the tangle defined by joining the last vertex along the top of
T to the last vertex along the bottom by a string which passes round the tangle on the
right-hand side, and joining the other vertices along the top to those on the bottom
similarly.

To see the �-structure, note that under � the order of the strips is reversed so
that .Z.s1/Z.s2/ : : : Z.sl//� D Z.sl/

�Z.sl�1/
� : : : Z.s1/�. For a strip contain-

ing a rectangle with label x 2 P� given by a path 
 , � sends the rectangle to the
right-hand side of Figure 42. Since s.
/ D r.
/, the caps contribute a coefficientp
�r. Q�/=

p
�s. Q�/ D 1 as required. For M[.i/ , the ratio

p
�r.ˇi /=

p
�s.ˇi / does not

change under reflection of the tangle and reversing the orientation, so that .M[.i//�
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Figure 42. The �-structure on strips containing rectangles.

is the conjugate transpose of M[.i/ as required, and similarly for M\.i/ . Since the

involution of the strip g.i/ containing an incoming trivalent vertex is xf.i/, whilst the
involution of the strip f.i/ containing an incoming trivalent vertex is xg.i/, by (27),
.Mxg.i//� is the conjugate transpose of Mf.i/ and by (28), .Mxf.i//� is the conjugate
transpose ofMg.i/ as required. To show thatP is anA2-C*-planar algebra we need to
show thatP is non-degenerate, which is immediate from property (v) in the statement
of the theorem, Proposition 4.11 and the fact that tr is positive definite.

Definition 6.5. We will say that an A2-planar algebra P is an A2-planar algebra for
the subfactor N � M if P0;1 D N , P1;1 D M , Pn;1 D Mn�1, the sequence
P0;0 � P1;0 � P2;0 � � � � is the tower of relative commutants, and if conditions
(i)–(v) of Theorem 6.4 are satisfied.

Suppose P is the A2-planar algebra given by the double complex .Bi;j / for an
SU.3/ ADE subfactor N � M . Then the A2-planar subalgebra P .1/ � P is the
A2-planar algebra given by the double complex for the subfactor M � M1.

For the subalgebra Q introduced in �4.1, we give an alternative proof of Jones’
theorem that extremal subfactors give planar algebras [31], Theorem 4.2.1, in the finite
depth case. Jones’ proof uses the bimodule setup – he works with the von Neumann
algebras themselves, identifying the relative commutants with tensor powers of the
von Neumann algebraM . The rotation tangle � plays an important role in his proof of
Theorem 4.2.1, as does the Pimsner–Popa basis. In our setup we choose to work more
directly with the finite-dimensional relative commutants themselves. The rotation �
and the Pimsner–Popa basis do not appear in our proof. The advantage of our proof is
that it extends to our A2 setting, whereas the bimodule setup seems difficult to adapt.

Corollary 6.6. Let N � M be a finite depth type II1 subfactor. For each k let
Qk D N 0 \ Mk�1. Then Q D S

k Qk has a spherical (A1-)C*-planar algebra
structure (in the sense of Jones), with labelling set Q, for which Z.Ik.x// D x,
where Ik.x/ is the tangle Ik with x 2 Qk as the insertion in its inner disc, and

(i) Z.fl/ D ıel , l � 1,

(ii)
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(iii)

(iv)

for x 2 Qk , k � 0. In condition (iii), the x on the right-hand side is consid-
ered as an element ofQkC1. Moreover, any other spherical planar algebra structure
Z0 with Z0.Ik.x// D x and (i), (ii), (iv) for Z0 is equal to Z.

Proof. We defineZ in the same way as above, by converting all the discs of a tangle T
to horizontal rectangles and isotoping the tangle so that in each horizontal strip there is
either a labelled rectangle, a cup or a cap. Then we defineM[.i/ andM\.i/ as in (25),
(26). For strip bl containing a rectangle with label xl , we define Mbl

as in Theorem
6.4, using the connection on the principal graph G and its reverse graph zG . The cup-
cap simplification of Figure 35 follows from (29) and (30). The invariance ofZ under
isotopies involving rectangles as in Figures 38, 40 follows as in the proof of Theorem
6.4. That closed loops give a scalar factor of ı follows from (31), where the Perron–
Frobenius eigenvalue now is ı. Properties (i)–(iv) are proved in the same way as
properties (i), (iii), (iv), (v) of Theorem 6.4, and uniqueness is proved as in [31].

6.2. Presentation of the path algebra for A.n/ as a PTL algebra. We now show
that each Bi;j for the double sequence .Bi;j / defined above for G D A.n/ also has a
presentation as P T Li;j , where P T Li;j is the quotient of PTLi;j by the subspace
of zero-length vectors, as in Section 5.2.

Now B1;j Š P T L1;j by Lemma 3.11. Let  W B1;j ! P T L1;j be the
isomorphism given by  .U�k/ D W�k , k D 0; : : : ; j � 1. We define maps
%i for i � 2 by %2 D ', %3 D !', %4 D '!', %5 D !'!', : : : . Let
x D P

�;� 0 ��;� 0.
; 
 0/, ��;� 0 2 C, be an element of Bi;j . Then Z.%�1
i .x// 2

B1;iCj �1. We set xW 2 P T L1;iCj �1 to be the element  .Z.%�1
i .x///, and since

