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Abstract. We develop an approach to Khovanov homology of knots via gauge theory (previous
physics-based approaches involved other descriptions of the relevant spaces of BPS states).
The starting point is a system of D3-branes ending on an NS5-brane with a nonzero theta-
angle. On the one hand, this system can be related to a Chern–Simons gauge theory on the
boundary of the D3-brane world-volume; on the other hand, it can be studied by standard
techniques of S-duality and T -duality. Combining the two approaches leads to a new and
manifestly invariant description of the Jones polynomial of knots, and its generalizations, and
to a manifestly invariant description of Khovanov homology, in terms of certain elliptic partial
differential equations in four and five dimensions.
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1. Introduction

1.1. Knot polynomials. The Jones polynomial ([62] and [63]) associates to a knotK
in Euclidean three-space R3 (or in a three-sphere S3) a Laurent polynomial J.qIK/
in a single variable q. The coefficients in this Laurent polynomial are integers. Some
further details are explained below.

The Jones polynomial – and its many generalizations which are also Laurent
polynomials with integer coefficients – can be constructed in a variety of ways from
two-dimensional mathematical physics. The key ingredients include lattice statistical
mechanics,Yang–Baxter equations, conformal field theory, and braid group represen-
tations; see [35], [68], [97], [85], [13], and [96]. These constructions are very efficient
for computing the knot polynomials, demonstrating their topological invariance, and
showing that they indeed are Laurent polynomials with integer coefficients.

However, such constructions do not make manifest the three-dimensional sym-
metry of the Jones polynomial. For this purpose, three-dimensional quantum gauge
theory with a Chern–Simons action ([89], [88], and [24]) turns out to be useful. The
Chern–Simons action for a gauge theory with gauge group1 G and gauge field A on

1In this paper, G is always a compact Lie group, and all representations considered are finite-dimen-
sional.
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an oriented three-manifold W can be written

I D k

4�

Z
W

Tr
�
A ^ dAC 2

3
A ^ A ^ A

�
: (1.1)

Here k is an integer for topological reasons; up to a choice of orientation, one may
take k to be positive. In this theory, to an oriented embedded loop K � W and a
representation R ofG, one can associate an observable, the trace of the holonomy or
Wilson loop operator:

W.K;R/ D TrRP exp
I

K

A: (1.2)

Reversing the orientation of K has the same effect as replacing R by its complex
conjugate. It turns out [102] that the Jones polynomial and its generalizations can be
computed as expectation values of Wilson loop operators, if we express the argument
q of the knot polynomials in terms of the Chern–Simons level k by

q D exp .2�i=.k C h// ; (1.3)

where h is the dual Coxeter number ofG. For example, if we take G D SU.2/, R to
be the two-dimensional irreducible representation of SU.2/, and W D S3, then the
expectation value of W.K;R/ is equal to the Jones polynomial:

J.qIK/ D hW.K;R/i: (1.4)

1.1.1. Some details. We will spell out a few details about the function J.qIK/.
First of all, the definition extends immediately to an oriented link, that is a union L
of � disjoint oriented embedded circlesKi . We label theKi by representations Ri of
G and set

J.qIKi ; Ri/ D
D Y

i

W.Ki ; Ri/
E
: (1.5)

ForG D SU.2/ and all Ri equal to the two-dimensional representation, this function
is known as the Jones polynomial of the link L. We denote this special case as
J.qIL/.

In (1.4) and (1.5), the symbol h i refers to an expectation value, that is, a ratio of
two path integrals

J.qIKi ; Ri/ D

Z
DA exp.iI /

Y
i

W.Ki ; Ri/

Z
DA exp.iI /

: (1.6)

For W D S3, the denominator is non-trivial (for example, it equals
p
2=.k C 2/

sin.�=.k C 2// for G D SU.2/) and it is necessary to divide by this factor to obtain
a function J.qIKi ; Ri/ that has the simple properties we will explore in this paper.
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However, in our framework, it will be more natural to study a path integral rather
than a ratio of two path integrals. J.qIKi ; Ri/ can be expressed in this form by
simply replacing W D S3 with W D R3. The ratio in (1.6) is unaffected, but
now the denominator (regularized by the procedure in the present paper to deal with
the behavior at infinity) equals 1 and can be omitted. Taking W D R3 will also
simplify the arguments in this paper by suppressing infrared fluctuations, in a sense
that will be clear later, and in certain other technical details. Accordingly, though we
will define an analog of Khovanov homology on any three-manifold, its relation to
Chern–Simons theory is most simple for the case of links in R3.

We should warn the reader of a few differences between our conventions and the
ones that are most common in the mathematical literature. First, a very basic case
of a link is the empty link ¿ for which the number of embedded circles is � D 0.
With our definition, J.qI ¿/ D 1. In the mathematical literature, it is customary to
normalize the Jones polynomial so that its value is 1 for the unknotK0 rather than the
empty link ¿, so the usual mathematical definition corresponds to what we would call
zJ.qIL/ D J.qIL/=J.qIK0/. An analogous statement holds for the more general
invariants J.qIKi ; Ri/.

The precise sense in which J.qIKi ; Ri/ is a Laurent polynomial is as follows.
In general, depending on the representations Ri , J.qIKi ; Ri// is either a Laurent
polynomial in q, or q1=2 times a Laurent polynomial in q. For example, the Jones
polynomial is q�=2 times a Laurent polynomial,

J.qIL/ D
X

n2ZC�=2

anq
n; an 2 Z: (1.7)

The coefficients an are integers and all but finitely many of them vanish. The half-
integral powers are often suppressed by taking the basic variable to be not our q but
Qq D q1=2. In many ways, however, the variable q is more natural. For example, it will
turn out to be the natural instanton counting factor in a dual gauge theory description.
The fractional powers of q turn out to have a natural topological interpretation, and
it seems unnecessary to suppress them. (In a sense, it is also ultimately fruitless to try
to suppress them, since as will become clear, on a general three-manifold, we meet
general fractional powers of q, not just half-integral powers.)

One further detail is that, as explained via gauge theory in [102], the invariants
J.qIKi ; Ri/ are most naturally defined for framed links. (A framing of an embedded
circle K � W is a trivialization of the normal bundle to K in W .) Under a change
in framing, J.qIKi ; Ri/ is multiplied by a certain (generically fractional) power of q.
For links in S3 or R3, one can suppress this phenomenon, since an embedded circle
in S3 has a distinguished framing (relative to which its self-linking number is zero).
Standard formulas such as (1.7) implicitly refer to this standard framing. Similarly,
the Chern–Simons path integral on a general three-manifold W depends naturally on
a framing of W (a trivialization of its tangent bundle T ) or more generally [6] on
a two-framing (a trivialization of T ˚ T ). A change of framing of W has the same
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sort of effect as a change in framing of a link: it multiplies the path integral by
a power of q. This power cancels out of the ratio (1.6), but when we assert that the
denominator is 1 for W D R3, this statement refers to the path integral defined with
the obvious framing associated to a Euclidean metric on R3.

1.1.2. What Chern–Simons theory doesn’t explain. The Chern–Simons path inte-
gral gives a definition of the invariants J.qIKi ; Ri/ with manifest three-dimensional
symmetry, provided that q is a root of unity of the particular form (1.3). Granted that
J.qIKi ; Ri/ is a Laurent polynomial, it is determined by its behavior at these values
of q. However, the gauge theory path integral does not shed much light on why these
functions are Laurent polynomials. This is clearer in any of the definitions of the link
invariants based on two-dimensional mathematical physics. The only known way
to deduce that J.qIKi ; Ri / is a Laurent polynomial starting from three-dimensional
gauge theory is to first reduce to a two-dimensional description, for example via
representations of braid groups, in which this fact is clear. The Chern–Simons path
integral has been used directly [108] to explain the existence of an analytic continu-
ation of Wilson loop expectation values to complex values of k, but not the fact that
the result is a Laurent polynomial.

1.2. Khovanov homology. Moreover, none of the constructions so far mentioned
give a really good explanation of why the coefficients an of these Laurent polynomials
are integers. This has been accomplished in Khovanov homology [69], in which thean

are interpreted as the dimensions (in a Z2-graded sense) of finite-dimensional vector
spaces. For motivation behind Khovanov homology see [23], [34], and [11], and
for an introduction see [7]. In this theory, one associates to a link L in three-space a
finite-dimensional vector space k.L/, known as its Khovanov homology. The original
construction was adapted to the Jones polynomial – or, if you like, to a link labeled
by the two-dimensional representation of SU.2/. k.L/ is defined as the cohomology
of a differential Q (a differential is simply a linear operator Q obeying Q2 D 0)
that acts on a larger vector space h.L/. k.L/ is natural and depends only on L,
but there is much arbitrariness in the construction of h.L/. h.L/ is bigraded, with
symmetry generators that we will call F and P. Q obeys ŒF; Q� D Q, ŒP; Q� D 0;
these relations ensure that k.L/ is bigraded,

k.L/ D
M
m;n

km;n.L/; (1.8)

where m; n are the eigenvalues of F, P. With the usual normalization, m and n take
integer values. In our formulation in this paper, m is Z-valued and n takes values in
Z C �=2 (where � is the number of components of the link L) or more generally in
a certain coset of Z in R. Despite the nonintegrality of the eigenvalues of P, we will
loosely refer to the group generated by F and P as U.1/ � U.1/ and the associated
grading as a Z�Z grading. The relation between Khovanov homology and the Jones
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polynomial is
J.qIL/ D Trk.L/ .�1/FqP: (1.9)

This formula makes manifest the fact that J.qIL/ is a Laurent polynomial with
integer coefficients. (The half-integral powers in J for a link with an odd number
of components arise from the fact that, with our normalization, for a link in R3 with �
components labeled by the two-dimensional representation of SU.2/, the eigenvalues
of P lie in ZC�=2. See Section 5.4.2.) We can describe (1.9) by saying that the Jones
polynomial can be recovered from Khovanov homology by taking an equivariant
index or Euler characteristic. Since F is Z-valued but the right hand side of (1.9) only
depends on the value of F mod 2, this formula also shows that Khovanov homology
potentially contains more information than the Jones polynomial. It has turned out
that the additional information is really essential.

The success in recovering the Jones polynomial from a homology theory raises
the question of whether a similar construction is possible if components of L are
labeled by arbitrary representations Ri of a compact Lie group G. In the literature,
this has been accomplished for many classes of groups and representations. Here,
we will make a general proposal.

From a physical point of view, a three-dimensional quantum field theory with loop
operators will naturally assign a number – the value of the path integral – to a knot.
To associate to a knot a vector space (its Khovanov homology) rather than a number,
we want a four-dimensional quantum field theory with surface operators rather than
loop or line operators. Thus,2 introduce a fourth “time” dimension, parametrized
by R, and consider a four-dimensional topological field theory onM D R �W , with
a surface operator on † D R � K; as before, K is a knot in a three-manifold W .
The space of physical states in such a theory will be a vector space associated to the pair
.W;K/; this vector space will be bigraded – like the Khovanov homology of a knot in
W D S3 – if the four-dimensional theory has an appropriate U.1/� U.1/-symmetry.
What has just been described was part of the original motivation that led to Khovanov
homology [23] and these matters have also been discussed from a physical point of
view [51]. From the point of view of four-dimensional quantum field theory, the
index formula (1.9) has a natural interpretation. Given a four-dimensional quantum
field theory, one can reduce to a three-dimensional quantum field theory by compact-
ifying on S1. The partition function of a four-dimensional theory on a four-manifold
of the formM D S1 �W , whereW is a three-manifold, will give a Z2-graded trace
or index. (Here we assume that if surface operators are present, they are supported on
S1 �K, for some K � W , to be compatible with the product form of M .) In the re-
duction, if there is a conserved charge P that commutes withQ, one can make a twist
by qP (for some q) in going around the circle. The partition function of the reduced
theory will then be an equivariant index as in (1.9).

In the mathematical literature, there actually is direct evidence that Khovanov

2The actual framework we develop later is more complicated than the idealized sketch offered here,
mainly in the need to introduce a fifth dimension.
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homology is part of a four-dimensional theory with surface operators. The main
evidence comes from consideration of cobordism between knots. Here, we take
M D I �S3, where I D Œ0; 1� is the unit interval. InM , one considers an embedded
two-manifold † whose restriction to one boundary f0g � S3 is a knot K, and whose
restriction to the other boundary f1g �S3 is a knotK 0. Physically, one would expect
the path integral on M (with † understood as the support of a surface operator)
to define a linear transformation from the space of physical states associated to the pair
.S3; K/ to the corresponding space for .S3; K 0/. Mathematically, it has been found
that one can associate to such a cobordism a natural linear transformation ˆ† from
the Khovanov homology of K to that of K 0:

ˆ† W k.K/ �! k.K 0/: (1.10)

If one glues together two knot cobordisms, the corresponding transition amplitudes
multiply, just as one would expect physically.

The literature on Khovanov homology provides at least one more clue. In close
parallel with the early mathematical constructions of the Jones polynomial and its
cousins, mathematical constructions of Khovanov homology and its extensions are
frequently based on familiar ingredients in mathematical physics. But these construc-
tions do not make manifest the topological invariance of Khovanov homology, poten-
tially creating an opportunity for physicists. Actually, a number of mathematical con-
structions of Khovanov homology are based on ways of associating a two-dimensional
topological quantum field theory (or at least the category of branes in such a theory) to
a two-sphere S2 with marked points pi , i D 1; : : : ; n. A natural interpretation is that
these constructions arise by specializing a four-dimensional quantum field theory to
four-manifolds of the formM D †�S2, where† is a Riemann surface and surface
operators are supported on the two-manifolds † � pi . In one construction, see [70]
and [54], the effective theory on † seems to be a Landau–Ginzburg B-model (so
that the branes are matrix factorizations); in a second construction [18], the effective
theory is a B-model with target space a certain Kähler manifold; other approaches,
see [90] and [64], are based on A-models. There have also been attempts, see [73]
and [74], to make the three- or four-dimensional symmetry of Khovanov homology
manifest by extracting it from a special case or analog of Donaldson–Floer theory
in four dimensions. This of course is related to N D 2 super-Yang–Mills theory
in four dimensions.

1.3. Previous physics-based proposals. Actually, a proposal for a physical con-
struction of Khovanov homology has been made some years ago. An initial clue [103]
was that the knot invariants associated to Chern–Simons theory can be regarded
as open-string analogs of the usual A-model invariants for closed strings. On the
other hand, the topologicalA-model for either closed or open strings can be embedded
in Type IIA superstring theory. For open strings, this embedding plus a hypothesis of
a geometric transition in string theory has led to powerful results [46] about Chern–
Simons theory. In addition, by considering the strong coupling limit of the Type IIA
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model, in which the M -theory circle opens up, closed string A-model amplitudes
(or Gromov–Witten invariants) can be fruitfully expressed in terms of Gopakumar–
Vafa invariants [47]. The Gopakumar–Vafa invariants are simply the dimensions of
certain spaces of BPS states ofM -theory membranes, so they are automatically inte-
gers, unlike the A-model amplitudes themselves (which in general are rational num-
bers). Expressing the closed topological string amplitudes in terms of Gopakumar–
Vafa invariants is powerful because purely numerical invariants (the Gromov–Witten
invariants) are expressed in terms of vector spaces (the spaces of BPS states).

The Gopakumar–Vafa construction has an analog [82] for open strings, expressing
A-model observables of open strings in terms of spaces of BPS states in the presence
of certain branes. For further developments see [76], [87], and [75]; for a review of
many of these topics see [78]. This approach has been extended into a proposal [53]
to identify the Khovanov homology for a knot K with the space of BPS states – for
anM -theory configuration that depends on the choice ofK. A substantial amount of
evidence for this proposal was given in [53], in part by using geometric transitions as
a tool to compute the spaces of BPS states. Moreover, the proposal implied some new
predictions concerning Khovanov homology and has led to a better understanding of
some aspects of this subject [30]. The relevant brane constructions have been further
studied in [26], [2], and [19]. For an extension of these ideas involving the topological
vertex and the Nekrasov partition function for instantons, see [61] and [52].

A related road to a physical interpretation of Khovanov homology has appeared
much more recently in a study of supersymmetric line operators in four-dimensional
gauge theories with N D 2 supersymmetry [38]. It was shown that such line operators
form an “algebra,” but with the structure constants being vector spaces rather than
numbers. For the case that the four-dimensional theory is obtained by compactifying
the six-dimensional .0; 2/model on a Riemann surface C, as analyzed in most detail
in [36], the algebra in question is closely related to the usual algebra of multiplication
of Wilson loop operators in quantum Chern–Simons theory on C – except that the
structure constants in the algebra are replaced by vector spaces. (One can recover
the usual loop algebra of Chern–Simons theory by taking a supertrace, as in (1.9),
to replace the vector spaces by numbers. This has been pointed out by the authors
of [38].) These results should be related to a generalization of Khovanov homology
for loops in the three-manifold R �C – more precisely for product loops of the form
p � `, with p a point in R and ` a loop in C.

1.4. The present paper. In this paper, we will re-examine the relation of Khovanov
homology to the spaces of BPS states inM -theory, with three primary goals. One goal
is to give a gauge theory definition of Khovanov homology (as opposed to a definition
that requires a full knowledge of string/M -theory). String theory and branes will be
used as clues, but the results can be expressed as a gauge theory construction. A second
goal is to give a more transparent – or at least new – explanation in this context of the
key property of Khovanov homology: the fact that a supertrace in the space of BPS
states gives the path integral of Chern–Simons theory. The last goal is to develop an
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effective framework to understand generalizations of Khovanov homology in which
one varies the three-manifold W or the boundary conditions or other details. (This
program is not actually achieved in the present paper.) Along the way, we will clarify
some formal properties of Khovanov homology.

