Quantum Topol. 2 (2011), 43-69 Quantum Topology
DOI 10.4171/QT/13 © European Mathematical Society

The Jones slopes of a knot

Stavros Garoufalidis™

Abstract. The paper introduces the slope conjecture which relates the degree of the Jones
polynomial of a knot and its parallels with the slopes of incompressible surfaces in the knot
complement. More precisely, we introduce two knot invariants, the Jones slopes (a finite set of
rational numbers) and the Jones period (a natural number) of a knot in 3-space. We formulate
a number of conjectures for these invariants and verify them by explicit computations for the
class of alternating knots, the knots with at most 9 crossings, the torus knots and the (-2, 3, n)
pretzel knots.
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1. Introduction

1.1. The degree of the Jones polynomial and incompressible surfaces. The paper
introduces an explicit conjecture relating the degree of the Jones polynomial of a knot
(and its parallels) with slopes of incompressible surfaces in the knot complement. We
give an elementary proof of our conjecture for alternating knots and torus knots, and
check it with explicit computations for non-alternating knots with 8 and 9 crossings,
and for the (-2, 3, p) pretzel knots.

One side of our conjecture involves the growth rate of the degree dx (1) (with
respect to ¢) of the colored Jones function Jx ,(¢) € Z[q*"] of aknot. The other side
involves the finite set bsx of slopes of incompressible, 0-incompressible orientable
surfaces in the complement of K, where the slopes are normalized so that the longitude
has slope 0 and the meridian has slope co; [Ha]. To formulate our conjecture, we need
a definition. Recall that x € R is a cluster point of a sequence (x,) of real numbers
if for every ¢ > 0 there are infinitely many indices n € N such that |x — x,| < &. Let
{xn}’ denote the set of cluster points of a sequence (xy).

*The author was supported in part by NSFE.
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Definition 1.1. (a) For a knot K, define the Jones slopes jsg by

jsx = {5 deg(Jx.n(q)) [ n € NY. (1)

(b) Let bsg denote the set of boundary slopes of incompressible surfaces of K.

A priori, the structure and the cardinality of the set jsg is not obvious. On the other
hand, it is known that bsg is a finite subset of Q U {oo}; see [Ha]. Normal surfaces
are of special interest because of their relation with exceptional Dehn surgery, and the
SL(2, C) character variety and hyperbolic geometry, see for example [Bu], [CGLS],
[CCGLS], [KR], [LTi], [Mv].

Conjecture 1 (The slope conjecture). For every knot we have
2jsg C bsk. (2)

Before we proceed further, and to get a better intuition about this conjecture, let
us give three illustrative examples.

Example 1.2. For the alternating knot 8;7 we have
§(n) =2n% +2n, §*(n) = —2n°*—2n,

where §g (n) and 8% (n) are the maximum and the minimum degree of Jx ,(¢) with
respect to g. On the other hand, according to [Cu], the Newton polygon (based on the
geometric component of the character variety) has 44 sides and its slopes (excluding
multiplicities) are

{—14, -8, —6, —4, =2, 0, 2, 4, 6, 8, 14, oco}.

The reader may observe that §(n) and 6*(n) are quadratic polynomials in n and four
times the leading terms of §(n) and §* (n) are boundary slopes (namely 8 and —8), and
moreover they agree with 2¢ ™ and —2¢~ where ¢ is the number of positive/negative
crossings of 8;7. In addition, as Y. Kabaya observed (see [Ka]), 817 has slopes £14
outside the interval [-2¢ ™, 2¢ "] = [-8, 8].

Example 1.3. For the non-alternating pretzel knot (—2, 3, 7) we have
8n) = [An*+n] = 3n>+ Un+em), 8 (n)=5n,

where e(n) is a periodic sequence of period 4 given by 0, 1/8, 1/2, 1/s if n =
0,1,2,3 mod 4 respectively. (—2,3,7) is a Montesinos knot and its boundary slopes
are given by

{0, 16, 37, 20}

(see [HO] and [Du] and compare also with [Ma]). In this case, §(n) is no longer a
quadratic polynomial of n. Instead §(n) is a quadratic quasi-polynomial with fixed



The Jones slopes of a knot 45

leading term 37/s8. Moreover, four times this leading term is a slope of the knot. This
number was the motivating example that eventually lead to the results of this paper.
Likewise, four times the n2-coefficient of §*(n) is 0, which is also a boundary slope
of this knot.

Example 1.4. The pretzel knots (2, 3, 5,5) and (2, 5, 3, 5) are mutant, alternating and
Montesinos. Since they are mutant, their colored Jones functions (thus their Jones
slopes) agree; see [Kf]. Since they are alternating, their common Jones slopes are
js = ¢t = 15 and js* = —¢~ = 0; see Theorem 2. Since they are Montesinos,
Hatcher—Oertel’s algorithm implemented by Dunfield (see [Du]) implies that their
boundary slopes are given by

bs2,3,5,5 = {0, 4, 6, 10, 14, 16, 18, 20, 22, 24, 26, 28, 30, oo},
bs(2,5,3,5) = {0, 4, 6,10, 14, 16, 18, 20, 22, 26, 28, 30, co}.

It follows that the set bsg is not invariant under knot mutation.

1.2. The degree of the colored Jones function is a quadratic quasi-polynomial.
In the previous section, we took the shortest path to formulate a conjecture relating
the degree of the colored Jones function of a knot with incompressible surfaces in
the knot complement. In this section we will motivate our conjecture, and add some
structure toit. Letus recall thatin 1985 Jones introduced the famous Jones polynomial
Jx(q) € Z[q*!] of a knot (or link) K in 3-space; [Jo]. The Jones polynomial of a
knot is a Laurent polynomial with integer coefficients that tightly encodes information
about the topology and the geometry of the knot.

Unlike the Alexander polynomial, not much is known about the topological mean-
ing of the coefficients of the Jones polynomial, nor about its degree, nor about the
countable set of Jones polynomials of knots.