Z.W�k/ D U�k we have Z.xW / D Z.%�1
i .x//. For any x 2 Bi;j , %i .xW / 2

PTLi;j andZ.%i .xW // D Z.%i .Z.xW /// D Z.%i .Z.%
�1
i .x//// D Z.%i%

�1
i .x// D

Z.Ii;j .x// D x. In fact, %i .xW / 2 P T Li;j , since if h%i .xW /; %i .xW /i D 0, then
hx; xi D h%�1

i .x/; %�1
i .x/i D hxW ; xW i D h%i .xW /; %i .xW /i D 0 as in Section 5.2,

so that %i .xW / is a zero-length vector if and only if x is. Then for every x 2 Bi;j there
exists a y D %i .xW / 2 P T Li;j such that Z.y/ D x, so that Z is surjective. Since,
by (14), dim.P T Li;j / D dim.P T L1;iCj �1/ D dim.B1;iCj �1/ D dim.Bi;j /, this
element y is unique and Z is a bijection. By its definition, Z is linear and preserves
multiplication. Then Z W P T Li;j ! Bi;j is an isomorphism, and we have shown
the following:

Lemma 6.7. In the double sequence .Bi;j / defined above for G D A.n/, each Bi;j

is isomorphic to P T Li;j
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In particular, there is a presentation of the path algebra for the 01-part A
.n/
01 of

A.n/ given by vectors of non-zero length, which are linear combinations of tangles
generated by Kuperberg’s A2 webs, where A.A.n/

01 /k is the space of all such tangles
on a rectangle with k vertices along the top and bottom, with the orientations of the
vertices alternating.

As a corollary to Lemma 6.7, we thus obtain the following description of the
(A1-)planar algebra for the Wenzl subfactor [70] which has principal graph A

.n/
01 . Let

Q be the (A1-)planar algebra generated by
S

i�0 P T Li;0 with relations K1–K3, and
let I 0 be the ideal generated by the zero-length elements ofQ, that is, I 0 D S

k>0 I
0
k

where I 0
k

D fx 2 Qk j tr.x�x/ D 0g. For a family fUmgm�1 of self-adjoint
operators which generate anA2-Temperley–Lieb algebra with parameter ı D qCq�1,
where q D ei�=n, let M D hU1; U2; U3; : : : i and N D hU2; U3; U4; : : : i.

Corollary 6.8. The (A1-) planar algebraP corresponding toWenzl’s subfactorN �
M is the quotient P D Q=I 0.

6.3. Comparison of PTLi;0 with theTemperley–Lieb algebra. We will now com-
pare PTLi;0 with the Temperley–Lieb algebra. In particular we will write a basis for
PTL3;0, which will be given by the Temperley–Lieb diagrams TL3 D alg.1; f1; f2/,
and an extra diagram which contains trivalent vertices.

Since PTL1;2 D alg.11;2; W�1; W0/, we have '.W�1/ D q8=3W�1 and '.W0/ D
q5=312;1 �q�1=3f1 so that PTL2;1 D alg.12;1; W0; f1/. The action of ! on P T L2;1

is given by!.f1/ D f1,!.W0/ D f
.3/

1 �q˛2f1f2�q�1˛2f2f1 and!.f1�qW0f1�
q�1f1W0 C W0f1W0/ D f2, where f .3/

1 is the tangle illustrated in Figure 43. We

see that PTL3;0 is generated by 1; f1; f2 and f .3/
1 . This new element f .3/

1 cannot be
written as a linear combination of products of 1; f1 and f2. Thus we see that PTL3;0

is generated by TL3 D alg.1; f1; f2/ and the extra element f .3/
1 . The following hold

for f .3/
1 (they can be easily checked by drawing pictures):

(1) .f .3/
1 /2 D ıf

.3/
1 C ˛.f1 C f2/C ˛2.f1f2 C f2f1/,

(2) f1f
.3/

1 D ıf1 C ı f̨1f2, f2f
.3/

1 D ıf2 C ı f̨2f1,

(3) fif
.3/

1 fi D ı3˛�1fi , i D 1; 2,

(4) f .3/
1 fif

.3/
1 D ı2.f1 C f2/C ı2˛.f1f2 C f2f1/, i D 1; 2.

Figure 43. The element f .3/

1
.
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We define the operator g.3/
1 to be g.3/

1 D Z.f
.3/

1 /. Then we see that A.A.n/
01 /3 D

alg.1; e1; e2; g
.3/
1 /.

For n � 6, with the rows and columns indexed by the paths of length 3 on A
.n/
01

which start at vertex .0; 0/, g.3/
1 can be written explicitly as the matrix

g
.3/
1 D

0BB@
Œ2�3=Œ3�

p
Œ2�3Œ4�=Œ3� 0 0p

Œ2�3Œ4�=Œ3� Œ4�=Œ3� 0 0

0 0 Œ2� 0

0 0 0 0

1CCA :
For n D 5, g.3/

1 D ˛1 � e1 � e2 C ˛e1e2 C ˛e2e1, so is a linear combination of

1; e1 and e2. This is not a surprise since A
.5/
01 is just the Dynkin diagram A4, and we

know that A.A4/3 is generated by 1, e1 and e2. Note also that in this case we have
˛ D ı D sin.2	i=5/.

It appears that PTLi;j D alg.1i;j ; W�k; fl ; f
.3/

m j k D 0; : : : ; j � 1I l D
1; : : : ; i�1I m D 1; : : : ; i�2/, wheref .3/

m is the tangle illustrated in Figure 44, where
p D 3. The more general elements f .p/

m illustrated in Figure 44 have an internal face
with 2p edges. These elements are generated by f .3/

m and fl : f
.3/

m f
.3/

mC1 D f
.4/

m C
some linear combination of fl , and more generally, f .3/

m f
.p/

mC1 D f
.pC1/

m C some

linear combination of fl ; f
.3/

k
.

Figure 44. The element f .p/
m (with m odd).

We know that PTL0;j is generated byW�k , k D 1; : : : ; j � 1, by Lemma 3.9. As
shown above using the maps! and ', any element in PTLi;j can be obtained from the
W�k by using the braiding. Thus PTLi;j is generated by the W�k and the braiding.
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