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Fusion categories in terms of graphs and relations

Hendryk Pfeiffer

Abstract. Every fusion category C that is k-linear over a suitable field k, is the category
of finite-dimensional comodules of a weak Hopf algebra H . This weak Hopf algebra is
finite-dimensional, cosemisimple and has commutative bases. It arises as the universal coend
with respect to the long canonical functor ! W C ! Vectk . We show that H is a quotient
H D HŒG �=I of a weak bialgebra HŒG � which has a combinatorial description in terms
of a finite directed graph G that depends on the choice of a generator M of C and on the
fusion coefficients of C . The algebra underlying HŒG � is the path algebra of the quiver
G � G , and so the composability of paths in G parameterizes the truncation of the tensor
product of C . The ideal I is generated by two types of relations. The first type enforces
that the tensor powers of the generator M have the appropriate endomorphism algebras, thus
providing a Schur–Weyl dual description of C . If C is braided, this includes relations of
the form ‘RT T D T TR’ where R contains the coefficients of the braiding on !M ˝ !M ,
a generalization of the construction of Faddeev–Reshetikhin–Takhtajan to weak bialgebras.
The second type of relations removes a suitable set of group-like elements in order to make
the category of finite-dimensional comodules equivalent to C over all tensor powers of the
generatorM. As examples, we treat the modular categories associated with Uq.sl2/.
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1. Introduction

A fusion category C is a semisimple, additive, rigid monoidal category. C is required
to have only a finite number of simple objects up to isomorphism (we call this finitely
semisimple) and to be k-linear over some field k such that Hom.X; Y / is finite-
dimensional for all objects X; Y 2 jC j. In the following, we do not impose any
condition on the field k, but we require that End.X/ Š k for all simple objects
X 2 jC j and say that C is split semisimple. For technical reasons, C is required
to be essentially small, and for convenience, we equip every object X 2 jC j with a
specified left-dual. Such a rigid category is called left-autonomous. We do not require
the monoidal unit 1 to be simple, i.e. we include the case of multi-fusion categories.
For further background on fusion categories, we refer to [23], [1], and [4].

If a fusion category C arises as the category of comodules MH ' C of some
Hopf algebra H ,it admits a functor F W C ! Vectk that is strong monoidal, i.e. in
particular F.X˝Y / Š FX˝kFY are isomorphic vector spaces for allX; Y 2 jC j.
This happens because for every Hopf algebraH , the forgetful functor MH ! Vectk

is strong monoidal. The most interesting fusion categories are those that do not admit
any strong monoidal functor to Vectk and therefore do not arise from Hopf algebras
in this way.

Nevertheless, each fusion category C still admits the long canonical functor

! W C �! Vectk W X �! Hom. yV ; yV ˝X/;

f 7�! .id yV ˝f / B �:
Here, we have used the small progenerator

yV D
M
j 2I

Vj ;

where fVj gj 2I is a set of representatives of the isomorphism classes of the simple
objects of C . The functor ! is k-linear, faithful, exact, and has a separable Frobenius
structure, [6], [22], and [16], which includes the structure of both a lax and an oplax
monoidal functor.

Under this functor, the k-dimension of a tensor product

dimk !.X ˝ Y / � .dimk !X/ � .dimk !Y /

is in general smaller than the product of k-dimensions. This effect is known as the
truncation of the tensor product.

In the present article, we use the long canonical functor in order to arrive at a
characterization of fusion categories in which we can fully parameterize the truncation
of the tensor product in terms of combinatorial data. This is done as follows.

First, Tannaka–Kreı̆n reconstruction has been generalized to functors with a sep-
arable Frobenius structure, [6], [15], [16], and [11]. It equips the universal coend
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H D coend.C ; !/ with the structure of a weak Hopf algebra (WHA), [2] and [3].
This WHA can be shown to be finite-dimensional and split cosemisimple and to have
commutative bases [16]. The long canonical functor plays the role of the forgetful
functor MH ! Vectk of the category MH of finite-dimensional rightH -comodules,
and C ' MH are equivalent as k-linear additive monoidal categories.

We then choose an object M 2 jC j that generates C as a fusion category, and
define a finite directed graph G , the dimension graph of C with respect to M . It
depends on the choice of the generator M and on the fusion coefficients of C . The
reason for considering this graph is the following.

The algebra R D End. yV / Š kjI j has a basis of orthogonal idempotents �j D
idVj

, j 2 I . The vector spaces !X D Hom. yV ; yV ˝ X/ form R-R-bimodules. We
can choose a basis of !X that consists of basis vectors of the Hom.Vj ; V` ˝ X/ for
all j; ` 2 I , i.e. one that is adapted to the orthogonal idempotents of R.

The tensor product in C ' MH is governed by the multiplication inH which, in
turn, is determined by the lax and oplax monoidal structure of !. The following is
the lax monoidal structure:

!0 W k �! !1;

1 7�! ��1
yV ;

and

!X;Y W !X ˝ !Y �! !.X ˝ Y /;

f ˝ g 7�! ˛ yV ;X;Y
B .f ˝ idY / B g:

It is not difficult to see that !.X ˝ Y / Š !X ˝R !Y is the tensor product in the
category of R-R-bimodules. In particular, if f1 2 Hom.Vj ; V` ˝ M/ and f2 2
Hom.Vp; Vq ˝ M/, j; `; p; q 2 I , then !M;M .f1 ˝ f2/ is non-zero if and only if
q D j .

We thus define the dimension graph G of C with respect to M to have vertices
G 0 D I , i.e. the orthogonal idempotents of R, and edges G 1

j̀
from j to ` the vectors

of a basis of Hom.Vj ; V` ˝M/. Then, two edges f1; f2 2 G 1 are composable if and
only if the truncated tensor product !.M ˝ M/ contains the corresponding vector
f1 ˝ f2 of the k-linear tensor product !M ˝k !M .

There is a weak bialgebra (WBA) HŒG � associated with the graph G and a sur-
jection of WBAs � W HŒG � ! H such that a specific simple comodule kG 1 ofHŒG �
is pushed forward under � to the generating comodule !M of MH . Since � is
a homomorphism of WBAs, the same holds for all tensor powers thereof, i.e. that

.kG 1/
y̋ m

is pushed forward to .!M/
y̋ m, m � 0.

In order to characterize H and thereby the fusion category C ' MH , it remains
to compute the kernel of � . This is done in two steps.

First, we take a suitable quotientHŒG ;E� D HŒG �=IE in order to enforce that each

.kG 1/
y̋ m

, m � 0, is equipped with the same endomorphism algebra as .!M/
y̋ m.
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This quotient is particularly easy if the monoidal unit 1 and the chosen generator
M of C are both simple and if C is braided such that braiding and inverse braiding of

adjacent tensor factors already generate all endomorphisms of .!M/
y̋ m, m � 2. In

this case, the ideal IE is generated by quadratic relations of the form ‘RT T D T TR’,
a generalization of the construction of Faddeev–Reshetikhin–Takhtajan (FRT) [18]
to WBAs. The coefficients of the R-matrix in these relations form the Boltzmann
weight of a star-triangular face model.

Second, our surjection of WBAs factors through this first quotient yielding another
surjection of WBAs x� W HŒG ;E� ! H . We show that ker x� is generated by 1�g for
a suitable subset of group-like elements g 2 HŒG ;E�. Dividing by 1�g ensures that
the categories of comodules ofH andHŒG ;E�= ker � agree everywhere, not just for
fixed tensor powers of the generator M .

For the special case of Uq.slN / in which the first quotient is given in terms
of RT T relations, Hayashi [5] has already presented WHAs whose categories of
finite-dimensional comodules have the same fusion rules as the modular categories
associated with Uq.slN /. In fact, in this special case of our construction, the first
quotient HŒG �=IE appears in the literature on subfactors, see, for example [14]. In
Ocneanu’s terminology, the weak bialgebraHŒG � is called a paragroup and the coeffi-
cients of theR-matrix a connection. The original FRT construction was reformulated
by Müller [12] in a way that can be directly compared with our approach.

The present article is organized as follows. Section 2 summarizes some back-
ground material on WBAs and WHAs and on the generalization of Tannaka–Kreı̆n
reconstruction to our case. In Section 3, we construct the dimension graph G and the
surjection of WBAs � W HŒG � ! H . The first quotientHŒG ;E� D HŒG �=IE is stud-
ied in Section 4. In Section 5, we study the group-like elements of the WBAHŒG ;E�
and their associated comodules in order to compute the kernel of x� W HŒG ;E� ! H .
As examples, the modular categories associated withUq.sl2/ are treated in Section 6.
The reader who is interested in a quick overview of our construction, is encouraged
to go directly to that section. Appendix A contains a summary of the definitions and
conventions for monoidal categories that we use.

Acknowledgements. The author is grateful to Gabriella Böhm, Catharina Stroppel,
Kornél Szlachányi and Peter Vecsernyés for stimulating discussions, to Vladimir
Turaev for correspondence, and to the anonymous referee for the hint that Theorem 5.6
holds for all homomorphisms between WBAs, a result which substantially simplified
Section 5.

2. Preliminaries

In Subsection 2.1, we summarize some key definitions and properties of weak bialge-
bras (WBAs) and weak Hopf algebras (WHAs) following [2] and [3]. Subsection 2.2
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reviews their categories of comodules following [16]. In Subsection 2.3, we recall
the main results about the Tannaka–Kreı̆n reconstruction of a WHA from a given
monoidal category, [16] and [11].

We use the following notation. If C is a category, we write X 2 jC j for the
objects X of C , Hom.X; Y / for the collection of all morphisms f W X ! Y and
End.X/ D Hom.X;X/. We denote the identity morphism of X by idX W X ! X

and the composition of morphisms f W X ! Y and g W Y ! Z by g B f W X ! Z.
If two objects X; Y 2 jC j are isomorphic, we write X Š Y . If two categories
C and D are equivalent, we write C ' D . The identity functor on C is denoted
by 1C . The category of vector spaces over a field k is denoted by Vectk and its
full subcategory of finite-dimensional vector spaces by fdVectk . Both are k-linear,
abelian and symmetric monoidal. The n-fold tensor power of some objectX 2 jC j of
a monoidal category .C ;˝; 1; ˛; �; �/ is denoted byX˝n, n 2 N0. We setX˝0 D 1.
We use the notation N and N0 for the positive integers and the non-negative integers,
respectively. For our notation and conventions regarding monoidal categories with
duals as well as additive and abelian categories, we refer to Appendix A.

2.1. Weak Hopf algebras

Definition 2.1. A weak bialgebra .H; �; �;�; "/ over a field k is a k-vector space
H such that

(1) .H; �; �/ is an associative algebra with multiplication � W H ˝ H ! H and
unit � W k ! H ,

(2) .H;�; "/ is a coassociative coalgebra with comultiplication � W H ! H ˝H

and counit " W H ! k,

(3) the following compatibility conditions hold:

� B � D .�˝ �/ B .idH ˝	H;H ˝ idH / B .�˝�/;

" B � B .�˝ idH / D ."˝ "/ B .�˝ �/ B .idH ˝�˝ idH /

D ."˝ "/ B .�˝ �/ B .idH ˝�op ˝ idH /;

.�˝ idH / B� B � D .idH ˝�˝ idH / B .�˝�/ B .�˝ �/

D .idH ˝�op ˝ idH / B .�˝�/ B .�˝ �/:

Here 	V;W W V ˝W ! W ˝ V , v ˝ w 7! w ˝ v is the transposition of the tensor
factors, and by �op D 	H;H B � and �op D � B 	H;H we denote the opposite
comultiplication and opposite multiplication, respectively. We tacitly identify the
vector spaces .V ˝W /˝U Š V ˝ .W ˝U/ and V ˝ k Š V Š k˝V , exploiting
the coherence theorem for the monoidal category Vectk .

