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Abstract. We describe an explicit finite presentation for a finite depth subfactor planar algebra.
We also show that such planar algebras are singly generated with the generator subject tofinitely
many relations.
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1. Introduction

The main result of this paper expresses a subfactor planar algebra of finite depth as
a quotient of a universal planar algebra on finitely many generators by a planar ideal
generated by finitely many relations. Such a presentation is often referred to as a skein
theory for the planar algebra. In addition, we also show that such a planar algebra is
generated by a single element subject to finitely many relations.

Our presentation is universal in the following sense. We specify a small set of
‘templates’ for relations in any finite depth subfactor planar algebra. If P is one such
with depth at most k, taking a basis of Pk to be a generating set and specialising these
templates to P presents it.

Skein theories for planar algebras have been the subject of several studies begin-
ning with [8] for the group subfactor planar algebra and [4] and [6] for irreducible
depth two planar algebras to the more recent [9] for the D2n planar algebras, [1] for a
unified treatment of the ADE planar algebras, [10] for the Haagerup subfactor planar
algebra and [2] for the extended Haagerup subfactor planar algebra. One of the main
results of each of these papers is a nice skein theory for a finite depth subfactor planar
algebra or a family of such.

The methods of this paper do not by any means give any such nice skein theories
for finite depth subfactor planar algebras. The point is to show that all such planar

1We thank V. S. Sunder for useful discussions. We also thank the referees for a very careful reading and
various suggestions to improve the clarity and, in particular, for a simplification of the proof of (12) of
Theorem 3.2.
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algebras have a skein theory, or equivalently, a finite presentation. In particular, we
make no attempt at being parsimonious with the relations.

In Section 2 we quickly recall basic definitions and properties of subfactor pla-
nar algebras. Section 3 is about certain relationships between tangles that we call
templates and certain relationships between templates that we call consequences.
Section 4 gives a finite presentation of a finite depth subfactor planar algebra. In
Section 5 we make a couple of simple observations including the single generation
of finite depth subfactor planar algebras.

2. Subfactor planar algebras

The purpose of this section is to fix our notations and conventions regarding planar
algebras. We assume that the reader is familiar with planar algebras as in [3] or in
[5] so we will be very brief.

Planar algebras are collections of vector spaces equipped with an action by the
coloured operad of planar tangles. The vector spaces are indexed by the set Col D
f0C; 0�; 1; 2; : : : g, whose elements are called colours. We endow this set with the
partial order that restricts to the usual order on N and such that 0˙ are incomparable
and less than 1.

We will not define a tangle but merely note the following features. Each tangle
has an external box, denoted D0, and a (possibly empty) ordered collection of in-
ternal non-nested boxes denoted D1, D2, : : : . Each box has an even number (again
possibly 0) of points marked on its boundary. A box with 2n points on its boundary
is called an n-box or said to be of colour n. There is also given a collection of disjoint
curves each of which is either closed, or joins a marked point on one of the boxes to
another such. For each box having at least one marked point on its boundary, one of
the regions (i.e. connected components of the complement of the boxes and curves)
that impinge on its boundary is distinguished and marked with a � placed near its
boundary. The whole picture is to be planar and each marked point on a box must be
the end-point of one of the curves. Finally, there is given a chequerboard shading of
the regions such that the �-region of any box is shaded white. A 0-box is said to be
a 0C box if the region touching its boundary is white and a 0� box otherwise. A 0

without the ˙ qualification will always refer to 0C. A tangle is said to be an n-tangle
if its external box is of colour n. Tangles are defined only up to a planar isotopy
preserving the �’s, the shading, and the ordering of the internal boxes.

We illustrate several important tangles in Figure 1. This figure uses the following
notational device introduced in [7]. A strand in a tangle with a non-negative integer,
say t , adjacent to it will indicate a t-cable of that strand, i.e. a parallel cable of t

strands, in place of the one actually drawn.
A useful labelling convention for tangles is to decorate its tangle symbol, such as

I , EL, M , or TR, with subscripts and a superscript that give the colours of its internal
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Figure 1. Some important tangles (m; n; j � 0; jm � nj � p � m C n).

boxes and external box respectively. With this, we may dispense with showing the
shading, which is then unambiguously determined.

