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Abstract. We construct link invariants using the D2n subfactor planar algebras, and use
these to prove new identities relating certain specializations of colored Jones polynomials to
specializations of other quantum knot polynomials. These identities can also be explained by
coincidences between small modular categories involving the even parts of the D2n planar
algebras. We discuss the origins of these coincidences, explaining the role of SO level-rank
duality, Kirby–Melvin symmetry, and properties of small Dynkin diagrams. One of these
coincidences involves G2 and does not appear to be related to level-rank duality.
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1. Introduction and background

The goal of this paper is to construct knot and link invariants from theD2n subfactor
planar algebras and to use these invariants to prove new identities between quantum
group knot polynomials. These identities relate certain specializations of colored
Jones polynomials to specializations of other knot polynomials. In particular we
prove that, for any knot K (but not for a link!),
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where Jsl.2/;.k/ denotes the kth colored Jones polynomial, JG2;V.1;0/
denotes the knot

invariant associated to the 7-dimensional representation ofG2 and JD2n;P is theD2n

link invariant for which we give a skein-theoretic construction.1 (For our conventions
for these polynomials, in particular their normalizations, see Section 1.1.3.)
These formulas should appear somewhat mysterious, and much of this paper

is concerned with discovering the explanations for them. It turns out that each of
these knot invariant identities comes from a coincidence of small modular categories
involving the even part of one of the D2n. Just as families of finite groups have
coincidences for small values (for example, the isomorphismbetween thefinite groups
Alt5 and PSL2.F5/ or the outer automorphism of S6), modular categories also have
small coincidences. Explicitly, we prove the following coincidences, where 1

2
D2n

denotes the even part ofD2n (the first of these coincidences is well-known).

1Beware, the D2n planar algebra is not related to the lie algebra so4n with Dynkin diagram D2n, but
is instead a quantum subgroup of Uq.su2/.
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� 1
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D14 Š RepUexp.2�i 23

26 /.g2/ sending P to V.10/. (See Theorem 3.17.)

To interpret the right hand sides of these equivalences, recall that the definition of
the braiding (althoughnot of the quantumgroup itself) depends on a choice of s D q

1
L ,

where L is the index of the root lattice in the weight lattice. Furthermore, the ribbon
structure on the category of representations depends on a choice of a certain square
root. In particular, besides the usual pivotal structure there’s also another pivotal
structure, which is called “unimodal” by Turaev [42] and discussed in §1.1.4 below.
By “modularize” we mean take the modular quotient described by Bruguières [6] and
Müger [31] and recalled in §1.1.8 below.
We first prove the knot polynomial identities directly, and later we give more

conceptual explanations of the coincidences using

� coincidences of small Dynkin diagrams,
� level-rank duality, and
� Kirby–Melvin symmetry.

These conceptual explanations do not suffice for the equivalence between the even part
of D14 and RepUexp.2�i `

26 /
.g2/, ` D �3 or 10, which deserves further exploration.

Nonetheless we can prove this equivalence using direct methods (see Section 3.5),
and it answers a conjecture of Rowell’s [35] concerning the unitarity of .G2/ 1

3
.

We illustrate each of these coincidences of tensor categories with diagrams of the
appropriate quantum group Weyl alcoves; see in particular Figures 8, 9, 10 and 11
at the end of the paper. An ambitious reader might jump to those diagrams and try
to understand them and their captions, then work back through the paper to pick up
needed background or details.
In more detail the outline of the paper is as follows. In the background section

we recall some important facts about planar algebras, tensor categories, quantum
groups, knot invariants and their relationships. We fix our conventions for knot
polynomials. We also briefly recall several key concepts like semisimplification,
deequivariantization, and modularization.
In Section 2 we use the skein theoretic description ofD2n to show that the Kauff-

man bracket gives a braiding up to sign for D2n, and in particular gives a braiding
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on the even part (this was already known; see for example the description of Rep0A

in [22], p. 33). Using this, we define and discuss some new invariants of links which
are the D2n analogues of the colored Jones polynomials. We also define some re-
finements of these invariants for multi-component links.
In Section 3 we discuss some identities relating the D2n link invariants at small

values of n to other link polynomials. This allows us to prove the above identities
between quantum group invariants of knots. The main technique is to apply the
following schema to an objectX in a ribbon category (whereA and B always denote
simple objects).

� If X ˝ X D A then the knot invariant coming from X is trivial.

� If X ˝ X D 1 ˚ A then the knot invariant coming from X is a specialization of
the Jones polynomial.

� If X ˝ X D A ˚ B then the knot invariant coming from X is a specialization
of the HOMFLYPT polynomial.

� IfX ˝X D 1˚A˚B then the knot invariant coming fromX is a specialization
of the Kauffman polynomial or the Dubrovnik polynomial.

Furthermore we give formulas that identify which specialization occurs. This tech-
nique is due to Kauffman, Kazhdan, Tuba, Wenzl, and others [41], [20], [17], and
is well-known to experts. We also use a result of Kuperberg which gives a similar
condition for specializations of the G2 knot polynomial.
In Section 4 we reprove the results of the previous section using coincidences of

Dynkin diagrams, generalized Kirby–Melvin symmetry, and level-rank duality. In
particular, we give a new simple proof of Kirby–Melvin symmetry which applies
very generally, and we use a result of Wenzl and Tuba to strengthen Beliakova and
Blanchet’s statement of SO level-rank duality.
Wewould like to thankStephenBigelow, Vaughan Jones, GregKuperberg, Nicolai

Reshetikhin, Kevin Walker, and Feng Xu for helpful conversations. During our work
on this paper, Scott Morrison was at Microsoft Station Q, Emily Peters was supported
in part by NSF grant DMS0401734, and Noah Snyder was supported in part by RTG
grant DMS-0354321 and by an NSF postdoctoral grant.

1.1. Background and conventions. The subject of quantum groups and quantum
knot invariants suffers from a plethora of inconsistent conventions. In this section
we quickly recall important notions, specify our conventions, and give citations. The
reader is encouraged to skip this section and refer back to it when necessary. In
particular, most of Sections 2 and 3 involve only diagram categories and do not
require understanding quantum group constructions or their notation.
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1.1.1. General conventions

Definition 1.1. The nth quantum number Œn�q is defined as

qn � q�n

q � q�1
D qn�1 C qn�3 C � � � C q�nC1:

Following [37] the symbol s will always denote a certain root of q which will be
specified as appropriate.

1.1.2. Ribbon categories, diagrams, and knot invariants. A ribbon category is
a braided pivotal monoidal category satisfying a compatibility relation between the
pivotal structure and the braiding. See [38] for details (warning: that reference uses
the word tortile in the place of ribbon). We use the optimistic convention where
diagrams are read upward.
The key property of ribbon categories is that if C is a ribbon category there is a

functorF from the category of ribbons labelled by objects ofC with coupons labelled
by morphisms in C to the category C (see [34], [42], [38]). In particular, if V is an
object in C and LV denotes a framed oriented link L labelled by V , then

zJC ;V W L 7! F .LV / 2 End .1/

is an invariant of oriented framed links (due to Reshetikhin–Turaev [34]). Whenever
V is a simple object, the invariant depends on the framing through a “twist factor”.
That is, two linksL andL0 which are the same except thatw.L/ D w.L0/C1, where
w denotes the writhe, have invariants satisfying zJC ;V .L/ D �V

zJC ;V .L0/ for some
�V in the ground field (not depending on L). Thus zJC ;V can be modified to give an
invariant which does not depend on framing.

Theorem 1.2. Let JC ;V .L/ D �
�w.L/
V

zJC ;V .L/. Then JC ;V .L/ is an invariant of
links.

Given any pivotal tensor category C (in particular any ribbon category) and a
chosen object X 2 C, one can consider the full subcategory whose objects are tensor
products of X and X�. This subcategory is more convenient from the diagrammatic
perspective because one can drop the labeling of strands by objects and instead assume
that all strands are labelled byX (hereX� appears as the downward oriented strand).
Thus this full subcategory becomes a spider [26], which is an oriented version of
Jones’s planar algebras [13]. IfX is symmetrically self-dual then this full subcategory
is an unoriented unshaded planar algebra in the sense of [30].
Often one only describes the full subcategory (via diagrams) but wishes to re-

cover the whole category. If the original category was semisimple and X is a tensor
generator, then this can be achieved via the idempotent completion. This is explained
in detail in [30], [43], [26]. The simple objects in the idempotent completion are the
minimal projections in the full subcategory.
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1.1.3. Conventions for knot polynomials and their diagram categories. In this
subsection we give our conventions for the following knot polynomials: the Jones
polynomial, the colored Jones polynomials, the HOMFLYPT polynomial, the Kauff-
man polynomial, and the Dubrovnik polynomial. Each of these comes in a framed
version as well as an unframed version. The framed versions of these polynomials
(other than the colored Jones polynomial) are given by simple skein relations. These
skein relations can be thought of as defining a ribbon category whose objects are
collections of points (possibly with orientations) and whose morphisms are tangles
modulo the skein relations and modulo all negligible morphisms (see §1.1.6).
We will often use the same name to refer to the knot polynomial and the category.

This is very convenient for keeping track of conventions. The HOMFLYPT skein
category and the Dubrovnik skein category are more commonly known as the Hecke
category and the BMW category.
Contrary to historical practice, we normalize the polynomials so they are multi-

plicative for disjoint union. In particular, the invariant of the empty link is 1, while
the invariant of the unknot is typically nontrivial.

TheTemperley–Lieb category. We firstfix our conventions for theTemperley–Lieb
ribbon category TL.s/. Let s be a complex number with q D s2.
The objects in Temperley–Lieb are natural numbers (thought of as disjoint unions

of points). The morphism space Hom.a; b/ consists of linear combinations of planar
tangles with a boundary points on the bottom and b boundary points on the top,
modulo the relation that each closed circle can be replaced by a multiplicative factor
of Œ2�q D q C q�1. The endomorphism space of the object consisting of k points will
be called TL2k .

The braiding (which depends on the choice of s D q
1
2 ) is given by

D is � is�1 :

We also use the following important diagrams.

� The Jones projections in TL2n:

ei D Œ2��1
q � � � � � � ; i 2 f1; : : : ; n � 1g:

� The Jones–Wenzl projection f .n/ in TL2n [45], which is the unique projection
with the property

f .n/ei D eif
.n/ D 0; for each i 2 f1; : : : ; n � 1g:
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The Jones polynomial. The framed Jones polynomial zJ (or Kauffman bracket) is
the invariant coming from the ribbon category TL.s/. In particular, it is defined for
unoriented framed links by

� D q C q�1

and

D is � is�1 : (1)

This implies that

D is3 and D �is�3 ;

so the twist factor is is3.
The framing-independent Jones polynomial J.L/ is defined by

J.L/ D .�is�3/writhe.L/ zJ .L/:

It satisfies the following version of the Jones skein relation

q2 � q�2 D �is � is�1

D q � q�1

D .q � q�1/ :

The colored Jones polynomial. The framed colored Jones polynomial is the invari-
ant zJsl.2/;.k/.K/ coming from the simple projection f .k/ in TL.s/. The twist factor

is ik2
sk2C2k.

The HOMFLYPT polynomial. The framed HOMFLYPT polynomial is given by
the skein relations

w � w�1 D z ; (2)

D w�1a and D aw�1 : (3)
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The twist factor is just w�1a.
Thus, the framing-independent HOMFLYPT polynomial is given by the skein

relation

a � a�1 D z : (4)

The Kauffman polynomial. The Kauffman polynomial comes in two closely re-
lated versions, known as the Kauffman and Dubrovnik normalizations. Both are
invariants of unoriented framed links. The framed Kauffman polynomial CKauffman
is defined by

C D z

�
C

�
; (5)

D a and D a�1 : (6)

Here the value of the unknot is aCa�1

z
� 1.

The framed Dubrovnik polynomial DDubrovnik is defined by

� D z

�
�

�
; (7)

D a and D a�1 : (8)

Here the value of the unknot is a�a�1

z
C 1.

