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Abstract. We show that closed differential forms on a smooth manifold X can be interpreted
as topological (respectively Eudlidean) supersymmetric field theories of dimension 0j1 overX .
As a consequence, concordance classes of such field theories are shown to represent de Rham
cohomology. The main contribution of this paper is to make all new mathematical notions
regarding supersymmetric field theories precise.
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1. Introduction

Two of us [ST] spent the last years to find a precise notion of supersymmetric Eu-
clidean field theories of (super) dimension d jı and relate it to certain multiplicative
cohomology theories. We showed that in dimension 1j1 the relevant cohomology
theory is K-theory, see also [HST] for a more precise account. We also conjectured

�The last two authors were supported by the Max Planck Society and grants from the National Science
Foundation. The second and last authors were also supported by the Deutsche Forschungs Gemeinschaft
via an Excellence Cluster respectively a Graduiertenkolleg in Bonn.
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that for dimension 2j1 one gets elliptic cohomology, or more precisely, the coho-
mology theory TMF of topological modular forms. In this paper we fill the gap in
dimension 0j1 by showing that de Rham cohomology arises in this easiest case. It
is a very interesting question whether cohomology theories arise from other values
of d jı.

The geometric cocycles we actually get from EFTs (which is short for Euclidean
field theories) of dimension 0j1 are closed differential forms, just like vector bundles
with connection can be used to get Euclidean field theories of dimension 1j1, see [D].
Our goal remains to show that EFTs of dimension 2j1 are cocycles for TMF.

Our results are consistent with the formal group point of view towards (complex
oriented) cohomology theories, where the additive formal group gives ordinary ra-
tional cohomology, the multiplicative group gives K-theory and the formal groups
associated to elliptic curves lead to elliptic cohomology.

Unfortunately, the precise definition of EFTs is very involved, so we won’t repeat
it here but refer instead to our survey [ST2]. We will summarize in Section 4 the
necessary information for dimension 0j1 where the fancy definitions reduce to well-
known notions. As a consequence, most of the results in the current paper could
have been written in a simpler language. However, the main point of the paper is to
show how the more difficult notions, also valid in higher dimensions, reduce to these
well-known simple things in dimension zero.

In our definition, an EFT has a degree n 2 Z which is related to the central charge
as well as to the degree of a cohomology class. If X is a smooth manifold, we also
define EFTs over X , which can be thought of as families of EFTs parametrized by
X . In this case, the degree n can be generalized to a twist over X which relates very
well to twisted cohomology but will not be discussed in this paper. An EFT over X
should be thought of as a geometric object over X . This is best explained by our
main result below, Theorem 1, which says that a closed differential form over X can
be interpreted as a 0j1-dimensional EFT over X and vice versa.

Like differential forms or vector bundles with connection, EFTs over X of the
same dimension d jı can be added and multiplied. Addition preserves the degree n,
whereas multiplication adds degrees as expected. Moreover, d jı-dimensional EFTs
over a manifold X of degree n form a category d jı-EFTn.X/ (in fact, a d -category,
an issue we will ignore in this paper) and can be pulled back via smooth maps: a
smooth map f W Y ! X determines a functor

f � W d jı-EFTn.X/! d jı-EFTn.Y /

and these functors compose strictly. We call two EFTs E0; E1 2 d jı-EFTn.X/
concordant if there exists a field theory E 0 2 d jı-EFTn.X � R/ and " > 0 such that
E 0 Š p�

1 .E0/ on X � .�1; "/ and E 0 Š p�
1 .E1/ on X � .1 � ";1/.

We observe that concordance gives an equivalence relation which can be defined
for geometric objects over manifolds for which pullbacks and isomorphisms make
sense. By Stokes’Theorem two closedn-forms onX are concordant if and only if they
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represent the same de Rham cohomology class; two vector bundles with connections
are concordant if and only if they are isomorphic as vector bundles (disregarding
the connections). Passing from an EFT over X to its concordance class forgets the
geometric information while retaining the topological information. We will write
d jı-EFTnŒX� for the set of concordance classes of d jı-dimensional supersymmetric
EFTs of degree n over X .

Theorem 1. For smooth manifolds X , there are natural group isomorphisms

0j1-EFTn.X/ Š
´
�ev

cl .X/; n even;

�odd
cl .X/; n odd;

where �ev
cl .X/, respectively �odd

cl .X/, stands for the even, respectively odd, closed
differential forms on X . These isomorphisms take the tensor product of EFTs to the
wedge product of differential forms.

It follows that on concordance classes we get isomorphisms

0j1-EFTnŒX� Š
´
H ev

dR.X/; n even,

H odd
dR .X/; n odd,

where H ev
dR.X/, respectively H odd

dR .X/, stands for the direct sum of the even, respec-
tively odd, de Rham cohomology groups of X .

There is a beautiful interpretation of the Chern character form of a vector bundle
with connection in terms of the map from 1j1-dimensional to 0j1-dimensional EFTs
overX , given by crossing with the standard circle, see [Ha]. It is hence essential that
the result above yields differential forms of varying degrees. However, differential
forms of a specific degree n arise by forgetting the Euclidean geometry (on super-
points) and working with TFTs (topological field theories) instead. Again, there are
categories d jı-TFTn.X/ of d jı-dimensional TFTs over a manifoldX of degree n as
well as their concordance classes d jı-TFTnŒX�. In fact, the following result is true
for any supermanifold X , whereas one would have to use pseudodifferential forms
on X to make Theorem 1 hold, see Sections 3.3 and 5.2.

Theorem 2. For supermanifolds X , there are natural group isomorphisms

0j1-TFTn.X/ Š �ncl.X/

compatible with multiplication (tensor product of TFTs versus wedge product of
differential forms). Moreover, concordance classes lead to isomorphisms

0j1-TFTnŒX� Š Hn
dR.X/:
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It is well known that the canonical map induces an isomorphism

Hn
dR.X/ Š Hn

dR.Xred/;

so we recover information only about the underlying reduced manifold. We will show
in a forthcoming paper with Chris Schommer-Pries that Theorem 2 carries over to the
case of twisted topological field theories which relate to differential forms, twisted
by a flat vector bundle, and the resulting twisted de Rham cohomology.

From the above theorem, it is easy to recover the entire structure of de Rham
cohomology from TFTs. What is missing is the boundary map in Mayer–Vietories
exact sequences for a covering of X by open sets. Equivalently, we need to express
the suspension isomorphisms

Hn.X/ Š HnC1
cvs .X � R/

in terms of TFTs. Here the subscript ‘cvs’ means compact vertical support (in the
R-direction). This isomorphism is given by taking the product with a particular class
u 2 H 1

cvs.R/, the Thom class for the trivial line bundle over X D pt. Therefore,
it suffices to express the condition of compact vertical support in terms of TFTs.
However, this is easy since the first part of Theorem 2 describes the cocyles for de
Rham cohomology in terms of TFTs and compactly supported cohomology is given by
concordance classes of compactly supported cocycles. The second, cohomological,
part of Theorem 2 alone would not be sufficient for this argument!

Similarly, it is the description of de Rham cocylces that enables us to use TFTs
for building Eilenberg–MacLane spaces K.R; n/: Consider extended standard k-
simplices

�ke ´ f.t0; : : : ; tk/ 2 RkC1 jPk
iD0 ti D 1g;

which are smooth manifolds (without boundary or corners). The usual face and de-
generacy maps are defined on these extended simplices and hence there are simplicial
sets K�.n/ with k-simplices 0j1-TFTn.�ke /.

Corollary 3. The geometric realization jK�.n/j is an Eilenberg–MacLane space of
type K.R; n/, where R has the discrete topology.

Proof. This result is well known for any ordinary cohomology theory (with arbitrary
coefficients), where one replaces TFTs by the relevant cocycles for the theory. The
easiest way for us to prove the result is to state the following result from [MW],
Appendix: Given any sheaf (on the big site of smooth manifolds) F W Manop ! Set,
there are natural bijections for manifolds X as follows:

F ŒX� Š ŒX; jF j�:
The left-hand side denotes concordance classes as defined above and on the right-
hand side jF j is the geometric realization of the simplicial set k 7! F.�ke /. Thus it
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suffices to show that F ´ 0j1-TFTn Š �ncl is a sheaf: This means that for any open
covering fUig of X , a closed differential form on X is the same thing as a collection
of closed differential forms on Ui that agree on intersections Ui \Uj . This is clearly
true if we work with all differential forms since these are sections of a vector bundle
on X . It stays true for closed differential forms because the de Rham operator d is
defined locally. �

The very last part of the above proof is our motivation for requiring the field
theories in our definition to be local. Currently, we express this by saying that a
d jı-dimensional field theory is a (symmetric monoidal) d -functor from a bordism
d -category to a target d -category. The precise details of this definition for d D 2 are
far from obvious.

This paper is organized as follows. After briefly introducing the category SM
of supermanifolds, we give a detailed proof that for any supermanifold X , the odd
tangent bundle…TX represents the inner Hom SM.spt; X/ of maps from the odd line
spt to X . We actually think of the odd line as the easiest way of thickening a point to
a supermanifold and, as a consequence, view this inner Hom as the supermanifold of
superpoints in X . We abbreviate this generalized supermanifold by

SPX ´ SM.spt; X/

It is characterized by its T -points SPX.T / D SM.T � spt; X/ for any supermanifold
T . The notation SPX for the superpoints inX is similar to writing LX D Man.S1; X/
for the generalized manifold of loops in X . Unlike this infinite dimensional case,
the superpoints in X are representable by the supermanifold …TX which means
roughly that a map spt! X is a point in X together with an odd tangent vector, see
Proposition 3.1 for a precise statement. As a consequence, differential forms on an
ordinary manifold X are the functions on this supermanifold of superpoints:

��X Š C1.…TX/ Š C1.SPX/:

This isomorphism explains both structures, the Z-grading and de Rham d , on differ-
ential forms via symmetries of the superpoint as follows. The (inner) diffeomorphism
supergroup of the superpoint spt is

Diff.spt/ Š R0j1 Ì R�:

Here the translational part R0j1 induces an action on functions which turns out to
be infinitesimally generated by d , see Lemma 3.4. The relation d2 D 0 follows
because translations commute with each other. Moreover, the Z-grading of ��.X/
comes from the dilation action of R� on spt, see Corollary 3.7. Finally, the usual
relations between dilations and translations show that d must have degree one. We
claim no originality for these results since they seem to be well known to several
authors. However, we exhibit detailed arguments (including the case where X is a
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supermanifold) in this paper because we could not find a reference that contained a
proof of this result, rather than just stating it.