The basic operation that one can perform on tangles is substitution of one into a
box of another. If T is a tangle that has some internal boxes Di1 ; : : : ; Dij of colours
ni1 ; : : : ; nij and if S1; : : : ; Sj are arbitrary tangles of colours ni1 ; : : : ; nij , then we
may substitute St into the box Dit

of T for each t – such that the “�’s match” – to
get a new tangle that will be denoted T B.Di1

;:::;Dij
/ .S1; : : : ; Sj /. The collection of

tangles along with the substitution operation is called the coloured operad of planar
tangles.

A planar algebra P is an algebra over the coloured operad of planar tangles.
By this, is meant the following: P is a collection fPngn2Col of vector spaces and
linear maps ZP

T W Pn1
˝ Pn2

˝ � � � ˝ Pnb
! Pn0

for each n0-tangle T with internal
boxes of colours n1; n2; : : : ; nb . The collection of maps is to be compatible with
substitution of tangles and renumbering of internal boxes in an obvious manner. For
a planar algebra P , each Pn acquires the structure of an associative, unital algebra
with multiplication defined using the tangle M n

n;n and unit defined to be 1n D ZP
1n.1/.

Among planar algebras, the ones that we will be interested in are the subfactor pla-
nar algebras. These are complex, finite-dimensional and connected in the sense that
each Pn is a finite-dimensional complex vector space and P0˙

are one dimensional.
They have a positive modulus ı, meaning that closed loops in a tangle T contribute a
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multiplicative factor of ı in ZP
T . They are spherical in that for a 0-tangle T, the function

ZP
T is not just a planar isotopy invariant, but also an isotopy invariant of the tangle re-

garded as embedded on the surface of the two sphere. Further, each Pn is a C �-algebra
in such a way that, for an n0-tangle T with internal boxes of colours n1; n2; : : : ; nb

and for xi 2 Pni
, the equality ZP

T .x1 ˝ � � � ˝ xb/� D ZP
T �.x�

1 ˝ � � � ˝ x�
b
/ holds,

where T � is the adjoint of the tangle T, which, by definition, is obtained from T by
reflecting it. Finally, the trace � W Pn ! C D P0 defined by

�.x/ D ı�nZP

TR0
n
.x/

is postulated to be a faithful, positive (normalised) trace for each n � 0.
Any subfactor planar algebra P (of modulus ı) contains the distinguished Jones

projections en 2 Pn for n � 2 defined by en D ı�1ZP
En.1/ and their non-normalised

versions En D ZP
En.1/. A subfactor planar algebra P is said to be of finite depth if

there is a positive integer k such that PkC1 D PkEkC1Pk and the smallest such k is
said to be the depth of P .

Fix any positive integer k. In the rest of the paper, the tangles T n defined for
n 2 Col as in Figure 2 play an important role. In this and all subsequent tangle
figures, we suppress drawing the external box of tangles and adopt the convention
that the � of the external box (if it is an n-box with n > 0) is at the top left corner.
Shaded regions of a tangle will be to the left traversing any string along the direction
indicated on it. The tangle T n is an n-tangle with n � k C 1 internal boxes for n � k

D1

D2

n

n

Dn�kC1

k � 1

k � 1

k � 1

k � 1

k � n

:::

�

�

�
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�

Figure 2. The tangles T n for n � k, 0 � n < k and n D 0�.

and one internal box for n < k, all of colour k. Note that for n < k, T n D ERn
k

while T k D I k
k

.
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The following proposition is well known. We only give a proof for completeness
and since it is completely planar-algebraic. Note the absence of any assumptions on
the planar algebra.

Proposition 2.1. Let P be any planar algebra and suppose that for some positive
integer k, 1kC1 2 PkEkC1Pk . For all m; n � k, there is an isomorphism of
.Pk�1 � Pk�1/-bimodules,

Pm ˝Pk�1
Pn Š PmCn�.k�1/,

which is implemented by the tangle M D M
mCn�.k�1/
m;n (see Figure 1).