In both cases, the twist factor is a. The unframed Kauffman and Dubrovnik
polynomials do not satisfy any conveniently stated skein relations. The Kauffman
and Dubrovnik polynomials are closely related to each other by

DDubrovnik.L/.a; z/ D i�w.L/.�1/#L CKauffman.L/.ia; �iz/;

where #L is the number of components of the link and w.L/ is the writhe of any
choice of orientation for L (which turns out not to depend, modulo 4, on the choice
of orientation). This is due to Lickorish [29] [17], p. 466.

Kuperberg’s G2 spider. We recall Kuperberg’s skein theoretic description of the
quantum G2 knot invariant [26], [25] (warning, there is a sign error in the former
source). Kuperberg’s q is our q2 (which agrees with the usual quantum group con-
ventions). The quantum G2 invariant is defined by

D 1

1 C q�2
C 1

1 C q2
C 1

q2 C q4
C 1

q�2 C q�4
;
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where the trivalent vertex satisfies the relations

D q10 C q8 C q2 C 1 C q�2 C q�8 C q�10;

D 0;

D � �
q6 C q4 C q2 C q�2 C q�4 C q�6

�
;

D �
q4 C 1 C q�4

�
;

D � �
q2 C q�2

� �
C

�
C �

q2 C 1 C q�2
� �

C
�

;

D C C C C

� � � � � :

1.1.4. Quantum groups. Quantum groups are key sources of ribbon categories. If
g is a complex semisimple Lie algebra, let Us.g/ denote the Drinfel’d–Jimbo quan-
tum group, and let RepUs.g/ denote its category of representations. This category
is a ribbon category and hence given a quantum group and any representation the
Reshetikhin–Turaev procedure gives a knot invariant.
We follow the conventions from [37]. See [37], p. 2, for a comprehensive summary

of how his conventions line up with those in other sources. (In particular, our q is the
same as both Sawin’s q and Lusztig’s v.) We make one significant change: we only
require that the underlying Lie algebra g be semi-simple rather than simple. This
does not cause any complications because Us.g1 ˚ g2/ Š Us.g1/ � Us.g2/.
In particular, following [37], we have the variables s and q and the relation sL D q,

where L is the smallest integer such that L times any inner product of weights is an
integer. The values of L for each simple Lie algebra appear in Table 1. The quantum
group itself and its representation theory only depend on q, while the braiding and
the ribbon category depend on the additional choice of s.
For the quantum groups Us.so.n// we denote by Repvector.Uq.so.n/// the collec-

tion of representations whose highest weight corresponds to a vector representation
of so.n/ (that is a representation of so.n/which lifts to the non-simply connected Lie
group SO.n/). Note that the braiding on the vector representations does not depend
on s, so we use q as our subscript here instead.
Often the pivotal structure on a tensor category is not unique, and indeed for the

representation theory of a quantum group the pivotal structures are a torsor over the
group ofmaps from theweight latticemodulo the root lattice to˙1. In general there is
no “standard” pivotal structure, but for the representation theory of a quantum group
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there is both the usual onedefinedby theHopf algebra structure of theDrinfel’d–Jimbo
quantum group, and Turaev’s unimodal pivotal structure, RepuniUs.g/. Changing the
pivotal structure by�, a map from the weight lattice modulo the root lattice to˙1, has
two major effects: it changes both the dimension of an object and its twist factor by
multiplying by�.V /. The unimodal pivotal structure is characterized by the condition
that every self-dual object is symmetrically self-dual. One important particular case
is that RepuniUs.sl.2// Š TL.�is/ [39], [40].
The twist factor for an irreducible representation V is determined by the action of

the ribbon element, giving (for the standard pivotal structure) qh�;�C2�i where � is
the highest weight of V. Note that since h�; � C 2�i 2 1

L
Z (where L is the exponent

of the weight lattice mod the root lattice), the twist factor in general depends on a
choice of s D q

1
L.

For V D V.k/, the representation of Us.sl.2// with highest weight k, the twist

factor is sk2C2k (notice this is the same as the k-colored Jones polynomial for k

even; for k odd the twist factors differ by a sign as predicted by RepuniUs.sl.2// Š
TL.�is/). For V D V \, the standard representation of Us.sl.n//, the twist factor is
sn�1. For the standard representations of so.2n C 1/, sp.2n/ and so.2n/ the twist
factors are q4n, q2nC1 and q2n�1 respectively. The twist factor for the representation
Vke1

of so.2n C 1/ is q2k2C.4n�2/k. Note that the representation Vke1
of so.3/ is

the representation V.2k/ of sl.2/ and in this case the twist factor agrees with the first
one given in this paragraph. The twist factor for the representation Vke1

of so.2n/ is

qk2C2.n�1/k. Later we will need the twist factors for the representations V3e1
, Ven�1

and V3en�1
of so.2n/. These are q6nC3, q

1
4 n.2n�1/, and q

3
4 n.2nC1/. The twist factor

for the 7-dimensional representation of G2 is q12.
The invariants of the unknot are just the quantum dimensions. For the standard

representations of sl.n/, so.2n C 1/, sp.2n/ and so.2n/ these are Œn�q; Œ2n�q2 C 1;

Œ2n C 1�q � 1; and Œ2n � 1�q C 1 respectively.
The invariants of the standard representations are specializations of the HOM-

FLYPT or Dubrovnik polynomials. Written in terms of the framing-independent
invariants, we have

HOMFLYPT.L/.qn; q � q�1/ D Jsl.n/;V \.L/.q/; (9)

Dubrovnik.L/.q4n; q2 � q�2/ D Jso.2nC1/;V \.L/.q/; (10)

Dubrovnik.L/.�q2nC1; q � q�1/ D .�1/]LJsp.2n/;V \.L/.q/; (11)

and

Dubrovnik.L/.q2n�1; q � q�1/ D Jso.2n/;V \.L/.q/: (12)

These identities are “well-known”, but it’s surprisingly hard to find precise state-
ments in the literature, and we include these mostly for reference. The identities
follow immediately from Theorem 3.2 below, and the fact that the eigenvalues of
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the braiding on the natural representations of sl.n/; so.2n C 1/; sp.2n/ and so.2n/

are .�s�n�1; sn�1/; .q�4n; q2; �q�2/; .�q�2n�1; q; �q�1/ and .q�2nC1; q; �q�1/

respectively. The sign in eq. (11) appears because Theorem 3.2 does not apply imme-
diately to the natural representation of sp.2n/, which is antisymmetrically self-dual.
Changing to the unimodal pivotal structure fixes this, introduces the sign in the knot
invariant, and explains the discrepancy between the value of a in the specialization
of the Dubrovnik polynomial and the twist factor for the natural representation of
sp.2n/.
We will show using techniques inspired by [4], [5], [41] that several of these

identities between knot polynomials come from functors between the corresponding
categories.

1.1.5. Comparison with the KnotTheory` package. Both the HOMFLYPT and
the Kauffman polynomial defined in this article agree with those available in the
Mathematica package KnotTheory` (available at the Knot Atlas [16]), except
that in the package the invariants are normalized so that their value on the unknot is 1.
The Jones polynomial in the package uses “bad” conventions from the point of view of
quantum groups. You will need to substitute q 7! q�2, and then multiply by q C q�1

to get from the invariant implemented in KnotTheory` to the one described here.
The G2 spider invariant described in this article agrees with that calculated using the
QuantumKnotInvariant function in the package. This function calculates the
framing-independent invariants from quantum groups described here.

1.1.6. Semisimplification. Suppose thatC is a spherical tensor categorywhich isC-
linear andwhich is idempotent complete (every projection has a kernel and an image).
LetN be the collection of negligible morphisms (f is negligible if tr.fg/ D 0 for all
g). Call a collection of morphisms I 2 C an ideal if I is closed under composition
and tensor product with arbitrary morphisms in C . We recall the following facts.

� N is an ideal.

� Any ideal in C is contained in N.

� If C semisimple then N D 0.

� If C is abelian, then C=N D C ss is semisimple.

� IfD is pseudo-unitary (pivotal, and all quantum dimensions are positive, up to a
fixed Galois conjugacy) and F W C ! D is a functor of pivotal categories, then
F is trivial on N.

There are some technical issues which, while not immediately relevant to this
paper, are important to keep in mind when dealing with semisimplifications. First,
C=N may not always be semisimple. Furthermore, if D is semisimple but not
pseudo-unitary there may be a functor F W C ! D which does not factor through
C=N.

http://katlas.org/
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Example 1.3. Ifq is a root of unity, anda is not an integer power ofq, then the quotient
of the Dubrovnik category at .a; z D q � q�1/ by negligibles is not semisimple [41],
Corollary 7.8.

Example 1.4. This example is adapted from [8], Remark 8.26. Let

E D Repvector U
qDexp. 2�i

10 /
.so.3//

be the Yang–Lee category. This fusion category has two objects, 1 and X , satisfying
X ˝ X Š X ˚ 1. The object X has dimension the golden ratio. Let E 0 be a
Galois conjugate of E where X has dimension the conjugate of the golden ratio. Let
D D E � E 0; this is a non-pseudo-unitary semisimple category. Note that X � X is
a symmetrically self-dual object with dimension �1. Hence there is a functor from
C D TLdD�1 ! D sending the single strand to X � X (see §3.4 for more details).
The second Jones–Wenzl idempotent is negligible in TLdD�1 but it is not killed by
this functor.

For further details see [3], [43], and [7], Proposition 5.7.

1.1.7. Quantum groups at roots of unity. When s is a root of unity, by RepUs.g/

we mean the semisimplified category of tilting modules of the Lusztig integral form.
Weonly ever consider caseswhere q is a primitive `th root of unitywith ` large enough
in the sense of [37], Theorem 2. The key facts about this category are described in
full generality in [37] (based on earlier work by Andersen, Lusztig, and others):

� The isomorphism classes of simple objects correspond to weights in the funda-
mental alcove. (Be careful, as when the Lie algebra is not simply laced the shape
of the fundamental alcove depends on the factorization of the order of the root
of unity [37], Lemma 1.

� The dimensions and twist factors for these simple objects are given by special-
izing the formulas for dimensions and twist factors from generic q.

� The tensor product rule is given by the quantum Racah rule [37], § 5.

1.1.8. Modularization. We review the theory of modularization or deequivarianti-
zation developed by Müger [31] and Bruguières [6]. Suppose that C is a ribbon
category and that G is a collection of invertible (X ˝ X� Š 1, or equivalently
dimX D ˙1) simple objects in C which satisfy four conditions.

� G is closed under tensor product.

� Every V 2 G is transparent (that is, the positive and negative braidings with any
object W 2 C are equal).

� dim V D 1 for every V 2 G .

� The twist factor �V is 1 for every V 2 G.
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Let C==G denote the Müger–Bruguières deequivariantization. There is a faithful
essentially surjective functor C ! C==G . This functor is not full because in the
deequivariantization there are more maps: in C==G every object in the image of G

becomes isomorphic to the trivial object.
We will often write C==X to denote the deequivariantization by the collection of

tensor powers of some object X.
A ribbon functor F W C ! C 0 between premodular (that is ribbon and fusion)

categories is called a modularization if it is dominant (every simple object in C 0
appears as a summand of an object in the image of F ) and if C 0 is modular.

Theorem 1.5. Suppose that C is a premodular category whose global dimension
is nonzero. Any modularization is naturally isomorphic to F W C ! C==G where
G is the set of all transparent objects. A modularization exists if and only if every
transparent object has dimension 1 and twist factor 1.

In Section 4.2, we compute modularizations using the following lemma.

Lemma 1.6. Suppose M is a modular ˝-category, which is a full subcategory of
a tensor category C . Denote by � the subcategory of invertible objects in C and
assume they are all transparent and that the group of objects � acts (by tensor
product) freely on C . Then the orbits of � each contain exactly one object from M,
and the modularization C==� is equivalent to M.

For further detail, see [4], §1.3–1.4. Related notions appear in the physics litera-
ture, for example in [2].