A homomorphism ' W H ! H 0 of WBAs over the same field k is a k-linear map
that is a homomorphism of unital algebras as well as a homomorphism of counital
coalgebras.
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In a WBAH , there are two important linear idempotents, the source counital map

"s D .idH ˝"/ B .idH ˝�/ B .	H;H ˝ idH / B .idH ˝�/ B .idH ˝�/ W H �! H

and the target counital map

"t D ."˝ idH / B .�˝ idH / B .idH ˝	H;H / B .�˝ idH / B .�˝ idH / W H �! H:

Their imagesHs D "s.H/ andHt D "t .H/ are mutually commuting unital subalge-
bras and are called the source base algebra and the target base algebra, respectively.

Definition 2.2. A weak Hopf algebra .H; �; �;�; "; S/ is a weak bialgebra .H; �; �;
�; "/with a linear map S W H ! H (antipode) that satisfies the following conditions:

� B .idH ˝S/ B� D "t ;

� B .S ˝ idH / B� D "s;

� B .�˝ idH / B .S ˝ idH ˝S/ B .�˝ idH / B� D S:

Note that if f W H ! H 0 is a homomorphism of WBAs and both H and H 0 are
WHAs, then S 0 B f D f B S .

For convenience, we write 1 D �.1/ and omit parentheses in products, exploiting
associativity. We also use Sweedler’s notation and write �.x/ D x0 ˝ x00 for the
comultiplication of x 2 H as an abbreviation of the expression�.x/ D P

k ak ˝ bk

with some ak; bk 2 H . Similarly, we write ..�˝ idH / B�/.x/ D x0 ˝ x00 ˝ x000,
exploiting coassociativity.

Definition 2.3. A coquasitriangular WHA .H; �; �;�; "; S; r/ over a field k is a
WHA .H; �; �;�; "; S/over k with a linear form r W H˝H ! k (universal r-form)
that satisfies the following conditions:

(1) for all x; y 2 H ,

r.x ˝ y/ D ".x0y0/r.x00 ˝ y00/ D r.x0 ˝ y0/".y00x00/;

(2) there exists a linear form Nr W H ˝H ! k such that for all x; y 2 H ,

Nr.x0 ˝ y0/r.x00 ˝ y00/ D ".yx/;

r.x0 ˝ y0/ Nr.x00 ˝ y00/ D ".xy/;

(3) for all x; y; z 2 H ,

x0y0r.x00 ˝ y00/ D r.x0 ˝ y0/y00x00;
r..xy/˝ z/ D r.y ˝ z0/r.x ˝ z00/; (1)

r.x ˝ .yz// D r.x0 ˝ y/r.x00 ˝ z/: (2)

The WHA H is called cotriangular if in addition

r.x0 ˝ y0/r.y00 ˝ x00/ D ".xy/

for all x; y 2 H .
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2.2. Comodules of weak Hopf algebras. We extend Sweedler’s notation to the right
H -comodules and write ˇ.v/ D v0 ˝ v1 for the coaction ˇ W V ! V ˝H of H on
some vector space V .

Proposition 2.4. LetH be a WBA. Then the category MH of finite-dimensional right
H -comodules is a monoidal category .MH ; y̋ ; Hs; ˛; �; �/. Here the monoidal unit
object is the source base algebra Hs with the coaction

ˇHs
WHs �! Hs ˝H;

x 7�! x0 ˝ x00:
(3)

The tensor product V y̋W D imPV;W of two right H -comodules V;W 2 jMH j is
the truncated tensor product, which is the image of the k-linear idempotent

PV;W W V ˝W �! V ˝W;

v ˝ w 7�! .v0 ˝ w0/".v1w1/;
(4)

with the coaction given by

ˇV y̋ W W V y̋W �! .V y̋W /˝H;

v ˝ w 7�! .v0 ˝ w0/˝ .v1w1/:

The unit constraints of the monoidal category are

�V W Hs y̋V �! V;

x ˝ v 7�! v0".xv1/;

and
�V W V y̋Hs �! V;

v ˝ x 7�! v0".v1"s.x//;

and the associator is inherited from that of Vectk .

The forgetful functor of the category of finite-dimensional comodules of a WBA
is not necessarily strong monoidal as in the case of a bialgebra, but it satisfies the fol-
lowing more general conditions of a functor with separable Frobenius structure [22].

Definition 2.5. Let C and C 0 be monoidal categories. A functor with Frobenius
structure .F; FX;Y ; F0; F

X;Y ; F 0/ W C ! C 0 is a functor F W C ! C 0 that is lax
monoidal as .F; FX;Y ; F0/ and oplax monoidal as .F; FX;Y ; F 0/ and that satisfies
the compatibility conditions

F.X ˝ Y /˝0 FZ
FX˝Y;Z ��

F X;Y ˝0idFZ

��

F..X ˝ Y /˝Z/
F ˛X;Y;Z �� F.X ˝ .Y ˝ Z//

F X;Y ˝Z

��
.FX ˝0 FY /˝0 FZ

˛0
FX;F Y;FZ

�� FX ˝0 .F Y ˝0 FZ/
idFX ˝0FY;Z

�� FX ˝0 F.Y ˝ Z/
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and

FX ˝0 F.Y ˝Z/
FX;Y ˝Z ��

idFX ˝0F Y;Z

��

F.X ˝ .Y ˝Z//
F ˛�1

X;Y;Z �� F..X ˝ Y /˝Z/

F X˝Y;Z

��
FX ˝0 .F Y ˝0 FZ/

˛0�1
FX;F Y;FZ

�� .FX ˝0 FY /˝0 FZ
FX;Y ˝0idFZ

�� F.X ˝ Y /˝0 FZ

for all X; Y;Z 2 jC j. It is called a functor with separable Frobenius structure if in
addition

FX;Y B FX;Y D idF .X˝Y /;

for all X; Y 2 jC j.

This terminology was chosen because if C 0 D Vectk , the vector space F 1 forms a
Frobenius algebra if F has a Frobenius structure and an index-one Frobenius algebra
if F has a separable Frobenius structure, respectively. Frobenius algebras over a field
are separable if and only if their Frobenius structure can be chosen to be of index
one [9].

Proposition 2.6. Let .H; �; �;�; "/be a WBA andU W MH ! Vectk be the obvious
forgetful functor. Then .U; UX;Y ; U0; U

X;Y ; U 0/ is a k-linear faithful functor with
a separable Frobenius structure, and it takes values in fdVectk . The Frobenius
structure is given by

UX;Y D coimPX;Y W UX ˝ UY �! PX;Y .UX ˝ UY /;

U0 D � W k �! Hs;

UX;Y D imPX;Y W PX;Y .UX ˝ UY / �! UX ˝ UY;

U 0 D "jHs
W Hs �! k:

Here PX;Y denotes the idempotent of (4) with its image factorization PX;Y D
imPX;Y B coimPX;Y . Its image PX;Y .UX ˝ UY / D U.X y̋Y / is the vector space
underlying the truncated tensor product. Finally, Hs D U 1 is the vector space
underlying the monoidal unit.

Proposition 2.7. Let H be a WHA. Then MH is left-autonomous if the left-dual of
every object V 2 jMH j is chosen to be .V �; evV ; coevV /, where the dual vector
space V � is equipped with the coaction

ˇV � W V � �! V � ˝H;

# 7�! .v 7! #.v0/˝ S.v1//;
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and the evaluation and coevaluation maps are given by

evV W V � y̋V �! Hs;

# ˝ v 7�! #.v0/"s.v1/;

and
coevV W Hs �! V y̋V �

x 7�! P
j ..vj /0 ˝ #j /".x.vj /1/:

Here we have used the evaluation and coevaluation maps that turn V � into a left-dual
of V in the category fdVectk:

ev.fdVectk/
V W V � ˝ V �! k;

# ˝ v 7�! #.v/;

and

coev.fdVectk/
V W k �! V ˝ V �;

1 7�! P
j vj ˝ #j :

LetV 2 MH be a finite-dimensional right comodule of aWBAH with some basis
fej gj . Then there are unique elements c.V /

j̀
2 H such thatˇV .ej / D P

` e`˝c.V /

j̀
for

all j . These c.V /

j̀
are called the coefficients of V and their linear span the coefficient

coalgebra C.V /. C.V / is a subcoalgebra ofH . IfH is a WHA, we call the element
tV D P

j c
.V /
jj 2 H the dual character of V .

2.3. Tannaka–Kreı̆n reconstruction

Definition 2.8. Let C be an essentially small, finitely split semisimple, k-linear,
additive monoidal category such that k is a field and Hom.X; Y / is finite-dimensional
over k for all X; Y 2 C . By fVj gj 2I where I is a finite index set, we denote a set
of representatives of the isomorphism classes of simple objects of C . Then the long
canonical functor is defined as

! W C ! Vectk ; X 7! Hom. yV ; yV ˝X/;

f 7! .id yV ˝f / B �;

where yV denotes the object
yV D

M
j 2I

Vj :

Remark 2.9. The algebra R D End. yV / Š !1 Š kjI j has a basis .�j /j 2I of
orthogonal idempotents given by �j D idVj

2 R. It forms a Frobenius algebra
.R; B; idR; �R; "R/ with comultiplication �R W R ! R˝R and counit "R W R ! k
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given by �.�j / D �j ˝ �j and ".�j / D 1 for all j 2 I . The element �.idR/ is a
separability idempotent. Such a Frobenius algebra is called index one or Frobenius
separable [9].

Proposition 2.10. Let C be as in Definition 2.8. Then the long canonical functor
! W C ! Vectk is a k-linear faithful functor with a separable Frobenius structure
.!; !XY ; !0; !

XY ; !0/ and takes values in fdVectk . The separable Frobenius struc-
ture is given by

!0 W k �! !1;

1 7�! ��1
yV ;

!X;Y W !X ˝ !Y �! !.X ˝ Y /;

f ˝ g 7�! ˛ yV ;X;Y
B .f ˝ idY / B g;

!0 W !1 �! k;

v 7�! "R.� yV B v/;

!X;Y W !.X ˝ Y / �! !X ˝ !Y;

h 7�!
X
j;`

"R.e
`
.Y / B .ej

.X/
˝ idY / B ˛�1

yV ;X;Y
B h/e.X/

j ˝ e
.Y /

`
:

Here .e.X/
j /

j
and .ej

.X/
/
j

denote a pair of dual bases of !X D Hom. yV ; yV ˝X/ and

Hom. yV ˝X; yV /, respectively, with respect to the non-degenerate bilinear form

gX W Hom. yV ˝ X; yV /˝ Hom. yV ; yV ˝X/ ! k; # ˝ v 7! "R.# B v/: (5)

Remark 2.11. (i) It can be shown that the long canonical functor already has a
separable Frobenius structure if each simple object X 2 jC j has End.X/ a finite-
dimensional separable division algebra over k. Such an algebra admits an index one
Frobenius structure [9]. For our construction below in terms of the dimension graph,
however, we require the stronger condition that End.X/ Š k.

(ii) Since C is semisimple, there is no need to worry about exactness of ! at this
point. Thanks to the equivalence C ' MH in Theorem 2.12 below (see [16]), C is
abelian and ! exact.

