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On link homology theories from extended cobordisms
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Abstract. This paper is devoted to the study of algebraic structures leading to link homology
theories. The originally used structures of Frobenius algebra and/or TQFT are modified in two
directions. First, we refine 2-dimensional cobordisms by taking into account their embedding
into R3. Secondly, we extend the underlying cobordism category to a 2-category, where the
usual relations hold up to 2-isomorphisms. The corresponding abelian 2-functor is called an
extended quantum field theory (EQFT). We show that the Khovanov homology, the nested
Khovanov homology, extracted by Stroppel and Webster from Seidel-Smith construction, and
the odd Khovanov homology fit into this setting. Moreover, we prove that any (strict) EQFT
based on a Z5-extension of the embedded cobordism category that coincides with Khovanov
homology after reducing the coefficients modulo 2 gives rise to a link invariant homology
theory isomorphic to that of Khovanov.
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Introduction

In his influential paper [6], Khovanov constructed a link homology theory categorify-
ing the Jones polynomial. During few years, this categorification was considered to
be essentially unique since the underlying (1 4 1) TQFT was known to be determined
by its Frobenius system and all rank two Frobenius systems were fully classified [7].
However, in [12] Ozsvath, Rasmussen and Szabo came up with a new categorifi-
cation of the Jones polynomial which agrees with Khovanov’s after reducing the
coefficients modulo two. The underlying algebraic structure of the odd Khovanov
homology cannot be described in terms of the Frobenius algebra.

This fact attracts attention again to the question of description and classification
of algebraic structures leading to link homology theories. In this paper, we provide
an evidence to the fact that the appropriate algebraic structure is given by an extended
quantum field theory (EQFT). A EQFT here is a 2-functor from a certain (semistrict)
monoidal 2-category of cobordisms, called an extension, to an abelian category. Given
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a cobordism category by specifying its generators and relations, the 2-category is con-
structed by requiring the relations to be satisfied up to 2-isomorphisms. Furthermore,
such a 2-category is called an extension of the original cobordism category if the auto-
morphism group of any 1-morphism is trivial. A simple example of an extension is a
Z -extension where the 2-isomorphisms are just plus or minus the identity maps. No-
tice that extensions can be defined for both strict and semistrict monoidal 2-categories
and the resulting EQFT will also be called strict and semistrict respectively.

The usage of the word “extension” in our setting is motivated by the fact that
after replacing the original category by a group we will get a usual extension of
that group. Those extensions are classified by the second cohomology classes of the
group. Therefore, our approach can serve as a definition for the second cohomology
of a category. A quite different notion of an extended topological field theory (ETFT)
was introduced and studied in [15].

In this paper, we construct extensions of the category of 2-dimensional cobordisms
Cob and of the category of embedded 2-cobordisms modulo the unknotting relation
NesCob. Inthe first case, we recover the Khovanov and the odd Khovanov homologies
as strict (trivial) and semistrict extensions, respectively. In the second case, we
construct so-called nested Khovanov homology, extracted by Stroppel and Webster
[17] from the algebraic counterpart of the Seidel-Smith construction. In addition,
we show that the latter theory is equivalent to that of Khovanov. More precisely,
for a given diagram D let us denote by [D] its Khovanov hypercube of resolutions.
Applying the Khovanov TQFT, we get a complex Fxy, [D]. On the other hand, using
the nested Frobenius system defined in Section 2.3, we get the complex F [D].

Theorem 1. Given a diagram D of a link L, the complexes Fxy [D] and F [ D] are
isomorphic.

It follows that the homotopy type of F' [ D] is invariant under Reidemeister moves.

Recall that in 2004 Seidel and Smith defined a link invariant homology theory
using Lagrangian intersections of nilpotent slices. They conjectured that their theory
is equivalent to Khovanov’s after collapsing the gradings. An algebraic counterpart
of the Seidel-Smith construction was given by Cautis—Kamnitzer. Finally, Stroppel
and Webster made explicit computations of the Cautis—Kamnitzer differential and
discovered that it behaves locally like the one in the nested Khovanov homology.