Proof. From 1kC1 2 PkEkC1Pk we see easily – see the proof of Lemma 5.7 of [4] –
that, for all n � k, PnC1 D PkEkC1EkC2 : : : EnC1Pn and, inductively, PnC1 D
PkEkC1EkC2 : : : EnC1PkEkC1EkC2 : : : EnPk : : : PkEkC1Pk . Expressed pictori-
ally, this yields the surjectivity of ZP

T n for all n � k.

Now consider the tangle M D M
mCn�.k�1/
m;n . Thus ZP

M W Pm˝Pn ! PmCn�.k�1/

and a little thought shows that this is a Pk�1 � Pk�1-bimodule map that factors
through Pm ˝Pk�1

Pn. The surjectivity of this map follows from the tangle equation
M B.D1;D2/ .T m; T n/ D T mCn�.k�1/.

The proof of injectivity uses the tangles W D W n
n;2n�kC1

and W � of Figure 3.
First use the surjectivity above for m D n to conclude that there exist xi ; yi 2 Pn,

D1

D1 D2

D2

k � 1

k � 1

n � k C 1 n � k C 1

n � k C 1

n � k C 1 n

nn

n

��

��

Figure 3. The tangles W and W �.

for i 2 I , a finite set such that 12n�.k�1/ D P
i2I ZP

M .xi ˝ yi /. Hence, for any
v 2 Pn, ZP

W .v; 12n�.k�1// D P
i2I ZP

W BD2
M .v ˝ xi ˝ yi /. Equivalently, for all

v 2 Pn, we have v D P
i2I ZERk�1

n
.vxi /yi .

Now, we claim that if
P

j 2J uj ˝ vj 2 ker.ZP
M /, then,

X
j 2J

uj ˝ vj D
� X

i2I;j 2J

uj ˝ ZERk�1
n

.vj xi /yi

�
�

� X
i2I;j 2J

uj ZERk�1
n

.vj xi / ˝ yi

�
.
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In fact, the left hand side equals the first term on the right hand side while the second
term on the right vanishes since for each i 2 I , the sum

P
j 2J uj ZERk�1

n
.vj xi / is of

the form ZP
W �BD2

M .xi ˝ P
j 2J uj ˝ vj / D ZP

W �.xi ˝ ZP
M .

P
j 2J uj ˝ vj // D 0.

The displayed equation expresses
P

j 2J uj ˝ vj as an element in the kernel of
the natural map Pm ˝ Pn ! Pm ˝Pk�1

Pn and concludes the proof.

We will need the following corollary whose proof follows easily by induction
using Proposition 2.1.

Corollary 2.2. LetP beanyplanar algebraand suppose that for somepositive integer
k, 1kC1 2 PkEkC1Pk . Then, for all n � k there is a .Pk�1 � Pk�1/-bimodule
isomorphism

Pk ˝Pk�1
Pk ˝Pk�1

� � � ˝Pk�1
Pk Š Pn

(where there are n � k C 1 terms Pk on the left) which is implemented by the tangle
T n.

3. Templates and consequences

A template is an ordered pair of tangles .S; T / of the same colour but will be written
as a tangle implication S H) T . Given any set of templates, we will be interested
in their consequences which are, by definition, those that can be obtained from them
using (i) reflexivity, (ii) transitivity, and (iii) composition on the outside, i.e. elements
of the smallest set of templates containing the original set and such that (i) all T H)
T are in the set, (ii) if S H) T and T H) V are in the set, so is S H) V, and
(iii) if W is an arbitrary .n0I n1; : : : ; nb/ tangle and Si H) Ti are in the set with
colour ni , then, W B.D1;:::;Db/ .S1; : : : ; Sb/ H) W B.D1;:::;Db/ .T1; : : : ; Tb/ is also
in the set.

While templates and consequences are defined without reference to planar alge-
bras, the motivation for the definition of consequences comes from the following.
Let P be a planar algebra and B � P , i.e. B D `

n2Col Bn where Bn � Pn for all
n 2 Col. Given the pair .P; B/, each .n0I n1; : : : ; nb/-tangle T then determines a
certain subspace R.P;B/.T / � Pn0

defined to be (i) the span of all ZP
T .x1 ˝� � �˝xb/

for xi 2 Bni
if b > 0 or (ii) the span of ZP

T .1/ if b D 0. A template S H) T is
said to hold for the pair .P; B/ if R.P;B/.S/ � R.P;B/.T /. It is now easy to see that
if a set of templates holds for .P; B/, then so do all their consequences.