By a generalization of Tannaka–Kreı̆n reconstruction from strong monoidal func-
tors to functors with separable Frobenius structure, we obtain the following char-
acterization of C as the category C ' MH of finite-dimensional comodules over
the universal coend H D coend.C ; !/. The long canonical functor appears as the
forgetful functor ! W MH ! Vectk .
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Theorem 2.12. Let C be as in Definition 2.8. Then C ' MH are equivalent
as k-linear, additive monoidal categories. Here H D coend.C ; !/ is a finite-
dimensional split cosemisimple WBA such that Hs Š R Š Ht . The WBA H is
a direct sum of matrix coalgebras,

H D
M
j 2I

.!Vj /
� ˝ !Vj ;

with operations

�.Œ# j v�X ˝ Œ
 j w�Y / D Œ
 B .# ˝ idY / B ˛�1
yV ;X;Y

j ˛ yV ;X;Y
B .v ˝ idY / Bw�

X˝Y
;

�.1/ D Œ� yV j ��1
yV �

1
;

�.Œ# j v�X / D
X

j

Œ# j e.X/
j �

X
˝ Œe

j

.X/
j v�

X
;

".Œ# j v�X / D "R.# B v/:
Here we write Œ# j v�X 2 .!X/�˝!X with v 2 !X , # 2 Hom. yV ˝X; yV / Š .!X/�
and simple X 2 jC j for the homogeneous elements of H . The precise form of the
universal coend as a colimit also allows us to use the same expression for arbitrary
objects of C , but subject to the relations that Œ
 j .!f /.v/�Y D Œ.!f /�.
/ j v�X for
all v 2 !X , 
 2 .!Y /� and for all morphisms f W X ! Y of C . Recall that
.!f /.v/ D .id yV ˝f / B v and .!f /�.
/ D 
 B .id yV ˝f /.

If in addition, C is left-autonomous, then H forms a WHA with antipode

S.Œe
j

.X/
j e.X/

`
�
X
/ D Œ Qe`

.X�/ j Qe.X�/
j �

X�

where . Qe.X�/
j /

j
denotes the basis of !.X�/ defined by

Qe.X�/
j D .e

j

.X/
˝ idX�/ B ˛�1

yV ;X;X�
B .id yV ˝ coevX / B ��1

yV ;

and where . Qej

.X�/
/
j

is the basis dual to it with respect to the bilinear form gX� , cf. (5).

Remark 2.13. (i) If the monoidal unit 1 is simple, the base algebras intersect trivially,
Hs \Ht Š k. If C is braided,H is coquasi-triangular and C ' MH an equivalence
of braided monoidal categories. If C is symmetric monoidal, H is cotriangular.
Further structure and properties of C such as a pivotal structure, a ribbon structure,
or the properties that a pivotal category C be spherical or that a ribbon category
C be modular, can be translated into additional structure and properties of H D
coend.C ; !/ as well, [16] and [17].

(ii) Note that ifX 2 jC j is an arbitrary object, then!X forms a right-H comodule
with the coaction

ˇ!X W !X �! !X ˝H;

v 7�! P
j e

.X/
j ˝ Œe

j

.X/
j v�

X
:
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Its coefficient coalgebra is given by C.X/ D ..!X/� ˝ !X/=NX � H where the
subspace NX � .!X/� ˝ !X is generated by the elements

Œ# j .!f /.v/�X � Œ.!f /�.#/ j v�X
for all v 2 !X , # 2 .!X/� and f 2 End.X/.

3. A combinatorial cover of the universal coend

In order to develop a combinatorial description of a given category C with the prop-
erties as in Definition 2.8, we first construct a WBAHŒG � in combinatorial terms and
a surjection � W HŒG � ! H onto the universal coend H D coend.C ; !/.

3.1. Weak bialgebras associated with finite directed graphs. Let G D .G 0;G 1/

be a finite directed graph with a set G 0 of vertices and a set G 1 � G 0 � G 0 of edges.
We use the following notation and terminology. Every edge p D .v0; v1/ 2 G 1 has
a source and a target vertex, denoted by 	.p/ D v1 2 G 0 and �.p/ D v0 2 G 0,
respectively. We also set 	.v/ D v D �.v/ for all v 2 G 0. By

G m D f.p1; : : : ; pm/ 2 .G 1/
m j 	.pj / D �.pj C1/ for all 1 � j � m � 1g;

we denote the set of paths of length m in G , m 2 N. Finally, for vertices v; w 2 G 0,
the set

G m
wv D fp 2 G m j 	.p/ D v; �.p/ D wg

contains all paths of length m 2 N0 from v to w.
We write pq 2 G `Cm for the concatenation of two paths p 2 G ` and q 2 G m

provided that 	.p/ D �.q/. The free k-vector space on the set G m is denoted by
kG m, m 2 N0.

Proposition 3.1. Let G be a finite directed graph. There is a WBA .HŒG �; �; �;�; "/
with the underlying vector space

HŒG � D
a

m2N0

.kG m/
� ˝ kG m

and operations

�.1/ D
X

j;`2G 0

Œj j `�0;

�.Œp j q�m ˝ Œr j s�`/ D ı�.p/;�.r/ı�.q/;�.s/Œpr j qs�mC`;

�.Œp j q�m/ D
X

r2G m

Œp j r�m ˝ Œr j q�m;
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".Œp j q�m/ D ıpq ;

for all p; q 2 G m, r; s 2 G `, m; ` 2 N0. Here,
`

is the coproduct in Vectk ,
and we have denoted basis vectors of the homogeneous components HŒG �m D
.kG m/� ˝ kG m of HŒG � by Œp j q�m D p ˝ q 2 .kG m/� ˝ kG m. As usual, we
write ıpq D 1 if p D q and ıpq D 0 if p ¤ q for all p; q 2 G m, m 2 N0.

Proof. Direct verification.

Proposition 3.2. Let G be a finite directed graph and HŒG � as in Proposition 3.1.

(1) The source and target counital maps of HŒG � are given by

"s.Œp j q�m/ D ıp;q

X
j 2G 0

Œj j 	.p/�0;

"t .Œp j q�m/ D ıp;q

X
j 2G 0

Œ�.q/ j j �0;

for all p; q 2 G m, m 2 N0.

(2) HŒG � is split cosemisimple. Its simple right comodules are the vector spaces
kG m, m 2 N0, with the coactions

ˇkG m W kG m �! kG m ˝HŒG �;

p 7�! P
q2G m q ˝ Œq j p�m:

(3) The truncated tensor product of MHŒG � is such that

kG m y̋kG ` Š kG mC`

for all m; ` 2 N0.

(4) The unital algebra underlyingHŒG � is graded with homogeneous components
HŒG �m of degree m 2 N0.

(5) As an associative algebra or as a unital associative algebra, HŒG � is generated
by the set HŒG �0 [HŒG �1.

Proof. Part (1) is established by a direct computation. Part (2) holds because the
homogeneous components HŒG �m are matrix coalgebras with coefficients in k. For
Part (3), we compute the idempotent (4) and find that for all m; ` 2 N0, p 2 G m,
q 2 G `,

PkG m;kG `.p ˝ q/ D
´
p ˝ q if 	.p/ D �.q/;

0 otherwise.

Part (4) holds because multiplication inHŒG � is zero unless the paths in both compo-
nents of Œ� j �� are composable. Part (5) holds because the length of paths is additive
under concatenation.



352 H. Pfeiffer

Remark 3.3. (i) The algebra underlying HŒG � is the path algebra k� of the quiver
� D G �G , up to identifying .kG m/� D kG m. We do not use the terminology quiver
in the present article because it is not the category of modules over k� , but rather that
of comodules that is related to our fusion category C .

(ii) The category MHŒG � of finite-dimensional right-HŒG � comodules is an es-
sentially small, split semisimple, k-linear, abelian monoidal category whose iso-
morphism classes of simple objects are indexed by non-negative integers m 2 N0.
The tensor product is given by m ˝ ` Š m C ` for all m; ` 2 N0. The forget-
ful functor U W MHŒG � ! Vectk is such that Um Š kG m. Conversely, HŒG � Š
coend.MHŒG �; U /.

3.2. The fundamental surjection. Although the truncation of the tensor product
in Proposition 3.2(3) is rather elementary, this is the mechanism that controls the
truncation of the tensor product in all fusion categories. We demonstrate this by
constructing a surjection HŒG � ! H .

Definition 3.4. Let C be an essentially small, finitely split semisimple, k-linear,
additive left-autonomous monoidal category such that k is a field and Hom.X; Y / is
finite-dimensional over k for all X; Y 2 jC j. An object M 2 jC j is said to generate
C as a fusion category if the following conditions are satisfied.

(1) Every simple object Vj , j 2 I , of C appears as a direct summand of M˝n for
some n 2 N0.

(2) The object M is multiplicity free, i.e. if M Š X ˚ Y ˚Z, then X 6Š Y .

(3) The monoidal unit 1 andM have pairwise non-isomorphic direct summands, i.e.
if 1 Š X ˚ Y and M Š Z ˚W , then X 6Š Z.

Remark 3.5. (i) Part (1) is the usual definition, but (2) and (3) can be required in
addition without loss of generality. Note that Part (3) rules out the trivial fusion
category, but every non-trivial such category does have a generating object.

(ii) The monoidal unit 1 is always multiplicity-free [4]. In the present section and
in Section 4, the assumption that C be autonomous can be dropped if one requires
instead that the monoidal unit be multiplicity-free.

Given a fusion category C with a generating object M 2 jC j, we now choose a
graph G in such a way that we obtain a surjection of WBAs � W HŒG � ! H . Then the
composability of paths in G which controls the multiplication in HŒG �, also governs
the truncated tensor product in C Š MH .

Definition 3.6. Let C be an essentially small, finitely split semisimple, k-linear,
additive, left-autonomous monoidal category such that k is a field and Hom.X; Y / is
finite-dimensional over k for allX; Y 2 jC j. LetM 2 jC j be an object that generates
C and let fVj gj 2I denote a set of representatives of the isomorphism classes of simple
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objects of C . The dimension graph G of C with respect to M is the finite directed
graph whose set of vertices is G 0 D I and whose set G 1

j̀
of edges from j 2 G 0 to

` 2 G 0 is a basis of Hom.Vj ; V` ˝M/.

Remark 3.7. If M 2 jC j is simple and, say, M Š V1, then the adjacency matrix of
G is the fusion matrix N1 with coefficients .N1/j` D dimk Hom.Vj ; V` ˝ V1/.

We denote a basis of!M D Hom. yV ; yV ˝M/ by fe.M /
p gp and by feq

.M /
g

q
its dual

basis with respect to the bilinear form gM of (5). We also choose the basis fe.1/
j g

j
,

e
.1/
j D ��1

yV B �j of !1 D Hom. yV ; yV ˝ 1/ whose dual basis with respect to g1 is

given by fe`
.1/

g
`

with e`
.1/

D �` B � yV . Observe that kG 1 D !M and kG 0 Š !1
which we identify in the following.

Theorem 3.8. Let C be as in Definition 3.6, M 2 jC j be an object that gen-
erates C and G be the dimension graph of C with respect to M . We denote by
H D coend.C ; !/ the universal coend with respect to the long canonical functor,
cf. Theorem 2.12. Then there is a surjection of WBAs � W HŒG � ! H as follows.

(1) �.Œj j `�0/ D Œe
j

.1/
j e.1/

`
�
1

for all j; ` 2 G 0.

(2) �.Œp j q�1/ D Œe
p

.M /
j e.M /

q �
M

for all p; q 2 G 1.

(3) � pushes forward the right HŒG �-comodule kG 1 to the right H -comodule
!M , i.e. .idkG 1 ˝�/ B ˇkG 1 D ˇ!M .

(4)� also pushes forward the rightHŒG �-comodule kG 0 to the rightH -comodule
!1, i.e. .idkG 0 ˝�/ B ˇkG 0 D ˇ!1.

Proof. As an associative algebra,HŒG � is generated byHŒG �0 [HŒG �1, i.e. Parts (1)
and (2) fix the value of � on a set of generators of HŒG �.

Given that G is the dimension graph, (1) and (2) are compatible with the multipli-
cation ofHŒG �. This can be seen by computing all products of degree-0 and degree-1
terms ofHŒG � and their images under � . Therefore, Parts (1) and (2) define a unique
linear map � W HŒG � ! H which forms a homomorphism of associative algebras.
This map � is also compatible with the units as can be seen by inspection.