Hence, once the equivalence between the geometric construction of Seidel-Smith
and the algebraic one of Cautis—Kamnitzer is established rigorously, Theorem 1 can
be used to finalize the proof of the Seidel-Smith conjecture.

A similar result was independently proved by Gisa Schaefer [14].

The last result of the paper is the classification of all rank two strict Z,-extensions
of NesCob.

Theorem 2. Any strict EQFT based on a Z,-extension of NesCob, which agrees
with Khovanov’s TQFT after reducing the coefficients modulo 2, gives rises to a link
invariant homology theory isomorphic to that of Khovanov.
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A challenging open problem is to classify all semistrict EQFT's based on NesCob,
which associate to a circle a rank two module. More generally, the problem is to
compute the second cohomology of NesCob and construct cocycles restricting to the
Schur cocycle of the symmetric group.

An interesting algebraic system underlying the categorification of the Kauffman
skein module [1], [18] was proposed recently by Carter and Saito [4]. We wonder
whether our approach could be extended to include their setting.

The paper is organized as follows. In the first sections we define the categories
Cob, NesCob and their extensions. Theorems 1 and 2 are proved in Section 3. In the
last section, odd Khovanov homology is realized as a Z,-extension of the genus zero
part of Cob.

Acknowledgment. The authors would like to thank Christian Blanchet, Aaron Lauda,
Krzysztof Putyra, Alexander Shumakovitch and Catharina Stroppel for interesting dis-
cussions and to Dror Bar-Natan for the permission to use his picture of the Khovanov
hypercube.

1. The category of 2-cobordisms and its extensions

Convention: Throughout this paper, cobordisms are maps from the left configuration
of circles to the right one. The only exception is Figure 3 (taken from [2]) where the
cobordism is drawn as a map from the top to the bottom.

1.1. The category Cob

Definition 1.1. The objects of Cob are finite ordered sets of circles. The morphisms
are isotopy classes of smooth 2-dimensional cobordisms. The composition is given
by gluing of cobordisms.

The category Cob is a strict symmetric monoidal category with the monoidal
product given by the ordered disjoint union and the identity given by the cylinder
cobordism. In particular, we obtain a natural embedding of the symmetric group in
n letters into the automorphism group of n circles.

By using Morse theory, one can decompose any 2-cobordism into pairs of pants,
caps, cups and permutations, proving the following well-known presentation of Cob
(seee.g. [5])

Theorem 1.2. The morphisms of Cob are generated by

RELCER

merge  birth  split  death permutation



382 A. Beliakova and E. Wagner

subject to the following relations.
(1) Commutativity and co-commutativity relations:

B0 P Ty T

(2) Associativity and coassociativity relations:

B> - o oy - R

(3) Frobenius relations:

BB

(4) Unit and counit relations:

$=o D 0 o=%

(5) Permutation relations:

O Ox0 0
3E0- 3 2o
00 0 0A0_ 0

(6) Unit-permutations and counit-permutation relations:

ke

(7) Merge-permutation and split-permutation relations:

B - RS P

For a commutative unital ring R, let R-Mod be the category of finite projective
modules over R. A (1+1)—-dimensional topological quantum field theory (TQFT) is
a symmetric (strict) monoidal functor from Cob to R-Mod. Such TQFTs arein 1 : 1
correspondence with so-called Frobenius systems (cf. [8]).
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One important application of Frobenius systems is Khovanov’s categorification
of the Jones polynomial [6].

In what follows we will assume that Cob is a pre-additive category. This means that
we supply the set of morphisms (between any two given objects) with the structure
of an abelian group by allowing formal Z-linear combinations of cobordisms and
extending the composition maps bilinearly.