For this paper we need a particular collection of templates shown in Figure 4
which we will refer to as the basic templates. Here k is a fixed positive integer. Note
that Figure 4 names each of the templates, shows them as tangle implications, and in
the process, defines some tangles.

We begin with a simple but very useful lemma which we will refer to later as
removing loops.
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Figure 4. The basic templates: modulus, Jones projections, conditional expectation, multipli-
cation, depth and shift (2 � n � k for the Jones projections).

Lemma 3.1. Let S H) T be any template such that the tangle S has a contractible
loop somewhere in it and let zS be S with the loop removed. The modulus templates
together with S H) T have as consequence zS H) T.

Proof. Suppose that the contractible loop of S lies in a white region. Let W be the
tangle obtained from S by replacing the contractible loop with a 0C box numbered
b C 1, where S has b internal boxes. Then it is clear that S D W BDbC1

.C 0C/ while
zS D W BDbC1

.10C/. Since the modulus tangle gives 10C H) C 0C , by composing
on the outside with W , we get zS H) S and so by transitivity zS H) T. A similar
proof applies when the loop lies in a black region.

The main result of this section is an omnibus theorem listing various consequences
of the templates of Figure 4. While all the consequences are written as tangle im-
plications, we emphasise that the proofs are purely pictorial. Recall the tangles T n

defined for n 2 Col in Figure 2.
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Theorem 3.2. The following templates are all consequences of the basic templates
of Figure 4.

(1) 1k H) T k.

(2) I kC1
k

H) T kC1.

(3) For all n 2 Col, ERn
nC1 B T nC1 H) T n.

(4) For any n � k, I nC1
n B T n H) T nC1.

(5) For any n � k, I n
k

H) T n and 1n H) T n.

(6) For any n � k, M n
n;n B.D1;D2/ .T n; T n/ H) T n.

(7) 10˙ H) T 0˙ and for any n � 2, En H) T n.

(8) For any n � k and any Temperley–Lieb tangle Qn, Qn H) T n.

(9) For any n � k, SH nC2
n B T n H) T nC2.

(10) For any n � 1, ELn
n B T n H) T n.

(11) For all n 2 Col, I nC1
n B T n H) T nC1.

(12) For all n 2 Col , M n
n;n B.D1;D2/ .T n; T n/ H) T n.

Proof.

(1) According to the depth template 1kC1 H) T kC1. Applying ERk
kC1

on both

sides yields ERk
kC1

B1kC1 H) ERk
kC1

BT kC1 D M k
k;k

. Since ERk
kC1

B1kC1 is

1k with a contractible loop on the right, we may remove this loop by Lemma 3.1
and conclude that 1k H) I k

k
.

(2) Since 1kC1 H) T kC1 and I kC1
k

H) I kC1
k

, we may apply the multiplication

tangle M kC1
kC1;kC1

to the outside to get

M kC1
kC1;kC1

B.D1;D2/ .1kC1; I kC1
k

/ H) M kC1
kC1;kC1

B.D1;D2/ .T kC1; I kC1
k

/.

This may also be written as I kC1
k

H) T kC1 BD2
M k

k;k
. Since M k

k;k
H) I k

k
,

we have T kC1 BD2
M k

k;k
H) T kC1 BD2

I k
k

D T kC1. Now appeal to transitivity.

(3) Suppose that n < k. Then ERn
nC1 B T nC1 D T n, so the asserted result is clear

by reflexivity. If n � k, there are two cases depending on the parity of n � k.
These cases are shown on the left in Figure 5. We see that each is obtained by
inserting a k-tangle into a box of T n and using the multiplication and conditional
expectation templates, this k-tangle, in each case, implies I k

k
.