This unstructured behavior of the Jones polynomial becomes more structured
when one fixes a knot K and considers a stronger invariant, namely the colored
Jones function Ji ,(q). The latter is a sequence of elements of Z[g*!] indexed
by n € N which encodes the TQFT invariants of a knot colored by the irreducible
(n + 1)-dimensional representation of SU(2), and normalized to be 1 at the unknot;
see [Tu2]. With these conventions, Jx,0(¢) = 1 and Jk,1(g) is the Jones polynomial
of K.

In many ways the sequence Jg ,(g) is better behaved and suitable limits of the
sequence Jx ,(¢q) have a clear topological or geometric meaning. Let us give three
instances of this phenomenon:

(a) a suitable formal power series limit Jx ,_i(e”) € Q[k,n]] (known as the
Melvin—Morton—Rozansky conjecture) equals to 1/ A g (") and determines the
Alexander polynomial Ak (t) of K (see [B-NGJ);

(b) an analytic limit Jg_x_;(e%/) for small complex numbers o near zero equals to
1/ Ak (e%) also determines the Alexander polynomial of K; see [GL1], Thm. 2;
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(c) the exponential growth rate of the sequence Jg y—1(e*” i/N ) (the so-called
Kashaev invariant) of a hyperbolic knot is conjectured to equal to the volume of
K divided by 27; see [Ks].

On the other hand, one can easily construct hyperbolic knots with equal Jones poly-
nomial but different Alexander polynomial and volume.

Some already observed structure regarding the colored Jones function Jg ,(g) is
that it is g-holonomic, i.e., it satisfies a linear recursion relation with coefficients in
Z[q", q]; see [GL1]. The present paper is concerned with another notion of regularity,
namely the degree of the colored Jones function Jx ,(g) with respect to n. Since
little is known about the degree of the Jones polynomial of a knot, one might expect
that there is little to say about the degree of the colored Jones function Jx ,(g). Once
observed, the regularity of the degree seems obvious as Bar-Natan suggests; see
[B-NL], Lemma 3.6, and [Me]. Moreover, the degree of the colored Jones function
motivates the introduction of two knot invariants, the Jones slopes of a knot (a finite
set of rational numbers) and the Jones period of a knot (a natural number).

1.3. g-holonomic functions and quadratic quasi-polynomials. To formulate our
new notion of regularity, we need to recall what is a quasi-polynomial. A quasi-
polynomial p(n) is a function

d ,
p:N—=>N, pn)= 3 ¢jmn’,
j=0
for some d € N where c;(n) is a periodic function with integral period for j =
1,...,d; [St], [BR]. If ¢z (n) is not identically zero, then the degree of p is d. We
will focus on two numerical invariants of a quasi-polynomial, its period and its slopes.

Definition 1.5. (a) The period 7 of a quasi-polynomial p(n) as above is the common
period of ¢; (n).

(b) The set of slopes of a quadratic quasi-polynomial p(n) is the finite set of twice
the rational values of the periodic function c, (7).

Notice that if p(n) is a quasi-polynomial of period 7, then there exist polynomials
Do, ..., ps—1 such that p(n) = p;(n) when n = i mod 7, and vice versa. Notice
also that the set of slopes of a quasi-polynomial is always a finite subset of Q.

Quasi-polynomials of period 1 are simply polynomials. Quasi-polynomials ap-
pear naturally in counting problems of lattice points in rational convex polytopes; see
for example [BP], [BR], [BV], [Eh], [St]. In fact, if P is a rational convex polytope,
then the number of lattice points of n P is the so-called Ehrhart quasi-polynomial of
P, useful in many enumerative questions [BP], [BR], [BV], [Eh], [St].

The next theorem seems obvious, once observed. The proof, given in [Ga2], uses
ideas from differential Galois theory of D-modules and the key Skolem—Mahler—Lech
theorem from number theory. Let deg( f(¢g)) denote the degree of a rational function
f(g) with respect to g.
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Theorem 1 ([Ga2)). If f,(q) is a g-holonomic sequence of rational functions, then
deg( f,(q)) is a quadratic quasi-polynomial for large n. Moreover, the leading term
of 1.(q) satisfies a linear recursion relation with constant coefficients.

The restriction for large n in Theorem 1 is necessary, since the sequence ((1 +
(—=1)")g"* +¢'7) is g-holonomic, and its degree (given by 17ifn < 4,byn2ifn > 5
is even and by 17 if n > 5 is odd) is not a quasi-polynomial. On the other hand, if
n > 5, the degree is given by the quadratic quasi-polynomial n%(1 4+ (—1)")/2 4+ 17.

Corollary 1.6. If f,,(q) is a g-holonomic sequence of rational functions and §(n) =

deg(fn(q)) then ,
{n%S(n) |n e IN} = slopes(§).

Proof. Consider a subsequence k,, of the natural numbers such that

8(k
I =1lim2 (kz”).

Since d(n) is (for large n) given by a quasi-polynomial, it follows that d(n) =
c2(n)n? 4+ O(n) for a periodic function ¢;: N — Q and for all n € N. Since ¢,
takes finitely many values, it follows that there is a subsequence m, of k, such that
c2(my,) = s for all n, where s is a slope of §(n). Since d(n) = c2(n)n* + O(n)
for all n, it follows that /[ = 2s, i.e., [ is a slope of §. Conversely, it is easy to see
that every slope of ¢ is the limit point for a subsequence taken to be an arithmetic
progression on which ¢, takes a constant value. O

1.4. The Jones slopes and the Jones period of a knot. Given a knot K, we set

8k (n) = deg(Jkn(q))- 3)

Combining the g-holonomicity of the colored Jones function Jg ,(g) of a knot K
with Theorem 1, it follows that §k is a quadratic quasi-polynomial for large .

Definition 1.7. (a) The Jones period i is the period of §k.
(b) The Jones slopes jsk is the finite set of slopes of §k.