In order to see that � respects the comultiplication, we show in a direct computa-
tion that �.�.a// D .� ˝ �/.�.a// for all generators a 2 HŒG �0 [HŒG �1. Then,
by induction, if this claim holds for some a; b 2 HŒG �, we also have

�.�.ab// D �.�.a/�.b//

D .�.a/0�.b/0/˝ .�.a/00�.b/00/
D .�.a0/�.b0//˝ .�.a00/�.b00//
D �.a0b0/˝ �.a00b00/
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D .� ˝ �/.�.ab//;

because � respects the multiplication, becauseH is a WBA; because of the assump-
tion, because � respects the multiplication, and because HŒG � is a WBA.

The map � also respects the counit. On generators a 2 HŒG �0 [HŒG �1, we see
by inspection that ".�.a// D ".a/. Then, by induction, if this claim holds for some
a; b 2 HŒG �, we find that

".�.ab// D ".�.a/�.b//

D ".�.a/1�.b//

D ".�.a/10/".100�.b//
D ".�.a/�.1/0/".�.1/00�.b//
D ".�.a/�.10//".�.100/�.b//
D ".�.a10//".�.100b//
D ".ab/;

(6)

because� respects the multiplication;H is a WBA;� respects the unit; � respects the
comultiplication, and � respects the multiplication. The last equality of (6) is shown
by a direct computation for generic a D Œp j q�m 2 HŒG �, b D Œr j s�` 2 HŒG �.

At this point, we know that � is a homomorphism of WBAs. It is surjective
because C is generated byM and already the image�.HŒG �1/ exhausts the coefficient
coalgebra C.M/ D .!M/� ˝ !M .

Parts (3) and (4) can finally be seen in a direct computation.

Remark 3.9. If both the monoidal unit 1 and the generating object M are simple,
then the restriction �jHŒG �0˚HŒG �1 W HŒG �0 ˚HŒG �1 ! H is injective.

4. Schur–Weyl dual description at fixed powers of M

In this section, we define a quotient of the WBA HŒG � in such a way that the tensor
powers of the generating object M have the desired endomorphism algebras.

4.1. Implementing the endomorphisms of the tensor powers of M

Definition 4.1. Let C and M be as in Theorem 3.8. An endomorphism system for
C with respect to M is a sequence E D .E.n//n2N0

of sets E.n/ � End.M˝n/ of
endomorphisms such that

(1) End.1/ as an associative algebra is generated by E.0/ [ fid1g;

(2) for all n 2 N, End.M˝n/ is generated by

.E.n�1/ ˝ idM / [E.n/;
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where we have abbreviated

E.n�1/ ˝ idM D ff .n�1/ ˝ idM j f .n�1/ 2 E.n�1/g:

The situation is particularly easy if both 1 andM are simple and if C is braided with
braiding  X;Y W X ˝ Y ! Y ˝X such that the endomorphism algebras are already
generated by the braiding and inverse braiding of adjacent tensor factors. For n � 2,
we denote by Bn the associative unital algebra generated by f j̇ j 1 � j � n � 1g
with

 j̇ D id
M y̋ .j �1/ ˝ Ṁ;M ˝ id

M y̋ .n�j �1/ :

Definition 4.2. Let C and M be as in Theorem 3.8. Then C is said to satisfy the
strong Schur–Weyl property if both 1 and M are simple and if C is braided such that
End.M˝n/ D Bn for all n � 2.

Example 4.3. Let C and M be as in Theorem 3.8 and assume that C satisfies the
strong Schur–Weyl property. Then an endomorphism system for C with respect to
M is given by

E.1/ D ;;
E.0/ D ;;
E.2/ D f M;M ;  

�1
M;Mg;

E.m/ D fid
M y̋ .m�2/ ˝ M;M ; idM y̋ .m�2/ ˝ �1

M;M g;
for all m � 3.

Given an endomorphism system E D .E.n//n2N0
for C with respect to M , we

can express the endomorphisms !f .n/ W .!M/
y̋ n ! .!M/

y̋ n, f .n/ 2 E.n/, n 2 N,
as

.!f .n//.e.M /
p1

˝ � � � ˝ e.M /
pn

/ D
X

r1;:::;rn2G 1

e.M /
r1

˝ � � � ˝ e.M /
rn

f .n/
r1���rnIp1���pn

;

with coefficients f .n/
r1���rnIp1���pn

2 k. By analogy, for n D 0 and !f .0/ W !1 ! !1,
f .0/ 2 E.0/, this is replaced by

.!f .0//.e
.1/
j / D

X
`2G 0

e
.1/

`
f

.0/

`Ij ;

with coefficients f .0/

`Ij 2 k.

Remark 4.4. (i) Recall that End.M˝n/ Š End..!M/
y̋ n/ in view of the equivalence

C ' MH of k-linear monoidal categories.
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(ii) Because of the form of the long canonical functor, .!f /.v/ D .id yV ˝f / B v
for v 2 !X , f W X ! Y , X; Y 2 jC j, and so the coefficients f .n/

r1���rnIp1 ���pn
in (4.1)

are zero unless �.r1/ D �.p1/ and 	.rn/ D 	.pn/.

Definition 4.5. Let C , M and G be as in Theorem 3.8 and E D .E.n//n2N0
be an

endomorphism system for C with respect to M. The endomorphism adapted WBA
is the quotient HŒG ;E� D HŒG �=IE where IE is the two-sided ideal generated by
the relations X

p1;:::;pn2G 1

Œr1 j p1�1 � � � � � Œrn j pn�1 f
.n/

p1���pnIq1���qn

�
X

p1;:::;pn2G 1

f .n/
r1���rnIp1���pn

Œp1 j q1�1 � � � � � Œpn j qn�1

(7)

for all rj ; qj 2 G 1, j 2 f1; : : : ; ng, f .n/ 2 E.n/ and n 2 N0.

Note that all relations in the quotientHŒG �=IE are homogeneous, and soHŒG ;E�
is graded, cf. Proposition 3.2(4).

Proposition 4.6. The endomorphism adapted WBA HŒG ;E� of Definition 4.5 forms
a WBA.

Proof. We have to show that IE is also a two-sided coideal, i.e. it satisfies �.IE/ �
IE ˝H CH ˝ IE and IE � ker ". This is established in a direct computation. Note
that the relations that generate the ideal IE , can be rewritten asX

p1;:::;pn2G 1 W
�.pj /D�.pj C1/

Œr1 � � � rn j p1 � � �pn�nf
.n/

p1���pnIq1 ���qn

�
X

p1;:::;pn2G 1 W
�.pj /D�.pj C1/

f .n/
r1���rnIp1 ���pn

Œp1 � � �pn j q1 � � �qn�n:

Proposition 4.7. Under the assumptions of Definition 4.5, the surjection� W HŒG � !
H of Theorem 3.8 factors through the canonical projectionHŒG � ! HŒG ;E�, giving
rise to another surjection of WBAs x� W HŒG ;E� ! H . This map x� also satisfies the
properties (1) to (4) of Theorem 3.8 and in addition

(5) The restriction x�jHŒG ;E�0˚HŒG ;E�1 W HŒG ;E�0 ˚HŒG ;E�1 ! H is injective.

Proof. In any quotient of HŒG �, the relation (7) holds for a particular f .n/ 2 E.n/,
n 2 N0, if and only if the linear map

.kG 1/
y̋ n �! .kG 1/

y̋ n
;

p1 ˝ � � � ˝ pn 7�!
X

r1;:::;rn2G 1

r1 ˝ � � � ˝ rn f
.n/

r1���rnIp1���pn
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forms a morphism of right comodules. This is established in a direct calculation. The
claim holds because � pushes forward kG 0 to !1 and kG 1 to !M , and because � is
a morphism of WBAs and therefore preserves tensor products. For Property (5), we
recall that M satisfies all conditions of Definition 3.4 and that the direct summands
of 1 are pairwise non-isomorphic [4].

The special case of the endomorphism system of Example 4.3 is particularly
interesting because in this case, the ideal IE is generated by quadratic relations only.

Definition 4.8. Let C ,M and G be as in Theorem 3.8 and the endomorphism system
E D .E.n//n2Z�0

be as in Example 4.3. We denote the coefficients of the braiding
under the long canonical functor by Rr1r2Ip1p2

, i.e.

!. M;M /.p1 ˝ p2/ D
X

r1;r22G 1

r1 ˝ r2Rr1r2Ip1p2
;

for all p1; p2 2 G 1. The weak Faddeev–Reshetikhin–Takhtajan (FRT) bialgebra is
the quotient HŒG ; R� D HŒG �=IR where IR is the two-sided ideal generated by the
relations X

p1;p22G 1

Œr1 j p1�1 � Œr2 j p2�1Rp1p2Iq1q2

�
X

p1;p22G 1

Rr1r2Ip1p2
Œp1 j q1�1 � Œp2 j q2�1;

(8)

for all r1; r2; q1; q2 2 G 1.

Note that the relations can again be written in a slightly different fashion:X
p1;p22G 1 W

�.p1/D�.p2/

Œr1r2 j p1p2�2Rp1p2Iq1q2
�

X
p1;p22G 1 W

�.p1/D�.p2/

Rr1r2Ip1p2
Œp1p2 j q1q2�2:

In complete analogy to Proposition 4.6, the weak FRT bialgebra HŒG ; R� forms a
WBA. We call it the weak FRT bialgebra because our quotient generalizes the con-
struction of Faddeev–Reshetikhin–Takhtajan [18] to finite-dimensional split cosemi-
simple WBAs. This is the situation in which Hayashi describes WHAs whose cate-
gories of finite-dimensional comodules have the same fusion rules as the modular cat-
egories associated withUq.slN / at suitable roots of unity [5]. SinceR consists of the
coefficients of the braiding, R satisfies a generalization of the quantum Yang–Baxter
equation to truncated tensor products. Such an R-matrix is known in the physics
literature as the Boltzmann weight of a star-triangular face model. R-matrices of this
type were studied, for example, in [7].
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Example 4.9. If C and its endomorphism system E D .E.n//n2N0
are as in Exam-

ple 4.3, the endomorphism adapted WBA coincides with the weak FRT bialgebra.

Proof. We have to show that the quadratic relations that define IR in (8) already gener-
ate the entire two-sided ideal IE of Definition 4.5. Recall thatE.0/ D ; D E.1/ in this
example. First, sinceR is the braiding, each relation (8) forR implies another relation
of the same form withR�1 rather thanR. Just multiply the relation (8) withR�1 from
the right and from the left. Second, in order to show that all elements (7) of degree
greater than two are already contained in the two-sided ideal generated by IR, it is suf-
ficient to verify that all endomorphisms of the form !f D id

.!M /
y̋ .n�2/ ˝!.	Ṁ;M /,

f 2 E.n/, n � 3, are already implemented by the quotient modulo IR. This is done
in a direct computation.

Even in situations in which C is braided and the braiding and its inverse do not
generate all endomorphisms of the tensor powers of !M , the weak FRT bialgebra
is worth studying in more detail. Firstly, the weak FRT bialgebra is equipped with
a coquasi-triangular structure and, secondly, the endomorphism adapted WBA is a
quotient of the weak FRT bialgebra.

