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A quadrilateral in the Asaeda—Haagerup category
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Abstract. We construct a noncommuting quadrilateral of factors whose upper sides are each

the Asaeda—Haagerup subfactor with index H%m by showing the existence of a Q-system

in the Asaeda—Haagerup category with index H'T V17 We also conjecture the existence of

9+/17
2

a Q-system in the same category with index

7+V/17
L

and an associated quadrilateral whose

upper sides have index
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1. Introduction

Subfactor theory was initiated by Jones as a noncommutative Galois theory [10].
It is therefore natural to study the lattice of intermediate subfactors of a finite-index
subfactor as a quantum analogue of the subgroup lattice of a finite group. The problem
of classifying lattices of intermediate subfactors was posed by Watatani [17], and
recent progress has been made by Xu [18].

The simplest nontrivial lattice is a single proper intermediate subfactor N C P C
M . Such inclusions were studied by Bisch and Jones, and they provided a generic
construction in terms of the index parameters [M : P] and [P : N], see [3]. Their
construction is a free composition, in the sense that the (P—P)-bimodules coming
from N C P and P C M have free relations; their results show that there is no
obstruction in this case.

The next simplest case is a pair of distinct intermediate subfactors:

P c M
U U
N c 0.

Such a configurationis called a quadrilateral of factorsif PVQ = M and PAQ = N.
The presence of an additional intermediate subfactor means that we are no longer in
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a free situation. An important notion is commutativity, which means that the trace-
preserving conditional expectations of M onto P and Q commute. There is also
the dual notion of cocommutativity. Commuting, cocommuting quadrilaterals may
be constructed via a tensor product, but it turns out that noncommutativity imposes
a great deal of rigidity. Sano and Watatani studied noncommuting quadrilaterals of
factors and introduced the notion of angles between subfactors, a numerical invariant
which measures the noncommutativity [16].

In [6], the second named author and Jones studied noncommuting quadrilaterals of
factors whose sides are supertransitive, a minimality condition which means that the
planar algebras are generated by Temperley—Lieb diagrams. They found that there are
only two examples of such quadrilaterals up to isomorphism of the planar algebra,
a cocommuting quadrilateral coming from an outer action of S3 on a factor, with
2=[M: P] =[P :N]— 1 and anoncocommuting quadrilateral with [M : P] =
[P : N] =2+ +/2. In [5], the second named author and Izumi showed that if the
sides are only required to be 3-supertransitive, then one still has [M : P] = [P : N]
for noncocommuting quadrilaterals and [M : P] = [P : N] — 1 for cocommuting
quadrilaterals (in fact all that is required is that the sides are 2-supertransitiveand N C
P has trivial second cohomology in the sense of Izumi and Kosaki [9]). In the latter
case, one has the Galois group Gal(M/N) C S5, with equality only for the fixed point
subfactor of an outer action of S3 on a factor. Moreover, if {¢} C Gal(M/N) C S3,
then one has the following relation among the (P—P )-bimodules of the quadrilateral:
PPN Qv NPp = pPp ® (PMpy ®um o(mr)yMm @M M Mp), where « is an outer
automorphism of M. In sector notation, this relation is [tZ] = [Idp] & [kak], where
L= PPN and k = MMP-

Subfactors with index less than 4 must have index 4 cos? 7 by Jones’ index theo-
rem [10]. The principal graphs were classified by Ocneanu as type A, D2y, Eg, and
Eg Dynkin diagrams. Note that these are all finite graphs, a condition called finite
depth. Principal graphs of subfactors with index 4 have been classified as certain
extended Dynkin diagrams; some of these are infinite [15]. In [1], the first named au-

thor and Haagerup constructed two exotic finite-depth subfactors with indices HT“/E

(known as the Haagerup subfactor) and Hz—‘/ﬁ (known as the Asaeda—Haagerup sub-

factor). Along with the recently constructed [2] extended Haagerup subfactor, these
(and their duals) are the only finite-depth subfactors with indices strictly between 4
and 3 4+ /3, see [7].

In [5], all noncommuting, irreducible quadrilaterals with sides of index less than
or equal to four were classified, up to isomorphism of the planar algebra; there
are seven such quadrilaterals. Moreover, it was shown that the Haagerup subfactor
appears as the upper sides of both types of quadrilaterals: there is a noncommuting,
noncocommuting quadrilateral all of whose sides are Haagerup subfactors; and there
is also a noncommuting, but cocommuting quadrilateral whose upper sides are the

Haagerup subfactor but whose lower sides have index HT‘/E This quadrilateral
has Galois group Z /37, and is in fact the only known example of a noncommuting
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quadrilateral with 2-supertransitive sides and this Galois group.