1.2. Extensions of categories. Let us introduce the notion of a 2-category. A 2-
category is a category where any set of morphisms has a structure of a category, i.e.,
we allow morphisms between morphisms, called 2-morphisms. Given a 2-category
M , the 2-morphisms of M can be composed in two ways. For any three objects a, b,
¢ of M, the composition in the category Mors (a, b) is called vertical composition
and the bifunctor *: Morps (a, b) X Morps (b, c) — Mors(a, ¢) is called horizontal
composition. These compositions are required to be associative and to satisfy an
interchange law (see [11] for more details).

A semistrict monoidal 2-category can be considered as a weakening of a monoidal
2-category, where monoidal and interchange rules hold up to natural isomorphisms
(cf. [9], Proposition 17).

Assume that € is a strict monoidal category whose set of morphisms is given by
generators and relations.

Definition 1.3. An extension of € is the semistrict monoidal 2-category Ex€, which
has the same set of objects as €. The 1-morphisms of EX€ are compositions of the
generating 1-morphisms of €. The 2-morphisms are

e the identity automorphism of any 1-morphism of €;
¢ a2-isomorphism between any two 1-morphisms subject to a relation in €.

This imposes a so-called “cocycle” condition on the set of 2-morphisms since
any composition of 2-morphisms going from a given 1-morphism to itself should be
equal to the identity or any closed loop of 2-morphisms is trivial.

The weak monoidal category (M, ®, 1, «, A, p) provides an example of an exten-
sion, where o, A and p are considered as 2-isomorphisms and the cocycle condition
holds due to MacLane’s coherence theorem [11], Chapter VII. In the case when €
is Cob-restricted to connected cobordisms (i.e., permutation is removed from the set
of generators in Theorem 1.2 as well as the relations (1), (5), (6) and (7)), then any
pseudo-Frobenius algebra described in [9], Proposition 25, defines an extension Ex€.
The cocycle condition holds due to Lemmas 32, 33 in [9].

Providing € with the structure of a pre-additive category, we have a natural Z-
action on the set of 1-morphisms. Restricting to Z, = {1, —1}, the group of two
elements written multiplicatively, we can define a Z;-extension of € in which the
2-morphisms are just plus or minus the identity. Note that in this case EX€ can be
considered as a weak monoidal category, with the same set of generating 1-morphisms
as € but with sign modified relations.
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Definition 1.4. For any cobordism category €, an extended quantum field theory

(EQFT) based on € is a bifunctor from Ex€ to R-Mod, mapping 2-morphisms to
natural transformations of R-modules. The EQFT is called strict if EX€ is strict.

2. Embedded cobordisms

Let S be the disjoint union of a copies of a circle smoothly embedded into a plane.
Note that the embedding induces a partial order on the set of circles as follows. For
two circles ¢; and ¢;, we say ¢; < c3 if ¢ is inside c;.

Definition 2.1. The objects of NesCob are finite collections of circles embedded into
a plane. The morphisms are generated by

RELCER S

merge birth split death permutation

0=

nested split  nested merge

subject to the following sets of relations.
(1) Frobenius type relations:

o - gD

- g B
@3 Buc-
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(2) Associativity type relations:

- (B
_

(3) Coassociativity type relations:

(5) Torus relation:

c@o- 8

In addition, the merge, the split, the birth, the death and the permutation are still
subject to all the relations of Theorem 1.2.

Remark 2.1. Therelations (1), (2), (3), and (5) of Definition 2.1 can also be described

as follows:

QO OO

C C 0c
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Q Q
{\:

Here the black circle corresponds to the starting configuration of circles, and the
dashed arcs correspond to the operations that are performed. Notice that changing the
order of operations produces the two different sides of the relations in Definition 2.1.

Observe that the relations in Definition 2.1 list all possibilities to attach two chords
to 1, 2 or 3 circles.

The category NesCob is a symmetric strict monoidal category with a tensor product
given by a partially ordered disjoint union, i.e., circles on the same level of nestedness
are ordered. In particular, we obtain a natural embedding of the symmetric group into
the automorphism group of any object, permuting circles not ordered by nestedness.