Proposition 4.10. Let C ,M and G be as in Theorem 3.8 and assume in addition that
C is braided. Then the WBA HŒG ; R� of Definition 4.8 is coquasi-triangular with
universal r-form r W HŒG ; R�˝HŒG ; R� ! k given by

r.Œu j v�0 ˝ Œw j x�0/ D ıu;vıv;xıu;w ;

r.Œu j v�0 ˝ Œp j q�1/ D ıu;�.p/ıv;�.p/ıp;q ;

r.Œp j q�0 ˝ Œu j v�0/ D ı�.p/;uı�.p/;vıp;q ;

r.Œp j q�1 ˝ Œr j s�1/ D

8̂<
:̂
Rpr;sq if �.p/D �.s/; 	.r/D 	.q/;

	.s/D �.q/; 	.p/D �.r/;

0 otherwise,

and further, inductively, by

r.Œp j q�m ˝ Œr j s�`C1/ D
X

t2G m

r.Œp j t �m ˝ Œr1 j s1�`/r.Œt j q�m ˝ Œr2 j s2�1/;

where r D r1r2, s D s1s2 with r1; s1 2 G ` and r2; s2 2 G 1; and by

r.Œp j q�mC1 ˝ Œr j s�`/ D
X
t2G `

r.Œp2 j q2�1 ˝ Œr j t �`/r.Œp1 j q1�m ˝ Œt j s�`/;

where p D p1p2 and q D q1q2 with p1; q1 2 G m and p2; q2 2 G 1. The map
�R D x� B � 0 W HŒG ;R� ! H is a surjective homomorphism of coquasi-triangular
WBAs.
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Proof. Direct computation.

Corollary 4.11. Let C , M , and G be as in Theorem 3.8 and assume in addition that
C is braided. Then there is a surjection of coquasi-triangular WBAs � 0 W HŒG ; R� !
HŒG ;E� and the Boltzmann weight

R W kG 1 y̋kG 1 �! kG 1 y̋kG 1;

p1 ˝ p2 7�! P
r1;r22G 1 r1 ˝ r2Rr1r2Ip1p2

;

is star-triangular, i.e.
R1 B R2 BR1 D R2 B R1 B R2;

where R1 D R˝ id!M and R2 D id!M ˝R.

Proof. Since for all n � 2, Bn � End.M˝n/ always forms a subalgebra, we have
IR � IE . A compatible coquasi-triangular structure on HŒG ;E� always exists be-
cause the braiding is, of course, a morphism. The Boltzmann weight is star triangular
because R coincides with the coefficients of the braiding !. M;M / W !M y̋!M !
!M y̋!M .

4.2. Comparing the categories of comodules. In this section, we compare the
categories MHŒG ;E� and MH of finite-dimensional comodules of the endomorphism
adapted WBA HŒG ;E� and of the universal coend H D coend.C ; !/.

Proposition 4.12. Let C , M and G be as in Theorem 3.8 and E D .E.n//n2N0
be

an endomorphism system for C with respect to M .

(1) The vector space .!M/
y̋ n, n 2 N0, is both anHŒG ;E�- and anH -comodule.

The homomorphism ofWBAs x� W HŒG ;E� ! H pushes forward theHŒG ;E�-comodule
structure to the H -comodule structure, i.e.

.id
.!M /

y̋ n ˝x�/ B ˇ.HŒG ;E�/

.!M /
y̋ n

D ˇ
.H/

.!M /
y̋ n
: (9)

(2) A linear map f W .!M/
y̋ n ! .!M/

y̋ n, n 2 N0, is H -colinear if and only if
it is HŒG ;E�-colinear, i.e.

EndMHŒG ;E�..!M/
y̋ n/ D EndMH ..!M/

y̋ n/: (10)

(3) A linear subspace V � .!M/
y̋ n, n 2 N0, is anHŒG ;E�-subcomodule if and

only if it is an H -subcomodule.

(4) Let V � .!M/
y̋ n and W � .!M/

y̋ m, n;m 2 N0, be right HŒG ;E�-sub-
comodules. If n ¤ m, then V 6Š W are not isomorphic as HŒG ;E�-comodules. If
n D m, then V and W are isomorphic as HŒG ;E�-comodules if and only if they are
isomorphic as H -comodules.



360 H. Pfeiffer

(5) HŒG ;E� is split cosemisimple. The isomorphism classes of its simple co-
modules can be represented by some V .m/

j 2 jMHŒG ;E�j where m 2 N0 and j 2
f1; : : : ; `mg, `m 2 N. Here, j labels the isomorphism classes of simpleH -comodules

in the complete decomposition of .!M/
y̋ m as an H -comodule. Furthermore, x�

pushes forward each V .m/
j to that particular isomorphism type of H -comodules.

Proof. (1) Theorem 3.8, Parts (3) and (4) and the fact that x� is a homomorphism of
algebras.

(2) If f isHŒG ;E�-colinear, then it is alsoH -colinear, using the homomorphism
of coalgebras x� W HŒG ;E� ! H . Conversely, if f isH -colinear, then f is contained
in the k-linear span of the set of all finite products of elements of the form !f .m/ ˝
id

.!M /
y̋ .n�m/ , 0 � m � n, f .m/ 2 E.m/. Each endomorphism of the spanning set

is right HŒG ;E�-colinear by Proposition 4.7, and so f is HŒG ;E�-colinear as well.

(3) LetV be anHŒG ;E�-subcomodule, i.e. we haveˇ.HŒG ;E�/

.!M /
y̋ n
.V / � V˝HŒG ;E�.

Applying .id
.!M /

y̋ n ˝x�/ shows that ˇ.H/

.!M /
y̋ n
.V / � V ˝H . Conversely, let V be

an H -subcomodule. Since H is cosemisimple, .!M/
y̋ n D V ˚ W with some

subcomodule W . The linear map f W .!M/
y̋ n ! .!M/

y̋ n with f jV D idV and
f jW D 0 forms a morphism of H -comodules. By Part (2), f is HŒG ;E�-colinear
and therefore its image V an HŒG ;E�-subcomodule.

(4) If n ¤ m, the coefficient coalgebras C.V / � HŒG ;E�n and C.W / �
HŒG ;E�m are in different degree, and so C.V / \ C.W / D f0g which implies the
claim. In the case in which n D m, we use Part (2).

(5) In order to show that HŒG ;E� is split cosemisimple, we show that it is a
coproduct (direct sum) of matrix coalgebras.

First, since the ideal IE in Definition 4.5 is generated by homogeneous elements,
the canonical projection p W HŒG � ! HŒG ;E� D HŒG �=IE preserves the grading of
the algebra. Therefore,

HŒG ;E� D
a

m2N0

HŒG ;E�m: (11)

Here, the homogeneous components HŒG ;E�m D p..kG m/� ˝ kG m/ form the

coefficient coalgebras HŒG ;E�m D C..!M/
y̋ m/. Recall that p pushes forward

the HŒG �-comodule kG m to the HŒG ;E�-comodule .!M/
y̋ m (Theorem 3.8(3) and

Part (1)).

Since H is split cosemisimple, .!M/
y̋ m as an H -comodule decomposes into

.!M/
y̋ m Š V

.m/
1 ˚ � � � ˚ V

.m/
1„ ƒ‚ …

p1

˚ � � � ˚ V
.m/

`m
˚ � � � ˚ V

.m/

`m„ ƒ‚ …
p`m

; `m 2 N: (12)
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Here, the V .m/
j , 1 � j � `m are pairwise non-isomorphic H -comodules, and the

pj 2 N denote their multiplicities. Furthermore, EndMH .V
.m/

j / Š k for all j .

By Part (3), each instance of aV .m/
j � .!M/

y̋ m forms anHŒG ;E�-subcomodule,

and by Part (2), EndMHŒG ;E�.V
.m/

j / Š k, and so (12) is a complete decomposition of
HŒG ;E�-comodules as well.

If we writeV D .!M/
y̋ m andE D EndMHŒG ;E�.V /, the construction ofHŒG ;E�

in Definitions 4.1 and 4.5 shows that

HŒG ;E�m D V � ˝E V:

Thanks to (12), E is known to be the product of matrix algebras

E D
`mM

j D1

kpj �pj ;

and a direct computation shows that

HŒG ;E�m D V � ˝E V D
`mM

j D1

.V
.m/

j /
� ˝ V

.m/
j :

Combining this with (11) proves the claim.

5. Comparing different powers of M

In order to fully understand the relationship between the categories of comodules of
HŒG ;E� and of H , we determine the preimage under O� (Proposition 4.12(5)) of the
simple comodules of H , i.e. all those simple HŒG ;E�-comodules that are pushed
forward by x� to the same simple H -comodule.

In the following, the assumption that C be left-autonomous, i.e. that H D
coend.C ; !/ is aWHA, is not only used to imply that the monoidal unit is multiplicity-
free, but is rather a key to comparing the categories of comodules of HŒG ;E� and of
H .

The assumption guarantees that it is sufficient to determine the preimage under
O� of the monoidal unit !1. It turns out that all simple isomorphism types in that
preimage are obtained by conjugating the monoidal unit of MHŒG ;E� by group-like
elements g such that x�.g/ D 1. Dividing the endomorphism adapted WBAHŒG ;E�

by 1� g for these group-likes g then yields a WHA that is isomorphic to H .

5.1. Group-like comodules. In this subsection, we consider an arbitrary WBA H .

Definition 5.1. An element g 2 H of a WBA H is called
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(1) right group-like if �g D g10 ˝ g100 and "s.g/ D 1,

(2) left group-like if �g D 10g ˝ 100g and "t .g/ D 1,

(3) group-like if it is both right and left group-like.

The set of group-like elements in a WBA forms a monoid. Note that we do not
require the group-like elements of a WBA to have a multiplicative inverse. If H is a
WHA, however, every group-like g 2 H has the inverse g�1 D S.g/.

Proposition 5.2. Let H be a WBA.

(1) For each group-like g 2 H , there is a right H -comodule structure on the
vector space Hs given by

ˇH
g
s

WHs �!Hs ˝H;

x 7�! x0 ˝ .gx1/;
(13)

where ˇ1 W Hs ! Hs ˝ H; x 7! x0 ˝ x1 denotes the right H -comodule structure
on Hs that yields the monoidal unit of MH , cf. (3). In the following, we denote the
comodule with the structure (13) by Hg

s .

(2) If g1; g2 2 H are group-like, then

Hg1
s

y̋Hg2
s Š Hg1g2

s :

Proof. Parts (1) and (3) are straightforward. For part (2), the left-unit constraint of
H

g2
s , �

H
g2
s

W 1 y̋Hg2
s ! H

g2
s , yields the linear map underlying the isomorphism

H
g1
s y̋Hg2

s ! H
g1g2
s .

Given a homomorphism of bialgebras f W H ! H 0 and the induced push-forward
functor f � W MH ! MH 0

, the H -comodules sent by f � to the monoidal unit 1 2
jMH 0 j are precisely the comodulesHg

s for the group-like elements g 2 H that satisfy
f .g/ D 1. This is established in the remainder of this subsection and will be applied
to the homomorphism x� W HŒG ;E� ! H .

Proposition 5.3 (from [20], Lemma 4.1). In every WBA H , the restriction

"t jHs
W Hs �! Ht

forms an algebra anti-isomorphism with inverse N"sjHt
where N"s.x/ D 10".100x/ for

all x 2 H .

Proposition 5.4 (from [20, Lemma 6.3]). Let f W H ! H 0 be a homomorphism of
WBAs. Then the restrictions f jHs

W Hs ! H 0
s and f jHt

W Ht ! H 0
t form isomor-

phisms of algebras. Their inverses are f jHs

�1.y/ D 10".f .100/y/ for all y 2 H 0
s

and f jHt

�1.z/ D ".zf .10//100 for all z 2 H 0
t , respectively.
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The following proposition generalizes some results of Nikshych [13] and Vec-
sernyés [24] from WHAs to WBAs.

Proposition 5.5. LetH be a WBA. (1) There is a one-to-one correspondence between
right group-like elements g 2 H and right H -coactions ˇ W Hs ! Hs ˝ H that
satisfy

.idHs
˝"s/ B ˇ D .idHs

˝"s/ B� B "s:

The correspondence is given by g D ".10/11 and ˇ.x/ D "s.x
0/ ˝ gx00 for all

x 2 Hs .

