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Abstract. In this paper we prove another pairing theorem for bordered Floer homology. Unlike
the original pairing theorem, this one is stated in terms of homomorphisms, not tensor products.
The present formulation is closer in spirit to the usual TQFT framework, and allows a more
direct comparison with Fukaya-categorical constructions. The result also leads to various
dualities in bordered Floer homology.
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1. Introduction

In [9], we introduced extensions of the Heegaard Floer homology group cHF.Y /
(with coefficients in F2 D Z=2Z) to 3-manifolds with boundary. To a surface F ,
together with a handle decomposition Z of F and a little extra data (in the form of
a basepoint), we associated a differential graded algebra A.Z/. To a 3-manifold Y
with boundary parameterized by Z, we associated a right A1-module bCFA.Y / over
A.Z/ and a left differential graded module bCFD.Y / over A.�Z/ (where � denotes
orientation reversal), each of which is well-defined up to homotopy equivalence in the
corresponding category. These relate to the closed invariants via the pairing theorem,
which states that if Y1 and Y2 are 3-manifolds with boundaries parameterized by F
and �F respectively then

cHF.Y1 [F Y2/ Š H�.bCFA.Y1/ z̋ bCFD.Y2// DW TorA.Z/.bCFA.Y1/; bCFD.Y2//I
see [9], Theorem 1.3. (We review these constructions a little more thoroughly in
Section 2.1.)

In this paper, we prove a different pairing theorem, formulated in terms of the Hom
functor rather than the tensor product functor. This version has the advantage that
it allows one to work exclusively with bCFD.Y / (or, if one prefers, exclusively with
bCFA.Y /); this is of interest since bCFD is typically easier to compute (see [11]). The
present pairing theorem also meshes well with the “Fukaya-categorical” formulation
of Lagrangian Floer homology, providing a direct comparison of our pairing result
with Auroux’s construction of bordered Floer homology [1]. Indeed, our first result
is the following, which also appears as Theorem 1.5 in [1]:

Theorem 1. Let Y1 and Y2 be bordered 3-manifolds with @Y1 D @Y2 D F.Z/. Then

cHF.�Y1 [@ Y2/
Š H�.MorA.�Z/.bCFD.Y1/; bCFD.Y2/// DW ExtA.�Z/.bCFD.Y1/; bCFD.Y2//

Š H�.MorA.Z/.bCFA.Y1/; bCFA.Y2/// DW ExtA.Z/.bCFA.Y1/; bCFA.Y2//:

The Hom pairing theorem (Theorem 1) follows from the behavior of the bor-
dered Floer invariants under orientation reversal, stated as a duality theorem relating
bCFD.Y / and bCFA.�Y / (Theorem 2 below). Note that this is a different kind of

duality from the relationship between bCFD.Y / and bCFA.Y / from [10], Corollary 1.1
and Theorem 16. In addition to studying orientation reversal, we also a prove duality
theorems in two other contexts: one corresponding to conjugation of spinc structure
(Theorem 3) and another corresponding to reversing the Morse function on the sur-
face (Theorem 13). We also prove analogues of Theorems 1 and 2 for bimodules (see
Section 1.2).

As a tool for establishing Theorem 2, we use a Heegaard diagram discovered inde-
pendently by Auroux [1] and Zarev [23] (see Section 4). Studying this diagram gives
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several algebraic results, including an algebraic Serre duality theorem (Theorem 10),
and an interpretation of Hochschild cohomology as a knot Floer homology group
(Corollary 11). It also leads to an in interpretation of the duality results from [10],
Corollary 1.1, in terms of Koszul duality (Sections 5.4 and 8).

In spite of its aesthetic appeal, this Hom version of the pairing theorem is less eco-
nomical than the original tensor product pairing theorem: the complex Hom.bCFD.Y1/;
bCFD.Y2// is typically much larger than cCF.�Y1 [@ Y2/. (By contrast, for any Hee-

gaard diagram respecting the decomposition Y D �Y1 [@ Y2, the dimensions over
F2 of the complex cCF.Y / from [15] and the complex bCFA.�Y1/� bCFD.Y2/ from [9]
are the same.)

We now explain the duality theorems in more detail.

1.1. Dualities for bordered Floer modules. We start with the effect of orientation-
reversal on the bordered Floer invariants. To state it, it is convenient to work at the
level of chain complexes, not homology. In particular, we let MorA.M;N/ denote
the chain complex of A1-morphisms fromM toN , whose homology is ExtA.M;N/
(cf. Section 2.2).

Theorem 2. Let Y be a bordered 3-manifold, with boundary parameterized by
' W F.Z/ ! @Y . Let �Y denote Y with its orientation reversed and boundary
parameterized by the same ', viewed as a map F.�Z/ ! @.�Y /. Then there are
homotopy equivalences:

MorA.�Z/.A.�Z/
bCFD.Y /;A.�Z// ' bCFA.�Y /A.�Z/; (1.1)

MorA.Z/.bCFA.Y /A.Z/;A.Z// ' A.Z/
bCFD.�Y /: (1.2)

The above result gives a direct relation between bCFD and bCFA, with no orientation
reversal, as follows. The algebra A.�Z/ is the opposite algebra to A.Z/. So, we can
regard the left module A.�Z/

bCFD.Y / over A.�Z/ as a right module bCFD.Y /A.Z/.
Recall also that the invariants bCFD.Y / and bCFA.Y / decompose according to (abso-
lute) spinc-structures on Y,

bCFD.Y / D
M

s2spinc.Y /

bCFD.Y; s/; bCFA.Y / D
M

s2spinc.Y /

bCFA.Y; s/:

There is a Z=2-action on spinc-structures, called conjugation, and written s 7! Ns.

Theorem 3. Let Y be a bordered 3-manifold, with boundary parameterized byF.Z/,
and let bCFD.Y; s/A.Z/ denote the s-summand of A.�Z/

bCFD.Y /, viewed as a right
module over A.Z/. Then

bCFD.Y; s/A.Z/ Š bCFA.Y; Ns/A.Z/: (1.3)
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(We are grateful to Denis Auroux for suggesting Theorem 3 to us.)
Heegaard Floer homology for closed three-manifolds satisfies a conjugation in-

variance property [16], Theorem 2.4. Theorem 3 gives the following version of
conjugation invariance in the bordered theory.

Corollary 4. Let Y be a bordered 3-manifold with boundary parameterized byF.Z/.
Then

bCFA.Y; Ns/A.Z/ ' .bCFA.Y; s/�A.Z/
1CFDD.I//A.Z/; (1.4)

A.�Z/
bCFD.Y; Ns/ ' A.�Z/.1CFAA.I/�A.�Z/

bCFD.Y; s//: (1.5)

(Recall that, as in [9] and [10], we use � to denote a particularly convenient
model for the A1 tensor product. Also, I denotes the identity map of F.Z/, and
1CFDD.I/ and 1CFAA.I/ the associated type DD and AA bimodules respectively.

See Theorem 5.19 for an explicit description of 1CFDD.I/.)

1.2. Analogues for bimodules. There are several analogues of these theorems for
bimodules. When working with bimodules, many of the theorems require correcting
by a boundary Dehn twist. Recall from [10] that to a bordered 3-manifold with two
boundary components F.ZL/ and F.ZR/, together with a framed arc connecting
the boundary components, one can associate a bimodule. We can, thus, talk about
performing a boundary Dehn twist on such a strongly bordered 3-manifold, a Dehn
twist along a loop surrounding the framed arc. (A boundary Dehn twist �@ decreases
the framing on the arc by 1.)

Before we can state the bimodule variants, we need one more algebraic digres-
sion. Suppose that M is an A-B bimodule which is free (or projective) as a bi-
module, i.e. as a left A ˝ Bop module. Then we can dualize M over either one or
both of the actions. That is, we can consider both of the bimodules HomA.M;A/
and HomA˝B.M;A˝ B/. These are, in general, different bimodules. Analogous
constructions exist in the dg setting; see Section 2.3. These two algebraic operations
lead to two different versions of the Hom pairing theorem for bimodules. The first of
these is the following theorem.

Theorem 5. Suppose Y is a strongly bordered 3-manifold with two boundary com-
ponents F.Z1/ and F.Z2/. Then

MorA0

1
.A0

1;A
0

2

1CFDD.Y /;A0
1// ' 1CFAA.�Y /A0

1;A
0

2
; (1.6)

MorA1
.A0

2

1CFDA.Y /A1
;A1/ ' A1

1CFDA.�Y /A0

2
; (1.7)

MorA0

1
.A0

1

1CFDA.Y /A2
;A0

1/ ' A2
1CFDA.�Y /A0

1
; (1.8)

MorA1
.1CFAA.Y /A1;A2

;A1/ ' A1;A2
1CFDD.�Y /: (1.9)
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(As explanation for the strange-looking notation, recall that, as defined in [10],
the bimodule 1CFDD.Y / has two left actions, while the bimodule 1CFAA.Y / has two
right actions. For convenience, we have written Ai for A.Zi/ and A0

i for A.�Zi/.)
The second type of dualizing leads to the following theorem.

Theorem 6. Suppose Y is a strongly bordered 3-manifold with two boundary com-
ponents F.Z1/ and F.Z2/. Then

MorA0

1˝A0

2
.A0

1;A
0

2

1CFDD.Y /;A0
1 ˝F2

A0
2/ ' 1CFAA.���1

@ .Y //A0

1;A
0

2
; (1.10)

MorA1˝A2
.1CFAA.Y /A1;A2

/;A1 ˝F2
A2/ ' A1;A2

1CFDD.���1
@ .Y //: (1.11)

(Here, in the notation we use the quasi-equivalence of categories between the
category of right-right A1 A1-A2-bimodules and the category of right A1 A1˝A2-
modules. This equivalence is not as obvious as for ordinary bimodules; see, for
instance, [10], Section 2.4.3, for further discussion. Alternately, one could replace
MorA1˝A2

with the chain complex of A1-bimodule morphisms, as defined in [10],
Section 2.2.4, say.)

One can obtain a version of Theorem 6 for 1CFDA by tensoring with 1CFDD.I/
and using the fact that this gives an equivalence of categories (cf. the proof of (1.7)
in Section 5); we leave this to the interested reader.

As in the one boundary component case, Theorems 5 and 6 lead to various pairing
theorems. For example we have the following results.

Corollary 7. If Y1 andY2 are strongly bordered 3-manifolds, with @Y1 parameterized
by F.Z1/ and F.Z2/ and @Y2 parameterized by F.Z1/ and F.Z3/, then

A0

3

1CFDA.�Y1 [F.Z1/ Y2/A0

2

' MorA0

1
.A0

2
;A0

1

1CFDD.Y1/;A0

1
;A0

3

1CFDD.Y2//
(1.12)

and

A2;A
0

3

1CFDD.�@.�Y1 [@ Y2//
' MorA1˝A0

1
.A1;A

0

1

1CFDD.I/;A1;A2
1CFDD.�Y1/˝ A0

1
;A0

3

1CFDD.Y2//:

(1.13)

(Here, as earlier, I denotes the identity map ofF.Z/, and 1CFDD.I/ the associated
type DD module.)

Corollary 8. If Y1 is a strongly bordered 3-manifold with boundary parameterized
by F.Z1/ and F.Z2/ and Y2 is a bordered 3-manifold with boundary parameterized
by F.Z2/ then

bCFA.�Y1 [F.Z2/ Y2/A0

1
' MorA0

2
.A0

1
;A0

2

1CFDD.Y1/;A0

2

bCFD.Y2//;

A0

1

bCFD.�Y2 [F.Z2/ Y1/ ' MorA0

2
.A0

2

bCFD.Y2/;A0

1
;A0

2

1CFDD.Y1//:
(1.14)
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In particular, if  W F.Z2/! F.Z1/ then

bCFA. .Y2//A1
' MorA0

2
.A1;A

0

2

1CFDD. �1/;A0

2

bCFD.Y2/;

A0

1

bCFD. .Y2// ' MorA2
.A2

bCFD.�Y2/;A0

1
;A2

1CFDD. //:
(1.15)

There are also versions of Theorem 3 for bimodules.

Theorem 9. Suppose Y is a strongly bordered 3-manifold with two boundary com-
ponents F.Z1/ and F.Z2/. Then viewing A0

1
;A0

2

1CFDD.Y / as a right-right module
1CFDD.Y /A1;A2

over A1 and A2,

1CFDD.Y; s/A1;A2
' 1CFAA.�@.Y /; Ns/A1;A2

: (1.16)

Similarly, viewing 1CFAA.Y; s/ as a left–left module over A0
1 and A0

2, we have:

A0

1
;A0

2

1CFAA.Y; s/ ' A0

1
;A0

2

1CFDD.��1
@ .Y /; Ns/: (1.17)

Finally, there are two versions of 1CFDA.Y /, depending on whether we treat F.Z1/
or F.Z2/ as the type D side. Denote these two modules by A0

1

1CFDA.Y; s/A2
and

A0

2

1CFDA.Y; Ns/A1
, respectively. These two options are related by conjugation of the

spinc-structure:

A0

1

1CFDA.Y; s/A2
' A0

2

1CFDA.Y; Ns/A1
: (1.18)

Here, we mean that the modules are homotopy equivalent if we exchange the sidedness
of the actions on either one of the two.

1.3. Algebraic consequences. Finally, these techniques can be used to prove several
more algebraic results about the category of A.Z/-modules.

Theorem 10. Given right A1-modules M and N over A.Z/,

MorA.Z/.N;M � 1CFDA.��1
@ // ' MorA.Z/.M;N/

�; (1.19)

naturally. Here, � denotes the dual vector space.

In other words, Theorem 10 says that tensoring with 1CFDA.��1
@
/ is the Serre

functor for the category of A.Z/-modules.
In [10], we identified the Hochschild homology of 1CFDA with a certain self-gluing

operation. The algebraic results from this paper allow us to translate this result into
one about Hochschild cohomology. (The non-specialist is reminded that Hochschild
cohomology is typically not dual to Hochschild homology.)
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Corollary 11. Suppose that Y is a strongly bordered 3-manifold with boundary
F.Z/ q F.�Z/. Let �@.Y / denote the result of decreasing the framing on the
arc z in Y by one and �@.Y /B the manifold obtained by gluing the two boundary
components of �@.Y / together and performing surgery on the framed knotK coming

from the arc z. Let K 0 be the knot in �@.Y /B coming from K. Then the Hochschild
cohomology HH�.1CFDA.Y // is isomorphic to bHFK.�@.Y /B; K 0/.

The following theorem was first proved in [10], Theorem 4, using computations of
the homology of the algebra associated to a pointed matched circle. The techniques
of this paper lead to another proof, which is independent of those calculations.

Theorem 12. The type DA module A.Z/
1CFDA.I/A.Z/ associated to the identity map

of I W F.Z/! F.Z/ is isomorphic to the “identity bimodule”A.Z/A.Z/A.Z/.

The algebras A.Z/ have yet more symmetries. To state them, we give one more
operation on pointed matched circles. Given a pointed matched circle Z, we can form
another pointed matched circle Z� by turning the Morse function inducing Z upside
down; see Construction 8.18 for more details.

Theorem 13. The algebra A.Z; i / is Koszul dual to A.Z;�i/ and also to A.Z�; i /.
In particular, A.Z;�i/ is quasi-isomorphic to A.Z�; i /.

(Our algebras have differentials and are not strictly quadratic, so the definition
of Koszul duality in our setting is a modest extension of the classical one. See
Section 8.1.)

Theorem 13 explains some seeming coincidences in dim.H�.A.Z; i ///; see Sec-
tion 8.2 for some examples.

As mentioned earlier, a key tool for establishing these results is a Heegaard diagram
discovered independently by Auroux [1] and Zarev (see Section 4). This is a nice
diagram [20], so its holomorphic disks can be understood explicitly; moreover, its
combinatorial structure is closely tied to the bordered Floer algebra. This allows us to
describe differentials in this diagram in a reasonably conceptual way. Exploiting these
properties, we can explicitly describe some modules which play an important role in
the theory. For instance, in Theorem 5.19 we give a simple description of the dualizing
bimodule 1CFDD.I/ (which is also computed, by different techniques, in [11]). In
a similar vein, we can give a conceptual description of the Serre functor appearing
above and a finite dimensional model for the bar complex of A (see Proposition 5.13
below).

1.4. Gradings. We have stated the results in the introduction without explicitly dis-
cussing the gradings on the modules and bimodules. Typically, gradings are somewhat
subtle in bordered Floer theory; in particular, the algebras are graded by noncom-
mutative groups and the modules by G-sets. It turns out, however, that these issues



388 R. Lipshitz, P. Ozsváth and D. Thurston

do not introduce any novel features for the results in this paper, beyond those al-
ready present in the pairing theorems from [9] and [10]. We review these issues,
in Section 6. There, we also give a detailed statement of how the gradings work in
Theorem 1; graded statements of the other theorems are similar, and we leave these
to the reader.

1.5. Further remarks. It is natural to ask what operation in Heegaard Floer homol-
ogy corresponds to the composition of homomorphisms. That is, suppose we have
bordered 3-manifolds Y1, Y2 and Y3 with boundaries parametrized by some surface
F . Then there is a composition map

Ext.bCFD.Y1/; bCFD.Y2//˝ Ext.bCFD.Y2/; bCFD.Y3// �! Ext.bCFD.Y1/; bCFD.Y3/

which corresponds to some homomorphism

cHF.�Y1 [@ Y2/˝ cHF.�Y2 [@ Y3/ �! cHF.�Y1 [@ Y3/:
Generalizing a notion from [15], we can use Y1, Y2 and Y3 to construct a 4-manifold
as follows. Let T denote a triangle, with edges e1, e2 and e3. Then let

WY1;Y2;Y3
D .T � F / [e1�F .e1 � Y1/ [e2�F .e2 � Y2/ [e3�F .e3 � Y3/:

Following constructions from [17], this four-manifold induces a map on Floer ho-
mology

OFWY1;Y2;Y3
W cHF.�Y1 [@ Y2/˝ cHF.�Y2 [@ Y3/ �! cHF.�Y1 [@ Y3/:

Under the identifications from Theorem 1, one can show that this four-manifold
invariant corresponds to the composition map

Ext.bCFD.Y1/; bCFD.Y2//˝Ext.bCFD.Y2/; bCFD.Y3// �! Ext.bCFD.Y1/; bCFD.Y3//:

Presumably a similar story holds for the multiplication operations on Hochschild
cohomology. We return to this point in a future paper [7].

The duality results for modules and bimodules can be seen as special cases of re-
sults for bordered sutured manifolds [22]. In that, more general, context the presence
of boundary Dehn twists can be understood as follows. If Y is a sutured manifold
then orientation reversal of Y also reverses the roles ofRC andR�. To accommodate
this difference, one must also introduce a “half Dehn twist” along the bordered part
of the boundary of Y1 (compare Definition 3.6) before gluing it to Y2. Though we
will generally not discuss this case, see Remark 5.1 for a little more on subtleties in
the bordered sutured context.

In a different direction, one must proceed with care in adapting Theorem 1 to the
case of bordered sutured manifolds [22]. This extension is developed (in a slightly
different language) in [23]; see also Remark 5.1.
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1.6. Outline of the paper. In Section 2 we review some basic facts about bordered
Floer theory and homological algebra which are used in the rest of this paper. A
key point in the present paper is to generalize the arced bordered Heegaard diagrams
from [10] to the case where both ˛ and ˇ curves go out to the boundary, and to give
a topological meaning to these objects. This is done in Section 3. In Section 4 we
describe a particular Heegaard diagram whose associated bimodule is the algebra
itself. This lets us give Heegaard-diagrammatic interpretations to some of the alge-
braic operations on the various modules in bordered Floer theory. In Section 5, we
collect the consequences of these interpretations (together with the traditional pairing
theorem) to prove the results stated in the introduction. In Section 6 we give a brief
discussion of how gradings can be added to the present context. In Section 7 we
illustrate some of the above discussion with some examples. Finally, in Section 8, we
give a description of Koszul duality relevant for our algebras, and prove Theorem 13.