There was considerable evidence that the Asaeda—Haagerup subfactor should ap-
pear in a quadrilateral as well. While it cannot appear in a noncocommuting quadrilat-
eral, it was in fact shown in [5] that any noncommuting but cocommuting quadrilateral
which has Z /27 Galois group and is maximally supertransitive, in the sense that the
upper sides are 5-supertransitive and the lower sides are 3-supertransitive, must have
upper sides with principal graph containing the Asaeda—Haagerup graph. Moreover,
the candidate principal graph for the lower sides of such an Asaeda—Haagerup quadri-
lateral, along with two other graphs of the same index, were found independently by
Morrison, Peters, and Snyder while searching for possible principal graphs which
start off as the Haagerup graph.

The proof of the existence of the cocommuting Haagerup quadrilateral involved
showing the existence of a Q-system for [Idp] @ [kak], where ki is a Q-system
for a Haagerup subfactor P C M, and « is the period 3 automorphism correspond-
ing to the symmetry in the Haagerup graph. The quadrilateral then is obtained by
composing these two Q-systems. The main technical difficulty was in verifying the
Q-system relations. This was accomplished through heavy use of the diagrammatic
calculus for tensor categories; the diagrams were ultimately evaluated in terms of
generators of a Cuntz algebra, using Izumi’s construction of the Haagerup subfactor
from endomorphisms of a Cuntz algebra [8].

The problem with doing the same thing in the Asaeda—Haagerup category is that
there is no corresponding Cuntz algebra representation, so it is difficult to evaluate
intertwiner diagrams explicitly. However, there is one principal advantage of the
Asaeda—Haagerup category over the Haagerup category: since the graph automor-
phism has period 2 instead of period 3, the intertwiner equations that occur in the
Q-system relations are all in 1 dimensional spaces, i.e. they are essentially scalar
equations. This allows us to verify the equations by comparing nonzero “states” of
the diagrams, rather than fully computing the whole diagrams. The formalism used
to express and evaluate these states is very similar to Jones’ bipartite graph planar
algebra formalism [11].

Once the existence of the “plus one” subfactor is established, its principal graph
may be easily computed. The dual graph was given to the authors by Noah Snyder
using the subfactor atlas (http://tqft.net/wiki/Atlas_of_subfactors). Interestingly, this
dual graph has a symmetry very similar to the original Asaeda—Haagerup graph, lead-
ing us to conjecture that the construction may be iterated once more: i.e. there may

exist a subfactor in the Asaeda—Haagerup category with index @ and associated
quadrilateral with upper sides having the new Asaeda—Haagerup “plus one” graphs.
Checking this conjecture should be straightforward using the methods of this paper
combined with methods of [1], but requires some computation. We hope to do this
soon.

Aside from the application to classification of quadrilaterals, the existence of the
(AH+1)-subfactor should be of independent interest as there is a dearth of finite depth
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subfactors with small index.

The paper is organized as follows: after the present introductory section, Section 2
is a background section reviewing some basic facts about Q-systems and biunitary
connections. Section 3 proves some identities of intertwiners in the Asaeda—Haagerup
category; this is a lot of the workload of the proof of the main theorem. In Section 4 we
prove the existence of the Asaeda—Haagerup “plus one” subfactor and the associated
quadrilateral.

Acknowledgments. The authors would like to thank Masaki Izumi for conjecturing
the existence of the Asaeda—Haagerup quadrilateral, which along with his construction
of the Haagerup quadrilateral is the inspiration for the present work; and for many
helpful conversations. The authors would like to thank Noah Snyder for helpful
comments on the manuscript and for finding the dual graph of the new Asaeda—
Haagerup “plus one” subfactor with the subfactor atlas.

2. Preliminaries

2.1. Subfactors, bimodules, and Q-systems. Let M be a Type 1I; factor with
unique normalized trace tr, and let | € N C M be a finite-index subfactor. Let x and
k denote, respectively, the Hilbert space completions of the multiplication bimodules
N M pr and ps M n with respect to tr.