(2) There is a one-to-one correspondence between left group-like elements g 2 H
and right H -coactions ˇ W Ht ! Ht ˝H that satisfy

.idHt
˝"t / B ˇ D ."t ˝ idHt

/ B� B "t :

The correspondence is given by g D ".10/11 and ˇ.z/ D "t ..zg/
0/˝ .zg/00.

Theorem 5.6. Let f W H ! H 0 be a homomorphism of WBAs. Then the induced
functor f � W MH ! MH 0

pushes forward some right H -comodule N 2 jMH j to
the monoidal unit 1 2 jMH 0 j if and only ifN Š H

g
s for some group-like g 2 H that

satisfies f .g/ D 1. This group-like element is given by g D ."˝ idH / BˇN B�.1/ D
".10/11 2 H .

Proof. If N Š H
g
s , then the coaction ˇN W Hs ! Hs ˝ H is given by ˇN .x/ D

x0 ˝ .gx00/ for all x 2 Hs . The push-forward reads f̌ �.N / D .f jHs
˝ f / B ˇN B

f jHs

�1 W H 0
s ! H 0

s ˝ H 0. A direct computation shows that, since f .g/ D 1, we
have f̌ �.N /.y/ D y0 ˝ y00 for all y 2 H 0

s , i.e. f �.N / Š 1 2 jMH 0 j.
Conversely, let f �.N / Š 1 2 jMH 0 j, i.e. there is a coaction f̌ �.N / W H 0

s !
H 0

s ˝H such that y0 ˝ f .y1/ D y0 ˝ y00 for all y 2 H 0
s.

First, the original coaction coincides with ˇN D .f jHs

�1 ˝ idH / B f̌ �.N / B
f jHs

W Hs ! Hs ˝ H which can be shown to satisfy x0 ˝ "s.x1/ D x0 ˝ "s.x
00/

for all x 2 Hs. By Proposition 5.5(1), g D ."˝ idH / B ˇN B �.1/ is right group-like
and ˇN .x/ D x0 ˝ .gx00/ for all x 2 Hs .

Second, there is a coaction ı D .."t Bf jHs

�1/˝ idH /Bf jHs
B N"s W Ht ! Ht ˝H

which can be shown to satisfy z0 ˝ "t .z1/ D "t .z
0/ ˝ z00 for all z 2 Ht . By

Proposition 5.5(2), .." B "t B f jHs

�1/˝ idH / B fHs
B N"s B �.1/ D g is left group-like

as well.

5.2. Completing the characterization. In this subsection, we compute the kernel of
the surjection x� W HŒG ;E� ! H of Proposition 4.7 and arrive at our characterization
of the universal coendH D coend.C ; !/ in Theorem 5.7. The main technical result
is the application of Theorem 5.6 to the homomorphism of WBAs x� W HŒG ;E� ! H .
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Theorem 5.7. Let C be an essentially small, finitely split semisimple, k-linear, addi-
tive, autonomous monoidal category such that k is a field and Hom.X; Y / is finite-
dimensional over k for all X; Y 2 jC j. We choose an object M 2 jC j that generates
C . Let G be the dimension graph and E D .E.n//n2N0

be an endomorphism system
for C with respect to M . We use the map x� W HŒG ;E� ! H of Proposition 4.7. Let
G be the set

G D fg 2 HŒG ;E� j g is group-like and x�.g/ D 1g (14)

and IG be the two-sided ideal generated by the set f g�1 j g 2 G g. Then x� induces
an isomorphism of WBAs

HŒG ;E�=IG Š H:

Proof. If g is group-like such that x�.g/ D 1, the two-sided ideal generated by g � 1
is also a two-sided coideal. The quotient zH D HŒG ;E�=IG is therefore a WBA. The
map x� W HŒG ;E� ! H obviously factors through this quotient and yields another
surjection of WBAs z� W zH ! H . We have to show that this map z� is injective.

We know from Proposition 4.12(5) that HŒG ;E� is a coproduct of matrix coal-
gebras. We first show that zH is a coproduct of matrix coalgebras as well, and then
examine the action of z� on these matrix coalgebras in order to establish the injectivity
of z� . In the following, we denote by p the canonical projection in the commutative
diagram

HŒG ;E�
p ��

x�

����
���

���
���

���
���

���
��

zH D HŒG ;E�=IG

z�

��
H :

Let V 2 jMHŒG ;E�j be simple and C.V / D V � ˝ V � HŒG ;E� be the associated
matrix coalgebra. We know from the proof of Proposition 4.12(5) that the restriction
x�jC.V / is injective, i.e.pjC.V / is injective as well. Sincep is surjective, zH is spanned
by matrix coalgebras of the form p.C.V //, V 2 jMHŒG ;E�j.

Let now W 2 jMH j be simple and C.W / Š W � ˝ W � H . By Proposi-
tion 4.12(5), its pre-image x��1.C.W // � HŒG ;E� is a finite direct sum of matrix
coalgebras. For each of these matrix coalgebrasC.V / D V � ˝V � HŒG ;E�, the re-
strictionpjC.V / is injective, and sop.x��1.C.W // is a direct sum of (perhaps a smaller
number of) matrix coalgebras. Sincep is surjective, z��1.C.W // D p.x��1.C.W ///,
i.e. the pre-image of C.W / under z� is a finite direct sum of matrix coalgebras. In
order to establish that z� is injective, it therefore suffices to show that this finite direct
sum consists of one term only.

Recall that every potential term in the direct sum Q��1.C.W // is of the form
p.V � ˝ V / for some simple V 2 jMHŒG ;E�j, and so V appears as a subcomodule of

some .!M/
y̋ m, m � 0. We therefore need to prove the following:
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Let X � .!M/
y̋ m and Y � .!M/

y̋ `, m; ` 2 N0, be simple right HŒG ;E�-co-
modules. If X Š Y as H -comodules (under push-forward by x�), then X Š Y as
zH -comodules (under push-forward by p).

Let X Š Y be isomorphic as H -comodules. Recall that if m D `, Proposi-
tion 4.12(4) implies that X Š Y as HŒG ;E�-comodules and therefore as zH -como-
dules as well. We still have to deal with the case m ¤ `.

Since H is a WHA, X� � .!M/
y̋ t for some t 2 N0. There is an H -comodule

T � X y̋X� � .!M/
y̋ .mCt/;

such that T Š Hs asH -comodules. SinceX Š Y asH -comodules, there is another
H -comodule

zT � Y y̋X� � .!M/
y̋ .`Ct/;

such that zT Š Hs as H -comodules. Both T and zT are also HŒG ;E�-comodules
that are pushed-forward under x� to the monoidal unit of MH . By Theorem 5.6,
T Š HŒG ;E�gs and zT Š HŒG ;E�zgs for some group-like g; zg 2 G. Therefore,
T Š zHs Š zT as zH -comodules.

On the other hand,

X y̋ zT � X y̋ .Y y̋X�/ � .!M/
y̋ .mC`Ct/;

Y y̋T � Y y̋ .X y̋X�/ � .!M/
y̋ .`CmCt/

are isomorphic asH -comodules, and so by Proposition 4.12(2), also asHŒG ;E�-co-
modules and therefore as zH -comodules. We conclude that as zH -comodules,

X Š X y̋ zHs Š X y̋ zT Š Y y̋T Š Y y̋ zHs Š Y:

Note that sinceH is a WHA, the left hand side of (5.7) becomes a WHA as well.
Finally, we provide some additional details of the construction.

5.3. Some further details

Lemma 5.8. Under the assumptions of Theorem 5.7, letg; Qg 2 HŒG ;E� be group-like

such that x�.g/ D 1 D x�. Qg/. Let HŒG ;E�gs � .!M/
y̋ m and HŒG ;E� Qgs � .!M/

y̋ n

for some m; n 2 N0. If m D n, then g D Qg.

Proof. Recall from Proposition 4.12(5) thatHŒG ;E� is a coproduct of matrix coalge-

brasC.V / D V �˝V each of which is associated with a subcomodule V � .!M/
y̋ m

for somem � 0, i.e. all comodulesHŒG ;E�gs are subcomodules of the form assumed.
Let now m D n. Pushing-forward these comodules along x� yields isomor-

phic H -comodules H�.g/
s Š Hs Š H

�. Qg/
s . By Proposition 4.12(4), HŒG ;E�gs Š

HŒG ;E� Qgs are also isomorphic as HŒG ;E�-comodules.
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We now apply Theroem 5.6 to the homomorphism of WBAs x� W HŒG ;E� ! H

and chooseN D HŒG ;E� Qg . We know thatN pushes forward to the monoidal unit of
MH under x� and that it is isomorphic as an HŒG ;E�-comodule to HŒG ;E�gs where
g is group-like with x�.g/ D 1. Theorem 5.6 then gives a formula for g in terms of
the coaction of HŒG ;E� Qgs :

g D ."˝ id/ B ˇ
HŒG ;E� Qg

s
B �.1/ D ".10/. Qg100/ D Qg:

Proposition 5.9. Under the assumptions of Theorem 5.7, if in addition C satisfies
the strong Schur–Weyl property, then each g 2 G is central in HŒG ;E� and satisfies
g D X.g/ where X.g/ D "t ."s.g

0//g00"s."t .g
00//. Here, X acts on homogeneous

elements Œp j q�m 2 HŒG ;E�m, m 2 N0, as follows:

X.Œp j q�m/ D ı�.p/;�.p/ı�.q/;�.q/Œp j q�m:
Furthermore, using the surjection �R W HŒG ; R� ! H of WBAs of Proposition 4.10,
each g 2 GR with

GR D fg 2 HŒG ; R� j g is group-like and �R.g/ D 1g (15)

is central in HŒG ; R�.

Proof. We abbreviate N D HŒG ;E�s and N g D HŒG ;E�gs and consider the coac-
tions

ˇM W M �! M ˝HŒG ;E�;

p 7�!
X

q2G 1

q ˝ Œq j p�1;

and
ˇN g W N g �! N g ˝HŒG ;E�;

j 7�!
X

`2G 0

`˝ .gŒ` j j �0/;

for p 2 G 1, j 2 G 0. Applying idN g ˝ idM ˝x� to both sides of the following
equation

ˇN g y̋ M .j ˝ p/ D .	�1
N g;M ˝ idHŒG ;E�/ B ˇM y̋ N g B 	N g ;M .j ˝ p/;

exploiting that x�.g/ D 1 and that x� is injective onHŒG ;E�0 �HŒG ;E�1 � HŒG ;E�1
yields

ˇN y̋ M D .	�1
N g ;M ˝ idHŒG ;E�/ B ˇM y̋ N B 	N g ;M (16)

where ˇN y̋ M and ˇM y̋ N contain the coaction of the monoidal unit,

ˇN W N g �! N g ˝HŒG ;E�;

j 7�!
X

`2G 0

`˝ Œ` j j �0:
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Applying .� ˝ � ˝ .g � �// to (16), pre- and post-composing with 	�1
N g ;M and

	N g ;M ˝ idHŒG ;E�, and then pre- and post-composing with �M and ��1
M , respectively,

allows us to computeX
q2G 1

q ˝ .gŒq j p�1/ D
X

q2G 1

q ˝ .Œq j p�1X.g//: (17)

Now we repeat all of the above argument for 1 D HŒG ;E�s rather than M . In
this case, we exploit the fact that x� is injective on HŒG ;E�0 �HŒG ;E�0 � HŒG ;E�0
and obtain that for all ` 2 G 0:X

j 2G 0

j ˝ .gŒj j `�0/ D
X

j 2G 0

j ˝ .Œj j `�0X.g//:

Since C satisfies the strong Schur–Weyl property, 1 is simple and therefore the Œj j `�0,

j; ` 2 G 0, form a basis of .!M/
y̋ 0, and so comparing coefficients yields

gŒj j `�0 D Œj j `�0X.g/
for all j; ` 2 G 0. Since �.1/ 2 HŒG ;E�0, we conclude that g D X.g/.