A summary of some of the conventions employed in the paper can be found in
Appendix A.

Acknowledgements. The authors thank Denis Auroux and Rumen Zarev for helpful
conversations. In particular, Auroux’s paper [1] led us to a dramatically simplified
argument. The relevant diagram of Auroux was discovered (and communicated to us)
independently by Zarev. As noted above, Theorem 1 was discovered independently
by Auroux, and a form of Theorem 3 was also suggested to us by him. The authors
also thank MSRI for its hospitality during the completion of this project. Finally, we
thank the referees for a detailed reading and many helpful and interesting comments.

2. Background

2.1. Basic structure of bordered Floer theory. We start reviewing the key ingre-
dients from [9] and [10].

A matched circle is an oriented circle Z, 2k points fa1; : : : ; a2kg D a � Z and
a fixed-point free involution M W a ! a. A matched circle .Z; a;M/ specifies a
surface-with-boundary F B.Z; a;M/ by filling in Z with a disk D0 and attaching
2-dimensional 1-handles at each pair fai ; aM.i/g � a. We shall only be interested in
matched circles which specify surfaces with a single boundary component. We can
fill in the boundary component of F B.Z; a;M/ to give a closed surface F , with a
distinguished disk D D F n F B. We orient F so that the orientation of D0 induces
the orientation of Z.

A pointed matched circle is a matched circle together with a basepoint z 2 Z n a.
We shall use the notation Z to denote a pointed matched circle .Z; a;M; z/. A pointed
matched circle Z specifies a closed surface F.Z/ together with a distinguished disk
D � F.Z/ and basepoint z 2 @D. (This construction will be expanded slightly in
Section 3.1.)
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Bordered Floer homology associates a dg algebra A.Z/ to each pointed matched
circle [9]. If F.Z/ Š F.Z0/ then the algebras A.Z/ and A.Z0/ are derived equiva-
lent, according to [10], Theorem 1.

A bordered 3-manifold is a quadruple .Y1; �1; z1;  1/, where Y1 is a three-
manifold-with-boundary, �1 is a disk in @Y1, z1 is a point on @�1, and

 W .F.Z/;D; z/ �! .@Y1; �1; z1/;

is a homeomorphism from the surface F.Z/ (for some pointed matched circle Z) to
@Y1 sending D to �1 and z to z1. We will often suppress the preferred disk D and
basepoint z from the notation for a bordered 3-manifold, and will sometimes also
suppress the homeomorphism  .

As explained in [9], bordered Floer homology associates to a bordered 3-manifold
with boundary parameterized by F.Z/ a right A1 A.Z/-module bCFA.Y / and a left
dg A.�Z/-module bCFD.Y /, each well-defined up to quasi-isomorphism. (Here,�Z

denotes Z with its orientation reversed.)
Bordered Floer homology also works for 3-manifolds with more than one bound-

ary component; see [10]. More precisely, a strongly bordered three-manifold with
boundaryF.Z1/qF.Z2/ is an oriented three manifold Y12 with boundary, equipped
with

� preferred disks �1 and �2 on its two boundary components,

� basepoints z0
i 2 @�i ,

� a homeomorphism W .F.Z1/qF.Z2/;D1qD2; z1qz2/! .@Y12; �1q�2;
z0
1q z0

2/,

� an arc � connecting z0
1 to z0

2, and

� a framing of � , pointing into �i at z0
i for i D 1; 2.

We will often denote the two boundary components of a strongly bordered three-
manifoldY by@LY and@RY (for “left” and “right”), but the choice of which boundary
component is @L and which is @R is arbitrary.

For every strongly bordered 3-manifold with boundaryF.Z1/qF.Z2/, bordered
Floer homology associates an A1-bimodule 1CFAA.Y / with right actions by A.Z1/

and A.Z2/; an A1-bimodule 1CFDA.Y / with a left action by A.�Z1/ and a right
action by A.Z2/; and a dg bimodule 1CFDD.Y / with left actions by A.�Z1/ and
A.�Z2/. Each of 1CFAA.Y /, 1CFDA.Y / and 1CFDD.Y / is well-defined up to quasi-
isomorphism. As a special case, if Z is a pointed matched circle, F.Z/ � Œ0; 1� is
naturally a strongly bordered three-manifold, which we will denote IZ or just I.

The bordered Floer modules relate to each other and to the closed invariant cCF.Y /
by pairing theorems. The prototypical pairing theorem (see [9], Theorem 1.3) states
that if Y1 and Y2 are bordered 3-manifolds with @Y1 D F.Z/ D �@Y2 then

cCF.Y1 [F Y2/ ' bCFA.Y1/ z̋A.Z/
bCFD.Y2/:
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Here, z̋ denotes the derived (or A1) tensor product. The analogues for bimodules
are listed in [10]; the mnemonic is that one can cancel expressions of the form
A z̋ D. For instance, if Y1 is a bordered 3-manifold with boundary F.Z1/ and Y12
and Y23 are strongly bordered 3-manifolds with boundaries �F.Z1/q F.Z2/ and
�F.Z2/q F.Z3/ respectively then

bCFD.Y1 [F.Z1/ Y12/ ' bCFA.Y1/ z̋A.Z1/
1CFDD.Y12/;

1CFDA.Y12 [F.Z2/ Y23/ ' 1CFAA.Y12/ z̋A.Z2/
1CFDD.Y23/;

and so on.
The details of the construction of the algebras A.F / and the modules bCFD.Y /

and bCFA.Y / can be found in [9], and the generalization to the case of more bound-
ary components is in [10]. Much of this paper can be read with merely a cursory
understanding of [9] and [10], keeping the following points in mind.

� Suppose that Z is a pointed matched circle and�Z denotes the same data except
with the orientation of the circle reversed. Then F.�Z/ D �F.Z/, and the
algebras are related by:

A.Z/op Š A.�Z/: (2.1)

� The modules bCFD.Y / and bCFA.Y / are not associated directly to the 3-manifold
Y , but rather to a bordered Heegaard diagram for Y , i.e. a Heegaard diagram

.†0
g ;˛

c D f˛c1; : : : ; ˛cg�kg;ˇc D fˇ1; : : : ; ˇgg; z/

for Y together with 2k disjoint, embedded arcs ˛a D f˛a1 ; : : : ; ˛a2kg in x† D
†0 nD2 with boundary on @x† giving a basis for �1.@Y /; and a basepoint z 2 @x†
not lying on any ˛ai . The boundary of such a diagram is a pointed matched circle.

Similarly, the bimodules 1CFDD.Y /, 1CFDA.Y / and 1CFAA.Y / associated to
a strongly bordered 3-manifold with two boundary components are associated
to arced bordered Heegaard diagrams with two boundary components; see [10]
and also Section 3.3 below.

� The module bCFD.Y / has a special form: it is a type D structure, as defined
below.

Definition 2.2. Let A be a dg algebra over a ring k DLN
iD1 F2. A (left) type

D structure over A is a k-module X equipped with a map ı1 W X ! A˝k X

satisfying the structure equations which ensure that ı1 extends via the Leibniz
rule to give A˝k X the structure of a differential A-module.

(Type D structures can be thought of as differential comodules or twisted
complexes; see [10], Remark 2.2.36, and [10], Remark 2.2.37. respectively.)
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There is a convenient model � for the A1-tensor product of an A1-module
L and a type D structure M D .X; ı1/, with the property that the vector space
underlyingL�M is just L˝kX ; see [9], Definition 2.26. (In the case thatL is
an ordinary module, L�M agrees with the naïve tensor product L˝A M . In
particular, whenL is A viewed as a bimodule, A �M is the module associated
to X .) There are analogues of the operation � for bimodules, as well; see [10],
Section 2.3.2. (Although � has a purely algebraic definition, it arises naturally
in the analysis of pseudoholomorphic curves, as seen in the proof of the pairing
theorem; see [9], Chapter 9.)

Similarly, the bimodule 1CFDD.Y / is a type DD structure, i.e. a type D
structure over A.ZL/ ˝ A.ZR/; and the bimodule 1CFDA.Y / is a type DA
structure, as defined in [10], Definition 2.2.43. The operation � works when
tensoring bimodules, as long as one tensors a type D side with a type A (i.e.
A1) side.

We sometimes blur the distinction between a type D structure .X; ı1/ and its
induced differential module A � X . When it is important to distinguish them, we
include a superscript in the notation for a type D structure, AX . Ordinary modules
are indicated with a subscript; so we sometimes use the notation AX to denote the
associated module A � AX . This operation has an inverse (“raising the subscript”)
which associates to a module MA the type D structure MA � ABar.A/A, the bar
resolution of M . These are inverses in the derived category of modules satisfying
suitable boundedness conditions; see [10], Proposition 1.3.18.

2.2. Review of Mor and Ext. Suppose that C� and D� are chain complexes (or
differential modules) over an algebraA (possibly with differential) which we assume
to have characteristic 2. Two ways to compute ExtR.C�; D�/ are:

(1) find a complex C 0� of projective modules quasi-isomorphic to C� and compute
the homology of the complex HomA.C 0�; D�/k D

L
i Hom.C 0

i ; DkCi/ of maps
respecting the module structure (but not necessarily the differential) from C 0� to
D�, or

(2) take the homology of the chain complex MorA.C�; D�/ of A1-morphisms from
C� to D�.

(The second option is, under some finite-dimensionality assumptions, a special case
of the first: the complex of A1-morphisms from C� to D� is exactly the chain
complex of homomorphisms from the bar resolution of C� to D�; see Section 2.3.)

Of course, if C� is already projective, one can take C 0� to just be C� itself. Given
type D structures AM and AN , define

MorA.AM;AN/k D
M
i

Hom.AMi ;ANkCi /;
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with its obvious differential. Type D structures over our algebras correspond to
projective modules (compare [10], Corollary 2.3.25), so

Ext�.AM;AN/ Š H�.MorA.AM;AN//:

Again, the notation MorA, with a subscript, denotes the complex of A1-mor-
phisms between A1-modules, while the notation MorA, with a superscript, denotes
the complex of module maps of type D structures. In either case, the homology of
the Mor complex computes Ext.

The following result of [10] (an easy consequence of [10], Theorems 4 and 12,
see [10], Lemma 9.1) will reduce our work by roughly half.

Theorem 2.3. Fix a pointed matched circle Z. Then the functors

�� 1CFDD.I/ W H�.ModA.Z// �! H�.A.�Z/Mod/

1CFAA.I/� � W H�.A.�Z/Mod/ �! H�.ModA.Z//

are inverse equivalences of categories, exchanging bCFA.Y / and bCFD.Y /.

Here, H�.ModA.Z// (respectively H�.A.�Z/Mod/) denotes the homotopy cat-
egory of right, A1 (respectively left, type D) modules over A.Z/ (respectively
A.�Z/). Recall also that the homotopy categories of A1-modules and projective
modules are both equivalent to the derived category; see [10], Section 2.4.1.

Corollary 2.4. Fix bordered 3-manifolds Y1 and Y2 with @Y1 D F D @Y2. Then
there is a quasi-isomorphism

MorA.F /.bCFA.Y1/; bCFA.Y2// ' MorA.�F /.bCFD.Y1/; bCFD.Y2//:

Although we do not need it for our present purposes, the module 1CFDD.I/ is
described explicitly in Section 5.4 or, via a different method, in [11].

2.3. Duals of modules and type D structures. As for finite-dimensional vector
spaces, where Hom.V;W / Š W ˝V �, we can interpret our Mor complexes in terms
of tensor products and duals. We spell this out explicitly.

Definition 2.5. Let A be a finite-dimensional dg algebra over k D LN
iD1 F2 and

M D .X; ı1/ a left type D structure over A. Let xX D HomF2
.X; F2/ denote the

dual of X . The transpose of ı1 is a map

.ı1/T W xX ˝ HomF2
.A; F2/ �! xX:

We can interpret this instead as a map

Nı1 W xX �! xX ˝A:

The dual typeD structure toM , xM , is the right typeD structure induced by . xX; Nı1/.
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If we draw the operation on a type D structure M like this:

ı1

X

X

A

(compare [10], Section 2) then the type D structure xM is

Nı1
.

(As is standard in such graphical calculus, arrows pointing up represent the dual
modules of arrows pointing down.)

Lemma 2.6. If M D .X; ı1/ is a type D structure then xM D . xX; Nı1/ is also a type
D structure.

Proof. This is a straightforward exercise in the properties of duals; alternately, it is
clear from the graphical description.

Proposition 2.7. Suppose that M and N are type D structures and at least one of
M or N is finite-dimensional. Then the chain complex of module homomorphisms
from M to N , MorA.M;N/, is isomorphic to xM �A A �A N . In particular,
MorA.AM;A/ ' xM �A A.

Proof. The first part is straightforward from the definitions. For the last statement,
consider the type D structure AT D .k; 0/. (That is, T is rank one and ı1T D 0).
Then AT D A and xM �A A Š MorA.AM;T / ' MorA.AM;A/.

We next turn to duals of A1-modules.

Definition 2.8. Let A be a finite-dimensional dg algebra over k DLN
iD1 F2 and M

a right A1-module over A. Let xM D HomF2
.M; F2/. The higher multiplications

miC1 W M ˝ A˝i ! M dualize to give maps mTiC1 W xM ! Hom.A; F2/˝i ˝ xM ,
which we can interpret as maps

NmiC1 W A˝i ˝ xM �! xM:

Then the data . xM; f NmiC1g/ is the dual A1-module to M.
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Lemma 2.9. If .M; fmiC1g/ is a right A1-module then . xM; f NmiC1g/ also satisfies
the A1-module relation to make xM a left A1-module.

Proof. Again, this is a straightforward exercise in the properties of duals.

Morphism spaces of type Amodules can also be described in terms of �. Before
giving the definition, we recall some notation. An augmentation of a dg algebra
A is a homomorphism " W A ! k from the algebra to the ground ring. Given
an augmentation " of a dg algebra A D .A; �; d/, let AC D ker."/ denote the
augmentation ideal. There is a type DD bimodule ABarr .A/A with underlying k-
module T �.AC/, with basis written Œa1 j � � � j ak � for k � 0, and structure maps

ı1Œa1 j � � � j ak � WDa1 ˝ Œa2 j � � � j ak�˝ 1C 1˝ Œa1 j � � � j ak�1�˝ ak
C

X
1�i�k

1˝ Œa1 j � � � j d.ai / j � � � j ak�˝ 1

C
X

1�i�k�1
1˝ Œa1 j � � � j �.ai ; aiC1/ j � � � j ak �˝ 1:

The bimodule ABarr.A/A is called the reduced bar complex of A. (In [10], we
typically worked with the unreduced bar complex Bar.A/. The canonical inclusion
Barr .A/! Bar.A/ is a homotopy equivalence.)

With this terminology in hand, we have the following reformulation of the complex
of A1-module homomorphisms.

Proposition 2.10. For finite-dimensional right A1-modules M and N , the chain
complex of A1-module homomorphisms fromM toN , MorA.M;N/, is isomorphic
to N �A Barr .A/�A

xM.

Proof. Recall that an A1-morphismf W M ! N consists of mapsfiC1 W M ˝ AŒ1�i
! N . By unitality we can restrict the algebra inputs to lie in AC, and because M
andN are finite-dimensional, the space of such maps (as a vector space) is isomorphic
toN˝Hom.T �.ACŒ1�/; F2/˝Hom.M; F2/, which is the underlying space ofN�A

Barr .A/�A
xM . Checking that the differentials on the two complexes agree is again

elementary.

A key property of the bar complex is that it can be used to give resolutions of
modules. In the present language, this boils down to the following identity [10],
Lemma 2.3.19:

ABarrA � A ' AŒI�A: (2.11)

Here, AŒI�A is the type DA bimodule whose modulification is A; see [10], Defini-
tion 2.2.48. In particular, AŒI�A is the identity for �.

We extend the definitions of duals to bimodules as follows.
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Definition 2.12. Let A and B be finite-dimensional dg algebras over k DLN
iD1 F2

and l DLM
iD1 F2.

Suppose that A;BM is a left–left type DD module over A and B. That is, A;BM

is a typeD module over A˝B. Then A;BM is a right typeD structure over A˝B.
Interpreting this as a right-right type DD structure xMA;B , we call xMA;B the dual
type DD structure to A;BM .

Now, suppose that NA;B is a right-right A1-bimodule over A and B. Let xN D
Hom.M; F2/. The transpose of the structure maps m1;i;j W N ˝A˝i ˝B˝j ! N

are maps mT1;i;j W xN ! Hom.B; F2/˝j ˝ Hom.A; F2/˝i ˝ xN , which we interpret
as maps

Nmj;i;1 W B˝j ˝A˝i ˝ xN �! xN:
We call . xN; f Nmj;i;1/ the dual A1-bimodule to NA;B .

Finally, suppose ANB D .N; ı1/ is a type DA structure. Let xN D Hom.N; F2/.
The transpose of the map ı11Cn W N ˝B˝n ! A˝M is a map

.ı11Cn/T W xN ˝ HomF2
.A; F2/ �! HomF2

.B; F2/
˝n xN:

We can interpret these as maps

Nı11Cn W B˝n ˝ xN �! xN ˝A:

We call . xN; Nı11Cn/ the dual type DA structure to ANB .

The following is an easy exercise.

Lemma 2.13. The dual type DD structure to a type DD structure satisfies the type
DD structure equation. The dual A1-bimodule to an A1-bimodule satisfies the
A1-structure equation. The dual type DA structure to a DA structure satisfies the
DA structure equation.

For bimodules, we can consider the space of morphisms over either one or both
of the actions. So, Proposition 2.7 corresponds to two different statements for bi-
modules:

Proposition 2.14. Let A;BM and A;BN be type DD structures, at least one of which
is finite-dimensional. Then

MorA˝B.M;N/ Š xM �A˝B .A˝B/�A˝B N:

Similarly, let A;BM be a type DD structure and let BN a type D module. Then

MorB.M;N/ Š xM �B B �B N;

as type D structures. A corresponding statement holds if N is a type DD or DA
module.
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Proof. Like Proposition 2.7, this is immediate from the definitions. (In fact, the first
half also follows from Proposition 2.7.)

Lemma 2.15. Taking duals respects the operation � in the following sense: if MA

is an A1-module and AN is a type D structure then

M �A N Š xN �A
xM: (2.16)

Moreover, if M is an A1-bimodule or type DA structure and N is a type DA or DD
structure, then the isomorphism in Equation (2.16) is an isomorphism of AA, DA, or
DD structures (as appropriate).

Proof sketch. To get the structure maps on M �N , take the appropriate diagram
from [10], Figure 4, rotate it 180B, and modify the diagram so all the algebra arrows
point down. Then the module arrows are pointing up, as appropriate for diagrams
involving the dual bimodule, and the diagrams are the same as those for the xN � xM ,
as desired.

In this paper, we will pass freely between left modules over an algebra and right
modules over the opposite algebra. Specifically, a right module NA over A can be
viewed as a left module over Aop, which we write as AopN , and a left typeD structure
AM can be naturally viewed as a right typeD structure over Aop, which we will write
as MAop

. The following is straightforward.

Lemma 2.17. There is an isomorphism

.A � AM/Aop Š .MAop � Aop/:

3. ˛-ˇ-bordered Heegaard diagrams

3.1. ˇ pointed matched circles. In [9] (as reviewed in Section 2.1), we gave a
convention for how a pointed matched circle specifies a surface. In that paper, we
considered exclusively the case where it was the ˛-curves which ran out into the
boundary. In the present paper, we will need to place the ˛- and ˇ-curves on a more
equal footing. Consequently, we would like to give a less biased construction, in the
spirit of Zarev’s work on sutured manifolds [22].