1.4.1. The basic idea. The basic idea behind this paper is simply explained. We
would like to apply nonperturbative string theory or field theory dualities to three-
dimensional Chern–Simons gauge theory, but there is no obvious way to do this
directly. However, it is possible to express the path integral of Chern–Simons theory
on a three-manifold W as a path integral of N D 4 super Yang–Mills theory on a
half-space V D W � RC, where RC is the ray or half-line y � 0. (Knots in W are
represented by Wilson operators in the boundary of V .) Once this is done, one can
apply standard gauge theory and string theory dualities to the N D 4 path integral
on the four-manifold V , leading to a description by a higher-dimensional theory with
the desired properties.

The relation of the Chern–Simons path integral on W to the N D 4 path integral
onW � RC is one of the main results of [109] (and the basic idea is suggested in the
conclusions of [108]). We will give an alternative explanation in this paper, partly to
keep the paper self-contained, and partly to emphasize the aspects that we need. In
general, in this correspondence, the N D 4 path integral on V D W � RC depends
on a boundary condition at y ! 1, and the equivalent Chern–Simons path integral
is not the usual one but is a path integral defined with an exotic integration cycle,
in a sense described in [108]. However, for the case of links in R3 or S3, there is
essentially (up to a constant multiple) only one possible integration cycle and the path
integral obtained this way is equivalent to the standard one. From the vantage point
of the present paper, this is one of the reasons that Khovanov homology is simplest
in the case of links in R3.

In order to relate the N D 4 path integral on V D W � RC to a Chern–Simons
path integral onW , we need to use the right boundary condition on the boundary ofW .
The requisite boundary condition is not exotic. It is simply the boundary condition of
the D3–NS5 system of Type IIB superstring theory in the presence of a theta-angle.
This boundary condition has been described in [39] and [40].

At this point, all we have done is to restate the problem of Chern–Simons theory
in terms of an N D 4 path integral on V . To get something like Khovanov homology,
we want to re-express the N D 4 path integral on V as a path integral of some
other theory on V � S1. A path integral on V � S1 can be written as a trace (or,
in the presence of fermions, as a Z2-graded trace) in a Hilbert space H associated
to quantization on V . Suppose that the path integral on V � S1 is invariant under
a supersymmetry generator Q that obeys Q2 D 0. Then, by a standard argument,
the Z2-graded trace in H reduces to a Z2-graded trace in K, the cohomology of
Q. (We will write K for cohomology spaces arising in quantum field theory and k

for Khovanov homology; we make this distinction because we do not have a proof
that these coincide even in situations where k has been defined.) Our strategy to get
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a formula like (1.9) for the Jones polynomial is to first express the Jones polynomial
as an N D 4 path integral on R3 � RC – with knots represented by Wilson operators
at the boundary – and then find a duality to re-express this as a path integral on
R3 � RC � S1.

The most naive way to try to do this fails in an instructive way. We first embed the
D3–NS5 system in Type IIB superstring theory on R9 � S1, where the S1 direction
is transverse to the branes. Compactifying one of the transverse directions on a circle
does not affect anything that has been said so far. Then we perform a T-duality on
the S1. This replaces S1 by a dual circle zS1. At first sight, it seems that the T -dual
of the D3–NS5 path integral will be a path integral on R3 � RC � zS1, leading in the
desired fashion to a trace. However, in the presence of an NS5-brane wrapped on
R6 � p � R9 � S1 (here R6 is linearly embedded in R9 and p is a point in S1),
T-duality maps us not to R9 � zS1 but ([95] and [49]) to R6 � TN, where TN is
a Taub-NUT space. TN is asymptotic at infinity to a twisted zS1 bundle over R3, but
crucially, zS1 shrinks to a point in the interior of S3. Because of this, the path integral
in this T -dual description cannot be interpreted as a trace.

There is a simple way to avoid this difficulty. Before T-duality, we first perform
S -duality. S -duality converts the D3–NS5 system to a D3–D5 system. (A system of
D3-branes ending on a D5-brane has special properties that were investigated in [25],
[81], [16], and [21], and interpreted in field theory language as a boundary condition
in N D 4 superYang–Mills theory in [39].) We embed the D3–D5 system in R9 �S1

and now T-duality simply maps this to a D4–D6 system on R9 � zS1. Now the path
integral can be straightforwardly interpreted as a trace and this leads to a formula
like (1.9). What plays the role of K is the cohomology of a certain supercharge Q
that is preserved by the construction. (The proper choice ofQ depends on details that
we have omitted here.) F corresponds to an R-symmetry of the brane configuration,
and P is, from the point of view of the D4-brane gauge theory, theYang–Mills instanton
number integrated over R3 � RC.

Most of these steps have analogs with R3 replaced by a more general three-
manifold W , but in trying to formulate the resulting statements about Chern–Simons
theory, one runs into infrared divergences and a need to understand how S -duality
acts on the boundary conditions at y D 1. The simplest case other than R3 is likely
to be the case thatW is obtained by omitting a point from a rational homology sphere.
In this case, projecting the missing point to infinity and taking a metric on W that
looks near infinity like the flat metric on R3, there are no infrared divergences and
a close analog of Khovanov homology should exist. One will still have the problem
of understanding the action of S -duality on the boundary conditions at y D 1.

1.4.2. Organization of the paper. In Section 2, we describe in more detail, in
the context of the D3–NS5 system, the relation of the Chern–Simons path integral
in three dimensions to an N D 4 path integral in four dimensions. Then we apply
standard dualities to this situation, first S -duality in Section 3 followed by T-duality
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(or in gauge theory simply the introduction of a fifth dimension) in Section 4. The
first step leads to an essentially new description of knot invariants related to Chern–
Simons theory, and the second leads to Khovanov homology. The two operations have
different status. S -duality is natural purely as a field theory operation, but T-duality
is not and leads to a description by a five-dimensional super Yang–Mills theory that
is not ultraviolet complete.

A better and conceptually more satisfying formulation is to base our construc-
tion not on five-dimensional super Yang–Mills theory but on its familiar ultraviolet
completion in the six-dimensional .0; 2/ model (for example, see [106] for a brief
introduction). In Section 5, we proceed in this way: we begin with the .0; 2/ the-
ory in six dimensions, and work our way down to five, four, and three dimensions.
This gives the most economical and logically complete treatment of the topic, and
it gives the clearest explanation of a number of questions. The top-down approach
of Section 5 certainly could have been the starting point of the present paper. We
have chosen instead a bottom-up presentation in which the relation to Chern–Simons
theory is made as clear as possible at the outset.

In Section 6, we explore a second brane construction, which in some ways is closer
to the setting of [53]. The starting point of the second construction is that Wilson
operators of Chern–Simons theory can be expressed as codimension two monodromy
defects. The two formulations – via Wilson operators or monodromy defects – are
related to two different semiclassical limits of Chern–Simons theory. In one case,
one takes the level k to be large while keeping fixed the representations Ri labeling
the knots. This is the most direct framework for describing the Jones polynomial,
Khovanov homology, and their generalizations. In the other type of semiclassical
limit, the monodromies produced by the knots are kept fixed as k becomes large. This
second limit is related to the volume conjecture of Chern–Simons theory, which has
been reviewed with extensive references in [80] and explored physically in [50] and
[108]. The formulation of Chern–Simons theory in terms of monodromy defects can
be carried through all the dualities of the present paper, leading to descriptions based
on codimension two defects in various dimensions, as we explain briefly in Section 6.
This matter certainly merits much closer attention.

We probably should mention here two important puzzles that we will not unravel.
First, Khovanov homology is explicitly calculable for any given link in R3, though the
requisite calculations may not be easy. Indeed, Khovanov homology was originally
defined (see [7] for an accessible account) by an explicit algebraic recipe for comput-
ing it, though not one that makes topological invariance manifest. The description in
the present paper has the opposite properties: topological invariance is manifest, but
computability is not. It would be highly desirable to bridge the gap between the two
types of knowledge by deducing a known definition of Khovanov homology from
the quantum field theory construction studied here (or its close cousin studied earlier
in [53]). To do this requires understanding concretely the solutions of the local-
ization equations presented later; one must understand the four-dimensional version
of the equations, presented in (2.56), to understand the Jones polynomial, and the five-
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dimensional generalization, presented in (5.36), to understand Khovanov homology.
Not much of this is done in the present paper; the only examples of actual solutions
of the equations presented here are in Section 3.6. However, since the present paper
was written, a reasonable understanding of the four-dimensional equations has been
obtained in [41] and this indeed has given a concrete understanding of how the Jones
polynomial emerges in the present framework. Some interesting special solutions of
the four-dimensional equations have also been analyzed in [58].

Second, our approach here makes some things clearer than has been the case
hitherto, but we fail to make contact with one important insight from [53]. We consider
each gauge group as a problem in its own right, while in [53], the A theories were
treated in a unified way, and this has been generalized to B, C, and D; see [92], [79],
and [72].

1.4.3. Comparison to other work. Some relations of the present paper to other
work, beyond what has already been cited, are as follows.

Geometric Langlands duality (for a review, see [33]) has a generalization, some-
times called quantum geometric Langlands in the mathematics literature, involv-
ing a parameter that was called ‰ in [67]. This generalization has been related to
the theory of quantum groups [42], suggesting that geometric Langlands should be
related to Chern–Simons theory. Indeed, we show in this paper that if formulated
on a four-manifold V of boundary W , the four-dimensional topological field theory
associated to geometric Langlands is related to Chern–Simons theory on W , with
‰ as essentially the Chern–Simons level. Khovanov homology has previously been
defined [18] using moduli spaces of geometric Hecke transformations, which are
vital in geometric Langlands and were interpreted via gauge theory in Sections 9
and 10 of [67].

On an abstract three-manifold W , Chern–Simons gauge theory only makes sense
if the level k is an integer. But we show in the present paper that ifW is the boundary
of a given four-manifold V , and we are willing to accept an answer that depends on
V , then a theory with many of the properties of Chern–Simons theory can be for-
mulated as a function of a complex variable k. Moreover, the theory appears to be
unitary in Lorentz signature if k is real. All this has a counterpart in contemporary
developments in condensed matter physics. Topological insulators and supercon-
ductors – see for example [86] for a review – are materials of d dimensions (and
therefore d C 1 spacetime dimensions) that on their .d � 1/-dimensional surface
realize physical phenomena that could never occur in a purely .d � 1/-dimensional
material. The values of d that have been realized experimentally are 3 (a bulk mate-
rial with a two-dimensional surface) and 2 (a thin film with a one-dimensional edge).
The d D 3 topological insulators are materials that ultimately prove to have a “for-
bidden” Chern–Simons coupling (for the ordinary electromagnetic field), somewhat
like the system we study in the present paper for non-integer k.

Apart from papers already cited, a relation between four-dimensional N D 4

super Yang–Mills and three-dimensional Chern–Simons – or at least q-deformed
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two-dimensional Yang–Mills – has been described in certain geometries in [1]. And
a recent paper dealing with topics relatively close to that of the present paper is [27].

While the present paper was in gestation, it developed that the five-dimensional
gauge theory equations that we present in (5.36) have been formulated independently
by A. Haydys [57]. Haydys’ point of view was roughly to study the A-model with
target the moduli space of complex-valued flat connections on a three-manifold. He
also presented the two reductions of the equations that are described in Section 5.3.1.
Even more recently, the author has become aware of work by M. Kontsevich and
Y. Soibelman that may have a bearing on the present topic.
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2. Chern–Simons from four dimensions

2.1. The D3–NS5 system with a theta-angle. As indicated in Section 1.4.1, our
starting point is the D3–NS5 system of Type IIB superstring theory. The local picture
is that in Minkowski spacetime R1;9, with coordinates x0; : : : ; x9 (and metric signa-
ture � C C � � �C), we considerN D3-branes supported at x4 D x5 D � � � D x9 D 0.
The D3-branes end on a single NS5-brane that is supported at x3 D x7 D x8 D
x9 D 0. In the four-dimensional spacetime parametrized by x0 ; : : : ; x3, the D3-brane
world-volume spans the half-space x3 > 0. The gauge theory of the D3-branes is a
U.N / gauge theory with N D 4 supersymmetry. In this gauge theory, the NS5-brane
provides a half-BPS boundary condition, that is, a boundary condition that preserves
half of the supersymmetry.

When the gauge theory theta-angle vanishes, this boundary condition is simply
Neumann boundary conditions for gauge fields, extended to the rest of the vector
multiplet in a supersymmetric fashion. However, the brane construction implies the
existence of a more general half-BPS boundary condition even for � 6D 0. Indeed,
Type IIB superstring theory has a complex coupling parameter � D �=2� C i=gs

(� is the expectation value of a Ramond–Ramond scalar and gs is the string coupling
constant), which in the gauge theory becomes � D �=2� C 4�i=g2

YM, with gYM the
gauge coupling constant and � the gauge theory theta-angle. The D3–NS5 system is
half-BPS for any value of � , so from a gauge theory point of view, Neumann boundary
conditions must have a half-BPS generalization for � 6D 0.
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This generalization was described in Section 2 of [39] (a more roundabout con-
struction was also presented in [40]). We will summarize the essential points here,
referring for more details to [39]. Though the initial motivation is the D3–NS5 sys-
tem, once the half-BPS boundary condition is expressed in field theory language, it
makes sense for any gauge group G, and we will present it that way.

The R-symmetry group of N D 4 super Yang–Mills theory is SO.6/ (or actually
its spin double cover), acting by rotation of the normal bundle to the D3-brane. The
presence of the NS5-brane breaks SO.6/ to SO.3/� SO.3/, where one factor rotates
x4, x5, x6 and the second rotates x7, x8, x9. In [39], the two SO.3/’s are denoted
respectively as SO.3/X and SO.3/Y and the corresponding two sets of scalar fields
on the D3-brane were denoted as ÅX and ÅY . The D3–NS5 boundary condition on ÅY
is

ÅY j D 0 (2.1)

(for any field ˆ, its restriction to x3 D 0 will be denoted as ˆj), irrespective of � ,
but the other boundary conditions are more subtle.

It is useful to adopt a ten-dimensional notation3 in which N D 4 superYang–Mills
theory comes by dimensional reduction from ten dimensions and the supersymmetries
of the D3-brane transform under SO.1; 9/ as a spinor 16 of definite chirality; thus
a generator " of supersymmetry obeys

�012:::9" D "; (2.2)

where �I , I D 0; : : : ; 9, are the SO.1; 9/ gamma matrices. (As usual, a symbol
such as �I1:::Ik

denotes the antisymmetrized product of the corresponding gamma
matrices.) The D3–NS5 boundary condition is invariant under U D SO.1; 2/ �
SO.3/X � SO.3/Y , where SO.1; 2/ acts on the dimensions x0, x1, x2 common to the
two types of brane. Each factor in U has a two-dimensional representation that we
denote as 2, and the 16 transforms as two copies of the tensor product .2; 2; 2/. This
tensor product, which we denote as V8, is a real representation of U of dimension 8.
The supersymmetries transform as 16 D V8 ˝ V2, where V2 is a two-dimensional
real vector space. The natural operators that act on V2 are the even elements of the
SO.1; 9/ Clifford algebra that commute with U. They are generated by

B0 D �456789; B1 D �3456; B2 D �3789; (2.3)

and in view of the algebraic relations they obey (such asB2
0 D �1,B0B1CB1B0 D 0,

etc.), we can choose a basis for V2 in which

B0 D
�
0 1

�1 0

�
; B1 D

�
0 1

1 0

�
; B2 D

�
1 0

0 �1
�
: (2.4)

3 We will attempt to follow conventions of [67]. In particular, adjoint-valued fields such as gauge fields
are real and anti-hermitian. (This accounts for some minus signs in formulas such as (2.10).) We define
the Levi-Civita tensor ���˛ˇ of R1;3 and the corresponding tensor ���� of the hyperplane x3 D 0 as
antisymmetric tensors obeying �0123 D 1 D ��0123 and �012 D 1 D ��012, respectively.
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The expression ."; Q"/ D N"�3 Q" defines an SO.1; 2/�SO.6/-invariant bilinear form
on the 16 of SO.1; 9/; it factors as the tensor product of an antisymmetric U-invariant
form on V8 and an antisymmetric form on V2. If we write "0 2 V2 as a column
vector . s

t / and N"0 as the row vector .t;�s/, then we can write the antisymmetric
inner product on V2 as h"0; Q"0i D N"0 Q�0.