2. Link invariants fromD2n

2.1. TheD2n planar algebras. TheD2n planar algebras were first discovered dur-
ing the classification of subfactors below index 4, where there is anADE classification
of the principal graphs. This classification has some peculiarities: there are the An

subfactors, then D2n subfactors (but no Dodd subfactors), and finally the E6 and E8

subfactors (but no E7 subfactor). This classification is described in [10], [32], [12],
[22]. In the ADE subfactor planar algebras the shading is irrelevant, correspond-
ing to the fact that these subfactors come from underlying tensor categories. These
tensor categories have been described directly, via commutative algebra objects in
RepU

sDexp. 2�i
16n�8 /

.sl.2//, in [22]. (Here, theDodd andE7 graphs appear as the fusion
graphs of module categories for noncommutative algebra objects.)
The D2n subfactors were first constructed in [19] using an automorphism of the

subfactorA4n�3. This construction is essentially equivalent to the deequariantization
procedure described above. The D2n tensor categories are the simplest example of
deequivariantization. In this paper, we use a skein theoretic description of the D2n

planar algebra from our paper [30]. We recall the definition from [30].
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Definition 2.1. Fix q D exp. 2�i
8n�4

/. Let PA.S/ be the planar algebra generated by
a single “box” S with 4n � 4 strands, modulo the following relations.

(1) A closed circle is equal to Œ2�q D .q C q�1/ D 2 cos. 2�
8n�4

/ times the empty
diagram.

(2) Rotation relation:

...

S D i �
...

S .

(3) Capping relation: S ���
D 0 .

(4) Two-S relation:

S

S

: : :

: : :

D Œ2n � 1�q � f .4n�4/

� � �

� � �
.

In [30], our main theorem included the following statements.

Theorem 2.2. PA.S/ is the D2n subfactor planar algebra:

(1) the space of closed diagrams is 1-dimensional (in particular, the relations are
consistent);

(2) it is spherical;

(3) it is unitary, and hence pseudo-unitary and semisimple;

(4) the principal graph of PA.S/ is the Dynkin diagram D2n.

In order to prove this theorem, wemade liberal use of the following “half-braided”
relation.

Theorem 2.3. You can isotope a strand above an S-box, but isotoping a strand below
an S-box introduces a factor of �1:

(1) S

...
D S

...
,
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(2) S

...
D � S

...
.

In [30] we gave a skein theoretic description of each isomorphism class of simple
projections in D2n. These are f .i/ for 0 � i � 2n � 3, the projection P D
1
2
.f .2n�2/ C S/, and the projectionQ D 1

2
.f .2n�2/ � S/. We also gave a complete

description of the tensor product rules for these projections (most of which appear in
[12], [22]).
By the even part of D2n, which we will denote 1

2
D2n, we mean the full subcat-

egory whose objects consist of collections of an even number of points. The simple
projections in the even part ofD2n are f .0/; f .2/; : : : ; f .2n�4/; P; Q.

Proposition 2.4. 1
2
D2n Š Repvector U

qDexp. 2�i
8n�4

/
.so.3//modularize.

Proof. To see this we observe that Repvector U
qDexp. 2�i

8n�4
/
.so.3// is the even part of

RepU
qDexp. 2�i

8n�4
/
.sl.2//, and the even parts of RepU

qDexp. 2�i
8n�4

/
.sl.2// and TL are

the same at that value of q (the change in pivotal structure does not affect the even
part). Hence there is a functor

Repvector U
qDexp. 2�i

8n�4 /
.so.3// ! 1

2
D2n.

The description of simple objects inD2n shows that this functor is dominant (as P C
Q D f .2n�2/) and a simple calculation shows that 1

2
D2n has no transparent objects

and so is modular. Hence, the claim follows by the uniqueness of modularization.

2.2. Invariants fromD2n. Although D2n is not a ribbon category, its even part is
ribbon. This is in [22], p. 33; we prefer to give a skein theoretic explanation. Define
the braiding using the Kauffman bracket formula. This braiding clearly satisfies Rei-
demeistermoves 2 and 3, as well as the additional ribbon axiom: all of these equalities
of diagrams only involve diagrams in Temperley–Lieb, which is a ribbon category.
The only additional thing to check is the naturality, which means that any diagram
can pass over or under a crossing without changing. This follows immediately from
the “half-braiding” relation, because all crossings involve an even number of strands.
Since the even part of D2n is a ribbon category, any simple object in it defines

a link invariant. For the simple objects f .2k/ this invariant is just a colored Jones
polynomial. So we concentrate on invariants involving P andQ. Given an oriented
framed link L, to get the framed P -invariant, we first 2n � 2 cable it and place a
P (going in the direction of the orientation) on each component. See Figure 1 for
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7! P P

Figure 1. Computing the framed D10 invariant of the Hopf link.

an example. Then we evaluate this new picture in theD2n planar algebra (using the
Kauffman resolution of crossings).
In the usual way, we can make it into an invariant of unframed links, which we

will call JD2n;P .L/. Since P D Pf .2n�2/, the twist factor is the same as that for
f .2n�2/, namely q2n.n�1/.

Theorem 2.5. For a knot K (but not for a link),

JD2n;P .K/ D 1

2
Jsl.2/;.2n�2/.K/ D JD2n;Q.K/.

Proof. To compute zJD2n;P .K/ we .2n � 2/-cable K, and insert somewhere one
P D 1

2
.f .2n�2/ C S/. When we split this into the sum of two diagrams, the diagram

with the S in it is zero, since in every resolution the S connects back up with itself.
Meanwhile, the diagram with the f .2n�2/ in it is the colored Jones polynomial.
Thus zJD2n;P .K/ D 1

2
zJsl.2/;.2n�2/.K/. Exactly the same argument holds for Q.

Furthermore, the twist factors for P,Q and f .2n�2/ are all equal as computed above.

2.3. A refined invariant. Although this section isn’t necessary for the rest of this
paper, it may nevertheless be of interest. We can slightly modify this construction
to produce a more refined invariant for links. Instead of labeling every component
with P or every component with Q we could label some components with P and
others withQ. This would not be an invariant of links, but if you fix which number of
links to label with P and sum over all choices of components this is a link invariant.
Notice that since the twist factors for P and Q are the same, this definition makes
sense either for framed or unframed versions of the invariant.

Definition 2.6. For a a positive integer, let Ja
D2n;P=Q

.L/ be the sum over all ways
of labelling a components of L with P and the remaining components withQ.
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Since P D 1
2
.f .2n�2/ C S/ and Q D 1

2
.f .2n�2/ � S/, these invariants can be

written in terms of simpler-to-compute invariants.

Definition 2.7. Let Jk
D2n;S=f

.L/ be 2�` times the sum of all the ways to put an S

on k of the link components and an f .n/ on the rest of the components. We call this
the k-refined .D2n; P /-invariant of an `-component link L.

This is a refinement of the .D2n; P / link invariant in that

kDX̀
kD0

Jk
D2n;S=f .L/ D JD2n;P .

More precisely we have the following lemma.

Lemma 2.8.

Ja
D2n;P=Q.L/ D

aX
iD0

`�aX
j D0

.�1/`�a�j

�
i C j

i

� �
` � .i C j /

a � i

�
J

iCj

D2n;S=f
.L/

D
X̀
kD0

.�1/`�a�kJk
D2n;S=f .L/

min.k;a/X
iD0

.�1/i

�
k

i

� �
` � k

a � i

�
:

These refined invariants can detect more information than the ordinary invariant.
For example, although we will show in the next section that theD4 invariant is trivial,
it is not difficult to see using the methods of the next section that its refined invariants
detect linking number mod 3.

3. Knot polynomial identities

The theorems of this section describe how to identify an invariant coming from an
object in a ribbon category as a specialization of the Jones, HOMFLYPT or Kauffman
polynomials. These theorems arewell-known to the experts, and versions of them can
be found in [17], [20], [41]. Sincewe need explicit formulas for which specializations
appear we collect the proofs here.
We then identify cases in which these theorems apply, namelyD2n for n D 2; 3; 4

and 5, and explain exactly which specializations occur.
There is a similar procedure, due to Kuperberg, for recognizing knot invariants

which are specializations of theG2 knot polynomial. We apply this technique toD14.
The identities in this section do not follow from the knot polynomial identities

in [15] [28], § 6, Table 2. (But most of those identities follow from the technique
outlined in this section.)
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3.1. Recognizing a specialization of Jones, HOMFLYPT, or Kauffman. Identi-
fying a knot invariant as a specialization of a classical knot polynomial happens in
two steps. Let us say you are looking at the knot invariant coming from an object V
in a ribbon category. First, you look at the direct sum decomposition of V ˝ V, and
hope that you do not see too many summands. Theorem 3.1 below describes how to
interpret this decomposition, hopefully guaranteeing that the invariant is either trivial,
or a specialization of Jones, HOMFLYPT, or Kauffman. If this proves successful, you
next look at the eigenvalues of the braiding on the summands of V ˝V. Theorem 3.2
then tells you exactly which specialization you have.

Theorem 3.1. Suppose that V is a simple object in a ribbon category C and that if
V is self-dual then it is symmetrically self-dual.

(1) If V ˝ V is simple, then dim V D ˙1 and the link invariant JC ;V D .dim V /#,
where # is the number of components of the link.

(2) If V ˝ V D 1 ˚ L for some simple object L, then the link invariant JC ;V is a
specialization of the Jones polynomial.

(3) If V ˝ V D L ˚ M for some simple objects L and M, then the link invariant
JC ;V is a specialization of HOMFLYPT.

(4) If V ˝ V D 1 ˚ L ˚ M for some simple objects L and M , then the link
invariant JC ;V is a specialization of either the Kauffman polynomial or the
Dubrovnik polynomial.

Proof. (1) Trivial case

Since the category is spherical and braided, End .V ˝ V / Š End .V ˝ V �/.
Hence if V ˝ V is simple we must have V ˝ V � D 1, so dim V D ˙1. Also by
simplicity, End .V ˝ V / is one dimensional, and so, up to constants, a crossing

is equal to the identity map. Suppose now that D ˛ . Then,

Reidemeister two tells us that D ˛�1 . Capping this off shows that

the twist factor is ˛ dim V . Thus the framing corrected skein relation is

D dim V D :

The equality of the two crossings lets us unlink any link, showing that the framing
corrected invariant is .dim V /#, where # is the number of components.

(2) Jones polynomial case

Since End .V ˝ V / is 2-dimensional there must be a linear dependence be-
tween the crossing and the two basis diagrams of Temperley–Lieb. (If these two
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Temperley–Lieb diagrams were linearly dependent, then V ˝ V Š 1, contra-
dicting the assumption). Hence we must have a relation of the form

D A C B :

Following Kauffman, rotate this equation, glue them together and apply Reide-
meister 2 to see that B D A�1 and A2 C A�2 D dim V. Hence this invariant is
given by the Kauffman bracket.

(3) HOMFLYPT case

Since End .V ˝ V / is 2-dimensional there must be a linear dependence between
the two crossings and the identity (we can not use the cup-cap diagram here
because V is not self dual). Hence, we have that

˛ C ˇ D �

for some ˛, ˇ, and � . If ˛ orˇ were zero, End .V ˝ V /would be 1-dimensional,
so we must have that ˛ and ˇ are nonzero. Hence we can rescale the relation
so that ˛ D w, ˇ D �w�1, and � D z. Since the twist is some multiple of the
single strand we can define a such that the twist factor is w�1a. Thus we have
recovered the framed HOMFLYPT skein relations.

(4) Kauffman case

Since V ˝ V has three simple summands, its endomorphism space is 3 dimen-
sional. Moreover, since one of the summands is the trivial representation, one

such endomorphism is the “cup-cap” diagram . Theremust be some linear

relation of the form

p C q C r C s D 0:

The space of such relations is invariant under a �=2 rotation, and fixed under a
� rotation, so there must be a linear relation which is either a .C1/- or .�1/-
eigenvector of the �=2 rotation. That is, there must be a relation of the form

A

�
˙

�
D B

�
˙

�
:

IfAwere zero, this would be a linear relation between and , which

would imply that V ˝ V Š 1. Thus we can divide by A, and obtain either the
Kauffman polynomial, eq. (5), or Dubrovnik polynomial, eq. (7), skein relation
with z D B=A.
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This argument for the Dubrovnik polynomial is similar in spirit to Kauffman’s
original description in [17], and the argument for HOMFLYPT polynomial is similar
to [14], § 4. Similar results were also obtained in [41], [20].
We will now need some notation for eigenvalues. Suppose N appears once as

a summand of V ˝ V , and consider the braiding as an endomorphism acting by
composition on End .V ˝ V /. Then the idempotent projecting onto N � V ˝ V is
an eigenvector for the braiding, and we will write RN �V ˝V for the corresponding
eigenvalue. The following is well known (for example the HOMFLYPT case is
essentially [14], § 4).