Any morphism in NesCob is the composite of such a permutation and the tensor
product of connected morphisms of NesCob.

Lemma 2.2. Any connected morphism in NesCob has the following normal form:

Proof. Assume that the boundary of our connected genus g cobordism C consists of
a incoming circles and b outgoing ones. Let us suppose that C is a composition of
B births, D deaths, M merges and S splits. Then we have

2-2g—a—-b=B+D-M-S, a—M+B=b—-S+D,

or
M=a+g—-1+B, S=b+g—-1+0D.

We arrive at the normal form if we will be able to push all merges (resp. splits) to
the incoming (resp. outgoing) boundary of C. From the above formulas we see that
B merges and D splits will cancel with the births and deaths, respectively, and g
splits and merges put together will create g handles. The remaining a — 1 merges
commute with any split (nested or not nested) due to the Frobenius type relations.
Finally using the associativity type relations, we can commute nested and unnested
merges (resp. splits) and arrive at the form in Figure 1.

Furthermore applying the torus relation, we are left with the normal form. O
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e L ;%

Figure 1. Normal form with inner and outer handles.

2.1. Embedded cobordisms

Definition 2.3. A smoothly embedded 2-dimensional cobordism from S to S1?
is a pair (X, ¢), where X is a smooth 2-dimensional surface whose boundary consists
of a + b circles and ¢: ¥ < R? x [0, 1] is a smooth embedding such that ¢ |55 N
R2 x {0} = SU and ¢|yx N R2 x {1} = SUP,

Definition 2.4. The objects of EmbCob are circles smoothly embedded into a plane.
The morphisms are isotopy classes of smoothly embedded 2-dimensional cobordisms
subject to the unknotting relation:

The composition is given by gluing along the boundary.

The category EmbCob is again a symmetric strict monoidal category with a ten-
sor product given by the partially ordered disjoint union and with the action of the
permutation group depending on nestedness.

Theorem 2.5. The category EmbCob is isomorphic to the category NesCob.

Proof. By|[5], any smooth 2-cobordism allows a pair of pants decomposition. Modulo
the unknotting relation, there are two ways to embed a pair of pants into R3, providing
the list of generators in Definition 2.1. The relations do not change the isotopy class
of an embedded cobordism and allow to bring it into a normal form. It remains just
to say that the normal forms of two equivalent connected cobordisms coincide. [



388 A. Beliakova and E. Wagner

2.2. Strict Z,-extension. Assume that NesCob is a pre-additive category.

Definition 2.6. Let NesCob; be the strict monoidal 2-category obtained from NesCob
by replacing the torus relation with

(T 0‘@)0 = —@.

Lemma 2.7. NesCob; is a Z;-extension of NesCob.

Proof. It remains to show that the automorphism group of any 1-morphism is trivial.
The only non-trivial 2-morphism corresponds to the torus relation T1. Both sides of T'1
are compositions of two generating cobordisms. Imaging the generating cobordisms
as edges, the T1-relation can be viewed as a rectangular face. It suffices to check that
any cube with a T1-face has an even number of anti-commutative faces. This is a
simple case by case check. Like in Remark 2.1, all such cubes appear by changing the
order of attaching 3 chords to one or two circles. The resulting 10 cubes are depicted
in Figure 2. In addition one can also easily check that the torus relation behaves well
with respect to the permutation. O

/;; o 0 0O oo
:f)‘ :f‘,: "f": Q

Figure 2. Cocycle conditions for NesCob; .

Remark 2.2. Notice that any element of NesCob; does still have a normal form
which corresponds to the usual one plus the information on the parity of the number
of inner 1-handles in Figure 1.