In Sections 4 and 5 we will review the notions of field theories as functors, pi-
oneered by Atiyah, Kontsevich in the topological case and Segal in the conformal
case. We will give precise meaning for such functors to be smooth by introducing
family versions of the relevant bordism categories. Once this is done, it will be easy
to generalize this notion to supersymmetric field theories which we then continue to
study in the simplest case, that of dimension 0j1. We will show in Proposition 5.5 that
such field theories are functions on the quotient SPX=G on the site SM of superman-
ifolds. Here G is a subgroup of the (inner) diffeomorphism group Diff.spt/ defining
the geometry on the superpoint spt, in the spirit of Felix Klein. For a topological
field theory, G D Diff.spt/ consists of all diffeomorphisms and hence

0j1-TFT0.X/ Š C1.SPX/Diff.spt/ Š ��XDiff.spt/ Š �0cl.X/;

which is the case of Theorem 2 for degree 0. A Euclidean field theory is defined by
setting G D Iso.spt/ ´ R0j1 Ì f˙1g, allowing only translations and reflections as
isometries of spt, but not all dilations. It follows that

0j1-EFT0.X/ Š C1.SPX/Iso.spt/ Š ��X Iso.spt/ Š �ev
cl .X/;

which is the case of Theorem 1 for degree 0. In both Theorems, the degree n case
is obtained by defining twisted field theories in a way that functions on the quotient
…TX=G are replaced by sections of a line bundle given by the twist. This is explained
in Section 6 for the easiest possible twists, giving the degree n field theories.

These functions on the moduli spaces SPX=G should be thought of as the “par-
tition functions” of our field theories. In dimension 0j1 they obviously contain the
entire information. It is also very natural that in the twisted case these are not func-
tions but sections of certain line bundles on the moduli spaces, just like the (integral)
modular forms arising as the partition functions of 2j1-dimensional EFTs in [ST2].

Our appendix is again expository, we will survey the notion of Grothendieck fi-
brations V ! S. In the case where S is the category of manifolds respectively
supermanifolds, this notion will be later used to define smooth respectively super-
symmetric field theories. Here V will be family versions of various bordism categories,
respectively versions of the target categories like Pic for the field theory. The only
original result of the appendix is Proposition 7.13.

2. Quick survey of supermanifolds

Following a suggestion of the referee, we have removed our original survey from this
paper, it now appears as [HST1] online in the Manifold Atlas Project (coordinated
by Kreck and Crowley at the Hausdorff Institute for Mathematics in Bonn). We
encourage knowledgable readers to improve and extend this survey.
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We also recommend the beautiful survey article on supermanifolds by Deligne
and Morgan [DM] or one of the standard references by Leites [L], Berezin [B], Manin
[M], or Voronov [V]. For the simplest supermanifold R0jn and its diffeomorphisms
we recommend [KS].

We shall just summarize the absolutely basic notions, working with the ground
field R. A superalgebra is a monoidal object in the category of supervector spaces and
is hence the same thing as a Z=2-graded algebra. However, the interesting symmetry
operators on this monoidal category implies that a superalgebra is commutative if for
all homogenenous a; b 2 A we have

ab D .�1/jajjbjba;

a very different notion than a commutative Z=2-graded algebra. The derivations of
such a commutative superalgebra A are endomorphisms D 2 End.A/ satisfying the
Leibniz rule:1

D.a � b/ D Da � b C .�1/jDjjaja �Db:
DerA is a super Lie algebra with respect to the bracket operation

ŒD;E�´ DE � .�1/jDjjE jED:

A supermanifold M of dimension pjq is a pair .jM j;OM / consisting of a (Haus-
dorff and second countable) topological space jM j together with a sheaf of commu-
tative superalgebras OM that is locally isomorphic to Rpjq . The latter is the space
Rp equipped with the sheaf ORpjq of commutative superalgebras U 7! C1.U / ˝
ƒ�.Rq/.

The category SM of supermanifolds is defined by using morphisms of sheaves.
There is a functor SM ! Man that associates to a supermanifold M its reduced
manifold

Mred ´ .jM j;OM=Nil/

obtained by dividing out the ideal of nilpotent functions. By construction, this quotient
sheaf gives a smooth manifold structure on the underlying topological space jM j and
there is an inclusion of supermanifolds Mred ,! M . Note that the sheaf of ideals
Nil � OM is generated by the odd functions.

Example 2.1. Let E be a real vector bundle of fiber dimension q over the ordinary
manifold Xp and ƒ�.E�/ the associated algebra bundle of alternating multilinear
forms on E. Then its sheaf of sections gives a supermanifold of dimension pjq,
denoted by …E. For example, if E is the tangent bundle of an ordinary manifold X
then the functions on …TX are just differential forms on X :

C1.…TX/ Š ��.X/:
1Whenever we write formulas involving the degree j � j of certain elements, we implicitly assume that

these elements are homogenous.
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The following proposition gives two extremely useful ways of looking at mor-
phisms between supermanifolds. We shall use the notation C1.M/´ OM .M/ for
the algebra of (global) functions on a supermanifold M .

Proposition 2.2. For S;M 2 SM, the functor C1 induces natural bijections

SM.S;M/ Š Alg.C1.M/; C1.S//:

If M � Rpjq is an open supersubmanifold (a domain), SM.S;M/ is in bijective
correspondence with those .f1; : : : ; fp; �1; : : : ; �q/ in .C1.S/ev/p � .C1.S/odd/q

that satisfy
.jf1j.s/; : : : ; jfpj.s// 2 jM j � Rp for all s 2 jS j:

The fi , �j are called the coordinates of � 2 SM.S;M/ and are defined by

fi D ��.xi / and �j D ��.�j /;

where x1; : : : ; xp; �q; : : : ; �p are coordinates on M � Rpjq . Moreover, by the first
part we see that fi 2 C1.S/ev D SM.S;R/ and hence jfi j 2 Man.jS j;R/.

The proof of the first part is based on the existence of partitions of unity for
supermanifolds, so it is false in analytic settings. The second part always holds and
is proved in [L].

Since sheaves are generally difficult to work with, one often thinks of superman-
ifolds in terms of their S -points, i.e., instead ofM itself one considers the morphism
sets SM.S;M/, where S varies over all supermanifolds. More formally, one embeds
the category SM of supermanifolds in the category of contravariant functors from SM
to Set by

Y W SM! Fun.SMop;Set/; Y.M/ D .S 7! SM.S;M//:

This Yoneda embedding is fully faithful and identifies SM with the category of rep-
resentable functors, defined to be those in the image of Y . Following A. S. Schwarz,
we will sometimes refer to an arbitrary functor F W SMop ! Set as a generalized
supermanifold.

Note that Proposition 2.2 makes it easy to describe the morphism sets SM.S;M/.
We would also like to point out that this functor of points approach is closely related
to computations involving additional odd quantities (the odd coordinates of S as
opposed to those of M ) in many physics papers.

3. The superpoints in a supermanifold

For a supermanifold X , we would like to talk about the supermanifold SPX of su-
perpoints in X . By definition, this is the inner Hom from the superpoint spt to X in
the category SM of supermanifolds, usually denoted by SPX , compare Remark 7.8.
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More generally, for any supermanifoldM 2 SM, we can consider the inner Hom
SM.M;X/ as a generalized supermanifold given by

SM.M;X/.S/´ SM.S �M;X/ for S 2 SM:

It is clear that if the dimensions of Mred and X are nonzero, this functor is not
representable, at least not by finite dimensional supermanifold that we are studying
here. However, it turns out that forM D R0jn it actually is in the image of theYoneda
embedding

Y W SM! Fun.SMop;Set/; Y.M/ D .S 7! SM.S;M//:

The following proposition will prove the case n D 1, the other cases follow by
induction.

Proposition 3.1. For any supermanifoldX , the odd tangent bundle…TX represents
the inner Hom SM.spt; X/ μ SPX . More precisely, there is an isomorphism of
generalized supermanifolds

.T 7! SPX.T // Š .T 7! …TX.T //:

Remark 3.2. This result is mentioned as an obvious fact in many places, for example
in Vaintrob [Va], p. 66, where the supermanifold …TX is abbreviated as yX . We
decided to write out the proof because we will use it later in identifying the action
of the diffeomorphism group of R0j1 which is obvious on SPX but a priori not on
…TX .

Our point of view differs from Vaintrob’s because we start with SPX as a general-
ized supermanifold and then show that it is represented by…TX . As a consequence,
in the remainder of the paper we will think of the superpoints in X as a superman-
ifold, i.e., SPX 2 SM and will ignore the fact that it is actually only a generalized
supermanifold.

Proof of Proposition 3.1. We split the proof of the desired bijection into the following
natural correspondences, where in (3) Derf denotes derivations C1.X/! C1.S/
with respect to f , in the sense that C1.S/ is a C1.X/ � C1.X/-bimodule using
the algebra homomorphism f .

SM.S � spt; X/ !
.1/

Alg.C1.X/; C1.S � spt//

 !
.2/

Alg.C1.X/; C1.S/˝ƒ�.R//

 !
.3/
f.f; g/ j f 2 Alg.C1.X/; C1.S//; g 2 Derodd

f g
 !
.4/

SM.S;…TX/:
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In (3) Derf denotes derivations g W C1.X/! C1.S/with respect to f in the sense
that

g.ab/ D g.a/f .b/C .�1/jgjjajf .a/g.b/:

In other words, these are odd sections of the pulled back tangent bundle along f .
(1) follows directly from Proposition 2.2 and (2) just uses the definition of prod-
ucts of supermanifolds together with C1.spt/ D ƒ�.R/. To see (3), decompose
' W C1.X/! C1.S/˝ƒ�.R/ D C1.S/Œ�� as a sum

' D f C �g with f; g W C1.X/! C1.S/:

Here � is the usual odd coordinate on spt. Note that f preserves the grading, whereas
g reverses it. For a; b 2 C1.X/ we have '.ab/ D f .ab/C �g.ab/, and since ' is
an algebra homomorphism this is also equal to

'.a/'.b/ D .f .a/C �g.a//.f .b/C �g.b//
D f .a/f .b/C �.g.a/f .b/C .�1/jajf .a/g.b//:

Comparing the coefficients we conclude that f is an algebra homomorphism and that
g is an odd derivation with respect to f . Conversely, any such pair .f; g/ defines an
algebra map '. It is clear that the bijection is natural with respect to superalgebra
maps C1.S/! C1.S 0/.