Theorem 3.2. If one of conditions (2)–(4) of Theorem 3.1 holds, then we can find
which specialization occurs by computing eigenvalues.

(2) If RL�V ˝V D �, then R1�V ˝V D ���3 and

JC ;V D Jsl.2/;.1/.a/

with a D ��2.

(3) If RL�V ˝V D �, RM�V ˝V D 	, and � is the twist factor, then

JC ;V D HOMFLYPT.a; z/

with a D �p���
and z D �C�p���

.

(4) If RL�V ˝V D � and RM�V ˝V D 	, then �	 D ˙1.

(a) If �	 D �1 then
JC ;V D Dubrovnik.a; z/

with a D R�1
1�V ˝V and z D � C 	.

(b) If �	 D 1 then
JC ;V D Kauffman.a; z/

with a D R�1
1�V ˝V and z D � C 	.

Proof. These proofs all follow the same outline. We consider the operator X which
acts on tangles with four boundary points by multiplication with a positive crossing.
We find the eigenvalues of X in terms of the parameters (a and/or z) and then solve
for the parameters in terms of the eigenvalues.

(2) The Jones skein relation for unoriented framed links is

D ia
1
2 � ia� 1

2 ;

if closed circles count for Œ2�a D .a C a�1/.
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The eigenvectors for X , multiplication by the positive crossing, are

f .2/ and ;

which have eigenvalues ia
1
2 and �ia

�3
2 .

The cup-cap picture must correspond to the summand 1, and so we see that if
RL�V ˝V D �, then a D ��2 and R1�V ˝V D ���3.

(3) The HOMFLYPT skein relation is for oriented framed links

w � w�1 D z ; (13)

and the characteristic equation for the operatorX whichmultiplies by the positive
crossing is

wx � w�1x�1 D z ” x2 � z

w
x � 1

w2
D 0:

So if � and 	 are the eigenvalues of X , we have �	 D �w�2 and � C 	 D z
w
,

so that

w D 1p��	
and z D � C 	p��	

:

To recover a we note that the twist factor is aw�1, hence a D w�.

(4) For the Dubrovnik or Kauffman skein relation we have

˙ D z

�
˙

�
:

Multiplying by the crossing we see that,

˙ D z

�
˙ a�1

�
:

Subtracting a�1 times the first equation from the second and rearranging slightly
we see that the characteristic equation for the crossing operator is .x�a�1/.x2 �
zx ˙ 1/ D 0. Hence the eigenvalues are a�1, �, and 	, where � C 	 D z

and �	 D ˙1. Since a is the twist factor it is the inverse of the eigenvalue
corresponding to 1 (compare with case (2)).
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3.2. Knot polynomial identities forD4,D6,D8 andD10. Westate four theorems,
give two lemmas, and then give rather pedestrian proofs of the theorems. Snazzier
proofs appear in Section 4, as special cases of Theorem 4.18. In each of these
theorems, we relate two quantum knot invariants via an intermediate knot invariant
coming from D2n. You can think of these results as purely about quantum knot
invariants, although the proofs certainly useD2n.

Theorem 3.3 (Identities for n D 2).

Jsl.2/;.2/.K/jqDexp. 2�i
12

/
D 2JD4;P .K/ D 2.

Theorem 3.4 (Identities for n D 3).

Jsl.2/;.4/.K/jqDexp. 2�i
20

/
D 2JD6;P .K/ D 2Jsl.2/;.1/.K/jqDexp.� 2�i

10
/
.

Theorem 3.5 (Identities for n D 4).

Jsl.2/;.6/.K/jqDexp. 2�i
28 /

D 2JD8;P .K/

D 2HOMFLYPT.K/
�
exp

�
2�i

3

14

�
; exp

�2�i

14

�
� exp

�
� 2�i

14

��

D 2HOMFLYPT.K/
�
exp

�
2�i

5

7

�
; exp

�
� 2�i

14

�
� exp

�2�i

14

��
.

Remark 3.6. This is not just any specialization of the HOMFLYPT polynomial:

HOMFLYPT.K/
�
exp

�
2�i

3

14

�
; exp

�2�i

14

�
� exp

�
� 2�i

14

��
D HOMFLYPT.K/.q3; q � q�1/jqDexp. 2�i

14
/

D Jsl.3/;.1;0/.K/jqDexp. 2�i
14 /

and

HOMFLYPT.K/
�
exp

�
2�i

5

7

�
; exp

�
� 2�i

14

�
� exp

�2�i

14

��
D HOMFLYPT.K/.q4; q � q�1/jqDexp.� 2�i

14 /

D Jsl.4/;.1;0;0/.K/jqDexp.� 2�i
14

/

D �Jsl.4/;.1;0;0/.K/jqD� exp.� 2�i
14 /
.

(The last identity follows from the fact that every exponent of q in Jsl.4/;.1;0;0/.K/

is odd. We have included this form here to foreshadow §4.4 where we will give
an independent proof of this theorem, and in which this particular value of q D
� exp.�2�i

14
/ will spontaneously appear.)
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Theorem 3.7 (Identities for n D 5).

Jsl.2/;.8/.K/jqDexp. 2�i
36

/

D 2JD10;P .K/

D 2Dubrovnik.K/
�
exp

�
2�i

4

36

�
; exp

�
2�i

2

36

�
C exp

�
2�i

16

36

��
.

Remark 3.8. Again, this is not just any specialization of the Dubrovnik polynomial:

Dubrovnik.K/
�
exp

�
2�i

4

36

�
; exp

�
2�i

2

36

�
C exp

�
2�i

16

36

��
D Dubrovnik.K/.q7; q � q�1/jqD� exp. �2�i

18 /

D Jso.8/;.1;0;0;0/.K/jqD� exp. �2�i
18

/
:

For the proofs of these statements, we will need to know howP ˝P decomposes
in each D2n. The following formula was proved in [12].

P ˝ P Š
8<
:Q ˚ L n�4

2

lD0
f .4lC2/ when n is even,

P ˚ L n�3
2

lD0
f .4l/ when n is odd.

(14)

In particular,

P ˝ P Š Q inD4,

P ˝ P Š P ˚ f .0/ inD6,

P ˝ P Š Q ˚ f .2/ inD8, and

P ˝ P Š P ˚ f .0/ ˚ f .4/ inD10.

Further, we will need a lemma calculating the eigenvalues of the braiding.

Lemma 3.9. Suppose X is an idempotent in the set ff .2/; f .6/; : : : ; f .2n�6/; Qg if n

is even, or X 2 ff .0/; f .4/; : : : ; f .2n�6/; P g if n is odd. Then the eigenvalues for the
braiding in D2n are

RX�P ˝P D .�1/kqk.kC1/�2n.n�1/,

where 2k is the number of strands in the idempotent X.

Proof. The endomorphism space for P ˝ P is spanned by the projections onto the
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direct summands described above in eq. (14), and thus by the diagrams

X

P P

P P

k

2n � 2 � k

:

We calculate

X

P P

P P

D X

P P

P P

D X

P P

P P

:

Here there are negative half-twists on 2n � 2 strands below the top P s, and a positive
half-twist on 2k strands aboveX. The 2n�2�k strands connecting the two P s each
have a negative kink.

A positive half-twist on ` strands adjacent to an “uncappable” element, such as a
minimal projection, gives a factor of .is/`.`�1/=2, a negative half-twist on ` strands
adjacent to an uncappable element gives a factor of .�is�1/`.`�1/=2, and a negative
kink gives a factor of �is�3. Remembering q D s2, this shows that
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X

P P

P P

D .�1/kqk.kC1/�2n.n�1/
X

P P

P P

.

Thus
RX�P ˝P D .�1/kqk.kC1/�2n.n�1/:

Proof of Theorem 3.3. In D4, P ˝ P Š Q, so part one of Theorem 3.1 applies.
Furthermore dimP D 1, so the unframed invariant for the object P in D4 is trivial.
The first equation is just Theorem 2.5.

The same argument yields a previously known identity [15]. Consider Temperley–
Lieb at q D exp.2�i

6
/, and notice that f .1/ ˝ f .1/ Š f .0/ and dim f .1/ D 1. Thus

Jsl.2/;.1/.K/jqDexp. 2�i
6

/
D 1.

Proof of Theorem 3.4. In D6, we have that P ˝ P Š P ˚ f .0/, so part two of
Theorem 3.1 applies, and we know JD6;P .K/ is some specialization of the Jones
polynomial. Using Lemma 3.9, we compute the two eigenvalues as

Rf .0/�P ˝P D exp
�2�i

20

��12 D �
�
exp

�
2�i

�3

10

���3

and

RP �P ˝P D exp
�2�i

20

��6 D exp
�
2�i

�3

10

�
;

which is consistent with RP �P ˝P D � and Rf .0/�P ˝P D ���3. So, we conclude
that a D ��2 D � exp.�62�i

10
/ D exp.�2�i

10
/.

Proof of Theorem 3.5. In much the sameway, forD8 we haveP ˝P Š Q˚f .2/, so
JD8;P .K/ is some specialization of the HOMFLYPT polynomial. The eigenvalues
are

� D Rf .2/�P ˝P D exp
�
2�i

10

14

�
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and

	 D RQ�P ˝P D exp
�
2�i

1

14

�
;

so 1p���
D ˙ exp.2�i �2

14
/. The twist factor is � D exp.2�i �2

14
/, and so we get

JD8;P .K/ D HOMFLYPT.K/.a; z/ with either

a D exp
�
2�i

5

7

�
; z D exp

�
� 2�i

1

14

�
� exp

�
2�i

1

14

�

(taking the “positive” square root) or

a D exp
�
2�i

3

14

�
; z D exp

�
2�i

1

14

�
� exp

�
� 2�i

1

14

�

(taking the other).

Proof of Theorem 3.7. Again, in D10 we have P ˝ P Š P ˚ f .0/ ˚ f .4/, so
JD10;P .K/ is a specialization of either the Kauffman polynomial or the Dubrovnik
polynomial. The eigenvalues are

a�1 D Rf .0/�P ˝P D exp
�
2�i

�1

9

�
;

� D Rf .4/�P ˝P D exp
�
2�i

1

18

�

and

	 D RP �P ˝P D exp
�
2�i

4

9

�

Nowwe apply Theorem 3.2 (2) to these; we see thatRf .4/�P ˝P RP �P ˝P D �1,
so we are in the Dubrovnik case. We read off z D exp.2�i 1

18
/ C exp.2�i 4

9
/.

We have now shown that

Jsl.2/;.8/.K/jqDexp. 2�i
36

/
D 2JD10;P .K/

D 2Dubrovnik.K/
�
exp

�
2�i

4

36

�
; exp

�
2�i

2

36

�
C exp

�
2�i

16

36

��
:

To get the last identity, we note that

.q7; q � q�1/jqD� exp. �2�i
18 /

D
�
exp

�
2�i

4

36

�
; exp

�
2�i

16

36

�
C exp

�
2�i

2

36

��

and use the specialization appearing in eq. (12).

We remark that when 2n � 12, eq. (14) shows that P ˝ P has at least three
summands which are not isomorphic to f .0/, and thus Theorem 3.1 does not apply.
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3.3. Recognizing specializations of the G2 knot invariant. If V is an object in
a ribbon category such that V ˝ V Š 1 ˚ V ˚ A ˚ B then it is reasonable to
guess that the knot invariants coming from V are specializations of the G2 knot
polynomial. In particularD14 might be related toG2, since inD14 we haveP ˝P Š
f .0/ ˚ f .4/ ˚ f .8/ ˚ P by eq. (14). In this section we prove such a relationship
using results of Kuperberg [25]. Applying Kuperberg’s theorem requires some direct
but tedious calculations. In a work in progress, Snyder has shown that, outside of
a few small exceptions, all nontrivial knot invariants coming from tensor categories
with V ˝V Š 1˚V ˚A˚B come from theG2 link invariant, which would obviate
the need for these calculations. (The “nontrivial” assumption in the last sentence is
crucial as the standard representation of the symmetric group Sn or more generally
the standard object in Deligne’s category St, also satisfies V ˝V Š 1˚V ˚A˚B .)
In the following, by a trivalent vertex we mean a rotationally invariant map

V ˝ V ! V for some symmetrically self-dual object V. By a tree we mean a
trivalent graph without cycles (allowing disjoint components).