Corollary 1.6 implies that for every knot K we have
{n% deg(Jkn(q)) | n € IN}/ = slopes(dk),

where the right-hand side (and consequently, the left-hand side, too) is a finite subset

of Q.
Lemma 1.8. For every knot K we have

{% deg(Jx.n(9)) | n € N}’ = slopes(§x).

where slopes(8k) is a finite subset of Q.
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The 8k invariant records the growth rates of the (maximum) degree of the colored
Jones function of K. We can also record the minimum degree as follows. If K*
denotes the mirror image of K, then Jg+ ,(q) = Jx(q™!). Let us define

8 (n) = —8k=(n) = mindeg(Jx »(q)), Jjsxg = slopes(§x). 4)
Notice that Conjecture 1 applied to K* implies that
jsg C bsg.

The next proposition gives a bound for the Jones slopes of a knot K in terms of
the number clﬂ; of positive/negative crossings of a planar projection.

Proposition 1.9. For every knot K, every s € jsg and every s* € jsx we have
—cg fs*,sfcl'(". 5)

The reader may compare the above lemma with Example 1.2.
Our next theorem confirms Conjecture 1 for all alternating knots. Consider a
reduced planar projection of K with clj(E crossings of positive/negative sign.

Theorem 2. If K is alternating, then
nx =1, jsg ={cg) sk = {—cx) (6)

In addition, the two checkerboard surfaces of K (doubled, if need, to make them
orientable) are incompressible with slopes 2c;<F and —2cg.

Our final lemma relates the Jones slopes and the period of a knot.

Lemma 1.10. If a(n) is an integer-valued quadratic quasi-polynomial with period
7, then for every slope s of a(n) we have

st eZ.
In particular, for every knot K we have
ngjsk CZ, mgjsk CZ.
Thus, if a knot has a non-integral Jones slope, then it has period bigger than 1.

1.5. The symmetrized Jones slopes and the signature of a knot. In this section
we discuss the symmetrized version 81% of §k:

8% =68k — 8%, Sx =8k + S%. (7

Of course, g = 1/2(5; +8x) and 0f = 1/2(—8; + 8. Pictorially, we have
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5k
—
5. 5o sk

As we will see below, the symmetrized degree 8% of the colored Jones function
has a different flavor, and relates (at least for alternating knots) to the signature of the
knot. 8; (n) is the span of Jx »(q), i.e., the difference between the maximum and
minimum degree of Jx ,(q). On the other hand, 3 (n) is the sum of the minimum
and maximum degree of Jx ,(q), and appears to be less studied. Of course, 8? are
quadratic quasi-polynomials. Since the colored Jones function is multiplicative under
connected sum, and reverses ¢ to ¢~ ! under mirror image, it follows that

8k,#x, = Ok, + 0k, Og+ = =0k (8)

Our next theorem computes the 81% quasi-polynomials of an alternating knot K in
terms of three basic invariants: the signature ok, the writhe wg and the number of
crossings ck of areduced projection of K. Our result follows from elementary linear
algebra using the results of Kauffman, Murasugi and Thistlethwaite, [Kf], [Mu], [Th],
further simplified by Turaev [Tul]. See also [Li], p. 42, and [Le], Prop. 2.1.

Theorem 3. (a) For all alternating knots K we have

WK , Wk — 20k

Sg(n) = > " + — )
55(n) = %an + %Kn. (10)

(b) The Jones polynomial Jx (g) determines cx by
§£(1) = ck. (11)
(c) The Jones polynomial of K and its 2-parallel determines wg and og by

ok = =38 (1) + 8 (2). wk = —28g(1) + 6 (2). (12)

Remark 1.11. Part (c) of Theorem 3 is sharp. The Jones polynomial of an alternating
knot determines the number of crossings, but it does not determine the signature nor
the writhe of the knot. Shumakovitch provided us with a table of pairs of alternating
knots with up to 14 crossings (using the Thistlethwaite notation) with equal Jones
polynomials and unequal signature. An example of such a pair with 12 crossings is
the knot 12a669 and its mirror image:
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(\1)
A f

J12a660.1(@) = — o+ =i+ 5= 5+ 3-9+9-74° +64° —4¢* +2¢° —¢°

12a¢69 has Jones polynomial

and signature —2. Since the signature is nonzero, 12a¢g9 1S not amphicheiral, and
yet has palindromic Jones polynomial. The next colored Jones polynomial is given

by

J12a660,2(q) = %_qG‘f— 5+q?4_q%+ﬁ+q%_q%+q%+%
—§+%+% L4 U4 6204984 99 —30q% +204°
4

+ 15¢* — 35¢° + 16¢° + 2097 —32¢% + 7¢° + 22¢4'° — 224!
—2q +17q13—9q _5q15+7q16_q17_2q18+q19

and is far from being palindromic. This is another example where the pattern of the
Jones polynomial is blurred, but the pattern of the colored Jones function is clearer.

Results similar to Theorems 2 and 3 have been also been obtained independently
in [CT] using the Jones polynomial of an alternating knot.

Let us end this section with two comments. In this paper K is a knot, but without
additional effort one can state similar results for a link (and even a knotted trivalent
graph, or quantum spin network) in 3-space. In addition, we should point out that
there are deeper aspects of stability and integrality of the coefficients of the colored
Jones function. We will discuss them in a future publication.

1.6. Plan of the proof. In Section 3 we use the Kauffman bracket skein module and
the work of Kauffman, Le, Murasugi Thistlethwaite to give a proof of Proposition 1.9
and Theorems 2 and 3. This proves our slope conjecture for all alternating knots.