Proposition 2.2 translates f into a morphism Of W S ! X in (4). Then g is taken
to a global section Og of the sheaf Of �.T X/odd. This pair . Of ; Og/ is an S -point of the
supermanifold …TX . The last statement holds more generally: Any vector bundle
overM (aka a locally free and finitely generated sheaf E of OM -modules) has a total
space E 2 SM that comes with a projection map � W E ! M . It can be most easily
described in terms of its S -points

E.S/ D f.f; g/ j f 2 SM.S;M/; g 2 f �.Eev/g:
So g is an even global section of the pullback bundle on S and the projection � comes
from forgetting this datum. If we reverse the parity of E by tensoring fibrewise with
spt, we obtain the sheaf …E with total space …E determined by its S -points

…E.S/ D f.f; g/ j f 2 SM.S;M/; g 2 f �.Eodd/g:
This finishes the proof of the proposition. We would like to point out that Proposi-
tion 2.2 is not crucial for the proof. One can write down the equivalences in terms
of maps of sheaves (instead of their restriction to global sections), the only thing that
changes is that the notation becomes more complicated. �

Let us write down the above natural bijection more explicitly for superdomains
X D U � Rpjq . Let y1; : : : ; ypCq be coordinate functions on X , where y1; : : : ; yp
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are even and ypC1; : : : ; ypCq are odd. Then a morphism ' W S � spt ! U is given
by coordinates

'�.yi / D .x1 C � Ox1; : : : ; xp C � Oxp; �1 C � O�1; : : : ; �q C � O�q/
2 .Oev

S�R0j1/
p � .Oodd

S�R0j1/
q:

(')

In this case we can make the identification …T U Š U � Rqjp with coordinates
.yi ; Oyi / where Oy1; : : : ; Oyp are odd and OypC1; : : : ; OypCq are even. Going through the
above bijections one sees that the image Q' W S ! U � Rqjp of the morphism ' has
coordinates

'�.yi ; Oyi / D .x1; : : : ; xp; �1; : : : ; �q; O�1; : : : ; O�q; Ox1; : : : ; Oxp/
2 .Oev

S /
p � .Oodd

S /q � .Oev
S /

q � .Oodd
S /p:

( Q')

3.1. The translation action of R0j1. Addition gives R0j1 a super Lie group structure
which we denote bym W R0j1�R0j1 ! R0j1. We get a right action of spt on itself and a
left group action 	0 W R0j1�SPX ! SPX by pre-composing with right translations:
To an S -point

.�; '/ 2 SM.S;R0j1/ � SM.S � R0j1; X/ Š SM.S;R0j1 � SPX/

	0.S/ associates the composition '� 2 SM.S � R0j1; X/ Š SM.S;SPX/ given by

'� W S � spt
id;�Bp1�����! .S � spt/ � spt D S � .spt � spt/

idS �m����! S � spt
'�! X:

The infinitesimal generator of this spt-action is a globally defined odd vector fieldD
on SPX Š …TX . Since spt is commutative, we have D2 D 1

2
ŒD;D� D 0 (which

is not always true for odd vector fields). We next describeD in local coordinates for
superdomains X D U � Rpjq .

It is easy to see that '� is given by replacing � by � C � in the coordinate
representation .'/ above. Translating from SPX to …TX , this action becomes in
coordinates for Q':

.�; x1; : : : ; �q; O�1; : : : ; Oxp/ 7! .x1 C � Ox1; : : : ; �q C � O�q; O�1; : : : ; Oxp/: (�)

The fact that

xi D '�.yi /; Oxi D '�. Oyi /; i D 1; : : : ; p;
and

�i D '�.ypCi /; O�i D '�. OypCi /; i D 1; : : : ; q;
together with formula .�/ above implies that the action map	0 W spt�…TX ! …TX

pulls back these coordinate functions as follows:

	�
0.yi / D yi C � Oyi and 	�

0. Oyi / D Oyi for i D 1; : : : ; p C q:
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Abusing notation, � here denotes the standard odd coordinate function on spt. To get
the infinitesimal generatorD for the action, we have to differentiate this formula with
respect to � and evaluate at � D 0. This gives D.yi / D Oyi and D. Oyi / D 0. Using
@i ´ @

@yi
, the local representation of our odd vector fieldD is therefore given as the

derivation

D D
pCqP
iD1
Oyi@i :

3.2. The de Rham complex for supermanifolds. For a supermanifold X , the al-
gebra of differential forms on X has two gradings, the Z=2-parity and the (cohomo-
logical) Z-degree. There are two conventions how to deal with this situation, we will
work with one that makes��X into a Z-graded commutative superalgebra and leads
to an odd de Rham differential d . This seems to be a natural choice, since we want
to relate d to the action of the odd vector field D on the commutative superalgebra
C1.…TX/.

Let V be a module over the commutative superalgebra A. Following the conven-
tion of Bernstein–Leites we define the exterior algebra on V to be

ƒ�
A.V /´ SymA.…V /:

Here SymA.W / is the quotient of the tensor algebra onW by the ideal generated by all
supercommutators w1˝w2 � .�1/jw1jjw2jw2˝w1. The commutative superalgebra
ƒ�
A.V / has the universal property that giving a superalgebra map fromƒ�

A.V / to any
commutative A-superalgebra B is the same as giving an A-module map …V ! B .

Let �1X ´ HomOX
.T X;OX / be the cotangent sheaf of X and define

��X ´ ƒ�
OX
.�1X/:

Clearly, OX and…�1X are subsheaves ofƒ�
OX
.�1X/ in a natural way. The universal

even differential dev W OX ! �1X is characterized by

devf .
/ D .�1/jf jj�j
.f / for all 
 2 T X:

Alternatively, we can think of this as an odd differential d W OX ! …�1X . The
de Rham differential on ��X is the extension of d whose square is zero and which
satisfies the Leibniz rule.

We will denote the global sections of the sheaf ��X as usual by��X (non-bold).

3.3. Differential forms as functions. The next step is to interpret differential forms
on X as certain functions on …TX . We thank the referee for pointing out that
functions on …TX are also called pseudodifferential forms on X . This notation is
motivated by the following well-known result.

Lemma 3.3. There is an embedding of sheaves of OX -superalgebras

� W ��X ,! O…TX
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that maps onto the functions that are polynomial on every fiber.

Proof. Let x1; : : : ; xp; �1; : : : ; �q be local coordinates on X . We have canonically
associated coordinates

.x1; : : : ; xp; �1; : : : ; �q; O�1; : : : ; O�q; Ox1; : : : ; Oxp/
on…TX . Recall that the Oxi ’s are odd, whereas the O�j ’s are even. On the other hand,
a local basis for the OX -module �1X is given by dx1; : : : ; d�q . According to the
convention we picked for the definition of the de Rham complex, the dxi ; d�j 2
…�1X have odd and even parity, respectively. Hence we can define a map of
super OX -modules �0 W …�1X ! O…TX by prescribing dxi 7! Oxi and d�j 7! O�j .
It is not hard to check that this is independent of the coordinate system chosen.2

According to the defining property of SymOX
.…�1X/ the map �0 extends to a unique

homomorphism of OX -algebras � W ��X ! O…TX . It is clear that � is injective with
image as stated above. �

The map � is surjective if and only if X is an ordinary manifold. For example, if
X D R0jq then��X D ƒ.Rq/Œx1; : : : ; xq�, the polynomial ring on q even generators
xi over the ground ring ƒ.Rq/. It has to be completed in the xi -directions to obtain

C1.…TX/ D C1.Rqjq/ D ƒ.Rq/˝R C
1.Rq/:

Since D is an odd vector field on …TX we have the Leibniz rule

D.fg/ D .Df /g C .�1/jf jf .Dg/ for all functions f; g on …TX:

Furthermore, we already know that D2 D 0. Hence the restriction of D to ��X is
the de Rham differential once we have shown

Lemma 3.4. The restriction of D to OX � O…TX is the odd differential d . More
precisely, we have

D D �d W OX ! O…TX :

Proof. It is clear from the local representation ofD that the image ofD is contained
in �.…�1X/ � O…TX . The claim is equivalent to showing that the composition

zD´ ��1D W OX ! �1X

is equal to d , i.e., for all f 2 OX we have to check that

zDf.
/ D .�1/jf jj�j
.f / for all vector fields 
 2 T X:

2In fact, one can see this using the (global!) vector field D considered in Section 3.1: The map �0 is
equal to the composition

…�1X
…�! �1X ,! �1.…TX/

ND�! O…TX ;

where xD.!/ D .�1/j!j!.D/.
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It suffices to prove this for (local) basis vector fields @j D @
@yj

, j D 1; : : : ; p C q,
where the yi are local coordinates on X . We first compute

zDf D ��1
� pCqP
iD1
Oyi@if

�
D ��1

� pCqP
iD1

.�1/.jyi jC1/.jf jCjyi j/.@if / Oyi
�
:

Since � is even, we get

zDf D
� pCqP
iD1

.�1/.jyi jC1/.jf jCjyi j/.@if /dyi
�
D
pCqP
iD1

.�1/jyi j.jf jC1/.@if /dyi :

Applying this 1-form to @j and using .dyi /@j D .�1/jyi jjyj jıij yields

zDf.@j / D .�1/jyj j.jf jC1/Cjyj j D .�1/jyj jjf j@i .f /;

as desired. �

If X is purely even the cohomological degree of ˛ 2 ��X is equal to the parity
of its image in C1…TX modulo 2. Hence the Leibniz rule above is exactly the
(graded) Leibniz rule for differential forms, and so D is equal to the usual de Rham
differential on ��X .

3.4. The diffeomorphism group of the superpoint. We used the translation action
of R0j1 on itself to define an action of R0j1 on the superpoints SPX Š …TX . In
fact, the whole super Lie group Diff.spt/ of diffeomorphisms of the supermanifold
spt acts on SPX . We briefly describe this action. By definition, Diff.spt/ is the super
Lie group representing the group-valued functor

S 7! DiffS .spt � S; spt � S/:
Here DiffS .spt � S; spt � S/ is the group of diffeomorphisms of spt � S that are
compatible with the projection to S . The following result follows from a short
computation together with Proposition 3.1 for X D spt.

Lemma 3.5. There is an isomorphism of (generalized ) super Lie groups

Diff.spt/ Š R� Ë R0j1

where the semi-direct product is defined by the right action of R� on R0j1, given by
scalar multiplication.

The right action spt � .R� Ë spt/! R0j1 is on S -points given by

.�; .a; �// 7! �aC � where a 2 C1.S/ev and �; � 2 C1.S/odd:

It follows that in our local coordinates .yi ; Oyi / for…TX from Section 3.1, the action
of � 2 R� is given by fixing the yi and multiplying each Oyi by �.
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Remark 3.6. In Lemma 3.5, we use the following convention for the (S -points of
the) semi-direct product. If a groupG acts on another groupA on the right, written as
.a; g/ 7! ag , elements ofGËA are just pairs .g; a/with (associative) multiplication

.g1; a1/ � .g2; a2/´ .g1g2; .a1/
g2a2/:

In Remark 3.10 it will be useful to consider the case of a left action of G on A,
defined by g.a/´ ag

�1
. In particular, this will introduce an inverse for the scalar

multiplication of R�.

Every function f on …TX which is polynomial on fibers is locally a finite sum
of functions of the form

f D g Oyi11 : : : OyipCq

pCq where g 2 OX :

It follows that the action of � 2 R� on such an f is given by the formula

.�; f / 7! �
PpCq

kD1
ikf:

Conversely, if a function f 2 O…TX has degree n in the sense that

.�; f / 7! �nf for all � 2 R�;

then f 2 �nX � O…TX must be homogenous of degree n along the fibres.