Theorem 3.10 ([25], Theorem 2.1). Suppose we have a symmetrically self-dual
object V and a trivalent vertex in a ribbon category C , such that trees with 5 or fewer
boundary points form a basis for the spaces InvC

�
V ˝k

�
for k � 5. Then the link

invariant JC ;V is a specialization of the G2 link invariant for some q.

Remark 3.11. The trivalent vertex inC is some scalar multiple of the trivalent vertex
in the G2 spider. Note that the G2 link invariant is the same at q and �q since all the
relations only depend on q2.

Lemma 3.12. Suppose thatC is a pivotal tensor category with a trivalent vertex such
that trees form a basis of Inv

�
V ˝k

�
for k � 3. Then

(1) trees are linearly independent in Inv
�
V ˝4

�
if and only if

� 2b4d 5 C b4d 6 � 2b3d 4t C .b2d 4 � b2d 6/t2 ¤ 0; (15)

(2) trees are linearly independent in Inv
�
V ˝5

�
if and only if

b20
�
d 15 � 10d 13 � 5d 12 C 65d 11 � 62d 10

�
C 5b19t

�
d 14 C d 13 � 7d 12 � d 11 C 10d 10

�
� 5b18t2

�
d 15 � 10d 13 � 3d 12 C 55d 11 � 61d 10

�
� 5b17t3

�
6d 14 C 7d 13 � 40d 12 � 41d 11 C 83d 10

�
C 5b16t4

�
2d 15 C 3d 14 � 15d 13 � 17d 12 C 72d 11 � 68d 10

�
C b15t5

�
2d 15 C 60d 14 C 60d 13 � 405d 12 � 485d 11 C 930d 10

�
� 5b14t6

�
3d 15 C 12d 14 � 8d 13 � 64d 12 C 3d 11 C 71d 10

�
� 5b13t7

�
5d 14 C 5d 13 � 44d 12 � 50d 11 C 96d 10

�
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C 5b12t8
�
3d 15 C 12d 14 � 6d 13 � 70d 12 � 17d 11 C 112d 10

�
� 5b11t8

�
2d 15 C 6d 14 � 5d 13 � 29d 12 C 4d 11 C 45d 10

�
C b10t10

�
2d 15 C 5d 14 � 5d 13 � 20d 12 C 10d 11 C 33d 10

�
¤ 0;

where d , b and t are defined by

D d; D b ; D t :

Proof. Compute the matrix of inner products between trees. Each of these inner
products can be calculated using only the relations for removing circles, bigons, and
triangles. If the determinant of this matrix is nonzero then the trees are linearly
independent.

ForD2n the single strand corresponds to P , and the trivalent vertex is

P

P P

6

6

;

which is rotationally invariant, because P is invariant under 180-degree rotation.
In order to apply Lemma 3.12 we must compute the values of b and t in 1

2
D14.

In order to do so we simplify the expression for the trivalent vertex.

Lemma 3.13.

P

P P

6

6

D P

f .12/ f .12/

6

6
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Proof. Expand f .12/ D P C Q and use the fact that P ˝ Q,Q ˝ P andQ ˝ Q do
not have nonzero maps to P .

Lemma 3.14. In 1
2
D14, using the above trivalent vertex, we have that d is the root of

x6 �3x5 �6x4 C4x3 C5x2 �x �1 which is approximately 4:14811, b is the root of
x6 �12x5 �499x4 �2760x3 �397x2 C276x�1which is approximately 0:00364276

and t is the root of x6 C 136x5 C 5072x4 C 53866x3 C 13132x2 C 721x C 1 which
is approximately �0:00142366.

Proof. The formula for d is just the dimension of P .
We use the alternate description of the trivalent vertex to reduce the calculation of

b and t to a calculation in Temperley–Lieb which we do using the formulas of [18].

D

P

P P

P

6

6
D

P

f .12/ f .12/

P

6

6

D

f .12/

f .12/ f .12/

f .12/

P

P

6

6
D b0P;

whereb0 is the coefficient for removing bigons labelledwithf .12/ in Temperley–Lieb.
The calculation for t is similar: we replace each trivalent vertex with a trivalent

vertex with a P on the outside and f .12/s in the middle. Then we reduce the inner
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triangle in Temperley–Lieb.

Theorem 3.15. For ` D �3 or 10,

Jsl.2/;.12/.K/jqDexp. 2�i
52 /

D 2JD14;P .K/ D 2JG2;V.10/
.K/jqDexp2�i `

26
.

Proof. Since we have dim Inv.P ˝0/ D dim Inv.P ˝2/ D dim Inv.P ˝3/ D 1 and
dim Inv.P / D 0, trees form a basis of Inv.P ˝k/ for k � 3. By Lemma 3.12 we see
that trees are linearly independent in Inv.P ˝4/ and Inv.P ˝5/. A dimension count
shows that trees form a basis for these spaces. Now we apply Theorem 3.10 to see
that the theorem holds for some q. We need to normalize the D14 trivalent vertex
for P before it satisfies theG2 relations, specifically multiplying it by the largest real
root of x12 � 645x10 � 10928x8 � 32454x6 � 4752x4 C 2x2 C 1. The quantities b

and t are both homogeneous of degree 2 with respect to scaling the trivalent vertex,
so they are both multiplied by the square of this quantity. We now solve the equations

d D q10 C q8 C q2 C 1 C q�2 C q�8 C q�10;

b D � �
q6 C q4 C q2 C q�2 C q�4 C q�6

�
;

t D q4 C 1 C q�4

and find that they have a four solutions, q D exp.2�i `
26

/with ` D ˙3; ˙10. Not all
of these give the correct twist factor, however. The twist factor forP is exp.2�i �10

26
/,

while the twist factor for the representation V.10/ of G2 is q12; these only agree for
` D �3 or 10. Since the identity holds for some q, and the knot invariant only depends
on q2, the identity must hold for each of these values.

3.4. Ribbon functors. The proofs of Theorems 3.1, 3.2, and 3.10 actually construct
ribbon functors from a certain diagrammatic category to the ribbon categoryC. Com-
bining this functor with the description of quantum group categories by diagrams in
[5], [4], and [1] one could prove the coincidences described in the introduction (that
is, Theorems 4.1, 4.2 and 4.3). To do this we need the following lemma.

Lemma 3.16. Suppose that C is a ribbon category such that C ss is premodular, that
D is a pseudo-unitary modular category, and that F is a dominant ribbon functor
C ! D . Then D Š C ssmodularize.

Proof. Since D is pseudo-unitary the functor must factor through the semisimplifi-
cation, and thus the result follows from the uniqueness of modularization.

In our casesD2n is the target category, and is certainly unitary and modular. The
source category is a category of diagrams (coming from Temperley–Lieb, Kauff-
man/Dubrovnik, HOMFLYPT, or the G2 spider). Dominance of the functor is a
simple calculation in the fusion ring ofD2n. If q is a large enough root of unity, then
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the semisimplification of that diagram category has been proven to be pre-modular
for each of these cases [4], [41], [5] except theG2 spider. Hence the argument of the
last subsection does not yet give a proof of theG2 coincidence. We give a completely
different proof in the next subsection.

3.5. Recognizing D2n modular categories. Earlier in this section we found knot
polynomial identities and coincidences ofmodular tensor categories by observing that
P ˝2 broke up in some particular way. In this sectionwework in the reverse direction.
The category 1

2
D2n has a small object f .2/ and f .2/ ˝ f .2/ Š 1 ˚ f .2/ ˚ f .4/.

If we are to have a coincidence of modular tensor categories D2n Š C then there
must be an object in C which breaks up the same way. Using the characterization
of the Kauffman and Dubrovnik categories above we can prove that D2n Š C by
producing this object. In the following theorem, we use this technique to show
1
2
D14 Š RepUexp.2�i `

26 /
.g2/, for ` D �3 or 10, sending P 7! V.10/. It is also

possible to prove Theorems 4.1, 4.2 and 4.3 by this technique, although we do not do
this.

Theorem 3.17. There is an equivalence of modular tensor categories

RepUexp.2�i `
26

/.g2/ Š 1

2
D14;

where ` D �3 or 10, sending f .2/ 7! V.02/. Under this equivalence we also have
P 7! V.10/.

Proof. Using the Racah rule for tensor products in RepUexp.2�i `
26

/.g2/ we see that

V ˝2
.02/

Š 1 ˚ V.01/ ˚ V.02/.
The eigenvalues for the square of a crossing can be read off from twist factors

R2
X�Y ˝Y D �X��2

Y :

The twist factors for the representations V.00/; V.01/ and V.02/ are 1; q24 and q60

respectively, so the corresponding eigenvalues for the crossing are q�60; 
1q�48 and

2q�30 for some signs 
1 and 
2. We thus compute, whether we are in the Kauffman
or Dubrovnik settings, that a D q60 and z D 
1q�48 C 
2q�30.
If we are in the Kauffman setting, we must have 
1
2q�78 D 1, so 
1 D 
2. We

now see the dimension formula d D aCa�1

z
� 1 can not be equal to dim.f .2// D

Œ3�
qDexp. 2�i

52
/
for any choice of 
1; 
2.

Hence we must be in the Dubrovnik setting where we have 
1 D �
2 and d D
a�a�1

z
C 1. Now the dimensions match up exactly when 
1 D �1 and 
2 D 1.

By §3.4 and Theorems 3.1 and 3.2 we have a functor from the Dubrovnik cat-
egory with a D exp.2�i 1

13
/ and z D exp.2�i 1

26
/ � exp.2�i �1

26
/ to the category

RepUexp.2�i `
26

/.g2/. Since the target category is pseudo-unitary [35], this func-
tor factors through the semisimplification of the diagram category, which is the
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premodular category RepUqDexp.2�i 1
52

/.so.3//. Since the target is modular [37]
and the functor is dominant (a straightforward calculation via the Racah rule in the
Grothendieck group of RepUexp.2�i `

26
/.g2/) this functor induces an equivalence be-

tween the modularization of RepUqDexp.2�i 1
52

/.so.3//, which is nothing but 1
2
D14,

and RepUexp.2�i `
26 /

.g2/.

The correspondence between simples shown in Figure 2, can be computed induc-
tively. Begin with the observation that f .2/ is sent to V.02/ by construction; after
that, everything else is determined by working out the tensor product rules in both
categories.

Figure 2. The positiveWeyl chamber forG2, showing the surviving irreducible representations
in the semisimple quotient at q D ˙ exp.2�i �3

26
/, and the correspondence with the even

vertices ofD14.

Note that q D ˙ exp.2�i �3
26

/ corresponds to the fractional level 1=3 of G2 (see
[37]), which has previously been conjectured to be unitary [35]. This theorem proves
that conjecture.
Finally, we note that the same method gives an equivalence between the category

RepU˙ exp.2�i �3
28

/.g2/ and the subcategory of RepUexp.2�i 1
28

/.sp.6// generated by
the representation V.012/, sending the representation V.12/ of g2 to V.012/. On the
g2 side, we have V ˝2

.12/
Š V.00/ ˚ V.01/ ˚ V.02/ with corresponding eigenvalues

1; exp.2�i 3
14

/ and � exp.2�i 4
14

/. On the sp.6/ side we have V ˝2
.012/

Š V.000/ ˚
V.010/ ˚ V.200/ with corresponding eigenvalues 1; exp.2�i 3

14
/ and � exp.2�i 4

14
/.