(4) Again, there are two cases according to the parity of n � k which are shown on
the right in Figure 5. If n � k D 2t , we see that I nC1

n B T n D W B I kC1
k

for
a suitable tangle W (where W has a k C 1-box indicated by the dotted line and
the rest of it looking like T n). Note that, by (2), I kC1

k
H) T kC1 and therefore
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Figure 5. ERn
nC1

B T nC1 and I nC1
n B T n.

W B I kC1
k

H) W B T kC1. It remains only to note that W B T kC1 D T nC1

and use transitivity to complete the proof in this case. The case n � k D 2t C 1

is even easier. Here I nC1
n B T n D T nC1 BDtC2

1k. Since 1k H) I k
k

, we get
I nC1

n B T n D T nC1 BDtC2
1k H) T nC1 BDtC2

I k
k

D T nC1.

(5) We have by reflexivity that I k
k

H) T k. Applying (4) inductively shows that
for all n � k, I n

k
H) T n. A similar proof beginning with (1) shows that

1n H) T n.

(6) For n D k, this is just the multiplication template. For n > k, a little doodling
should convince the reader that M n

n;nB.D1;D2/.T
n; T n/ D ERn

2n�kC1
BT 2n�kC1.

Transitivity, (3) and induction finish the proof.

(7) Begin with the identity template 1k H) I k
k

and apply ER
0˙

k
to both sides

to get ER
0˙

k
B 1k H) ER

0˙

k
B I k

k
D ER

0˙

k
D T 0˙ . The left side of this

implication is a 0˙-tangle which is a collection of loops which may be removed
by Lemma 3.1 to yield 10˙ H) T 0˙ . A very similar proof beginning with
the Jones projection templates gives En H) T n for 2 � n � k. To show that
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En H) T n for n > k, consider the following chain of implications.

En = ERn
2n�k�1 B M 2n�k�1

n�1;n�1 B.D1;D2/ .1n�1; 1n�1/

H) ERn
2n�k�1 B M 2n�k�1

n�1;n�1 B.D1;D2/ .T n�1; T n�1/

= ERn
2n�k�1 B T 2n�k�1

H) T n,

where the first implication is a consequence of (5) and the second of (3) and
induction.

(8) This is an easy corollary of (5), (6) and (7).

(9) Induce on n, with the basis case being asserted by the shift template. For n > k,

SH nC2
n B T n = M nC2

nC1;kC2
B.D1;D2/ .SH nC1

n�1 B T n�1; SH kC2
k

/

H) M nC2
nC1;kC2

B.D1;D2/ .T nC1; T kC2/

H) T nC2,

where the last implication uses the multiplication and conditional expectation
templates together with a suitable outside composition.

(10) First suppose that n � k. Begin with the conclusion SH nC2
n B T n H) T nC2

in (9). Let QnC2 and Q�nC2 be the Temperley–Lieb tangles shown in Figure 6,
so that, by (8), QnC2 H) T nC2 and Q�nC2 H) T nC2. Then, with M D
M nC2

nC2;nC2;nC2 denoting the iterated multiplication tangle, we have

M B .QnC2; SH nC2
n B T n; Q�nC2/ H) M B .T nC2; T nC2; T nC2/

H) T nC2:

(For typographical convenience, we have omitted the subscripts to B). Hence
ERn

nC2 B M B .QnC2; SH nC2
n ; Q�nC2/ H) ERn

nC2 B T nC2 H) T n. The
left hand side of this chain of implications is ELn

n B T n with a loop at its right;
therefore, using Lemma 3.1, we get the desired result. For 1 � n < k, merely
apply ERn

k
to both sides of ELk

k
B T k H) T k ..

(11) In view of (4), we only need consider the case n < k. If n D 0�, this is just the
case n D 1 of (10). So suppose that 0 � n < k. Let t D 2k � n C 1. Start with
I t

k
H) T t deduced inductively from (4). Let Kt and K�t be the Temperley–

Lieb tangles in Figure 6 so that, by (8), Kt H) T t and K�t H) T t. Now,
with M D M t

t;t;t , M B .Kt ; I t
k
; K�t / H) M B .T t ; T t ; T t / H) T t. Applying

ERnC1
t to both sides of this and removing the k � n loops that arise on the left

hand side, we get the desired conclusion using (3).