In this more symmetric construction, we make the following cosmetic revision to
the notion of a pointed matched circle.

Definition 3.1. A decorated pointed matched circle consists of the following data:

� a circle Z;

� a decomposition of Z into two closed oriented intervals, Z˛ and Zˇ , whose
intersection consists of two points, and with Z˛ and Zˇ oriented opposingly;
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� a collection of 4k points p D fp1; : : : ; p4kg in Z, so that either p � Z˛ or
p � Zˇ ;

� a fixed-point-free involution M on the points in p; and

� a decoration by the letter ˛ or the letter ˇ, which indicates whether the points p
lie in Z˛ or Zˇ .

We require that the points p and involution M satisfy the condition that perform-
ing surgery on Z along the zero-spheres specified by p=M gives a connected 1-
manifold. We abbreviate the data .Z D Z˛ [ Zˇ ; p;M/ by Z˛ or Zˇ (depending
on the decoration); we will call the resulting object an ˛-pointed matched circle or a
ˇ-pointed matched circle.

Construction 3.2. A decorated pointed matched circle Z" (where " is ˛ or ˇ) gives
rise to a surface F as follows. Consider the disk D0 with boundary Z. We orient
D0 so that the specified orientation of Z˛ agrees with its induced orientation from
@D0. Add a one-handle s along the pair of points fh; tg; then add one-handles along
all the M -matched points in p; and finally attach two two-handles to fill the two
remaining boundary components. Call the resulting surface F.Z"/. Each of the two
disks attached at the last step meets exactly one of Z˛ or Zˇ : we call these disks
D˛ andDˇ , respectively. This surface has a preferred embedded diskD˛ [ s [Dˇ ,
which is decomposed into three pieces. The surface inherits an orientation from D0.
(See Figure 1 for an illustration.)

The data of a decorated pointed matched circle Z˛ is equivalent to the earlier data
of a pointed matched circle: we contract the interval Zˇ to give the basepoint. The
underlying surfaces can also be identified.

Figure 1. Constructing a surface from a ˇ-pointed matched circle. Left: a ˇ-pointed
matched circle Zˇ . The bottom half is the arc Z˛ and the top half is the arc Zˇ; translucent
arrows indicate the orientations ofZ˛ and Zˇ. Here, k D 1, and the matching is indicated by
the different shapes along the top. Right: part of the resulting surface F.Zˇ/. The diskD0 is
in the back, and the 1-handle s wraps around the front. D˛ and Dˇ are not shown.
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Definition 3.3. The strongly based ˛-ˇ mapping class groupoid is the groupoid
whose objects are decorated pointed matched circles. The morphisms from Z

"1

1 to
Z
"2

2 are isotopy classes of homeomorphisms

' W F.Z"1

1 / �! F.Z
"2

2 /

so that

'.D˛.Z
"1

1 // D D˛.Z"2

2 /; '.Dˇ .Z
"1

1 // D Dˇ .Z"2

2 /; '.s.Z1// D s.Z2/:
In this paper, we sometimes consider homeomorphisms which are not in the

mapping class groupoid as above. Specifically, we will sometimes be interested in
homeomorphisms ' W F.Z"1/ ! F.Z"2/ which preserve the preferred disk D˛ [
s [ Dˇ , but which switch D˛ and Dˇ . It is equivalent to consider the surface
F B D F n int.D˛ [ s [Dˇ /, and think of the induced map on F B, which exchanges
Z˛ D .@F B/ \D˛ and Zˇ D .@F B/ \Dˇ .

One relevant class of such homeomorphisms is the following.

Definition 3.4. Let Z˛ and Zˇ be two pointed matched circles which differ only in
the ˛- or ˇ-labels on the two intervals in the decomposition of Z. That is, Z˛ for
Z˛ coincides with Zˇ for Zˇ . In this case, we say that Z˛ and Zˇ are twin pointed
matched circles. For twin pointed matched circles, there are canonical orientation-
reversing homeomorphisms

K˛;ˇ W F.Z˛/ �! F.Zˇ /; Kˇ;˛ W F.Zˇ / �! F.Z˛/:

Note that although these homeomorphisms send preferred disks to preferred disks,
they do not preserve the decorations on those disks: K˛;ˇ and Kˇ;˛ map D˛ to Dˇ
and vice versa.

Another relevant class of such homeomorphisms are the “half boundary Dehn
twists” defined below. Before defining them, we introduce some more terminology.

Definition 3.5. LetA be an (oriented) annulus with one boundary component marked
as the “inside boundary” and the other as the “outside boundary.” A radial curve is any
embedded curve inAwhich connects the inside and outside boundary ofA. Suppose
that r and r 0 are two oriented, radial curves which intersect the inside boundary of A
at the same point, but which are otherwise disjoint. We say that r 0 is to the right of r
if r has a regular neighborhood U with an orientation-preserving identification with
.�"; "/� Œ0; 1�, so that r is identified with f0g � Œ0; 1�, the inside boundary meets U
in .�"; "/� f0g, and r 0 \ U is contained in Œ0; "/� Œ0; 1�.
Definition 3.6. Let .F;D˛[ s[Dˇ / be a surface with a preferred disk decomposed

into three parts. A positive half Dehn twist along the boundary, denoted �1=2
@

, is a
homeomorphism with the following properties:
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� there is a disk neighborhoodN ofD˛[s[Dˇ so that �1=2
@

fixes the complement
of N ;

� �
1=2

@
maps the preferred disk to itself, but switches D˛ and Dˇ ; and

� there is a radial arc r in the annulus A D N n int.D˛ [ s [Dˇ / (oriented so

that it terminates at @.D˛ [ s [Dˇ /) which is mapped under �1=2
@

to a new arc
r 0, which is to the right of r . Here, we view @.D˛ [ s [ Dˇ / as the outside
boundary of A.

See Figure 2 for an illustration. A negative half Dehn twist along the boundary,
denoted ��1=2

@
, is the inverse to a positive half Dehn twist along the boundary. For a

surface F with one boundary component, the isotopy class of the surface homeomor-
phism specified by a half (positive or negative) Dehn twist (among homeomorphisms
preserving the division of the disk) is uniquely specified by the above properties.
Therefore we sometimes refer to “the” (rather than “a”) positive (respectively nega-
tive) half Dehn twist along the boundary.

Similarly, a full Dehn twist along the boundary, �@, is the composite of two positive
half Dehn twists.

�

� 0
.@Dˇ /\ .@F B/

.@D˛/ \ .@F B/

Figure 2. An example of a positive half Dehn twist along the boundary. The boundary of the
genus one surfaceF B D F n.D˛[s[Dˇ/ has a pair of distinguished arcs .@D˛\@F B/ � Z˛

and .@D˛ \ @F B/ � Zˇ. We have illustrated an arc � with boundary on @Dˇ whose image is
(up to isotopy relative to the boundary) the curve � 0 represented by the dashed line.

Lemma 3.7. Let f W F ! F be a homeomorphism preserving D˛ [ s [Dˇ , and
let F B D F n .D˛ [ s [Dˇ /. Suppose that the following conditions hold.

(1) The induced automorphism Nf of the closed surface F B=@F B is isotopic, relative
to the basepoint Œ@F B�, to the identity map.

(2) The map f exchanges D˛ and Dˇ .

(3) There is a curve � � F B and a curve � 0 isotopic relative to endpoints to f .�/,
so that:

(a) either the boundary of � is contained in @Dˇ \ @F B or the boundary of �
is contained in @D˛ \ @F B,
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(b) Œ�� ¤ 0 2 H1.F B; @F B/,
(c) � intersects � 0 transversely in exactly two points,

(d) � [ � 0 has one component T which is a disk, and

(e) in the cyclic order induced by the orientation on F B, the boundary of T
consists of an arc in � , an arc in � 0, and an arc in @F B.

(See Figure 2.) Then, f is isotopic (as maps preserving D˛ [ s [Dˇ but switching
D˛ and Dˇ ) to a positive half Dehn twist along the boundary.

Proof. Recall that the mapping class group of a surface F fixing a disk D � F is a
Z-central extension of the mapping class group of F preserving D set-wise (but not
point-wise); and the Dehn twist �@ along @.F nD/ is a generator for this distinguished
central Z. Thus, Conditions (1) and (2) imply that f is isotopic to �mC1=2

@
, for some

m 2 Z. If m 62 f�1; 0g then the minimal number of intersection points between
� and f .�/ is greater than two, contradicting Condition (3c). The condition on the
boundary of the triangle T ensures that, in fact, m is 0, not �1.

3.2. ˇ-bordered Heegaard diagrams. In previous work, [9] and [10], the ˛-curves
consisted of arcs and circles, while the ˇ-curves were always circles. To prove the
Hom pairing theorem, we will also want to work with diagrams where ˇ’s, instead
of ˛’s, go out to the boundary.

Definition 3.8. A ˇ-bordered Heegaard diagram is a quadruple Hˇ D .x†;˛; Ň ; z/
where:

� x† is a compact surface of genus g with one boundary component;
� ˛ is a g-tuple of pairwise disjoint circles in the interior † of x†;
� Ň is

Ň D f
Ň a‚ …„ ƒ

Ňa
1 ; : : : ;

Ňa
2k;

ˇc‚ …„ ƒ
ˇc1; : : : ; ˇ

c
g�kg;

a collection of pairwise disjoint embedded arcs (the Ňai ) with boundary on @x†
and circles (the ˇci ) in the interior † of x†; and

� z is an arc in @x† n Ň a.

We require that † n ˇ and † n ˛ both be connected; this translates to the condition
that the ˇ- (respectively ˛-) curves be linearly independent in H1.x†; @x†/.

The diagram Hˇ gives a natural ˇ-pointed matched circle in the following way.
Take two copies of @x† n z, call them Z˛ and Zˇ , and orient them both with the
orientation they inherit from @x†. Let Z be the result of gluing Z˛ to Zˇ head-to-
head and tail-to-tail. Let p D Ň a \ @x†, thought of as a subset of Zˇ . Let M be the
involution exchanging the endpoints of each Ňai . We call this pointed matched circle
Z.Hˇ/.
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We will sometimes call bordered Heegaard diagrams as defined in [9] ˛-bordered
Heegaard diagrams, and denote them H˛, to distinguish them from ˇ-bordered
Heegaard diagrams. Note that we have a slight shift in point of view from [9]: we now
think of z as an interval, rather than just a point z, and our circleZ is no longer @x†, but
rather two copies of an interval in x†. An ˛-bordered Heegaard diagram specifies an
˛-pointed matched circle in exactly the same way as a ˇ-bordered Heegaard diagram
specifies a ˇ-pointed matched circle, but placing the points in Z˛ rather than Zˇ .

Construction 3.9. Let Zˇ denote the pointed matched circle specified by Hˇ . There
is an associated bordered three-manifold Y.Hˇ/, constructed in the following four
steps; see Figure 3.

(1) Glue Œ0; 1�� x† to Œ0; 1��F.Zˇ /, by identifying Œ0; 1��.@x†/with f0g�.D0[s/
so that

� .z � @x†/ � Œ0; 1� is identified with the one-handle f0g � .s � F.Zˇ //,
� Œ0; 1� � .@x† n z/ is identified with f0g �D0, and

� f1g � p � Œ0; 1�� x† is identified with f0g � p � Œ0; 1�� F.Zˇ /.
(The result is naturally a manifold with corners.)

(2) Attach 3-dimensional 2-handles to the f0g�˛i � Œ0; 1�� x† and to the f1g�ˇci �
Œ0; 1�� x†.

(3) Let �i denote the core of the 1-handle in F.Zˇ / attached along ˇai \ @x†. Then
.f1g � ˇai /[ .f0g � �i / is a closed circle; attach thickened disks (3-dimensional
2-handles) along these circles.

The result of the attaching so far is a3-manifold with three boundary components:
two copies of S2 (one containing D˛ and the other containing Dˇ ) and a copy
of F.Zˇ /.

(4) Fill in the two S2 boundary components with 3-balls.

The boundary of Y.Hˇ/ is naturally (orientation-preserving) identified with
F.Zˇ /.

Remark 3.10. The construction of Y.Hˇ / is convenient for describing the effect of
gluing Heegaard diagrams. For the ˛-bordered case (which is exactly analogous), a
shorter description of an equivalent bordered three-manifold is given in [10], Con-
struction 5.3; see also Construction 3.19 below. In particular, this construction iden-
tifies a regular neighborhood of the ˛-arcs union the boundary in H˛ with F B.@H /,
in an orientation-reversing way. By contrast, for a ˇ-bordered Heegaard diagram, the
corresponding identification is orientation-preserving.



Heegaard Floer homology as morphism spaces 403

˛1
˛2x† ˇa1

ˇa2ˇc1

Œ0; 1�� x†

Œ0; 1� � F.Zˇ /

Figure 3. Building a bordered 3-manifold from a ˇ-bordered Heegaard diagram. The
analogous figure in the ˛-bordered case is [9], Figure 4.1.
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We now wish to define bCFD.Hˇ / and bCFA.Hˇ /. As for ˛-bordered diagrams,
these will be defined by counting moduli spaces MB.x; yI E�/ between two generators
x and y asymptotic to certain sequences of sets of Reeb chords on Zˇ ; see [9],
Definition 5.61. However, the fact the diagram is ˇ-bordered leads to some reversals.
It is easiest to see what happens by reference to a corresponding ˛-bordered diagram.

Definition 3.11. Given an ˛-bordered Heegaard diagram H˛ D .†;˛;ˇ; z/ there
is an associated ˇ-bordered Heegaard diagram xHˇ D .†;˛ˇ ;ˇˇ ; z/ obtained by
setting ˇˇ;ci D ˛ci , ˇˇ;ai D ˛ai , ˛ˇi D ˇi .

Lemma 3.12. Let Y be a 3-manifold and ' W F.Z˛/ ! @Y a parameterization of
its boundary. Let H˛ be an ˛-bordered Heegaard diagram for .Y; '/. Then xHˇ is a
ˇ-bordered Heegaard diagram for .�Y; ' BKˇ;˛ W F.Zˇ /! �@Y /.

Proof. Recall from [9], Construction 4.6, that if H˛ is an ˛-bordered Heegaard
diagram then to construct Y.H˛/ one thickens x† to x† � Œ0; 1�; glues the boundary
.@x†/�Œ0; 1� to .D0[s/ � F.Z˛/, and then one glues thickened disks to the following
objects:

� the ˛-circles in x† � f0g,
� ˇ-circles in x† � f1g, and

� the unions of the ˛-arcs in x† � f0g and the cores of the 1-handles of F.Z˛/.

Finally, one caps off the two S2 boundary components with 3-balls.
This process results in a manifold Y.H˛/which is the mirror image, in an obvious

sense, of the manifoldY. xHˇ / from Construction 3.9; reflecting across†�f1=2g gives
an orientation-reversing homeomorphism between the two bordered manifolds.

For each generator x of H˛, there is an obvious corresponding generator Nx of xHˇ .
Similarly, for a homology class B 2 �2.x; y/ let xB 2 �2.Ny; Nx/ denote the homology
class with the same local multiplicities in † as B .

Lemma 3.13. For H an ˛-bordered Heegaard diagram, x and y generators of H ,
B 2 �2.x; y/, and E� any sequence of sets of Reeb chords, there is a homeomorphism

MB.x; yI E�/ ŠM
xB.Ny; Nx; E�op

/

where E�op is E� read in the opposite order.

Proof. Both moduli spaces are defined by counting pseudoholomorphic curves in
† � Œ0; 1� � R. Reflecting in both the Œ0; 1� and R directions gives an identification
between the two moduli spaces.
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For a ˇ-bordered Heegaard diagram Hˇ , we can therefore use all the techniques
of [9] to define bCFD.Hˇ / and bCFA.Hˇ /, except that the order of Reeb chords on
the boundary is reversed. We can achieve this algebraically either by reversing all the
chords or (as we prefer) by viewing our modules as defined over the opposite algebra.
(These are equivalent, by Equation (2.1).) Thus we view bCFD.Hˇ / as a (left) type
D structure over A.�Z/op, i.e. a right type D structure over A.�Z/, and bCFA.Hˇ /

as a left A1-module over A.Z/.
We digress briefly to discuss the identification between spinc-structures on Y and

�Y . As usual, we view a spinc-structure on Y as a homology class of non-vanishing
vector fields. Given a spinc-structure s on Y , induced by a vector field v, let �s be
the spinc-structure on �Y induced by the vector field �v. (Note that the oriented
2-plane fields v? on Y and .�v/? on �Y are the same.) To avoid confusion, recall
that the conjugate spinc-structure Ns is also represented by �v, but viewed as a vector
field on Y . Thus, �Ns is represented by v as a vector field on �Y .

Proposition 3.14. Let H˛ be an ˛-bordered Heegaard diagram with boundary Z D
Z˛. Then bCFD. xHˇ /and bCFA. xHˇ /are duals (in the senses of Definitions 2.5 and 2.8)
of the corresponding structures for H˛:

bCFD. xHˇ ;�s/A.�Z/ Š A.�Z/
bCFD.H˛; s/;

A.Z/
bCFA. xHˇ ;�s/ Š bCFA.H˛; s/A.Z/:

Proof. We will prove the duality result for bCFD; the proof for bCFA is analogous. Let
X.H˛/ (respectively X. xHˇ /) denote the k-module generated by S.H˛/ (respec-
tively S. xHˇ /). We have an isomorphism X. xHˇ / D Hom.X.H˛/;k/ by setting,
for generators x; y 2 S.H˛/,

Nx.y/ D
´
	x if x D y;

0 otherwise,

where 	x 2 k is the primitive idempotent corresponding to x, so 	xx D x.
The type D structure on bCFD.H˛/ is given by

ı1 W X.H˛/ �! A.�Z/˝X.H˛/;

ı1.x/ D
X

y

X
B2�2.x;y/

E� compatible with B
ind.B;E�/D1

a.�E
/˝ y � #.MB.x; yI E
//:

The operation ı1
ˇ
W X. xHˇ / ! X. xHˇ /˝A.�Z/ is defined similarly, but using the

moduli spaces on xHˇ . By Lemma 3.13, terms of the form a.�E
/ ˝ y in ı1.x/
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correspond to terms of the form Nx˝ a.�E
/ in ı1
ˇ
.Ny/. (We are considering the moduli

space in which the chords appear in reverse order, but we also multiply the algebra
elements in the reverse order, so it is again a.�E
/ that is relevant.) This is exactly the
statement that bCFD. xHˇ / is the dual of bCFD.H˛/.

The behavior on the spinc structures comes from the observation that, when x
is viewed as a generator for the bordered Floer homology of H , its corresponding
vector field points in the opposite direction from that of Nx when viewed as a generator
for the bordered Floer homology of xH .

Note that xHˇ represents �Y.H˛/. There is another way of creating a Heegaard
diagram for �Y.H˛/, namely by considering �H˛, which is the same Heegaard
diagram but with the orientation on the underlying surface† reversed. This operation
also has the effect of dualizing modules:

Proposition 3.15. Suppose that H is an ˛-bordered Heegaard diagram with bound-
ary Z. Let �H denote the same Heegaard diagram but with the orientation of †
reversed. Then bCFD.�H / is a left A.Z/-module. If we view bCFD.�H / as a right
A.�Z/-module, then bCFD.�H ;�Ns/ is dual to bCFD.H ; s/. Similarly, bCFA.�H ;�Ns/
is dual to bCFA.H ; s/.

Proof. This follows from a similar argument to Proposition 3.14.