Following sector notation, we will often omit the tensor symbol when writing
relative tensor products, so thate.g. kK means kK ® s k. For any two (A—B)-bimodules
p and o, the intertwiner space Homy, g (o, o) will be denoted by (p, o). We have two
distinguished bimodules Idy = y L?(N)y and Idy; = ps L?(M ). Finally, if p is
an (A-B)-bimodule, ¢ is a (B—C)-bimodule, and A is a (C—D)-bimodule, then the
bimodules (po)A and p(oA) are naturally isomorphic, and we will think of them as
being identified via this isomorphism. Similarly, p, p ® Idp and Id4 ® p are naturally
isomorphic and we will identify these as well.

We recall Longo’s conjugacy theory [12], which was originally formulated for
endomorphisms of Type III factors and translated to the finite setting by Masuda
[14]. There exist isometries r, € (Idy, ki) and 7, € (Idys, ki) satisfying

_ 1
(”: ®Ide) o (Ide @ 1) = EIdK (1)
and

_ 1
(Idi ® r¢) o (7 @ Idg) = Eldk, 2

where d = [M : N] is the Jones index of N C M.

We will make heavy use of the diagrammatic calculus for tensor categories, in
which morphisms are represented by vertices from which emanate strings labeled by
the origin objects (upwards) and by the destination objects (downwards). Straight
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strings labeled by objects correspond to identity morphisms, and strings labeled by
identity objects are often suppressed. Tensoring is depicted by horizontal concate-
nation, and composition by vertical concatenation. Diagrams are read from top to
bottom.

Then if we let

/\_: \/Er,c and /\ = \/Ef/u
K K i K

the above equations become

K K
bm M~
i K — and K K =
K

K K K

Definition 2.1. A Q-system over a 11; factor N is a triple (y, T, S) where y is an
(N-N)-bimodule with dim(yy) = dim(yy), T € (Idy.y) and S € (y,y?) are
isometries, and such that

(1) S®Idy)oS =(1d, ® S) oS, and

2) (T*®Idy)oS =1d), ®T*)o S = %Idy for some d > 0.

Note that, while the definition in [14] included the additional condition S S™* =
(S ®1dy) o (Id), ® S*), this condition was shown to be redundant in [13].

Theorem 2.2 ([12], [14]). If N C M is ally subfactor, then (ki, 1, 1d, @7 @1dg) is
a Q-system. Conversely, any Q-system over N arises in this way for some M DO N.

If y = Idy @ o where o is irreducible, the Q-system equations can be simplified;
the following result was stated in [5] for infinite factors but is equally true for Type
II; factors.

Proposition 2.3. Let o be a self-conjugate (N—N )-bimodule such that dim(yo) =
dim(ony) = d and o £ 1dy. Then Idy & o admits a Q-system if and only if there
exist isometries R € (Idy,0?) and S € (0,02) such that

(1) (S®Idg)oR=(Ide ® S) o R, and

Vd +1

T (R®Id; —1d; ® R) = (Idy ® §) 0§ —(S ®1do) o S.

2)
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In pictures, if we set

o

/\=x/d_R and )\=d%S,
o o
o o

then this becomes

v /Q & "

(o o O O O o

A A)

2.2. Connections and bimodules. Let N C M be afinite index subfactor. The even
vertices in the principal (respectively, dual) graph corresponded to the irreducible
N — N (M-M)-bimodules which occur in the decomposition of the tensor powers
of kk (kk), and the odd vertices to the N — M (M —N)-bimodules which occur in
the decomposition of the even bimodules tensored again on the right by « (k), where
Kk as before is the completion of y M.

To handle bimodules concretely, we use Ocneanu’s paragroup theory. If N C M
has finite depth, the (N —N )-bimodules [resp. (N —M )-bimodules] may be represented
as biunitary connections whose horizontal graphs are both the principal graph (resp.
whose upper graph is the principal graph and whose lower graph is the dual graph)
of NCM.

2)

Vd+1
7

Q— Q

VWw Go Wi
G 3 o G 1
Vi Gy VW,

Figure 1. Schematic representation of a connection; cells are based loops around the four
graphs.

In this formalism, direct sums of bimodules are then given by merging the vertical
graphs as a disjoint union, and tensor products are given by composing the vertical
graphs, and the connection accordingly. For more details, we refer the reader to [4]
and §3 of [1].



A quadrilateral in the Asaeda—Haagerup category 275

The connection may be extended linearly to cells composed of formal linear
combinations of edges, i.e. elements of the Hilbert spaces associated to each pair of
vertices with orthonormal basis indexed by the edges between those vertices. One can
then define gauge transformations between two biunitary connections on the same
graphs — see §3 of [1] for details. We recall the following result from Theorem 3
in [1].