2.3. Nested Frobenius system. In this section we construct a strict EQFT based on
NesCobj, as proposed by Stroppel [16].

As in [6], let us consider the 2-dimensional module A := Z][¢t](1, X) over the
polynomial ring R := Z[¢t] in one variable. We denote by 1 the image of 1 under
the embedding n: R — A. For ¢ € {0, 1}, we define two kinds of multiplication
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me: A® A — A as follows:

111,
1®X+— X,
X®1— (-1)°4X,
X®X > (=)t

Mg

Further, we define two comultiplications A;: A — A ® A and acounite: 4 — R
as follows.

A T XQI1+(-1) 1R X, J1=0,
TlIX > X®X + (-DETRT, X 1.
The functor F : NesCob; — R-Mod maps any object SU% to A®¢ and is defined on
the generating morphisms as follows:

(5)om £(2) -
F(E0)=m. (D) =an

F(@):r], F(@):e,

Whenever a cobordism involves nested circles the convention is thatin A ® A the
first factor corresponds to the inner circle. It is easy to see that F' preserves all the
relations listed in Definition 2.1.

Let us introduce a grading on A by putting

deg(t) := —4, deg(X):=—1, deg(l) :=1.

On the tensor product A®” the grading is given by deg(a; ® -+ ® a,,) = deg(a;) +
-+ deg(an).

There exist a natural grading on NesCob given by the Euler characteristic of
cobordisms. As in Khovanov’s case if t = 0, F' is grading preserving.

3. Nested Khovanov homology

3.1. Khovanov’s hypercube. Suppose that we have a generic diagram D of an
oriented link L in S3 with ¢ crossings. By resolving crossings of D in two ways as
prescribed by the Kauffman skein relations, one can associate to D a c-dimensional
cube of resolutions (compare [6] or [2]). The vertices of the cube correspond to
the configurations of circles obtained after smoothing of all crossings in D. For
any crossing, two different smoothings are allowed: the 0- and the 1-smoothing.
Therefore, we have 2¢ vertices. After numbering the crossings of D, we can label
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N
010 ,@ 101 7@ 11
S D2~

100 110 @ i

1*0 :

00 & |

v v v v
-3 -2 —1 0

Figure 3. The cube of resolutions for the trefoil.

the vertices of the cube by c-letter strings of 0’s and 1’s, specifying the smoothing
chosen at each crossing. The cube is skewered along its main diagonal, from 00...0
to 11...1. The number 1 in the labeling of a vertex is equal to its ‘height’ k. The
cube is displayed in such a way that the vertices of height k project down to the point
r := k —c_, where c4 are the numbers of positive resp. negative crossings in D (see
Figure 3).

Two vertices of the hypercube are connected by an edge if their labellings differ
by one letter. In Figure 3, this letter is labeled by *. The edges are directed (from
the vertex where this letter is O to the vertex where it is 1). The edges correspond to
a saddle cobordisms from the tail configuration of circles to the head configuration
(compare Figure 3).

We denote this hypercube of resolutions by [ D], and would like to interpret it as a
complex. The r-th chain “space” [D]" is a formal direct sum of the Wlk)' “spaces”
at height k in the hypercube and the sum of “maps” with tails at height k defines the
r-th differential. To achieve 3> = 0, we assign a minus to any edge which has an odd
number of 1’s before * in its labeling.

Applying (1+1) TQFT Fxy, to [ D], which sends any merge to mq and any split to
Ay, we get a complex of R-modules (Fxy [D], 0kn). Its graded homology groups,
known as Khovanov homology, are link invariants and the graded Euler characteristic
is given by the Jones polynomial.