Finally, since M is simple, the Œp j q�1, p; q 2 G 1, form a basis of !M , and so
we can compare coefficients in (17) and find that

gŒp j q�1 D Œp j q�1g
for all p; q 2 G 1. SinceHŒG ;E� as an algebra is generated byHŒG ;E�0 [HŒG ;E�1,
g is central. The argument for GR and �R is identical.

In order to compute X.g/ on homogeneous elements, we note that

"s.Œp j q�m/ D ıpq

X
j 2G 0

Œj j 	.p/�0;

"t .Œp j q�m/ D ıpq

X
j 2G 0

Œ�.q/ j j �0;

"t ."s.Œp j q�m/ D ıpq

X
j 2G 0

Œ	.p/ j j �0;

"s."t .Œp j q�m/ D ıpq

X
j 2G 0

Œj j �.q/�0;

from which the claim follows in a direct computation.

The following proposition is useful if one wishes to determine the relevant group-
like elements for a given category C .
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Proposition 5.10. Under the assumptions of Theorem 5.7 with the setG of (14), the
following holds.

(1) For each m 2 N0, the set G \HŒG ;E�m contains at most one element which
we denote by gm if it exists.

(2) For the elements of Part (1), we have gmg` D gmC` for all m; `.

(3) G is an abelian monoid.

(4) Each g 2 G, g ¤ 1, has infinite order.

Proof. (1) Let g; g0 2 G \HŒG ;E�m for some m 2 N0. Then by Theorem 5.6 and

by the grading ofHŒG ;E�, bothHŒG ;E�gs � .!M/
y̋ m andHŒG ;E�g

0

s � .!M/
y̋ m.

Lemma 5.8 implies g D g0.
(2) By the grading, gmg` 2 HŒG ;E�mC` and gmg` is group-like with x�.gmg`/ D

1. Part (1) then implies the claim.

(3) Because x� is a homomorphism of unital associative algebras and because of
Part (2).

(4) Because of Parts (1) and (2) and the fact that the unit is in degree zero,
1 2 HŒG ;E�0.

Proposition 5.11. Under the assumptions of Theorem 5.7, if C is braided, the WBA
HŒG ;E�=IG is coquasi-triangular with the universal r-form induced from HŒG ;E�,
and the isomorphism (5.7) is an isomorphism of coquasi-triangular WBAs.

Proof. The coquasi-triangular structure of HŒG ;E� descends to HŒG ;E�=IG pro-
vided that the universal r-form r W HŒG ;E�˝HŒG ;E� ! k and its weak convolution
inverse Nr W HŒG ;E�˝HŒG ;E� ! k satisfy

r.IG; H ŒG ;E�/ D 0 D r.HŒG ;E�; IG/; Nr.IG ; H ŒG ;E�/ D 0 D Nr.HŒG ;E�; IG/:

This holds on the generators 1 � g, g 2 G, of IG because x� is a homomor-
phism of coquasi-triangular WBAs, x�.g/ D 1 and r.1;�/ D ".�/ D r.�; 1/ and
Nr.1;�/ D ".�/ D Nr.�; 1/. It extends to the two-sided ideal by (1) and (2). The
isomorphism (5.7) is one of coquasi-triangular WHAs because x� pushes forward all
relevant comodules.

6. Examples

6.1. The modular categories associated with Uq.sl2/. In this section, we review
the modular categories associated with Uq.sl2/ at suitable roots of unity follow-
ing [8] and present them as the categories of finite-dimensional comodules of a WHA
HŒG ;E�=IG .
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6.1.1. Description of the categories. Let r 2 f2; 3; 4; : : :g and A be a primitive
4r-th root of unity, q D A2. For simplicity, we work over the complex numbers
k D C. The morphisms of our category C are represented by plane projections of
oriented framed tangles, drawn in blackboard framing. The coherence theorem for
ribbon categories [19] ensures that each diagram defines a morphism of C . Since C

is k-linear, we can take formal linear combinations of diagrams with coefficients in
k. All our diagrams are read from top to bottom.

The braiding of C is such that a crossing in our plane projections can be resolved
using the recursion relation for the Kauffman bracket

��
��

��
�

���

��� D A C A�1 ; D �.q C q�1/;

ignoring the orientations for now. The Jones–Wenzl idempotents Pn, 1 � n � r � 2,
are formal linear combinations of planar .n; n/-tangles that can be defined recursively
by

P1 D ; PnC1

� � �

� � �
D Pn

� � �

� � �
C Œn�q

ŒnC 1�q

Pn

Pn

� � �

� � �

� � �

:

where Œn�q D .qn � q�n/=.q � q�1/, n 2 Z, are the quantum integers. The isomor-
phism classes of simple objects of C are indexed by the set I D f0; 1; : : : ; r � 2g.
The identity morphism of the object Vn, n 2 I , is the identity .n; n/-tangle with the
idempotent Pn inserted somewhere (anywhere). As a shortcut, we write a single line
labeled by n,

n

D Pn

� � �

� � �
:

The object V0 indexed by 0 2 I is the monoidal unit and can be made invisible in our
diagrams thanks to the coherence theorem. The categorical dimension of the simple
objects is given by

�n D
n

D .�1/nŒnC 1�q ;

which is non-zero for all n 2 I .
Two special features of Uq.sl2/ are exploited. First, the simple objects are iso-

morphic to their duals, and the choice of representatives Vj , j 2 I , of the simple
objects is such that .Vj /

� D Vj are equal rather than merely isomorphic. This allows
us to omit any arrows from the diagrams that would indicate the orientation of the
ribbon tangle.

Second, there are no higher multiplicities, i.e. for all a; b; c 2 I , we have
dimk Hom.Va ˝ Vb; Vc/ 2 f0; 1g. More precisely, Hom.Va ˝ Vb; Vc/ Š k if and
only if the triple .a; b; c/ is admissible. Otherwise, Hom.Va ˝ Vb; Vc/ D f0g.
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Definition 6.1. A triple .a; b; c/ 2 I 3 is called admissible if the following conditions
hold.

(1) aC b C c � 0 mod 2 (parity),

(2) aCb�c � 0 and bCc�a � 0 and cCa�b � 0 (quantum triangle inequality),

(3) aC b C c � 2r � 4 (non-negligibility).

A special choice of basis vector of Hom.Va; Vb ˝ Vc/ is denoted by a trivalent
vertex:

�
a

b c

D
a

b c

i j
k

;

where i D .aC b � c/=2, j D .aC c � b/=2 and k D .bC c � a/=2 and the boxes
denote Jones–Wenzl idempotents. If we draw such a diagram for a triple .a; b; c/ 2 I 3

that is not admissible, then by convention, we multiply the entire diagram by zero.
We also need the theta graph

#.a; b; c/ D � �
a
b

c

;

which is non-zero for all admissible triples .a; b; c/. When we compose the mor-
phisms associated with such diagrams, the composition is zero unless the labels at
the open ends of the tangles match, i.e. putting

�
����r ����

j

s

below �
��
��q ���
�
k

p

gives ıqrıkj

�

�
q k

p

s

:

Exploiting semi-simplicity and Schur’s lemma, we compute

�

�
q k

p

s

D ıps

#.p; q; k/

�p

p

:

The quantum 6j -symbol is defined as

�
a b i

c d j

�
q

D �i

#.a; d; i/#.b; c; i/

�
� �

�
j
��

��
�

a

�����
b

��
��

�
c

����� d

i :
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It is used in the recoupling identity,

� �
j ����

c

���
�

d
���
�

a

����
b

D
X

i

�
a b i

c d j

�
q

�

�
i

����b ����
c

��
��

a ���
�
d

:

6.1.2. The dimension graph. We now assume that r � 3. The category C is
generated by M D V1 (Definition 3.4). From the decompositions V0 ˝ M Š V1,
Vj ˝M Š Vj �1 ˚ Vj C1 for all 1 � j � r � 3 and Vr�2 ˝M Š Vr�3, we obtain
the dimension graph G of C with respect to M (Definition 3.6):

G D �
0

��
�� �

1

��
�� �

2

�� : : : ���
r � 3

��
�� �

r � 2
: (18)

Since for any two vertices j; ` 2 G 0 D I , there is at most one edge from j to `, we
specify a path p 2 G m of lengthm 2 N0 by the sequence of themC 1 vertices along
p, i.e. p D .i0; : : : ; im/ 2 ImC1. The source and target of this path are 	.p/ D im
and �.p/ D i0.

At this point, the reader should be familiar with the WBA HŒG � associated with
the graph G (Proposition 3.1). As an algebra, HŒG � Š k.G � G / is the path algebra
of the quiver G � G . As a coalgebra, it is a direct sum of matrix coalgebras: one for
each degree, i.e. for each length of paths. Our construction shows that the category
C is equivalent to the category of finite-dimensional comodules ofHŒG � modulo the
relations (19) and (21) below.

6.1.3. The fundamental surjection. We use the same basis of !M D Hom. yV ;
yV ˝M/ as in [16] and [17], i.e. f e.M /

i;iC1; e
.M /
iC1;i j 0 � i � r � 3 g which reads in

terms of diagrams,

e
.M /
i;iC1 D �

i

���
�

i C 1
���

�

1
and e

.M /
iC1;i D �

i C 1

���
�

i
���

�

1
:

The surjection � W HŒG � ! H D coend.C ; !/ (Theorem 3.8) then maps

�.Œ.j / j .`/�0/ D Œe
j

.1/
j e.1/

`
�
1
;

�.Œ.j0; j1/ j .`0; `1/�1/ D Œe
j0;j1

.M /
j e.M /

`1;`0
�
M
;

for j; j0; j1; `; `0; `1 2 I and j1 D j0 ˙1, `1 D `0 ˙1. We refer to the explanations
preceding Theorem 3.8 for the bases used on the right hand side.

6.1.4. The endomorphism adapted WBA. The category C satisfies the strong
Schur–Weyl property (Definition 4.2), i.e. the monoidal unit 1 D V0 and the gener-
ating object M D V1 are both simple, and the endomorphism algebras End.M˝m/,
m � 2, are generated by braiding and inverse braiding of adjacent tensor factors.
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The ideal IE in the definition of the endomorphism adapted WBA HŒG ;E� D
HŒG �=IE (Definitions 4.5 and 4.8) is therefore generated by homogeneous relations
of degree two:X

.i0;i1;i2/2G 2

Œ.j0; j1; j2/ j .i0; i1; i2/�2R.i0;i1;i2/I.`0;`1;`2/

�
X

.i0;i1;i2/2G 2

R.j0;j1;j2/I.i0;i1;i2/ Œ.i0; i1; i2/ j .`0; `1; `2/�2;
(19)

for all paths of length two .j0; j1; j2/ 2 G 2 and .`0; `1; `2/ 2 G 2. Note that these
relations are non-trivial only if j0 D `0 and j2 D `2 (Remark 4.4(2)).

A direct computation using Temperley–Lieb recoupling calculus yields the fol-
lowing non-zero coefficients:

R.j;j ˙1;j /I.j;j ˙1;j / D 	q�1=2 q
˙.j C1/

Œj C 1�q
;

R.j;j �1;j /I.j;j C1;j / D q�1=2
Œj �q Œj C 2�q

Œj C 1�q
2
;

R.j;j C1;j /I.j;j �1;j / D q�1=2;

R.j;j ˙1;j ˙2/I.j;j ˙1;j ˙2/ D q�3=2:

6.1.5. The relevant group-like elements. In order to compute the kernel IG of
the induced surjection x� W HŒG ;E� ! H , we systematically consider the simple
comodules of H and HŒG ;E�, proceeding by increasing degree according to the
tensor powerm of M˝m, m 2 N0.