Theorem 2.4. A vertical gauge transformation between two biunitary connections
on the same graphs gives an isomorphism between the associated bimodules. Con-
versely, if two bimodules given by biunitary connections with the same horizontal
graphs are isomorphic, then the vertical graphs are also identical and the bimodule
isomorphism is given by a vertical gauge transformation.

Similarly, it follows from Ocneanu compactness (as in the proof of the above
theorem in [1]) that any intertwiner between two bimodules represented by biunitary
connections with the same horizontal graphs can be expressed as a map on the vertical
edge spaces. Such intertwiners then compose the same way as maps, and act linearly
componentwise on composite edges in tensor products. By a slight abuse of notation,
we will often identify bimodules with their associated connections in the sequel.

3. Intertwiners in the Asaeda—Haagerup category

In [1], the first-named author and Haagerup constructed a subfactor N C M with

index 5++m The principal graph is

and the dual graph is

R B S

They explicitly computed the biunitary connection for k = y L?(M ). For future
reference we include the four graphs of «:
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Vo
Go
Vi
Gy

|23

G>
V3

G3

Vo

We imagine these four graphs as being wrapped in a square, so that the first and
third graphs from the top are the “horizontal” graphs and the second and fourth are
the “vertical” graphs in the square.

Vo Go Wi
G 3 o G 1
V3 Gy V5

Figure 2. Follow clockwise from top left to get the vertical picture.

Then composing with the dual gives the graphs of ki (note that the left vertical
graph G3 is “upside down”, so we reflect vertically before composing):

Vo
Go
1
G1G)
1

The connection kk decomposes into Id y, whose vertical graphs are indicated by
the dotted lines, and whose value on every cell is 1, and another connection, which we
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will call p. The vertical graphs for p are given by the complements of the dotted lines
in the graphs of kic; the connection is determined only up to vertical gauge choice
and a representative, which we will take as well, was computed in Tables 8 and 9
in [1]. We will call the connection corresponding to the vertexsymmetric with respect
to 1dy in the principal graph o itis a 1-dimensional (N—N)-bimodule. The vertical
graphs of @ switch x with X for each x (we take X = x for all x and y = y for those
vertices y which do not have any labeled “y”).
The principal graph can then be labeled by bimodules as follows:

[pa]  [apa]

[o]
[¢]

[d] [e] [o] [n] [7] [v] [er] fop] [ep] [ax] [o]

Following the sector notation, the square brackets denote isomorphism classes.
The fact that [ap] # [po] implies that the (M —M )-bimodule ko« is irreducible: we
have dim(kak, kak) = dim(akk,akk) = dim(Idy @ ap,ldy & pa) = 1. Also
note the fusion rule [pap] = [apa] @ [n]. This implies that dim(kak, (Kak)?) = 1.

We want to fix certain intertwiners. Recall that an intertwiner between two con-
nections with the same horizontal graphs is given by a collection of maps on the
vertical edge spaces. To describe such an intertwiner, we list the maps corresponding
to each edge in the vertical graphs of the origin of the intertwiner.

We use the following notation. Each edge will be denoted by the pair of vertices
it connects, e.g. “xA” denotes the edge in the left vertical graph of ¥ which connects
* to A. In principle there could be multiple such edges but in our computations
all the edges will be simple. Composite edges will be denoted by the vertices from
each component, e.g. “xAb” denotes the edge in the left vertical graph of kk which
is composed of the edges x4 in x and Ab in k. Finally, each gauge map will be
represented as an edge of the origin mapping to a linear combination of edges in the
destination.

The intertwiners r, and 7, are determined up to a scalar. We can fix the scalar by
assigning a complex unitary as the gauge entry corresponding to any simple edge in
kk. So we fix x* > x A and then r, can be computed using the methods of [1], see
pp. 40-43. We also use the following notation of [1]:

ﬂ=\/75+2m, Bo=VB—n. B,=pr yv=v282-1 ¢ =y

Then the map r is defined by the following table.
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k% > kA% aa +— ﬁala—i— Elala

bb — %bAb + %be cc WLQC + \/_B c3c

dd — B%dCd + %dEd ee — zfzfe?w + ﬁe4e + /32 e5e
ff'*(%"‘ﬁfl)fEf-l-Lfo é¢ > E5¢

dd > 32d Ed + 2dCd g8 > 52858 + 5,868

hh +— hGh aa v+ aGa

bb + bGb

N | ¢

hh — B_hCh+B_1hA

5% > ¥ A%

Similarly, 7, can be fixed by setting 11 + lal, and then we get the following table
for 7.