In any half-BPS boundary condition that is U-invariant, the unbroken supersym-
metries must be precisely those of the form V8 ˝"0, for some nonzero vector "0 2 V2.
Since scaling of "0 is immaterial, the choice of "0 depends essentially on a single real
parameter. We can take

"0 D
��a
1

�
; N"0 D .1 a/ (2.5)

(we include the possibility a D 1, which means that the bottom component of "0

vanishes). It is shown in [39] that for every a 2 R [ 1 there is a unique U-invariant
half-BPS boundary condition that preserves all of the gauge symmetry. The parameter
a corresponds to the gauge theory theta-angle.4

Without repeating the full derivation, we will cite the results that we need. The
fermion fields 	 of N D 4 super Yang–Mills are adjoint-valued fields that transform
as the 16 of SO.1; 9/, like the supersymmetry generators. The boundary conditions
they obey turn out to be

	j 2 V8 ˝ #; (2.6)

where # 2 V2 is

# D
�
a

1

�
: (2.7)

The boundary conditions on ÅX at x3 D 0 are

D3Xc � a

1C a2
�cdeŒXd ; Xe� D 0; (2.8)

and the boundary conditions on the gauge fields at x3 D 0 are

F3� C a

1 � a2
����F

�� D 0: (2.9)

At a D 0 and a D 1, equations (2.8) and (2.9) reduce to the more obvious
Neumann boundary conditions D3Xa D F3� D 0 (the two choices actually corre-
spond to the D3–NS5 and D3–NS5 systems). The additional terms in the boundary
conditions for generic a reflect boundary corrections to the familiar N D 4 super
Yang–Mills action in bulk. Let us first consider ÅX. The usual bulk action for ÅX is in
Lorentz signature

I ÅX D 1

g2
YM

Z
x3�0

d4x

3X
�D0

3X
cD1

TrD�XcD
�Xc : (2.10)

4In the context of the D3–NS5 system, � is not really an angle as a shift � ! � C 2� would convert
the NS5-brane to a .1; 1/ fivebrane. Accordingly, the following formulas have no periodicity.
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Let us consider when happens when we vary ÅX. If we place no restriction on the
value of ıXc at x3 D 0, we will learn that to make the boundary term in the variation
of I ÅX vanish, the boundary condition must be D3Xc D 0. Suppose, however, that
there is an additional boundary coupling

zI ÅX D 2a

3g2
YM.1C a2/

Z
x3D0

d3x �cdeTrXc ŒXd ; Xe�: (2.11)

If we now vary yI ÅX D I ÅX C zI ÅX with respect to ÅX, placing again no restriction on ıXc j,
we find that setting the boundary variation of yI ÅX to zero gives the boundary condi-
tion (2.8). So the boundary coupling (2.11) underlies the boundary condition (2.8).

The boundary coupling zI ÅX is unfamiliar, but it has a more familiar analog for
gauge fields. The analog of (2.10) for the gauge field A, whose field strength we
denote as F�� , is

IA D 1

2g2
YM

Z
x3>0

d4x

3X
�;�D0

TrF��F
�� : (2.12)

If we work just with this action, then setting its boundary variation to zero (with no
restriction on ıAj), we learn that the boundary condition on the gauge field must be
F3�j D 0. To arrive at (2.9), we need an additional term in the action. This extra
term is the usual topological term of four-dimensional gauge theory

zIA D � �

32�2

Z
x3�0

d4x ���˛ˇ Tr F��F˛ˇ ; (2.13)

with
�

2�
D 2a

1 � a2

4�

g2
YM

: (2.14)

Viewed as an equation for a with � , gYM fixed, (2.14) has two roots. The two roots
correspond to half-BPS boundary conditions of the D3–NS5 and D3–NS5 systems,
respectively.

Although written as a bulk integral, zIA has only a boundary variation, simply
because on a manifold V without boundary,

R
V

TrF ^ F is a topological invariant.
In fact, we can almost write zIA as a boundary integral, the integral over the surface
x3 D 0 of the Chern–Simons form:

zIA D � �

8�2

Z
x3D0

d3x ���� Tr
�
A�@�A� C 2

3
A�A�A�

�
: (2.15)

But there is a problem with this last formula: the Chern–Simons integral on a
three-manifold is not quite gauge-invariant. The right hand side of (2.15) is gauge-
invariant modulo an integer multiple of � . Since the action of a quantum theory
must be well defined modulo 2�Z, zIA would not make sense as the action of a purely
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three-dimensional theory unless � is an integer multiple of 2� . This case is not trivial,
since in the presence of an NS5-brane, there is no symmetry of shifting � by 2� ; a
shift � ! � C 2�k would convert the NS5-brane to a .1; k/ fivebrane. However,
we do not wish to be limited to the case � 2 2�Z. The reason that we are not so
restricted is that we are not doing gauge theory on an abstract three-manifold; rather,
the three-manifold at x3 D 0 on which we do the integral (2.15) is the boundary of
a four-manifold x3 � 0 on which the gauge theory is defined; the precise, gauge-
invariant definition of zIA is the original four-dimensional integral (2.13). Still, it can
be convenient to informally write zIA as a Chern–Simons integral (2.15), and we will
sometimes do so.

2.1.1. Wick rotation. So far, our formulas have been in Lorentz signature, to make
contact with [39] and to emphasize the fact that, as long as the parameter a is real,
our boundary condition is unitary and physically sensible. However, to make contact
with topological field theory in the rest of this paper, it is helpful to write the formulas
analogous to the above in Euclidean signature. A Wick rotation x0 ! �ix0 reverses
the sign5 of zIX , and multiplies zIA by �i . So in Euclidean signature, combining the
terms involving X and A, the boundary interactions of the D3–NS5 system are

I� D 1

g2
YM

Z
x3D0

d3x
�

� 2a

3.1C a2/
�abcTrXaŒXb; Xc �

C i
2a

1 � a2
����Tr

�
A�@�A� C 2

3
A�A�A�

��
:

(2.16)

In a convenient notation in which N D 4 superYang–Mills is obtained by dimen-
sional reduction from ten dimensions, with the ten dimensions labeled by x0; : : : ; x9,
the Euclidean signature version of the chirality condition for supersymmetry gener-
ators and fermions is

�0�1 : : : �9" D �i"; �0�1 : : : �9	 D �i	: (2.17)

2.2. Comparison to topological field theory. So far we have emphasized the half-
BPS nature of the boundary condition of interest. We will also need to understand
this boundary condition from the vantage point of topological field theory. The
background necessary for this analysis can be found in Section 3 of [67], to which

5 zIX is free of derivatives and is a contribution to the potential energy V of the theory. As usual, V
appears in the Lorentz signature action with a minus sign and in the Euclidean signature action with a
plus sign. Concretely, a contribution �IL D � R

dt V to the Lorentz signature action IL leads in the
path integral to a factor exp.i �IL/ D exp.�i

R
dt V /. After Wick rotation t ! �i t , this becomes

exp.� R
dt V /, which is interpreted as a factor in exp.�IE/, where IE is the Euclidean action. So the

contribution to IE is C R
dt V . In the case of the Chern–Simons function, as it is a topological invariant,

it is not affected directly by the Wick rotation. The coefficient with which it appears in the action acquires
a factor of �i under Wick rotation purely because of the convention that the integrand of the path integral
is exp.iIL/ in Lorentz signature and exp.�IE/ in Euclidean signature.



18 E. Witten

we refer for detail (some aspects were treated originally in [111]). Here we will just
summarize some necessary facts.

2.2.1. Twisting. The basic idea is to construct a four-dimensional topological field
theory by twisting of N D 4 super Yang–Mills theory. Postponing the consideration
of possible boundary conditions, we consider N D 4 super Yang–Mills realized
on a system of D3-branes parametrized by x0; : : : ; x3. The usual rotation group (in
Euclidean signature) is SO.4/, rotating these coordinates, while the normal directions
x4; : : : ; x9 are rotated by the SO.6/ group of R-symmetries. To define a topological
field theory, one defines a group SO0.4/ that acts by rotating x0; : : : ; x3 in the usual
way, while simultaneously rotating four normal coordinates x4; : : : ; x7. We pick a
supersymmetry generator " that is SO0.4/-invariant, meaning that it obeys

.��� C �4C�;4C�/" D 0; 
; � D 0; : : : ; 3: (2.18)

Denoting as Q the supersymmetry generated by such an ", arguments of a standard
type show that upon restricting to Q-invariant operators and states, one obtains a
four-dimensional topological field theory.

From the point of view of SO0.4/-symmetry, four of the adjoint-valued scalar
fields of N D 4 super Yang–Mills theory are reinterpreted as an adjoint-valued one-
form ' D P3

�D0 '� dx�, while the other two combine to an adjoint-valued complex
scalar field � . SO0.4/ commutes with a group SO.2/ Š U.1/ of R-symmetries that
rotates x8 and x9. We normalize its generator F so that � has charge 2.

This decomposition of the R-symmetry group and of the scalar fields of N D 4

super Yang–Mills theory differs from that made in Section 2.1. In that discussion,
the x�, 
 D 0; : : : ; 3, were split in tangential coordinates with 
 � 2 and a normal
coordinate x3. In matching the two descriptions, we identify the tangential part
of ', that is E' D P2

�D0 '� dx�, with ÅX, and we identify the normal part '3 with

a component of ÅY, say Y1. (We also set � D Y2 � iY3.) The boundary couplings
(2.16) become in this notation

I� D 1

g2
YM

Z
x3D0

d3x ����Tr
�

� 4a

3.1C a2/
'�'�'�

C i
2a

1� a2

�
A�@�A� C 2

3
A�A�A�

��
:

(2.19)

2.2.2. Comparing the two descriptions. However, rewriting (2.16) in topological
field theory notation is only a reasonable thing to do if the boundary condition that
leads to (2.16) actually preserves the symmetry of the topological field theory. So let
us explain why this is true.

First of all, the condition (2.18) for SO0.4/-invariance of the supersymmetry gen-
erator actually has a two-dimensional space of solutions. It is possible to pick a basis
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of solutions "`, "r that are chiral in the four-dimensional sense,

�0123"` D �"`; �0123"r D "r : (2.20)

It is possible to normalize "` and "r so that,6 for 
 D 0; 1; 2, or 3,

��;4C�"` D �"r ; ��;4C�"r D "`: (2.21)

In constructing a topological field theory, we may take the supersymmetry generator "
to be an arbitrary linear combination of "` and "r . Up to an inessential scaling, we
take

" D "` C t "r : (2.22)

(We allow t D 1, which corresponds up to scaling to " D "r .)
So we get a family of topological field theories parametrized by a complex vari-

able t . Now we can make contact with the D3–NS5 system. From (2.17), (2.20),
and (2.3), we have

B0"` D i"`; B0"r D �i"r : (2.23)

Using also (2.21) and (2.18), one can show, with some gamma matrix algebra, that

B1"` D �"r ; B1"r D �"`: (2.24)

It follows that �
1C i

1 � t2
1C t2

B0 C 2t

1C t2
B1

�
."` C t "r/ D 0: (2.25)

On the other hand, with the help of (2.4), we see that the object "0 defined in (2.5)
obeys the same equation

�
1C i

1 � t2
1C t2

B0 C 2t

1C t2
B1

�
"0 D 0 (2.26)

if and only if the parameter a used in describing the D3–NS5 system is related to the
parameter t of the topological field theory by

a D i
1 � i t
1C i t

: (2.27)

The half-BPS boundary condition of the D3–NS5 system preserves every supersym-
metry with a generator " D �˝ "0, with � 2 V8. So in particular, once we impose
the relation (2.27) between the parameters, this boundary condition preserves the
supersymmetry generator of the twisted topological field theory. Substituting (2.27)
in (2.14) and solving for t2, we get the surprisingly simple result

t2 D N�
�
: (2.28)

6 In the following formulas, there is no sum over �; a covariant version reads .	�	4C� C
	�	4C�/"` D �2g��"r , .	�	4C� C 	�	4C�/"r D 2g��"l .
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The operation t ! �t corresponds to a ! �1=a and to exchange of the D3–NS5
and D3–NS5 systems.7

With the aid of (2.27), the boundary couplings (2.19) can be rewritten

I� D 1

g2
YM

Z
x3D0

d3x ����Tr
�

� t C t�1

3
'�'�'�

C t C t�1

t � t�1

�
A�@�A� C 2

3
A�A�A�

��
:

(2.29)

2.2.3. Global formulation and brane construction. The topological field theory
under discussion can be defined on any (oriented) four-manifold, possibly with bound-
ary. One can motivate how to do this by generalizing the D3–NS5 system beyond the
special geometry that we have considered so far.

Introducing a slightly new nomenclature for a reason that will soon be clear, let
V0 be an arbitrary oriented four-manifold, and consider Type IIB superstring theory
on T �V0 � R2. For the moment, suppose that T �V0 admits a complete Calabi–
Yau metric. Consider N D3-branes wrapped on V0 � f0g � T �V0 � R2, where
0 is a point in R2 (the “origin”). This system is topologically twisted in precisely
the way described in Section 2.2.1. Type IIB superstring theory on T �V0 � R2

has four unbroken supersymmetries, of which two are preserved by the D3-branes
wrapped on V0. The two unbroken supersymmetries precisely correspond to the
SO0.4/-invariant supersymmetries with generators "` and "r , as described above. This
approach to realizing topologically twisted gauge theories via branes was described
in [12]. The basic idea is that the twisting of the normal bundle to V0 � T �V0 leads
to the R-symmetry twist that is used in defining a topological field theory.

The above remarks are unaffected by possible presence of a Type IIB theta-angle
– which becomes the theta-angle of the gauge theory along the D3-branes. Now
suppose we are given an oriented three-manifold W � V0, such that T �W � T �V0

is a supersymmetric cycle (a complex submanifold). Then we can wrap an NS5-brane
on T �W � f0g � T �V0 � R2. The NS5-brane preserves half the supersymmetry of
Type IIB on T �V0 � R2 (that is, in the absence of D3-branes, two supercharges are
conserved, while if one includes D3-branes, there is one conserved supersymmetry).
Moreover, such a W , being oriented and of codimension 1 in V0, may potentially
divide V0 into two pieces. Assuming this is the case, either one of the pieces, say V ,
is a four-manifold of boundaryW . Now instead of D3-branes wrapped on V0, we can
consider D3-branes wrapped on V and ending on the NS5-brane. The support of the
D3-branes is thus V � f0g � T �V0 � R2. With both types of brane present, there
is now only one conserved supercharge; its generator is a linear combination of "`

and "r , depending on the theta-angle and other parameters.

7As long as the gauge theory parameters gYM and � are real, N
 is the complex conjugate of 
 , so (2.28)
implies that t has modulus 1, and (2.27) then implies that a is real. When we get to topological field
theory, we may choose to analytically continue 
 and N
 to independent complex variables, whereupon t
no longer has modulus 1 and a becomes complex.
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The geometry assumed above is rather special. For example, a complete Calabi–
Yau metric on T �V0 exists if V0 is S4 or S2 � S2, but not for most V0. Actually,
the above construction can be generalized by replacing T �V0 by any Calabi–Yau
four-fold X that admits V0 as a special Lagrangian four-cycle; similarly, T �W can
be replaced by any divisor in X . Moreover, we really only care about V , not V0.
So many cases can be realized, but we probably do not have enough freedom to
accommodate an arbitrary W and V . Similarly, the brane construction naturally has
a D3-brane gauge group U.N /, and, though one could accommodate orthogonal
or symplectic gauge groups by adding an orientifold plane to the construction, this
construction does not naturally lead to exceptional gauge groups.

From our point of view, the most obvious merit of the brane construction is
motivational. It presumably does not literally work, globally, for all oriented four-
manifolds V with arbitrary boundary W ; nor does it work for all gauge groups.
But the brane construction suggests a purely field theoretic construction that does
work in general. The R-symmetry twist that was sketched in Section 2.2.1 (and was
described in far more detail in Section 3 of [67]) preserves two supercharges when
the theory is formulated on an arbitrary four-manifold V ; one linear combination of
these two supercharges is preserved when V has a boundary W , with a boundary
condition that is modeled locally on the D3–NS5 system. All these statements can be
verified by infinitesimal calculations on V and W , and the fact that they work in the
brane construction is enough to ensure that, as field theoretic statements, they work
in general.

Apart from encouragement, what else do we gain from the brane construction?
One answer is that ultimately, we will have to understand the behavior under cer-
tain nonperturbative dualities. For this, the brane construction provides invaluable
insight. A second answer is that to understand Khovanov homology, we will have
to ultimately go to five dimensions, where Yang–Mills quantum field theory is not
ultraviolet-complete. The most rigorous and general formulation of our construction
will ultimately be given in purely field theoretic terms, but the field theory required is
the six-dimensional .0; 2/ theory (from which five-dimensional superYang–Mills the-
ory can be derived), whose existence and properties are known only from its multiple
relations to string theory,M -theory, and branes. So the insights that come from brane
constructions are again essential.

2.2.4. Wilson loops. N D 4 super Yang–Mills theory in four dimensions admits
1/16-BPS Wilson loop operators [112]. They are constructed as follows. The super-
symmetry transformation law for the bosonic fields of this theory is

ıAI D i N"�I	 D �i N	�I "; I D 0; : : : ; 9: (2.30)

Here we use a ten-dimensional notation; for I � 3,AI is a component of a gauge field,
and for I � 4, it is a scalar field. By twisting, we have converted four of the scalar
fields to a one-form '. Usually, we use Greek letters 
; �; : : : for four-dimensional
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indices, so we write A D P3
�D0A�dx�, ' D P3

�D0 '� dx� D P3
�D0A4C�dx�.

Suppose that " is such that

.�� C i�4C�/" D 0; 
 D 0; : : : ; 3: (2.31)

Clearly, in this case, Wilson operators of the form

TrR P exp
I

K

.AC i'/ (2.32)

are invariant, for an arbitrary embedded loop K in spacetime and any representation
R of the gauge group. Similarly, if

.�� � i�4C�/" D 0; 
 D 0; : : : ; 3; (2.33)

then there are supersymmetric Wilson operators of the form

TrR P exp
I

K

.A � i'/: (2.34)

As explained in [67], the supersymmetry generator " D "` C t "r of interest
here obeys (2.31) or (2.33) precisely for t D i or t D �i . Therefore, in general,
supersymmetric Wilson operators appear in this family of topological field theories
precisely at those values of t . The occurrence of supersymmetric Wilson operators at
t D ˙i is actually important in geometric Langlands, and played a major role in [67].
But in the present paper, we are interested in other values of t .