3.2. Nested homology. Applying F' to the Khovanov hypercube, one can define
a chain complex as follows. The r-th chain group will be F [D]", the image of
[D]" after applying the functor F, and the maps are defined by applying F to the
corresponding cobordisms. The main difference to the Khovanov case is that here
not all faces are commutative. More precisely, the square corresponding to the torus
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relation (T1) is anti-commutative. However, by the definition of the Z,-extension, the
2-cochain W € H?(B,Z/2Z) (B is the hypercube) which associates 1 to any anti-
commutative face of the hypercube and —1 to any commutative one is a cocycle, i.e.,
it vanishes on the boundary of any cube. Since the cube is contractible, any cocycle is
acoboundary. Consequently, there exists a functione: E — Z, from the set of edges
of the hypercube to Z, called a sign assignment, such that €(e1)e(e2)e(es)e(eq) =
Y (D) for any four edges ey, ..., e4 forming a square D. Hence, multiplying edges
of the hypercube by the signs €, we get a chain complex (F [D], d¢). It is easy to
see that this complex is independent on the choice of a sign assignment.

Lemma 3.1. Given two sign assignments € and €', the chain complexes (F [D] , 0¢)
(F [D], 0¢) are isomorphic.

Proof. The product e¢’ is a 1-cocycle. Since the hypercube is contractible, this 1-
cocycle is a coboundary of a 0-cochain n: V — Z,, where V is the set of vertices of
the hypercube. The identity map times 71 provides the required isomorphism. O

In the case when t = 0 the homology groups of (F [D], d) are graded and the
graded Euler characteristic coincides with the Jones polynomial. If ¢ £ 0, then deg
defines a filtration on our chain complex, similar to the one considered by Lee [10].

Our next aim is to show that the complex we just constructed is isomorphic to the
Khovanov complex.

3.3. Proof of Theorem 1. We have to show that (F [D], d) and (Fxy [D] , 0xn) are
isomorphic.

For any circle ¢ in SU¥, we define nes(c) to be the number of circles in §H¥
containing c inside. Further, we define an endomorphism’ ¢ of F(S1¥) as follows:
For a copy of A associated with ¢, we put

be T 1,
X e (-)e©x.

Then ¢y, is the composition of ¢, for all circles in S Lk, By abuse of notation ¢y
depends not only on k but also on the configuration of circles in SU¥.

Given a link diagram D with d crossings, consider two Khovanov’s hypercubes
of resolutions associated with D. Apply F' to one of them and Fxy, to the other, and
do not use any sign assignment, i.e., all squares in Fgy, [ D] are commutative. Further,
observe that with each vertex of the hypercube there is associated a copy of A% for a
certain k. Applying ¢ to any such vertex, we get a map & with the source (F [D], 9)
and the target (Fxy, [D], 0xn), without any sign assignments. Our next goal is to see
that there exists a sign assignment on the (d + 1)-dimensional hypercube [D] x [0, 1]
making ® to a chain map.

This map was suggested to us by Alexander Shumakovitch.
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For this, it is enough to check that each 3-dimensional cube in this (d + 1)-
dimensional hypercube contains an even number of anti-commutative faces. Note
that there are three different cases: (1) the cube is contained in the source hypercube,
(2) the cube is contained in the target hypercube, (3) the cube contains exactly one face
in the source hypercube and one face in the target hypercube. The first case follows
from Lemma 2.7 and the second from the fact that Fxy, is a (1 + 1) TQFT. The third
case relies on a case by case check. Note that all faces in the source hypercube
correspond to relations in NesCob;. Hence, we have to check the claim for any
cube, whose upper face is a relation in NesCoby, the lower face is the corresponding
Khovanov square and whose vertical edges are labeled by ®. In addition, since the
map ¢, depends on nes(c) explicitly, we have to ensure that the claim holds after
changing the nestedness of each circle by one. The tables below show that any cube
of type (3) does have only commutative or anti-commutative faces. It is left to the
reader to check that all cubes of type (3) do have an even number of anti-commutative
faces. For this one has to consider all cubes where the upper face corresponds to one
of the relations in Definition 2.1. Moreover, each cube should be checked twice for
different nestedness modulo 2.