AAH%A*A+ﬂ—‘AbA 11— lal
CC ﬂ—‘CbC + fﬂ 22+ 3-2a2 + ﬁ—zzcz
/ 1
EEHfﬁ ]EdE+fﬁ 33Hfﬁﬁﬂ,(,3 1)3¢3
+2EfE fﬁfl 3e3
[;/;”CdC—i— Y2G 00 44 > ded
2
V2 1 B, Bicx
GG 5 GfG—i-ﬂGbG 55— T35 ﬁ,SeS-i— ﬁy5c5
+1GhG /{,Sgs
i IiAe 10T NG 167
Ad — ¢ AhA+ﬂA>kA 66 > $=6g6 + 5646

We need to check that the these choices for r, and 7, are consistent.

Lemma 3.1. The intertwiners r, and 7y defined as above, satisfy the conjugacy
Equations 1 and 2.

Proof. Since dim(Idy,xk) = dim(Idas, kx) = 1 and ry, 7 are isometries, Equa-
tions 1 and 2 are satisfied up to a unitary scalar. Since all the nonzero entries of the
intertwiners are positive, that scalar must be 1. Ol

The connection for p was chosen in [1] so that all the gauge unitaries between
p and «xk corresponding to simple edges between distinct vertices are the same. Let
v: p — kk be the isometry determined by fixing those gauge unitaries to be 1. We
will need some coefficients of v. For edges xy € p,xZy € kk we use the notation
v(xy, xZy) for the coefficient of x Zy in the image of xy under v. (We will also use
similar notation for coefficients of intertwiners of other connections.)
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Lemma 3.2. We have v(hh.hAh) = 2 = —v(bb, bAb).

Proof. This is a straightforward computation from the connection tables (see [1],
Tables 8 and 9) using the fact that all the simple gauge unitaries corresponding to
edges between distinct vertices were chosen to be 1. Il

Finally, let w : apak — pok be the isometry constructed in [1], §5. We recall
the following coefficients. (Note that while not all of these are explicitly written in
[1], they are implicit from the gauge choices made there.)

Lemma 3.3. We have
w(bbhhA, b x ¥A) = w(hhf G, hhhG)
= w(x*hhG, xbbG)
= w(% x bbG, *hhG)
=1
= —w(bb ffG,bbbG)
= w(hhbbA, h% x A).

Next, we define diagrams with the appropriate normalizations.

Let
/\ \/7VK, _/\ :\/Bf/u
K K
a p a K
A [ SN
p o K
Then let
0
T i
pp B
P p
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and

p oo P

For each of these diagrams let the diagram obtained by rotation by 7 be the adjoint.
Define

YA YAA

and again let the diagrams obtained by rotation by 7 be the adjoints.

Lemma 3.4. We have

NVAY LYY
“ b g KJ
K K
and, similarly,
p " )p\ )p\ p

Proof. By Frobenius reciprocity, the two diagrams in the first equation have the same
norm (see [5], Lemma 8.1), and they belong to the same one-dimensional space.
Consider the edge *bA in pk; both diagrams send it to A with positive coefficient,
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so they must represent the same intertwiner. The proofs of the other equalities are
similar. O

These properties allows us to unambiguously “rotate” these trivalent vertices.

We will need to compute coefficients of more complicated intertwiner diagrams,
so we introduce the following formalism. By a vertex of an intertwiner diagram we
will mean a crossing or relative extremum of the y-coordinate. The intertwiners repre-
sented by the vertices are called the elementary intertwiners of the diagram. Then each
intertwiner diagram is a composition of elementary intertwiners tensored with identity
morphisms. Such a diagram represents an intertwiner in Hom(A; ... Ay, (b1 ... ihm),
where Aq,...,A, are the bimodules labeling the strings at the top of the diagram
and p1, ..., Lm label the strings at the bottom. Since an intertwiner is a map from
the edge space of A; ... A, to that of uy ... Uy, the diagram can be evaluated on a
specific edge in A1 ... A, by “following” the edge vertically from top to bottom and
composing the actions of the elementary intertwiners.