(12) In view of (6), we may assume that n < k. We first deal with the case n ¤ 0�.
Let u D 2k � n and M D M u

u;u;u;u;u. Then, with Lu as in Figure 6,

M B .Lu; I u
k ; Lu; I u

k ; Lu/ H) M B .T u; T u; T u; T u; T u/ H) T u:
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n

n

k � n

k � n

k � nk � n

k � nk � n

n � 1n � 1

QnC2 Q�nC2

K2k�nC1 K�2k�nC1

L2k�n

Figure 6. The tangles QnC2, Q�nC2, K2k�nC1, K�2k�nC1, and L2k�n.

As in (11), applying ERn
u to both sides and removing the k � n loops gives the

desired conclusion. The case n D 0� is a little more complicated. Here, let
u D 2k C 1 and M D M u

u;u;u;u;u. Then, with Lu; L�u; W u as in Figure 7,

M B .Lu;I u
kC2 B SH kC2

k
; W u; I u

kC2 B SH kC2
k

; L�u/

H) M B .T u; T u; T u; T u; T u/

H) T u:

k � 1
k � 1

k � 1

k � 1
k � 1

k � 1

L2kC1 L�2kC1 W 2kC1

Figure 7. The tangles L2kC1, L�2kC1 and W 2kC1.

Now apply ER
0�
u to both sides and remove the k C 1 loops to get the desired

conclusion.
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4. The main theorem

Recall from Section 3 the notion of templates holding for a pair .P; B/, where P is
a planar algebra and B � P . Our first observation is fairly easy to see.

Proposition 4.1. If P is a subfactor planar algebra of finite depth at most k, and
B D Bk is a basis of Pk , then all the templates of Figure 4 hold for .P; B/.

Proof. The modulus templates hold for .P; B/ since P has non-zero modulus. The
Jones projections, multiplication and the conditional expectation templates hold for
.P; B/ since their right sides are all the identity tangle I k

k
and B is a basis of Pk .

The depth and shift templates hold since the tangles on their right, namely T kC1 and
T kC2 surject onto their ranges by Corollary 2.2.

Before proceeding we briefly recall (see [4] for detailed explanations) what a
presentation of a planar algebra is. Given a label set L D `

n2Col Ln, there is a
universal planar algebra on L, denoted by P.L/. By definition, for all n 2 Col,
P.L/n is the vector space with basis all L-labelled n-tangles. Any subset R � P.L/

generates a planar ideal I.R/ in P.L/ and the corresponding quotient planar algebra
is denoted P.L; R/.

Let P be a subfactor planar algebra of depth at most k and B be a basis of Pk .
For b � 0, let B�b be the Cartesian product of b copies of B for b > 0 and to be f1g
for b D 0.

Let L D `
n2Col Ln where the only non-empty Ln is Lk D B. Consider the

universal planar algebra P.L/. The templates of Figure 4 specify a subset R � P.L/

as follows. Fix one of the templates, say S H) T, where S has b internal boxes
and T has c internal boxes. Note that the colour of the internal boxes (if any) of each
of S and T is k. For .x1; : : : ; xb/ 2 B�b write

ZP
S .x1 ˝ � � � ˝ xb/ D

X
f.y1;:::;yc/2B�cg

�.y1;:::;yc/ZP
T .y1 ˝ � � � ˝ yc/,

for (not necessarily unique) �.y1;:::;yc/ 2 C (with the obvious interpretations if b or c

is 0). This can be done since S H) T holds for .P; B/. Now consider the element
of P.L/

S.x1; : : : ; xb/ �
X

f.y1;:::;yc/2B�cg
�.y1;:::;yc/T .y1; : : : ; yc/,

where S.x1; : : : ; xb/ denotes the tangle S with boxes labelled x1; : : : ; xb etc. Con-
sider the collection consisting of one such element of P.L/ for each .x1; : : : ; xb/ 2
B�b and take the union of these collections over all templates S H) T of Figure 4.
This (clearly finite) subset of P.L/ is what we will call R. Note that R is not a
uniquely determined set but depends on choices. We will call this a set of relations
determined by the templates of Figure 4.
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Theorem 4.1. Let P be a subfactor planar algebra of finite depth at most k. Let
B be a fixed basis of Pk . Consider the labelling set L D `

n2Col Ln where the
only non-empty Ln is Lk D B. Let R be any (necessarily finite) set of relations in
P.L/ determined by the templates in Figure 4. Then, the quotient planar algebra
P.L; R/ Š P.