In Section 4 we give computational evidence for the degree of the colored Jones
polynomials (and for the slope conjecture) of the non-alternating knots with 8 and
9 crossings. In addition, we verify the slope conjecture for all (-2, 3, p) pretzel
knots (using the fusion state-sum formulas of the colored Jones function studied
in [GL], [Co], [GVa]), and all torus knots (using Morton’s formula for the colored
Jones function of those, [Mo]). The reader may note that the pretzel knots (-2, 3, p)
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are well-known examples of Montesinos knots, with non-integral slopes (for p #
—1,1,3,5), which are not quasi-alternating, thus the results of [FKP] do not apply
for this family.

2. Future directions

In this section we will discuss some future directions, and pose some questions,
problems and conjectures.

The slope conjecture involves knots in 3-space, and relates the degree of the
colored Jones function to their set of boundary slopes. The slope conjecture may
be extended in three different directions: one may consider (a) links in 3-space, (b)
general 1-cusped manifolds and (c) general Lie algebras. These extensions have been
considered by the author. In [GVu] we introduce a slope conjecture for knots and
arbitrary Lie algebras. One may also consider 1-cusped manifolds with the homology
of S1 x D2, i.e., knot complements in integer homology spheres. For those, the
colored Jones polynomial exists (though it is not a polynomial, but rather an element
of the Habiro ring; see [GL2]). The colored Jones function is g-holonomic, and
we can use the non-commutative A-polynomial of this sequence to define the set of
slopes.

The following problem appears mysterious and tantalizing.

Problem 1. Understand the selection principle which selects

(a) the Jones slope from the set of boundary slopes,

(b) the colored Jones function from the vector space of solutions of the linear ¢-
difference equation.

Now let us post some questions, based on the limited experimental evidence.
Several authors have studied the diameter dg of the set bsg

dx = max{|s —s'| | 5,5’ € bsg}.

See for example [IM1], [IM2], [MMR]. Y. Kabaya pointed out to us that there are
alternating knots K with diameter bigger than twice the number of crossings; see
Example 1.2. Let jdg denote the Jones diameter

jdg = max{|s —s*| | s € jsg, s* € jsk}. (13)

Proposition 1.9 shows that jdg < cx. Moreover, the bound is achieved for alternating
knots, and more generally for adequate knots; see [FKP]. The next question concerns
the class of knots of maximal Jones diameter.

Question 1. Is it true that a prime knot K is adequate if and only if jdx = cg?
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The class of alternating knots is included in two natural classes: quasi-alternating
knots, and adequate knots. Knot Homology (and its exact triangles) can tell whether
aknot is quasi-alternating or not (see [MO]), but it seems hard to tell whether a knot is
alternating or not. Adequate knots appeared in [LT] in relation to the Jones polynomial
and also in [FKP]. It was pointed out to us by D. Futer, E. Kalfagianni, J. Purcell and
P. Ozsvith that the pretzel knots (—2, 3, p) are not adequate nor quasi-alternating for
p > 5.

In all examples, the set jsg consists of a single element, whereas the set bsg can
have arbitrarily many elements. Thus, Conjecture 1 sees only a small part of the set
bsg. Our next conjecture claims that the colored Jones function Jx ,(q) of K may
see all the elements in bsg. To formulate it, recall that Jx ,(g) is a g-holonomic
sequence, and satisfies a unique, minimal order recursion relation of the form

d

> ak(@". ) Ik n+k(q) =0,

k=0
where ay [u, v] € Q[u, v] are polynomials with greatest common divisor 1; see [Gal].
The 3-variable polynomial gAg (E, Q,q) = ZZ=0 ar(Q,q)E* is often called the
non-commutative A-polynomial of K. The AJ Conjecture of [Gal] states that every
irreducible factor of gAx (L, M, 1) is a factor of Ax (L, M?) or is L-free, and vice-
versa. Here Ak denotes the A-polynomial of K and Ax contains all components of
the SL(2, C) character variety of K (including the abelian one). Let bsﬁ denote the
slopes of the Newton polygon of A. These are the so-called visible slopes of a knot.
It follows by Culler—Shalen theory (see [CS], [CGLS], [CCGLS]) that bs}% C bsg.

Let us define the g-Newton polytope qNg of K to be the convex hull of the

monomials g¢ Q? E¢ of gAg (E, Q. q). Then ¢N is a convex polytope in R3, and we
may consider the image of it in R? under the projection map R> — R? which maps
(a.b,c) to (a,b) (i.e., sends the monomial ¢¢ Q® E¢ to QP E¢).

Definition 2.1. The g-slopes qsg of a knot K are the slopes of the projection of g N
to R2.

Problem 2. Show that for every knot K we have
2qsg = bsi. (14)

It is easy to see that for every knot K we have jsg C gsg. In fact, this holds
for arbitrary g-holonomic sequences; see [Ga4], Prop. 1.2, for a detailed discussion.
Thus, Problem 2 implies Conjecture 1. The AJ Conjecture motivates Problem 2. This
is discussed in detail in [Ga4].

Our next problem concerns the symmetrized quasi-polynomial §~ of a knot from
(7). Although ™ is not a concordance invariant, it determines the signature of an
alternating knot.

Problem 3. Show that §~ determines a Knot Homology invariant.
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3. The Jones slopes and the Jones period of an alternating knot

In this Section we prove Proposition 1.9 and Theorems 2 and 3 for an alternating knot
K, using the Kauffman bracket presentation of the colored Jones polynomial.