Therefore, we do not have supersymmetricWilson operators – except at the bound-
ary ofV . For a Wilson operator supported entirely at the boundary ofV , we can use the
boundary conditions obeyed by 	, as well as the conditions obeyed by ", to establish
supersymmetry. We will explore the conditions that on the boundary of V

0 D ı.A� C w'�/ D �i N	.�� C w�4C�/"; 
 D 0; 1; 2: (2.35)

The reason that we impose this condition only for 
 < 3 is that the goal is to
construct Wilson operators that are supersymmetric only on the boundary of V , at
x3 D 0. In (2.35), w is a complex number, to be determined. If (2.35) holds, then
upon setting

Aw D AC w'; (2.36)

we can construct supersymmetric Wilson operators

TrR P exp
I

K

Aw ; (2.37)

for any knot K in the boundary of V .
A preliminary reduction is that N	.�� C w�4C�/" D N	��.1 C w��;4C�/" D

N	��.1C iwB0B1/". In the second step, we used the fact that ��;�C4" D iB0B1".
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This follows from (2.21), (2.24), (2.23), and the fact that " is a linear combination
of "` and "r . So we need to explore the vanishing of

N	��.1C iwB0B1/": (2.38)

The expression .	; "/ D N	��", for any 
, gives a symmetric bilinear form on the
16 of SO.1; 9/. As before, we decompose 16 D V8 ˝ V2. For 
 � 2, N	��"

is the tensor product of a symmetric bilinear form on V8 (transforming as .3; 1; 1/
under SO.1; 2/ � SO.3/X � SO.3/Y ) with a symmetric bilinear form on V2. If we
represent #; "0 2 V2 as two-component column vectors, then the form on V2 can be
written as #T "0. The fermion boundary condition of the D3–NS5 system says that 	,
on the boundary, is the tensor product of some vector in V8 with # 2 V2 (where #
was defined in (2.7)), and similarly the generator " of any unbroken supersymmetry
of the D3–NS5 boundary condition, including the one of topological interest, is the
tensor product of some vector in V8 with "0 (defined in (2.5)). So to justify the
definition (2.37) of supersymmetric Wilson loops, we require

#T .1C iwB0B1/"0 D 0: (2.39)

With the definitions of # and "0 and the formulas (2.4) for B0 and B1, it is straight-
forward to compute that (2.39) is obeyed precisely if

w D i
a2 � 1
a2 C 1

D t � t�1

2
; (2.40)

where in the last step, we used the relation (2.27). For real � and gYM, a is always real
(by virtue of (2.14)), so the first formula in (2.40) shows that w is always imaginary.
With the help of (2.28), we find

w D �i Im �

j� j ; (2.41)

with the signs corresponding to t D ˙j� j=� .
The action I of N D 4 super Yang–Mills theory on a four-manifold V is the sum

of a term proportional to 1=g2
YM, which contains the kinetic energy for all fields, and

a term proportional to � :

I D 1

g2
YM

Z
V

d4x
p
gLkin C i

�

32�2

Z
V

d4x ���˛ˇ Tr F��F˛ˇ : (2.42)

Here, for later reference, the part of Lkin that involves A; ' only is (in Euclidean
signature)

L
A;'
kin D �Tr

�1
2
F��F

�� CD�'�D
�'� CR��'

�'� C 1

2
Œ'�; '��

2
�
: (2.43)

(R�� is the Ricci tensor ofV ; whenV is not Ricci-flat, the indicated term proportional
to R�� is needed for Q-invariance.)
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Let us first consider the case that V has no boundary. Both terms on the right hand
side of (2.42) areQ-invariant. The � term isQ-invariant because, more generally, it
is a topological invariant, unchanged in any continuous deformations. It represents a
nonzero class in the cohomology of Q (unless t D ˙i , as discussed momentarily).
One might suspect that the integral of Lkin would vanish in the cohomology of Q,
as happens in many twisted topological field theories, but this is actually not the
case. Instead, as shown in [67], the first term on the right of (2.42) is equivalent
mod fQ; : : : g to a multiple of the second term. The precise relation is

I D fQ; : : : g C 2�i‰

32�2

Z
V

d4x ���˛ˇ Tr F��F˛ˇ ; (2.44)

where

‰ D �

2�
C 4�i

g2
YM

t � t�1

t C t�1
(2.45)

was called in [67] the canonical parameter.
Before twisting, N D 4 super Yang–Mills theory in four dimensions depends

on a complex parameter � D �=2� C 4�i=g2
YM, which is valued in the upper half-

plane. Upon twisting, an additional complex parameter t appears in the choice of
the topological supercharge. It was shown in [67] that the topological field theory
obtained in this way depends on the two parameters � and t only via their combina-
tion ‰. A sketch of this argument is as follows. For the special cases t D ˙i , which
correspond to ‰ D 1, one shows directly that both terms on the right of (2.42) are
of the form fQ; : : : g, so the parameter � is irrelevant if ‰ D 1. (The case ‰ D 1
is important for geometric Langlands, but not for the present paper.) For t 6D ˙i , it
is shown in [67] that by including auxiliary fields and making a local redefinition of
the fermion fields, one can make the Q-transformation laws of all fields independent
of t . After one thus eliminates the dependence of the theory on t that is hidden in
the definition of Q, equation (2.44) shows that for fixed ‰, t appears only in a term
fQ; : : : g and thus is irrelevant for the topological field theory.

In [67], the transformation of t under electric-magnetic duality was determined.
It was shown that under a general S -duality transformation

� �! a� C b

c� C d
; (2.46)

t transforms by

t �! c� C d

jc� C d j t (2.47)

and that ‰ transforms just as � does:

‰ �! a‰ C b

c‰ C d
: (2.48)
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(Unlike � ,‰ is not restricted to take values in the upper half plane.) The formula (2.45)
for ‰ holds for all �; t . Imposing the relations (2.14), (2.27) that are natural in
studying the D3–NS5 system, we can derive several interesting alternative formulas.
Eliminating t in favor of gYM and � , we find

‰ D j� j2
Re �

; (2.49)

showing that ‰ is always real for the D3–NS5 system with physical values of the
parameters (real gYM and �). Alternatively, eliminating � in favor of gYM and t , we
get

‰ D 4�i

g2
YM

� t � t�1

t C t�1
� t C t�1

t � t�1

�
: (2.50)

Now let us discuss what happens whenV has a boundary.
R

V
d4x ���˛ˇ Tr F��F˛ˇ

is no longerQ-invariant, but varies by a boundary term. It is convenient to replace this
integral by a multiple of the Chern–Simons function. We define the Chern–Simons
function CS.A/, for any connection A, possibly complex-valued, by

CS.A/ D 1

4�

Z
@V

d3x ����Tr
�
A�@�A� C 2

3
A�A�A�

�
: (2.51)

In terms of this function, we can make the following substitution on the right hand
side of (2.44):

2�i‰

32�2

Z
V

d4x ���˛ˇ TrF��F˛ˇ ! i‰CS.A/: (2.52)

As it was explained in the context of (2.15), relation (2.52) must be treated with care,
since CS.A/ is not quite gauge-invariant (but only invariant under topologically trivial
gauge transformations), and the equality suggested in (2.52) really holds only modulo
an integer multiple of 2�i‰. The substitution (2.52) is a convenient shorthand, which
can be used in computing the variation of the integral on the left under a small change
in the connection, such as that generated by Q. For future reference, writing h for
the dual Coxeter number of G, we can write a formula equivalent to (2.51) in terms
of a trace Trad in the adjoint representation of G:

CS.A/ D 1

8�h

Z
@V

d3x ����Trad

�
A�@�A� C 2

3
A�A�A�

�
: (2.53)

Concretely, when we write‰ as in (2.45), the part of i‰ CS.A/ that is proportional
to � is already present in (2.29). The part proportional to 1=g2

YM appears upon writing
the kinetic energy as fQ; : : : g plus a multiple of the theta term, to arrive at (2.44).
In the derivation of (2.44), one can assume that V has no boundary, since the integralR

V
TrF ^F is in general non-zero even in that case. In Section 2.3, we will repeat the

derivation of (2.44), for the case that V has a non-empty boundary. When we do this,
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additional boundary terms will appear; this should come as no surprise, since one such
term is already visible in (2.29) and Q-invariance implies that there must be more.
In fact, the boundary couplings must be a function of Aw only (modulo Q-exact
terms), since this is the only non-trivial Q-invariant combination of boundary fields.

One can determine the form of the full boundary couplings without any computa-
tion, using gauge invariance and dimensional analysis plus the fact that the boundary
coupling is a function only of Aw . These conditions imply that it must be simply a
multiple of CS.Aw/; there is no other local, gauge-invariant functional of dimension
three. For a reason that we will explain momentarily, the coefficient of CS.Aw/ is
precisely i‰. So the generalization of (2.44) in the presence of a boundary is

I D fQ; : : : g C i‰ CS.Aw/: (2.54)

When CS.Aw/ is written explicitly as a function of A and ', the '-dependent terms
are given by local, gauge-invariant integrals, since

CS.Aw/ D CS.A/C 1

4�

Z
@V

d3x ���� Tr
�
w'�F��

C w2'�D�'� C 2w3

3
'�'�'�

�
:

(2.55)

Because those terms are local, gauge-invariant integrals over the boundary of V , they
cannot be detected directly by a computation that assumes that this boundary is empty.

However, because CS.A/ is not completely gauge-invariant, and must really be
written as an integral over V , its coefficient is determined by the analysis of the case
@V D ¿ in [67] and can be read off from (2.44), via the substitution (2.52). From this
we learn that the coefficient of CS.A/ in the boundary interaction is i‰, and in view
of (2.55), the coefficient of CS.Aw/ must be the same. Still, one would naturally
like to generalize (2.44) to the case @V 6D ¿, so as to see explicitly the origin of the
'-dependent boundary couplings. This is one of our next goals.

2.3. Localization and the boundary formula. Under favorable conditions, com-
putations in topological field theory can be localized on configurations that obey
fQ; 
g D 0, for all fermion fields 
. Among the fermions of8 F D �1 in the present
model are a selfdual two-form �C, an anti-selfdual two-form ��, and a scalar � (like
all fields of N D 4 super Yang–Mills theory, they are adjoint-valued). They have the
property that VC D fQ;�Cg, V� D fQ;��g, and V0 D fQ; �g depend on A; '
only:

VC D .F � ' ^ ' C tdA'/
C;

V� D .F � ' ^ ' � t�1dA'/
�;

V0 D D�'
�:

(2.56)

8The fermion number F was defined in Section 2.2.1.
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Here for any two-form ˛, we write ˛C and ˛� for its selfdual and anti-selfdual
projections. Localization on real fields A; ' can be achieved for real9 t by adding a
suitable term to the action I :

I �!I � 1

�

²
Q;

Z
V

Tr .�CVC C ��V� C �0V0/

³

D I � 1

�

Z
V

Tr ..VC/2 C .V�/2 C .V0/2 C � � � /;
(2.57)

where � is a small parameter and the omitted terms are fermion bilinears. For t
real, VC, V�, and V0 are real, and the modified action diverges as 1=� unless the
localization equations

.F � ' ^ ' C tdA'/
C D �

F � ' ^ ' � t�1dA'
�� D D�'

� D 0 (2.58)

are satisfied. So the path integral is supported, for � ! 0, on the space of solutions of
those equations. On the other hand, the integral is independent of �, since the term we
have added to the action is of the form fQ; : : : g. The fact that this sort of argument is
most straightforward for real t is not a major inconvenience, since for any ‰ (other
than ‰ D 1) there is always a convenient choice of real t .

There are also localization equations that depend on � . For t 6D ˙i , they are

D�� D Œ'�; �� D Œ�; N�� D 0: (2.59)

They say that the gauge transformation generated by � is a symmetry of the whole
configuration. Under favorable conditions (for instance, if the gauge field is irre-
ducible and has no continuous gauge symmetries, or if a boundary conditions sets �
to zero somewhere), they imply that � is identically zero.

To understand explicitly the origin of the '-dependent boundary terms in (2.55),
we have to make more explicit the relation of the localization procedure of (2.57) to
the physical action of N D 4Yang–Mills theory. The identity we need is actually
the generalization of (3.33) of [67] to the case that @V 6D ¿:

�
Z

V

d4x Tr
� t�1

t C t�1
VC

��VC�� C t

t C t�1
V�

��V��� C .V0/2
�

D
Z

V

d4x
p
gL

A;'
kin C t � t�1

4.t C t�1/

Z
V

d4x ���˛ˇ TrF��F˛ˇ

C
Z

@V

d3x ���� Tr
�

� 2

t C t�1
'�F�� � t � t�1

t C t�1
'�D�'�

C 4

3

1

t C t�1
'�'�'�

�
:

(2.60)

9According to (2.28), t is not real for physical values of the parameters; in fact, for weak coupling, it
is close to ˙i . We are here using our freedom to change t as we wish while keeping ‰ fixed.
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The left hand side of (2.60) is of the form fQ; : : : g modulo fermion bilinears, by the
same reasoning as in (2.57). One can write a more complete version of the formula that
includes the fermions and also � ; this makes the formulas longer without contributing
additional boundary terms. On the right hand side of (2.60),

R
L

A;'
kin is (after including

fermions and � ) the part of the bulk action of N D 4 super Yang–Mills theory that
is proportional to 1=g2

YM. The boundary terms that we want are the remaining terms
on the right hand side of (2.60). Thus, after multiplying by 1=g2

YM and making the
substitution (2.52) in one term, we can rewrite (2.60) as follows:

1

g2
YM

Z
V

d4x
p
gLkin

D fQ; : : : g C 1

g2
YM

Z
@V

d3x ���� Tr
�

� t � t�1

t C t�1

�
A�@�A� C 2

3
A�A�A�

�

C 2

t C t�1
'�F�� C t � t�1

t C t�1
'�D�'� � 4

3

1

t C t�1
'�'�'�

�
:

(2.61)

When we add the boundary terms that have appeared in (2.61) to the boundary
terms (2.29) that are already present in the physical theory, before twisting, we find
that the action has the expected form

fQ; : : : g C i‰CS.Aw/; (2.62)

with the expected value w D .t � t�1/=2.

2.4. Relation to Chern–Simons theory. So far we have analyzed this problem
starting with the D3–NS5 system. The coupling parameters gYM and � and the
parameter a in the boundary condition were all real. This physical starting point has
many advantages, such as the insight that it will give about the behavior under various
nonperturbative dualities.

But let us see what we can say purely from the standpoint of topological field
theory. Here we allow ourselves to continue all parameters to complex values.
Keeping ‰ fixed, we may choose, roughly speaking, any value of t that we wish.
The only restriction is that we may only vary t in such a way that the path integral
continues to converge. What is convenient is to pick t to be real, for then, as we re-
called in Section 2.3, there is a straightforward procedure to localize the path integral
on solutions of the equations VC D V� D V0 D 0.

These are elliptic differential equations, as described in [108]. On rather general
grounds, given a system of elliptic differential equations on a manifold V with
boundary @V D W , the space of solutions of the equations gives a cycle� in the space
of boundary data and this cycle is within a finite amount of being middle-dimensional.
In the present problem, the boundary data are the fields Aw D AC w' on W , and
we want to interpret � as an integration cycle in the integral over Aw .
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We are actually now in a situation that has been analyzed in detail in Section 5
of [109]. Localization of the path integral on the space of solutions of the equations
means that a path integral over bosons and fermions on the four-manifold V reduces
to an integral over the purely bosonic fields Aw on the three-manifold W D @V .
Localization further means that the integral over the boundary fields Aw reduces to
an integral over the cycle � . In this reduction, the part of the action that is of the form
fQ; : : : g gets dropped, leaving only – in the present context – the boundary action
i‰CS.Aw/.

Actually, at this stage we have a problem of index theory. The classical theory
under discussion has the conserved fermion number F. This conservation law has an
anomaly that is related in the usual way to the index theorem for the Dirac operator
of the theory. This operator and its elliptic boundary condition are described in
Appendix A of [109]. A nonzero index means that the four-dimensional path integral
vanishes unless we insert a suitable operator violating F in the appropriate way. We say
that � is a middle-dimensional cycle when the index vanishes, and in general that
� departs from being middle-dimensional by an amount equal to the index. In the
present problem, the index was analyzed10 in Section 4.1.1 of [108]. It is independent
of the choice of underlyingG-bundleE ! V , simply because the fermions of given F
transform in a real representation of G (namely the adjoint representation), and is
proportional to the Euler characteristic of V .

