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A note on sign conventions in link Floer homology

Sucharit Sarkar

Abstract. For knots in S3, the bi-graded hat version of knot Floer homology is defined over
Z; however, for an l-component link L in S3 with l > 1, there are 2l�1 bi-graded hat versions
of link Floer homology defined over Z; the multi-graded hat version of link Floer homology,
defined from holomorphic considerations, is only defined over F2; and there is a multi-graded
version of link Floer homology defined over Z using grid diagrams. In this short note, we try
to address this issue, by extending the F2-valued multi-graded link Floer homology theory to
2l�1 Z-valued theories. A grid diagram representing a link gives rise to a chain complex over
F2, whose homology is related to the multi-graded hat version of link Floer homology of that
link over F2. A sign refinement of the chain complex exists, and for knots, we establish that
the sign refinement does indeed correspond to the sign assignment for the hat version of the
knot Floer homology. For links, we create 2l�1 sign assignments on the grid diagrams, and
show that they are related to the 2l�1 multi-graded hat versions of link Floer homology over
Z, and one of them corresponds to the existing sign refinement of the grid chain complex.

Keywords. Sign convention, link Floer homology, grid diagram.

Mathematics Subject Classification (2010). 57M25, 57M27, 57R58.

1. Introduction

Knot Floer homology, primarily as an invariant for knots and links inside S3, was
discovered by Peter Ozsváth and Zoltán Szabó [8], and independently by Jacob Ras-
mussen [15]. Later, a related invariant for links, called link Floer homology, was
constructed by Peter Ozsváth and Zoltán Szabó [12]. However, due to certain ori-
entation issues, the link invariant was only constructed over F2, instead of Z. This
short note is the author’s effort to understand the orientation issues that are known,
and to resolve some of the issues that are unknown.

Let us describe the algebraic structure of knot Floer homology in the simplest case,
as described in [8]. Let K be a null-homologous knot in #l�1.S1 � S2/. Then there
are 2l�1 bi-graded chain complexes over Z, such that they all give rise to the same
complex when tensored with F2. The two gradings are called Maslov grading M and
Alexander grading A. The boundary maps preserve the Alexander grading, but lower
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the Maslov grading by one. Therefore, the Maslov grading acts as the homological
grading while the Alexander grading acts as an extra filtration. The homology of the
chain complexes is called hat version of the knot Floer homology. Therefore, we
get an F2-valued bi-graded hat version of knot Floer homology and 2l�1 Z-valued
bi-graded hat versions of knot Floer homology.

The reason for working with null-homologous knots in connected sums of S1�S2

is very simple. We want to work with links in S3. However, a link with l components
in S3 very naturally gives rise to a null-homologous knot in #l�1.S1 � S2/, see [8].
Therefore, what we have is the following. Given a link L � S3, with l components,
and after making certain auxiliary choices, we get 2l�1 bi-graded chain complexes
over Z, henceforth denoted by bCFK.L; Z; o/, where o, called an orientation system,
takes values in an indexing set of 2l�1 elements, and records which of the 2l�1 chain
complexes is the one under consideration. All of the 2l�1 chain complexes give
rise the same bi-graded chain complex over F2, bCFK.L; F2/ D bCFK.L; Z; o/˝ F2.
The reader should be warned that these bi-graded chain complexes, bCFK.L; Z; o/

and bCFK.L; F2/, are not link-invariants (they might depend on the auxiliary choices
that we did not specify, but simply alluded to), but their homologies are link invari-
ants. Therefore, we get one F2-valued bi-graded hat version of knot Floer homology
bHFK.L; F2/ D H�. bCFK.L; F2//, and 2l�1 Z-valued bi-graded hat versions of knot

Floer homology bHFK.L; Z; o/ D H�. bCFK.L; Z; o//. We often let bHFK.L; Z/ de-
note any one of the 2l�1 versions, or a canonical one, namely the one coming from
the canonical choice of orientation systems in [9]. However, to decide which of the
2l�1 groups bHFK.L; Z; o/ is the canonical one, one needs to understand some of the
other versions of link Floer homology, most notably the infinity version. This seems
to be a harder problem, for reasons that we will discuss shortly.

In [12], the story for links is treated in a slightly different light, and a new definition
of link Floer homology is given. Given a link L with l components in S3, modulo
certain choices, a chain complex bCFL.L; F2/ over F2 is constructed. The chain
complex carries .l C 1/ gradings: a single Maslov grading M , which is lowered by
one by the boundary map, and l Alexander gradings A1; A2; : : : ; Al , one for each
link component, each of which is preserved by the boundary map. The homology of
the chain complex bHFL.L; F2/ D H�. bCFL.L; F2// is an F2-valued .l C 1/-graded
homology theory, called link Floer homology, and it is a link invariant. These two
definitions, a priori, are different. Therefore, we have been careful throughout; we
have called the definition from [8] the knot Floer homology (even when talking about
links), and denoted it by bHFK, and we have called the definition from [12] the link
Floer homology, and denoted it by bHFL. However, by a miraculous coincidence, it
turns out that if we condense the l Alexander gradings in bHFL.L; F2/ into one single
Alexander grading A D P

i Ai , then the resulting F2-valued bi-graded homology
group is isomorphic to bHFK.L; F2/.

In this note, we will complete the picture by constructing 2l�1 Z-valued chain
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complexes, bCFL.L; Z; o/, each carrying a Maslov grading M , and l Alexander grad-
ings A1; A2; : : : ; Al , such that the homologies bHFL.L; Z; o/ D H�. bCFL.L; Z; o//

are link invariants, and on condensing the l Alexander gradings into one Alexan-
der grading A D P

i Ai , we get the 2l�1 Z-valued bi-graded homology groups
bHFK.L; Z; o/.

A similar story (except possibly the last bit of coincidence) holds for the other
versions of link Floer homologies, most notably the minus, plus and infinity versions;
however, the holomorphic considerations and the orientation issues are significantly
more subtle. In particular, we will encounter boundary degenerations, and we will
have to orient the relevant moduli spaces in a consistent fashion. We plan to address
this problem in future work. Understanding the orientation issues for all versions of
link Floer homology will help us understand which of the 2l�1 link Floer homology
groups is the canonical one and whether it has some sort of a useful characterization.

For the second part of the discourse, we concentrate on the computational aspects
of the theory. Ever since knot Floer homology saw the light of day [8], [15], [12], and
some of its immense strengths were discovered [7], [13], [5], people were interested
in algorithms to compute it. There have been several recent developments towards
computing various versions of link Floer homology for links in S3 [3], [16], [14], [6].
We choose to concentrate on the algorithm from [3]: the link L in S3 is represented
by a toroidal grid diagram G, such that the i th component is represented by mi vertical
line segments and mi horizontal line segments; an F2-valued .l C 1/-graded chain
complex C.G/ is constructed such that its homology H�.C.G// is isomorphic to
bHFL.L; F2/˝i .˝mi �1.F2˚F2//, where, in the .F2˚F2/ that is tensored with itself
.mi �1/ times, for one of the generators, all the .lC1/ gradings are zero, and for the
other generator, the Maslov grading M D �1, and the Alexander grading Aj D �ıij .