Definition 3.5. A state on an intertwiner diagram is a labeling of the strings of the
diagram by edges in the corresponding bimodules and regions of the diagram by
vertices such that each string labels an edge connecting the two adjacent regions.
(We imagine that the diagram is bounded by a box so one can not “go around” the
top of the strings). A state determines a unique edge at each horizontal cross section
of the diagram which does not contain a vertex. The spin factor associated to a vertex
is the coefficient of the corresponding elementary intertwiner from the edge directly
above it to the edge directly below it. The value of a state is the product of the spin
factors of all its vertices.

The following lemma is just an exercise in unraveling the definitions of states,
intertwiners diagrams, and connections.

Lemma 3.6. If x is an edge in Ay ... A, and y is an edge in |41 ... i, then the
(x, y) coefficient of the intertwiner is the sum of the values of all states whose top
horizontal cross section is x and whose bottom horizontal cross section is y.

In the state diagrams that follow, the connection associated to each string will have
a unique edge between the vertices of the adjacent regions, so we omit the labeling
of the strings by edges. To avoid clutter, we also sometimes omit the labeling of the
strings by the connections if it is clear from context.

We now compute a bunch of coefficients of various intertwiners that we will need
later.

Lemma 3.7. We have the following coefficients:

* ¥ b h
@ (5 N=/(% \=p. (% N=/(b \=1,
PP p P PP p P
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P P P P
* | b * | h h | b b | h
(b>—)\=)\=ﬂz\/ﬁ, )\=A=\/%%
b h f S
£ P B P p P PP

l?h~ ~HS
¢ bXh = hxb =_-L
* | % * | % VB
poa p p oa p
0 p o 0 p o
nl £ b| £
PXT == X =R
A b 2
p @ p p @ p
@ p o o p o
*|h *| b
X = #xXb = /B
b |b h|h
p o p p a p

Proof. The idea behind all the computations is the same: we express each intertwiner
as a diagram whose elementary intertwiners are all known explicitly. Then the co-
efficients expand into states which can be evaluated. In principle we have to sum
over all states compatible with the coefficient we are computing, but in practice each
coefficient will determine a unique state. For each part of the lemma, we illustrate
how the state breaks up into elementary intertwiners for the first coefficient computed,
and then omit that step for the rest of the coefficients.
(a) We have

A\ B
pp B,

p p P p

*

SO )

:3 K K* K K

2
= ﬁ ﬂ—r,c(**, x Ax)re(AA, AbA)v(xb, x Ab)v(b*, bAx)

B b
= s = s,
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¥

N B
pp P

0
= Bri(

*%, %
= s () = s

197 (A4, AhA)v(5h, 5 ARy (h%, hA%)

b

B
i N\=H
pp BY,

PP
= Bre(bb,bGb)i (GG, GhG)v(bh,bGh)v(hb, hGb)

1
= B(5) OO = 1.
and
h
h
\=h
pp BV,
PP
= Bre(hh, hGh)F (GG, GbG)v(hb, hGb)v(bh, bGh)
- ﬂ(%)(l)(l)(l) 1
(b) We have
P
* b
P
b B2
p P b
PP
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p p
~ (A NN
/32 K/\)) ) Y A =

_ bk B>
Y

N (Fmm(-£2) = a2,

Z_Fe(AA, AbAYu(xb, % AbYv(xb, * Ab)v(bb. bAb)

p ~
* | h :ﬁ
h B2
Fp
=B ﬂ—fK(A'A',XﬁZ)v(;E, % Ah)yv(%h, % Ah)yv(hh, h Ah)
BB B B
=8B mm(E) = 52
P
s B
AN
Fop

-y %fK(GG, GbG)v(hb, hGb)v(b f,bGf)v(hf, hGf)

_ g [Bid _\/E
—ﬁ\/;(g)(l)(l)(l)— >
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and
P
b | f
h _=
K
-y %fK(GG,GhG)v(Eh,BGh)v(ZSf,ISGf)v(hf»th)
B _\/E
=8y 5 (5) 0 = /5
(c) We have
@« p o«
bb hfl _ &
* | % IB
poa p
_B
B
-4 fF w(bBhR A, b + ¥ A)o(Fh, % AR)r (i, 7 AF)
1 1
= 1 1 — ) = )
VBI(4-) N
a p o
\!|B
h b =




286 M. Asaeda and P. Grossman
= VBiw(hhbbA, h% % A)v(xb, xAb)r(bb, bAb)

= VBO(5) =

o )

=B w(bbffG bbbG)v(bf bGL)r(ff. fGf)
VB
= JﬁT(—l)(l)(E) =-Y=

i

= VB1 w(hhffG hth)v(hf hGf)r(ff. fGf)
VB
= JE(l)(l)(E) ==,

)