3.3. ˛-ˇ-bordered Heegaard diagrams. We will need to generalize the notion of
arced bordered Heegaard diagrams with two components and the associated 3-mani-
folds to cases where the boundaries meet˛- orˇ-circles. The following is an extension
of [10], Definition 5.1, to our more symmetric language.

Definition 3.16. A strongly bordered three-manifold with two boundary components
is specified by the following data:

� A 3-manifold Y with two boundary components @LY and @RY ,

� homeomorphisms 'L W F.Z"LL / ! @LY and 'R W F.Z"R

R / ! @RY for some
pointed matched circles Z

"L
L and Z

"R

R , both preserving orientation, and

� a tunnel Œ0; 1� �D connecting the two boundary components, which is divided
into three balls

.Œ0; 1� �D˛/ [ .Œ0; 1�� s/ [ .Œ0; 1��Dˇ /
where f0g � .D˛ [ s [Dˇ / coincides with the corresponding part of @LY D
'L.F.Z

"L
L // and f1g � .D˛ [ s[Dˇ / coincides with the corresponding part of

@RY D 'R.F.Z"R

R //.

For 3-manifolds with two boundary components, one can consider arced .˛; ˛/-
bordered Heegaard diagrams (which are the only kind we considered in [10]), arced
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.˛; ˇ/-bordered Heegaard diagrams, arced .ˇ; ˛/-bordered Heegaard diagrams, and
arced .ˇ; ˇ/-bordered Heegaard diagrams. We call all of these types of diagrams,
collectively, arced bordered Heegaard diagrams. The definitions of the latter three
types are trivial adaptations of the definition of an arced bordered Heegaard diagram
from [10], Section 5; except that in keeping with our present conventions (where we
thicken basepoints), rather than drawing simply an arc connecting the two basepoints
on the boundary, now z denotes a rectangle in the Heegaard surface which connects
the arc of basepoints on one boundary component with the arc of basepoints in the
other. For .ˇ; ˇ/-bordered Heegaard diagrams the ˇ-curves but not the ˛-curves go
out to the boundaries. For .˛; ˇ/-bordered diagrams, the ˛-curves go out to @L x† and
the ˇ-curves go out to @R x†. For .ˇ; ˛/-bordered Heegaard diagrams, the ˇ-curves
go out to @Lx† and the ˛-curves go out to @R x†.

More explicitly, if H is an arced bordered Heegaard diagram, then there are
two intervals ZL and ZR in @x†, with the property that p D .@x†/ \ . N̨ a [ Ň a/ is
contained in ZL [ZR, so that all points p\ ZL are all of the same type (i.e. all are
either boundary points of ˛-arcs or ˇ-arcs) and p \ ZR are also of the same type.
Correspondingly we let @LH denote the pointed matched circle gotten by doubling
ZL and marking it with ˛ or ˇ, according to the type of points in p \ ZL, and we
obtain @RH analogously.

An arced bordered diagram gives rise to a strongly bordered three-manifold via
the following generalization of Construction 3.9.

Construction 3.17. Let ZL and ZR denote the pointed matched circles specified by
@LH and @RH . There is an associated strongly bordered three-manifold Y.H / with
two boundary components constructed in the following four steps.

(1) Glue Œ0; 1� � x† to Œ0; 1� � F.ZL/, by gluing Œ0; 1� � @Lx† to f0g � F.ZL/ and
Œ0; 1�� @R x† to f0g � F.ZR/ following Construction 3.9.

(2) Next, glue 2-handles along f0g � ˛ci � Œ0; 1��† and to f1g � ˇci � Œ0; 1�� x†.

(3) Consider the arcs ˛ai and ˇai , thought of as supported in f0g � x† and f1g � x†
respectively. These are completed into closed circles by following the endpoints
through the one-handles in F.ZL/ or F.ZR/ (wherever they go). Add two-
handles along these circles.

We end up with a three-manifold with four boundary components: F.ZL/,
F.ZR/ and a pair of two-spheres.

(4) Fill in the two-spheres with three-balls B˛ and Bˇ , to obtain the desired three-
manifold Y.H /.

Morally, the tunnel Œ0; 1� � D needed to make Y.H / into a strongly bordered
3-manifold is given by B˛ [ Œ0; 1� � z [ Bˇ . In fact, since we have attached copies
of Œ0; 1��F.ZL/ and Œ0; 1��F.ZR/ at the boundary, this tunnel is actually given by

..Œ0; 1� �D˛/ [ B˛ [ .Œ0; 1��D˛// [ ..Œ0; 1� � s/ [ .Œ0; 1�� z/ [ .Œ0; 1� � s//
[ ..Œ0; 1� �Dˇ / [ Bˇ [ .Œ0; 1��Dˇ //:
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Lemma 3.18. If H and H 0 are two arced bordered Heegaard diagrams with @RH D
�@LH 0 D Z (agreeing as pointed matched circles, including decoration), then

Y.H @R
[@L

H 0/ D Y.H /[F.Z/ Y.H 0/:

Proof. This is immediate from the definitions.

We give the following simpler description in the ˛-ˇ-bordered case which will be
used in the proof of Proposition 4.2.

Construction 3.19. An arced (˛,ˇ)-bordered Heegaard diagramH specifies a strongly
bordered three-manifold as follows. Attach disks DL and DR to @L x† and @R x† re-
spectively obtain a closed surface †. Let Y be Œ0; 1� � † with three-dimensional
two-handles attached along the f0g � ˛ci and f1g � ˇci .

F.ZL/ is identified with @LY as follows.

� Identify s with f0g � z.

� Identify Dˇ with f0g �DL.

� Identify D˛ with f0g �DR.

� Identify F B.ZL/with the complement of f0g�DL[f0g�z[f0g�DR � @LY
using the ˛-arcs.

F.ZR/ is identified with @RY as follows.

� Identify s with f1g � z.

� Identify Dˇ with f1g �DL.

� Identify D˛ with f1g �DR
� Identify F B.ZR/with the complement of f1g�DL[f1g�z[f1g�DR � @LY

using the ˇ-arcs.

The tunnel is, of course, Œ0; 1� � .DL [ z [DR/.

Lemma 3.20. If H is an ˛-ˇ-bordered diagram, the strongly bordered three-mani-
folds specified in Constructions 3.19 and 3.17 are canonically isomorphic.

Proof. Let Y1.H / (respectively Y2.H /) be the strongly bordered 3-manifold given
by Construction 3.17 (respectively Construction 3.19). Observe that Y2.H / is a
subspace of Y1.H / in an obvious way. The two-handles attached in Step (3) of
Construction 3.17 specify a deformation retraction of Y1.H / to Y2.H / (by folding
the boundary along the 2-handles to the Heegaard surface), respecting the strong
bordering.
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Construction 3.21. Let Y be a strongly bordered 3-manifold with boundary compo-
nents parameterized by F.ZL/ and F.ZR/. Suppose that Y is homeomorphic to the
product of an interval with a surface. Then we can define a map

'Y W �F.ZL/ �! F.ZR/

in the strongly based mapping class groupoid as follows.
First, fix a homeomorphism ˆ W Œ0; 1� � F.ZR/! Y so that

� ˆjf1g�F .ZR/ D 'R and

� the images underˆ of Œ0; 1� times the three distinguished regionsD˛, s, andDˇ
(in F.ZR/) are mapped to the three corresponding distinguished regions in Y .

Then, let
'Y D .ˆjf0g�F .ZR//

�1 B .�'L/ W F.ZL/ �! F.ZR/:

We call the strongly bordered manifold Y the mapping cylinder of '.

An adaptation of the argument from [10], Lemma 5.29, shows that the above
construction gives a well-defined element of the mapping class groupoid in the sense
of Definition 3.3.

Definition 3.22. Given a strongly based homeomorphism ' W F.Z1/! F.Z2/ and
a bordered 3-manifold .Y;  W F.Z1/! @Y / we can twist the parameterization of Y
by ' to give a new bordered 3-manifold

'.Y / D .Y;  B '�1 W F.Z2/ �! @Y /:

Equivalently, we can define '.Y / by gluing the mapping cylinder of ' to Y :

'.Y / D Y [F.Z1/M' :

For arced bordered Heegaard diagrams, one can define bimodules as in [10]. The
case of .˛; ˛/-bordered diagrams is discussed there, and the story for .ˇ; ˇ/-bordered
diagrams is an entirely straightforward adaptation (although with reversed algebras),
analogous to the relation between ˛-bordered and ˇ-bordered diagrams as discussed
in Section 3.2. Some aspects of the .ˇ; ˛/-bordered case are new, however, and we
discuss them now.

For a .ˇ; ˛/-bordered Heegaard diagram ˇH˛, a generator is a tuple x D fxig of
intersection points between ˛- and ˇ-curves, such that there is exactly one xi on each
˛- or ˇ-circle, and no ˛- or ˇ-curve contains more than one xi . Note that, unlike the
case of an .˛; ˛/- or .ˇ; ˇ/-bordered Heegaard diagram, for a fixed diagram ˇH˛,
different generators can have different cardinalities.

The type AA module 1CFAA.ˇH˛/ associated to ˇH˛ is generated over k by the
generators x. The boundary of ˇH˛ consists of pointed matched circles Z

ˇ
L (coming

from the ˇ-arcs) and Z˛R (coming from the ˛-arcs). We define an action of the
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idempotents of A.ZL/ and A.ZR/ on 1CFAA.ˇH˛/ as follows. Let s be a subset of
the ˇ-arcs and t a subset of the ˛-arcs. Then define

I.s/ � x � I.t/ D
´

x if s (resp. t ) are the ˇ-arcs (resp. ˛-arcs) occupied by x,

0 otherwise.

This action extends to actions of the rest of A.ZL/ and A.ZR/ by counting holo-
morphic curves in the usual way.

The type DD and DA modules associated to ˇH˛ are defined similarly.
For bimodules as for modules, there are two different geometric versions of alge-

braic duality.

Definition 3.23. Given a bordered Heegaard diagram with two boundary components
H D .†;˛;ˇ; z/, let �H denote the bordered Heegaard diagram obtained from H

by reversing the orientation on †, and xH the bordered Heegaard diagram obtained
from H by calling the old ˛-curves the new ˇ curves, and the old ˇ-curves the new
˛-curves.

(Compare Definition 3.11.) Lemma 3.12 has obvious analogues for bordered
Heegaard diagrams with two boundary components:

Lemma 3.24. Let .Y; 'L W F.Z˛L/ ! @LY; 'R W F.Z˛R/ ! @RY / be a strongly
bordered 3-manifold with two boundary components. Let ˛H˛ be an ˛-˛-bordered
Heegaard diagram for .Y; 'L; 'R/. Then ˇ xHˇ is a ˇ-bordered Heegaard diagram
for .�Y; 'L BKˇ;˛; 'R B Kˇ;˛/. Similar statements hold in the cases that Y is ˛-ˇ
bordered or ˇ-ˇ-bordered.

Proof. This follows similarly to Lemma 3.12.

Proposition 3.25. If H is a bordered Heegaard diagram with two boundary compo-
nents then we have the following dualities:

1CFDD. xH ;�s/ dual ��! 1CFDD.H ; s/;

1CFAA. xH ;�s/ dual ��! 1CFAA.H ; s/;

1CFAD. xH ;�s/ dual ��! 1CFDA.H ; s/:

Proposition 3.26. If H is a bordered Heegaard diagram with two boundary compo-
nents then we have the following dualities:

1CFDD.�H ;�Ns/ dual ��! 1CFDD.H ; s/;

1CFAA.�H ;�Ns/ dual ��! 1CFAA.H ; s/;

1CFAD.�H ;�Ns/ dual ��! 1CFDA.H ; s/:
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(See Definition 2.12 for the definitions of the duals of various kinds of bimodules.)

Proof of Propositions 3.25 and 3.26. These propositions follow from similar argu-
ments to Proposition 3.14. See also Proposition 3.15.

4. An interpolating piece

Fix a pointed matched circle Z. Our discussion of orientation reversal and proof
of the Hom pairing theorem will rely on a particular arced ˛-ˇ-bordered Heegaard
diagram associated to Z, first introduced by Auroux [1]. The diagram, which we will
denote AZ.Z/, is constructed as illustrated in Figure 4 and described below.

Let k denote the genus of F.Z/. Let T denote the triangle in R2 bounded by the
x-axis, the y-axis, and the line y C x D 4kC 1. Let ey (respectively ex) denote the
edge of T along the y-axis (respectively x-axis) and eD the edge of T along the line
x C y D 4k C 1. Let †0 denote the quotient space of T in which one identifies a
small neighborhoods in eD of the points .i; 4kC 1� i/ and .j; 4kC 1� j / if i and
j are matched in Z, in such a way that †0 is an orientable surface of genus k with
one boundary component.

If i and j are matched in Z then the two vertical line segments T \ fx D ig and
T \ fx D j g descend to give a single arc in †0. Similarly, if i and j are matched
then the horizontal line segments T \ fy D 4kC 1� ig and T \ fy D 4kC 1� j g
descend to give a single arc in †0. Let

ˇ D
4k[
iD1
fx D �ig � †0; ˛ D

4k[
iD1
fy D i � 4k � 1g � †0:

Finally, attach a 1-handle to @†0 between the points .0; 0/ and .4k C 1; 0/. Call
the result †. Let z denote a neighborhood of the core of this 1-handle. So, z is a
rectangle in † connecting the two boundary components.

Let AZ.Z/ denote the diagram .†;˛;ˇ; z/. We let @RAZ.Z/ denote the boundary
component of AZ.Z/which intersects the ˇ-arcs (so AZ.Z/ is a .˛; ˇ/-bordered Hee-
gaard diagram). Note that @LAZ.Z/ and @RAZ.Z/ are twin pointed matched circles
(in the sense of Definition 3.4). Sometimes, we denote this diagram by ˛AZ.Z/ˇ to
call attention to the fact that it is .˛; ˇ/-bordered, to distinguish it from ˇAZ.Z/˛,
which is the same diagram but with the roles of @L and @R reversed. In particular,
just as for ˛AZ.Z/ˇ , @.ˇAZ.Z/˛/ D Zˇ qZ˛; and the bimodules 1CFAA.˛AZ.Z/ˇ /
and 1CFAA.ˇAZ.Z/˛/ are canonically isomorphic.
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1
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4
zz

z

Figure 4. An example of AZ(Z). The example shown is for the genus 1 pointed matched
circle. Left: the pointed matched circle Z. Center and Right: two different depictions of
AZ.Z/.

The following was proved by Auroux [1]. We recall the proof briefly here.

Proposition 4.1. The type AA module 1CFAA.AZ.Z// associated to the diagram
AZ.Z/, viewed as a left–right A.Z/-A.Z/-bimodule, is isomorphic to the bimodule
A.Z/.

Proof sketch. First, observe that the generators S.AZ.Z// are in one-to-one corre-
spondence with the standard basis for A.Z/ by strand diagrams. Indeed, numbering
the ˛-circles from the bottom and the ˇ-circles from the left, notice that the number
of points in ˛i \ ǰ is 2 if i D j , and otherwise the number of points is exactly the
number of Reeb chords in Z starting at an endpoint of ˛i and ending at an endpoint
of j̨ . These intersections correspond to individual strands in a strand diagram: the
intersection of ˛i \ˇi on the diagonal eD corresponds to a smeared horizontal strand,
and other intersections correspond to Reeb chords or upward-sloping strands. An ar-
bitrary generator of 1CFAA.AZ.Z// is a set of such intersection points, which thus
correspond naturally to a strand diagram in the standard basis for A.Z/.

To compute the A1-bimodule structure, one observes that AZ.Z/ is nice [20],
so the differential on 1CFAA.AZ.Z// comes entirely from counting rectangles (there
are no interior bigons), the only multiplications are m2’s, and these multiplications
count half-strips. With this explicit description, it is straightforward to identify the
differential and algebra actions on 1CFAA.AZ.Z// with those on A.Z/. We refer the
reader to [1] for more details.

Note that, since AZ.Z/ has no closed ˛- or ˇ-circles, Y.AZ.Z// as an unparame-
trized 3-manifold is F.Z/ � Œ0; 1�. Consequently, AZ.Z/ determines a homeomor-
phism from F.Z/ to itself preserving the preferred disk D˛ [ s [Dˇ , well-defined
up to isotopy fixing D˛ [ s [Dˇ . We understand this map as follows.

Proposition 4.2. The diagram AZ.Z/ represents a positive half Dehn twist, in the
following sense. Let '˛AZˇ W �F.Z˛/ ! F.Zˇ / denote the homeomorphism as-
sociated (as in Construction 3.21) to the diagram ˛AZ.Z/ˇ , and Kˇ;˛ W F.Zˇ / !
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�F.Z˛/ denote the canonical homeomorphism of twins (as in Definition 3.4). Then
Kˇ;˛ B '˛AZˇ D �

1=2

@
W �F.Z˛/ ! �F.Z˛/. Likewise, '˛AZˇ B Kˇ;˛ W F.Zˇ / !

F.Zˇ /, K˛;ˇ B ' ǍZ˛ W �F.Zˇ /! �F.Zˇ /, and ' ǍZ˛ BK˛;ˇ W F.Z˛/! F.Z˛/

all represent positive half Dehn twists on the respective surfaces.

Proof. We concentrate on the first case,Kˇ;˛ B'˛AZˇ . Let Y be the result of applying
Construction 3.19 to the diagram AZ.Z/ D .x†;˛;ˇ; z/. Since there are no closed
˛- or ˇ-circles, Y is given by

Œ0; 1� � .D˛ [@L
x† [x† [@R

x† Dˇ /:

With notation as in Construction 3.21,

(1) the map 'L W F.Z˛/! f0g � .D˛ [ x†[Dˇ / sendsD˛ to D˛;Dˇ toDˇ ; and
F.Z˛/ to †, sending the cores of the 1-handles in F.Z˛/ to the ˛-arcs;

(2) the map 'R W F.Zˇ /! f1g � .D˛ [ x†[Dˇ / sendsD˛ toD˛;Dˇ toDˇ ; and
F B.Zˇ / to †, sending the cores of the 1-handles in F B.Zˇ / to the ˇ-arcs;

(3) the map ˆ W Œ0; 1� � F.Zˇ / ! Œ0; 1� � .D˛ [ x† [Dˇ / is given by ˆ.t; x/ D
.t; 'R.x//.

See Figure 5. In particular, by (3), the map 'AZ is given by '�1
R B.�'L/ W �F.Z˛/!

F.Zˇ /.

˛

ˇ @D˛

@Dˇ

@z

Figure 5. Identification of the homeomorphism associated toAZ(Z). The diagramAZ.Z/nz
for Z the pointed matched circle of genus 1 is shown. The small triangle identifying the
homeomorphism as a positive half boundary Dehn twist is shaded.

So, we have a commutative diagram:

�F.Z˛/ 'AZD'�1
R

B'L ��

�'L

��

F.Zˇ /
Kˇ;˛ ��

'R

��

�F.Z˛/
�'L

��
D˛ [ x† [Dˇ

I
�� D˛ [ x† [Dˇ g

�� D˛ [ x† [Dˇ :
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z

zz

Figure 6. The diagram AZ(Z). Left: the diagram AZ.Z/, for the genus 1 pointed matched
circle. Center: the result of exchanging the ˛- and ˇ-curves in AZ.Z/. Right: the diagram
AZ.Z/.

The mapKˇ;˛ takes the cores of the 1-handles in F.Zˇ / to the cores of the 1-handles
in F.Z˛/. So, �'L B Kˇ;˛ B .'R/�1 D g is the map from D˛ [ x† [Dˇ to itself
exchanging D˛ and Dˇ and taking each ˇ-arc to the corresponding ˛-arc. Hence,
by Lemma 3.7, the map g is a positive half boundary Dehn twist of D˛ [ x† [Dˇ ,
and so Kˇ;˛ B 'AZ is a positive half boundary Dehn twist of �F.Z˛/.