Very shortly thereafter, [4] assigned signs of˙1 to each of the boundary maps in
the chain complex C.G/ in a well defined way, such that it remains a chain complex
and its homology (over Z) is isomorphic to bHFG.L; Z/ ˝i .˝mi �1.Z ˚ Z//, for
some .l C 1/-graded group bHFG.L; Z/, which is a link invariant. A very natural
question that arises is whether the new homology group bHFG.L; Z/ is isomorphic
to bHFL.L; Z; o/ for some o. We establish that the answer is in the affirmative, and
indeed, we construct 2l�1�1 other sign assignments on the boundary maps of C.G/,
such that the homologies of these 2l�1 sign refined grid chain complexes correspond
precisely to the 2l�1 Z-valued .l C 1/-graded homology groups bHFL.L; Z/. Once
again, it is an interesting question whether bHFG.L; Z/ is isomorphic to the canonical
bHFL.L; Z/, and once again, we are unable to answer it with our present methods. It
is also an interesting endeavor to find two l-component links L1 and L2, such that
bCFL.L1; F2/ is isomorphic to bCFL.L2; F2/ as .l C 1/-graded F2-modules, there is
a bijection between the set of 2l�1 groups bCFK.L1; Z/ and the set of 2l�1 groups
bCFK.L2; Z/ such that the corresponding groups are isomorphic as bi-graded Z-

modules, bHFG.L1; Z/ is isomorphic to bHFG.L2; Z/ as .l C 1/-graded Z-modules,
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but there is no bijection between the set of 2l�1 groups bHFL.L1; Z/ and the set
of 2l�1 groups bHFL.L2; Z/ such that the corresponding groups are isomorphic as
.l C 1/-graded Z-modules.

This is a rather short paper. We expect the reader to be already familiar with most
of [4], [8], [12]. Despite trying our level best to be as self-contained as possible, we
will still be rather fast in our exposition.

Acknowledgment. The work was done when the author was supported by the Clay
Research Fellowship. He would like to thank Robert Lipshitz, Peter Ozsváth and
Zoltán Szabó for several helpful discussions. He would also like to thank the referee
for providing useful comments and for pointing out the errors.

2. Floer homology

For the first part of the section, in the following few numbered paragraphs, we will
briefly review the basics of Heegaard Floer homology. The interested reader is re-
ferred to [10], [9] for more details.

2.1. A Heegaard diagram is an object H D .†g ; ˛1; : : : ; ˛gCk�1; ˇ1; : : : ; ˇgCk�1;

X1; : : : ; Xk; O1; : : : ; Ok/, where: †g is a Riemann surface of genus g; ˛ D .˛1; : : : ;

˛gCk�1/ is .g C k � 1/-tuple of disjoint simple closed curves such that †g n ˛ has
k components; ˇ D .ˇ1; : : : ; ˇgCk�1/ is .gC k � 1/-tuple of disjoint simple closed
curves such that †g nˇ has k components; the ˛ circles are transverse to the ˇ circles;
X D .X1; : : : ; Xk/ is a k-tuple of points such that each component of †g n ˛ has an
X marking, and each component of †g n ˇ has an X marking; O D .O1; : : : ; Ok/

is a k-tuple of points such that each component of †g n ˛ has an O marking, and
each component of †g n ˇ has an O marking; and the diagram is assumed to be
admissible, which is a technical condition that we will describe later.

2.2. A Heegaard diagram represents an oriented link L inside a three-manifold Y

in the following way: the pair .†g ; ˛/ represents genus g handlebody U˛; the pair
.†g ; ˇ/ represents genus g handlebody Uˇ ; the ambient three-manifold Y is obtained
by gluing U˛ to Uˇ along †g ; the X markings are joined to the O markings by k

simple oriented arcs in the complement of the ˛ circles, and the interiors of the k

arcs are pushed slightly inside the handlebody U˛; the O markings are joined to the
X markings by k simple oriented arcs in the complement of the ˇ circles, and the
interiors of the k arcs are pushed slightly inside the handlebody Uˇ ; the union of these
2k oriented arcs is the oriented link L. Let the link have l components, and let 2mi

be the number of arcs that represent Li , the i th component of the link L. Therefore,
k DP

i mi � l . In [12], the case k D l is studied, and in [8], the subcase k D l D 1

is dealt with. We will always assume that Li is null-homologous in Y , for each i .
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2.3. Consider .g C k � 1/-tuples of points x D .x1; : : : ; xgCk�1/, such that each
˛ circle contains some xi , and each ˇ circle contains some xj . To each such tuple
x, we can associate a SpinC structure sx on the ambient three-manifold Y . In all
the three-manifolds that we will consider, we will be interested in a canonical torsion
SpinC structure. In particular, for Y D #nS1�S2, we will be interested in the unique
torsion SpinC structure. A generator is a .g C k � 1/-tuple x of the type described
above, such that sx is the canonical SpinC structure. The set of all generators in a
Heegaard diagram H is denoted by GH . An elementary domain is a component of
†g n .˛ [ ˇ/. A domain D joining a generator x to a generator y, is a 2-chain
generated by elementary domains such that @.@Dj˛/ D y�x. The set of all domains
joining x to y is denoted by D.x; y/. A periodic domain P is a 2-chain generated
by elementary domains such that @.@P j˛/ D 0. The set of periodic domains is
denoted by PH , and there is a natural bijection between PH and D.x; x/ for any
generator x. If D is a domain, and if p is a point lying in an elementary domain,
then np.D/ denotes the coefficient of the 2-chain D at that elementary domain. Let
nX .D/ D P

i nXi
.D/ and nO.D/ D P

nOi
.D/. Furthermore, let nX;i .D/ denote

the sum of nXj
.D/ for all the Xj markings that lie in Li , and let nO;i .D/ denote the

sum of nOj
.D/ for all the Oj markings that lie in Li . A domain is said to be non-

negative if it has non-negative coefficients in every elementary domain. A domain D

is said to be empty if nXi
.D/ D nOi

.D/ D 0 for all i . A Heegaard diagram is called
admissible if there are no non-negative, non-trivial empty periodic domains. The set
of all empty domains in D.x; y/ is denoted by D0.x; y/, and the set of all empty
periodic domains is denoted by P 0

H
. The set P 0

H
forms a free abelian group of rank

b1.Y /C l � 1.

2.4. Every domain D has an integer valued Maslov index �.D/ associated to it,
which satisfies certain properties that we will mention as we need them. In all the
Heegaard diagrams that we will consider, the following additional restrictions will
hold: if P 2 D.x; x/, then �.P / D 2nO.P / and, since Li is null-homologous in Y ,
nX;i .P / D nO;i .P / for all i . This allows us to define .lC1/ relative gradings. Given
two generators x; y, choose a domain D 2 D.x; y/ (since sx D sy , the set D.x; y/

is non-empty), and let the relative Maslov grading M.x; y/ D �.D/ � 2nO.D/,
and let the relative Alexander grading Ai .x; y/ D nX;i .D/ � nO;i .D/. In certain
situations, with certain additional hypotheses, these gradings can be lifted to absolute
gradings. However, for convenience, we will not work with absolute gradings right
away. Therefore, until Lemma 2.8, whenever we talk about the Maslov grading M ,
or the Alexander grading Ai , we mean some affine lift of the corresponding relative
grading, which is only well-defined up to a translation by Z. Let Qi D Z˚ Z be
the .l C 1/-graded group, with the two generators lying in gradings .0; 0; : : : ; 0/ and
.�1;�ıi1; : : : ;�ıil/, where ı is the Kronecker delta function.

