Erratum to: "A categorification of quantum sl(n)"

[Quantum Topol. 1 (2010), 1–92]

Mikhail Khovanov and Aaron D. Lauda

We thank Marco Mackaay, Marko Stošić and Pedro Vaz for pointing out a sign error in Lemma 6.4. It should read as follows:

Lemma 6.4. For $i, j \in I$ with $i \neq j$

$$\Gamma\left(\stackrel{i}{\downarrow}\stackrel{j}{\downarrow}\stackrel{j}{\downarrow}\lambda+i_{X}\right)=\begin{cases} H_{\underline{k}^{+j}}\otimes_{H_{\underline{k}}}H_{\underline{k}^{+i}}\rightarrow H_{+i+j}\underline{k}^{+i}\otimes_{H_{+i+j}\underline{k}}H_{+i}\underline{k}^{+j},\\ \xi_{j}^{\alpha_{1}}\otimes\xi_{i}^{\alpha_{2}}\mapsto\xi_{i}^{\alpha_{2}}\otimes\xi_{j}^{\alpha_{1}},\\ \\ \Gamma\left(\lambda+i_{X}\stackrel{i}{\downarrow}\stackrel{j}{\downarrow}\right)=\begin{cases} H_{+j+i+i}\underline{k}}\otimes_{H_{+j+i}\underline{k}}H_{+j}\underline{k}^{+i}\rightarrow H_{\underline{k}^{+i}}\otimes_{H_{\underline{k}}}H_{\underline{k}^{+j}},\\ \xi_{j}^{\alpha_{1}}\otimes\xi_{i}^{\alpha_{2}}\mapsto\begin{cases} -\xi_{i}^{\alpha_{2}}\otimes\xi_{j}^{\alpha_{1}} & \text{if }\stackrel{j}{\circ}\longrightarrow\stackrel{i}{\circ},\\ \xi_{i}^{\alpha_{2}}\otimes\xi_{j}^{\alpha_{1}} & \text{otherwise}. \end{cases}$$

These bimodule maps have degree zero for all $i, j \in I$ and all weights λ .

In the proof of Lemma 6.4 the sentence "The case when i = j appears in [21] so we will omit this case here" should be removed.

Definition 4.1 in Section 4.2, p. 58–59, should be changed to:

Definition 4.1. $\mathcal{U}_{\to}(\mathfrak{sl}_n)$ is a additive \mathbb{R} -linear 2-category with translation. The 2-category $\mathcal{U}_{\to}(\mathfrak{sl}_n)$ has objects, morphisms, and generating 2-morphisms as described in Definition 3.1, but some of the relations on 2-morphisms are modified.

- The \mathfrak{sl}_2 relations and the shift isomorphism relations are the same as before, see equations (3.1)–(3.9).
- Generating 2-morphisms are cyclic with respect to the biadjoint structure, see (3.3) and (3.10), except when $i \cdot j = -1$ we have

· Sideways crossings are defined by the equations

Then the relations (3.13) for $i \neq j$ become

$$\lambda = \begin{cases} \begin{vmatrix} \lambda \\ i \end{vmatrix} & \text{if } i \cdot j = 0, \\ (i - j) \\ i \end{vmatrix} & \text{if } i \cdot j = -1, \end{cases}$$

$$\lambda = \begin{cases} \begin{vmatrix} \lambda \\ i \end{vmatrix} & \text{if } i \cdot j = 0, \\ \begin{vmatrix} \lambda \\ j \end{vmatrix} & \text{if } i \cdot j = 0, \\ \begin{vmatrix} \lambda \\ j \end{vmatrix} & \text{if } i \cdot j = 0, \\ \begin{vmatrix} \lambda \\ j \end{vmatrix} & \text{if } i \cdot j = -1. \end{cases}$$

- The signed R(v) relations are:
 - (a) For $i \neq j$, the relations

(b) For $i \neq j$, the relations

$$\bigwedge_{i} \lambda = \bigwedge_{i} \lambda, \qquad \bigwedge_{j} \lambda = \bigwedge_{i} \lambda.$$

for all λ .

(c) Unless i = k and $j = i \pm 1$

$$\lambda = \lambda \lambda = \lambda \lambda.$$

For $j = i \pm 1$

$$\begin{vmatrix} & & & \\ & & \\ i & & \\ i & & \end{vmatrix} \lambda = (i-j) \left(\begin{vmatrix} & & & \\ & & \\ & & \\ i & & \\ i & & \\ i & & \end{vmatrix} \lambda - \begin{vmatrix} & & & \\ & & \\ & & \\ i & & \\ & & \\ i & & \\ i$$

The rightmost term in the statement of Proposition 6.5 should have a minus sign when $i \cdot j = -1$. In the statement of Proposition 6.6 when $i \cdot j = -1$ the first equality should have the sign (i - j) and the second equality should have the sign (j - i).

The 2-category $\mathcal{U}_{\rightarrow}(\mathfrak{sl}_n)$ described above with modified relations is isomorphic to the 2-category $\mathcal{U}(\mathfrak{sl}_n)$. The only part of the isomorphism $\Sigma \colon \mathcal{U} \to \mathcal{U}_{\rightarrow}$ that needs to be modified is the image of caps and cups. The rescaling of these caps and cups also appears in a work in progress of the second author with Sabin Cautis.

Let $d_i = (-1)^i$. Then Σ is defined as before except that caps and cups are given as follows:

Received September 29, 2010

M. Khovanov, Columbia University, New York, NY 10027, U.S.A.

E-mail: khovanov@math.columbia.edu

A. D. Lauda, Columbia University, New York, NY 10027, U.S.A.

E-mail: lauda@math.columbia.edu