The other cases can be proved by similar commutative diagrams, or alternatively
follow from the first case, using the observations that, on the one hand,K˛;ˇ B �1=2@

B
Kˇ;˛ D �1=2@

and, on the other hand, switching the left and right sides of M' yields

M�'�1 and .��1=2
@
/ D �

1=2

@
. (In both cases, the surface on which we apply �1=2

@

changes.)

There is another interpolating piece that will be important, a kind of mirror image
of AZ.Z/. More precisely, we can consider the diagram AZ.Z/ obtained from AZ.Z/
by switching the ˛- and ˇ-curves and rotating the diagram clockwise 90 degrees.
The boundary components of AZ.Z/ are naturally identified with Z˛ and Zˇ . Al-
ternatively, AZ.Z/ is �AZ.�Z/, obtained from AZ.�Z/ by reversing the orientation
on the diagram (e.g., by reflecting across the x-axis). See Figure 6. By default, as
with AZ, we view Z˛ as the left boundary of AZ and Zˇ as the right boundary of AZ,
but when we want to make this convention or the opposite one explicit we will write
˛AZˇ or ˇAZ˛ , respectively.

With no additional work, we get the following algebraic description of the bordered
invariants for AZ.Z/:

Proposition 4.3. The type AA module associated to AZ.Z/ is isomorphic to A.Z/,
the dual module to A.Z/.

Proof. This follows from Propositions 4.1 and 3.25.

Proposition 4.4. Let '
˛AZ

ˇ W �F.Z˛/! F.Zˇ / denote the homeomorphism asso-

ciated (as in Construction 3.21) to the diagram ˛AZˇ , andKˇ;˛ W F.Zˇ /! �F.Z˛/
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denote the canonical homeomorphism of twins (as in Definition 3.4). Then Kˇ;˛ B
'˛AZ

ˇ D ��1=2
@
W �F.Z˛/! �F.Z˛/. Likewise, '

˛AZ
ˇ BKˇ;˛ W F.Zˇ /! F.Zˇ /,

K˛;ˇ B 'ˇAZ
˛ W �F.Zˇ / ! �F.Zˇ /, and 'ˇAZ

˛ B K˛;ˇ W F.Z˛/ ! F.Z˛/ all
represent negative half Dehn twists on the respective surfaces.

Proof. This follows along the lines of Proposition 4.2: combine the construction of
the associated homeomorphism with Lemma 3.7. Alternatively, note that exchanging
the ˛- and ˇ-circles has the effect of reversing the orientation on the three-manifold.
This, in turn, exchanges positive and negative Dehn twists, so the result follows from
Proposition 4.2.

In Section 5, the following corollary of Propositions 4.2 and 4.4 will be useful,
particularly as sanity checks on the signs / presence of boundary Dehn twists.

Corollary 4.5. The diagram ˛AZ.�Z/ˇ[ˇAZ.Z/˛ represents �@ W F.Z˛/! F.Z˛/.
The diagram ˛AZ.�Z/ˇ [ ˇAZ.Z/˛ represents the identity map of F.Z˛/.

See Figure 7. More identities of this kind are given at the end of Appendix A.

Proof. For the first statement, we have

'˛AZ.�Z/ˇ[ ǍZ.Z/˛ D ' ǍZ.Z/˛ B '˛AZ.�Z/ˇ

D .' ǍZ.Z/˛ BK˛;ˇ / B .Kˇ;˛ B '˛AZ.�Z/ˇ /

D .�1=2
@
W F.Z˛/ �! F.Z/˛/ B .�1=2

@
W F.Z˛/ �! F.Z˛//

D �@ W F.Z˛/ �! F.Z˛/:

The second statement is similar, except the two half boundary twists go in opposite
directions and so cancel.

Figure 7. Gluing AZ(Z) to itself and its inverse. The left picture represents the Heegaard
diagram ˛AZ.�Z/ˇ [ ˇAZ.Z/˛ (which in turn represents ��1

@
), while the right illustrates

˛AZ.�Z/ˇ [ ˇAZ.Z/˛ (which represents the identity).
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Lemma 4.6. Let ˛H˛ be an ˛-˛-bordered Heegaard diagram, with @LH D ZL and
@RH D ZR. Then the two .˛; ˇ/-bordered Heegaard diagrams

˛H˛
@R
[@L

˛AZ.�ZR/
ˇ and ˛AZ.ZL/

ˇ
@R
[@L

ˇ.� xH/ˇ

represent the same strongly bordered three-manifold.

The intuition here is that the negative half Dehn twist represented by AZ can be
“pulled through” from one side of Y.H / to the other, but we have to turn over the
Morse function on Y.H / in the process. (Note that Y.� xH/ is orientation-preserving
homeomorphic to Y.H /.)

Proof. Let Y be a three-manifold with two boundary components. Then Y can
be factored as a product of elementary cobordisms, each of which corresponds to
attaching a one-handle or two-handle to @LY . Moreover, a strongly bordered three-
manifold can be factored into the following simple pieces:

� mapping cylinders for homeomorphisms, and

� elementary cobordisms from Z#Z1 to Z, or from Z to Z#Z1, where Z1 denotes
the genus 1 pointed matched circle, obtained by attaching a two-handle along
the1-framed curve in F B.Z1/ � F.Z#Z1/ (as in Figure 8).

In particular, any Heegaard diagram H0 is equivalent to a diagram H which can
be written as a juxtaposition of pieces of these two forms, and obviously �H0 is
then equivalent to � xH . Thus, it suffices to check the result for these two kinds of
elementary pieces.

For the first simple piece, let H' be the standard Heegaard diagram for a mapping
class ' W F.Z1/ ! F.Z2/, and let AZ.Z1/.˛; '.ˇ// (for instance) be the diagram
defined like ˛AZ.Z1/ˇ but using the image of the ˇ-curves on Z2 under the mapping
class ', thought of as acting on the complement of z in the Heegaard surface. (Thus
AZ.Z1/.˛;ˇ/ D ˛AZ.Z1/ˇ .) Then we have equivalences of Heegaard diagrams

H' [ AZ.�Z2/.˛;ˇ/ ' AZ.�Z2/.'.˛/;ˇ/

Š AZ.�Z1/.˛; '
�1.ˇ//

' AZ.�Z1/.˛;ˇ/ [ .�H'/;

where we are using the fact that gluing mapping cylinders corresponds to twisting the
parametrization [10], Lemma 5.30, a homeomorphism of diagrams, and the gluing
property again.

For the second simple piece (elementary cobordisms of the specified form), the
needed sequence of handleslides and destabilizations is easy to find; see Figure 8,
where we have illustrated the case where Z is empty.
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Figure 8. Commuting AZ past an elementary cobordism. Heegaard moves exhibiting the
identification ˛H ˛ [ AZ.�ZR/ ' AZ.ZR/ [ ˇ.� xH /ˇ, in the case where H represents an
elementary cobordism from the two-sphere to a genus one surface (so AZ.ZL/ is empty). The
first diagram is ˛H ˛[AZ.�ZR/, the second is gotten by a sequence of handleslides, the third
by a destabilization, and the fourth by an isotopy (and a homeomorphism of diagrams).

5. Consequences

5.1. Orientation reversal and the Hom pairing theorem for modules. As a warm-
up for the proofs of our main theorems, we start with the module case, in which the
notation is a little simpler to follow, and the Dehn twists disappear.

Proof of Theorem 2. Fix an ˛-bordered Heegaard diagram H˛ for .Y; ' W F.Z/ !
Y /. By Lemma 4.6 in the case when one boundary is empty (which is essentially the
fact that boundary Dehn twists have no effect on 3-manifolds with just one boundary
component), the˛-bordered Heegaard diagram xHˇ

@[@R
AZ.�Z/ represents .�Y; ' W

F.�Z/! �Y /. We have now that

bCFA.�Y / Š bCFA. xHˇ
@[@R

AZ.�Z//

' bCFD. xHˇ /� 1CFAA.AZ.�Z//

Š bCFD. xHˇ /� A.�Z/

Š bCFD.H˛/� A.�Z/

' MorA.�Z/.bCFD.Y /;A.�Z//:

Here, the second line uses the pairing theorem (in a form using bimodules; see [10],
Theorem 11), the third uses Proposition 4.1, the fourth uses Proposition 3.14, and the
last uses Proposition 2.7. This proves (1.1).

Eq. (1.2) follows from (1.1) and Theorem 2.3. That is,

bCFA.�Y / ' MorA.�Z/.bCFD.Y /;A.�Z/ŒI�A.�Z//

' MorA.Z/.bCFA.Y /; 1CFAA.I//;

where the first equivalence is (1.1) and the second follows by tensoring both domain
and range with 1CFAA.I/, which is an equivalence of categories (Theorem 2.3).
Tensoring both sides with 1CFDD.I/ gives (1.2).
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Remark 5.1. In the context of bordered sutured manifolds [22] with upper and lower
pieces of the boundary RC and R�, the operation H Ý xH @[@R

AZ.Z/ corresponds
to a slightly more complicated operation than mere orientation reversal. When one
switches the ˛- and ˇ-curves on a diagram for a bordered sutured manifold, the roles
of RC and R� are exchanged. Attaching Y.AZ.Z// then corresponds to introducing
a half Dehn twist along the preferred disk in F.Z/, as in Proposition 4.2. (As above,
Dehn twists around the preferred disk in F.Z/ disappear if one instead glues to a
3-manifold with one boundary component.) See Figure 9 for an example where this
operation is non-trivial.

A

A
A

A

B

B

B

B

z

z

z

w

w

w

Figure 9. Gluing AZ(Z) to a doubly-pointed Heegaard diagram. Left: A doubly-pointed
˛-bordered Heegaard diagram H for the core of a 0-framed solid torus. Center: the result
AZ.Z/[@ H ˇ of gluing the interpolating piece to H ˇ . Right: a destabilization of AZ.Z/[@

H ˇ.

Proof of Theorem 1. Using Proposition 2.7, Theorem 2, and the usual version of the
pairing theorem [9], Theorem 1.3, in turn gives:

MorA.�Z/.bCFD.Y1/; bCFD.Y2// Š MorA.�Z/.bCFD.Y1/; I/� bCFD.Y2/

' bCFA.�Y1/� bCFD.Y2/

' cCF.�Y1 [@ Y2/:

Taking homology gives the first isomorphism from Theorem 1. The second isomor-
phism then follows from Corollary 2.4.
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5.2. Conjugation invariance

Proposition 5.2. Suppose that ˛H˛ is an ˛-˛-bordered Heegaard diagram with
boundary components Z1 and Z2. By the isomorphisms A.�.�Zi//

op Š A.Zi /
op Š

A.�Zi/, we can view both 1CFDD.˛H˛/ and 1CFDD.�ˇ xHˇ / as left–left A.�Z1/˝
A.�Z2/-modules. Under this identification and similar ones for other modules, we
have isomorphisms

1CFDD.H ; s/ Š 1CFDD.� xH ; Ns/;
1CFAA.H ; s/ Š 1CFAA.� xH ; Ns/;
1CFDA.H ; s/ Š 1CFDA.� xH ; Ns/:

Proof. The identification of the complexes 1CFDD.H / with 1CFDD.� xH / is supplied
by combining Propositions 3.25 and 3.26. The conjugation on the spinc structures
comes from the observation that, when x is viewed as a generator for the bordered Floer
homology of H , its corresponding vector field points in the opposite direction from
that of Nx when viewed as a generator for the bordered Floer homology of � xH .

Proof of Theorems 3 and 9. We will prove Theorem 9; Theorem 3 can be viewed as a
special case where one of the boundary components is empty (or, if one prefers, S2),
after noting that �@ acts trivially on bordered 3-manifolds with only one boundary
component.

To establish (1.16), we must show that

.A.�Z1/A.Z1/;A.�Z1/˝A.�Z2/A.Z2/;A.�Z2//� A.�Z1/;A.�Z2/1CFDD.Y; s/

' 1CFAA.�@.Y /; Ns/A.Z1/;A.Z2/ ;

(5.3)

where A.�Zi /A.Zi /;A.�Zi / denotes the A.�Zi/-bimodule A.�Zi/, viewed as a
module with two right actions.

Fix an ˛-˛-bordered Heegaard diagram ˛H˛ for Y (with @LH D Z1 and @RH D
Z2), so that 1CFAA.Y; s/ is given by the bimodule 1CFAA.H ; s/ associated to H and
s, and also (according to Proposition 5.2) by the bimodule 1CFAA.� xH ; Ns/ associated
to the ˇ-ˇ-bordered version ˇ.� xH /ˇ and the conjugate spinc-structure Ns. Now, glue
a copy of ˛AZ.Z1/ˇ and a copy of ˇAZ.Z2/˛ to the @L and @R boundary components
of � xH respectively.

Combining Proposition 4.1, the pairing theorem, and Proposition 5.2, we get

1CFAA.˛AZ.Z1/ˇ @R
[�Z

ˇ
1

.� xH / �Z
ˇ
2

[@L

ˇAZ.Z2/
˛; Ns/

' �
A.Z1/A.Z1/;A.�Z1/ ˝A.Z2/A.Z2/;A.�Z2/

�
� 1CFDD.� xH ; Ns/

' �
A.Z1/A.Z1/;A.�Z1/ ˝A.Z2/A.Z2/;A.�Z2/

�
� 1CFDD.H ; s/

Š �
A.�Z1/A.Z1/;A.�Z1/ ˝A.�Z2/A.Z2/;A.�Z2/

�
� 1CFDD.H ; s/:

(5.4)
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The last isomorphism comes from the tautological identification of bimodulesAA;Aop

Š .Aop/A;Aop , together with the usual identification of A.�Z/ Š A.Z/op.
We can alternatively move AZ.Z1/ past � xH as in Lemma 4.6. This gives

Y.˛AZ.Z1/
ˇ
@R
[�Z

ˇ
1

.� xH / �Z
ˇ
2

[@L

ˇAZ.Z2/
˛/

' Y.H @R
[@L

˛AZ.�Z2/
ˇ
@R
[@L

ˇAZ.Z2/
˛/

' �@.Y.H //:

(5.5)

Here, the equivalence is of strongly bordered 3-manifolds, and the last line follows
from Corollary 4.5. Eqs. (5.5) and (5.4) combine to establish (5.3), which is equivalent
to (1.16).

Eq. (1.17) is immediate from (1.16): replaceY with ��1
@
.Y /, swith Ns, and viewing

the right actions as left actions.
Eq. (1.18) follows from the first two parts by tensoring (1.16) applied to Y

with (1.17) applied to IZ2
:

1CFDD.Y; s/A.Z1/;A.Z2/
z̋ A.Z2/;A.�Z2/

1CFAA.IZ2
; t/

' 1CFAA.�@.Y /; Ns/A.Z1/;A.Z2/
z̋ A.Z2/;A.�Z2/

1CFDD.��1
@ ; Nt/;

which reduces to the desired result.

Proof of Corollary 4. Eqs. (1.4) and (1.5) are immediate from Theorem 3 and the
observations that

A.Z/A.Z/;A.�Z/ � A.�Z/
bCFD.Y; s/

' A.Z/A.Z/;A.�Z/ � .bCFA.Y; s/� 1CFDD.I//;

bCFA.Y; s/A.Z/

' 1CFAA.I/A.Z/;A.�Z/ � A.�Z/
bCFD.Y; s/:

(both of which follow from the pairing theorem).

5.3. Orientation reversal and the Hom pairing theorems for bimodules

Proof of Theorem 5. We start by proving (1.6). By [10], Corollary 2.3.37, the com-
plex of typeD morphisms between two typeD structures is quasi-isomorphic to the
complex of A1-morphisms between their modulifications, so (1.6) is equivalent to

MorA0

1.A0
2 � A0

1
;A0

2 1CFDD.Y /;A0

1ŒI�A0

1
/ ' 1CFAA.�Y /A0

1
;A0

2
: (5.6)

Using the definition of Mor in terms of � (Proposition 2.14), we want to show that

A0
2 � A0

1
;A0

2 1CFDD.Y /� A0
1 ' 1CFAA.�Y /A0

1
;A0

2
:
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Since taking duals respects � (Lemma 2.15), this boils down to

A0

1
;A0

2 1CFDD.Y /� A0
2 � A0

1 ' 1CFAA.�Y /A0

1;A
0

2
: (5.7)

Now, fix a Heegaard diagram ˛H˛, with @LH D Z1 and @RH D Z2, for
.Y; 'L W F.Z1/ ! @LY; 'R W F.Z2/ ! @RY /. According to Lemma 3.24, ˇ xHˇ is
a Heegaard diagram for �Y with bordering 'L B Kˇ;˛ and 'R B Kˇ;˛. By Proposi-
tions 4.2 and 4.4 and Lemma 4.6, ˛AZ.�Z1/

ˇ
@R
[
F.Z

ˇ
1
/
ˇ xHˇ

F .Z
ˇ
2
/
[@L

ˇAZ.�Z2/
˛

also represents �Y , with the bordering �'L and �'R. By the pairing theorem and
Propositions 3.25, 4.1 and 4.3,

1CFAA.˛AZ.�Z1/
ˇ
@R
[
F.Z

ˇ
1
/
ˇ xHˇ

F .Z
ˇ
2
/
[@L

ˇAZ.�Z2/
˛/

' 1CFDD.˛H˛/� A0
2 � A0

1:

This implies (5.7), and hence (5.6).
To prove (1.7), start by tensoring both sides of (5.6) with 1CFDD.IZ1

/, to obtain

MorA0

1.A0
2 � A0

1
;A0

2 1CFDD.Y /;A0

1
;A1 1CFDD.IZ1

// ' A1 1CFDA.�Y /A0

2
:

Since tensoring over A0
1 with 1CFAA.IZ1

/ gives an equivalence of categories which
carries typeD bordered invariants to typeA bordered invariants (a bimodule analogue
of Theorem 2.3; see [10], Lemma 9.1), this is the same as

MorA1
.A0

2 � A0

2 1CFDA.Y /A1
;A1ŒI�A1

/ ' A1 1CFDA.�Y /A0

2
: (5.8)

After lowering the index A1, this is exactly (1.7).
Eq. (1.8) is immediate from (1.7) and (1.18).
To prove (1.9), observe that, by viewing left actions as right actions by the opposite

algebra, (1.6) is equivalent to

MorA1
.1CFDD.Y /A1;A2

;A1/ ' A1;A2
1CFAA.�Y /:

Applying Theorem 9 to both sides gives

MorA1
.1CFAA.�@.Y //A1;A2

;A1/ ' A1;A2
1CFDD.��1

@ .�Y //:
Recalling that ��1

@
.�Y / D �.�@.Y //, this is just (1.9) with Y replaced by �@.Y /.

Proof of Theorem 6. Eq. (1.10) is equivalent to the statement that

1CFDD.Y /A
0

1
;A0

2 � A0
1 � A0

2 ' 1CFAA.���1
@ .Y //A0

1
;A0

2
: (5.9)

Fix a Heegaard diagram ˛H˛ for Y with @LH D Z1 and @RH D Z2. The
pairing theorem and Propositions 3.14 and 4.1 identify the left hand side of (5.9)
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with 1CFAA.˛AZ.�Z1/
ˇ
@R
[@L

ˇ xHˇ
@R
[@L

ˇAZ.�Z2/
˛/. On the other hand, by

Lemma 4.6 and Corollary 4.5, ˛AZ.�Z1/
ˇ
@R
[@L

ˇ xHˇ
@R
[@L

ˇAZ.�Z2/
˛ is a bor-

dered Heegaard diagram for �@.�Y / D ���1
@
.Y /. This proves (5.9).