2.5. For the analytical aspects of the theory, which we are about to describe now,
the reader is strongly advised to read Section 3 of [10]. Let SymgCk�1.†g/ be
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.gC k � 1/-fold symmetric product, and let Js be a path of nearly symmetric almost
complex structures on it, obtained as a small perturbation of the constant path of
nearly symmetric almost complex structure SymgCk�1.j/, where j is a fixed complex
structure on †g , such that Js achieves certain transversality that we will describe
later. The subspaces T˛ D ˛1 � � � � � ˛gCk�1 and Tˇ D ˇ1 � � � � � ˇgCk�1 are two
totally real tori. Notice that GH is in a natural bijection with a subset of T˛\Tˇ . Fix
p > 2. Given a domain D 2 D.x; y/, let B.D/ be the space of all L

p
1 maps u from

Œ0; 1��R � C to SymgCk�1.†g/, such that: u maps f0g �R to T˛; u maps f1g �R
to Tˇ ; limt!1 u.s C i t/ D x with a certain pre-determined asymptotic behavior;
limt!�1 u.sC i t/ D y with a certain pre-determined asymptotic behavior; for any
point p in any elementary domain, the algebraic intersection number between u and
fpg � SymgCk�2.†g/ is np.D/, or, as it is colloquially stated, the domain D is the
shadow of u. Ozsváth and Szabó define a vector bundle L over B.D/, and a section
� of that bundle depending on Js , such that the linearization of the section Du� is
a Fredholm operator for every u 2 B.D/. The transversality of the path Js that
we mentioned earlier, simply means that the Fredholm section � is transverse to the
0-section of L. The intersection of � and the 0-section is denoted by MJs

.D/, and
it consists precisely of the Js-holomorphic maps. There is an R action on MJs

.D/

coming from the R action on Œ0; 1� � R, and the unparametrized moduli space is
denoted by bMJs

.D/ D MJs
.D/=R. The virtual index bundle of the linearization

map Du gives an element of the K-theory of B.D/. Its dimension is the expected
dimension of the moduli space MJs

.D/, and this dimension is in fact the Maslov
index �.D/, that we had mentioned earlier. The determinant line bundle of the index
bundle, henceforth denoted by det.D/, turns out to be a trivializable line bundle over
B.D/. Therefore, a choice of a nowhere vanishing section on the trivializable line
bundle det.D/, produces an orientation of the moduli space MJs

.D/, and hence an
orientation of the unparametrized moduli space bMJs

.D/.

2.6. If D1 2 D.x; y/ and D2 2 D.y; z/ are domains, then the 2-chain D1 CD2

lies in �2.x; z/. The asymptotic behaviors that we had mentioned earlier, along
with some globally pre-determined choices, allows us to get a pre-gluing map from
B.D1/�B.D2/ to B.D1CD2/. The pullback of the line bundle det.D1CD2/ over
B.D1 CD2/ can be canonically identified with the line bundle det.D1/ ^ det.D2/

over B.D1/ � B.D2/ by linearized gluing. An orientation system o is a choice
of a nowhere vanishing section o.D/ of the line bundle det.D/ for every domain
D 2 D.x; y/, and for every pair of generators x; y 2 GH , such that if D1 2 D.x; y/

and D2 2 D.y; z/, then o.D1/^ o.D2/ D o.D1CD2/. Therefore, two orientation
systems o1 and o2 disagree on D1 CD2 if and only if they disagree on exactly one
of the two domains D1 and D2.

2.7. The following describes a method to find all possible orientation systems. Fix a
generator x 2 GH , and for every other generator y, choose a domain Dy 2 D.x; y/.
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Then choose a set of periodic domains P1; : : : ; Pm, which freely generate PH . Orient
the determinant line bundles over the domains Dy and Pj arbitrarily. Since any
domain D 2 D.y; z/ can be written uniquely as D D P

j aj Pj C Dz � Dy ,
this choice uniquely specifies an orientation system. Thus, an orientation system
is specified by its values on certain domains Dy and certain periodic domains Pj .
This allows us to define a chain complex over Z, and it will turn out that the gauge
equivalence class of the sign assignment on the chain complex is independent of the
orientations of the line bundles det.Dy/. Therefore, declare two orientations systems
to be strongly equivalent if they agree on all the periodic domains in PH (or in other
words, they agree on all the periodic domains P1; : : : ; Pm). There is a second notion
of equivalence, which is of some importance to us, whereby two orientation systems
are declared to be weakly equivalent if they agree on all the periodic domains in P 0

H
.

Let yOH denote the set of weak equivalence classes of orientation systems. Then yOH

is a torseur over Hom.P 0
H

; Z=2Z/, so there are exactly 2b1.Y /Cl�1 weak equivalence
classes of orientation systems.

If D 2 D.x; y/ is a domain, its unparametrized moduli space bMJs
.D/ is a

compact, .�.D/ � 1/-dimensional manifold with corners by Gromov compactness
and the fact that Js achieves transversality; an orientation system o determines an
orientation on bMJs

.D/. Therefore, if �.D/ D 1, then bMJs
.D/ is a compact oriented

zero-dimensional manifold with corners, or in other words, it is a finite number of
signed points. Let c.D/ be the total number of points, counted with sign. The
cornerstone of Floer homology in the present setting, is the following lemma.

Lemma 2.1 ([10]). If D 2 D.x; y/ is a domain with �.D/ D 2, then bMJs
.D/

is an oriented one-dimensional manifold. Furthermore, if D D D1 C D2, where
D1 2 D.x; z/ and D2 2 D.z; y/, with �.D1/ D 1 and �.D2/ D 1, then the total
number of points in the boundary of bMJs

.D/ that correspond to a decomposition of
D as D1 CD2, when counted with signs induced from the orientation of bMJs

.D/,
equals c.D1/c.D2/.

An immediate corollary is the following: if all the points in the boundary of
bMJs

.D/ correspond to such a decomposition – in other words, if bubbling and
boundary degenerations can be ruled out – then the sum

P
c.D1/c.D2/ over all such

possible decompositions is zero. This allows us to define the following .lC1/-graded
chain complex over Z. This is a well-known chain complex, and it was first defined
by Ozsváth and Szabó for k D 1. However, for a general value of k, the chain
complex was originally not defined over Z. There are certain subtleties that need
to be resolved before the minus version can be defined over Z, namely, we have
to orient the boundary degenerations in a consistent manner such that the proofs of
Theorems 2.4, 2.5 and 2.7 go through; however, those issues do not appear when we
work only in the hat version.
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Definition 2.2. Given an admissible Heegaard diagram H for L and an orientation
system o 2 yOH , let bCFLH .L; Z; o/ be the chain complex freely generated over Z
by the elements of GH , with the .l C 1/ gradings given by M; A1; : : : ; Al , and the
boundary map given by @x DP

y2GH

P
D2D0.x;y/;�.D/D1 c.D/y.

Lemma 2.3. The map @ on bCFLH .L; Z; o/ reduces the Maslov grading by 1, keeps
all Alexander gradings fixed, and satisfies @2 D 0.

Proof. The claims regarding the gradings follow directly from the definitions. To
prove that @2 D 0, by Lemma 2.1, we only need to show that for any empty Maslov
index 2 domain D, the boundary points of bM.D/ do not correspond to bubbling or
boundary degenerations. However, the shadow of a bubble or a boundary degen-
eration is a 2-chain in the Heegaard diagram, whose boundary lies entirely within
the ˛ circles, or entirely within the ˇ circles. Any such 2-chain must have non-zero
coefficient at some X marking, and therefore by positivity of domains, the original
domain must also have non-zero coefficient at that X marking, and therefore, could
not have been empty.

Even though we did not specify in the notations, bCFLH .L; Z; o/ might also
depend on the path of almost complex structures Js on SymgCk�1.†g/. However,
the homology H�. bCFLH .L; Z; o//, as an .lC1/-graded object, depends only on the
link L, the numbers of X markings, mi , that lie on the i th link component for each i ,
and the weak equivalence class of the orientation system o.