The following lemma of L& [Le], Prop. 2.1, (based on well-known properties of
the Kauffman bracket skein module) shows that the sequences 8 (1) and dx () have
at most quadratic growth rate with respect to n. More precisely, for every knot K we
have:

1 1
— 5c,;n2 + 0(n) < 8%(n) < 8g(n) < Ec;gnZ + 0(n). (15)

This implies that the slopes s of the quadratic quasi-polynomial dx satisfy —cz =<
s < c;;. Replacing K by its mirror K*, it implies the same inequality for the slopes
s* of 8% and concludes the proof of Proposition 1.9. O

Consider a reduced planar projection of an alternating knot K with c}? posi-
tive/negative crossings. Then, the number of crossings cx and the writhe wg of K
are given by cx = c; + cg and wg = c; — cg. Let ok denote the signature of
K. Then we can express the minimum and maximum degrees 8 (1) and 8k (1) of K
in terms of wg, cx and ok . This was shown by Kauffman, Murasugi and Thistleth-
waite, [Kf], [Mu], [Th], and further simplified by Turaev [Tul]. See also [Li], p. 42,
and [Le], Prop. 2.1. With our conventions, Proposition 2.1 of [Le] states that for all
n we have

+
(cx + wk) 2 —|A| +2cg + ln

Sg(n) = 2 n 5 , (16)
— B|—2cx—1
§%(n) = L;HUK)”Z + H%n (17)

where |A| (resp. | B|) is the number of circles of the A (resp. B) smoothing of the
planar projection. For example, for the right-handed trefoil 7', we have

Jro(g) =1,
Jri(@) =q+q> —q*,
I @ =?+¢° —q" +q¥—q° —q"° + ¢\,
Jra@ = +q" — g0 + g — g3 — g™ 4 g1 — g7 + ¢ + ¢ — g2,
Jra@) =q* +¢° — g + g — ¢V — "8 + ¢"0 — g2 — ¢® + 247
_q28 +2q29 —q32 —q33 —I—q34
and

3 5
Sr(n) = Enz + e §t(n) =n,

3 3 3 7
5;5(11) = Enz + > S§r(n) = Enz + 7"
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=3, ¢g=0, ¢cr=3 wr=3 or=-2, |A=2, |B=3.
Murasugi and Turaev observe that [Tul], p. 219-220,

|A| 4+ |B| = ¢k + 2,

_ .+ —
CK = Cg + ¢k, (18)
_ .t —

WK = Cg — Cg»

O’K=|A|—1—C;{_=—|B|+1+Cl_{.

Equation (17) implies that §x (n) is a quadratic polynomial (i.e., a quasi-polynomial
of period 1) with coefficient of n2 equal to CZ /2, i.e., with slope c;. This concludes
the proof of Theorem 2. Equations (7), (16), (17) and (18) prove the first part of
Theorem 3.

It remains to show that the two checkerboard surfaces of a reduced projection of
an alternating knot K have slopes 2c}<|r and —2cg. Observe that if s = pm + gl is
the slope of a surface S (where (m,1) is the standard meridian-longitude pair) and
(-, -) denotes the form in the boundary of a neighborhood of K, then ¢ = (m, s),
p = (s,1). If S is a black surface with slope s = pm + gl, then the geometrically
s and m intersect at a point, thus ¢ = £1. In addition, s follows the knot K as we
move towards the crossing, and intersects / twice around each positive crossing, and
none around each negative crossing. The result follows. O

Remark 3.1. Let V denote the 3-dimensional QQ-vector space spanned by the func-
tions ¢, w, o on the set of alternating knots. There is an involution K — K™* on this
set, which includes an involution on V':

On the other hand, §, §* and §* belong to V' and
EH*=6", ) =-5".

Thus, 8T is a Q-linear combination of ¢, and §~ is a Q-linear combination of w and
o. This is precisely the content of Theorem 3.

Remark 3.2. Let f[k] denote the coefficient of n¥ in a polynomial f(n). Equations
(9) and (10) imply that for all alternating knots K we have
ck = 28%[1] = 28%(2] (19)
and
ok = 8g[2] — 6x[1], wk = 26%[2]. (20)
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4. Computing the Jones slopes and the Jones period of a knot

4.1. Some lemmas on quasi-polynomials. To better present the experimental (and
in some cases, proven) data presented in the next section, let us give some lemmas on
quasi-polynomials. If a(n) is a sequence of numbers, consider the generating series

oo

Gq(2) = ) a(n)z". (21

n=0

The next well-known lemma characterizes quasi-polynomials. It appears in [St],
Prop. 4.4.1, and [BR], Lemma 3.24.

Lemma 4.1 ([St], Prop. 4.4.1, [BR], Lemma 3.24). The following are equivalent:
(a) a(n) is a quasi-polynomial of period 7.

(b) The generating series
P(z)

0(2)
is a rational function where P(z), Q(z) € Clz], every zero a of Q(z) satis-

fies @™ = 1 (provided that P(z)/Q(z) has been reduced to lowest term) and
deg P < deg O,

(c) Foralln > 0,

Ga(z) =

k
a(n) = 3. pi(m)y; (22)
i=1

where each p;(n) is a polynomial function of n and each y; satisfies yJ = 1.
Moreover, the degree of p;(n) in (22) is one less than the multiplicity of the root
)/i_l in Q(z), provided P(z)/Q(z) has been reduced to lowest terms.

Definition 4.2. We say that a quadratic quasi-polynomial a(n) is mono-sloped if it
has only one slope s. In other words, we have

a(n) = %nz + b(n),
where b(n) is a linear quasi-polynomial.

To phrase our next corollary, let @, (z) denote the n-th cyclotomic polynomial,
and let ¢ (n) denote Euler’s ¢-function.

Corollary 4.3. a(n) is mono-sloped if and only if

az> +bz +c Z R,(2)

Gal2) = (1-2)3 Dy(z)ca’

d>1
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where the summation is over a finite set of natural numbers and ¢, < 2 and Ry(z) €
C[z] has degree less than ¢(d)cy. Moreover,

s=a+b+c.
Proof. Observe that
> an®+ Bn+y)z" = azr—zjc
n=0 ( _Z)
if and only if
1 1
oc=§(a+b+c), ,3=§(—a+b—|—3c), y =c. O

Proof of Lemma 1.10. Given s, there exists an arithmetic progression 7n + k such
that for all natural numbers n we have

a(en + k) = %(nn L k)24 Ben + k) + y.
Now let
b(n) = %(nn L E2 4 BGn+k)+y
2 k2
:snz(Z) + (ﬂn+kns+%s)n+y+ﬁk+7s.