We will be interested primarily in the case that the index vanishes. (A typical
example of a similar problem in which the index is nonzero, so that an operator in-
sertion is needed to get a nonzero path integral, is described in Section 2 of [109].)
Then � is a middle-dimensional cycle. The four-dimensional path integral is gener-
ically nonzero and localization means that it reduces to an integral of the boundary
fields over �: Z

	

DAw exp.�i‰CS.Aw//: (2.63)

This has been described in Section 5.2.2 of [109].
At this point, the precise value ofw is not important. All that matters is that it has

a nonzero imaginary part, so that Aw D A C w' is a complex-valued connection.
The integral (2.63) has no dependence on w except in the definition of Aw , so we
can eliminate w by simply writing A for Aw . (In [109], w was set to i , but the
analysis could have been made in the same way for any w with nonzero imaginary
part.) Accordingly, we rewrite (2.63) with w D i :Z

	

DA exp.�i‰CS.A//: (2.64)

Now we should address the question of what are the possible values of ‰. In
10The operator whose index we want is the operator dA C d�

A mapping differential forms of odd degree
to those of even degree. The requisite boundary conditions, which were described in Appendix A of [109]),
are slightly unusual, but they are homotopic to standard boundary conditions in which the restriction of a
differential form on V to @V vanishes. With these boundary conditions, the index is ��.V /dim G.
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our derivation starting with the D3–NS5 system, with physically sensible values
of the parameters, ‰ has turned out to be an arbitrary nonzero real number, given
according to (2.49) by‰ D j� j2=Re � . From a topological field theory point of view,
as in [109], one can make a more general choice of the twisting parameter t and
then ‰ is an arbitrary nonzero complex number.11 Both points of view are useful.
The physical one based on the D3–NS5 system will enable us to understand the role
of nonperturbative dualities. The topological field theory point of view leads among
other things to holomorphy in ‰, which we will make use of momentarily.

The relation of a “contour” integral such as (2.64) to ordinary Chern–Simons
gauge theory with compact gauge groupG has been discussed in [108]. Let g and g

C
be the Lie algebras of G and of its complexification GC, and let U be the space of
all real gauge fields, that is all g-valued connections A on some principal G-bundle
E ! W . And let UC be the complexification of U, or in other words the space of all
g

C
-valued connections on the complexification of E. We denote such a connection

as A. The path integral of ordinary Chern–Simons theory with the compact gauge
group G is Z

U

DA exp.�ik CS.A//; (2.65)

and here the “level” k has to be an integer, in order to make the integrand of the path
integral gauge-invariant. (There is no such restriction on ‰ in (2.64), as explained
in [109], because of the choice of integration cycle � .) Usually one says that the path
integral does not make sense if k D 0 (since one needs a nontrivial oscillatory factor
exp.�ik CS.A// to define a sensible integral over the space of connections), and one
chooses the orientation of W to restrict to the case k > 0. We will instead consider
both signs of k.

It looks like the ordinary Chern–Simons path integral with gauge group G is the
special case of (2.64) with � D U, that is, with the integration cycle chosen to be
the obvious cycle that parametrizes real gauge fields. To emphasize this, in (2.65) we
have denoted the argument of the Chern–Simons function as a complex connection A,
although the integral is evaluated on the real cycle U, where A reduces to a real
connection A. However, before drawing conclusions about the relation of (2.64) to
ordinary Chern–Simons theory, we have to be careful in comparing the holomorphic
volume forms that appear in the two integrals.

The integration form that has been denoted as DA in (2.65) arises by analytic
continuation to UC of the usual integration form (which we also call DA) of the
Feynman integral of the g-valued theory. The corresponding form DA is induced
from the four-dimensional path integral on V . Both DA and DA are Calabi–Yau
volume forms on the same space, namely UC. So, a priori, their ratio is an invertible

11Alternatively, one can reach generic ‰ by analytically continuing to complex values of the gauge
theory theta-angle � , and otherwise using the formulas of the present paper. Giving � an imaginary part
violates unitarity, and indeed it appears that reality of ‰ is related to unitarity.
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holomorphic function on UC. We propose that the relation is

DA D DA exp.�ih sign.k/CS.A//N0: (2.66)

Here h is the dual Coxeter number of G, and sign.k/ is the sign of the integer k.
(Formulas somewhat analogous to (2.66) are described in Section 2.7.1 of [108].)
In (2.66), we have included a possible multiplicative constant N0, which is allowed
by holomorphy. The constant N0 might depend on the three-manifold W and the
choice of a homomorphism � W �1.W / ! GC at y D 1 to define the N D 4 path
integral, but holomorphy in‰, together with the fact that we have already incorporated
the effects of the gauge theory theta-angle, does not allow contributions to N0 beyond
one-loop order.

The relation (2.66) should be demonstrated explicitly – and the constant N0

calculated – by comparing the one-loop determinant for N D 4 super Yang–Mills
theory on V to the one-loop path integral of ordinary Chern–Simons theory on W .
We will not make such an analysis in the present paper. Instead, we content ourselves
with the following observation. Suppose that one expands the Chern–Simons path
integral (2.65) around a critical point, that is, around a flat connection A0. The inte-
grand of the path integral has a phase factor exp.�ikCS.A0//. As computed in [102],
the phase of the one-loop determinant corrects this to exp.�ik0 CS.A0// where

k0 D k C h sign.k/: (2.67)

Usually, k is taken to be positive so this formula is written k0 D k C h, but we
want to allow both signs of k, which requires replacing h with h sign.k/. (Chern–
Simons theory on a three-manifoldW is invariant under a reversal of orientation ofW
together with a change of sign of k; this means that k0 must be an odd function of k.
Concretely, the term in k0 that is linear in h comes from an �-invariant that changes
sign if the sign of k is changed.)

Now let us consider the analogous issue for N D 4 super Yang–Mills on V ,
with a boundary condition that leads to a “contour” integral (2.64) in the space of
g

C
-valued connections. The integral is holomorphic in ‰, so a one-loop shift in the

phase factor exp.�i‰CS.A0// would have to be holomorphic in ‰. Since there is
no holomorphic function that restricts to sign.‰/ when‰ is real, such a term cannot
arise.

Our proposal is that no such shift arises from the one-loop determinant of N D 4

super Yang–Mills theory. Instead, the shift is contained in the comparison (2.66)
between the path integral measures of the two theories. There is no problem in
holomorphy here, since the left hand side is only defined when k is a nonzero integer.
According to our proposal, in comparing N D 4 super Yang–Mills theory on V to
Chern–Simons theory on W , we should use not the naive ‰ D k but

‰ D k C h sign.k/: (2.68)
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To be more exact, from N D 4 superYang–Mills theory onV , we can generate a theory
that works for general (nonzero) complex ‰. It can be compared to Chern–Simons
theory when ‰ is an integer; in making this comparison we should use (2.68).

As is clear both from Section 2.2.4 of the present paper and from the analysis
in [109], we can add knots and Wilson loop operators to this analysis. N D 4 super
Yang–Mills theory with supersymmetric Wilson lines inserted on W D @V gives an
unusual integration cycle in Chern–Simons theory on W with the same Wilson line
insertions. A more complete microscopic explanation of the origin of the knots will
be presented in Section 5.1.3.

2.5. Choice of V. Now we will explain the choice of V that will be most useful in
the rest of this paper.

Given an oriented three-manifold W , we want to pick in a natural and general
way an oriented four-manifold V with @V D W . There is no way to do this if V is
supposed to be compact. Instead we will pick V D W � RC, where RC is a half-line
y � 0. Thus y corresponds to the normal coordinate to the boundary, which earlier
has been called x3.

Since V is not compact, we need a boundary condition at y D 1. The bound-
ary condition will be given by a y-independent solution of the localization equa-
tions (2.58). As explained in [108], such solutions correspond to conjugacy classes
of homomorphism12 from �1.W /, the fundamental group ofW , toGC, the complex-
ification of G. We let � W �1.W / ! GC be such a homomorphism.

Since V D W �RC has two ends – the boundary at y D 0 and the end at y D 1 –
we have to be more careful with the formula (2.62) for the action. The complete
version of the formula has contributions from both ends:

I D fQ; : : : g C i‰CS.A/ � i‰CS.A1/: (2.69)

Here we write simply A for the complex connection at y D 0, and A1 for its
counterpart at y D 1. A1 is completely determined by the boundary condition at
y D 1 and in particular by the choice of �, so the term we have added is simply
a constant. It is more precise to include the resulting constant in (2.64), so the N D 4

path integral on W � RC is really

N

Z
	

DA exp.�i‰CS.A//; (2.70)

where N is a normalization factor

N D exp.i‰CS.A1//: (2.71)

12To be more precise [22], the solutions correspond to homomorphisms that obey a mild condition of
semi-stability: their monodromies should not be strictly triangular.
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2.6. Some key details. We now run into an important point, which has also been
discussed in Section 5.2.2 of [109]. IfW is compact, thenW �RC is macroscopically
one-dimensional, and we must worry about infrared divergences.

If� is irreducible (which we take to mean that the homomorphism� W �1.W /!GC

commutes with at most a finite subgroup of GC), then our boundary condition at
y D 1 makes the theory “massive” – in the effective one-dimensional physics
obtained by compactification on W , all bosons and fermions are massive. Under
these conditions, the choice of � satisfactorily specifies the boundary conditions.

If instead � is reducible – it leaves unbroken a subgroup of G of positive rank –
then our boundary condition at y D 1 leads to a reduced one-dimensional theory
in which the potential energy as a function of scalar fields has flat directions: there
are some scalar fields (such as some components of � ) that can acquire expectation
values, at no cost in energy. In one dimension, quantum fluctuations of massless
scalars are inevitable and important. The boundary condition at y D 1 is in this case
not adequately specified by the choice of �; one also needs a quantum wavefunction
describing the initial conditions for the massless scalar fields at y D 1. Here we
view y as a Euclidean time coordinate.

The dependence on � presents a number of problems for the constructions that
we will make in the rest of this paper. Our next step, in Section 3.1, will be electric-
magnetic duality. At a minimum, to proceed in a situation in which � is important,
we would need to know how � transforms under electric-magnetic duality. Not much
is known about this, though a little can be gleaned (for some special choices of W )
from [99] and [59]. The reducible �’s are certainly important for understanding the
standard Chern–Simons path integral, since when expressed in terms of cycles asso-
ciated to flat bundles, it certainly receives contributions from reducible flat bundles.

What happens to the choice of � under electric-magnetic duality is a question
that presumably can be answered, in principle. The infrared divergences that arise
in the reducible case pose another problem that may be more serious. After making
electric-magnetic duality, we will in Section 4 make a T-duality to introduce a new
time coordinate, and then we will want to consider quantum states that propagate in
the time direction. Describing quantum states that propagate in the time direction
is, at least at first sight, incompatible with specifying a boundary condition by fixing
a quantum state that propagates in the y direction. One would at least need a better
language to describe what happens here.

Presumably, none of these problems are insuperable, but there clearly is some
work to be done to overcome them.

There is actually a straightforward way to circumvent these problems. This is
the approach we will take in most of this paper; it also is the approach that leads to
Khovanov homology. Instead of taking W to be compact, we will take W D R3.
(It then is essential to include knots or Wilson loop operators, since Chern–Simons
theory on R3 is trivial without them.) For W D R3, fluctuations of massless scalar
fields on V D W � RC do not present a problem, because V has four non-compact
directions. Also, as R3 is simply-connected, when we takeW D R3, there is a unique
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choice of � (corresponding to the trivial flat connection), and this choice must map
to itself under electric-magnetic duality. So as long as we restrict ourselves to knots
in R3, we avoid all technical problems related to infrared divergences and the behavior
of � under electric-magnetic duality.

There are additional technical advantages in taking W D R3. Our approach in
this paper naturally leads to an integral (2.64) over a cycle � defined by solving flow
equations on V D W � RC. � depends on the choice of �, so we might denote it
in more detail as ��. Khovanov homology is related instead to ordinary real Chern–
Simons theory, the integration cycle being the real cycle U. In general, as described
in [108], one can expand U as an integer linear combination of the ��’s, but it may
be hard to determine the coefficients explicitly. For W D R3, as � is unique, all
integration cycles are integer multiples of a fundamental one, and the relation is
simply13 � D U. So the integration cycle that emerges naturally from N D 4

superYang–Mills theory in four dimensions is equivalent to the usual one of ordinary
Chern–Simons theory on the boundary.

Furthermore, the normalization factors N and N0 of (2.71) and (2.66) equal 1 for
W D R3. We have N D 1 because A1 is trivial. And N0 D 1 on R3 because we are
studying a topological field theory. A “constant” arising from a one-loop determinant
on R3 would be a shift in the ground state energy per unit volume, but such a shift is
not possible in a topological field theory.

So there are many advantages to taking W D R3. Some but not all of these
advantages persist in the following more general case. LetW0 be a rational homology
sphere and let W D W0np be W0 with a point p omitted. W is not compact and we
pick on W a metric that near its noncompact end looks like the flat metric on R3. In
this type of example, there are no infrared divergences, but there are in general non-
trivial choices of �, and to proceed one would need to understand how � transforms
under electric-magnetic duality, and how to expand U as a linear combination of
the ��’s.

Khovanov homology has been defined in the literature for knots in R3 (or S3). It
has proved difficult so far to generalize Khovanov homology to other three-manifolds.
The difficulties may be related to some of the points made above. We note, however,
that results in [38] appear to be part of an analog of Khovanov homology for the case
W D R � C , with C a Riemann surface.

3. S -duality

To learn something new about Chern–Simons gauge theory, we will apply dualities
to the framework analyzed in Section 2. The relevant dualities are standard. Here we
consider S -duality and in Section 4, we follow with T-duality.

13U is precisely 	 , rather than a more general integer multiple of 	 , because in general when the real
integration cycle is expressed in terms of cycles associated to critical points, the cycles associated to real
critical points always enter with coefficient 1, as explained in [108], equation (3.39).
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3.1. Electric-magnetic duality. We begin by applying electric-magnetic duality to
N D 4 super Yang–Mills theory on V D W � RC.

The gauge group G is transformed to the Goddard–Nuyts–Olive or Langlands
dual group, which we will denote asG_. TheG_ gauge theory has a theta-angle and
gauge coupling, which we call �_ and g_

YM. As usual, we define

�_ D �_

2�
C 4�i

.g_
YM/

2
: (3.1)

The standard relation between �_ and � , generalized [3] to the case that G is not
simply-laced, is

�_ D � 1

ng�
; (3.2)

where ng is the ratio of length squared of long and short roots of G, or equivalently
of G_. (Thus, ng D 1 if G is simply-laced.) The formula (3.2) can be written as
�_ D .a� C b/=.c� C d/ where�

a b

c d

�
D ˙

�
0 �p

ngp
ng 0

�
: (3.3)

The two choices of sign differ by the possibility of combining electric-magnetic
duality with a discrete chiral symmetry. (This symmetry is an element of the center
of the R-symmetry group SU.4/R; it reverses the sign of the twisting parameter t
and maps .A; '/ ! .A;�'/.) The two choices correspond to duality of the D3–NS5
system with a D3–D5 or D3–D5 system, respectively. There is no natural choice of
which is which. Either way, the boundary condition of the D3–NS5 system maps to
a dual boundary condition, which we will discuss in Section 3.3. Wilson operators
supported at y D 0map to ’t Hooft operators supported at y D 0; these are described
in Section 3.6 and modify the boundary conditions.

The family of twisted topological field theories that is relevant in the present paper
is mapped to itself by electric-magnetic duality. The twisting parameter t_ of the dual
description with gauge groupG_ is related to the twisting parameter t in the original
description by

t_ D ˙ �

j� j t: (3.4)

This formula is a special case of (2.47); the sign is the same as the one in (3.3). For
the D3–NS5 system, we have t D ˙p N�=� according to (2.28), and this leads to the
amazingly simple

t_ D ˙1: (3.5)

The sign does not matter, as the two choices are exchanged by the discrete chiral
symmetry mentioned in the last paragraph. In this paper, we will take t_ D 1. The
localization equations in the G_ gauge theory then take a particularly simple form:

F � ' ^ ' C ?dA' D 0 D dA?': (3.6)
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The transformation law (2.48) for the canonical parameter ‰ tells us that the
parameter ‰_ of the dual theory is related to ‰ by

‰_ D � 1

ng‰
: (3.7)

On the other hand, since t_ D 1, the formula (2.45) for ‰_ reduces to

‰_ D �_

2�
: (3.8)

Combining these formulas,

�_ D 2�‰_ D � 2�

ng‰
: (3.9)

For G_ D SU.N /, we define the instanton number of the G_ gauge theory by

P D 1

32�2

Z
V

���˛ˇ Tr F��F˛ˇ ; (3.10)

where Tr is the trace in the N -dimensional representation. For any G_, we can take

P D 1

2h_
1

32�2

Z
V

���˛ˇ Tradj F��F˛ˇ ; (3.11)

where14 h_ is the dual Coxeter number ofG_, and Tradj is the trace in the adjoint rep-
resentation ofG_. The symbol Tr will be used as an abbreviation for Tradj=2h

_ even
if G_ is not SU.N /. We will eventually modify the definition (3.11) by subtracting
a c-number term, that is a term that does not depend on the gauge field A; see (3.30)
below.

The role of �_ in the path integral is simply to weight a field of instanton number P
by a factor exp.�i�_P/. We set

q D exp.�i�_/ D exp.2�i=ng‰/; (3.12)

so that the �_-dependent factor by which we weight a field of instanton number P is
qP. Recalling (2.68), we see that when we compare the G_ gauge theory to Chern–
Simons theory on W D @V with gauge group G, we must take

q D exp
� 2�i

ng.k C h sign.k//

�
: (3.13)

At least for simply-laced G, this is essentially the standard definition of q in Chern–
Simons gauge theory (the formula is usually written for positive k, and what we call q
is sometimes called q2 or q�1). Hence, for example, the Jones polynomial of a knot
in R3 (and its generalizations for other groups and representations) is essentially
a Laurent polynomial in this variable; for a precise statement, see (1.7).