Proof. Consider the natural surjective planar algebra morphism from the universal
planar algebra P.L/ to P defined uniquely by taking a labelled k-box to itself re-
garded as an element of P . Equivalently, under this morphism, for any tangle S

all of whose internal boxes are of colour k, S.x1; : : : ; xb/ 7! ZP
S .x1 ˝ � � � ˝ xb/.

Since the relations R were chosen to hold in P, this morphism factors through the
quotient planar algebra P.L; R/ thus yielding a surjective planar algebra morphism
P.L; R/ ! P. We wish to see that this is an isomorphism.

For n 2 Col, let Qn be the subspace of P.L; R/n spanned by all Z
P.L;R/
T n .x1 ˝

˝x2 ˝ � � � ˝ xn�kC1/ for x1; : : : ; xn�kC1 2 B if n � k or the subspace spanned by
all Z

P.L;R/
T n .x/ for x 2 B if n < k. Let T be the set of all .n0I n1; : : : ; nb/ tangles

T such that (i) if b > 0, then ZT .Qn1
˝ � � � ˝ Qnb

/ � Qn0
, and (ii) if b D 0, then

ZT .1/ 2 Qn0
. Chasing definitions shows that T may be equivalently described as the

set of .n0I n1; : : : ; nb/-tangles T for which T B.D1;:::;Db/ .T n1 ; : : : ; T nb / H) T n0

holds for .P.L; R/; B/. We will show that T consists of all tangles, or equivalently,
that Q is a planar subalgebra of P.L; R/.

For this, we appeal to the main result of [5] which states that if T is a collection
of tangles that is closed under composition (whenever it makes sense) and contains
the tangles 10˙ , En for n � 2, ERn

nC1, M n
n;n, I nC1

n for all n 2 Col and ELn
n for all

n � 1, then T contains all tangles.
To verify the hypotheses for our T , observe first that by definition if T 2 T is a

.n0I n1; : : : ; nb/ tangle and S 2 T is any ni -tangle for i > 0, then, T BDi
S 2 T. Thus

T is closed under composition. That the other hypotheses hold for T follows from
the observation that the templates of Figure 4 hold for .P.L; R/; B/ by construction
of R and therefore their consequences (3), (7), (10), (11), (12) of Theorem 3.2 also
hold.

It follows that Q is a planar subalgebra of P.L; R/. Since it contains all generators
of P.L; R/, it is the whole of P.L; R/. In particular, P.L; R/k which maps onto Pk

equals Qk which is spanned by B and so P.L; R/k maps isomorphically onto Pk .
It easily follows that the map P.L; R/n ! Pn is an isomorphism for n � k.

For n � k, observe that Corollary 2.2 applies to P.L; R/ since the depth tem-
plate holds for .P.L; R/; B/. Hence we have an isomorphism of .P.L; R/k�1 �
P.L; R/k�1/-bimodules

P.L; R/k ˝P.L;R/k�1
P.L; R/k ˝P.L;R/k�1

� � �˝P.L;R/k�1
P.L; R/k ! P.L; R/n,

and therefore an isomorphism of Pk�1 � Pk�1-bimodules

Pk ˝Pk�1
Pk ˝Pk�1

� � � ˝Pk�1
Pk ! P.L; R/n.
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Since the left side is, by Corollary 2.2 applied to P, isomorphic to Pn while the right
side maps onto Pn, it follows that P.L; R/n maps isomorphically to Pn also for all
n � k.

5. On single generation

Rather surprisingly, the fact that finite depth subfactor planar algebras are singly
generated has a simple proof.

Proposition 5.1. Let P be a subfactor planar algebra of finite depth at most k. Then
P is generated by a single 2k-box.