Now b takes integer values at all integers. This implies that

2 k2
sn? € Z, ﬁﬂ+kHS+nTseZ, y+ﬁk+TseZ

(see [BR]). The result follows. O
It is often easier to detect the periodicity properties of the difference
(Aa)(n) :=a(n+1)—a(n)
of a sequence a(n). It is easy to recover G4(z) from Ga4(z) and G4 (0).

Lemma 4.4. With the above conventions, we have
Ga(2)(1 —2) — G4(0)

Z

Gral(z) = (23)

Proof. We have

Gra(x) = 3 (a(n + 1) —a(n))z"

n=0
o0 o0
1
=1 > am+ D" =3 amn)z"

= 1(Ga(2) = Ga(0)) = Gu(:). -
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We can iterate the above by considering the k-th difference defined by A%a = a
and A¥a = A(A*1a) fork > 1.

4.2. Computing the colored Jones function of a knot. There are several ways to
compute the colored Jones function Jg ,(¢q) of a knot K. For example, one may use
a planar projection and R-matrices; see for example, [Tu2], [GL1] and also [B-N]).
Alternatively, one may use planar projections and shadow formulas as discussed
at length in [Co] and [GVa]. Or one may use fusion quantum spin networks and
recoupling theory, discussed in [CFS], [KL], [Co], [GVa]. All these approaches
gives various useful formulas for Jx ,(q) presented as a finite sum of a proper g-
hypergeometric summand [GL1]. A careful inspection of the summand allows in
several cases to compute the degree of Jg »(q).

4.3. Guessing the colored Jones function of a knot. In this section we guess the
sequence 8 of knots with a small number of crossings, using the following strategy,
inspired by conversations with D. Zagier. Using the Knot Atlas [B-N] we compute as
many values Jg ,(q) of the colored Jones function as we can, and record their degree.
This gives us a table of values of the quadratic quasi-polynomials dx () and 8 (n).
Taking the third difference of this table results into a degree 0 quasi-polynomial, i.e.,
a periodic function. At this point, we make a guess for this periodic function, and
the corresponding generating series. Then, we use Lemma 4.4 and our guess for the
second different to obtain a formula for G, (z) and G51*< (z). The partial fraction
decomposition then gives us a formula for §g (n) and §% (7). In some cases, using
explicit finite multi-dimensional sum formulas for the colored Jones polynomial, one
can prove that the guessed formula for dx (n) and 6% (n) are indeed correct. In this
section, we will not bother with proofs.

As an example of our method, we will guess a formula for () and §*(n) for the
(=2, 3,7) pretzel knot. One can actually prove that our guess is correct, using the
fusion formulas for the 3-pretzel knots, but we will not bother. The values of §*(n)
starting with n = 0 are given by:

§*:0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70,....
Taking the first difference we get the following values of (Ad*)(n) starting with
n=0:
A§*:5,5,5/5/5 555,555 /55,5,...

appears to be the constant sequence from which we guess that §*(n) = 5n, and
correspondingly the generating series is

5z

Gs=(z) = -
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More interesting is the sequence §(n) starting with n = 0:

5:0, 13, 35, 67, 108, 158, 217, 286, 364, 451, 547, 653, 768, 892,
1025, 1168, 1320, 1481, 1651, 1831,....

Taking the first, second and third difference we obtain

Ad: 13, 22, 32, 41, 50, 59, 69, 78, 87, 96, 106, 115, 124, 133, 143,
152, 161, 170, 180, ...,

A%8:9,10,9,9,9, 10,9,9,9,10,9,9,9,10,9, 9,9, 10,...,

A3§:1,-1,0,0,1,-1,0,0,1, -1,0,0,1, =1, 0,0, 1, ...

Thus, we guess that A3§ is a periodic sequence with period 4 and generating series

ad 1

_ 4n _ 4n+1\ _
GM(Z)_,;,(Z =) = (1 +2)(1+22)

Using Lemma 4.4 three times, we compute

13z 4+ 922 4+ 1023 + 9z — 423
(1-2)3(1+z+z2%+z23)
—3 4216z — 6522 344z -2
16(1 —z)3 + 16(1 4+ z + 22 4+ z3)°

Gs(z) =

Taking the partial fraction decomposition, it follows that

37 17 37 17
8(n) = [§n2 + 711} = §n2 + 5" + e(n),
where £(n) is a periodic sequence of period 4 given by

0 ifn =0 mod 4,
1 oo

e(n) = ? %fn—1m0d4,
3 if n = 2 mod 4,
g ifn =3mod 4.

4.4. A summary of non-alternating knots. In this section we list the quasi-polyno-
mials §x and 8% of non-alternating knots K with 8 and 9 crossings. In the Rolfsen ta-
ble of knots, the non-alternating knots with 8 crossings are 8, where k = 19, ...,21,
and the non-alternating knots with 9 crossings are 9%, where k = 42,...,49. Letus
give a combined table of the non-alternating knots K with 8 and 9 crossings, their
periods g, their Jones slopes jsx and jsk, and their distinct boundary slopes. The
boundary slopes bsg are computed using the program of [HO], corrected in [Du],
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K | nx | jsg | isk bsg

89| 2| 6 | 0 (0,12}

80 | 3 | 4/3 | =5 {—10,0,8/3}

811 2 | 172 | —6 (—12,-6,-2,0,1}
9| 2 | 3 | -4 (—8,0,8/3,6)

93 | 3 | 16/3 | —2 (—4,0,6,8,32/3)
94 | 3 | 73 | =5 | {=10,-2,0,1,2,14/3}
9s | 2 | 172 | =7 | {=14,-10,-8,—4,-2,0, 1}
9Gs | 2 | 1 | -6 {~12,0,2}

9, | 2 | 92 | =3 (—6,0,4,8,9, 16}
9 | 2 | 1172 | =2 (—4,0,4,8,11)

9 | 2 | 15/2] 0 (0,4,6,12,15)

which computes the boundary slopes of all Montesinos knots except 949 which is not
a Montesinos knots. In all those cases, the set of boundary slopes agrees with the
slopes of the A-polynomial of [Cu], [CCGLS], once 0 is included.