14Thus, in our notation, h is the dual Coxeter number of G and h_ is the dual Coxeter number of G_.
(Note that some authors use h_ for the dual Coxeter number of G.)
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3.2. Computing the partition function. Now let us discuss how to compute the
partition function of the G_ gauge theory on V . Because t_ is real, the model is
analogous to a two-dimensional A-model (or four-dimensional Donaldson theory)
and computations can be carried out by an appropriate procedure of counting of
classical solutions of the localization equations (3.6). The value t_ D 1 makes the
procedure particularly simple. As‰_ is independent of g_

YM, to calculate the partition
function for given‰_, we can take g_

YM to be arbitrarily small. The partition function
then reduces to a sum over classical solutions of the localization equations. The
expected dimension of the moduli space of solutions of those equations is given by
the index of a certain Dirac-like operator. As is typical of A-type topological field
theories, the operator in question is the fermion kinetic operator of the theory, whose
index equals the anomaly in the fermion number F. So the expected dimension of the
moduli space must vanish in order for the twisted N D 4 path integral on V without
any operator insertions to be non-vanishing.15

Let us suppose that this is the case and consider the contribution to the path integral
from a given solution of the localization equations. For simplicity, assume that in
expanding around such a solution, there are no bosonic or fermionic zero modes and
no unbroken gauge symmetries. This is the generic state of affairs when the index
vanishes. In expanding around such a solution, since we can take g_

YM to be arbitrarily
small, we can make a one-loop approximation to the path integral, which – apart from
a factor coming from the classical action – reduces to the ratio of fermion and boson
determinants. The determinants are equal up to sign, because of supersymmetry,
and the boson determinant is always positive. So the ratio of determinants is ˙1,
depending on the sign of the fermion determinant. The factor in the path integral from
the classical action is qP, coming from the part of the classical action proportional
to �_.

The sum of the contributions of all solutions with P D n is then anq
n for some

integer an; here an is simply the sum of contributions C1 and �1 from classical
solutions with P D n and positive or negative fermion determinant. The partition
function is the sum of anq

n over all values of n:

Z.q/ D
X

n

anq
n: (3.14)

As explained in Section 2.5, the N D 4 partition function Z.q/ will be most simply
related to Chern–Simons theory if V D R3 �RC, in which caseZ.q/ and the Chern–
Simons path integral on R3 should simply coincide. To make this case interesting, we
include knots in R3 on the Chern–Simons side and the corresponding loop operators

15When the index is non-zero, we make a suitable operator insertion to replace the twisted N D 4
partition function with a non-vanishing path integral. (This can actually only be done when the index
is positive, because the cohomology of Q in the space of local operators vanishes for F < 0.) As in
other theories of A-model type, the operator insertions have the effect of constraining the solutions of the
localization equations and reducing to a situation much like what prevails when the index vanishes. We
omit the details, as we do not need them and they are standard in topological field theories of this type.
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in the boundary of V in the N D 4 description. The formulaZ.q/ has been obtained
in a dual description byG_ gauge theory, so the loop operators are ’t Hooft operators
(rather than the Wilson operators that were introduced in Section 2.2.4). The presence
of ’t Hooft operators affects the coefficients an in the partition function because it
affects the boundary conditions along @V , as we will describe in Section 3.6.

The claim that the sum (3.14) reproduces the knot invariants of Chern–Simons
theory is one of the main claims of the present paper. For a direct verification of this
for the special case corresponding to the Jones polynomial (that is, G D SU.2/ with
loop operators associated to the two-dimensional representation of G) see [41].

For future reference, we can rewrite (3.14) as follows. Let S be the set of classical
solutions of the localization equations. For s 2 S , let ns be the value of P for the
corresponding solution, and denote the sign of the fermion determinant obtained when
one expands around that solution as .�1/gs . Then

Z.q/ D
X
s2S

qns .�1/gs : (3.15)

What values of the instanton number n occur in (3.14)? Suppose first that G_
is simply-connected. Then n is an integer if V is compact and without boundary,
but if V has a boundary or an end at infinity, then n 2 Z C ı, where the constant ı
depends on the boundary conditions and the behavior at infinity. (We will analyze
this dependence in Section 3.5.) If G_ is not simply-connected but V is compact
and without boundary, then n 2 Z=w, where the integer w depends only on G_
(for example, w D 4 ifG_ D SO.3/, since the instanton number of an SO.3/ bundle
W ! V is congruent to

R
V
w2.E/

2=4mod Z). IfG_ is not simply-connected and V
has a boundary or a non-compact end, then n 2 Z=wCı for some constant ı. Despite
these details, we will loosely refer to a sum of the form (3.14) as a Laurent polynomial
if an vanishes except for finitely many values of n.

Given that the Chern–Simons path integral for a knot in R3 can be expressed as
in (3.14), can we get a new understanding of the fact that these functions are actually
Laurent polynomials? This is true if the localization equations have solutions only
for finitely many values of P, since an certainly vanishes if there are no solutions
at all with P D n. It is shown in [67], Section 3.3, that if V is a compact four-
manifold without boundary, then the localization equations (for any value of t other
than 0 or 1) have no solutions except for P D 0. Hopefully, for @V 6D ¿, with the
boundary conditions of Sections 3.3 and 3.6, and possibly with a noncompact end,
there is a more general result giving a bound on jPj for any solution. This will ensure
that the path integral is a Laurent polynomial.

3.2.1. Some further details. In our simplified explanation of (3.14), we have omit-
ted a few details that will be important in some generalizations.

First of all, under electric-magnetic duality, the action may obtain a c-number
term of the form ˛�.V /C ˇ�.V / where �.V / and �.V / are the Euler characteristic
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and signature of V and ˛; ˇ are universal constants. Such an effect has been described
in [99] in the context of a different twist of N D 4 super Yang–Mills theory. If it
occurs in the present context, this would multiply the right hand side of (3.14) by
exp.˛�.V /C ˇ�.V //. This may be important for some applications, though not for
the case V D W � RC that we focus on in the present paper.

Second, we should discuss the role of unbroken gauge symmetries. Given a
solution of the localization equations, we writeH for the subgroup ofG_ consisting
of gauge transformations that leave fixed the given solution. We call a solution
reducible if H is a Lie group of positive dimension and irreducible if H is a finite
group, in which case we denote the number of its elements as #H . Reducible solutions
(such as the trivial solution with A D ' D 0) are inevitably present if @V D ¿.
In expanding around a reducible solution, there are flat directions in the classical
potential (for example, the potential vanishes for some components of � ), and one
has to learn how to integrate over this space of flat directions in order to determine
the contribution of a reducible solution to the path integral. This is a rather delicate
question, and we will not investigate it here.

There is also some subtlety concerning irreducible solutions whenH is non-trivial.
For compact V , the contribution of an irreducible solution with non-trivial H is
actually not ˙qn but ˙qn=#H , where the factor 1=#H results from the process of
dividing by the volume of the gauge group. Suppose that V has a nonempty boundary
and we use the boundary condition described in Section 3.3. This boundary condition
explicitly breaks G_ down to its center, which we denote as Z.G_/. The center
is always a symmetry of any classical solution, so in this situation we always have
H D Z.G_/. If in addition V is compact, (3.14) should be multiplied by 1=#Z.G_/,
reflecting the fact that Z.G_/ acts trivially on the space of fields. However, if V also
has a noncompact end (as in our basic example V D W � RC), one divides only by
gauge transformations that are trivial at infinity, and hence the factor of 1=#Z does
not arise.

For V D W � RC, we have to define a boundary condition at infinity. We do this
just as we did for the original D3–NS5 system: we pick a y-independent solution
of the localization equations at infinity. In the present case, this corresponds to a
homomorphism �_ W �1.W / ! G_

C. The partition function (3.14) can be defined
for each �_, so we really get a family of partition functions Z�_.q/, labeled by �_.
Similarly, the integral (2.64) is really a family of path integrals I�, labeled by homo-
morphisms � W �1.W / ! GC. One expects that electric-magnetic duality will lead
to formulas of the general nature

Z�_.q/ D
X

�

m�_;�I�.q/; (3.16)

with some matrix m�_;�. But little is clear about the nature of this matrix. This
problem was pointed out in Section 2.5. Luckily, for the important case W D R3,
we avoid this question.
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3.3. The dual boundary condition. We are mainly interested in the case that the
four-manifold V has a boundary, so we need to describe the appropriate boundary
condition in the G_ gauge theory. (We describe here the boundary condition away
from possible ’t Hooft operators. The more elaborate boundary condition that must
be used near an ’t Hooft operator is described in Section 3.6.)

For G_ D G D U.N /, the boundary conditions that we want are those of the
D3–D5 system, or equivalently, the Dp-D.p C 2/ system for any p. This boundary
condition, which is of a rather surprising nature, was first formulated in [25] by com-
paring to known results about the Nahm transform of BPS monopoles. More intuitive
explanations have been given in [16], [81], and [21] in terms of the D.p C 2/-brane
theory and a “fuzzy funnel.” A formulation of the boundary condition purely in field
theory terms, along with a generalization to any G_, has been given in [39].

The boundary condition of the D3–D5 system is defined not by imposing a con-
dition on the fields or their normal derivatives, as in the case of familiar boundary
conditions such as Dirichlet and Neumann, but by specifying the singular behavior
that the fields should have near the boundary. (This is somewhat like the procedure
used to define an ’t Hooft operator, or a disorder operator in statistical mechanics;
these are also defined by specifying a desired singularity.) The desired behavior
is described by giving a model solution of the equations (3.6) that has the desired
singularity. In the context of topological field theory, the model solution has to obey
the equations in order to preserve the desired topological supersymmetry at t_ D 1.

In fact, the boundary condition of the D3–D5 system has much more symmetry
than that; it is half-BPS, and is invariant under translations and rotations and in fact
even conformal transformations that leave fixed the boundary. It is convenient to
define the model solution on the half-space x3 � 0, and to write y for x3. In the
model solution, the gauge fieldA vanishes, as does the normal part of the one-form '.
We write E' D P2

iD0 'i dxi for the tangential part of '. Rotation and translation
invariance tell us to look for a model singular solution such that ' is a function of y
only. Given all this, the equations (3.6) reduce to Nahm’s equations

d E'
dy

C E' � E' D 0: (3.17)

Here E' � E' is the triple of elements of g defined by . E' � E'/0 D Œ'1; '2� plus cyclic
permutations of indices, or equivalently by . E' � E'/i D Œ'iC1; 'i�1�, where we
consider the integer-valued label i to be defined modulo 3.

Conformal invariance of the D3–D5 boundary condition means the boundary
condition is defined by a solution in which

E' D Et=y (3.18)

for some constant elements Et of the Lie algebra g_. Nahm’s equations then reduce to

Œti ; tj � D �ijktk; i; j; k D 0; 1; 2; (3.19)
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where �ijk is the antisymmetric tensor with �012 D 1. Equation (3.19) is equivalent
to saying that the elements Et are the images of a standard set of SU.2/ generators
under some Lie algebra homomorphism � W su.2/ ! g_.

Having picked �, the boundary condition on E' is

E' D Et
y

C � � � ; (3.20)

where the ellipses refer to terms less singular than 1=y. The other three scalar fields
(the normal part of' and the real and imaginary parts of � ) vanish aty D 0, regardless
of �. This is deduced in [39] as a consequence of supersymmetry; in a D3–D5 brane
construction, it asserts that scalar fields that describe motion of the D3-branes normal
to the D5-brane must vanish on the boundary. The gauge field A obeys a shifted
version of Dirichlet boundary conditions, as described in Section 3.4 below.

The procedure just sketched, with any choice of �, leads to a half-BPS boundary
condition that preserves the desired supersymmetry. However, as explained in [39],
the boundary condition we want (S -dual to the generalized Neumann boundary condi-
tions that were our starting point in Section 2) corresponds to the case � is a “principal
embedding” [71] of su.2/ in g_. A principal embedding is unique up to conjugacy,
for any G_.

ForG_ D SU.N / or U.N /, a principal embedding is defined by picking an SU.2/
subgroup of G_ such that the fundamental N -dimensional representation of G_
restricts to an irreducible representation of SU.2/. For G_ D U.N /, the principal
embedding arises for N D3-branes ending on a single D5-brane; other choices of �
can be realized with N D3-branes ending on multiple D5-branes.

For all other groups, a principal embedding is, roughly speaking, as close to
irreducible as possible. For example, for G_ D SO.2k C 1/, the fundamental
.2kC1/-dimensional representation is irreducible under a principal SU.2/ subgroup.
This is possible because an irreducible .2kC1/-dimensional representation of SU.2/
is real, and hence the SU.2/ matrices acting in this representation can be embedded
in SO.2kC 1/. For G_ D SO.2k/, the best we can do is to pick an SU.2/ subgroup
under which the fundamental representation decomposes as 2k D .2k � 1/C 1, and
this is a principal SU.2/ subgroup. For G_ D Sp.2k/, a principal SU.2/ subgroup
is one under which the fundamental 2k-dimensional representation of G transforms
irreducibly; this is possible because an irreducible 2k-dimensional representation
of SU.2/ is pseudoreal, so the representation matrices can be embedded in Sp.2k/.
For all these classical groups, the principal embedding arises forN D3-branes ending
on a single D5-brane in the presence of an orientifold plane. To give one example
involving an exceptional Lie group, for G_ D G2, the principal SU.2/ embedding
is characterized by the fact that the 7-dimensional representation of G2 transforms
irreducibly under a principal SU.2/ subgroup of G2.

We will later need to know a few more basic facts about a principal su.2/ subalgebra
of g. If G is a simple Lie group of rank r , then its Lie algebra g decomposes under
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a principal su.2/ subalgebra as a direct sum of precisely r irreducible representations
of dimensions 2ji C 1, i D 1; : : : ; r . (The ji are always integers.) ForG D SU.N /,
the ji are 1; 2; 3; : : : ; N � 1 and of course in general

rX
iD1

.2ji C 1/ D dimG: (3.21)

The ring of invariant polynomials on the Lie algebra g is freely generated by r
fundamental Casimir invariants, which are homogeneous of degrees di D ji C 1,
i D 1; : : : ; r . For SU.N /, these invariants are the functions Tr ad , d D 2; : : : ; N .

As a point of terminology, we will refer to the singularity that E' has at the boundary
for the case of a principal su.2/ embedding as a regular Nahm pole. Referring to this
singularity as a Nahm pole requires no explanation. The term “regular” refers to the
fact that the raising operator of a principal su.2/ subalgebra is a regular element of
the complex Lie algebra g

C
. (An element of this Lie algebra is called regular if the

subalgebra that commutes with it has the minimum possible dimension – the rank
of G.) For a fuller explanation, see the discussion of (3.53).

3.4. Embedding the tangent bundle. So far we have described the behavior near
the boundary for the case that V D R3 � RC, @V D R3. Now we want to generalize
to the case that the boundary of V is an arbitrary three-manifold W with Riemannian
metric gij . We assume that, near its boundary, V looks like a product W � RC.

Let us first consider the case that G_ is SU.2/ or SO.3/. The gauge field A,
restricted to W , is a connection on a G_ bundle E ! W .

In Section 3.3, for W D R3, we described the singular part of E' as Et=y. In the
context of the twisted topological field theory, since E' is interpreted as a one-form, an
identification of the Lie algebra su.2/ with the tangent space to R3 is implicit here.
To make it explicit, we introduce the Kronecker delta ıa

i and write, in more detail,

E' � dEx D
P

i;a ı
a
i ta dxi

y
C � � � ; (3.22)

where ta are a standard set of su.2/ generators, obeying Œta; tb� D �abc tc and (there-
fore) Tr tatb D �ıab=2. It is convenient to define a quadratic form on the su.2/ Lie
algebra by .x; y/ D �2Tr xy, so .ta; tb/ D ıab .

In the case of a general W , the generalization of (3.22) can only be

E' D
P

i;a e
a
i ta dxi

y
C � � � ; (3.23)

where now ea
i is some tensor that, at any point p 2 W , reduces to ıa

i , up to a gauge
transformation, in any locally Euclidean coordinate system at p. Such a coordinate
system is one in which the metric at p is gij D ıij . A covariant way to state the
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condition on ea
i without any restriction on the coordinate system or any choice of

gauge is to say that

.ea
i ta; e

b
j tb/ D gij ; (3.24)

which implies that in a locally Euclidean coordinate system, ea
i D ıa

i up to a gauge
transformation. An equivalent statement is

ea
i e

b
j ıab D gij : (3.25)

But this is a familiar condition in Riemannian geometry. The object e is usually called
the vierbein; it establishes an isomorphism between the bundle ad.E/with its natural
su.2/-invariant quadratic form and the tangent bundle T W of W with the quadratic
form determined by the metric tensor of W .

Now we have to look more closely at the equations (3.6). As E' 	 1=y, the
equations have terms of order 1=y2. By taking the ti to obey the su.2/ commutation
relations, we ensure vanishing of the 1=y2 terms in the equations. We still must
consider the terms of order 1=y in the equations. Here we find that we need

Diej �Dj ei D 0; (3.26)

whereDi D @i C ŒAi ; � � is the usual gauge theory connection. This is another basic
equation in Riemannian geometry. It uniquely determines the restriction of A to W
to be the Riemannian connection on T W . In fact, this equation is usually taken as
the definition of the Riemannian connection on the tangent bundle. We will denote
the Riemannian connection on T W as !.