Thus both categories, which are each modular, are the modularization of the semisim-
plification of the Kauffman category at a D 1; z D exp.2�i 3

14
/ � exp.2�i 4

14
/. This

proves the conjecture of [35] that G2 at level 2=3 is also unitary.
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4. Coincidences of tensor categories

In the previous section we found identities between knot polynomials coming from (a
priori) different ribbon categories. In Section 3.4 we showed that these identitiesmust
come from unexpected functors between these ribbon categories. In this section we
explain how these coincidences of tensor categories follow from general theory. One
should think of the results of this section as quantum analogs of small coincidences
in group theory, such as Alt5 Š PSL2.F5/.
There are three important sources of unexpected equivalences (or autoequiva-

lences) between ribbon categories coming from quantum groups: coincidences of
small Dynkin diagrams, (deequivariantization related to) generalized Kirby–Melvin
symmetry, and level-rank duality.
There are sometimes coincidences betweenDynkin diagrams in different families.

For instance, the Dynkin diagrams A3 and D3 are equal, from which it follows that
sl.4/ Š so.6/ and the associated categories of representations of quantum groups are
equivalent too.
Kirby–Melvin symmetry relates link invariants coming from different objects

in the same category, when that category has an invertible object. Under certain
auspicious conditions, one can go further and deequivariantize by the invertible object.
Level-rank duality is a collection of equivalences relating SU.n/k with SU.k/n,

and relating SO.n/k with SO.k/n, where SU.n/k or SO.n/k refers to the semisimpli-
fied representation category of the rank-n quantum group, at a carefully chosen root
of unity which depends on the “level” k. In some sense, level-rank duality is more
natural in the context of U.n/ andO.n/, and new difficulties arise formulating level-
rank duality for the quantum groups SU.n/ and SO.n/. We give, in Theorem 4.17, a
precise statement for SO level-rank duality with n D 3 and k even. We will discuss
each of these three sources of unexpected equivalences in the following sections, and
then use them to prove the following results.

Theorem 4.1. There is an equivalence of modular tensor categories

1

2
D6 Š Repuni UsDexp. 7

10 2�i/.sl.2/ ˚ sl.2//modularize;

sending P 7! V.1/ � V.0/.

Theorem 4.2. There is an equivalence of modular tensor categories

1

2
D8 Š Repuni UsDexp. 5

14
2�i/.sl.4//modularize;

sending P 7! V.100/.
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Theorem 4.3. The modular tensor category 1
2
D10 has an order 3 automorphism,

fixing f .0/, f .4/, and f .6/, and permuting

P
� ��

Q�

��

f .2/
�

��

:

Finally we note that there are other coincidences of small tensor categories that do
not follow from these general techniques. In particular it would be very interesting
to better explain the coincidences involving G2.

4.1. Dynkin diagram coincidences and quantum groups. The definition of the
quantum group and its ribbon category of representations depend only on the Dynkin
diagram itself. For the quantum group and its tensor category this is obvious from the
presentation by generators and relations. For the braiding and the ribbon structure
this follows from the independence of choice of decomposition of the longest word
in the Weyl group in the multiplicative formula for the R-matrix.
In particular, every coincidence between Dynkin diagrams lifts to a statement

about the quantum groups. We will use thatD2 D A1 � A1, thatD3 D A3, and that
D4 has triality symmetry.
The reason these coincidences are useful is that they give two different diagram-

matic presentations of the same ribbon category. For example, the fact that B1 D A1

tells you that the even part of Temperley–Lieb can be described using the Dubrovnik
category, which we used implicity in Section 3.5. The only coincidence we do not
use is B2 D C2. Since B2 is the Dynkin diagram for so.5/, there is no relationship
via level-rank duality with theD2n planar algebras.

4.2. Kirby–Melvin symmetry. Kirby–Melvin symmetry relates link invariants from
one representation of a quantum group to link invariants coming from another rep-
resentation which is symmetric to it under a symmetry of the affine Weyl chamber.
This symmetry principle was proved in type A1 by Kirby and Melvin [21], in type
An by Kohno and Takata [23], and for a general quantum group by Le [27]. There
is another proof in the type A case, using conformal inclusions, due to Xu [47]. We
give a diagrammatic proof which generalizes this result to tensor categories which
might not come from quantum groups.
Suppose that C is a semi-simple ribbon category and that X is an object which

is invertible in the sense that X ˝ X� Š 1. Kirby–Melvin symmetry relates link
invariants coming froma simple objectA to invariants coming from the (automatically
simple) object A ˝ X .
The key observation is that, for any simple A, the objects A ˝ X and X ˝ A are

simple (since Hom.A ˝ X; A ˝ X/ D Hom.A ˝ X ˝ X�; A/), so the Hom-space
between them is one dimensional. Thus the over-crossing and under-crossing must
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be scalar multiples. Define cA by the following formula:

A X

D cA

A X

:

Note that c�1
A dimA dimX D SXA where S is the S-matrix. Using the formula

for the square of the crossing in terms of the ribbon element, we see that cA D �A�X

�A˝X
.

Theorem 4.4. Let C be a semi-simple ribbon category, A be a simple object in C , X
be a simple invertible object, and L a link with #L components. Then

JC ;A˝X .L/ D JC ;A.L/JC ;X .L/ D .dimX/#LJC ;A.L/:

Proof. First look at the framed version of the knot invariants. The framed A ˝ X

invariant comes from cablingL and labeling one of the two cablesA and the other one
X . We unlink the link labeled A from the link labeled X by successively changing
crossings where X goes under A to crossings where X goes over A. Each crossing
in the original link gives rise to two crossings between theX-labelled link and theA-
labelled link, and exactly one of these crossings needs to be switched. Furthermore,
the sign of the crossing that needs to be switched is the same as the sign of the original
crossing. See the following diagram for what happens at each positive crossing:

A ˝ X A ˝ X

D

A

X

X

A

D c�1
A

A

X

X

A

:

Hence, unlinking theX-labelled link from theA-labelled link picks up a factor of
c�writhe
A . At this point, the link labelled by A lies completely behind the link labelled
by X , and we can compute their invariants separately. Thus,

�writheA˝X JC ;A˝X .L/ D c�writhe
A �writheA JC ;A.L/�writheX JC ;X .L/:

Rearranging terms and writing cA in terms of twist factors, we see thatJC ;A˝X .L/ D
JC ;A.L/JC ;X .L/. The final equation follows from Theorem 3.1.

Note that dimX above has to be 1 or�1, since dimX D dimX� andX˝X� D 1.
Suppose that you have a finite ribbon category whose fusion graph is symmetric.

Take X to be any projection which is symmetric in the fusion graph with 1. Then
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it is easy to see that its Frobenius–Perron dimension dimFP .X/ D 1, and thus that
X is invertible. Hence, any time the fusion graph has a symmetry so do the knot
invariants.
If X gives a Kirby–Melvin symmetry, then if you are lucky you can set X Š 1

using the deequivariantization procedure. Furthermore, even if you can not deequiv-
ariantize immediately (for example, if dimX ¤ 1) you might still be able to modify
the category C is some mild way (changing the braiding or changing the pivotal
structure, neither of which changes the link invariant significantly) and then be able
to deequivariantize. We give three examples of this.
Consider RepUqD� exp.�2�i 1

10 /.sl.2//. The representation V3 is invertible and
thus gives a Kirby–Melvin symmetry. We can make this monoidal category into a
ribbon category in many ways: first we can choose s D q

1
2 in two different ways;

second we can choose either the usual pivotal structure or the unimodal one. For
each of these four choices we check each of the conditions needed to define the
deequivariantization C==V3 (transparency, dimension 1, and twist factor 1).

V3 transparent dim V3 �V3

RepUsDexp.2�i 1
5 /.sl.2// Yes -1 1

RepUsDexp.2�i 7
10 /.sl.2// No -1 -1

Repuni UsDexp.2�i 1
5 /.sl.2// No 1 -1

Repuni UsDexp.2�i 7
10

/.sl.2// Yes 1 1

Let Reproot Uq.g/ denote the full subcategory of representations whose highest
weights are in the root lattice. (Notice that this ribbon category only depends on q,
not on a choice of s D q

1
L . Furthermore, it does not depend on the choice of ribbon

element.)

Lemma4.5. Reproot UqD� exp.�2�i 1
10 /.sl.2// Š Repuni UsDexp.2�i 7

10 /.sl.2//modularize.

Proof. We restrict the deequivariantization

F W Repuni UsDexp.2�i 7
10 /.sl.2// ! Repuni UsDexp.2�i 7

10 /.sl.2//==V3

to Reproot. Since ˝V3 acts freely on the isomorphism classes of simple objects and
since every orbit contains exactly one object in Reproot the restriction of this functor
is an equivalence by Lemma 1.6.

We will need two similar results, for RepUqD� exp.�2�i 1
10 /.sl.2/ ˚ sl.2// and for

RepU
qD� exp.� 2�i

14
/
.sl.4//.

In RepUqD� exp.�2�i 1
10 /.sl.2/ ˚ sl.2// we can consider the root representations,

those of the formVa �Vb with both a and b even, as well as the vector representations,
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those Va �Vb with a Cb even. We call these the vector representations because they
become the vector representations under the identification sl.2/ ˚ sl.2/ Š so.4/.

Lemma 4.6.

Reproot UqD� exp.�2�i 1
10

/.sl.2/ ˚ sl.2//

Š Repvector UqD� exp.�2�i 1
10

/.sl.2/ ˚ sl.2//==V3 � V3

Š Repuni UsDexp.2�i 7
10

/.sl.2/ ˚ sl.2//modularize:

Proof. We make the abbreviations

R D Reproot UqD� exp.�2�i 1
10 /.sl.2/ ˚ sl.2//;

V D Repvector UqD� exp.�2�i 1
10 /.sl.2/ ˚ sl.2//;

U D Repuni UsDexp.2�i 7
10

/.sl.2/ ˚ sl.2//:

It is easy to check that R and V are not affected by either the choice of s (recall
in this situation s is a square root of q, required for the definition of the braiding),
or changing between the usual and the unimodal pivotal structures. Thus we have
inclusions

R � V � U:

The invertible objects in U are the representations V0 � V0; V0 � V3; V3 � V0 and
V3 � V3. For any choice of s and either pivotal structure, V3 � V3 is transparent. The
representations V0 � V3 and V3 � V0 are transparent only with s D exp.2�i 7

10
/ and

the unimodal pivotal structure. Under tensor product, the invertible objects form the
groupZ=2Z � Z=2Z. The invertible objects in V are V0 � V0 and V3 � V3, forming
the group Z=2Z.
We have

.Va � Vb/ ˝ .V0 � V3/ Š Va � V3�b;

.Va � Vb/ ˝ .V3 � V0/ Š V3�a � Vb;

.Va � Vb/ ˝ .V3 � V3/ Š V3�a � V3�b;

and so see that the action of the group of invertible objects is free. EachZ=2Z�Z=2Z
orbit onU contains exactly one object fromR, and each Z=2Z orbit on V contains
exactly one object from R. See Figure 3.
Thus both equivalences in this lemma are deequivariantizations, by applying

Lemma 1.6 to the inclusionsR � U and V � U.

In RepU
qD� exp.� 2�i

14
/
.sl.4// we can again consider two subcategories, the root

representations and the vector representations. The root representations of sl.4/ are
those whose highest weight is an N-linear combination of .2; �1; 0/, .�1; 2; �1/,
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(a) (b)

Figure 3. (a) The 4-fold quotient of the Weyl alcove and (b) the 2-fold quotient of the Weyl
alcove, with vector representations marked. Lemma 4.6 identifies the two resulting 4-object
categories.

.0; �1; 2/ in N3. They form an index 4 sublattice of the weight lattice. The Weyl
alcove for sl.4/ at a 14-th root of unity consists of those weights .a; b; c/ 2 N3 with
aCbCc � 3, and so the relevant root representations areV.000/; V.101/; V.210/; V.012/

and V.020/. The vector representations Rep
vector U

qD� exp.� 2�i
14

/
.sl.4// are those that

become vector representations under the identification sl.4/ Š so.6/ (this is A3 D
D3), namely those V.abc/ with a C c even. These form an index 2 sublattice of the
weight lattice, containing the root lattice. Both sublattices are illustrated in Figure 4;
hopefully having these diagrams in mind will ease later arguments.

Lemma 4.7.