Theorem 2.4. For a fixed Heegaard diagram H and a fixed path of almost com-
plex structures Js , if o1 and o2 are weakly equivalent, then the two chain complexes
bCFLH .L; Z; o1/ and bCFLH .L; Z; o2/ are isomorphic. If H1 and H2 are two differ-
ent Heegaard diagrams for the same link L, such that in both H1 and H2, the i th link
component Li is represented by mi X markings and mi O markings, and if Js;1 and
Js;2 are two paths of almost complex structures on the two symmetric products, then
there is a bijection f between yOH1

and yOH2
, such that for every o 2 yOH1

, the homol-
ogy H�. bCFLH1

.L; Z; o// is isomorphic to the homology H�. bCFLH2
.L; Z; f .o///,

as .l C 1/-graded groups.

Proof. This is neither a new type of a theorem, nor a new idea of a proof. For the
first part, let o1 and o2 be two weakly equivalent orientation systems. We are going
to define a map t W GH ! f˙1g in the following way. Call two generators x and
y to be connected if there is an empty domain D 2 D0.x; y/. For each connected
component of GH , choose a generator x in that connected component, and declare
t.x/ D 1. For every other generator y in that connected component, choose an empty
domain Dy 2 D0.x; y/, and declare t.y/ D 1 if o1.Dy/ agrees with o2.Dy/, and
t.y/ D �1 otherwise. Since o1 and o2 agree on all the empty periodic domains,
t is a well-defined function. Furthermore, for any empty Maslov index 1 domain
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D 2 D0.x; y/, the contribution co1
.D/ coming from o1 is related to the contribution

co2
.D/ coming from o2 by the equation co1

.D/ D t.x/t.y/co2
.D/. That shows that

the two chain complexes are isomorphic via the map x 7! t.x/x.
For the second part of the theorem, recall the well known fact that if two Heegaard

diagrams H1 and H2 represent the same link L, such that each component of the link
has the same number of X and O markings in both the Heegaard diagrams, then
they can be related to one another by a sequence of isotopies, handleslides, and
stabilizations. This essentially follows from Proposition 7.1 in [10] and Lemma 2.4
in [3]. However, during the isotopies, we do not require the ˛ circles to remain
transverse to the ˇ circles. Therefore, we can assume that H1 and H2 are related
by one of the following elementary moves: changing the path of almost complex
structures Js by an isotopy Js;t ; a stabilization in a neighborhood of a marked point;
a sequence of isotopies and handleslides of the ˛ circles in the complement of the
marked points; or a sequence of isotopies and handleslides of the ˇ circles in the
complement of the marked points.

For the case of a stabilization, or an isotopy of the path of almost complex struc-
tures, there is a natural identification between P 0

H1
and P 0

H2
, and a natural identifica-

tion of the determinant line bundles over the corresponding empty periodic domains.
Since a weak equivalence class of an orientation system is determined by its values
on the empty periodic domains, this produces a natural identification between yOH1

and yOH2
. The proof that the two homologies are isomorphic for the corresponding

orientation systems is immediate for the case of a stabilization, and follows from the
usual arguments of [10] for the other cases. We do not encounter any new problems,
since boundary degenerations are still ruled out by the marked points.

For the remaining cases, namely, the case of isotopies and handleslides of ˛ circles
or ˇ circles, the isomorphism is established by counting holomorphic triangles. Let
us assume that the ˛ circles are changed to the � circles by a sequence of isotopies and
handleslides in the complement of the marked points. Out of the 2gCk�1 weak equiv-
alence classes of orientation systems in the Heegaard diagram H3 D .†; �; ˛; z; w/,
there is a unique one o3, for which the homology of H3 is torsion-free. Each empty
periodic domain in H2 can be written uniquely as a sum of empty periodic domains
in H1 and H3. Therefore, we have a natural bijection between yOH1

and yOH2
: given

an orientation system o 2 yOH1
, we can patch it with o3, to get an orientation system

f .o/ 2 yOH2
. The triangle map, evaluated on the top generator of the homology

of H3, provides the required isomorphism between the homology of H1 and the
homology of H2, for the corresponding orientation systems. The same proof from
[10] goes through without any problems since we do not encounter any boundary
degenerations.

Let Åm D .m1; : : : ; ml/. The above theorem shows that H�. bCFLH .L; Z; o// is an
invariant of the link L inside the three-manifold, a choice of a weak equivalence class
of an orientation system o, and the vector Åm. Let us henceforth denote the homology
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as bHFL Åm.L; Z; o/. We now investigate the dependence of bHFL Åm.L; Z; o/ on Åm.

Theorem 2.5. Let H be a Heegaard diagram for a link L, where the i th component Li

is represented by mi X markings and mi O markings, and let H 0 be a Heegaard dia-
gram for the same link, where Li is represented by m0

i D .miCıi0i / X markings and

m0
i O markings, for some fixed i0. Then there is a bijection f between yOH and yOH 0

such that for every weak equivalence class of orientation system o, bHFL Åm0.L; Z; o/

is isomorphic to bHFL Åm.L; Z; f .o//˝Qi0 as .l C 1/-graded groups.

Proof. Consider the Riemann sphere S with one ˛ circle and one ˇ circle, intersecting
each other at two points p and q. Put two X markings, one O marking and one W

marking, one in each of the four elementary domains of S n .˛ [ ˇ/, such that the
boundary of either of the two elementary domains that contain an X marking runs
from p to q along the ˛ circle, and from q to p along the ˇ circle. Remove a small
disk in the neighborhood of the point W . In the Heegaard diagram H , choose an X

marking that lies in Li0 , and remove a small disk in the neighborhood of that point.
Then connect the diagram H to the sphere S via the ‘neck’ S1 � Œ0; T � to get a new
Heegaard diagram for the same link, where Li is represented by m0

i X markings,
and m0

i O markings. This process is shown in Figure 2.1. By Theorem 2.4, we can
assume that the new Heegaard diagram is H 0. There is a natural correspondence
between P 0

H
and P 0

H 0 , and this induces the bijection f between yOH , and yOH 0 .

X

X

X

O

p

q

˛
ˇ

Figure 2.1. The Heegaard diagrams H and H 0.

Fix o 2 yOH . As .lC1/-graded groups, bCFLH 0.L; Z; o/ D bCFLH .L; Z; f .o//˝
.Z ˚ Z/, where one Z corresponds to all the generators that contain the point p,
and has .M; A1; : : : ; Al/ multi-grading .0; 0; : : : ; 0/, and the other Z corresponds to
all the generators that contain the point q, and has .M; A1; : : : ; Al/ multi-grading
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.�1;�ıi01; : : : ;�ıi0l/. We simply need to show that the same identity holds as chain
complexes. For this, it is enough to show that there are no boundary maps from the
generators that contain the point p to the generators that contain the point q.

Following the arguments from [12], we extend the “neck length” T , and move
the point W close to the ˛ circle in S . After choosing T sufficiently large and W

sufficiently close to the ˛ circle, if there is an empty positive Maslov index 1 domain
D, joining a generator containing p to a generator containing q, such that c.D/ ¤ 0,
then D must correspond to a positive, Maslov index 2 domain in H that avoids all the
O markings and whose boundary lies entirely on the ˛ circles. However, any non-
trivial domain in H whose boundary lies entirely on the ˛ circles must have non-zero
coefficients at some O marking, thus producing a contradiction, and thereby finishing
the proof.