This is all there is to say if G_ D SO.3/: the G_ bundle E ! V , restricted
to the boundary W D @V , is the tangent bundle to W , and the connection restricted
to W is the Riemannian connection. For G_ D SU.2/, the G_-bundle E ! W

is not completely determined by the above description of ad.E/; the additional data
required is a choice of spin structure.

The extension of this discussion to any G_ is straightforward. The polar part
of E' establishes an isomorphism between T W and a subbundle of ad.E/, and this
subbundle corresponds to an su.2/ subalgebra of g. The case we want is that the
subalgebra is principal. Equation (3.26) says that the gauge field A, restricted to the
boundary, is valued in this su.2/ subalgebra and that its restriction to su.2/ is the
Riemannian connection. Differently put, the bundle ad.E/ is associated to T W by
a principal embedding su.2/ � g. If the center Z.G_/ of G_ is trivial, then the G_
bundleE ! W is completely characterized by this description of ad.E/. Otherwise,
ifW is not simply-connected, the global description ofE may involve some additional
discrete data analogous to a choice of spin structure: the holonomies of E around
noncontractible loops inW are not uniquely determined by the Riemannian structure
of W , but can be modified by tensoring with a homomorphism �1.W / ! Z.G_/.
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3.5. The framing anomaly

3.5.1. A gravitational coupling. This last result presents us with a quandary. Ac-
cording to Section 3.2, the contribution of a given classical solution to the partition
function is ˙qn, where n is the instanton number of that solution. But the boundary
conditions of Section 3.4 do not lead to a natural definition of the instanton number.

The instanton number of a G_-bundle E ! V is a topological invariant if V
is a four-manifold without boundary. It remains a topological invariant if V has a
non-empty boundary and we are given a trivialization of E on W D @V .

We have just discovered that instead of being trivialized on W , E is identified
on W with the tangent bundle T W to W ; the gauge field A restricted to W is
similarly identified with the Riemannian connection ! on T W , or more precisely
with its G_-valued image �.!/, where � W su.2/ ! g_ is a principal embedding.
This means that the instanton number P is not invariant under a change of metric of
V . In general, under any change in the gauge field A, the change in P is given by the
change in the Chern–Simons invariant of the restriction of A to the boundary W :

ıP D 1

2�
ıCS.A/: (3.27)

(This is the content of (2.52), for example.) Since when restricted to W we have
A D �.!/, we can equivalently write

ıP D 1

2�
ıCS.�.!//: (3.28)

In turn, CS.�.!// is (modulo the standard 2� ambiguity) the same as bCS.!/where
CS.!/ is the Chern–Simons invariant of ! as an SU.2/ connection (before embed-
ding it in G_), and b is an integer, analyzed in Section 3.5.3, that results from the
embedding. So we can slightly simplify (3.28) to

ıP D b

2�
ıCS.!/: (3.29)

If V is a compact manifold with boundary, there is a simple cure for this. We
simply modify the definition (3.11) of P by subtracting the integral overV of a suitable
curvature integral. The curvature integral is a multiple of

R
V TrR ^ R, with R the

Riemann tensor of V . This integral is a topological invariant if @V D ¿, and in
general its variation is a multiple of ıCS.!/. We pick the coefficient to cancel the
boundary term in the variation of P. Thus, we replace the definition (3.11) with

yP D 1

2h_
1

32�2

Z
V

���˛ˇ Tradj F��F˛ˇ � b

4

1

32�2

Z
V

���˛ˇ TrTV R��R˛ˇ ; (3.30)

where we view the Riemann tensor as a two-form with values in endomorphisms of
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the tangent bundle T V of V and take the trace accordingly.16 With the boundary
condition of Sections 3.3 and 3.4, yP is an integer-valued topological invariant. The
modification of P amounts to adding to the underlying Lagrangian a coupling of the
gauge-theory theta-angle to TrTVR^R, in addition to its usual coupling to the gauge
theory instanton density. If V has no boundary, this modification does not affect
the topological invariance of the theory, while if V has a boundary, it eliminates the
dependence on the Riemannian metric of the boundary.

3.5.2. The product case and the framing anomaly. What has just been described
does not quite work if V is the noncompact four-manifold W � RC that will be
essential in our applications. Let us discuss this case closely. We always assume a
product metric onW � RC; considering more general metrics does not add anything.

On V D W � RC, we should first worry about a possible problem in defining P
at infinity, as well as the problem at the boundary of V . At infinity on RC, we take a
boundary condition that is given by a homomorphism �_ W �1.W / ! G_

C (as in the
last paragraph of Section 3.2.1). Such a homomorphism is given by a complex-valued
connection A D ACi' that is independent ofy. The complex-valued Chern–Simons
invariant CS.A/ is, of course, independent of the metric of W , and, given that A is
flat, the real part of CS.A/ coincides with CS.A/. So CS.A/ is independent of the
metric of W . Hence varying the metric of W does not produce a contribution at
infinity to the change in P; the only such contribution comes at y D 0, that is, at the
boundary of V . Still, if �_ is non-trivial, the constant value of CS.A/ does represent
a contribution to P. Because of this contribution as well as the contribution at y D 0,
the values of P are not integers. However, differences in values of P continue to be
integers.

We pause to explain this last important statement. The statement is clear if G_ is
simply-connected, for then any two bundles that obey the boundary conditions differ
by a twist by an element of �3.G

_/; as usual this twist shifts the instanton number
by an integer. But even if G_ is not simply-connected, differences in the values of P
are still integers in the special case of V D W � RC. Let us explain the reason for
this for the case G_ D SO.3/. In this case, a G_ bundle E ! V has an invariant
w2.E/ 2 H 2.V;Z2/, and if V is a compact four-manifold without boundary, the
instanton number of the bundle E is congruent to17

R
V
w2.E/

2=4 mod Z. This is

16If V is spin and we pick one of the spin bundles of V , say the bundle SC of spinors of positive
chirality, then we can use in (3.30) a trace in SC, rather than 1=4 of a trace in T V . Even if V has a
boundary, but assuming the metric is a product near the boundary, the two formulas differ by a topological
invariant, a multiple of the Euler characteristic of V .

17This is a standard topological result. First, let us explain why
R

V
w2.E/2 can be evaluated mod 4 even

though w2.E/ is defined only mod 2. For simplicity, we make a very mild assumption that W3.M / D 0,
which implies that w2.E/ can be lifted to a class x 2 H 2.M; Z/. Though x is only uniquely determined
mod 2,

R
M x2 is well defined mod 4. This is so simply because .x C 2y/2 D x2 C 4.xy C y2/ soR

M x2 is invariant mod 4 under x ! x C 2y. So 1
4

R
M w2.E/2 is well defined mod Z. Now we wish

to show that this number coincides with the instanton number of E mod Z. By obstruction theory, this
is true for all SO.3/ bundles E with a given value of w2.E/ if it is true for one such bundle. (The basic
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why, potentially, values of P might not differ by integers. However, for V D W �RC,
our boundary condition at y D 0 says that EjW D T W , and hence (as any oriented
three-manifold is spin), the restriction ofw2.E/ toW vanishes. SinceV D W �RC is
contractible ontoW , this ensures thatw2.E/ vanishes altogether, so theG_ bundleE
is liftable to a yG_ bundle, where yG_ D SU.2/ is the universal cover ofG_. This being
so, we can replace G_ by yG_ in analyzing the possible values of P, and these differ
by integers just as if G_ is simply connected. For any G_, the argument proceeds in
the same way, using the boundary condition at y D 0 to show that E can be lifted to
a bundle with structure group yG_.

We still have to face the metric dependence of P that comes from the behavior
at y D 0. On V D W � RC, we cannot eliminate the metric-dependence of P by
subtracting a curvature integral, as above. For a product metric on V , the integralR

V
TrR ^ R vanishes. If we use a more general metric, adding such a term would

merely move the problem from y D 0 to y D 1. Instead, we will have to proceed
as in [102], where a precisely analogous problem arose in analyzing Chern–Simons
theory on a three-manifold W .

If CS.!/, the Chern–Simons function of the spin connection, were a well-defined
real-valued function, we could eliminate the problem by subtracting from P a multiple
of this function to define

yP D P � b

2�
CS.!/: (3.31)

yP would then be an integer-valued topological invariant that we would use instead
of P in the formula for the partition function.

Actually, CS.!/ has the usual 2� ambiguity, and is not well defined as a real-
valued function unless we are given more information. The additional information
we need is known as a “framing,” a trivialization (up to homotopy) of the bundle in
question. We have defined CS.!/ as the Chern–Simons invariant of the Riemannian
connection regarded as an SU.2/ connection on the spin bundle, so the information
we need to define CS.!/ as a real-valued function is a framing of the spin bundle.
Actually, we will proceed in a slightly different way. CS.!/ has a dependence on
the choice of spin structure of W , and this is unnatural in our problem (unless G_
is such that the boundary condition of Section 3.3 entails a choice of spin structure).
Although CS.!/ depends on the spin structure, its variation in a change in metric
does not (the dependence of CS.!/ on the spin structure is a topological invariant);
this is why (3.29) for the metric dependence of P does not depend on a spin structure.
In redefining P to eliminate its metric-dependence, we want to avoid introducing an
unnatural dependence on spin structure; we can accomplish this by simply rewrit-
ing (3.31) in terms of the Chern–Simons invariant of the Riemannian connection !

idea here is that any two such bundles differ by a twist by �3.SO.3// D Z, and such a twist shifts the
instanton number by an integer.) So it suffices to consider a convenient choice of E . For such a choice, let
L be a complex line bundle with c1.L/ D w2.E/ mod 2, and let E D R ˚ L where R is a trivial real
line bundle and L is viewed as a real bundle of rank 2. Then w2.E/ D c1.L/ mod 2 and the instanton
number of E is 1

4

R
M c1.L/2.
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regarded as an SO.3/ connection on T W , the tangent bundle of W . In [102], the
Chern–Simons invariant of ! as an SO.3/ connection was called CSgrav. The relation
between the CS.!/ and CSgrav is simply

CSgrav D 4CS.!/: (3.32)

The factor of 4 reflects the fact that the trace of a product of Lie algebra elements (such
as F ^F ) in the three-dimensional representation of SO.3/ is four times the trace of
the same product in the two-dimensional representation of SU.2/. To define CSgrav

as a real-valued function, the topological data that we need is a framing of the tangent
bundle T W . This is usually called simply a framing of W .

Given a framing, CSgrav becomes a well-defined real-valued function, and we
eliminate the metric-dependence of P by defining, as in (3.31):

yP D P � b

2�
CS.!/ D P � b

8�
CSgrav: (3.33)

The quantity yP is an invariant, valued in a coset of Z in R that depends on the choice
of �_ at infinity and on the framing but not on the metric of W .

Replacing P by yP introduces in the partition function Z an extra factor

q�bCS.!/=2� D q�bCSgrav=8� : (3.34)

Under a unit change of framing, with CSgrav ! CSgrav C 2� , yP as defined in (3.33)
maps to yP �v=4. So under a unit change of framing, the partition function transforms
by

Z ! Zq�b=4: (3.35)

Precisely such a dependence on a choice of framing appears in Chern–Simons
theory. In Section 3.5.3, we will compare the framing anomaly as we have computed
it in (3.35) in N D 4 super Yang–Mills theory to the standard framing anomaly as
found in Chern–Simons theory.

The relation of what has just been said to the treatment in Section 3.5.1 is that
if one is given a compact V with boundaryW , then the curvature integral on V gives
a natural lift of CSgrav (or CS.!/) to a real-valued function. On V D W �RC, there is
no natural lift and we simply have to pick one.

Actually, something slightly less than a framing of T W is enough. In comparing
two framings of T W , one runs into an integer winding number, associated with
�3.SO.3// D Z, and, depending on the topology of W , one also encounters some
two-torsion information derived from�1.SO.3// D Z2. The two-torsion information
is not relevant for the framing anomaly of Chern–Simons theory. There is a convenient
way to eliminate it [6]. Two framings of T W that induce the same framing of
T W ˚ T W lead to the same definition of CSgrav. One can therefore consider the
basic concept needed to define CSgrav to be a framing of T W ˚ T W . A framing of
T W ˚T W is called a two-framing. Globally, by making use of the signature theorem
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on a four-manifold with boundary, one can define a canonical two-framing for any
three-manifold W . This canonical two-framing is often used, explicitly or otherwise,
in writing formulas for the Chern–Simons partition function. Because there is no
local recipe for constructing it, it is natural to allow any framing (or two-framing)
and determine how the partition function changes in a change of framing.

3.5.3. Comparison with Chern–Simons theory. According to [102], the framing
dependence of Chern–Simons theory on a three-manifold W arises from the fact that
to cancel an anomalous dependence of the partition function Z on the metric of W ,
we must pick a framing of W and include in the definition of Z a factor

exp
� ic.k/sign.k/CSgrav

24

�
: (3.36)

Here c.k/ is the central charge of G current algebra at level jkj:

c.k/ D k dim.G/

k C h sign.k/
; (3.37)

where dim.G/ is the dimension of the gauge group G and h is its dual Coxeter
number. Both equations (3.36) and (3.37) are usually written for k > 0; we have
included factors of sign.k/ so that they are valid for any nonzero integer k. (The
required factors are determined by the fact that the partition function is invariant
under k ! �k together with a reversal of the orientation of W , which changes the
sign of CSgrav.)

It is convenient to expand

c.k/ D dim.G/ � h dim.G/ sign.k/

k C h sign.k/
: (3.38)

Here the first term, dim.G/, arises in the one-loop approximation to Chern–Simons
theory. In fact, it comes from the metric-dependence of an Atiyah–Patodi–Singer
�-invariant, as explained in [102]. When inserted in (3.36), this term gives a factor

exp.i dim.G/ sign.k/CSgrav=24/: (3.39)

This factor is not analytic in k or q and hence will not match any computation in
N D 4 super Yang–Mills theory.

Instead, we interpret this factor as part of the constant N0 in the relation (2.66)
between two different holomorphic volume forms on the space of complex-valued
connections. One of these, which we denote asDA, arises by analytic continuation of
the path integral measure of Chern–Simons theory (with a compact gauge group G),
while the second, which we denote as DA, is induced from N D 4 super Yang–
Mills theory (together with a boundary condition defined by a flat connection A1 at
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y D 1, associated with some homomorphism � W �1.W / ! GC). If what we have
just found were a complete formula for N0, we would have

DA Š DA exp.�ih sign.k/CS.A/C i dim.G/ sign.k/CSgrav=24/: (3.40)

Unfortunately, this cannot quite be a complete formula. Because of the factor of 1=24
multiplying CSgrav, the formula actually leaves unspecified a 24th root of unity in the
relation betweenDA andDA. There is actually yet another root of unity that should
be included; this is a fourth root of unity that arises on the Chern–Simons side from a
spectral flow invariant that is described in [32]. It seems thatN0 depends on �, at least
by these roots of unity, as well as on the metric of W . The factor involving CSgrav

and the roots of unity all come from the � invariant which arises in the one-loop
approximation to Chern–Simons theory evaluated at the flat connection A1. Perhaps
N0 should simply be written in terms of this �-invariant. Luckily, in this paper we
mostly take W D R3 and A1 D 0, enabling us to avoid these issues.

The higher order terms turn out to have a more clear-cut interpretation. We write
c.k/ D dim.G/C�c, where�c D �h sign.k/ dim.G/=.kC h sign.k// is the part
of c.k/ that in Chern–Simons theory comes from diagrams of two or more loops. The
natural perturbative expansion in Chern–Simons theory is in powers of 1=k; �c has
contributions of all orders in this expansion. On the other hand, in N D 4 superYang–
Mills theory, the natural expansion parameter is 1=‰, where‰ D kCh sign.k/, so in
this expansion, �c is purely a two-loop effect. This fact remains to be explained.

In any case, the framing anomaly associated to �c has a straightforward inter-
pretation in the S -dual description by G_ gauge theory. The part of (3.36) involving
�c is exp.�ih dim.G/CSgrav=24.k C h sign.k///. Under an elementary change of
framing CSgrav ! CSgrav C 2� , this factor changes by

exp
�

� 2�ih dim.G/

24.k C h sign.k//

�
D q�h dim.G/ng=24; (3.41)

where q was defined in (3.12). For the S -dual description, the equivalent for-
mula (3.35) says that in an elementary change of framing, the partition function
changes by a factor of q�b=4. So obviously to reconcile the two formulas, we need
b D ng h dim.G/=6.

So let us evaluate b. We start with an SU.2/ gauge field A of instanton number 1.
Such a gauge field has the property that if Trsu.2/ is the trace in the adjoint represen-
tation of SU.2/, then

1 D 1

2 � 2 � 1

32�2

Z
V

���˛ˇ Trsu.2/ F��F˛ˇ : (3.42)

In the denominator, we have replaced 2h_ in the definition of the instanton number
by 2 � 2, since h_ D 2 for SU.2/. Now b is defined as the instanton number of the
G_ gauge field �.A/, where � is a principal embedding su.2/ ! g. Hence

b D 1

2 � h_
1

32�2

Z
V

���˛ˇ Trg �.F��/�.F˛ˇ /: (3.43)
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The trace is now taken in the adjoint representation ofG_, and to be pedantic, we have
written �.F / for the g-valued image of F . The ratio of traces in (3.43) and (3.42) is
the same as the ratio of the traces of the quadratic Casimir operator of su.2/ in the
two representations (namely g and su.2/). The value of the Casimir operator in an
irreducible representation of su.2/ of dimension 2j C 1 is j.j C 1/, and its trace is
j.j C 1/.2j C 1/. So the ratio of the two traces is

Pr
iD1 ji .ji C 1/.2ji C 1/=6,

where (as discussed at the end of Section 3.3) g is a direct sum of su.2/ modules of
dimensions 2ji C 1. So finally

b D
rX

iD1

ji .ji C 1/.2ji C 1/

3h_ : (3.44)

The desired relation b D ng dim.G/ h=6 hence becomes

rX
iD1

ji .ji C 1/.2ji C 1/ D 1

2
ng dim.G/ hh_: (3.45)

As a check, this relation holds forG if and only if it holds forG_. Indeed, the ji , ng,
and dimG are invariant under the exchangeG $ G_, while h and h_ are exchanged.