In the following table, we show the decomposition of .!M/
y̋ m as anH -comodule

which is known from C , and the decomposition of kG m as an HŒG ;E�-comodule
which follows from Proposition 4.12(4). Assume for now that r is big.

m .!M/
y̋ m 2 jMH j kG m 2 jMHŒG ;E�j

0 V0 V0

1 V1 V1

2 V2 ˚ V0 V2 ˚ V 0
0

3 V3 ˚ 2V1 V3 ˚ 2V 0
1

4 V4 ˚ 3V2 ˚ 2V0 V4 ˚ 3V 0
2 ˚ 2V 00

0

: : : : : : : : :

For each j 2I, the objects Vj , V 0
j , V 00

j , : : : are simple HŒG ;E�-comodules that are
pairwise non-isomorphic as HŒG ;E�-comodules but that are all pushed forward to
theH -comodule Vj under x� . Note that we have suppressed the long forgetful functor
and written Vj for !Vj .
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We see thatm D 2 is the smallest degree in which there is anHŒG ;E�-comodule,
V 0

0, which is not isomorphic to V0, but pushed forward to it under x� . Therefore, by
Theorem 5.6, V 0

0 is characterized by a group-like element g2 2 HŒG ;E�2 for which
x�.g2/ D 1. Upon dividing HŒG ;E� by the relation g2 � 1, V 0

0 and V0 will become
isomorphic.

The next higher degree with an HŒG ;E�-comodule non-isomorphic, but pushed
forward to V0 is m D 4. Since the group-like g2

2 is of degree m D 4 and satisfies
x�.g2/ D 1, by Proposition 5.10, g2

2 is the group-like that characterizes V 00
0 . Notice

that the quotient by g2 � 1 will also render V 0
1 isomorphic to V1, V 00

0 isomorphic to
V0 and V 0

2 isomorphic to V2.

If r is not large enough, the above argument is unchanged except that some of
the ‘biggest’ comodules are absent from the decompositions. The pattern continues
in higher degrees, and the only relevant group-like is g2.

In order to compute g2, we explicitly decompose !M y̋!M Š V2 ˚ V 0
0 and

compute g2 as the group-like that characterizes V 0
0 from Theorem 5.6. For the de-

composition, we calculate the idempotent Q D !.idM ˝M �P2/ associated with V 0
0.

Here, P2 is the Jones–Wenzl idempotent of V2 � M ˝M . Q takes non-zero values
in the following cases:

Q..0; 1; 0// D .0; 1; 0/;

Q..j; j C 1; j // D Œj C 2�q

Œ2�qŒj C 1�q
.j; j C 1; j /

� Œj �qŒj C 2�q

Œ2�q Œj C 1�q
2
.j; j � 1; j /;

Q..j; j � 1; j // D � 1

Œ2�q
.j; j C 1; j /

C Œj �q

Œ2�q Œj C 1�q
.j; j � 1; j /;

Q..r � 2; r � 3; r � 2// D .r � 2; r � 3; r � 2/;

for 1 � j � r � 3. A basis for V 0
0 � !M y̋!M is therefore given by

b0 D .0; 1; 0/;

bj D .Œj C 1�q .j; j C 1; j / � Œj �q .j; j � 1; j //=
p
2;

br�2 D �.r � 2; r � 3; r � 2/:

We use the coefficients of the comodule V 0
0 in this basis and compute the group-like
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to be

g2 D
r�2X

j;`D0

j̨˛`

� Œ`C 1�q

Œj C 1�q
Œ.j; j C 1; j /j.`; `C 1; `/�2

C Œ`�q

Œj �q
Œ.j; j � 1; j /j.`; `� 1; `/�2

� Œ`C 1�q

Œj �q
Œ.j; j � 1; j /j.`; `C 1; `/�2

� Œ`�q

Œj C 1�q
Œ.j; j C 1; j /j.`; `� 1; `/�2

�
;

(20)

with ˛0 D ˛r�2 D 1 and j̨ D 1=
p
2 for all 1 � j � r � 3. In (20) it is understood

that terms with a path .j; j˙1; j / are omitted from the expression wheneverj˙1 < 0
or j ˙ 1 > r � 2.

The kernel of x� W HŒG ;E� ! H is therefore (Theorem 5.7) generated by

1� g2: (21)

We have shown that the category C is equivalent to the category of finite-dimensional
comodules of the quotient ofHŒG � for the graph G of (18) modulo the relations (19)
and (21).

A. Summary of notation and conventions

In this appendix, we collect the relevant definitions and properties of monoidal, au-
tonomous, braided monoidal and abelian categories, following Schauenburg [21] and
Mac Lane [10].

A.1. Monoidal categories

Definition A.1. A monoidal category .C ;˝; 1; ˛; �; �/ is a category C with a bi-
functor ˝W C � C ! C (tensor product), an object 1 2 jC j (monoidal unit)
and natural isomorphisms ˛X;Y;Z W .X ˝ Y / ˝ Z ! X ˝ .Y ˝ Z/ (associator),
�X W 1 ˝ X ! X (left-unit constraint) and �X W X ˝ 1 ! X (right-unit constraint)
for all X; Y;Z 2 jC j, subject to the pentagon axiom

˛X;Y;Z˝W B ˛X˝Y;Z;W D .idX ˝˛Y;Z;W / B ˛X;Y ˝Z;W B .˛X;Y;Z ˝ idW /

and the triangle axiom

�X ˝ idY D .idX ˝�Y / B ˛X;1;Y

for all X; Y;Z;W 2 jC j.
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Definition A.2. Let .C ;˝; 1; ˛; �; �/ and .C 0;˝0; 10; ˛0; �0; �0/ be monoidal cate-
gories.

(1)A lax monoidal functor .F; FX;Y ; F0/ W C ! C 0 consists of a functorF W C !
C 0, morphisms FX;Y W FX ˝0 FY ! F.X ˝ Y / that are natural in X; Y 2 jC j, and
of a morphism F0 W 10 ! F 1, subject to the hexagon axiom

FX;Y ˝Z B .idFX ˝0FY;Z/ B ˛0
FX;F Y;F Z D F˛X;Y;Z B FX˝Y;Z B .FX;Y ˝0 idF Z/

and the two squares

�0
FX D F�X B F1;X B .F0 ˝0 idFX/;

�0
FX D F�X B FX;1 B .idFX ˝0F0/

for all X; Y;Z 2 jC j.
(2) An oplax monoidal functor .F; FX;Y ; F 0/ W C ! C 0 consists of a functor

F W C ! C 0, morphisms FX;Y W F.X ˝ Y / ! FX ˝0 FY that are natural in
X; Y 2 jC j, and of a morphism F 0 W F 1 ! 10, subject to the hexagon axiom

.idFX ˝0F Y;Z/ B FX;Y ˝Z B F˛X;Y;Z D ˛0
FX;F Y;F Z B .FX;Y ˝0 idF Z/ B FX˝Y;Z

and the two squares

F�X D �0
FX B .F 0 ˝0 idFX / B F 1;X ;

F�X D �0
FX B .idFX ˝0F 0/ B FX;1

for all X; Y;Z 2 jC j.
(3) A strong monoidal functor .F; FX;Y ; F0/ W C ! C 0 is a lax monoidal functor

such that all FX;Y , X; Y 2 jC j and F0 are isomorphisms.

Definition A.3. Let .C ;˝; 1; ˛; �; �/ be a monoidal category. A left-dual .X�; evX ;

coevX / of an object X 2 jC j consists of an object X� 2 jC j and morphisms
evX W X� ˝ X ! 1 (left evaluation) and coevX W 1 ! X ˝ X� (left coevaluation)
that satisfy the triangle identities

�X B .idX ˝ evX/ B ˛X;X�;X B .coevX ˝ idX / B ��1
X D idX ;

�X� B .evX ˝ idX�/ B ˛�1
X�;X;X� B .idX� ˝ coevX / B ��1

X� D idX� :

If C is a monoidal category and f W X ! Y a morphism of C such that both X and
Y have left-duals, the left-dual of f is defined as

f � D �X� B .evY ˝ idX�/ B˛�1
Y �;Y;X� B .idY � ˝.f ˝ idX�// B .idY � ˝ coevX / B��1

Y � :

A left-autonomous category is a monoidal category in which each object is equipped
with a specified left-dual.
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Definition A.4. A braided monoidal category .C ;˝; 1; ˛; �; �; 	/ is a monoidal
category .C ;˝; 1; ˛; �; �/ with natural isomorphisms 	X;Y W X ˝ Y ! Y ˝ X for
all X; Y 2 jC j that satisfy the two hexagon axioms

	X˝Y;Z D ˛Z;X;Y B .	X;Z ˝ idY / B ˛�1
X;Z;Y B .idX ˝	Y;Z/ B ˛X;Y;Z ;

	X;Y ˝Z D ˛�1
Y;Z;X B .idY ˝	X;Z/ B ˛Y;X;Z B .	X;Y ˝ idZ/ B ˛�1

X;Y;Z

for all X; Y;Z 2 jC j. The category is called symmetric monoidal if in addition

	Y;X B 	X;Y D idX˝Y

for all X; Y 2 jC j.

Definition A.5. Let .C ;˝; 1; ˛; �; �; 	/ and .C 0;˝0; 10; ˛0; �0; �0; 	 0/ be braided
monoidal categories. A lax monoidal functor .F; FX;Y ; F0/ W C ! C 0 is called
braided if

F	X;Y B FX;Y D FY;X B 	 0
FX;F Y

for all X; Y 2 jC j.

A.2. Abelian and semisimple categories

Definition A.6. A category C is called Ab-enriched if it is enriched in the category
Ab of abelian groups, i.e. if Hom.X; Y / is an abelian group for all objectsX; Y 2 jC j
and if the composition of morphisms is Z-bilinear.

Let k be a commutative ring. A category C is called k-linear if it is enriched in
kM, the category of k-modules, i.e. if Hom.X; Y / is a k-module for all X; Y 2 jC j
and if the composition of morphisms is k-bilinear.

A functor F W C ! C 0 between Ab-enriched (resp. k-linear) categories is called
additive (resp. k-linear) if it induces homomorphisms of additive groups (resp.
k-modules)

Hom.X; Y / �! Hom.FX; FY /

for all X; Y 2 jC j.

Definition A.7. A monoidal category .C ;˝; 1; ˛; �; �/ is called Ab-enriched (resp.
k-linear) if C is Ab-enriched (resp. k-linear) and if the tensor product of morphisms
is Z-bilinear (resp. k-bilinear).

Definition A.8. An additive category is an Ab-enriched category that has a terminal
object and all binary products. A preabelian category is an Ab-enriched category
that has all finite limits. An abelian category is a preabelian category in which every
monomorphism is a kernel and in which every epimorphism is a cokernel.

Definition A.9. Let C be a k-linear category, k a field.
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(1) An objectX 2 jC j is called simple if End.X/ Š k are isomorphic as k-modules.

(2) The category C is called split semisimple if there exists a family fVj gj 2I of
objects Vj 2 jC j, I some index set, such that

(a) Vj is simple for all j 2 I .

(b) Hom.Vj ; V`/ D f0g for all j; ` 2 I for which j ¤ `.

(c) For each object X 2 jC j, there is a finite sequence j .X/
1 ; : : : ; j

.X/

nX 2 I ,

nX 2 N0, and morphisms {.X/

`
W Vj`

! X and �.X/

`
W X ! Vj`

such that

idX D
nXX
`D1

{X` B �X
` :

and

�X
` B {Xm D

´
idV

j X
`

if ` D m;

0; else.

(3) The category is called finitely split semisimple if it is split semisimple with a
finite index set I in condition (3).

When we speak of split semisimple monoidal categories, we do not require the
monoidal unit 1 to be simple. Note that in a split semisimple autonomous category,
if an object X is simple, then so is its dual.
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