For (1.11), tensor both sides of (1.10) with 1CFDD.IZ1
/˝ 1CFDD.IZ2

/ to get

MorA0

1
˝A0

2.A
0

1
;A0

2 1CFDD.Y /;A0

1
˝A0

2
;A1˝A2.1CFDD.IZ1

/˝ 1CFDD.IZ2
///

' 1CFDD.���1
@ .Y //:

Since ��A0

1
˝A0

2

1CFAA.IZ1
/˝ 1CFAA.IZ2

/ is an equivalence of categories, we have

MorA1˝A2
.1CFAA.Y /A1;A2

;A0

1˝A0

2ŒI�A1˝A2
/ ' A0

1˝A0

2 1CFDD.���1
@ .Y //:

Lowering indices gives (1.11).
Alternatively, we can apply Theorem 9 to both sides of (1.10). Specifically,

viewing right actions by A as left actions by Aop, rewrite (1.10) as

MorA1˝A2
.1CFDD.Y; s/A1;A2

;A1 ˝A2/ ' A1;A2
1CFAA.���1

@ .Y /;�s/:
(For extra precision, we have added the spinc structure to the equation.) Now, by
Theorem 9, the left hand side is

MorA1˝A2
.1CFAA.�@.Y /A1;A2

; Ns/;A1 ˝A2/;

while the right hand side is

A1;A2
1CFDD.��1

@ .���1
@ .Y //;�Ns/ D A1;A2

1CFDD.�Y;�Ns/:
Replacing Y by ��1

@
.Y / and conjugating the spinc structure gives (1.11).

Proof of Corollaries 7 and 8. Eq. (1.12) follows from (1.6) of Theorem 5 by taking
Y D Y1, tensoring both sides with 1CFDD.Y2/ over A0

1, and applying the pairing
theorem. Eq. (1.13) is obtained by applying (1.10) of Theorem 6 with Y D F.Z1/�
Œ0; 1� and then tensoring over A1 ˝A0

1 with 1CFDD.�Y1/˝ 1CFDD.Y2/.
Eq. (1.14) of Corollary 8 can be viewed as a special case of the first part of

Corollary 7, in which one boundary component is empty. Eq. (1.15) follows by taking
Y1 D M �1 D �M for the first equation and taking Y1 D M and reversing the
orientation on Y2 for the second equation, in view of the fact that the action of  on
a bordered manifold Y is realized by gluing M to Y , see [10], Lemma 5.30.

5.4. Dualizing bimodules. So far, we have used the type AA module associated to
AZ.Z/. We next observe that the type DD module associated to AZ.�Z/ gives a
finite-dimensional model for the bar resolution of A.Z/.

Specifically, endow xA D HomF2
.A; F2/with the structure of a type DD bimodule,

as follows. Let Chord.Z/ denote the set of chords in Z, i.e. arcs inZ nfzg connecting
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points in a. Recall that to each chord � 2 Chord.Z/ there is an associated algebra
element a.�/ 2 A D A.Z/. The map

ı1 W xA �! A˝ xA˝A

is defined by

ı1.'/ D 1˝ Nd.'/˝ 1C
X

�2Chord.Z/

a.�/˝ .a.�/ � '/˝ 1

C
X

�2Chord.Z/

1˝ .' � a.�//˝ a.�/:
(5.10)

Here, Nd denotes the differential on xA (the dual type AA structure to the bimodule
AAA, see Definition 2.12) and a � ' and ' � a denote the left and right actions of A

on xA. We denote this type DD bimodule AbarA. (We leave it to the reader to check
that this satisfies the structure equations for a type DD bimodule.)

Proposition 5.11. The DD bimodule AbarA is isomorphic to 1CFDD.AZ.�Z//.

Proof. The Heegaard diagram AZ.�Z/ is a nice diagram (see [20]). As in Propo-
sition 4.3, the rectangles supported in AZ.�Z/ correspond to differentials in A.Z/.
These give the terms of the form 1˝ Nd' ˝ 1 as in (5.10).

We must consider also rectangles which go out to the boundary. Those which go
out to the ˛-boundary give the terms of the form

P
�2Chord.Z/ a.�/˝ .a.�/ � '/˝ 1,

while those which go out to theˇ-boundary give the terms of the form
P
�2Chord.Z/ 1˝

.' � a.�//˝ a.�/.
Corollary 5.12. The type DD structure AbarA is bounded.

Proof. This follows immediately from the fact thatAZ.�Z/ is an admissible diagram.
(Alternately, it is not hard to give a purely algebraic argument.)

This gives a finite-dimensional model for the bar complex:

Proposition 5.13. Let A D A.Z/. There are homotopy equivalences

AbarA ' ABarr.A/A ; (5.14)
AbarA � AAA ' AŒI�A ; (5.15)
AbarA � A

xAA ' 1CFDA.��1
@ W F.Z/ �! F.Z//; (5.16)

AbarA � AAA ' 1CFDA.�@ W F.Z/ �! F.Z//: (5.17)

Proof. To prove (5.15) observe that

AbarA � A D 1CFDD.˛AZ.�Z/ˇ /� 1CFAA.ˇAZ.Z/˛/
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' 1CFDA.˛AZ.�Z/ˇ [ ˇAZ.Z/˛/
' 1CFDA.I/

D AŒI�A:

The first equation follows from Propositions 5.11 and 4.1, the second follows from
the pairing theorem, the third is a consequence of Propositions 4.2 and 4.4, and the
last is Theorem 12, proved below (also proved in [10], Theorem 4). (Note the proof
of Theorem 12 does not rely on the current proposition.)

Tensoring both sides of (5.15) with ABarr .A/A, and using the fact that AAA �
ABarr.A/A ' AŒI�

A (essentially the statement that the algebra is quasi-isomorphic
to its bar resolution), we obtain (5.14).

Eq. (5.16) follows from the pairing theorem and Propositions 4.3, 5.11, and 4.4:

AbarA � A
xAA D A.1CFDD.˛AZ.�Z/ˇ /A � A

1CFAA.ˇAZ.Z/˛/A

' 1CFDA.˛AZ.�Z/ˇ [ ˇAZ.Z/˛/
' 1CFDA.��1

@ W F.Z/ �! F.Z//:

To prove (5.17), first observe that AbarA D A
1CFDD.˛AZ.�Z/ˇ /A; this follows

from Propositions 3.26 and 5.11 (or a direct calculation). So,

AbarA �A.Z/ AAA D A
1CFDD.˛AZ.�Z/ˇ /A � A

1CFAA.ˇAZ.Z/˛/A

' 1CFDA.�@ W F.Z/ �! F.Z//:

In a similar spirit, we can use the geometry of these pieces to determine the explicit
form for 1CFDD.I/. See also [11] for a different argument.

Consider the type DD bimodule A.Z/KA.Z/, defined as follows. Let s be a subset
of p=M , and t denote its complement. The sets s and t have associated idempotents
I.s/ and I.t/. We call such pairs .I.s/; I.t// complementary idempotents. Our
type DD bimodule A.Z/KA.Z/ DLk

iD�k A.Z;i/KA.Z;�i/has one generator for each
complementary pair of idempotents. Let

1 D
X

.I;J / complementary

I ˝F2
J:

Then the differential on A.Z/KA.Z/ is given by

ı11 D
X

�2Chord.Z/

a.�/˝1˝a.�/ D
X

�2Chord.Z/
.I;J / complementary

a.�/I˝.I˝F2
J /˝Ja.�/: (5.18)

As before, a.�/ denotes the algebra element in A.Z/ associated to the chord �.
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Theorem 5.19 ([11], Theorem 1). The bimodule A.Z/KA.Z/ is isomorphic to the
bimodule 1CFDD.IZ/, with the left action of A.�Z/ viewed as a right action by
A.Z/.

Proof. The type DD identity bimodule can be represented by an ˛-˛ bordered Hee-
gaard diagram H , as explained in [10], Section 5.3. Instead of directly computing
this type DD structure, we will compute its modulification. To this end, form � xH ,
attach AZ.Z/ and AZ.�Z/ to its boundaries, and then destabilize the k ˛-circles in
� xH . (This is the diagram illustrated on the left in Figure 7.) The type AA module
associated to this diagram is exactly 1CFDD.I/A.Z/;A.�Z/.

Observe that the simplified diagram ˛AZ.Z/ˇ [ ˇAZ.�Z/˛ is a nice diagram, so
the associated 1CFAA is a bimodule with no higher action. Moreover, the bimodule
structure on 1CFAA.˛AZ.Z/ˇ [ ˇAZ.�Z/˛/ (viewed as having one left and one right
action) is isomorphic to the bimodule structure on AAA �AKA �AAA as in Propo-
sition 4.1. So, it only remains to determine the differential on 1CFAA.˛AZ.Z/ˇ [
ˇAZ.�Z/˛/, which in turn is given by embedded rectangles. There are rectangles sup-
ported in ˛AZ.Z/ˇ , which correspond to differentials in A.Z/ (Proposition 4.2), those
supported in ˇAZ.�Z/˛, which correspond to differentials in A.�Z/, and rectangles
which go between the two, which correspond to the differential ı1 from (5.18).

Remark 5.20. The alert reader may notice some redundancy in the proofs in this
paper. In fact, it is a consequence of Lemma 8.7 that for a Koszul algebra, with
dualizing bimodule AKB (which, in the present context, is A1CFDD.I/A, and in par-
ticular A D B), the bar resolution is homotopy equivalent to B xKA �A

xAA � AKB .
But this latter bimodule is precisely the model AbarA.Z/ described in (5.10). Thus,
Proposition 5.13 can be viewed as a consequence of Lemma 8.7 and Theorem 5.19.

5.5. Algebraic consequences. We start with a lemma regarding Serre functors
which is probably well-known in certain circles.

Lemma 5.21. For an augmented dg algebra A and finite-dimensional right A1-mo-
dules MA and NA over A,

MorA.MA; NA/
� ' MorA.NA;MA � ABarr

A � A
xAA/ (5.22)

in a natural way. That is, the Serre functor on ModA is given by tensoring on the
right with Barr .A/� xA.

Proof. The left hand side of (5.22) is given by

MorA.MA; NA/
� Š .NA � ABarrA � A

xM/�

ŠMA � ABarr
A � A

xN
'MA � ABarrA � A

xAA � ABarrA � A
xN
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Š MorA.NA;MA � ABarr
A � A

xAA/;

where we have used Proposition 2.10 (twice) and a dualized version of (2.11),
xA � ABarrA ' AŒI�

A.

Proof of Theorem 10. This is Lemma 5.21 plus the observation from Proposition 5.13
that

ABarrA � A
xAA ' AbarA � A

xAA

' 1CFDA.��1
@ W F.Z/ �! F.Z//:

Given two bimodules, we can also consider the complex of A1-bimodule mor-
phisms between them. The homology of this complex, H�.MorA;A.AMA;ANA//,
is also called the Hochschild cohomology of M with N and denoted HH�.M;N/.
The special case that M D A gives the Hochschild cohomology of N , the derived
functor associated to the functor of invariants in N . With these observations, we are
now ready to prove Corollary 11.

Proof of Corollary 11. The Hochschild cohomology in question is the homology of
the complex

MorA;A0.A;A � 1CFDA.Y //

D .ABarr
A � xA � ABarr

A/�A˝A0 .A � 1CFDA.Y //

' .ABarrA � A � ABarrA/�A˝A0 .A � 1CFDA.Y //;

using Proposition 2.10, a dual version of (2.11), and (2.11) itself. Rearranging the
tensor products, we obtain

MorA;A0.A;A � 1CFDA.Y //

' .ABarrA/�A˝A0 .A � ABarrA � A � 1CFDA.Y //

D HC�.A � ABarr
A � A � 1CFDA.Y //

' HC�.A � 1CFDA.�@/� 1CFDA.Y //

' HC�.A � 1CFDA.�@.Y ///

' bCFK..�@.Y //
B; K/:

Here, HC� denotes the Hochschild chain complex (whose homology is Hochschild
homology). The second line is the definition of HC�, the third uses Proposition 5.13,
the fourth uses the pairing theorem, and the last line uses [10], Theorem 14. Taking
homology gives the result.

Finally, we give a simple proof that 1CFDA.I/ ' AŒI�A.
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Proof of Theorem 12. After raising the left index, we want to show 1CFDA.IZ/ D
A.Z/ŒI�A.Z/. By the pairing theorem,

1CFAA.ˇAZ.Z/˛/� 1CFDA.IZ/ ' 1CFAA.ˇAZ.Z/˛/:

By Proposition 4.1, this says that

A.Z/� 1CFDA.IZ/ ' A.Z/:

But this implies 1CFDA.IZ/ ' A.Z/ŒI�A.Z/, as desired.

Remark 5.23. For the proof of Theorem 12, it is irrelevant what AZ.Z/ represents
geometrically. All we need to know is that A.Z/ is the bordered invariant of some
Heegaard diagram. We also did not use any of the other theorems in this paper, many
of which depend on the invertibility of 1CFDD.I/, which itself is equivalent, via the
pairing theorem, to Theorem 12.

6. Gradings

Bordered Heegaard Floer homology can be equipped with gradings, and the pairing
theorems described here are compatible with these gradings in a natural way. We re-
view these notions briefly. For more details, see [9], Chapter 10 and [10], Section 2.5.

Given a pointed matched circle Z, there is a certain Heisenberg group G.Z/
equipped with a distinguished central element �, which has the property that A.Z/

is graded by G D G.Z/. It makes sense to talk about the category of differential
graded modules over this algebra. Objects in this category consist of pairs .S;M/,
where S is a G-set, and M is a module graded by S in a way which is compatible
with the G-grading on A.

Given G-sets S and T , we can form the space Hom.S; T /, which is orbit space
of S � T , divided out by its diagonal G action. (Note that this is not the same as the
collection of G-set maps S ! T .) Now, given differential graded modules .S;M/

and .T; N /, the morphism complex Mor..S;M/; .T; N // is a Z-set graded chain
complex, where the grading set is Hom.S; T /, and the underlying chain complex is
as described earlier. Note that Hom.S; T / still admits an action by Z (generated by
the action of � on T or ��1 on S ). In particular, the homology of the morphism
space is also graded by Hom.S; T /. (For generalities on these matters, see [10],
Section 2.5.3.)

Bordered Heegaard Floer homology modules are graded in the above sense. For
example, given a Z-bordered three-manifold Y1 and a compatible bordered Heegaard
diagram H , there is a grading set S D S.H / with the property that bCFD.Y1/ and
bCFA.Y1/ are S -graded.

A graded version of Theorem 1 (for bCFD) reads as follows.
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Theorem 14. Let Y1 and Y2 be bordered 3-manifolds with @Y1 D @Y2 D F.Z/.
Let S1 and S2 denote the grading sets for Y1 and Y2 respectively. Then, there is an
identification of the grading set for cCF.�Y1 [@ Y2/ with the Z-set Hom.S1; S2/, in
such a manner that there is a graded isomorphism

cHF.�Y1 [@ Y2/ Š ExtA.�Z/.bCFD.Y1/; bCFD.Y2//

which respects the identification of grading sets.

Theorem 14 follows from the proof of Theorem 1, with two additional observa-
tions. The first is that the grading set for AZ.Z/ is naturally identified with G in
such a manner that Proposition 4.1 holds in its graded form (i.e. 1CFAA.AZ.Z// is
isomorphic to A.Z/ as aG.Z/-graded bimodule); and the second observation is that
the traditional pairing theorem [10], Theorem 11, used in establishing Theorem 2
also holds in a graded form, see [10], Theorem 13).

If we keep track of spinc-structures, the isomorphism in Theorem 14 is given byM
s2spinc.�Y1[@Y2/

sj�Y1
D�s1; sjY2

Ds2

cHF.�Y1 [@ Y2; s/ Š ExtA.�Z/.bCFD.Y1; s1/; bCFD.Y2; s2//:

Similarly, a version of Theorem 2 keeping track of spinc-structures is:

MorA.�Z/.A.�Z/
bCFD.Y; s/;A.�Z//' bCFA.�Y;�s/A.�Z/;

MorA.Z/.bCFA.Y; s/A.Z/;A.Z// ' A.Z/
bCFD.�Y;�s/:

(Compare Proposition 3.14.)
Gradings can also be added in a straightforward way for Theorem 1 for bCFA,

and to the rest of the theorems from the introduction. In particular, the gradings in
Corollary 11 are obtained from a straightforward adaptation of [10], Theorem 14.

7. Examples

In this section, we compute a few simple examples with the Hom pairing theorem,
and compare them with the results of the original, tensor product pairing theorem.

7.1. Review of the torus algebra. For simplicity, all of our examples will have torus
boundary, and we will work in the central spinc-structure, so we start by reviewing
the algebra A.T 2/ D A.T 2; 0/ associated to the (unique) genus 1 pointed matched
circle. The algebra A.T 2/ has an F2-basis with 8 elements 	0, 	1, 
1, 
2, 
3, 
12, 
23
and 
123. The elements 	0 and 	1 are orthogonal idempotents. The other relations on
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the algebra are:

	0
1	1D 
1; 	1
2	0D 
2; 	0
3	1D 
3;

1
2D 
12; 
2
3D 
23; 
1
23D 
123;

12
3D 
123; 
3
2D 0; 
2
1D 0:

(See also [9], Section 11.1.)

7.2. Hom pairing theorem for some solid tori. We start by gluing together some
solid tori. Consider the standard diagrams H1 and H0 for the1- and 0-framed solid
tori, shown in Figure 10 (compare [9], Section 11.2).


1
1


2
2


3
3

zz

s

t

˛a1˛a1

˛a2˛a2ˇ1
ˇ0

AA

AA

Figure 10. Standard bordered Heegaard diagrams for the 1- and 0-framed solid tori.
Left: the diagram H1 for the1-framed solid torus. Right: the diagram H0 for the 0-framed
solid torus.

The module bCFD.H1/ has a single generator s with 	1s D s and differential

@.s/ D 
23s:
(We have used module notation for bCFD.H1/, so that this is another way of

saying ı1.s/ D 
23˝ s.) The module bCFD.H0/ has a single generator t with 	0t D t
and differential

@.t/ D 
12t:
So, for instance, the chain complex Mor.bCFD.H1/; bCFD.H1// is generated by

elements f and g where

f .s/ D s;
g.s/ D 
23s:

The differential of f is

.@f /.s/ D @.f .s//C f .@s/
D @s C f .
23s/
D 
23s C 
23s
D g.s/C g.s/
D 0:

(7.1)
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Similarly, @g D 0. So, Ext.bCFD.H1/; bCFD.H1// is two-dimensional. This is
consistent withTheorem 1, since�H1[@H1 representsS1�S2 and cHF.S1�S2/ Š
F2 ˚ F2.

It is clear from Equation (7.1) that gr.g/ is 1 lower than gr.f /. To illustrate the
behavior of the gradings in the Hom pairing theorem, we compute this directly. We
use the notation from [9], Section 11.1, for the grading groups of the torus, and the
grading refinement there, taking values in a somewhat larger group G � G.T 2/. We
have

S 0
D.H1/ D G0.T 2/=h.�1=2I 0;�1;�1/i; SD.H1/ D G=h.�1=2I 0;�1/i:

Declaring arbitrarily that gr.s/ D Œ.0I 0; 0/�, it follows that

gr.
23s/ D gr.
23/ gr.s/ D Œ.�1=2I 0; 1/�:
So, inside

�
SD.H1/ � SD.H1/

�
=G,

gr.f / D Œ.0I 0; 0/�� Œ.0I 0; 0/�
gr.g/ D Œ.0I 0; 0/�� Œ.�1=2I 0; 1/� D Œ.0I 0; 0/�� Œ.�1I 0; 0/�:

In particular, gr.g/ D ��1 gr.f /, as claimed.
As another simple example, Mor.bCFD.H0/; bCFD.H1// is generated by the three

maps t 7! 
1s, t 7! 
3s, and t 7! 
123s with differentials

@.t 7�! 
1s/ D .t 7�! 
123s/;

@.t 7�! 
3s/ D .t 7�! 
123s/:

Thus Ext.bCFD.H0/; bCFD.H1// is 1-dimensional, agreeing with Y.�H0[@H1/ D
S3.