Henceforth, denote bHFL.1;:::;1/.L; Z; o/ by bHFL.L; Z; o/. Theorems 2.4 and 2.5
imply:

Theorem 2.6. Let H be a Heegaard diagram for a link L � S3 with l components,
such that the i th component Li is represented by exactly mi X markings, and exactly
mi O markings. Then the 2l�1 homology groups bHFL Åm.L; Z; o/ are isomorphic to
the 2l�1 groups bHFL.L; Z; o/˝i .˝mi �1Qi /.

We are almost done with the construction that we had set out to do. Given a
link L � S3 with l components, we have produced 2l�1 Z-valued .l C 1/-graded
homology groups bHFL.L; Z; o/. We would like to finish this section by showing that
when we combine the l Alexander gradings into one, then we get the 2l�1 Z-valued
bi-graded homology groups bHFK.L; Z; o/. Recall that the groups bHFK.L; Z; o/ are
constructed by viewing the link L � Y as a knot in Y #l�1.S1�S2/, and then looking
at the knot Floer homology. Therefore, the following lemma is all that we need.

Theorem 2.7. Let H be a Heegaard diagram for a link L � Y with .l C 1/ compo-
nents, such that each component is represented by one X and one O marking. Let zL
be the link with l components in Y #.S1 � S2/, whose l th component zLl is obtained
by connect summing LlC1 and Ll through the one-handle, and let zH be a Heegaard
diagram for zL, where zLi is represented by .1 C ıil / X markings and .1 C ıil/ O

markings. Then, there is a bijection f between yOH and yO zH
, such that for all o 2 yOH ,

H�. bCFL zH
.zL; Z; f .o/// D bHFL.L; Z; o/˝Ql as .lC1/-graded groups, where the

.l C 1/ gradings on the left hand side are .M; A1; : : : ; Al�1; Al C AlC1/.

Proof. This proof is very similar to the proof of Theorem 2.5. Once more, consider
the Riemann sphere S with one ˛ circle and one ˇ circle, intersecting each other at
two points p and q. Put two X markings and two W marking, one in each of the
four elementary domains of S n .˛ [ ˇ/, such that the boundary of either of the two
elementary domains that contain an X marking runs from p to q along the ˛ circle,
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and from q to p along the ˇ circle. Remove two small disks in the neighborhoods
of the W markings. In the Heegaard diagram H , remove two small disks in the
neighborhoods of the two X markings that lie in Ll and LlC1. Then connect H to
the sphere S via the two “necks”, S1�Œ0; T1� and S1�Œ0; T2�, as shown in Figure 2.2.
The resulting picture is a Heegaard diagram for the link zL � Y #.S1�S2/, where the
i th component zLi is represented by .1C ıil/ X markings and .1C ıil/ O markings.
By the virtue of Theorem 2.4, we can assume that this Heegaard diagram is zH .

XX

X

X

p

q

˛
ˇ

Figure 2.2. The Heegaard diagrams H and zH .

An empty periodic domain in H gives rise to an empty periodic domain in zH . In
the other direction, an empty periodic domain in zH gives rise to a periodic domain in
H which does not pass through any of the O markings. Since each component of the
link L is null-homologous in Y , such a periodic domain is an empty periodic domain.
Therefore, there is a natural correspondance between the empty periodic domains of
H and zH , and this induces the bijection f between yOH and yO zH

.

Fix o 2 yOH . It is immediate that as .lC1/-graded groups, bCFL zH
.zL; Z; f .o// D

bCFLH .L; Z; o/˝Ql . However, quite like the case of Theorem 2.5, for sufficiently
large “neck lengths” T1 and T2, and with the two W markings sufficiently close to
the ˛ circle on S , the above identity holds even as chain complexes.

Before we conclude this section, a note regarding absolute gradings is due. So
far, we have worked with relative Maslov grading and relative Alexander gradings.
However, for links in S3, and for links in #m.S1 � S2/ that we obtain from links
in S3 by the connect sum process described in Theorem 2.7, there is a well defined
way to lift these gradings to absolute gradings, as defined in Theorem 7.1 in [11],
Subsections 3.3 and 3.4 in [8] and Lemma 4.6 and Equation 24 in [12]. Since this
is an oft-studied scenario, for such links, let us improve the earlier theorems, and
henceforth work with absolute gradings.
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Lemma 2.8. For links in #m.S1 � S2/ that come from links in S3 by the connect
sum operation as described in Theorem 2.7, the isomorphisms in Theorems 2.4, 2.5,
2.6 and 2.7 preserve the absolute gradings.

Proof. Recall that the isomorphisms in question come from chain maps that preserve
the relative gradings. Therefore, each such chain map must shift each absolute grading
by a fixed integer on the entire chain complex. We want to show that each of these
shifts is zero.

Since the absolute gradings are defined on the generators themselves, this shift
is unchanged if instead of working over Z, we tensor everything with F2 and work
over F2. However, since the Heegaard Floer homology of #m.S1 �S2/ is non-trivial
over F2, in each case, the homology of the entire chain complex is non-trivial over
F2. Furthermore, the maps induced on the homology over F2 preserve the absolute
gradings [11], [8], [12]. Therefore, all the shifts are zero, and each of the chain maps
preserves all the gradings.

3. Grid diagrams

A planar grid diagram of index N is the square S D Œ0; N � � Œ0; N � � R2, with the
following additional structures: if 1 � i � N , the horizontal line y D .i � 1/ is
called ˛i , the i th ˛ arc, and the vertical line x D .i�1/ is called ˇi , the i th ˇ arc; there
are 2N markings, denoted by X1; : : : ; XN ; O1; : : : ; ON , such that each component
of S n .

S
i ˛i / contains one X marking and one O marking, and each component of

S n .
S

i ˇi / contains one X marking and one O marking.
A toroidal grid diagram of index N is obtained from a planar grid diagram of the

same index by identifying the opposite sides of the square S to form a torus T . A
careful reader will immediately observe that this creates a Heegaard diagram H for
some link L in S3, and for the rest of the section, we will work with this Heegaard
diagram. The ˛ arcs and the ˇ arcs become full circles, and they are the ˛ circles and
the ˇ circles respectively; the N components of T n .

S
i ˛i / are called the horizontal

annuli, and each of them contains one X marking and one O marking; the horizontal
annulus with ˛i as the circle on the bottom is called the i th horizontal annulus, and is
denoted by Hi ; the N components of T n .

S
i ˇi / are called the vertical annuli, and

each of them also contains one X marking and one O marking; the vertical annulus
with ˇi as the circle on the left is called the i th vertical annulus, and is denoted by
Vi ; the N 2 components of T nS

i .˛i [ ˇi / are the elementary domains. Therefore,
the link L that the toroidal grid diagram represents, can be obtained in the following
way. We assume that the toroidal grid diagram comes from a planar grid diagram on
the square S . Then in each component of S n .

S
i ˛i /, we join the X marking to the

O marking by an embedded arc, and in each component of S n .
S

i ˇi /, we join the
O marking to the X marking by an embedded arc, and at every crossing, we declare
the arc that joins O to X to be the overpass. Henceforth, we also assume that the link
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L has l components, and the i th component Li is represented by mi X markings and
mi O markings, and

P
i mi D N .

There is only one SpinC structure, so generators in GH correspond to the per-
mutations in SN as follows: a generator x D .x1; : : : ; xN / 2 GH comes from the
permutation � 2 Sn, where xi D ˛i \ ˇ�.i/ for each 1 � i � N . The N points
x1; : : : ; xN are called the coordinates of the generator x.