my |¢om ¢ mo ° ¢
I1®1 1 1 I®1 1
I®X | X X 1®X X
X1 |-X| - X |-X®1| =X
XRX| —t - |- X®X| —t

mi[pomi| ¢ |mood

11| 1 1 I®1 1
.'.f 1IX [ X | X |[-1X| —X
X®1|-X X A®I1 X

X@X|—t| -t |- XQ®X| —t

Ay $o Ay ¢ Ago¢
() [1[X®i-18X | -X@i-18X |1 X@I+18X
T XXX el XeX (181 X|XeX 1181

T Ay $oA ¢ Ago
() [1]X81-18X | X®I1+18X |1 | X®1+18X
e XXX -1 T[ XX — 11X XX —11®1

mo|pomg| ¢ |moo¢

T®1 | 1 T | 1®1 | 1

Q ,,,,, Q 18X | X| X |1®X]| X
X®1|X| X | X®1| X

X®X| ¢ [ XQX| ¢
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mo | ¢ omg ¢ mo o ¢
o [Tet 1| 1 X 1
OO Nex|[x| X [-19X | —X
X®T | X| X |-X®1| —X
XX |+t| +t |[FXRX| +t
Ao ¢ o Ag ¢ Agog

T XQT4+1®0X [ XQI+1X (1| XQ1+1®X
X[ XX +1IQT| XX +11RT[ X[ XX +11®1

Ag ¢ o Ag ¢ Agod
) MXei+1eX | X1-18X| I | X@l+18X
T XXX 81| X8 X +/101|—X|-XaX (131

To finish, observe that the map ® composed with a sign assignment is clearly
invertible, and hence is the desired isomorphism.

3.4. Proof of Theorem 2. Let us search for further strict Z,-extensions of NesCob

systematically. For e; € Z, withi = 1,...,10 we put
11T+ e, 1® 1T+ es5T,
ﬂ®Xl—>€2X, 1]®X!—>€6X,
my: mi:
X QT exX, X®1-e7X,
X®X 0, X®X 0,
An: ]]I—>€3(X®]]+]]®X), A T e X R@T+e91® X,
“lX - euxeX. YlX > en0X ® X

The relations in Definition 2.1 should hold up to sign for any EQFT. They impose the
following relations on e;:

e1 = ez and e3 = e4 (follows from the ordinary Frobenius relation);

e7eg = eseq (follows from Frobenius type relation (1), 3. row, in Definition 2.1);

e¢ = e5 and e9g = €70 (follows from Frobenius type relation (1), 4. row, in
Definition 2.1).

Modulo these identities, there are 5 free parameters, i.e., 32 cases to consider. Itis
a simple check that all of them produce the Khovanov or nested Khovanov Frobenius
system after changing the sign of one or two operations.

It remains to construct an isomorphism between, say, nested Khovanov complex
and the one where mg is replaced by —m. Let us consider the map between two nested
Khovanov hypercubes which is identity on all vertices, except of the tails of edges
corresponding to mo where the map is minus the identity. Asinthe proof of Theorem 1,
the cone of this map is a hypercube of a dimension one bigger. Let us convince
ourselves that all 3-dimensional cubes of that hypercube have an even number of



394 A. Beliakova and E. Wagner

anti-commutative faces. We have to check only cubes whose upper horizontal faces
belong to the nested Khovanov complex, the bottom horizontal face to the nested
Khovanov with mg replaced by —m, and whose vertical edges are given by our map.
If the upper horizontal face has an even number of mo maps, then the cube has an
even number of vertical anti-commutative faces. If it has an odd number of 7y maps,
then there is an odd number of vertical anti-commutative faces, but either the top or
the bottom face is anti-commutative. Hence, like in the proof of Theorem 1, there
exists a sign arrangement on this hypercube providing the desired isomorphism.

4. Odd Khovanov homology

Let us show that the Odd Khovanov homology introduced in [12] fits in our setting.