Similar computations show:

Ext.bCFD.H0/; bCFD.H0// Š F2 ˚ F2;

Ext.bCFD.H1/; bCFD.H0// Š F2:

7.3. bCFA is bCFD: an example. Next, we illustrate Theorem 3 for the 0-framed
solid torus H0 discussed above. The module A.T 2/

bCFD.H0/ has elements t , 
2t and


12t . The differential of t is 
12t , so H�.bCFD.H0// D F2h
2ti. This agrees with
the rank of bCFA.H0/ (on which the differential is trivial).

Moreover, we can reconstruct the A1-module structure on H�.bCFD.H0//. We
record the dg module structure on bCFD.H0/ as

t 
2t


12t .

�2

�1
1C�12
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Let x D 
2t . Cancelling the differential from t to 
12t gives us A1-structure on
F2hxi given by the expansion of 
2; .1 C 
12/�1; 
1. That is, in H�.bCFD.H0//,
m3.
2; 
1; x/ D x, m4.
2; 
12; 
1; x/ D x, m5.
2; 
12; 
12; 
1; x/ D x, and
so on. By contrast, the (right) A1-module structure on bCFA.H0/ is given by
m3.x; 
3; 
2/ D x, m4.x; 
3; 
23; 
2/ D x, and so on. Under the identification of
left modules over A.T 2/with right modules over A.�T 2/, these two A1-structures
agree.

7.4. Hochschild cohomology of A.T 2/. In this section, we compute the Hoch-
schild cohomology of A.T 2/; in light of Corollary 11, this is the same as computing
bHFK of �1 surgery on the Borromean knot.

Let I denote the identity map of the torus. Since tensoring with 1CFDD.I/ gives
an equivalence of categories, it is equivalent to compute

HH�.1CFDD.I/; 1CFDD.I// D H�.MorA.T 2/;A0.�T 2/.1CFDD.I/; 1CFDD.I///;

and this is what we will do.
Recall from Theorem 5.19 that A.Z;i/

1CFDD.I/A.Z;�i/ is generated by pairs of
complementary idempotents. In the case under consideration, Z D T 2 and i D 0, so
there are two pairs of complementary idempotents 	0˝ 	1 and 	1˝ 	0. The differential
on 1CFDD.I/ is given by

@.	0 ˝ 	1/ D 
1 ˝ .	1 ˝ 	0/˝ 
1 C 
3 ˝ .	1 ˝ 	0/˝ 
3
C 
123 ˝ .	1 ˝ 	0/˝ 
123;

@.	1 ˝ 	0/ D 
2 ˝ .	0 ˝ 	1/˝ 
2:

A basis of MorA.T 2/;A0.�T 2/.1CFDD.I/; 1CFDD.I// is given by the maps f send-
ing 	i ˝ 	1�i to 
 ˝ .	j ˝ 	1�j / ˝ 
 and 	1�i ˝ 	i to zero. Here 
 and 
 are
chords in A.T 2/ respectively, with 	i
	j D 
 and 	1�j
	1�i D 
 . Without loss
of information, we will denote the map f as h
 ˝ 
i. Then the generators of
MorA.T 2/;A0.�T 2/.1CFDD.I/; 1CFDD.I// are

h	1 ˝ 	0i; h
23 ˝ 	0i; h	1 ˝ 
12i; h
2 ˝ 
2i; h
23 ˝ 
12i;
h	0 ˝ 	1i; h
12 ˝ 	1i; h	0 ˝ 
23i; h
1 ˝ 
3i; h
12 ˝ 
23i;
h
1 ˝ 
1i; h
1 ˝ 
123i; h
123 ˝ 
1i; h
123 ˝ 
123i; h
123 ˝ 
3i;
h
3 ˝ 
1i; h
3 ˝ 
123i; h
3 ˝ 
3i:

(The maps in the first row send 	1 ˝ 	0 to the specified element; the maps in the
remaining rows send 	0 ˝ 	1 to the specified element.)

The nontrivial differentials are given by

@h	1 ˝ 	0i D h
2 ˝ 
2i C h
1 ˝ 
1i C h
123 ˝ 
123i C h
3 ˝ 
3i;
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@h
23 ˝ 	0i D h
123 ˝ 
1i;
@h	1 ˝ 
12i D h
3 ˝ 
123i;
@h	0 ˝ 	1i D h
2 ˝ 
2i C h
1 ˝ 
1i C h
123 ˝ 
123i C h
3 ˝ 
3i;
@h
12 ˝ 	1i D h
123 ˝ 
3i;
@h	0 ˝ 
23i D h
1 ˝ 
123i;
@h
1 ˝ 
3i D h
12 ˝ 
23i:

A straightforward computation shows that the homology is 4-dimensional, gen-
erated by

1 D h	1 ˝ 	0i C h	0 ˝ 	1i;
w D h
2 ˝ 
2i; x D h
1 ˝ 
1i; y D h
3 ˝ 
3i; z D h
123 ˝ 
123i;

with the relation
w C x C y C z D 0:

The element h	1˝ 	0iCh	0˝ 	1i is the unit for the multiplication on HH�.1CFDD.I/;
1CFDD.I// and all other products vanish. The grading of 1 is one lower than the grad-

ing ofw, x, y and z (with the convention that the grading on HH� is of cohomological
type).

Remark 7.2. Recall [3] that the Hochschild cohomology of an algebra also inherits
a Lie bracket, called the “Gerstenhaber bracket”. Whereas the algebra structure on
the Hochschild cohomology is convenient to describe in terms of automorphisms of
1CFDD.I/ as above, the Gerstenhaber bracket is not transparent from this perspective.

Nonetheless, with a little more work, one can identify the generators of the homology
of the standard Hochschild cochain complex as

	0Œ�C 	1Œ�;

1Œ


�
1 �C 
123Œ
�

123�C 
12Œ
�
12�;


3Œ

�
3 �C 
123Œ
�

123�C 
23Œ
�
23�;


123Œ

�
3 j
�

2 j
�
1 �:

From this, it is straightforward to verify that the Gerstenhaber bracket vanishes.

7.5. 1CFAA is 2CFDD with a negative boundary Dehn twist: an example. We
illustrate Theorem 9 by verifying that for the standard Heegaard diagram for IT 2 ,
the rank ofH�.1CFDD.IT 2// agrees with the rank ofH�.1CFAA.�@//. Of course, the
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theorem asserts much more than this: the bimodule structures agree. Even in this
simple case, computing the A1-bimodule structure on the homology is somewhat
tedious, and we will not record the details here.

From Theorem 5.19, or alternatively [10], Section 10.1, or [11], as a type DD
structure, A.T 2/;A.�T 2/

1CFDD.I/ has two generators x and y, with

@x D .
1
3 C 
3
1 C 
123
123/˝ y;
@y D .
2
2/˝ x:

(7.3)

(Here, we use 
’s to denote elements of A.T 2/ and 
 ’s to denote elements of
A.�T 2/.) Expanding this as a bimodule, A.T 2/;A.�T 2/

1CFDD.I/ has 34 generators,
with differentials as shown in Figure 11. The homology is 16-dimensional.

x
2x
12x


2x
2
2x
2
12x


12x
12
2x
12
12x

y
1y
3y
23y
123y


1y
1
1y
1
3y
1
23y
1
123y


3y
3
1y
3
3y
3
23y
3
123y


23y
23
1y
23
3y
23
23y
23
123y


123y
123
1y
123
3y
123
23y
123
123y

Figure 11. The dg bimodule for 1CFDD.I/. Arrows coming from the same term in @x or @y
are parallel.

Figure 12 shows part of the standard Heegaard diagram for the negative boundary
Dehn twist. Inspecting the diagram, we see that there are 16 generators in the middle
spinc structure and no provincial domains, hence no differential on 1CFAA. Thus, the
rank of 1CFAA.�@/ agrees with the rank of H�.1CFDD.I//, as claimed.
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H0 H1

Figure 12. Standard Heegaard diagram for the negative boundary Dehn twist. On the
left is half of a Heegaard diagram for the identity homeomorphism; if this surface is H0, then
the result H0 @R

[@L
�H0 of gluing H0 to its mirror image (along @R and @L, respectively)

is a Heegaard diagram for the identity map. Applying a negative Dehn twist to the ˇ curves
around the dashed curve (and isotoping away a bigon) gives the diagram H1 on the right. The
result H1 @R

[@L
�H0 of gluing H1 to the mirror of H0 gives the standard Heegaard diagram

for the positive boundary Dehn twist.

7.6. A surgery on the trefoil. We conclude by computing cHF of the three-manifold
Y obtained as�2Dehn filling of the left-handed trefoil complement, usingTheorem 1.
It follows from [9], Theorem A.11, that the type D structure bCFD.T / associated to
the �2-framed trefoil complement is:

x3

y2

x2 y1 x1:


1


123


2 
3


12

(compare [9], Figure 11.15). Here, the xi are generators with 	0xi D xi and the yi
are generators with 	1yi D yi . The arrow from x1 to y1, say, denotes the fact that

3y1 occurs in @.x1/.

We compute Mor.bCFD.H0/; bCFD.T //. Each xi is replaced by the maps t 7! xi
and t 7! 
12xi . Each yi is replaced by the three maps t 7! 
1yi , t 7! 
3yi , and
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t 7! 
123yi . The differentials are:

t 7! x3

t 7! 
12x3

t 7! 
1y2

t 7! 
3y2

t 7! 
123y2

t 7! x2

t 7! 
12x2

t 7! 
1y1

t 7! 
3y1

t 7! 
123y1

t 7! x1

t 7! 
12x1:

The homology Ext.bCFD.H0/; bCFD.T // is 2-dimensional, generated by t 7! 
1y2
and t 7! .
1y1 C x2 C 
3y2/:

In this example, after making a choice, the grading set is identified with a double
coset space of G D G.T /. Projecting onto the homological component of G, the
double coset space maps to H1.Y / Š Z=2Z. The gradings of our two generators
project to the two different elements, showing that cHF.Y I s/ is Z=2Z for each of the
two spinc structures s.

This result can be compared with results from [14] or [18], which give alternate
methods for computing the Heegaard Floer homology groups of �2-surgery on the
left-handed trefoil.

The reader might find it disappointing that these calculations do not distinguish
�2 surgery on the trefoil from that on the unknot: we gave an example which is
an L-space. It is easy to distinguish these two three-manifolds, however, via the Q
grading on Heegaard Floer homology from [13]; see [8] for a discussion on how to
extract this information using bordered Floer homology.

8. Relation to Koszul duality

We will now justify the reference to Koszul duality in the DD bimodule described in
Equation (5.18). We also use Koszul duality to explain a symmetry in the homology
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of the algebra of A.Z/ which was observed in [10]. We start with some review.

8.1. Formalities on Koszul duality. Fix a ground ring k DL
F , where F is a field

of characteristic 2 (to avoid sign issues). In our applications, F is F2 D Z=2Z.

Definition 8.1. A quadratic algebra A over k is a graded algebra generated by a
finitely generated k-module V of elements of degree 1, with relations R � V ˝ V
living in degree 2. Its quadratic dual algebra AŠ is the algebra generated by V � with
relations R? � .V ˝ V /� Š V � ˝ V �.

Here the last isomorphism switches the tensor factors, i.e. .V ˝W /� Š W �˝V �.

Definition 8.2. For augmented dg algebras A;B over k, anA-B bimoduleM of any
type (DD, AA, DA, or AD) is rank one if it is isomorphic to k as a k-k bimodule.

For any quadratic algebraA, there is a rank 1 type DD bimodule AK.A/A
Š
, defined

by

ı1.1/ D
X
i

vi ˝ 1˝ .v�
i /; (8.3)

where 1 is the generator of K.A/, fvig is a basis for V, and fv�
i g is the dual basis for

V �. The fact that AŠ has relations given by R? is exactly what is necessary to make
this a DD bimodule.

Definition 8.4. A quadratic algebra is Koszul if AK.A/A
Š

is quasi-invertible. In this
case we say that AŠ is the Koszul dual of A.

(Bimodules K and L over A and B are quasi-inverses if K � L ' AŒI�A and
L�K ' B ŒI�B ; if a quasi-inverse to K exists, we say K is quasi-invertible.)

We compare the Definition 8.4 with the standard definition of Koszul duality for
quadratic algebras in Proposition 8.13 below.

Equation (8.3) is reminiscent of Equation (5.18), suggesting that we think of A.Z/

as something like a “quadratic” algebra where the “linear” elements are a.�/ for
� 2 Chord.Z/. Since A.Z/ has both linear terms in the relations (like a.
1/a.
2/ D
a.
1] 
2/ when 
1 and 
2 abut) and a differential (like @a.
/ D a.
2/a.
1/C : : : ),
the notion of quadratic dual has to be extended. This can be done; in particular, the dual
of a linear-quadratic algebra (where the relations have linear and quadratic terms) is
a quadratic-differential algebra (with quadratic relations, but a differential); see, e.g.,
[19], Chapter 5. The case of linear-quadratic-differential algebras, with both types
of terms, does not seem to be standard, but is a fairly straightforward generalization.
Unfortunately, with the easiest definitions A.Z; i / is not quite quadratic dual to
A.Z;�i/, but instead to an algebra that is only homotopy equivalent to A.Z;�i/.
Instead of pursuing this discussion we make the following definitions.
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Definition 8.5. Let A and B be augmented dg algebras over k. A Koszul dualizing
bimodule between A and B is a type DD structure AKB over A and B which is

� quasi-invertible,

� rank 1, and

� such that the image of ı1 lies in AC ˝K ˝ BC.

Two dg algebrasA andB over k are Koszul dual if there is Koszul dualizing bimodule
between them.

Observe that if it is quasi-invertible then the type DD bimodule AKAŠ

associ-
ated to a quadratic algebra satisfies the conditions of Definition 8.5. Note also that
Definition 8.5 is symmetric between A and B , by replacing AKB by its dual B xKA.

Recall that a rank-one type DA bimodule BMA with ı11 D 0 is the bimodule B Œf �A
associated to an A1-map f W A ! B , as in [10], Definition 2.2.48. The choice of
f is determined by a choice of generator for M as a k-module, and changes by
conjugation by a unit in k if we change the generator. (If k D L

Z=2Z, as is the
case in bordered Floer theory, then 1 is the unique unit in k.)

Lemma 8.6. If f; g W A! B are A1-homomorphisms so that B Œf �A and B Œg�A are
homotopy equivalent type DA structures, then f and g induce conjugate maps on
homology, i.e. there is a unit Œu� 2 H�.B/ so that for all Œa� 2 H�.A/,

Œf .a/� D Œu�Œg.a/�Œu��1:

Proof. By hypothesis there are maps ' W B Œf �A ! B Œg�A and W B Œg�A ! B Œf �A, as
well as homotopies F W B Œf �A ! B Œf �A from  B ' to IŒf � and G W B Œg�A ! B Œg�A
from ' B  to IŒg�. The A1-relations give

@f1.a/ D f1.@a/;
@g1.a/ D g1.@a/;
@'1 D 0;
@ 1 D 0;

f1.a/'1 C '1g1.a/ D @'2.a/C '2.@a/;
g1.a/ 1 C  1f1.a/ D @ 2.a/C  2.@a/;

@F1 D '1 1 C 1;
@G1 D  1'1 C 1:

(We are abusing notation: the map'1 W k! B˝k corresponds to an element'1 2 B ,
and similarly for  1, '2, and so on.) The equations on the last line imply that Œ 1�
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and Œ'1� are inverses in H�.B/. So, either equation on the third line implies that, if
we take a to be a cycle, then there is the following equation in homology:

Œf1.a/�Œ'1� D Œ'1�Œg1.a/�:
That is, the maps on homology induced byf1 andg1 differ by conjugation by Œ'1 �.

Lemma 8.7. Let AKB be a quasi-invertible type DD bimodule. Then its quasi-
inverse is given by B xBB � B xKA �AAA.

(Here B xKA denotes the dual of AKB in the sense of Definition 2.5.)

Proof. This is essentially [10], Proposition 9.2. We repeat the proof here for the
reader’s convenience. Let BLA be the quasi-inverse of AKB . Then

BLA ' MorB.BBB ;BLA/

' MorA.AKB � BBB ;
AKB � BLA/

' MorA.AKB � BBB ;
AIA/

' xAKB � BBB �AAA � AIA

' B
xBB � B xKA �AAA;

where here the first step follows from the fact that any module is quasi-isomorphic
to its cobar resolution, the second from the fact that AKB is quasi-invertible (hence
AKB � � induces an equivalence of homotopy categories), the third from the fact that
K and L are quasi-inverses, the fourth follows from Proposition 2.7, and the fifth is
straightforward.

Lemma 8.8. Let AKB be a Koszul dualizing bimodule betweenA andB . Then AKB

has a rank-one quasi-inverse. Moreover the left A-module AAA � AKB � B
xB is a

projective resolution of k, thought of as a left A-module via the augmentation ".

Proof. Lemma 8.7 gives AKB �B
xBB � B xKA �AAA ' AIA; which in turn ensures

that AKB � B
xBB � B xKA ' ABar.A/A. From this it follows that AAA � AKB �

B
xBB � B xKA �Ak is a projective resolution ofAk. Because the image of ı1xK lies in

BC˝k˝AC, andAC acts by zero onAk, the terms in the above differential coming
from B xKA �Ak are trivial; i.e. AAA � AKB � B

xB is a projective resolution of Ak.
In particular, its homology has rank one.

Similarly, another application of Lemma 8.7 givesB xBB �B xKA�AAA�AKB �
Bk ' k. Because the image of ı1K lies in AC˝k˝BC, and BC acts by zero on Bk,
it follows that B xBB � B xKA �AA is quasi-isomorphic to Bk. Thus, the homology of
B
xBB � B xKA �AAA is one-dimensional, and is the desired rank one quasi-inverse to

AKB .

We will also use the following version of the homological perturbation lemma.
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Lemma 8.9. Let A and B be A1-algebras, AMB an A1-bimodule over A and B

and AN a left A1-module over A. Assume that A and B are defined over ground
rings k and l respectively, which are either F2 or finite direct sums of copies of F2,
and that A and B are equipped with augmentations "A W A ! k, "B W B ! l.
Let f W AN ! AM be a quasi-isomorphism of left A1-modules. Then there is an
A1-bimodule structure ANB onN, extending the given left A1 -module structure, so
that f can be extended to an A1-bimodule quasi-isomorphism F W ANB ! AMB .

Proof. The proof is a simple extension of standard techniques (see, for instance, [5],
Section 3.3, and the references therein). In fact, we will see that the result essentially
follows from the corresponding result for modules, as formulated in [11], Lemma 8.6,
say.

Since is A defined over k which is a direct sum of copies of F2, any A1-quasi-
isomorphism of A1 A modules is an A1-homotopy equivalence (see [10], Propo-
sition 2.4.1, say). So, let g W AM ! AN be a homotopy inverse to f and let
T W AM ! AM be a homotopy between f B g and IM .

An A1-bimodule structure on N is a map mN W T �AC ˝ N ˝ T �BC ! N

satisfying a compatibility condition. Similarly, the maps F are given by a map
F W T �.AC/˝N ˝ T �.BC/! M satisfying a compatibility condition. The maps
mN and F are defined by the top and bottom of Figure 13, respectively. (The map
� W T �.AC/! T�.AC/˝n is the iterate of the obvious comultiplication on T �.)