Let j be the complex structure on T induced from the standard complex structure
on S � C, and let Js be the constant path of almost complex structure SymN .j/ on
SymN .T /. After a slight perturbation of the ˛ and the ˇ circles, we can ensure that
Js achieves transversality for all domains up to Maslov index two, see Lemma 3.10
in [2]. Henceforth, we work with these perturbed ˛ and ˇ circles and this path of
nearly symmetric almost complex structure.

Consider the 2l�1 chain complexes bCFLH .L; Z; o/. The boundary maps in each
of the chain complexes correspond to objects called rectangles. A rectangle R joining
a generator x to a generator y is a 2-chain generated by the elementary domains of
H , such that the following conditions are satisfied: R only has coefficients 0 and 1;
the closure of the union of the elementary domains where R has coefficient 1 is a
disk embedded in T with four corners, or in other words, it looks like a rectangle;
the top-right corner and the bottom-left corner of R are coordinates of x; the top-left
corner and the bottom-right corner of R are coordinates of y; the generators x and
y share .N � 2/ coordinates; and R does not contain any coordinates of x or any
coordinates of y in its interior. It is easy to check that the rectangles are precisely the
positive Maslov index one domains. We denote the set of all rectangles joining x to
y by R.x; y/ � D.x; y/. The set R.x; y/ is empty unless x and y differ in exactly
two coordinates, and even then, jR.x; y/j � 2.

Lemma 3.1 (Theorem 1.1 in [3]). If D 2 D.x; y/ is a domain with �.D/ � 0, then
the unparametrized moduli space bMJs

.D/ is empty. If D 2 D.x; y/ is a Maslov
index one domain such that bMJs

.D/ is non-empty, then D is a rectangle. Conversely,
if R 2 R.x; y/ is a rectangle, then bMJs

.R/ consists of exactly one point, and hence
jc.R/j D 1.

If D 2 D.x; y/, we say that D can be decomposed as a sum of two rectangles
if there exists a generator z 2 GH and rectangles R1 2 R.x; z/ and R2 2 R.z; y/

such that D D R1CR2. It is easy to check that the domains that can be decomposed
as sum of two rectangles are precisely the positive Maslov index two domains. For
any generator x 2 GT , there are exactly 2N Maslov index two positive domains in
D.x; x/, namely the ones coming from the horizontal annuli H1; : : : ; HN and the
vertical annuli V1; : : : ; VN .

Lemma 3.2. If D 2 D.x; y/ is a Maslov index two domain such that bMJs
.D/ is

non-empty, then D can be decomposed as a sum of two rectangles. Conversely, if
D 2 D.x; y/ can be decomposed as a sum of two rectangles, then bMJs

.D/ is a
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compact 1-dimensional manifold with exactly two endpoints. Furthermore, if x D y

(i.e. if D comes from a horizontal or a vertical annulus), then one of the endpoints
corresponds to the unique way of decomposing D as a sum of two rectangles, while
the other endpoint corresponds to an ˛ or a ˇ boundary degeneration; and if x ¤ y,
then D can be decomposed as a sum of two rectangles in exactly two ways, and the
two endpoints correspond to the two decompositions.

Lemma 3.1 implies that once we choose an orientation system o (and not just a
weak equivalence class of orientation systems), we get a function co from the set of
all rectangles to f�1; 1g. Lemma 3.2 in conjunction with Lemma 2.1 implies that if a
domain D 2 D.x; y/ can be decomposed as a sum of two rectangles in two different
ways D D R1 C R2 D R3 C R4, then co.R1/co.R2/ D �co.R3/co.R4/. This
naturally leads to the definition of a sign assignment.

Definition 3.3. A sign assignment s is a function from the set of all rectangles to the set
f�1; 1g, such that the following condition is satisfied: if x; y; z; z0 2 GH are distinct
generators, and if R1 2 R.x; z/, R2 2 R.z; y/, R0

1 2 R.x; z0/, R0
2 2 R.z0; y/

are rectangles with R1 C R2 D R0
1 C R0

2, then s.R1/s.R2/ D �s.R0
1/s.R0

2/. Two
sign assignments s1 and s2 are said to be gauge equivalent if there is a function
t W GH ! f�1; 1g, such that s1.R/ D t.x/t.y/s2.R/, for all x; y 2 GH and for all
R 2 R.x; y/.

In particular, a true sign assignment, as defined in Definition 4.1 in [4], is a sign
assignment. Let f be the map from the set of all orientation systems to the set of all
sign assignments such that for all rectangles R, f .o/.R/ D co.R/. In this section, we
will show that there are exactly 22N �1 gauge equivalence classes of sign assignments
on the grid diagram. We will put a weak equivalence on the sign assignments, which
is weaker than the gauge equivalence. We will prove that there are exactly 2l�1

weak equivalence classes of sign assignments, and the map f induces a bijection
Qf between the set of weak equivalence classes of orientation systems and the set of

weak equivalence classes of sign assignments. This will allow us to combinatorially
calculate bCFLH .L; Z; o/ for all o 2 yOH , and thereby calculate bHFL.L; Z/ in all
the 2l�1 versions. As a corollary, this will also show that any sign assignment (in
particular, the one constructed in [4]) computes bHFL.L; Z; o/ for some orientation
system o.

We have an explicit (although slightly artificial) correspondance between the gen-
erators in GH and the elements of the symmetric group SN , whereby a permutation
� 2 SN gives rise to the generator x D .x1; : : : ; xN / with xi D ˛i \ˇ�.i/. There is
the following very natural partial order on the permutations: a reduction of a permu-
tation � is a permutation obtained by pre-composing � by some transposition .i; j /

where i < j and �.i/ > �.j /; the permutation � is declared to be smaller than the
permutation � , if � can be obtained from � by a sequence of reductions. This induces
a partial order � on the elements of GH .
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For x; y 2 GH , if y � x and there does not exist any z 2 GH such that y � z � x,
then we say that x covers y, and write that as y  x. If we view the toroidal grid
diagram as one coming from a planar grid diagram on S D Œ0; N � � Œ0; N �, then
y  x precisely when there is a rectangle from x to y contained in the subsquare
S 0 D Œ0; N � 1� � Œ0; N � 1�.

The poset .GH ;�/ is a well-understood object [1]. There is a unique minimum
p 2 GH , which corresponds to the identity permutation. In particular, the Hasse
diagram of .GH ;�/, viewed as an unoriented graph, is connected. There is a unique
maximum q 2 GH , which corresponds to the permutation that maps i to .N C1� i/.
The poset is shellable, which means that there is a total ordering < on the maximal
chains, such that if m1 and m2 are two maximal chains with m1 < m2, then there
exists a maximal chain m3 < m2 with m1 \ m2 	 m3 \ m2 D m2 n fzg for some
z 2 m2. This in particular implies that given any two maximal chains m1 and m2,
we can get from m2 to m1 via a sequence of maximal chains, where we get from one
maximal chain to the next by changing exactly one element.

Given a sign assignment s and a generator x 2 GH , we define two functions
hs;x; vs;x W f1; : : : ; N g ! f�1; 1g, called the horizontal function and the vertical
function, as follows: let D 2 D.x; x/ be Maslov index two positive domain which
corresponds to the horizontal annulus Hi ; then, D can be decomposed as a sum
of two rectangles in a unique way, and define the horizontal function hs;x.i/ as the
product of the signs of the two rectangles. The vertical function vs;x.i/ is constructed
similarly by considering the vertical annulus Vi instead. Clearly, the horizontal and the
vertical functions depend only on the gauge equivalence class of the sign assignment.
The following theorem shows that the functions do not depend on the choice of the
generator x, and will henceforth be denoted by hs and vs .