= \/—w(**th *bbG)v(bh bGh)r(hh, hGh)

= VB () = VB,
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and

a p o
*|b

¥ b =
h|h

poa p

p o p
= /Biw( % bbG, ¥hhG)v(hb, hGb)r(bb, bGb)

= VB M) = VB1. O

Lemma 3.8. We have

a p P«
0
ﬁl = Bildy, and a = B1ldpq.
o

a p p
Proof. The left hand side of each equation is a scalar, so we can simply evaluate the
unique state compatible with any given edge. For the first equation we have

and, for the second one,
p o

b|b a p o a p o«
* b %|n * | b
" =(m>( N )( ):1@@ =
P P b b h|h
p oo p p oa p
b

P«
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Corollary 3.9. We have

S

p| [ap p = pildg.

S

Lemma 3.10. We have

%@%
@ p a p a o p o poa

Proof. Since dim(p, apapa) = 1, we can compare the two sides of the equations
using any nonzero coefficient. We choose the coefficient corresponding to the edges
(xb, *%ﬁhgb), which admits a unique compatible state for each of the diagrams in
the equation. For the left hand side we have

a p a p o« px p

and, for the right hand side,
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Lemma 3.11. We have

O p o p oo p oA p oo

Proof. Again, dim(pap, apapa) = 1, so we can compare the two diagrams using
any nonzero coefficient. We choose (xbb f, xxhh f '), and find, for the left hand side,

=—J/§JE(—52\/§) b

and, for the right hand side,
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Lemma 3.12. We have

K K o K Kk K K o K Kk

ANAA

Proof. This time dim(kkakk, akkakke) = 4, so evaluating a single nonzero co-
efficient on each side is insufficient. However, the only compatible states of these
diagrams are of the form

K K o K K

for the left hand side, and

o /AN

o oK K o

for the right hand side, where x, P, Q, R, S are some vertices from the appropriate
graphs.
Since
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K K o K K

the two intertwiners are the same. O

4. A quadrilateral

The following lemma was proved for the Haagerup category in [5]. As the proof for
the Asaeda—Haagerup category is identical we omit it here.

Lemma 4.1. We have

K K K K K K K K
1 /‘\ 1
p p P P P p p 1Y

We want to prove that Idys @ kak admits a Q-system; to do this we need to
show that there are isometries R € (Idps, kakkak), S € (kak, kakkak) satisfying
both (1) and (2) of Proposition 2.3 with d = B2.

Let
K o K
R 1A i s=_17 ’
= — an = —
B /\ VB o
Ko K K o K

Lemma 4.2. Both R and S are isometries.

Proof. R is clearly an isometry. We have
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K o K K o K
P 4 P 4
p
S*Szl O[KK(XZLL o ,O (07
B Bi1 B
P
p|p p|p
K o K K o K
K o K K o K
p| p | »
~ L a2 o e
B1 B3 T
P P P P
K o K K o K
K o K K o K
% 19 1Y
P P P 2
% o o ﬁZ o o
4+ 22 P 4+ 22 Y )
2 2
1 1
P Y P P
K o K K o K

1
= _3:3%Idkou< = Idgax-
1

where we have used Lemma 4.1 twice to split the diagram into four, and Corollary 3.9
to evaluate the only nonzero term. []

Lemma 4.3. We have (S ® Ids) o R = (Id; ® S) o R.

Proof. We have
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e
K o K K aK
(S®Idy)o R = 14 .
I
KoK Kak

0
K oK

N

Ub‘,_

X1

Its image under the linear isomorphism

18
K K
1 o
3
>
p o o

=

On the other hand,
()
o

(Id(,(X)S)c)R:—3
,35

Its image under (3) is

=
Nl
=)
i

3)
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By Lemma 3.10 these are equal. O

Lemma 4.4. We have

%(R@)Ida—IdU@R)=(Idg®S)oS—(S®Idg)oS.