The above data are in agreement with Conjecture 1. Let us make a phenomeno-
logical remark regarding all examples of non-alternating knots with 8 or 9 crossings.

(a) 8*(n) and §(n) are mono-sloped, i.e., they are of the form sn2/2 + &(n) where
£(n) is a linear quasi-polynomial.

(b) For all knots, 2js is a boundary slope, though not necessarily the largest one.

(c) In the case of the 859, 943 and 944 knots the degree of e(n) is 1, and in all other
cases it is zero.

(d) The period of all non-alternating knots is greater than 1. The 85¢, 943, 944 knots
have period 3, and (-2, 3,7) has period 4. The period of (-2, 3, p) for odd
p > 5 appears to be p — 3, and the number of crossings is p + 5. Thus the
period can be asymptotically as large as the number of crossings.

(e) For the cases of 8,1, 945, 946, 947 the leading coefficient is 2, and for 943, 949 it
is —2.

4.5. The 8-crossing non-alternating knots

4.5.1. The 819 knot. In the data below, we will give the first few values of §*(n)
and §(n), the guessed decomposition of the generating series Gg=(z) and Gg(z) of
the quasi-polynomials §* and 6.
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Some values of 6*(n) and §(n) starting with n = 0:

§%:0,3,6,9,12, 15,18, 21,...,
6:0, 8,23, 43,70, 102, 141, 185, ...,

3z
Gs«(z) = (l——z)2
8z +7z2—3z3 —1+436z—11z2 1
Gs(z) = = + ,
1-2)3(1+2) 4(1—1z)3 41+ z2)
8*(n) = 3n,

11 1
— 2,2 -
8(n) =3n° + o + &(n),

where e(n) = (—1)" /4 is a 2-periodic sequence. Note that in this example the values
of 6% (n) forn = 0, 1,2, 3 suffice to prove that §x (n) is not a polynomial of 7.

4.5.2. The 8,9 knot

§*:0, =5, —15, =30, =50, —75, —105, —140, —180, —225, —275, —330,
— 390, —455, =525, —600, —680, —765, —855, —950, —1050, ...,

8:0,1,2,7, 12, 16, 26, 35, 42, 57, 70, 80, 100, 117, 130, 155, 176,
192, 222, 247, 266, ...,

5z
Gs«(2) = _(1——2)3’
Gs(2) z 4224523 4324 422°
z) =
5 (1—2)3(1+z +22)2
2412z 4222 N 247z +4z% + 227
T 9(1-2)3 91 + z + z2)2
5 1
§*(n) = ——”(”2+ ),
2 2 2
§(n) = 5n2 +on—5+ e(n),

where &(n) is a linear quasi-polynomial with period 3.
4.5.3. The 8,1 knot

§*:0, =7, =20, —39, —64, —95, —132, —175, ...
§:0,—-1,-1,-1,0,1,3,5,...,
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—Tz + 72
Gs=(z) = a0
—z+4z2 473 —1—4z 4922 1
Gs(z) = = + ,
(1-23(1+2) 8(1—2z2)3 8(1 +2)

8*(n) = —n(3n + 4),

1 1
8(n) = an —n— i e(n),

where £(n) = (—1)"/8 is a 2-periodic sequence.

4.6. The 9-crossing non-alternating knots

4.6.1. The 94, knot

§*:0, -3, —10, —21, =36, —55, =78, —105, ...,
8:0, 3,10, 19, 32, 47, 66, 87,...,

-3z —22
Gs*(Z):W,

z(3+4z -2 1 — 16z + 322 1
Gy(z) = = ) _

-2 +2  4Ci+27 " ad+2)
5*(n) = —n(2n + 1),

3 1
8(n) = Enz + 2n — 1 + e(n),

where e(n) = (—1)" /4 is a 2-periodic sequence.

4.6.2. The 943 knot

§*:0,0, =2, —6, —12, =20, =30, —42, ...,
8:0,7, 17, 37, 60, 85, 122, 161, ...,

Gs=(2) = (22)/ (=1 + 2)°,
Gs(z) = (z2(=7 =10z — 202> — 92% — 52* + 32°)) /(=1 + 2)3(1 + z + z?)?)
= (5—"72z +192%)/(9(—1 + 2)?)
+ (54 16z 4+ 1322 + 82%)/(9(1 + z + z?)?),
8*(n) = —n(n — 1),
§(n) = —(5/9) + (38n)/9 + (8n%)/3 + &(n),

where ¢(n) is a linear quasi-polynomial with period 3.
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4.6.3. The 944 knot

§*:0, =5, —15, =30, —50, —75, —105, —140, ...,
6:0,2,5,13,22, 31,47, 63,...,

Gs=(2) = (52)/(=1 +2)°,
Gs(z) = —((z(2 + 3z + 82% + 522 + 32%) /((—1 + 2)°(1 + z + z%)?))
=(2-21z —22%)/(9(-1 + 2)?)
+ Q2472 +4224+22%)/09(1 + z + 22)?),
8*(n) = —=5n(n +1)/2,
§(n) = —(2/9) + (13n)/18 + (7n?)/6 + ¢(n),

where e(n) is a linear quasi-polynomial with period 3.

4.6.4. The 945 knot

§*:0, —8, =23, —45, =74, —110, —153, —203,...,
6:0,-1,-1,-1,0,1,3,5,...,

Gs+(2) = —((—8z + z%) /(-1 + 2)*),
Gs(2) = —((z(=1 + z + 22) /(=1 + 2)*(1 + 2)))
=(1+4z-922)/8(-1+2)*) +1/8(1 + 2)),
§*(n) = —n(7n +9)/2,
§(n) = —(1/8) —n + n*/4 + e(n),

where e(n) = (—1)"/8 is a periodic sequence with period 2.