Theorem 3.4. For any sign assignment s, for any two generators x; y 2 GH , and for
any 1 � i � N , the horizontal and the vertical functions satisfy hs;x.i/ D hs;y.i/

and vs;x.i/ D vs;y.i/.

Proof. Fix a sign assignment s, and fix i 2 f1; : : : ; N g. We will only prove the state-
ment for the vertical function; the argument for the horizontal function is very similar.
Given z 2 GH , let .z0; Rz; R0

z/ be the unique triple with z0 2 GT , Rz 2 R.z; z0/
and R0

z 2 R.z0; z/ such that Rz C R0
z 2 D.z; z/ comes from the vertical annulus

Vi . We simply want to show that for any two generators x; y 2 GH , s.Rx/s.R0
x/ D

s.Ry/s.R0
y/. Recall the partial order on GH . The corresponding Hasse diagram,

when viewed as an unoriented graph, is connected; therefore, it is enough to prove
the above statement when y  x. Thus, we can assume that there exists a rectangle
R 2 R.x; y/. We end the proof by considering the following two cases.

The generators y and x0 disagree on none of the coordinates. In this case, y D x0,
y0 D x, Rx D R0

y, and Ry D R0
x . The equality s.Rx/s.R0

x/ D s.Ry/s.R0
y/ follows

trivially.
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The generators y and x0 disagree on exactly three or exactly four coordinates. In
this case, there exists a rectangle R0 2 R.x0; y0/, such that Rx C R0 D R C Ry 2
D.x; y0/ and R0

x C R D R0 C R0
y 2 D.x0; y/. The three essentially different

types of diagrams that might appear (up to a rotation by 180B) are illustrated in
Figure 3.1. Therefore, s.Rx/s.R0/ D �s.R/s.Ry/ and s.R0

x/s.R/ D �s.R0/s.R0
y/.

Multiplying, we get the required identity s.Rx/s.R0
x/ D s.Ry/s.R0

y/.

Figure 3.1. The case when y and x0 disagree in exactly 3 or exactly 4 coordinates. The
coordinates of x, y, x0, and y0 are denoted by white circles, black circles, white squares and
black squares, respectively.

The following two theorems will establish that there are exactly 22N �1 gauge
equivalence classes of sign assignments. Let ˆ be the map from the set of gauge
equivalence classes of sign assignments to f�1; 1g2N �1 given by s ! .hs.1/; : : : ;

hs.N /; vs.1/; : : : ; vs.N � 1//.

Theorem 3.5. Given functions gh; gv W f1; : : : ; N g ! f�1; 1g, such that
ˇ̌
g�1

v .1/
ˇ̌ 
ˇ̌

g�1
h

.�1/
ˇ̌

.mod 2/, there exists a sign assignment s, such that gh D hs and gv D vs .
Therefore, in particular, the function ˆ from the set of gauge equivalence classes of
sign assignments to f�1; 1g2N �1 is surjective.

Proof. By Theorem 4.2 in [4], there exists a sign assignment s0 such that hs0
.i/ D 1

and vs0
.i/ D �1 for all i 2 f1; : : : ; N g. Given gh; gv W f1; : : : ; N g ! f�1; 1g withˇ̌

g�1
v .1/

ˇ̌ 
 ˇ̌
g�1

h
.�1/

ˇ̌
.mod 2/, we would like to modify s0 to get s, such that

gh D hs and gv D vs .
The general method that we employ to modify a sign assignment s1 to get another

sign assignment s2, is the following: we start with a multiplicative 2-cochain m which
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assigns elements of f�1; 1g to the elementary domains; if D is a 2-chain generated
by the elementary domains, then hm; Di is simply the evaluation of m on D; then,
for a rectangle R 2 R.x; y/, we define s2.R/ to be s1.R/hm; Ri. It is easy to see
that s2 is a sign assignment if and only if s1 is a sign assignment.

We prove the statement by an induction on the number n.gv; gh/ D .jg�1
v .1/j C

jg�1
h

.�1/j/=2. For the base case, when n.gv; gh/ D 0, we can simply choose s D s0.
Assuming that the induction hypothesis is proved for n D k, let gh; gv W f1; : : : ; N g

! f�1; 1gbe functions with n.gv; gh/ D kC1. Choose functions Qgh; Qgv W f1; : : : ; N g
! f�1; 1g such that n. Qgv; Qgh/ D k and jfi j gv.i/ ¤ Qgv.i/gj C jfi j gh.i/ ¤
Qgh.i/gj D 2. By induction, there is a sign assignment Qs such that Qgh D hQs and
Qgv D vQs . If jfi j gv.i/ ¤ Qgv.i/gj D 2, consider the two vertical annuli correspond-
ing to the two values where gv disagrees with Qgv , choose a horizontal annulus, and
let m be the 2-cochain which assigns .�1/ to the two elementary domains where the
horizontal annulus intersects the two vertical annuli, and 1 to every other elementary
domain. Similarly, if jfi j gh.i/ ¤ Qgh.i/gj D 2, consider the two horizontal annuli
corresponding to the two values where gh disagrees with Qgh, choose a vertical annu-
lus, and let m be the 2-cochain which assigns .�1/ to the two elementary domains
where the vertical annulus intersects the two horizontal annuli, and 1 to every other el-
ementary domain. Finally, if jfi j gv ¤ Qgv.i/gj D jfi j gh ¤ Qgh.i/gj D 1, consider
the vertical annulus corresponding to the value where gv disagrees with Qgv , consider
the horizontal annulus corresponding to the value where gh disagrees with Qgh, and let
m be the 2-cochain which assigns .�1/ to the elementary domain where the vertical
annulus intersects the horizontal annulus, and 1 to every other elementary domain.
Let s be the sign assignment obtained from Qs by modifying it by the 2-cochain m. It
is fairly straightforward to check that gh D hs and gv D vs .

Theorem 3.6. The function ˆ from the set of gauge equivalence classes of sign
assignments to f�1; 1g2N �1 is injective.

Proof. For this proof, we will closely follow the corresponding proof from [4]. How-
ever, that proof uses the permutahedron whose 1-skeleton is the Cayley graph of the
symmetric group, where the generators are the adjacent transpositions. In our proof,
we will use a different simplicial complex, which is the order complex of the partial
order � on GH .

Recall that the poset has a unique minimum p, and a unique maximum q. View the
Hasse diagram of the poset as an oriented graph g. Choose a maximal tree t with p as
a root, i.e. given any vertex x, there is a (unique) oriented path from p to x in t. The
edges of g correspond to the rectangles that are supported in Œ0; N � 1�� Œ0; N � 1�.
A sign assignment endows the edges of g with signs˙1.

Let us choose a .2N�1/-tuple in f�1; 1g2N �1, and let s be a sign assignment such
that the .2N�1/-tuple equals ˆ.s/. We would like to show that the gauge equivalence
class of s is determined. Since t is a tree, by replacing the sign assignment s by a
gauge equivalent one if necessary, we can assume that s labels all the edges of t with
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1’s. We will show that the values of s on all the other edges are now determined.
Now consider any other edge y  x in g. Let c1 be the unique oriented path from

p to x in t, and let c2 be the unique oriented path from p to y in t. Choose an oriented
path c0 from x to q in g. Let m1 be the union of c1 and c0, and let m2 be the union
of c2, the edge from y to x, and c0; these can be seen as maximal chains in .GH ;�/.
Clearly, .the product of the signs on the edges in m1/ � .the product of the signs on
the edges in m2/ D .the product of the signs on the edges in c1/ � .the product of the
signs on the edges in c2/ � .the sign on the edge from y to x/. Since c1 [ c2 	 t, the
signs on the edges of c1 and c2 are all 1, so the sign on the edge from y to x equals
.the product of the signs on the edges in m1/ � .the product of the signs on the edges in
m2/. Since .GH ;�/ is shellable, m2 can be turned into m1 through maximal chains
by modifying one element at a time. Changing exactly one element of exactly one
of the maximal chains negates the above product, so the product depends only on the
graph g. Thus, s is determined on all the edges of g.