Proof. As a planar algebra, P is generated by Pk . Since Pk is a finite-dimensional
C �-algebra, it is singly generated, by say x 2 Pk . By adding a multiple of 1k to x, we
may assume without loss of generality that �.x/ ¤ 0 (recall that �.�/ is the normalised
picture trace on P ). Thus the planar algebra generated by x and x� contains Pk and
must be the whole of P . Now consider the element z 2 P2k defined by Figure 8.
It should be clear that applying suitable annular tangles to z yields non-zero (since
�.x/ ¤ 0) multiples of x and x�. Hence the planar subalgebra of P generated by z

contains both x and x� and consequently is P.

k k

kk

�

��
x x�

Figure 8. Definition of z 2 P2k .

Remark 5.2. Lacking an adequate reference for the fact that finite-dimensional C �-
algebras are singly generated, we sketch a proof. For Mn.C/, the matrix whose only
non-zero entries are 1 on the sub-diagonal is easily seen to generate it. For a direct
sum of matrix algebras, take the direct sum of such elements appropriately shifted by
multiples of the identity so as to make their spectra disjoint. Such an element can be
shown to be a generator.

Remark 5.3. Let d be a fixed positive integer. For n 2 Col, letting P.d/n be the
vector space spanned by all n-tangles whose only internal boxes are of colour d , there
is an obvious planar algebra structure on P.d/. What Proposition 5.1 asserts is that
P.2k/ maps onto any subfactor planar algebra of depth k.

It is natural to ask whether, when a finite depth planar algebra P is presented as a
quotient of P.2k/ as above, the kernel is a finitely generated planar ideal. A standard
proof shows that this is indeed so.
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Proposition 5.4. Let P be a planar algebra and suppose that for finite label sets L

and zL there are surjective planar algebra maps � W P.L/ ! P and z� W P.zL/ ! P.
The ideal I D ker.�/ is a finitely generated planar ideal of P.L/ if and only if
zI D ker.z�/ is a finitely generated planar ideal of P.zL/.

Proof. First note that universality of P.L/ and P.zL/ yield (possibly non-unique)
planar algebra maps ' W P.L/ ! P.zL/ and z' W P.zL/ ! P.L/ that satisfy z� B' D �

and � B z' D z� .
By symmetry, it suffices to prove one implication. Suppose that zI D I. zR/ for a

finite subset zR � P.zL/. Let R D z'. zR/ [ fx � z''.x/jx 2 Lg, which is clearly a
finite subset of P.L/. We claim that I D I.R/.

Clearly R � I and so I.R/ � I . The other inclusion needs a little work. First
observe that fx � z''.x/jx 2 Lg � R implies that, for all z 2 P.L/, z � z''.z/ 2
I.R/. To see this we may reduce easily to the case that z D T .x1; : : : ; xb/ where T

is a .n0I n1; : : : ; nb/-tangle and xi 2 Lni
. Then

z � z''.z/ D Z
P.L/
T .x1 ˝ � � � ˝ xb/ � Z

P.L/
T .z''.x1/ ˝ � � � ˝ z''.xb//.

This may be expressed as a telescoping sum of b terms indexed by k D 1; 2; : : : ; b

where the kth term is given by

Z
P.L/
T

�
z''.x1/ ˝ � � � ˝ z''.xk�1/ ˝ .xk � z''.xk// ˝ xkC1 ˝ � � � ˝ xb

�
.

Each of these terms is clearly in the planar ideal generated by fx � z''.x/jx 2 Lg
and hence in I.R/. Therefore z � z''.z/ 2 I.R/.

Say z 2 I , so that �.z/ D 0. Then '.z/ 2 ker.z�/ D zI D I. zR/, i.e. '.z/ is in
the planar ideal generated by zR. It follows that z''.z/ is in the planar ideal generated
by z'. zR/ and therefore in I.R/. Since z � z''.z/ 2 I.R/, we also have z 2 I.R/ and
the proof is finished.

A direct consequence of Theorem 4.1 and Propositions 5.1 and 5.4 is the following
corollary.

Corollary 5.5. If P is a subfactor planar algebra of finite depth at most k, then P is
generated by a single 2k-box subject to finitely many relations.
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