Reproot U
qD� exp.� 2�i

14 /
.sl.4// Š Repvector U

qD� exp.� 2�i
14 /

.sl.4//==V.030/

Š Repuni UsDexp.2�i 5
14

/.sl.4//modularize:

Proof. We make the abbreviations

R D Reproot U
qD� exp.� 2�i

14 /
.sl.4//;

V D Repvector U
qD� exp.� 2�i

14
/
.sl.4//;

U D Repuni UsDexp.2�i 5
14 /.sl.4//:

It is easy to check that R and V are not affected by either the choice of s (recall in
this situation s is a 4-th root of q, required for the definition of the braiding), or any
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(a) (b)

Figure 4. The sl.4/Weyl alcove at a 14-th root of unity, showing (a) the vector representation
sublattice and (b) the root representation sublattice.

variation of pivotal structure. Thus we have inclusions

R � V � U:

The invertible objects in U are the representations V.000/; V.300/; V.030/ and V.003/.
For any choice of s and pivotal structure, V.030/ is transparent. The representations
V.300/ and V.003/ are transparent only with s D exp.2�i 5

14
/ and the unimodal pivotal

structure. Under tensor product, the invertible objects form the group Z=4Z. The
invertible objects in V are V000 and V030, forming the group Z=2Z.
The action of the group of invertible objects is free, and shown in Figure 5. Each

Z=4Z orbit on U contains exactly one object from R, and each Z=2Z orbit on V

contains exactly one object fromR. (See Figure 6.)
Thus both equivalences in the Lemma are de-equivariantizations, by applying

Lemma 1.6 to the inclusionsR � U and V � U.

Finally, the usual statement in the literature of generalized Kirby–Melvin sym-
metry involves changing the label of only one component on the link. This can be
proved in a completely analogous way to the result above. We recall the statement
here.
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(a)

(b)

(c)

Figure 5. The action of tensor product with an invertible object. (a) _ ˝ V.300/ and (c)
_˝ V.003/ act by orientation reversing isometries, while (b) _˝ V.030/ acts by a � rotation.
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(a) (b)

Figure 6. (a) The 4-fold quotient of the Weyl alcove and (b) the 2-fold quotient of the Weyl
alcove, with vector representations marked. Lemma 4.7 identifies the two resulting 5-object
categories.

Theorem 4.8. Let JA1;:::;Ak
.L/ be the value of a framed link L (with components

L1; : : : ; Lk ), labeled by simple objectsA1; : : : ; Ak . Suppose now thatA1 is replaced
by A1 ˝ X (with X invertible ). Then

JA1˝X;A2;:::;Ak
.L/ D dimX � c

writhe.L1/
X �

Y
iD1;:::;k

c
linking.L0

1
;Li /

Ai
� JA1;:::;Ak

.L/;

where L0
1 is a copy of L1 running parallel to L1 in the blackboard framing.

4.3. Level-rank duality. Level-rank duality is a collection of ideas saying that the
semisimplified representation theory of a quantum group at a certain root of unity
is related to that of a different quantum group, at a (potentially) different root of
unity. The rank of a quantum group in this setting is the dimension of its natural
representation (i.e. the n in so.n/ or sl.n/). The level describes the root of unity. The
name “level” comes from the connection between quantum groups at roots of unity
and projective representations of loop groups at a fixed level. Here the relationship
between the root of unity and the level is given by the formula

k D l

2D
� Lh;
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where l is the order of the root of unity, D is the lacing number of the quantum
group, and Lh is the dual Coxeter number. See Table 1 for the values for each simple
Lie algebra. Notice that not all roots of unity come from loop groups under this
correspondence.

Table 1. Combinatorial data for the simple Lie algebras.

type Lie group rank D Lh L
An sl.n C 1/ n 1 n C 1 n C 1

Bn even so.2n C 1/ n 2 2n � 1 1
Bn odd so.2n C 1/ n 2 2n � 1 2

Cn sp.2n/ n 2 n C 1 1

Dn even so.2n/ n 1 2n � 2 2
Dn odd so.2n/ n 1 2n � 2 4

En E6j7j8 6; 7; 8 1 12; 18; 30 3; 2; 1

F4 F4 4 2 9 1

G2 G2 2 3 4 1

Nonetheless there are versions of level-rank duality for quantum groups at roots
of unity not corresponding to loop groups. In this context what the “level” measures
is which quantum symmetrizers vanish, while the rank measures which quantum
antisymmetrizers vanish. At the level of combinatorics, the rank gives the bound on
the number of rows in Young diagrams, while the level gives a bound on the number
of columns, and duality is realized by reflecting Young diagrams thus interchanging
the roles of rank and level.
We want statements of level-rank duality that give equivalences of braided tensor

categories. In order to get such precise statements several technicalities appear. First,
level-rank duality concernsSO, not Spin, soweonly look at the vector representations.
Second, there is a subtle relationship between the roots of unity you need to pick on
each side of the equivalence. In particular, if the root of unity on the left side is
of the form exp.2�i

m
/ then the root of unity on the right side typically will not be

of that form. Finally, level-rank duality is most natural as a statement about U and
O , not about SU and SO. Getting statements about SU and SO requires considering
modularizations. (It may seem surprising that this is even possible, since we know
that Rep.U�.`/.so.n/// is already a modular tensor category [37], Theorem 6. When
we restrict to the subcategory of vector representations, however, we losemodularity.)
We found the papers [5] (on the SU case) and [4] (on the SO and Sp cases) to be

exceedingly useful, and we will give statements and proofs that closely follow their
methods. Level-rank duality for SO.3/–SO.4/ appears in the paper [9], where it is
used to prove Tutte’s golden identity for the chromatic polynomial. For our particular
case of level-rank duality involving so3 and the D2m subfactor planar algebra, see
the more physically minded [33]. For some more background on level-rank duality,
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see [36], [11], [5], [47] for the SU cases, [24] for level-rank duality at the level of
3-manifold invariants and [46] for loop groups.
As explainedbyBeliakova andBlanchet, level-rankduality is easiest to understand

in a diagrammatic setting, where it says that U.n/k Š U.k/n and O.n/k Š O.k/n,
with U and O being interpreted as categories of tangles modulo either the HOM-
FLYPT or Dubrovnik relations. The equivalences come from almost trivial symme-
tries of the relations. The reason this modularization is necessary is that to recover
SO from O , we need to quotient out by the determinant representation. Thus, to
translate an equivalenceO.n/k Š O.k/n into something like SO.n/k Š SO.k/n, we
find that in each category there is the “shadow” of the determinant representation in
the other category, which we still need to quotient out. See Figure 7 for a schematic
diagram illustrating this.

O.n/k D O.k/n

detnŠ1

����
��
��
��
��
��
��
��
��
�

detkŠ1

���
��

��
��

��
��

��
��

��
��

SO.n/k

detkŠ1

���
��

��
��

��
��

��
��

��
�

SO.k/n

detnŠ1

����
��
��
��
��
��
��
��
��

SO.n/mod
k

Š SO.k/modn

Figure 7. A schematic description of SO level-rank duality, suppressing the details of the actual
roots of unity appearing.

Here is the precise statement of level-rank duality which we will be using. Define

`n;k D

8̂<
:̂

2.n C k � 2/ if n and k are even,

4.n C k � 2/ if n is odd and k is even,

n C k � 2 if n is even and k is odd.

Theorem 4.9 (SO level-rank duality). Suppose n; k � 3 are not both odd. Suppose
q1 is a primitive root of unity with order `n;k . Choose q2 so that

�1 D

8̂<
:̂

q1q2 if n and k are both even,

q2
1q2 if n is odd and k is even,

q1q2
2 if n is even and k is odd.
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As ribbon categories, there is an equivalence

Repvector.UqDq1
.so.n///==Vke1

Š Repvector.UqDq2
.so.k///==Vne1

:

Remark 4.10. When both n and k are odd, there is some form of level-rank duality in
terms of the Dubrovnik skein relation, pursued in [4] where it is called theBn;�k case.
However it does not seem possible to express this case purely in terms of quantum
groups.

Remark 4.11. Notice that the order of q2 is always `k;n. When n and k are both
even then the roots of unity on both sides come from loop groups. However, when n

or k is odd the roots of unity are not the ones coming from loop groups.

Proof. We begin by defining a diagrammatic categoryO.t; w/ and then seeing that a
certain Z=2Z � Z=2Z quotient can be realised via two steps of deequivariantization
in two different ways. In the first way, after the initial deequivariantization we obtain
a category equivalent to Repvector.Uq1

.so.n///, while in the second way we obtain a
category equivalent to Repvector.Uq2

.so.k/// instead. The second steps of deequiv-
ariantizations give the categories in the statement above; since both are the modular
quotient of O.t; w/ for a certain t and w, they are equivalent.

Definition 4.12. The category zO.t; w/ is the idempotent completion of the BMW
category (the quotient of the tangle category by the Dubrovnik skein relations) with

a D wt�1;

z D w � w�1:

The category O.t; w/ is the quotient of zO.t; w/ by all negligible morphisms.

Now define wn;k by

wn;k D
´

q1 if n is even,

q2
1 if n is odd.

Note the wn;k is a root of unity of order 2.n C k � 2/ when k is even and of order
n C k � 2 with k is odd. The hypotheses of the theorem then ensure that

�w�1
n;k D

´
q2 if k is even,

q2
2 if k is odd.

Lemma 4.13. For n; k 2 N and not both odd, the categories O.n; wn;k/ and
O.k; �w�1

n;k
/ are equivalent.
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Proof. In O.k; �w�1
n;k

/ we have z D �w�1
n;k

C wn;k , which is the same value of z as

appears in O.n; wn;k/. Similarly, in O.k; �w�1
n;k

/ we have

a D .�w�1
n;k/k�1

D
´

�w1�k
n;k

D wnCk�2C1�k
n;k

if k is even

w1�k
n;k

D wnCk�2C1�k
n;k

if k is odd

D wn�1
n;k

and so the same values of a appear in both categories; thus they actually have exactly
the same definition.

Lemma 4.14. When n 2 N, the category O.n; w/ has a transparent object with
quantum dimension 1, which we will call det n. Further, if w D wn;k , there is
another such object det k coming fromO.k; �w�1/ via the equivalence of the previous
lemma. These transparent objects form the group Z=2Z � Z=2Z D f1; det n; det k;

det n ˝ det kg under tensor product.

Proof. See [4], Lemmas 4.1.ii and 4.3.

Write `.q/ for the order of a root of unity q, and define

`0.q/ D
´

`.q/ if 2 − `.q/;

`.q/=2 if 2 j `.q/.

Lemma 4.15. We can identify the deequivariantizations as

Repvector.Uq.so.n/// Š
´

O.n; q/== det n if n is even,

O.n; q2/== det n if n is odd,

for any q, as long as if q is a root of unity, when n is even, `0.q/ � n � 2, and, when
n is odd, `0.q/ � 2.n � 2/ when 2 j `0.q/ and `0.q/ > n � 1 when 2 − `0.q/.

In particular when q D q1 we obtain

O.n; wn;k/== det n Š Repvector.Uq1
.so.n///

and, further,

O.n; wn;k/== det k Š Repvector.Uq2
.so.k///:

Moreover, in O.n; wn;k/== det n, we have det k Š Vke1
and, in O.n; wn;k/== det k ,

we have det n Š Vne1
.
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Proof. The first equivalence follows from the main results of [41]. We give a quick
sketch of their argument. The fact that the eigenvalues of the R-matrix acting on
the standard representation of so.n/ are q�2nC2; �q�2 and q2 when n is odd, or
q�nC1; �q�1 and q when n is even ensures that this is a functor from zO.n; q2/ or
zO.n; q/, by Theorems 3.1, 3.2 and §3.4. One then checks that the functor factors
through the deequivariantization. Finally, by computing dimensions of Hom-spaces,
one concludes that the functor must kill all negligibles and must be surjective.
One can check that `0.q1/ D n C k � 2 when n is even or 2.n C k � 2/ when n

is odd, and so the required inequalities always hold for so.n/.
The last equivalence follows from the first and Lemma 4.13:

O.n; wn;k/== det k Š O.k; �w�1
n;k/== det k Š Repvector.Uq2

.so.k///.

Here we check that `0.q2/ D n C k � 2 when k is even or 2.n C k � 2/ when k is
odd, satisfying the inequalities for so.k/.