1

Proof. We have

B

E(R ® Idkouc - IdEaK &® R)
1

=1
1S
P;
=
c
=

Its image under

“4)

18 _

ARV
1
2 /\ - /\
1 /\_ | | /'\_
0K Ka KK o 0K KO KK
Using _ B _
K K K K K K
L\ 5
1
= - +_ )
ﬁ/\ p
K K K K K K
we get
K K XK K K K XK K
AV \/ \/
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K K &K K K K &K K
\V4 \V4 \V4
1
(5 % )
~ /A ﬁ\\
XK KO KK o XK KO K K «

(by Lemma 3.12)

AV
1
BB1 '
0K KK Ko XK KoK K «o
On the other hand,
(S ® Idgax) 0 S — (Idkalc ® S) oS
K o K K o K
P
1Y D 14
1Y p
:l<k o KKaoak_ Kok kK o K)
p p P
o p
0 p

X1
Q
=
=
Q
P;
=
Q
=
X1
Q
=
P;
c
K
=
Q
?;

Its image under (4) is

K KQ KK K KKK
K K
P
o e | h P
P
1( Q o )
B <) (>
p| P
p|p
P
K K 0
O K KOUKK O 0K KX KK
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K Ko K K

K KO KK K KO KK
\/
y Iy
p L p
P
2
2 o B2 o
+ = +—% )),
"ol p| p
1Y P
1Y P
0 K Ko KK o 0 K Ko KK o



A quadrilateral in the Asaeda-Haagerup category 297

where we have used Lemma 4.1 twice on each side. Since («p, pap) = (pa, pap) =
(ap, apapa) = (po,axpapa) = 0, the second and fourth terms in each summand
are 0. Moreover, by Lemma 3.11 the third terms are the same so they cancel. That
leaves

K Ko K K K KoK K
AV AV
y p
P P
VAN /N
dKK o o K Ko
K K XK K K K XK K
AV \V4

Z%( A . )

0K KoK 0 0K KOXKKO®
where we have used Lemma 3.8. O

Theorem 4.5. The bimodule y = 1dys & kak admits a Q-system, which is unique
up to equivalence.

Proof. Existence is immediate from Lemmas 4.2, 4.3, 4.4 and Proposition 2.3. For
uniqueness, note that, since dim(kai, kaikkaik) = 1, S is determined up to a scalar.
For the equation in Lemma 4.4 to hold, that scalar is determined up to a sign, which
means the Q-system is determined up to equivalence (see [5], Lemma 3.5). L]

Once existence of the O-system is known, the principal graph of the corresponding
subfactor can be easily computed from the Asaeda—Haagerup fusion rules:

The dual graph was computed using the subfactor atlas and sent to the authors by
Noah Snyder. It is
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Note that the dual graph possesses an order two symmetry very similar to that
of the original graph. We therefore conjecture that our construction may be iterated

once more to obtain a Q-system in the Asaeda—Haagerup category with index %%m.
Checking this should be a straightforward computation, but we would first need some
data from an analogue of Asaeda and Haagerup’s original computation, applied to
the new “AH+1" subfactor.

Theorem 4.6. There is an irreducible, noncommuting but cocommuting quadrilateral
whose upper sides are the Asaeda—Haagerup subfactor. Such a quadrilateral is
unique up to isomorphism of the planar algebra.

Proof. Let P C M be a dual Asaeda—Haagerup subfactor with k = p Mjs corre-
sponding to the fundamental vertex on the dual Asaeda—Haagerup principal graph.
By Theorem 4.5, we can find a subfactor N C P suchthattt = Idp @kak, wheret =
N Pp. Then y My = 1k, anddim(ik, tk) = dim(it, kk) = dim(Idp ®kak, kk) = 1,
so N C M is irreducible.

By aslight abuse of notation, we will let « denote both the (M —M )-bimodule of di-
mension 1 and the corresponding outer automorphism of M. We have dim(xitk, o) =
dim(zt, kak), so ayr M1 contains a copy of [«], where N C M C M, is the basic
construction. Take a representative of [«] in the Galois group of N C M and then
set Q = «(P), and consider the quadrilateral

P c M
U U
N C 0.

Then P # Q, or else either N C P or P C M would have a nontrivial Galois
group, which is not the case. Since y Py = yo(P)ny = yOn, the quadrilateral
does not commute (see [5], Theorem 3.10). On the other hand, if P ¢ M C P and
Q C M C Q are each the basic construction, then 37 L2(P)ps == kic = Idpys @ p £
Idy @ apo = akiko == ML2(Q_)M. By [6], Lemma 4.2.1, the quadrilateral cocom-
mutes. Uniqueness follows from [5], Theorem 4.8. O

This theorem answers the conjecture in [5], Remark 5.16.

Remark 4.7. If the iterated equations hold and the Q-system for index 9+_£/ﬁ exists,

there would similarly be a noncommuting quadrilateral whose upper sides are the

“AH+1” subfactor and whose lower sides have index 9+2—‘/ﬁ.
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