4.6.5. The 946 knot

§*:0, —6, —18, —36, —60, —90, —126, —168, ...,
6:0,0,2,4,8,12, 18, 24,...,

6z
GS*(Z) = —m’
272
G =
S T T )
—1 44z 4+ 22 1

4(1 —z)3 + 41+ z)°
8*(n) = =3n(n + 1),
§(n) = —(1/4) +n?/2 + (n),
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where e(n) = (—1)" /4 is a periodic sequence with period 2.

4.6.6. The 947 knot

§*:0, =2, =7, —15, =26, —40, =57, —77,.. ..,
6:0,5, 15,29, 48, 71, 99, 131,...,

Gs+(z) = 2z + 22)/(—1 + 2)3,
Gs(z) = (z(=5—5z 4+ 22)) /(=1 + 2)°(1 + 2))
= (1 —44z +722)/(8(—1 + 2)°) + 1/(8(1 + 2)),
§*(n) = —n(Bn + 1)/2,
§(n) = —(1/8) + 3n + (9n?)/4 + &(n),

where e(n) = (—1)" /8 is a periodic sequence with period 2.

4.6.7. The 945 knot

§*:0, -1, —4, =9, —16, —25, ...,
8: 0,0, 18, 35, 58, 86,...,

Gs+(2) = —((—z — 22 /(-1 4+ 2)*),
Gs(z) = (z2(=6 — 6z + z°)) /((—1 + 2)*(1 + 2))
= (1-522+72%)/8(=1 4 2)*) + 1/(8(1 + 2)),
§*(n) = —n,
§(n) = —(1/8) + (7Tn)/2 + (11n%) /4 + &(n),

where £(n) = (—1)" /8 is a periodic sequence with period 2.

4.6.8. The 949 knot

§*:0,2,4,6,8,10,...,
§:0,9, 26,50, 82, 121,...,

Gs(2) = (22)/(=1 + 2)%,
Gs(z) = (2(=9—8z +22%))/((—1 + 2)3(1 + 2))
= (1 =76z + 1522)/(8(—1 + 2)3) + 1/(8(1 + z2)),
8*(n) = 2n,
§(n) = —(1/8) + (11n)/2 + (15n2) /4 + &(n),

where £(n) = (—1)"/8 is a periodic sequence with period 2.
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4.7. The case of the (=2, 3, p) pretzel knots. A triple sum formula for the colored
Jones polynomial of pretzel knots with 3 pretzels is available, and using it we can
compute dx (n) and 8% (n) for all pretzel knots of the form (=2, 3, p) for odd p; see
[GVa]. We will state the result of the computation here. Recall the k-th difference
A¥ f of a sequence f from Section 4.1. When p > 0 is odd, we have

zP—7(1—z2) >
1—zpP—3 > -
3 __3 —
Gs«(z) = §p1+ )Zz’ Gpssl(z) = 17 P>
( ) _1+Z’ P = 37
0 p=
It follows that
5 2
2n“ + ¢,(n), =1,
e (p+ 3 N P
8% (n) = — 8(n) = 33n” 4+ ep(n), p =3,
2__ 2
@or= 4 o(n). p =5,

where &, (n) are linear quasi-polynomials. When p < 0 is odd we have

0, p = —1’
44424322423 _
A3Ggs(z) = { 7 (tzr27 p=-3
ZIPI=4_o lpI=3_ 22@ —4 Lk
|p|=2 < _5
(L 26)2 =T
z(p+ 13— (p +3)2)
Gs(z) = 21— 2)3
It follows that
202 4+ ¢,(n), = -1, 5 8
5*(}1) — %P—i_l)znzp( ) p 5(7’1) — n( n + (p + ))’
=5, tel)., p=-3 2

where ¢, (n) are linear quasi-polynomials. Notice that the above formulas single out
exceptional behavior at p = —3, —1, 1, 3, 5. The Jones period and the Jones slopes
are given by

p—3. p=5 PorS p=s, 0, p=5

T =12, p=3, js=16, p=3, JjsF =10, p =3,
2

Ipl. p=1, 5, p=-1, LD p<1.

(24)

On the other hand, Hatcher—QOertel and Dunfield (see [HO] and [Du]) compute the
slopes of those Montesinos knots:

{{o 16, 22589 23 + p)). p 2T,
bs, =

(25)
{amJQ%LJ@+$L p=-1L
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Compare also with Mattman [Ma], p. 32, who computes which of those slopes are
visible from the geometric component of the A-polynomial. Equations (24) and (25)
together with the fact that 0 is a boundary slope confirm Conjecture 1 for all (-2, 3, p)
pretzel knots.

4.8. The case of torus knots. In this section we will use Morton’s formula for the
colored Jones function of a torus knot to compute the degree of the colored Jones
function and verify Conjecture 1.

Let T'(a, b) denote the (a, b) torus knot for a pair of coprime integers a, b. Since
the mirror image of T'(a,b) is T (a,—b), we will focus on the case of a,b > 0.
With our conventions, Morton’s formula [Mo] for the colored Jones function is the
following:

Labn(n+2) 3 —abk?+(a—b)k+1 —abk?+(a+b)k—1%
JT(a,b),n(‘]) = okl _aft (C] ’ ’ T ’ a 2)‘
92 9 % k=13

(26)
For example,

Jr2,3),1(@) =q + q —q*

Jren2q) =q°+¢° + 9% —q" —q'°

gl g g2 4 g
The summand of equation (26) consists of two monomials with exponents quadratic

functions of k. A little calculation reveals that the maximum and minimum degree
of the colored Jones function is given by

b b— oy
87(aby(n) = %nz +4 . Li—a- (_1)n)w,
-1

2

Thus the period 7 5y is2 whena, b # 2and 1 whena = 2orb = 2. The boundary
slopes of T'(a, b) are {0, ab} (see for example [HO]). This confirms Conjecture 1 for
torus knots.
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