Corollary 3.7. The R�-action on O…TX coming from dilations of the superpoint
determines the Z-degree operator and vice versa. More precisely, all � 2 R� map
f 2 O…TX to �nf if and only if f 2 �nX .

In the proof of Proposition 6.3 below we will need the following reformulations
of the above computations.

Lemma 3.8. Let	0 W R0j1�SPX ! SPX be the left action given by pre-composition
with right translation as in Section 3.1. Then the induced action on functions is given
by

	�
0.f / D 1˝ f C �˝D.f / 2 C1.R0j1 � SPX/ D ƒ�Œ��˝ C1.SPX/

for all f 2 C1.SPX/.

Proof. Let � be the standard coordinate on R0j1 and D the vector field on …TX Š
SPX infinitesimally giving the action of the super Lie algebra of R0j1 onC1.…TX/.
Using our explicit (local) coordinate representations of 	0 and D in Section 3.1, the
asserted equality is trivial to verify when f is equal to the local coordinates yi and
Oyi of …TX .
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Furthermore, using �2 D 0 and that D is an odd derivation, it is easy to check
that the right-hand side of the asserted equality defines an algebra homomorphism
from C1.…TX/ to C1.R0j1 � …TX/. Since the coordinates yi and Oyi locally
generate O…TX , it follows that 	�

0 and this algebra homomorphism are equal. Hence
the asserted equality holds for all f 2 C1.…TX/. �

Proposition 3.9. Let 	 W Diff.spt/� SPX ! SPX be the left action of Diff.spt/ on
SPX induced by the right action of Diff.spt/ D R� Ë R0j1 on spt. Then

	�.f / D tn ˝ 1˝ f C tn ˝ �˝D.f / 2 C1.R�/˝ƒ�Œ��˝ C1.SPX/

for all f 2 �nX � C1.…TX/ Š C1.SPX/. Here t 2 C1.R�/ is the standard
coordinate coming from the inclusion R� � R.

Proof. By Corollary 3.7, the dilation action

 W R� � SPX ! SPX

induces on functions f 2 �n.X/ the action �.f / D tn ˝ f , where t 2 C1.R�/
is the standard coordinate. By Remark 3.10, our action map 	 can be written as a
composition

R� � .R0j1 � SPX/
id��0����! R� � SPX

��! SPX:

It follows that for f 2 �n.X/ one has

	�.f / D . B .id�	0//�.f / D .id�	0/�.tn˝ f / D tn˝ .1˝ f C �˝D.f //;
which proves our claim. �

Remark 3.10. In the above proof, we have used the following elementary fact about
left actions of a semi-direct product G Ë A on a set Y : A G-action and an A-action
on Y fit together to an action of G Ë A if and only if the A-action map A � Y ! Y

is G-equivariant. Here we assume that G acts on the left on A and on Y and hence
it acts on A� Y diagonally. This observation uses the conventions from Remark 3.6
for semi-direct products. In particular, the left action map

ı W R� � R0j1 ! R0j1

is determined by ı�.�/ D t�1˝� since it comes from the right action given by scalar
multiplication, see Lemma 3.5. Then the above compatibility condition for the R0j1-
and R�-actions comes from the commutative diagram

R� � .R0j1 � SPX/

id��0

��

�13 �� .R� � R0j1/ � .R� � SPX/
ı�� �� R0j1 � SPX

�0

��
R� � SPX

� �� SPX

which we leave for the reader to check.
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4. Topological field theories

The usual definition of a d -dimensional TFT, going back to Atiyah and Segal, is in
terms of a symmetric monoidal functor E W d -B! Vect or shorter

E 2 Fun˝.d -B;Vect/:

The domain category d -B is the bordism category whose objects are closed .d � 1/-
manifolds and whose morphisms are diffeomorphism classes of compact d -dimen-
sional bordisms. The target of the functor is the category Vect of finite dimensional
vector spaces. The symmetric monoidal structures are given by disjoint union respec-
tively tensor product. In [ST2] we explain a version of this definition using internal
categories in which one can easily add several bells and whistles, for example geom-
etry, supersymmetry and a notion of degree. We also describe what these definitions
mean in dimension 0 and 0j1, which we shall summarize in the coming subsections.

One obvious simplification in these smallest possible dimensions is that the empty
set is the only manifold of dimension .�1jı/. This implies that our language of internal
categories in [ST2] can be reduced to ordinary categories which we shall stick to in
this paper. Instead of working exclusively in dimension 0 and 0j1, however, we shall
explain the part of our work that can be formulated in terms of categories alone. In
any dimension, this is the part given by restricting attention to the empty set as the
only relevant .d � 1jı/-manifold.

Definition 4.1. Consider the categories d -Bc (respectively d -Bcc) with objects closed
(respectively closed, connected, non-empty) d -manifolds and morphisms being dif-
feomorphisms. The disjoint union operation makes d -Bc into a symmetric monoidal
category.

The subscripts ‘c’ respectively ‘cc’ stand for closed respectively closed connected
manifolds but also for category: Notice that unlike for d -B, we are not considering
diffeomorphism classes of manifolds but keep track of the diffeomorphisms as mor-
phims. This will be essential for supersymmetric and twisted field theories discussed
below. We next point out a lemma that shows how one can simplify the discussions
related to the symmetric monoidal structure. It follows from the fact that any compact
manifold is the disjoint union of connected manifolds and that any diffeomorphism
is uniquely determined by its restriction to connected components.

Lemma 4.2. For any symmetric monoidal category C, there is an equivalence of
functor categories

Fun˝.d -Bc;C/ ' Fun.d -Bcc;C/:

In other words, d -Bc is the free symmetric monoidal groupoid generated by its sub-
category d -Bcc. The manifolds in d -Bcc are assumed to be non-empty so that the
monoidal unit does not lie in this subcategory.
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For example, such a functor arises from a d -dimensional TFT by restricting it to
the empty .d � 1/-manifold (and hence to closed d -manifolds) and taking C´ R,
our chosen ground field, considered as a monoid via multiplication and as a discrete
category, i.e., a category with identity morphisms only.

This is the well-known observation that in the top dimension d , TFTs give multi-
plicative diffeomorphism invariants of closed manifolds. Given E 2 Fun.d -Bcc;C/,
it is the locality properties of E that tell whether it can be extended to a full fledged
TFT. The Atiyah–Segal axioms address the codimension 1 gluing laws and higher
codimensions can be handled by using d -categories, an aspect that is very important
but not relevant for the current paper.

4.1. 0-dimensional TFTs. Starting with the Atiyah–Segal definition and observing
that there is only one .�1/-dimensional manifold, ;, we have

0-TFT´ Fun˝.0-B;VectR/ Š Maps˝.0-B.;;;/;R/:
Here we have used that the monoidal unit ; 2 d -B has to be sent to the monoidal unit
R 2 Vect, up to canonical isomorphism. By definition 0-B.;;;/ are the isomorphism
classes of objects in 0-Bc and since the category R has only identity morphisms it
follows that there are bijections

0-TFT Š Maps˝.0-B.;;;/;R/ Š Fun˝.0-Bc;R/ Š Fun.0-Bcc;R/;

where the right most bijection follows from Lemma 4.2. Since the point has no
non-trivial diffeomorphisms, it follows that 0-Bcc D fptg and hence we conclude

Lemma 4.3. There is a bijection

0-TFT Š Fun.0-Bcc;R/ Š Fun.pt;R/ Š R

sending a TFT E to the real number E.pt/.

Graeme Segal also introduced the notion of a field theory over a manifold X as a
symmetric monoidal functor E W d -B.X/! Vect or

E 2 Fun˝.d -B.X/;Vect/:

Here one replaces the domain category d -B by d -B.X/ where both objects and
bordisms are equipped with a smooth map to X . Arguing exactly as above one sees
that

Fun˝.0-B.X/;Vect/ Š Fun.0-Bcc.X/;R/ Š Maps.X;R/

because 0-Bcc.X/ Š X (as discrete categories). It follows that TFTs overX would be
all real-valued maps onX . Note that there is no smoothness or continuity requirement
on these functions! Our main contribution is to implement smoothness in such a way
that it generalizes to
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� higher dimension and to
� supersymmetry.

For this purpose, we introduce in [ST2] family versions of all relevant categories and
require that the functors extend in a natural way to these family versions. We will
now explain these smooth families of manifolds in a way that can easily be extended
to various other settings, in particular to super families of supermanifolds.

4.2. Smooth 0-dimensional TFTs over X

Definition 4.4. The category d -Bfam
c (respectively d -Bfam

cc ) has objects smooth fibre
bundles Y ! S where the fibres are closed (respectively closed, connected, non-
empty) d -manifolds. This is by definition a smooth S -family of such d -manifolds.

There are also categories d -Bc.X/
fam (respectively d -Bcc.X/

fam) whose objects
include in addition a smooth map Y ! X . In all cases, morphisms are smooth bundle
maps

Y 0

��

� �� Y

��
S 0 f �� S

that are fibrewise diffeomorphisms and commute with the map toX (if present). Note
that there are projection functors d -Bc.X/

fam ! Man that take a bundle Y ! S and
sends it to its base (or parameter space) S .

Fortunately, there is already a very well developed language that deals with fibred
categories such as d -Bc.X/

fam ! Man, going back to at least Grothendieck. So we
borrow some language from algebraic geometry introduced for dealing with families
of schemes and import them to manifolds and supermanifolds, see our appendix for
a quick survey.

Using Lemma 4.9 in the case d D 0 it follows that the following definition agrees
with that given in [ST2] for arbitrary d . It is a much simplified version, for example
the symmetric monoidal structure plays no role. In this paper we decided to give
the simplest possible definitions and prove only later that they agree with the ones in
arbitrary dimension.

Definition 4.5. A smooth 0-dimensional TFT over X is a fibred functor into the
representable fibred category R, see Definition 7.7:

0-Bcc.X/
fam

������������
E �� R

����
��

��
��

Man
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In the notation introduced in the appendix, we define actually the following category

0-TFT.X/´ FunMan.0-Bcc.X/
fam;R/:

However, by Lemma 7.6 this is indeed the set of 0-dimensional TFTs over X .

There is an equivalence of fibred categories 0-Bcc.X/
fam ' X over Man because

any bundle Y ! S with fibres a single point must be a diffeomorphism and only the
map S ! X remains as a datum. By the Yoneda lemma we end up with the desired
result:

Lemma 4.6. There is a bijection between smooth 0-dimensional TFTs over X and
smooth functions:

0-TFT.X/ Š FunMan.X;R/ Š Man.X;R/ Š C1.X IR/:
Since any smooth function on X � f0; 1g can be extended to a smooth function

on X � Œ0; 1� it follows that no cohomological information can be derived from 0-
dimensional TFTs over X :

Corollary 4.7. There is a single concordance class of smooth 0-dimensional TFTs
over X . In other words, 0-TFTŒX� D 0.