It remains to check that the operations mN satisfy the A1-bimodule relations
and that the maps F satisfy the A1-bimodule homomorphism relations. Rather than
doing this directly, we will use the bar construction to reduce to the case of modules
verified in [11]. Recall that the (reduced) bar resolution of an A1-module AM is
given by T �AC ˝M with differential

@.a1 ˝ � � � ˝ an ˝ x/

D
X

a1 ˝ � � � ˝ �k.ai ; : : : ; aiCk�1/˝ � � � ˝ an ˝ x

C
X

a1 ˝ � � � ˝mk.an�kC2; : : : ; an; x/:

(8.10)

The A1-relation for an A1-module AM is the same as the relation @2 D 0 on the
bar resolution T �AC ˝M .

Similarly, the left bar resolution of an A1 bimodule AMB is the right A1-module
given by T�AC ˝M with m1 given by the formula in Equation (8.10) and higher
A1-operations given by

m1C`..a1 ˝ � � � ˝ an ˝ x/; b1; : : : ; b`/

D
1X
kD0

a1 ˝ � � � ˝mk;1;`.an�kC1; : : : ; an; x; b1; : : : ; b`/:

The A1-bimodule relations for AMB are equivalent to the A1-module relations for
its left bar resolution T�AC ˝M .
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mN . Na˝ x˝ Nb/ D

g

m

f

��

x NbNa C

g

m

T

m

f

� �

x NbNa C � � �

F. Na˝ x˝ Nb/ D

f

x C

T

m

f

��

x NbNa C

T

m

T

m

f

��

x NbNa C � � �

Figure 13. The induced A1-bimodule structure and quasi-isomorphism for Lemma 8.9.
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Turning to the case at hand, inspecting the top of Figure 13 and [11], eq. (8.7),
the following two constructions give the same right A1-operations.

� Constructing ANB by the top of Figure 13 and then taking the left bar resolution.
� Taking the left bar resolution of AMB and the bar resolution of AN and then

applying [11], eq. (8.7), to construct a right module structure on the result.

So, it follows from [11], Lemma 8.6, that the left bar resolution of ANB satisfies the
A1-module relations. This proves that ANB satisfies the A1-bimodule relations.

A similar argument, comparing the bottom of Figure 13 to [11], eq. (8.9), shows
that the map F is an A1-bimodule homomorphism.

Proposition 8.11. If A is any augmented dg algebra and B and C are both Koszul
dual to A, then B and C are quasi-isomorphic.

Proof. Let BKA and CK 0A be the dualizing bimodules, and let ALC and AL0
C be

their respective quasi-inverses. Since BKA is right bounded, we can form the DA
bimodule BKA � AL

0
C . According to Lemma 8.8, we can use a model for AL0

C

which has rank one. Further, sinceAL0 ' Ak, by Lemma 8.9, AL0
C is isomorphic to

a rank 1 bimodule AL00
C such that miC1.a1; : : : ; ai ; l/ D 0 for any a1; : : : ; ai 2 AC

and l 2 L00. From this and the fact that the image of ı1K lies in BC ˝ k ˝ AC, it
follows that ı11 D 0 on the rank one type DA bimodule BKA �AL

00
C .

Thus, BKA�AL
00
C is the bimodule B Œf �C associated to an A1-map f W C ! B .

Similarly, CK 0A � ALB (for an appropriate model for ALB) is the bimodule C Œg�B
of an A1-map g W B ! C . From the fact that K and L (respectively K 0 and
L00) are quasi-inverses, it follows that B Œf �C and C Œg�B are quasi-inverses to each
other, which in turn implies (by Lemma 8.6) that f and g induce isomorphisms on
homology, as desired.

Recall that for an augmented A1-algebra A, the cobar resolution Cob.A/ is
T �.ACŒ1��/, the tensor algebra on the (shifted) dual to AC. Cob.A/ is itself a
dg algebra, with a product that is the tensor product in the tensor algebra and a
differential that is dual to xDA W T �.AŒ1�/! T �.AŒ1�/, the operation that encodes
the multiplications �i on A [10], Section 2.1.1.

Proposition 8.12. Any augmented dg algebra A is Koszul dual to Cob.A/.

Proof. The dualizing bimodule AKCob.A/ is defined by

ı1.1/ D
X
i

ai ˝ 1˝ a�
i Œ1�;

where ai runs over a basis of AC and a�
i is the dual basis of A�. Its quasi-inverse is

the bimodule Cob.A/LA defined by

m1;1;n.hb�
1 jb�

2 j � � � jb�
ni; 1; a1; : : : ; an�1; an/ D b�

1 .an/ b
�
2 .an�1/ � � � b�

n.a1/ 1
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(with all other products 0), where b�
i .an�i / is the canonical pairing between b�

i 2
ACŒ1�� and an�i 2 A.

A Koszul dual to A is, by these definitions, just a dg algebra that is quasi-
isomorphic to Cob.A/; compare [12]. In particular, for any augmented dg alge-
bra, Cob.Cob.A// is quasi-isomorphic to A. With luck (as in the classical case of
quadratic Koszul duality of Definition 8.4), there is a Koszul dual that is much smaller
than Cob.A/.

We now compare our definition of Koszul duality for quadratic algebras with the
more familiar one, see for example [19], Definition 2.1.1.

Proposition 8.13. If A is a Koszul, quadratic algebra in the sense of Definition 8.4,
then the moduleAAA�AK.A/A

Š �AŠAŠ is a graded projective resolution of k whose
generators in homological degree i are also in algebraic degree i .

Proof. Lemma 8.8 guarantees thatAAA� AK.A/A
Š �AŠAŠ is a projective resolution

of k, so we only need to check the grading property. The quadratic algebra A is
automatically graded, with the generators V living in degree 1. In order to extend
this to a bigrading onAAA � AK.A/A

Š �AŠAŠ it is natural to think of A as bigraded,
so that V lives in grading .1; 0/. (Note that the second component of this bigrading
is trivial on A.) In order for Equation (8.3) to give a differential on AK.A/A

Š
which

changes the bigrading by .0;�1/, V � � AŠ must lie in grading .�1;�1/. It follows
that AŠ lies in gradings .�i;�i/ for i � 0 and AŠ lies in gradings .i; i/, again with
i � 0. This implies the proposition.

Similarly, since Cob.A/ ' AŠ and AŠ lies in gradings .�i;�i/, it follows that
Extij .k;k/ D 0 if i ¤ j .

Remark 8.14. Definition 8.5 and Propositions 8.11 and 8.12 can be extended to the
case of A1-algebras. The only difficulty is defining the notion of a DD bimodule
over two A1-algebras; see [10], Remark 2.2.58.

Remark 8.15. Definition 8.5 is quite similar to those considered by Lefévre-Hase-
gawa [6] and Keller [4], except that they work with an algebra and a coalgebra rather
than two algebras. More precisely, for C a coalgebra that is finite-dimensional in
each grading, let C � be the graded dual, which is an algebra. Then a twisting cochain
� W C ! A (see, e.g., [4], Section 2.3) is the same data as a rank 1 DD bimodule
AKC�

and Definition 8.5 is close to the definition of a Koszul-Moore triple in loc.
cit., with some difference in the technical conditions.
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Remark 8.16. Tensoring with the dualizing bimodule AKB does not give an equiv-
alence of categories between derived categories of modules over A and over B , but
rather between BMod, A1-modules over B , and ModA

u , the homotopy category of
unbounded type D structures. This is presumably related to the fact that the full
derived categories of modules over Koszul dual algebras are not equivalent in general
(see [2], Section 2.12, and [4], Section 1). In the case of the algebras considered in
this paper, however, the identity bimodule AŒI�A is homotopy equivalent to a bounded
module (coming from, for instance, an admissible diagram for the identity map), so
the categories of bounded and unbounded type D structures are quasi-equivalent,
ModA
u ' ModA

b
' AMod.

8.2. Koszul duality in bordered Floer homology. The formulation of Koszul du-
ality in terms of bimodules is well-suited to bordered Floer homology: it allows us
to use the combinatorics of Heegaard diagrams to prove the desired Koszul duality
for our algebras.

Proposition 8.17. The algebra A.Z; i / is Koszul dual to A.Z;�i/.

Proof. The bimodules A.Z;i/
1CFDD.I/A.Z;�i/ and A.Z;�i/ 1CFAA.I/A.Z;i/, computed

with respect to the standard Heegaard diagram for the identity map, obviously satisfy
the conditions of Definition 8.5, so A.Z; i / and A.Z;�i/ are Koszul dual.

For the other duality, we need to consider another diagram.

Construction 8.18. Given an˛-pointed matched circle Z˛, the half-identity diagram
G .Z˛/ is the˛-ˇ-bordered Heegaard diagram obtained as follows. Let†dr be the disk
with one-handles attached to its boundary as specified by �Z. Let ˛a denote curves
running through the one-handles, meeting the boundary along the pointed matched
circle Z. Let ˇa be a collection of dual arcs: there is one in each one-handle, and ˇai
meets only ˛ai , transversely, and in a single point. Finally, attach another one-handle
to †dr so as to separate the ˛-endpoints from the ˇ-endpoints, to obtain a Heegaard
surface †. The resulting ˛-ˇ-bordered is G .Z˛/.

The diagram G .Z˛/ has two boundary components, one of which is Z˛ and the
other of which is called the dual pointed matched circle and denoted Z

ˇ� . (The pointed
matched circle Z

ˇ� naturally corresponds to turning the Morse function specifying Z

upside-down.) Let Z˛� , or just Z�, denote the ˛-pointed matched circle twin to Z
ˇ� .

Sometimes, we write G .Z˛;Z
ˇ�/ to indicate both boundaries. G .Z

ˇ� ;Z˛/ is the
same diagram with the roles of @L and @R switched.

For a picture of the Heegaard diagram for G .Z˛/ for the torus, see Figure 14. The
standard identity diagram is �G .Z˛;Z

ˇ�/ @R
[@L

G .�Z
ˇ� ;�Z˛/.

Proof of Theorem 13. The first part is Proposition 8.17.
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1


2


3

z


1


3


2

Figure 14. Heegaard diagram for G for a genus one surface. This is the Heegaard diagram
G .Z˛/ for the case where the genus is one, so Z D Z�, as described in Construction 8.18.

The bimodules A.Z;i/
1CFDD.G .Z//A.Z�;i/ and A.Z�;i/

1CFAA.�G .Z//A.Z;i/ also
satisfy the conditions of Definition 8.5, so A.Z; i / and A.Z�; i / are Koszul dual.

Proposition 8.11 now implies that A.Z;�i/ is quasi-isomorphic to A.Z�; i /.

It is interesting to note that in the case of the pointed matched circle Z for the
torus algebra with i D 0, both bimodules 1CFDD.G .Z/; 0/ and 1CFDD.I/ give Koszul
self-dualities of the torus algebra A.Z; 0/. However, the two bimodules are different;
the bimodule 1CFDD.G .Z/; 0/ is given by

ı.1/ D 
1 ˝ 1˝ 
1 C 
2 ˝ 1˝ 
2 C 
3 ˝ 1˝ 
3
(a fact which can be verifying by enumerating holomorphic curves in Figure 14).
Contrast this with 1CFDD.I; 0/, which by Equation (7.3) is given by

ı.1/ D 
1 ˝ 1˝ 
1 C 
2 ˝ 1˝ 
2 C 
3 ˝ 1˝ 
3 C 
123 ˝ 1˝ 
123:
If we tensor one of these bimodules with the inverse of the other, we get a non-trivial
A1-automorphism f W A.T 2/! A.T 2/, given by

f1.x/ D x;
f3.
3; 
2; 
1/ D 
123;

with all other terms being 0. (This automorphism can also be computed by counting
holomorphic curves in Figure 14 as a DA bimodule.)

In a different direction, the symmetry H�.A.Z; i // Š H�.A.Z�;�i// explains
some numerical coincidences apparent in the homology calculations from [10].

For Z any pointed matched circle of genus k > 0, A.Z;�k/ Š F2 and A.Z;

�k C 1/ have no differential, so
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dim.H�.A.Z;�k/// D dim.A.Z;�k// D 1;
dim.H�.A.Z;�k C 1/// D dim.A.Z;�k C 1// D 8k2;

both of which depend only on k, not the pointed matched circle. It now follows from
Theorem 13 that

H�.A.Z; k � 1// D 8k2;
H�.A.Z; k// D 1;

for any genus k pointed matched circle Z, as well.
In [10], we computed that if Z is the split pointed matched circle of genus 2 thenX

i

dim.H�.A.Z; i /// D T �2 C 32T �1 C 98C 32T C T 2;

while if Z denotes the antipodal pointed matched circle of genus 2 thenX
i

dim.H�.A.Z; i /// D T �2 C 32T �1 C 70C 32T C T 2:

The coincidences in the Poincaré polynomials in all but the middle-most term (and
their symmetry) is now explained by Koszul duality.

In general, H�.A.Z/; i/ is not necessarily isomorphic to H�.A.Z/;�i/. For
instance, for the genus 3 pointed matched circle Z1 with matched points

.1; 7/; .2; 9/; .3; 5/; .4; 6/; .8; 11/; .10; 12/;

computer computation givesX
i

dim.H�.A.Z1; i /// � T i

D T �3 C 72 � T �2 C 600 � T �1 C 1224C 616 � T C 72 � T 2 C T 3;
and in particular dim.H�.A.Z1; 1/// ¤ dim.H�.A.Z1;�1///. Similarly, for the
dual pointed matched circle Z2 D Z�

1 , with matched points

.1; 10/; .2; 4/; .3; 12/; .5; 11/; .6; 8/; .7; 9/;

computer computation givesX
i

dim.H�.A.Z2; i /// � T i

D T �3 C 72 � T �2 C 616 � T �1 C 1224C 600 � T C 72 � T 2 C T 3;
which is consistent with Theorem 13.
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Remark 8.19. In light of Auroux’s reinterpretation of bordered Floer theory [1], the
referee points out that it is interesting to compare the results of this section with [21],
Section (5k).

A. User’s guide to orientation conventions

Type D structures (Definition 2.2) are written with the algebra as a superscript, and
modules with the algebra as a subscript. Examples:

AM Left type D structure over A.

MA Right A1-module over A.

AMB Type DA bimodule; left type D over A, right type A over B.

The algebras A.Z/ and A.�Z/ are opposites:

A.Z/op D A.�Z/:

So, there are identifications ModA.Z/ 	 A.�Z/Mod and ModA.Z/ 	 A.�Z/Mod.
With respect to these identifications,

A.�Z/
bCFD.H / 	 bCFD.H /A.Z/; A.Z/

bCFA.H / 	 bCFA.H /A.�Z/:

The following modules are associated to ˛- or ˇ-bordered Heegaard diagrams with
boundary Z˛ or Zˇ , respectively:

Diagram Type D structures Type A structures

H˛ A.�Z/
bCFD.H / 	 bCFD.H /A.Z/ A.�Z/

bCFA.H / 	 bCFA.H /A.Z/

Hˇ A.Z/
bCFD.H / 	 bCFD.H /A.�Z/

A.Z/
bCFA.H / 	 bCFA.H /A.�Z/

The surface associated to an orientation-reversed pointed matched circle is the
orientation reverse of the surface associated to the pointed matched circle: F.�Z/ D
�F.Z/.

If H˛ is an ˛-bordered Heegaard diagram there is a corresponding ˇ-bordered
Heegaard diagram Hˇ (Definition 3.11). The corresponding invariants are dual
(Proposition 3.14):

A.�Z/bCFD.H˛/ D bCFD.Hˇ /A.�Z/; bCFA.H˛/A.Z/ D A.Z/
bCFA.Hˇ /:

One can also reverse the orientation of H˛, giving a new ˛-bordered Heegaard dia-
gram �H˛. Again, the invariants are dual (Proposition 3.15):

A.�Z/bCFD.H˛/ D bCFD.�H˛/A.�Z/; bCFA.H˛/A.Z/ D A.Z/
bCFA.�H˛/:
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Analogous statements hold for bimodules associated to bordered Heegaard diagrams
with two boundary components (Propositions 3.25 and 3.26).

Given a strongly based mapping class ' W F.Z1/! F.Z2/ there is an associated
mapping cylinder M' , with @LM' D �F.Z1/ and @RM' D F.Z2/; see Construc-
tion 3.21 and also [10], Section 5.3. To emphasize: maps go from (minus) the left
boundary to the right boundary. There is an action of the mapping class groupoid on
the set of bordered 3-manifolds, by

'.Y;  W F.Z1/! @Y / D .Y;  B '�1 W F.Z2/ �! @Y /;

where ' W F.Z1/ ! F.Z2/; see Definition 3.22. Equivalently, '.Y / D Y [F.Z1/

M' .
Note that if we reverse the roles of the left and right boundary on the mapping

cylinder M' , where ' W � @LM' ! @RM' , we get the mapping cylinder of �'�1 W
� @RM' ! @LM' . In particular, switching the two sides of the mapping cylinder
of a positive Dehn twist gives the mapping cylinder of another positive Dehn twist,
as both taking the inverse of ' and reversing the orientation of the surfaces switch
positive and negative Dehn twists.

The strongly based mapping class �@ plays a special role. The map �@ W F.Z/!
F.Z/ is a positive Dehn twist around the boundary of the preferred diskD˛[ s[Dˇ
inF.Z/. The effect of gluing �@ to a strongly bordered 3-manifold with two boundary
components is to decrease the framing on the arc by 1.

Of particular importance in this paper is the bordered diagram AZ.Z/ and its
mirror AZ.Z/ (Section 4). These are defined so that

@AZ.Z/ D Z˛ qZˇ D @AZ.Z/:
To make it clear which boundary is being glued, we often write ˛AZ.Z/ˇ or

ˇAZ.Z/˛, to indicate whether we think of the ˛- of ˇ-boundary of AZ.Z/ as on the
left. These are two ways of writing the same diagram. In particular,

A.Z/
1CFAA.˛AZ.Z/ˇ /A.Z/ D A.Z/

1CFAA.ˇAZ.Z/˛/A.Z/ D A.Z/A.Z/A.Z/I
and in both cases, the ˛-boundary corresponds to the right action. (The second
equality uses Proposition 4.1.) If the ˛ boundary corresponds to the left action then
the bimodules are

A.�Z/
1CFAA.˛AZ.Z/ˇ /A.�Z/ D A.�Z/A.�Z/A.�Z/

D A.�Z/
1CFAA.ˇAZ.Z/˛/A.�Z/:

Similarly,

A.Z/
1CFAA.˛AZ.Z/ˇ /A.Z/ D A.Z/A.Z/A.Z/:

The following is a representative sample of the valid gluings of AZ and AZ pieces,
and what they represent, as maps from (minus) the left boundary to the right boundary:
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˛AZ.�Z/ˇ [ ˇAZ.Z/˛; �@ W F.Z˛/ �! F.Z˛/;

˛AZ.Z/ˇ [ ˇAZ.�Z/˛; �@ W F.�Z˛/ �! F.�Z˛/;

ˇAZ.�Z/˛ [ ˛AZ.Z/ˇ ; �@ W F.Zˇ / �! F.Zˇ /;

˛AZ.�Z/ˇ [ ˇAZ.Z/˛; I W F.Z/ �! F.Z/;

˛AZ.�Z/ˇ [ ˇAZ.Z/˛; I W F.Z/ �! F.Z/;

˛AZ.�Z/ˇ [ ˇAZ.Z/˛; ��1
@
W F.Z/ �! F.Z/:

See Propositions 4.2 and 4.4 and Corollary 4.5.
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