Therefore, we have shown that there exists at most one sign assignment, up to
gauge equivalence, on the rectangles that lie in the subsquare S 0 D Œ0; N � 1� �
Œ0; N � 1�. In fact, shellability of our poset also implies that there exists a sign
assignment, but we do not need it. The rest of the proof for uniqueness is very similar
to the proof from [4], but for the reader’s convenience, we repeat the argument. Let
S 00 � T be the annular subspace corresponding to the rectangle Œ0; N � 1� � Œ0; N �

in the planar grid diagram. Next, we show that the value of s is determined on all the
rectangles that lie in S 00.

This is done by an induction on the (horizontal) width of the rectangles. For the
base case, if R 2 R.x; y/ is a rectangle of width one which is not supported in S 0,
then let R0 2 R.y; x/ be the unique rectangle such that RCR0 is a vertical annulus.
The vertical function vs determines the product of the signs s.R/s.R0/, and thereby
the sign s.R/.

Assuming that we have proved the uniqueness of sign assignments for all the
rectangles up to width k, let R 2 R.x; y/ be a width .k C 1/ rectangle. Let R1 2
R.y; z/ be the width one rectangle such that the bottom-left corner of R1 is the
top-left corner of R. Then there exists a generator y0 ¤ y, a width one rectangle
R0 2 R.x; y0/ and a width k rectangle R0

1 2 R.y0; z/, such that RCR1 D R0CR0
1 2

D.x; z/. The situation is illustrated in Figure 3.2. By induction, the value of s is
determined on R1, R0, and R0

1. However, s.R/s.R1/ D �s.R0/s.R0
1/, and this

determines the sign s.R/. This completes the induction and shows that the value of
the sign assignment s is fixed on all the rectangles that are supported in S 00, A similar
argument, but with the diagrams rotated by 90B, shows that the value of s is, in fact,
determined on all the rectangles. This completes the proof of uniqueness.

Lemma 3.7. For any sign assignment s, the product
QN

iD1 hs.i/vs.i/ equals .�1/N .

Proof. By Theorem 3.5, there exists a sign assignment s0 such that hs0 D hs ,
vs0.i/ D vs.i/ for i 2 f1; : : : ; N �1g and vs0.N / D .�1/N hs.N /

QN �1
iD1 hs.i/vs.i/.
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Figure 3.2. The induction step. The coordinates of x, y, y0 and z are denoted by white circles,
white squares, black squares and black circles, respectively.

Since ˆ.s/ D ˆ.s0/, by Theorem 3.6, s and s0 are gauge equivalent. Therefore,QN
iD1 hs.i/vs.i/ DQN

iD1 hs0.i/vs0.i/ D .�1/N .

Fix a sign assignment s and fix a link component Li . Let V.Li / D fj j the X

marking in Vj is in Lig and let H.Li / D fj j the X marking in Hj is in Lig. The
product .

Q
j 2H.Li / hs.j //.

Q
j 2V.Li /.�vs.j /// is defined to be the sign of the link

component Li and is denoted by rs.Li /.
Call two sign assignments s1 and s2 weakly equivalent if rs1

agrees with rs2
on

each of the link components. Clearly, if two sign assignments are gauge equivalent,
then they are weakly equivalent. Due to Lemma 3.7, the product of the signs of all
the link components is 1, and this is the only restriction on these numbers rs.Li /.
Therefore, there are exactly 2l�1 weak equivalence classes of sign assignments. The
following observation yields a direct proof that the chain complex bCFLH .L; Z; o/

depends only on the weak equivalence class of the sign assignment f .o/.

Lemma 3.8. If two sign assignments s1 and s2 are weakly equivalent, then there
exists a sign assignment s0

2, which is gauge equivalent to s2, such that s1 and s0
2 agree

on all the rectangles that avoid the X markings and the O markings.

Proof. Since s1 and s2 are weakly equivalent, a proof similar to the proof of Theo-
rem 3.5 shows that there exists a 2-cochain m which assigns 1 to every elementary
domain that does not contain any X or O markings, such that the sign assignment
s0

2 obtained by modifying s1 by the 2-cochain m satisfies hs2
D hs0

2
and vs2

D vs0

2
.

Therefore, by Theorem 3.6, s0
2 is gauge equivalent to s2.
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Theorem 3.9. The map f from the set of orientation systems to the set of sign assign-
ments induces a well-defined bijection Qf from the set of weak equivalence classes of
orientation systems to the set of weak equivalence classes of sign assignments.

Proof. Recall that two orientation systems o1 and o2 are weakly equivalent if and
only if, for a fixed generator x 2 GH , o1 agrees with o2 on all the domains in D.x; x/

that correspond to the empty periodic domains of P 0
H

. Therefore, we need to find a
basis for the empty periodic domains.

For each i 2 f1; : : : ; lg, let Pi D P
j 2V.Li / Vj �P

j 2H.Li / Hj . These l empty
periodic domains generate P 0

H
, and

P
i Pi D 0 is the only relation among these

domains. Therefore, the domains P1; : : : ; Pl�1 freely generate P 0
H

.
If D 2 D.x; x/ is a domain which corresponds to a vertical annulus Vi , then

we know from Paragraph 2.6 that o1 agrees with o2 on D if and only if vf .o1/.i/ D
vf .o2/.i/. A similar statement holds for the horizontal annuli. A repeated application
of the same principle shows that if D 2 D.x; x/ corresponds to the empty periodic
domain Pi , then o1 agrees with o2 on D if and only if rf .o1/.Li / D rf .o1/.Li /.
Therefore, the orientation systems o1 and o2 are weakly equivalent if and only if the
sign assignments f .o1/ and f .o2/ are weakly equivalent. This shows that the map
in question is well-defined and injective. As both sets have 2l�1 elements, it is a
bijection.

A consequence of the theorems in this section is the following.

Theorem 3.10. There is a bijection Qf between the weak equivalence classes of
orientation systems and the weak equivalence classes of sign assignments, such that
for each of the 2l�1 weak equivalence classes of orientation systems o, the homology
of the grid chain complex, evaluated with the sign assignment f .o/, is isomorphic as
an absolutely .l C 1/-graded group to bHFL.L; Z; o/˝i .˝mi �1Qi /.

Let us conclude with a couple of examples. The first grid diagram in Figure 3.3
represents the two-component unlink. There are exactly two generators and exactly
two rectangles connecting the two generators. One weak equivalence class assigns
the same sign to both the rectangles while the other weak equivalence class assigns
opposite signs. Therefore, for one weak equivalence class of orientation systems,
the homology is Z=2Z, while for the other weak equivalence class of orientation
systems, the homology is Z˚Z.

The second grid diagram in Figure 3.3 represents the Hopf link. There are twenty-
four generators and sixteen rectangles. It can be checked by direct computation
that the homology is independent of the sign assignment. Therefore, the link Floer
homology of the Hopf link is the same for both the weak equivalence classes of
orientation systems.
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Figure 3.3. Grid diagrams for the two-component unlink and the Hopf link.
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