Surprisingly, this changes as soon as we introduce one odd dimension which we
shall do in the next subsection.

Remark 4.8. Restricting to closed, connected d -manifolds gives a functor

d -TFT.X/! FunMan.d -Bcc.X/
fam;R/;

where the left-hand side is the category of smooth TFTs overX in the sense of [ST2].
The same remark holds in the conformal setting and in fact the image of the analogous
functor evaluated on the moduli stack of tori gives the partition function of the CFT.

For the careful reader we would like to address the following subtlety. In Defi-
nition 4.5 we could have used disconnected 0-manifold fibres to obtain a symmetric
monoidal family bordism category over Man which is in fact closer to the definition
given in [ST2]. The following parametrized version of Lemma 4.2 shows that the
outcome would not have been different because R with multiplication is a symmetric
monoidal stack. Since this lemma only serves to justify Definition 4.5 above, we will
not be overly careful in explaining the stacky notions used in the proof.

Lemma 4.9. If C ! Man is a symmetric monoidal stack in the sense of Defini-
tion 7.21 then there is an equivalence of categories

FunMan.d -Bcc.X/
fam;C/ ' Fun˝

Man.d -Bc.X/
fam;C/:



Supersymmetric field theories 21

Proof. We start with the observation that d -Bcc.X/
fam is the stackification of a much

simpler fibred category, namely d -Bcc.X/
prfam, whose objects consists of product

families only. That is to say, all total spaces are of the form Y D S � F where F
is a closed, connected, non-empty d -manifold. Stackification is left adjoint to the
forgetful functor (from stacks to prestacks), so since C is a stack by assumption, there
is an equivalence of categories

FunMan.d -Bcc.X/
fam;C/ ' FunMan.d -Bcc.X/

prfam;C/:

The symmetric monoidal structure on the fibred category C ! Man gives a fibred
functor

˝W C �Man C! C:

In the case ofd -Bc.X/
fam (as well asd -Bc.X/

prfam) it comes from the disjoint union of
two total spaces Y; Y 0 with a fixed base S . Note that this is not a symmetric monoidal
structure on the category but rather of the fibred category d -Bc.X/

fam ! Man.
The symmetric monoidal fibred category d -Bc.X/

prfam is freely generated by the
fibred category d -Bcc.X/

prfam and hence we obtain an equivalence as in Lemma 4.2

FunMan.d -Bcc.X/
prfam;C/ ' Fun˝

Man.d -Bc.X/
prfam;C/:

Finally, the symmetric monoidal stack d -Bc.X/
fam is the stackification of the sym-

metric monoidal fibred category d -Bc.X/
prfam, leading to the final equivalence of

categories by our assumption on C:

Fun˝
Man.d -Bc.X/

prfam;C/ ' Fun˝
Man.d -Bc.X/

famC/:

Putting the three equivalences together finishes the proof of our lemma. �

5. Supersymmetric field theories

In this section we will be rewarded for expressing smooth functions on a manifold
X in Lemma 4.6 in very fancy language as certain fibred functors over the site Man.
In fact, we can easily generalize all definitions to supermanifolds in the following
straightforward way.

The naive extension of the Atiyah–Segal definition would say that a d jı-dimen-
sional TFT associates a finite dimensional supervector space to any closed .d �1jı/-
manifold and a linear map to a compact d jı-dimensional bordism, satisfying the usual
gluing axioms. In the presence of a targetX , all supermanifolds would be in addition
equipped with a smooth map to X . Even for d D 0 we then run into the question
how to implement the smoothness of the functor. We find it very natural use the same
formalism as in the previous subsection, except for using supermanifolds S as the
parameter (or base) spaces for the family versions of our categories. For d > 0,
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we also have to work with supermanifolds with boundary which were introduced in
[VZ].

When trying to generalize, say, the fibred category d -Bfam
c ! Man, we have to

generalize the notions of a fibre bundle of supermanifolds. There is an obvious way of
doing that, namely to start with trivial bundles and define general bundles via gluing
data. In the language of fibred categories this procedure is exactly the stackification,
already used in Lemma 4.9. Keeping with our spirit of giving the simplest possible
definitions and using stacks only as a motivation, see Lemma 5.3, we proceed as
follows.

Definition 5.1. A (supersymmetric) 0jı-dimensional TFT overX is a fibred functor:

0jı-Bcc.X/
prfam

�������������
E �� R

����
��

��
��

SM

In other words, we set

0jı-TFT.X/´ FunSM.0jı-Bcc.X/
prfam;R/:

Since the dimension already signifies supermanifolds, the additional adjective ‘su-
persymmetric’ will be usually skipped.

The missing piece in this definition is that of the fibred category of product families
of supermanifolds

d jı-Bcc.X/
prfam ! SM respectively d jı-Bc.X/

prfam ! SM

that we shall spell out for arbitrary d . Recall that, by definition, a supermanifold is
closed (respectively connected) if and only if its underlying manifold is.

Definition 5.2. The category d jı-Bprfam
c has objects supermanifolds of the formS�F

whereF is a closed d jı-manifold. For a fixed supermanifoldX , d jı-Bc.X/
prfam is the

category whose objects include in addition a smooth map S � F ! X . Morphisms
are commutative diagrams in SM

S 0 � F 0

��

� �� S � F

��
S 0 f �� S

(1)

that are fibrewise diffeomorphisms and commute with the map to X (if present). To
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explain the former, note that � D  B .f � idF / where  is a map over S 0:

S 0 � F 0

�����������
 �� S 0 � F

����
��

��
��

�

S 0

We say that � is a fibrewise diffeomorphism if  is a diffeomorphism. Alternatively,
one can start with all commutative diagrams as in (1) and then restrict to the cartesian
morphisms. It follows that there are fibrations

d jı-Bc.X/
prfam ! SM

that take S � F and send it to its base (or parameter space) S . Finally, in the case of
0jı-Bcc.X/

prfam we only use fibres F ´ R0jı .

Definition 5.1 is justified by the following result that is proven exactly as
Lemma 4.9. The last description is the one used in [ST2]. Recall that the rep-
resentable stack R ! SM used for TFTs is symmetric monoidal with respect to
multiplication.

Lemma 5.3. If C! SM is a symmetricmonoidal stack in the sense of Definition 7.21
then there are equivalences of categories

FunSM.d jı-Bcc.X/
prfam;C/ ' FunSM.d jı-Bcc.X/

fam;C/

and
FunSM.d jı-Bcc.X/

fam;C/ ' Fun˝
SM.d jı-Bc.X/

fam;C/;

where d jı-Bc.X/
fam ! SM is the stack of fibre bundles with closed d jı-dimensional

fibres (obtained from stackifying d jı-Bc.X/
prfam ! SM).

5.1. 0j1-dimensional TFTs over X . In the 0-dimensional case we used the equiv-
alence of fibred categories

0-Bcc.X/
fam ' X

to complete our computation of 0-TFT.X/. In the 0j1-dimensional case, the corre-
sponding result is more interesting due to the nontrivial diffeomorphisms of super-
points.

Lemma 5.4. For every supermanifold X and every ı 2 N there is an equivalence

0jı-Bcc.X/
prfam ' SM.R0jı ; X/=Diff.R0jı/:

of fibred categories over SM.
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The right-hand side is the quotient construction explained in Definition 7.12 of
the appendix. Note that a priori, the two inner Homs are just presheaves on SM but
that is all one needs to form the fibred quotient category. It actually turns out that
both presheaves are representable but we will only discuss this in the case ı D 1.

Proof. To simplify the discussion, fix a supermanifold S and only look at the fibre
categories over S on both sides of the equation. The left-hand side has objects

f 2 SM.S � R0jı ; X/ Š SM.S;SM.R0jı ; X//;

where the right-hand side consists exactly of the objects in the quotient category. As
for morphisms, Definition 5.2 explains why the left-hand side has pairs . ; f /, where
f W S 0 ! S and  W S 0 �R0jı ! S 0 �R0jı is a diffeomorphism over S 0. Comparing
this to the morphisms on the right-hand side, we see that we just need to translate  
into a map

g W S 0 ! Diff.R0jı/:
However, this translation is just the definition of the diffeomorphism group in terms
of its S -points. It is not hard to see that these translations preserve the composition
in the respective categories. Finally, we can use Lemma 7.4 or work things out by
hand. �

We now turn to the case ı D 1 and abbreviate the superpoint spt as before. We
conclude from the above lemma that

0j1-Bcc.X/
prfam ' SPX=Diff.spt/; (2)

where the supermanifold SPX of superpoints inX is represented by…TX by Propo-
sition 3.1. From Lemma 3.5 we know that the diffeomorphism supergroup of spt is
given by

Diff.spt/ Š R� Ë R0j1;
where R� is the even dilational part and R0j1 are the odd translations of spt.

Proposition 5.5. For any supermanifold X , there is a bijection between 0j1-dimen-
sional TFTs over X and closed 0-forms on X :

0j1-TFT.X/ Š FunSM.SPX=Diff.spt/;R/ Š �0cl.X/:

The right-hand side equals ff 2 C1.X/ j df D 0g D ff 2 C1.Xred/ j df D 0g.
Proof. By Corollary 7.17 we just need to determine those functions on the super-
manifold SPX that are fixed by the supergroup Diff.spt/. For the even action of
R� by dilations this is literally the fixed point set of the action on C1.SPX/. As
explained in Section 3.4, the only functions on SPX that are fixed by all dilations are
the functions on X . For the odd part of the action, namely by translations of R0j1, it
is not hard to see that being ‘invariant’ in the sense of Corollary 7.17 is equivalent to
being annihilated by the infinitesimal generators of translation. By Lemma 3.4, this
infinitesimal generator of translation is just the de Rham d on C1.X/. �
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Corollary 5.6. Concordance classes of 0j1-dimensional TFTs over X agree with
degree 0 de Rham cohomology:

0j1-TFTŒX� Š H 0
dR.X/ Š H 0

dR.Xred/:

This finishes the proof of the degree 0 case of Theorem 2. Before going to non-
trivial degrees, we shall prove the degree 0 case of Theorem 1.

5.2. 0j1-dimensionalEFTs over X . In the spirit of Felix Klein’s Erlangen program,
we introduce a Euclidean geometry on the superpoint by specifying its isometry group
to be

Iso.spt/´ f˙1g Ë R0j1 � R� Ë R0j1 D Diff.spt/;

given by translations and reflections of the superpoint. This is analogous to the
Euclidean group of R inside all diffeomorphisms. It leads to a Euclidean bordism
category 0jı-EBcc and its family version and also to the notion of a Euclidean field
theory by following the same steps as for the case of TFTs. So we define

0j1-EFT.X/´ FunSM.0jı-EBcc.X/
prfam;R/

and compute exactly as in Proposition 5.5 that it is isomorphic to

FunSM.SPX=Iso.spt/;R/ Š ff 2 C1.SPX/evjD.f / D 0g:
HereD is the infinitesimal generator of translations, acting onC1.SPX/ as explained
in Section 3.1. One can thus think of such field theories as closed pseudodifferential
forms on a supermanifold X . For example, if X D R0j1 then SPX D R1j1 and

0j1-EFT.R0j1/ Š C1.R/:

If X is an ordinary manifold then Proposition 3.1 and Lemma 3.4 imply

C1.SPX/ Š ��X and D D d
and hence the degree 0 case of Theorem 1 follows.