The proof of the theorem is now immediate: we write O.n; wn;k/==fdet n; det kg
in two different ways, obtaining

O.n; wn;k/==fdet n; det kg D O.n; wn;k/== det n== det k (16)

Š Repvector.Uq1
.so.n///==Vke1

and

O.n; wn;k/==fdet n; det kg D O.n; wn;k/== det k== det n

Š Repvector.Uq2
.so.k///==Vne1

:

Remark 4.16. One can easily verify an essential condition, that the twist factor for
Vke1

inside Repvector.U�.`n;k/.so.n/// is C1, from the formulas for the twist factor
given in §1.1.4.

Finally, we specialize to the case n D 3, where the D2m planar algebras appear.

Theorem 4.17 (SO.3/–SO.k/ level-rank duality). Suppose k � 4 is even. There is
an equivalence of ribbon categories

1

2
DkC2 Š Repvector.U

qD� exp.� 2�i
2kC2

/
.so.k///==V3e1

sending the tensor generator W2 of
1
2
DkC2 to V2e1

and P to V2e k
2

�1
.

This follows immediately, from the description in §2.1 of the even part ofD2n as
1
2
D2n Š Repvector.U

qDexp. 2�i
8n�4

/
.so.3//modularize, and the general case of level-rank

duality.
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4.4. Applications

4.4.1. Knot invariants. Combining SO.3/–SO.k/ level-rank duality for even k � 8

with Kirby–Melvin symmetry, we obtain the following knot polynomial identities.

Theorem 4.18 (Identities for n � 3). For all knots K,

Jsl.2/;.2n�2/.K/jqDexp. 2�i
8n�4 /

D 2JD2n;P .K/

D 2Jso.2n�2/;2en�2
.K/jqD� exp.� 2�i

4n�2
/

(17)

D .�1/1Cd n
2 e2Jso.2n�2/;en�2

.K/jqD� exp.� 2�i
4n�2 /

and, for all links L,

Jsl.2/;.2/.L/jqDexp. 2�i
8n�4 /

D JD2n;W2
.L/

D Jso.2n�2/;2e1
.L/jqD� exp.� 2�i

4n�2
/

D Jso.2n�2/;e1
.L/jqD� exp.� 2�i

4n�2
/
:

(The representation of so.2n � 2/ with highest weight en�1 is one of the spinor
representations.)

Proof. The first two identities are immediate applications of Theorems 2.5 and 4.17.
For the next identity, we use the statement ofKirby–Melvin symmetry inTheorem 4.4,
with A D V2en�2

and X D V3en�2
. We calculate that dimX D .�1/1Cd n

2 e by the
following trick. At q D exp. 2�i

4n�2
/ this dimension must be C1, since it is the

dimension of an invertible object in a unitary tensor category. At q D exp.� 2�i
4n�2

/ it
is the same, since quantum dimensions are invariant under q 7! q�1, and finally we
can calculate the sign at q D � exp.� 2�i

4n�2
/ by checking the parity of the exponents

in the Weyl dimension formula. This implies that X ˝ X� Š V0. Using the Racah
rule, we findA˝X D Ven�2

. Nowwe do the same computation again withA D V2e1

and X D V3e1
. This case is simpler since dim V3e1

D 1.

Remark 4.19. We found keeping all the details of this theorem straight very dif-
ficult, and we’d encourage you to wonder if we eventually got it right. We had
some help, however, in the form of computer computations. You too can readily
check the details of this theorem on small knots and links, assuming you have ac-
cess to Mathematica. Download and install the KnotTheory` package from
the website http://katlas.org. This includes with it the QuantumGroups` pack-
age written by Morrison, which, although rather poorly documented, provides the
function QuantumKnotInvariant. This function can in principle compute any
knot invariant coming from an irreducible representation of a quantum group, but in
practice runs into time and memory constraints quickly. The explicit commands for

http://katlas.org
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checking small cases of the above theorem are included as a Mathematica notebook
aux/check.nb with the arXiv source of this paper.

Note that the n D 5 case of eq. (17) in Theorem 4.18 reproduces the statement of
Theorem 3.7.
The n D 3 and n D 4 cases of Theorem 4.18 also reproduce previous results.

The Lie algebra so.2n � 2/ has Dynkin diagram Dn�1, with the spinor represen-
tations corresponding to the two extreme vertices. At n D 4, Dn�1 becomes the
Dynkin diagram A3, and the spinor representations become the standard and dual
representations; this explains Theorem 3.5. See Theorem 4.2 and Figure 9 for a full
explanation.
At n D 3, Dn�1 becomes A1 � A1, and the spinor representations become

.standard/ � .trivial/ and .trivial/ � .standard/, giving the case described in Theo-
rem 3.4. See Theorem 4.1 and Figure 8 for a full explanation.

4.4.2. Coincidences

Proof of Theorem 4.1. We want to construct an equivalence

1

2
D6 Š Repuni UsDexp. 7

10
2�i/.sl.2/ ˚ sl.2//modularize;

sending P 7! V.1/ � V.0/.
First, we recall that the k D 4 case of SO.3/ level-rank duality (Theorem 4.17)

gave us the equivalence

1

2
D6 Š Repvector U

qDexp. 2�i
20

/
.so.3//modularize

Š Repvector U
qD� exp.� 2�i

10
/
.so.4//==V3e1

:

Since the Dynkin diagrams D2 and A1 � A1 coincide we can replace so.4/ by
sl.2/ ˚ sl.2/. The representation V3e1

of so.4/ is sent to V3 � V3, so we have

1

2
D6 Š Repvector U

qD� exp.� 2�i
10

/
.sl.2/ ˚ sl.2//==V3 � V3:

Next, by Lemma 4.6 we can replace this 2-fold quotient of the vector representations
with a 4-fold quotient of the entire representations category of sl.2/ ˚ sl.2/, as long
as we carefully choose s and the unimodal pivotal structure. Figure 8 shows the
identification between the objects of 1

2
D6 and the corresponding objects in the 4-fold

quotient.

Remark 4.20. Theorem 3.4 is now an immediate corollary.

http://arxiv.org/abs/1003.0022
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Figure 8. The simple objects of 1
2

D6 may be identified with the representatives of the
vector representations in the quotient RepU

qD� exp.� 2�i
10 /

.so.4//==V3e1
, via level-rank du-

ality. We can replace so.4/ here with sl.2/ ˚ sl.2/. The object V3e1
becomes V3 � V3.

The circles above indicate the vector representations, labelled by the corresponding ob-
jects of 1

2
D6. Next we can apply Lemma 4.6 to realize 1

2
D6 as the modularization of

Repuni U
sDexp. 7

10 2�i/
.sl.2/ ˚ sl.2//. In this modularization, we quotient out the four cor-

ner vertices. Note that P is sent to V1 � V0, and in particular the knot invariant coming from
P recovers a specialization of the Jones polynomial.

Remark 4.21. The coincidence of Dynkin diagrams D2 D A1 � A1 also implies
that the D2 specialization of the Dubrovnik polynomial is equal to the square of the
Jones polynomial:

Dubrovnik.K/.q3; q � q�1/ D J.K/.q/2:

This was proved by Lickorish [29], Theorem 3, without using quantum groups.

Corollary 4.22. Looking at the object f .2/ 2 1
2
D6, we have

Jsl.2/;.2/.K/jqDexp. 2�i
20

/
D Jsl.2/;.1/.K/2

jqDexp.� 2�i
10

/
:

This identity is closely related to Tutte’s golden identity, cf. [9].

Proof of Theorem 4.2. We want to construct an equivalence

1

2
D8 Š Repvector U

qD� exp.� 2�i
14

/
.so.6//==.V3e1

/

Š Repuni UsDexp. 5
14 2�i/.sl.4//modularize;
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sendingP to a spinor representation of so.6/ and toV.100/, the standard representation
of sl.4/.
The first step is the k D 6 special case of Theorem 4.17 on level-rank duality.

The second step uses the coincidence of Dynkin diagramsD3 D A3 to obtain

Repvector U
qD� exp.� 2�i

14 /
.so.6/==.V3e1

/ Š Repvector U
qD� exp.� 2�i

14 /
.sl.4//==V.030/

after which Lemma 4.7 gives the desired result. For more details see Figure 9.

Remark 4.23. Theorem 3.5 is now an immediate corollary.

Proof of Theorem 4.3. We want to show that 1
2
D10 has an order 3 automorphism

P
� ��

Q�

��

f .2/
�

��

:

Again, we first apply the k D 8 special case of level-rank duality (Theorem 4.17)
to see there is a functor

L W 1

2
D10 ��!Š Repvector U

qD� exp.� 2�i
18 /

.so.8//==V.3000/;

with f .2/ corresponding to V.1000/ andP to V.0002/. In an exactly analogous manner
as in Lemmas 4.6 and 4.7, we can identify this two-fold quotient of the vector rep-
resentations of so.8/ with a four-fold quotient of all the representations in the Weyl
alcove. That is, there is a functor

K W Repvector U
qD� exp.� 2�i

18
/
.so.8//==V.3000/

��!Š Repuni U
qD� exp.� 2�i

18
/
.so.8//==.V.3000/; V.0030/; V.0003//:

The triality automorphism of the Dynkin diagram D4 gives an automorphism T

of this category. A direct computation shows that T induces a cyclic permutation of
P , Q, and f .2/ in 1

2
D10. For example,

L�1.K�1.T .K.L.f .2////// D L�1.K�1.T .V.1000////

D L�1.K�1.V.0001/// D L�1.K�1.V.0001/ ˝ V.0003///

D L�1.K�1.V.0002/// D L�1.V.0002// D P

See Figures 10 and 11 for more details. It may be that this automorphism of 1
2
D10

is related to the exceptional modular invariant associated to sl.2/ at level 16 described
in [44].
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Figure 9. We can realise 1
2

D8 as the vector representations in the 2-fold quotient
RepU

qD� exp.� 2�i
14 /

.sl.4//==.V.030//, via level-rank duality and the A3 D D3 coincidence
of Dynkin diagrams. The figure shows a fundamental domain for the 2-fold quotient. The
objects of 1

2
D8 are shown circled (with fainter circles in the other domain showing their other

representatives). Now we can apply Lemma 4.7, and instead identify these vector represen-
tations with representations in the 4-fold quotient Repuni U

sDexp.2�i 5
14 /

.sl.4//modularize of the
unimodal representation theory of sl.4/, at a particular choice of s. These identifications are
shown as arrows. Note that P is sent to V.100/, the standard representation of sl.4/. In partic-
ular, the knot invariant coming from P matches up with a specialization of the HOMFLYPT
polynomial.
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Figure 10. We can realise 1
2

D10 as the vector representations in the 2-fold quotient
Repvector U

qD� exp.� 2�i
18 /

.so.8//==.V.3000//, via level-rank duality. TheWeyl alcove for so.8/

at q D � exp.� 2�i
18

/ consists of those V.abcd/ such that a C 2b C c C d � 3. In particular,
b D 0 or b D 1. So we draw this alcove as two tetrahedra, the V?0?? tetrahedron, and the
V?1?? tetrahedron. The vector representations are those V.abcd/ with c C d even. We show
a fundamental domain for the modularization involution ˝V.3000/, which acts on the V?0??

tetrahedron by � rotation about the line joining 3
2

000 and 00 3
2

3
2
and on the V?1?? tetrahe-

dron by � rotation about the line joining 1
2

100 and 01 1
2

1
2
. The tensor category of 1

2
D10 is

equivalent to the tensor subcategory of thismodularization consisting of images of vector repre-
sentations, with the equivalence sending f .0/ 7! V.0000/, f .2/ 7! V.1000/, f .4/ 7! V.0011/,
f .6/ 7! V.0100/, P 7! V.0020/ and Q 7! V.1020/. The blue arrows shows the action of
the triality automorphism V.abcd/ 7! V.cbda/ for so.8/ on the image of 1

2
D10. This ac-

tion is computed via the equivalence with the 4-fold quotient of all representations, shown in
Figure 11. Notice that under this automorphism P is sent to the standard representation. In
particular, the knot invariant coming fromP matches up with a specialization of the Kauffman
polynomial.
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Figure 11. The action of the D4 triality automorphism on the four-fold quotient
RepU

qD� exp.� 2�i
18 /

.so.8//==.V.3000/; V.0030/; V.0003//:
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