4.1. The extension OddCob

Definition 4.1. The category OddCob is defined as follows: The objects of OddCob
are finite ordered sets of circles. The morphisms are generated by

EELCILR

merge birth  split death permutation

subject to the following sets of relations.
(1) Commutativity and co-commutativity relation:

B85 0o -3

(2) Associativity and coassociativity relations

R

(3) Frobenius relations:

2ot B

(4) Unit and counit relations:

- o o -




On link homology theories from extended cobordisms 395

(5) Permutation relations:

Q0 OO0 _0
SBg- 2 DRI
Q0 Q0 00 0

(6) Unit-permutations and counit-permutation relations:
(7) Merge-permutation and split-permutation relations:

(8) Commutation relations:

. TS o
Eﬁo\%@@@

O D

(9) Torus and sphere annihilation:

©-+ -

All the other commutation relations hold with plus sign.

Note. Observe that not all relations in Definition 4.1 are independent. The torus
annihilation relation can be deduced from the others by first twisting the two handles
of the punctured torus by means of the first permutation relation in (5), and then
applying (1) to both ends.

Remark 4.1. Viewing the relations between cobordisms as 2-morphisms, one can
check that OddCob is a semistrict monoidal 2-category. The monoidal structure X on
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0OddCob can then be defined as follows. Let us endow the 1-morphisms in OddCob
with the following Z /27 -grading:

a(B0) =0 w(=2)=1
s)d(0)=0.  sd(0)=1

This grading is additive under composition and disjoint union. For any two generators
f and g and the permutation Perm, we put

fRid:= f®id, idKf :=Permo(f ®id)oPerm, [fKg := (fKid)o(idXg)
where ® denotes the disjoint union. The composition rule is modified as follows:

([dR g)o (f Bid) = (~1)*O@ fxg

For an alternative description of OddCob, see Putyra’s Master Thesis [13] using
cobordisms with chronology.

Observe that the permutation does not commute with the monoidal product X
in OddCob. Hence, when depicting a split as a chord attached to a circle, we need
to fix an orientation on this chord, establishing the order of the two circles after the
split. After this is done, the lists of commutative, anti-commutative and zero faces in
0OddCob and odd Khovanov homology coincide (after correcting the errors in Figure 2
[12]).

Let us denote by Cobg the quotient of Cob by all morphisms of nonzero genus
and spheres.

Lemma 4.2. OddCob is a Z,-extension of Coby.

Proof. We have to show that the automorphism group of any 1-morphism is trivial.
If the automorphism group of a certain 1-morphism was not trivial, it would contain
—Id which would imply that under the EQFT of the next section the 1-morphism
would be sent to zero. This is not the case for all 1-morphisms in Coby. O

4.2. Odd Frobenius system. In[12]an EQFT intothe Z/27Z-graded abelian groups
based on OddCob is constructed.

Using Khovanov’s algebra Ay = Z[X]/X?, one can describe this EQFT
Fo: OddCob — Z-Mod as follows: Fy maps a circle to A9 where Ag is Z/27-
graded as follows: 1 is in degree 0 and X is in degree 1. To n circles, Fy assigns
A?". To generating morphisms, Fy assigns the following maps:

11T 1, IQT—1®T,

1 X — X, p 19X~ X®T, A T—XQT-1Q X,
m: : :

X®1T— X, XIQT—1® X, X—X®X.

X®X 0, XX -X®X,
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The maps ¢ and 7 are the same as in the Khovanov case.

Due to the fact that A and ¢ have sd-degree 1, Fy cannot map the disjoint union of
cobordisms to the tensor product of maps assigned to them since in this case relations
(6) and (7) in Definition 4.1 would not be satisfied. Instead Fy has to respect the
monoidal product in OddCob and to map disjoint union to X defined by

fRid:= f ®id,

idX f :=Permo (f ®id) o Perm,

fRg:=(fRid)o (id X g),
dXg)o(f Xid) = (_1)deg(f)deg(g)f X g.

The relations (6) and (7) hold now just by definition.
Applied to the Khovanov hypercube, this EQFT gives rise to a link homology
theory, called odd Khovanov homology [12].
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