6. Twisted field theories

Recall from Definition 5.1 and Lemma 7.20 that we can express untwisted field
theories as fibred natural transformations over SM as follows:

0jı-TFT.X/ Š
n
0jı-Bcc.X/

prfam

1

		

1



 PicE

��

o
´ NatSM.1; 1/;
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where Pic ! SM is the symmetric monoidal stack of Z=2-graded real line bundles
and 1 W SM ! Pic is the monoidal unit, giving the trivial bundle for each S 2 SM.
Hence the following definition is not surprising.

Definition 6.1. A twist for 0jı-dimensional TFTs over a supermanifoldX is a fibred
functor

T 2 FunSM.0jı-Bcc.X/
prfam;Pic/:

Moreover, a T -twisted TFT over X is a fibred natural transformation

E 2 NatSM.1; T / D
n
0jı-Bcc.X/

prfam

1

		

T



 PicE

��

o
:

We write 0jı-TFTT .X/ for the set of T -twisted TFTs over X .

In the case ı D 1 we computed the bordism category in equation (2) to be
equivalent to the quotient fibration

QX ´ SPX=Diff.spt/ ' 0j1-Bcc.X/
prfam

and hence twists T 2 FunSM.QX;Pic/ are by definition line bundles over the quotient
QX , see Section 7.4 of our appendix. Moreover, T -twisted field theories are sections
of this line bundle:

0j1-TFTT .X/ Š �.QX I T /´ NatSM.1; T /: (3)

We will compute all twists and their sections in the forthcoming paper with Chris
Schommer-Pries, here we will finish by studying the simplest twists, namely those
that do not depend on X and give the notion of “degree”.

Definition 6.2. Consider the composition of supergroup homomorphisms

� W Diff.R0jı/ � GLı.R/
det� R�

and recall from Section 7.4 that there is a corresponding even line bundle L	 on the
quotient fibration

SM.R0jı ; X/=Diff.R0jı/:
The degree 1 twist is defined to be the odd partner of that line bundle, T1 ´ …L	.
For each n 2 Z we define Tn to be the n-th power of T1 with respect to the symmetric
monoidal structure on Pic. We denote by

0jı-TFTn.X/´ 0jı-TFTTn.X/

the set of 0jı-dimensional TFTs of degree n over X . In particular, since T0 D 1 we
see that degree 0 TFTs are by definition untwisted.
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Even though this definition applies for all ı, we shall only continue the discussion
for ı D 1. By Section 7.4, the projection � W Diff.spt/! R� gives a canonical line
bundle L on QX :

L W QX D SPX=Diff.spt/! pt=Diff.spt/
	�! pt=R! pt==R D Pic:

Then T1 ´ …L is the odd partner of this line bundle and Tn D T ˝n
1 . Specializing

equation (3) to Tn, we see that the set 0j1-TFTn.X/ of 0j1-dimensional degree n TFTs
over X can be identified with the set �.QX I Tn/ of sections of the line bundle Tn
over the quotient fibrationQX . Hence the following proposition implies Theorem 2.

Proposition 6.3. For any supermanifold X , there is a canonical bijection between
sections of the line bundle Tn onQX D SPX=Diff.spt/ and closed differential forms
of degree n on X :

�.QX I Tn/ Š �ncl.X/:

Proof. We apply Corollary 7.19 in the case where G ´ Diff.spt/ acts on the super-
points SPX and � is the n-th power map on R�. We conclude

�.SPX=GI Tn/ Š ff 2 C1.SPX/ j 	�.f / D p�
1 .f / � p�

2 .�/

D f ˝ � 2 C1.SPX �G/g:
Expanding C1.SPX �G/ D C1.SPX/˝ƒ�Œ��˝C1.R�/, the right-hand side is
given as p�

1 .f / � p�
2 .�/ D f ˝ � D f ˝ 1˝ tn, where t 2 C1.R�/ is the standard

coordinate. By Corollary 3.7 this can only equal the left-hand side if f 2 �nX �
C1.SPX/. Moreover, Proposition 3.9 says that

	�.f / D f ˝ 1˝ tn CD.f /˝ �˝ tn 2 C1.SPX/˝ƒ�Œ��˝ C1.R�/

for any f 2 �nX . Comparing coefficients shows thatD.f / D 0 and by Lemma 3.4
this is equivalent to d.f / D 0. �

6.1. Twisted Euclidean field theories. Recall that the Eudlidean structure on the
superpoint spt D R0j1 is defined by its isometry group

Iso.spt/´ f˙1g Ë R0j1 � R� Ë R0j1 D Diff.spt/

given by translations and reflections. This leads to

0j1-EFTn.X/´ NatSM.1; Tn/ D
n
0j1cc-EB.X/prfam

1

		

Tn



 PicE

��

o
;

which can be computed exactly as in Proposition 6.3 to be isomorphic to

�.SPX=Iso.spt/I Tn/ Š ff 2 C1.SPX/ev=odd j D.f / D 0g;
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where the functions are even respectively odd depending on the parity of n. Special-
izing to an ordinary manifoldX , we get�ev=odd

cl .X/ as before. This finishes the proof
of Theorem 1.

7. Appendix: Grothendieck fibrations

In this appendix we will give a survey of the language used in this paper to discuss
smooth and supersymmetric families of categories. Excellent references on these
(Grothendieck) fibrations are [C] and [Vi], here we only recall the main aspects
for the convenience of the reader who does not want to look at other sources. We
only claim originality for Proposition 7.13 which we generalize from groupoids to
categories.

We will typeset categories in sans-serif C, S, V; : : : and abbreviate C 2 C to
mean that C is an object in C. Similarly, � 2 C.C 0; C / will denote a morphism in
C, � W C 0 ! C .

Consider a functorp W V! S where S will later be the category Man of manifolds
or SM of supermanifolds. We also use the letter S to remind the reader that this is the
(Grothendieck) site over which everything is happening. One motivating example
to keep in mind is when V is the category of (super) vector bundles over (super)
manifolds and p is the map that takes a vector bundle to its base.

7.1. Pullbacks and categories of fibred functors. In the following diagrams, an
arrow going from an object V of V to an object S of S, written as V 7! S , will mean
that p.V / D S or in words, that “V lies over S”. Furthermore, the commutativity of
the diagram

V�

��

� �� W�

��
S

f �� T

(4)

means that p.�/ D f , or that “� lies over f ”.

Definition 7.1. A morphism � 2 V.V;W / is cartesian if for any  2 V.U;W / and
any g 2 S.p.U /; p.V // with p.�/ B g D p. /, there exists a unique � 2 V.U; V /
with p.�/ D g and � B � D  , as in the commutative diagram

U�

��

 					  

		
V�

��

�
�� W�

��
R

g 								 h

		
S

f
�� T .
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If � W V ! W is cartesian, we say that the diagram (4) is a cartesian square. It
is easy to see that cartesian morphisms are closed under composition. They should
be thought of as the “fibrewise isomorphisms”. We refer to [C], 3.1.2, for a careful
comparison of this notion and the one used by Grothendieck where g D idS in the
diagram above.

For example, any isomorphism � is clearly cartesian and in fact, this notion is
meant to formalize that of ‘fibrewise isomorphisms’, compare also Definition 7.9.

Definition 7.2. A functor p W V! S is a (Grothendieck) fibration if pullbacks exist:
for every object W 2 V and every morphism f 2 S.S; p.W //, there is a cartesian
square

V�

��






� ������ W�

��
S

f �� p.W / .

One can think of this property as existence of “categorical path-lifting”. We will
define the fibres of such a fibration below and we shall see in Definition 7.5 that in
the discrete case, path-lifting is unique, just like for covering maps (also known as
fibre bundles with discrete fibres).

A fibred category over S is a category V together with a functor p W V! S which
is a fibration. If pV W V ! S and pW W W ! S are fibered categories over S, then
a fibred functor F W V ! W is a functor with pV B F D pW that sends cartesian
morphisms to cartesian morphisms, i.e., that preserves pullbacks.

For an object S 2 S the fibre of the fibration p W V ! S over S is by definition
the subcategory VS � V whose objects are those V 2 V lying over S and whose
morphisms lie over idS . For example, Vect! Man is a fibration with a fibre VectS
being the category of vector bundles over the manifold S .

After the choice of a cleavage, i.e., a certain collection of pullbacks, these fibres
assemble into a pseudo-functor (or lax 2-functor)

Sop ! Cat; S 7! VS ;

which is a different way of looking at the fibration condition. This point of view leads
naturally to the following

Definition 7.3. A fibred natural transformation ˛ 2 NatS.F;G/ between two fibred
functors F;G W V ! W is a natural transformation ˛ W FR ! G such that for any
object V 2 V, the morphism

˛V 2 W.F.V /;G.V //
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lies in WS , or equivalently ˛V lies over idS , where

S ´ pV.V / D pW.F.V // D pW.G.V // 2 S:

We shall write FunS.V;W/ for the category of fibred functors and fibred natural
transformations. The notion of an equivalence of fibred categories arises in the usual
way from observing that fibred categories over S form a (strict) 2-category.

The following lemma is very useful, see [Vi], Prop. 3.36, for a proof.

Lemma 7.4. A fibred functor F W V ! W is an equivalence of fibred categories if
and only if the restrictions FS W VS ! WS are equivalences for all objects S 2 S.

The next three definitions will give different ways of constructing fibred categories.
An easy class of fibrations are those with discrete fibres, i.e., those where all fibres
VS have only identity morphisms. These are sometimes also referred to as categories
fibred in sets. By [Vi], Prop. 3.26, up to equivalence these always arise from a presheaf
(also known as functor) F W Sop ! Set as follows.

Definition 7.5. Define the objects of F to be pairs .S; g/whereS 2 S and g 2 F .S/

and morphisms by

F ..S 0; g0/; .S; g//´ ff 2 S.S 0; S/ j F .f /.g/ D g0g:
The forgetful map p W F ! S is easily seen to be a fibration, in fact, there are unique
pullbacks in this case.

Lemma 7.6. The only fibred natural transformation between functors F , G 2
FunS.V;F / is the identity. In particular, this category is discrete (in the sense that it
has only identity morphisms).

The easiest examples of fibrations with discrete fibres come from representable
presheaves, i.e., where the presheaf arises from a fixed object M 2 S via F .S/´
S.S;M/.

Definition 7.7. For M 2 S, we write M ! S for the resulting representable fibra-
tion.

The 2-Yoneda’s lemma [Vi], 3.6.2, gives natural equivalences of categories

FunS.M;W/ ' WM : (5)

In the case W D N these reduce to natural bijections of sets

FunS.M;N / Š N.M/ D S.M;N /:
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Remark 7.8. We have used the notation of ‘underlining’ in two different contexts:
above we used it to get fibred categories over S from presheaves respectively objects
of S. In Section 3 we used it for distinguishing Hom from inner Hom in the category
SM. Inner Hom can also be discussed in our current general context, assuming that S
has a monoidal structure ˝. For two fixed objects M;N 2 S one can then consider
the presheaf

Sop ! Set; S 7! S.S ˝M;N/:
If this presheaf is representable then the representing object is determined uniquely up
to canonical isomorphism by the usualYoneda lemma. It is denoted by S.M;N / 2 S
and has the S -points

S.S;S.M;N // Š S.S ˝M;N/:
We hope that these two distinct underlining conventions will not confuse the reader,
one makes fibred categories from objects, the other objects from morphism sets.

Definition 7.9. Given a functor G W Sop ! Cat, there is a corresponding fibred
category yG ! S. The objects of yG are pairs .S; g/ where S 2 S and g 2 G .S/.
Moreover, define

yG ..S 0; g0/; .S; g//D f.f; �/ 2 S.S 0; S/�mor G .S 0/ j s.�/ D g0; t .�/D G .f /.g/g;
where s, t are the source respectively target maps of the category G .S 0/. The compo-
sition law is not hard to guess but surprisingly can also be written down in the case G

is just a pseudo-functor, see [Vi], 3.1.3. In both cases, the reader is invited to check
that a morphism .f; �/ is cartesian if and only if � is an isomorphism.

Remark 7.10. Every fibred category p W V ! S is canonically equivalent to one of
the form yG , see [Vi], Thm. 3.45. Namely, one takes G to be the functor that sends S
to FunS.S;V/.

7.2. Stacks. If S is a (Grothendieck) site in the sense of [Vi], Def. 2.24, i.e., it
carries the notion of coverings of objects, one can ask for a generalization of the
sheaf property of a presheaf F as above. It turns out that F is a sheaf if and only if
the fibration F is a stack in the following sense.

Definition 7.11. A fibred category V! S over a site S is called a stack if for every
covering Si ! S of an object S 2 S the natural functor

VS ! VSi !S (6)

is an equivalence of categories. The right-hand side is the descent category of the
covering Si ! S whose objects are gluing data, see [Vi], 4.1.2.
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Let us explain the descent category in the case of a fibred category yG coming
from a functor G W Sop ! Cat and where the covering is given by a single morphism
U ! S . By the properties of a site, the pullbacks

U ŒnC1� D U �S � � � �S U„ ƒ‚ …
nC1

exist for all n 	 0 and they form the n-simplices of a (Čech-like) simplicial object
U � in S, resolving the object S 2 S, thought of as a constant simplicial object S �:

U
� D .� � � U �S U �S U �� ���� U �S U ���� U /! S

�
:

If we apply the functor G to this simplicial map, we get a cosimplicial functor
G .S �/! G .U �/. Using a version of Definition 7.14 below, we can form its homotopy
limit

yGS D G .S/ D hlim�.G .S �
//! hlim�.G .U �

//μ yGU!S ;

which is the functor in equation (6) that is required to be an equivalence for yG to
be a stack. Here the version of the homotopy limit hlim� is defined exactly like
the homotopy limit hlim in Definition 7.14 below, except that � 2 C1.s.C /; t.C //
is assumed to be an isomorphism. This is important for being able to glue objects
together consistently. In particular, the right-hand side yGU!S is by definition the
descent category of the covering U ! S .

We shall only use these descent conditions for motivating our definitions in the
next sections, see Lemmas 4.9 and 5.3. The main tool we will need is the stackification
functor from fibred categories to stacks over S, see [C], 4.2.2. It is left adjoint to the
forgetful functor in analogy to sheafification.

The example of vector bundles fibred over S D Man is a stack. The descent
conditions just formalize the fact that bundles can be constructed from their restriction
to open subsets via gluing data. Here we use the usual notion of a covering of a
manifold S 2 Man, namely where Si � S are open subsets with union S . If we form
U ´ qiSi then we get a single covering U ! S in Man and the reader is invited
to check that the above definition of a descent category indeed equals the category
formed by gluing data for vector bundles over S with respect to the covering Si .

7.3. Internal categories asfibrations. An important special case in the construction
of yG in Definition 7.9 is the case where the functor G W Sop ! Cat takes values in
small categories. Then G is given by an internal category in presheaves on S. So

obj G .S/ D F0.S/; mor G .S/ D F1.S/

for presheaves Fi W Sop ! Set and there are various structure maps defining the struc-
ture of the categories G .S/. These can be most easily summarized by the following
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diagram where F2 ´ F1 �F0
F1 is the pullback in Presheaf.S/ formed using the

maps s, t below:

F2

p1 ��
p2 ��
c ��

F1

s ��
t �� F0
u�� (7)

Here pi are the two projections, c is the composition map, s, t are source and target
maps andu is the unit (or identity) map. Some of the relations between these structure
maps are elegantly expressed by the simplicial identities present in the above diagram,
namely

t B u D id D s B u; t B p1 D t B c; s B p2 D s B c; t B p2 D s B p1:
However, to formulate the associativity of c, the above diagram is not sufficient and
one needs to extend it to the nerve F� of the category by setting for n 	 1

Fn´ F1 �F0
� � � �F0

F1„ ƒ‚ …
n

; (8)

with the well-known structure maps that make this into a simplicial presheaf. Di-
agram 7 above is its initial segment which we shall refer to as its 2-skeleton (even
though we are missing two degeneracy maps F1 ! F2). It is an important elemen-
tary fact that all identities between the structure maps of our category are expressed
in terms of simplicial identities (all appearing in the 3-skeleton). Vice versa, every
simplicial presheaf satisfying equation 8 comes from an internal category. We will
therefore use the notation F� for the internal category in presheaves on S.

As in Definition 7.9, the functor G gives a fibration yG ! S which we shall
abbreviate as F0=F1 in the case at hand. The common notation for the associated
stack is F0==F1.

Definition 7.12. In our applications to field theories, the most important example of
an internal category will arise from a monoid object G 2 S that acts (from the right)
on another object M 2 S. This action has an associated internal transport category
in S (and hence in presheaves on S)

M �G
p ��
�

�� M

and therefore the quotient fibrationM=G ´M=.M �G/ is defined as above.

For example, for S D Man and G a Lie group acting on a manifold M , the
quotient space is not a manifold in general and usually not even Hausdorff. It is
therefore often wise to study instead the quotient fibration M=G. This is in general
not a stack but its stackification, the quotient stack M==G, has objects .P;m/ where
P ! S is a G-principal bundle and m 2 S.P;M/ is G-equivariant, see [C], 4.4.9.
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The objects of M=G correspond to trivial bundles and general bundles are obtained
by the gluing construction.

More generally, if pt is a terminal object in a site S and G 2 S is a group object,
one can define the category of G-principal bundles (sometimes also referred to as
G-torsors) in S to be the stackification of the fibration pt=G. Then the discussion in
the previous paragraph applies to describe the quotient stack M==G in this setting.

The following computation of the functor category between two fibred categories
will be essential in our applications to field theories. We state a very general result
also for the purpose of referring to it in future papers.

Proposition 7.13. For any fibration W ! S and any internal category F� in pre-
sheaves on S, there is an isomorphism of categories

FunS.F0=F1;W/ ' hlim.FunS.F�;W//;

where the right-hand side is the homotopy limit (defined below) of the cosimplicial
category with n-simplices consisting of fibred functors Fn ! W.

Unfortunately, the left-hand side above is computed wrongly in [C], Prop. 3.7.5,
where the homotopy pullback needs to be replaced by the homotopy limit defined as
follows.

Definition 7.14. Let C� be a cosimplicial category with 2-skeleton

C2 C1
p1

 p2

 c


u ��
C0

s
 t
 :

Then its homotopy limit hlim.C�/ is the category with objects .C; �/ where C 2 C0
and � 2 C1.s.C /; t.C // is a morphism such that

u.�/ D idC and p1.�/ B p2.�/ D c.�/:
Note that the cosimplicial identity p1 B s D p2 B t implies that the above composition
exists in C2 and the other two simplicial identities say that it has the same source and
target as c.�/.

Morphisms from .C 0; �0/ to .C; �/ are f 2 C0.C 0; C / such that

t .f / B �0 D � B s.f /:
Note that the homotopy limit only depends on the 2-skeleton of C�. Moreover, if C1
is discrete, then so is hlim.C�/. It is then just the equalizer of s and t on objects of C0.

Remark 7.15. Given a cosimplicial set C�, we can form its limit in the category of
sets. This is a certain subset of the direct product of all setsCn. Using the cosimplicial
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identities, it turns out that this limit is canonically isomorphic to the limit (or equalizer)
of the 1-skeleton

C1 C0
t


s :

This is the analogue of the fact that the homotopy limit of a cosimplicial category in
Definition 7.14 only depends on its 2-skeleton.

To make this analogy precise we would have to introduce an appropriate Quillen
model structure on cosimplicial categories and discuss homotopy limits with respect
to it. This was done for cosimplicial groupoids in [Ho] and in this setting Proposi-
tion 7.13 can be proven as follows:

� Define a Quillen model structure on categories fibred in groupoids.
� Show that in this model structure, F0=F1 is the homotopy limit of the diagram

from equation 7.
� Show that the functor FunS.�;W/ takes homotopy limits to homotopy colimits

(of cosimplicial groupoids as defined above).

This conceptional background might help some readers, even though we prefer the
following direct argument. It also constructs an isomorphism of categories, rather
than just an equivalence.

Proof of Proposition 7.13. Let Z 2 FunS.F0=F1;W/. Define C 2 FunS.F0;W/ as
the composition

C W F0 ! F0=F1 ! W;

where the first arrow is the fibered functor including the subcategory F0 in F0=F1.
Next recall that a morphism in F0=F1 is given by a triple .f; g;X/, where f W S 0 ! S

is a morphism in S , X 2 F0.S/, and g 2 F1.S
0/ such that t .g/ D F1.f /.X/. Now

define an injection

� W obj.F1/ ,! mor.F0=F1/; .S; g/ 7! .idS ; g; t.g//:

Note that for elements .idS ; g; t.g// in the image of � the third entry in the triple is
redundant. In order to avoid simplify notation, we will use the abbreviation .idS ; g; _/
for such morphisms. The key observation we will use is that the morphisms in im.�/
and mor.F0/ generate all of mor.F0=F1/. Namely, any .f; g;X/ 2 mor.F0=F1/
can uniquely be written as

.f; g;X/ D .f; idF1.f /.X/; X/ B .idS 0 ; g;F1.f /.X// D .f; id; X/ B .id; g; _/:
The asserted isomorphism of categories is given (on objects) by

FunS.F0=F1;W/ 3 Z 7! .C;Z�/ 2 hlim.FunS.F�;W//:

Of course, we have to verify that the assignment Z� W obj.F1/ ! mor.W/ indeed
defines a natural transformation between the functors C B s and C B t W F1 ! W
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and hence an element in FunS.F1;W/.s.C /; t.C //. To see this, let f W S 0 ! S ,
X 2 F0.S/, and g W X ! Y in F1.S/. Then F D .f; id; X/ and G D .id; g; Y / are
composable and

G B F D .f;F1.f /.g/; Y / D .f; id; Y / B .id;F1.f /.g/; _/μ zF B zG:
Since Z is a functor, we have Z.G/ BZ.F / D Z.G B F / D Z. zF / BZ. zG/. Equiva-
lently, the relation

.Z�/.S; g/ B C.f; id; X/ D C.f; id; Y / B .Z�/.S 0;F1.f /.g//

holds. This equality, in turn, exactly expresses the naturality of the transformation
Z�. To see this, note that the fibration F1 ! S has discrete fibres. Hence any
morphism in F1 is of the form .f; id; g/ W .S 0;F1.f /.g//! .S; g/with f W S 0 ! S

and g 2 F1.S/. It is now easy to check that the naturality ofZ� for .f; id; g/ precisely
amounts to the previous equation with X D s.g/, Y D t .g/.

Finally, since Z is a functor, Z� respects compositions and identities as required
in the definition of the hlim. We give the argument for the composition and leave the
easier identity u.Z�/ D idC to the reader. The equality p1.Z�/ B p2.Z�/ D c.Z�/

amounts to showing that for all .S; g1/; .S; g2/ 2 obj.F1/ that are composable in the
sense that t .S; g1/ D s.S; g2/ (such elements necessarily live over the same base S )
we have

Z�p1..S; g2/; .S; g1// BZ�p2..S; g2/; .S; g1// D Z�c..S; g2/; .S; g1//
or equivalently

Z.id; g2; _/ BZ.id; g1; _/ D Z.id; g2g1; _/ D Z.id; g1; _/ BZ.id; g2; _/;
which holds since Z is a functor.

It is now easy to see how the inverse of the functor Z 7! .C;Z�/ is defined (on
objects): its inverse takes .C; �/ 2 hlim.FunS.F�;W// and builds a functor Z as
above. Using the unique factorization of a morphism .f; g;X/ 2 mor.F0=F1/, we
can extend the definition of Z to all of mor.F0=F1/ by letting

Z.f; g;X/´ C.f; id; X/ B �.S 0; g/;

where f W S 0 ! S and g 2 F1.S
0/. It remains to check that this yields a fibered

functorZ. Functoriality holds automatically on im.�/ and mor.F0/ and for a general
morphism it comes down to checking

�.S; g/ B C.f; id; X/ D C.f; id; X/ B �.S 0;F1.f /.g//

for f W S 0 ! S and g 2 F1.S/. However, as above, this is precisely the condition
that � is a natural transformation.
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It remains to prove that Z preserves cartesian morphisms. It follows readily
from the definitions that a morphism .f; g;X/ is cartesian if and only if g is an
isomorphism. Since the composition of two cartesian morphisms is cartesian, we
only have to check that for such an .f; g;X/ the morphismsC.f; id; X/ and �.S 0; g/
are cartesian. The former holds sinceC is a fibered functor and .f; id; X/ is cartesian.
The latter follows since we already know thatZ is a functorial on im.�/: this implies
that �.S 0; g/ is also invertible and thus cartesian.

The definition of the functor FunS.F0=F1;W/ ! hlim.FunS.F�;W// on mor-
phisms is easy. In both categories a morphism is a fibered natural transformation,
given by an assignment

N W obj.F0=F1/ D obj.F0/! mor.W/:

Finally, we check that the naturality condition agrees in both cases. Using the same
factorization as above, we see that N is natural when considered a transformation
between functorsZ1 andZ2 on F0=F1 if and only if the diagram expressing naturality
holds for all morphisms in mor.F0/ and im �. The condition for mor.F0/ precisely
expresses that N is a natural transformation between the functors C1 D Z1jF0

and

C2 D Z2jF0
. We claim that naturality for .id; g; _/ 2 im.�/ is equivalent to the

condition t .N / B �2 D �1 B s.N / in the definition of the hlim, where �i D Zi �. We
leave this simple verification to the reader. �

Example 7.16. There are various important special cases of this result:

(1) If W is discrete then so is FunS.V;W/ by Lemma 7.6. Therefore, the homotopy
limit is just an equalizer and we get a bijection of objects

FunS.F0=F1;W/ Š lim FunS.F0;W/
s�

��

t�
�� FunS.F1;W/ :

(2) If the simplicial presheaf F� is represented by a simplicial object G� in S then
the 2-Yoneda lemma (5) implies FunS.Fi ;W/ ' WGi

and hence

FunS.G0=G1;W/ ' hlim.WG�
/:

(3) If G� is as in (2) and W is a presheaf on S with corresponding discrete fibration
W , then (1) and (2) above lead to a bijection

FunS.G0=G1;W/ Š fw 2 W.G0/ j W.s/.w/ D W.t/.w/ 2 W.G1/g:

(4) If S has a terminal object pt and H 2 S is a monoid in S with unit pt ! H

then we can form the quotient fibration W D pt=H and get an equivalence of
categories

FunS.G0=G1; pt=H/ ' hlim..pt=H/G�
/:



38 H. Hohnhold, M. Kreck, S. Stolz and P. Teichner

Since the categories .pt=H/S have only one object, the objects of the homotopy
limit are morphisms � in the category .pt=H/G1

where the composition in

mor..pt=H/S / D S.S;H/

is given by the monoid structure onH . Moreover, the requirements on � W G1 !
H from Definition 7.14 reduce to saying that � is an (internal) homomorphism.
If �0; � 2 S.G1;H/ are two such internal homomorphisms then the result above
says that the morphisms in the category FunS.G0=G1; pt=H/ from �0 to � are in
bijective correspondence with certain ˛ W G0 ! H ,

NatS.�
0; �/ Š f˛ 2 S.G0;H/ j � � s�.˛/ D t�.˛/ � �0 2 S.G1;H/g;

where s�.˛/ D ˛ B s is multiplied ‘pointwise’ by �.

7.4. Quotients of supermanifolds and line bundles. Let us apply the above results
in some cases needed later. Consider a group action of G on M in the site S D SM
of supermanifolds, for exampleG D Diff.spt/ acting on the superpoints SPX . Then
7.16, (3), above has the following corollary, using for W the presheaf represented by
R respectively R0j1 and recalling that SM.M;R/ D C1.M/ev and SM.M;R0j1/ D
C1.M/odd.

Corollary 7.17. Functions on the quotient are invariants by the group:

FunS.M=G;R/ Š ff 2 C1.M/ev j 	�.f / D p�.f / 2 C1.M �G/evg
To obtain odd functions, we need to replace R by R0j1 in the above.

Remark 7.18. If g is the super Lie algebra of a super Lie group G with connected
underlying manifold Gred then the infinitesimal action of g on the algebra C1.M/

of functions has the same fixed point set as described in Corollary 7.17 above (where
we have to add the even and odd parts).

Let Pic ! SM be the symmetric monoidal stack of real line bundles, compare
Definition 7.21. An object in Pic is a line bundle over a supermanifold and on each
connected component, it can have superdimension 1j0 respectively 0j1. We refer to
these cases as even respectively odd line bundles. Let 1 W SM! Pic be the monoidal
unit, giving the trivial even line bundle for each S 2 SM. If M=G is a quotient
fibration over SM then we define the category of line bundles over M=G to be

FunSM.M=G;Pic/;

extending the case FunSM.M;Pic/ ' PicM . The stack Pic contains the fibred sub-
category pt=R of trivial line bundles, where R is a monoid via multiplication. Since
every line bundle is locally trivial, it follows that Pic is the stackification of pt=R. A
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functor M=G ! pt=R can be given by a homomorphism � W G ! R� because this
induces a morphism of internal categories in SM. We denote the corresponding even
line bundle on M=G by L	. For example, the trivial bundle 1 comes from the trivial
homomorphism. Again extending the non-equivariant case, we define the sections of
L	 to be

�.M=GIL	/´ NatSM.1; �/ D
n
M=G

1
��

L�

�� PicE
��

o
:

We note that both functors 1 and � take values in pt=R � Pic which, for each S 2 SM,
is the full subcategory of trivial bundles over S . Therefore, it does not matter whether
the above natural transformations have target pt=R or Pic and Example 7.16, (4), above
leads to the following computation.

Corollary 7.19. Consider a quotient fibrationM=G over SM with an even line bundle
L	 given by a homomorphism � W G ! R�. Then

�.M=GIL	/ Š ff 2 C1.M/ev j 	�.f / D p�
1 .f / � p�

2 .�/ 2 C1.M �G/evg:
To obtain odd functions, we need to replace L	 by its odd partner…L	.

7.5. Natural transformations as functors. In order to motivate twisted field theo-
ries in Section 6, we will need the following yoga. Let w0; w1 2 FunS.S;W/ be two
sections of a fibred category W! S. Then one can define the presheaf

F w0;w1 W Sop ! Set; S 7! W.w0.S/; w1.S//;

using the existence and uniqueness properties of cartesian morphisms. The following
result can be derived directly from the definitions.

Lemma 7.20. For any fibred category p W V! S, there is a natural bijection

NatS.p B w0; p B w1/ Š FunS.V;F
w0;w1/:

We shall use this lemma in the case where w0 D w1 D 1 is the monoidal unit in
a fibred monoidal category W. This is a category fibred over S together with fibred
functors

˝ W W �S W! W and 1 W S! W

and fibred natural transformations (associator etc.) that satisfy the usual properties
(pentagon etc.). In this case, the following picture describes Lemma 7.20 well if one
remembers that everything is over S:

n
V

1

��

1

�� WE
��

o
Š fV E! �1Wg:
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Here the ‘based loops’�1W signify the presheaf S 7! W.1.S/; 1.S//. For example,
if W D Pic is the category of real line bundles over SM then this is the presheaf
represented by R and we get the motivation for the definition of twisted field theories
in Section 6.

The following definition will be used in Lemmas 4.9 and 5.3.

Definition 7.21. A monoidal stack is a fibred monoidal category W! S that satisfies
the descent conditions in the monoidal sense: Both sides of (6) are by assumption
monoidal categories and we require that the natural functor is a monoidal equivalence.
It is also clear how to define a symmetric monoidal stack over S.

We note that none of this requires S to be monoidal, the definition only captures
monoidal structures along the fibres of a fibration.
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