For a proof of this relation, see [83], Proposition 3.1. It is actually not difficult to
verify the relation by hand for all simple Lie groups, whether of typeA; B; C; D; E; F;
or G. As an example, if G and therefore also G_ are of type G2, then the ji are 1
and 5, while ng D 3, dim.G/ D 14, and h D h_ D 4. The left and right of (3.45)
both equal 336.

3.6. ’t Hooft operators in the boundary

3.6.1. Preliminaries. In Section 2.2.4, we have shown that, when the gauge the-
ory theta-angle is nonzero, the D3–NS5 system admits supersymmetric Wilson line
operators at, and only at, the boundary of a four-manifold V . Dually, the same must
be true for the D3–D5 system, but now with supersymmetric ’t Hooft operators rather
than Wilson operators. Our goal in the present section will be to concretely explain
how to define these ’t Hooft operators.

In general, ’t Hooft operators are analogous to disorder operators in statistical
mechanics – and also analogous to the D3–D5 boundary condition that we have
described in Section 3.3. Just as our boundary condition was described by speci-
fying the singularity that fields must have along the boundary of V , so an ’t Hooft
operator is defined, as explained in [65], by describing the singular behavior that
four-dimensional fields should have along a chosen one-manifold S , which usually
is taken to lie in the interior of V . To explain what singular behavior one wants, one
selects a local model solution of the supersymmetric Yang–Mills equations on R4nR
(i.e., R4 with R removed) with a singularity of some desired type along R. Normally,
one picks a solution that is invariant under rotations and translations (and possibly
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conformal motions) of R4 that map R to itself, and possibly under some supersym-
metries. Concretely, for the usual half-BPS ’t Hooft operators, the requisite singular
solutions are very simple: they are obtained by embedding an abelian Dirac monopole
in the nonabelian Yang–Mills gauge group. Once a singularity type is chosen, one
calculates in the presence of a ’t Hooft operator supported on a one-manifold S � V

by doing gauge theory on V nS with fields that have a singularity along S of the
chosen type.

In our problem, we want to follow the same general ideas, with one important
difference: V is a four-manifold with boundary W , and S is contained in W . (We
expect from duality that S must be contained in W , but we can also see this directly
by following the analysis of Wilson–’t Hooft operators in Section 6.2 of [67].18) But
the basic idea of defining an ’t Hooft operator by specifying a model solution still
applies.

For the model solution, we now take V to be a half-space, say the space x3 � 0

in a Euclidean space with coordinates x0; : : : ; x3. And we take S to be a straight line
in the boundary of V , say the line x1 D x2 D x3 D 0. We look for a solution of the
Yang–Mills equations on V that is invariant under symmetries that map S to itself,
that is, under translations of x0 and rotations of the x1 � x2 plane. In addition, as
we want an ’t Hooft operator that preserves the supersymmetry Q of our topological
field theory, the singular solution should obey the supersymmetric equations (3.6).
(Actually our ’t Hooft operator will preserve more supersymmetry than just the one
supercharge Q, which it will accomplish by obeying a stronger system of equations,
as described later.) The solution should become trivial for x3 ! 1, far from the
position of the ’t Hooft operator. At a generic boundary point, it must have the
boundary behavior of the regular Nahm pole as described in Section 3.3. This in
particular means that the desired singular solution cannot be a simple abelian one, like
the singular solution used to describe an ’t Hooft operator away from the boundary.
At a boundary point that is located on the line S , the singular behavior is more
complicated. That more complicated behavior is exactly what we wish to determine.

We will carry out this program in full for G D SU.2/. For G of higher rank, we
carry out some of the steps but the precise singular solution of relevance is not yet
known.

3.6.2. First reduction of the equations. As just explained, we want to find on the
half-space V given by x3 � 0 a special type of solution of the supersymmetric
equations

F � ' ^ ' C ?dA' D 0 D dA?': (3.46)

18It is shown there that ’t Hooft operators away from the boundary preserve the topological symmetry
only if ‰ D 0. It is also shown, however, that for any rational value of ‰, there are combined Wilson–
’t Hooft operators in bulk (as one would expect from S -duality). These are undoubtedly important for
understanding special properties of the theory at rational values of ‰.
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The solution should be invariant under translations in x0, should become trivial for
x3 ! 1, and away from the line S given by x1 D x2 D x3 D 0, its boundary
behavior should coincide with the regular Nahm pole described in Section 3.3.

A drastic simplification comes from the fact that in solving the equations, we can
set A0 D '3 D 0. The reader may choose to view this as a lucky ansatz that can
be used to simplify the equations. However, there are also several ways to predict
a priori that the solution we want has A0 D '3 D 0. For one thing, one can use a
vanishing argument similar to that discussed in (4.13) of [108] to prove that a solution
on V with the desired asymptotic behavior hasA0 D '3 D 0. (The proof is standard:
one squares the equations (3.46), integrates over V , and then integrates by parts,
showing that in any solution, A0 and '3 are annihilated by strictly positive linear
differential operators.) Alternatively, one can use supersymmetry. Obeying (3.46)
ensures invariance under one supersymmetry, but duality with the boundary Wilson
lines studied in Section 2.2.4 indicates that the ’t Hooft operators of interest should
preserve four global supercharges (half of the supercharges preserved by the half-BPS
boundary condition). The extra supersymmetry puts additional constraints on the
solution, leading to the structure that we describe momentarily.

The equations obtained from (3.46) after setting A0 D '3 D 0 can be described
as follows. Define the three operators

D1 D D

Dx1
C i

D

Dx2
D @

@x1
C i

@

@x2
C ŒA1 C iA2; � �;

D2 D D3 � i Œ'0; � �� D @

@x3
C ŒA3 � i'0; � �;

D3 D Œ'1 � i'2; � �:

(3.47)

Thus, D1 and D2 are first order differential operators, while D3 is of order zero. In
(3.47), for an adjoint-valued field ƒ, the symbol Œƒ; � �� represents the commutator
with ƒ.

With this understood, the equations (3.46) take the form

ŒDi ;Dj � D 0; i; j D 1; : : : ; 3 (3.48)

together with
3X

iD1

ŒDi ;D


i � D 0: (3.49)

Here D


i is the adjoint of the differential operator Di . Concretely, (3.49) takes the

form
F12 � Œ'1; '2��D3'0 D 0: (3.50)

To similarly make (3.48) explicit is immediate from the definitions of the Di .
Before trying to understand these equations, let us describe some special cases.

If we set A1 D A2 D 0 and take the fields to be independent of x1 and x2, we get
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Nahm’s equations. If we set A3 D '0 D 0 and take the fields to be independent of
y D x3, we get Hitchin’s equations. Finally, if we set '1 D '2 D 0, we get the
Bogomolny equations. So our system is a hybrid of all those equations. This hybrid
was encountered in [67] and called the extended Bogomolny equations (see (10.36)
of that paper, where the equations are written in the gauge Ay D 0). The main
interest there was the role in these equations of ’t Hooft operators in the bulk (and
their interpretation in terms of Hecke modifications of Higgs bundles). Our concern
here will instead be the more subtle case of ’t Hooft operators in the boundary.

It is also helpful to consider some analogous equations. For an interesting analogy,
consider gauge theory of a connection A on R6 Š C3. We endow C3 with complex
coordinates zi , i D 1; : : : ; 3, and define

Di D @

@zi
C ANi : (3.51)

In other words, the .0; 1/ part of the connection is
P

i dziDi . The equations ŒDi ;Dj �

D 0 assert that the .0; 2/ part of the curvature vanishes, so that the connection defines
a holomorphic bundle, while the remaining equation

P
i ŒDi ;D



i � D 0 can be solved

only if the holomorphic bundle is semi-stable, and, according to a theorem of Don-
aldson and of Uhlenbeck andYau, it has a unique solution in that case. The combined
equations are known as the hermitian Yang–Mills equations, and can be formulated
on a general complex manifold, not necessarily C3. Physically, the hermitian Yang–
Mills equations are familiar in the context of the heterotic string on a Calabi–Yau
threefold. In that context, solutions of those equations preserve four supercharges,
and the same is true for the equations (3.48) and (3.49), though we will not demon-
strate this here.

As in the other cases that we have just mentioned, the key to understanding (3.48)
and (3.49) is to first observe that the equations (3.48) have a larger gauge symmetry
than the full system. The full system of equations is invariant under an ordinary gauge
transformation

Di �! gDig
�1; i D 1; : : : ; 3; (3.52)

where g is G_-valued. But (3.48), since they involve only the operators Di and
not their adjoints, are invariant under complex-valued gauge transformations, that is
gauge transformations in which we allow g to be valued in G_

C, the complexification
of G_. The space of solutions of (3.48), modulo complex-valued gauge transforma-
tions, is naturally a complex manifold. In all the problems that we have mentioned
– including Nahm’s equations, Hitchin’s equations, the Bogomolny equations, the
hermitian Yang–Mills equations, and also our present problem – the remaining equa-
tion (3.49) can be interpreted as an equation for vanishing of the moment map. In
other words, in each case, one can define a symplectic structure on the space of fields
such that the moment map for the action of the compact gauge group (G_ in our prob-
lem) is the left hand side of (3.49). One then aims to compare (i) the space of solutions
of the full system of equations, modulo G_-valued gauge transformations, to (ii) the
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solutions of the holomorphic equations modulo G_
C-valued gauge transformations.

Typically, one aims to show (as in the result of Donaldson and Uhlenbeck–Yau con-
cerning the hermitianYang–Mills equations) that (i) and (ii) coincide after correcting
(ii) to incorporate a certain condition of stability. In our present problem, the desired
boundary condition at y D 0 ensures that the gauge group acts freely on the space of
solutions, and one may hope that in a proper formulation – which will have to take
into account the boundary behavior in an essential way – (i) and (ii) – will simply
coincide.

3.6.3. The holomorphic data. The holomorphic data in this problem are easily
described. Since a holomorphic G_

C-bundle over the complex z-plane is trivial, we
can make a complex gauge transformation to go to a gauge in which A1 C iA2 D 0,
so that D1 reduces to @1 C i@2 D 2@ Nz . But actually, since ŒD1;D2� D 0, we
can do better: we can make a complex gauge transformation setting A1 C iA2 D
A3 � i'0 D 0. In this gauge, D1 D 2 @=@ Nz and D2 D @=@x3. The equations
ŒD1;D3� D ŒD2;D3� D 0 then say that ' D '1 � i'2 is holomorphic in z and
independent of y D x3. We are still free to make a gauge transformation by a
holomorphic map g.z/ W C ! G_

C.
In short, the holomorphic data consist of a g_

C-valued holomorphic function '.z/,
modulo conjugation by a G_

C-valued holomorphic function g.z/. What sort of func-
tion '.z/ we should consider depends on what behavior we want at infinity. Let us
remember that vacuum states of N D 4 super Yang–Mills theory are specified by
the asymptotic values of the scalar fields (which moreover must commute with each
other to ensure the vanishing of the classical potential energy). In particular, a choice
of vacuum state at infinity determines the conjugacy class of ' D '1 � i'2 at y D 1.
For the present paper, the most convenient vacuum to consider is the one in which the
scalar fields simply vanish at infinity. So we will look for solutions of the extended
Bogomolny equations in which ' ! 0 at infinity. In any event, the real interest in
the present section is in the singular behavior of the solution near special boundary
points where ’t Hooft operators are inserted, and we do not care too much about what
happens far away. For our immediate purposes, asking for ' to vanish at infinity is
just a convenient auxiliary condition that will make it easier to find a solution with
the singularity we want.

The equation ŒD2;D3� D 0 is equivalent to @3' D �ŒA3 � i'0; '�. It says that
the x3 derivative of ' is a commutator of ' with some matrix, so that the conjugacy
class of ' is independent of y D x3. It is not correct to conclude from this and the
fact that ' vanishes at y D 1 that ' is identically zero. The correct conclusion
is only that ' is nilpotent. To prove nilpotency, let P be a homogeneous invariant
polynomial of positive degree on the complex Lie algebra g

C
. Since the conjugacy

class of ' is independent of y, we have @yP .'/ D 0. So if ' vanishes at infinity,
then P .'/ vanishes for all y. An element ' 2 gC such that P .'/ D 0 for all P of
the assumed kind is nilpotent. So ' is nilpotent for all y (and z).

A simple example of a solution in which ' is everywhere nilpotent but not zero and
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approaches zero at infinity is the basic Nahm pole solution (3.18) with E' D Et=y, where
Et are images of a standard set of su.2/ generators under an embedding � W su.2/ ! g.
In this solution, ' D .t1 � i t2/=y is indeed nilpotent (it is a lowering operator with
respect to t0). Its conjugacy class is independent of y (this is proved by conjugating
by t0) and it vanishes for y ! 1.

We are actually interested in the case that � is a principal embedding, which is
equivalent to the condition that ' is a regular nilpotent element of g

C
. We pause to

explain this concept. Every complex simple Lie algebra has a finite set of nilpotent
conjugacy classes. For example, a nilpotent element ' 2 sl.n;C/ can be conjugated
to a Jordan canonical form in which all matrix elements vanish except just above the
main diagonal:

' D

0
BBBBB@

0 
 0 : : : 0

0 0 
 : : : 0
: : :

0 0 0 : : : 

0 0 0 : : : 0

1
CCCCCA ; (3.53)

and moreover the matrix elements just above the main diagonal are all 1 or 0. The
conjugacy classes of nilpotent elements of sl.n;C/ are classified by the pattern of 1’s
and 0’s, up to obvious permutations of blocks. An element of a complex Lie algebrag

C
is called regular if the subalgebra of g

C
that commutes with it is as small as possible,

that is if its dimension equals r, the rank of the algebra. There is always a unique
nilpotent conjugacy class of maximal dimension, known as the regular nilpotent
conjugacy class. This is the class containing the raising and lowering operators for
a principal su.2/ subalgebra. For sl.n;C/, the regular nilpotent conjugacy class is
the one with a single Jordan block (all elements labeled 
 in (3.53) actually equal 1).
A generic nilpotent element is contained in this regular nilpotent conjugacy class.
In particular, in the solution associated to the principal su.2/ embedding, ' is a
regular nilpotent element.

Finally, we can describe the solutions that are relevant for boundary ’t Hooft
operators. We look for a solution in which '.z/ is holomorphic in z and everywhere
nilpotent. Moreover, for a generic value of z, the behavior for y ! 0 must coincide
with the model solution (3.18), so ' is a regular nilpotent. At isolated points z D zj ,
j D 1; : : : ; s, ' is in a more special nilpotent conjugacy class. These are the points
at which ’t Hooft operators are inserted.

For example, for the case that G_ D SU.2/, any everywhere nilpotent '.z/ is
conjugate to

'.z/ D
�
0 f .z/

0 0

�
; (3.54)

for some holomorphic function f .z/. Only the zeroes of f and the degrees of
their zeroes have an invariant meaning, since where f .z/ is not zero, we can set
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' D g'
1
g�1, with

'
1

D
�
0 1

0 0

�
(3.55)

and

g.z/ D
�
f .z/1=2 0

0 f .z/�1=2

�
: (3.56)

The case of a single ’t Hooft operator is the case that the function f .z/ has only one
zero, say of order r:

' D
�
0 zr

0 0

�
(3.57)

In Section 3.6.4, we will find for each positive integer r a unique solution of the
extended Bogomolny equations with this ' and the appropriate asymptotic behavior
at the boundary y D 0 and at infinity.

For a more systematic explanation of the above formula, let us recall that GNO
or Langlands duality associates to a representation of G a dual magnetic weight
of G_. This magnetic weight is a conjugacy class of homomorphisms from C�
to G_

C. For G D SO.3/, the homomorphism to G_
C D SL.2;C/ associated to the

spin j representation of G is

z �! g.z/ D
�
zj 0

0 z�j

�
: (3.58)

For G D SU.2/, j may be half-integral and then the formula should be written
in the spin 1 representation; g.z/ is well defined as a homomorphism from C� to
G_

C D SO.3/C. In all cases, the relation between ' and g is ' D g'
1
g�1, so that in

the notation of (3.57), r D 2j.
The analog of this for G D SU.n/ is hopefully clear. Instead of (3.57), we look

for a solution with

' D

0
BBBBB@

0 zr1 0 : : : 0

0 0 zr2 : : : 0
: : :

0 0 0 : : : zrn�1

0 0 0 : : : 0

1
CCCCCA; (3.59)

where the ri are non-negative integers, not all zero, representing the highest weight
of a representation of G. More generally, for any G_, the corresponding formula is
obtained as follows. Pick a principal su.2/ embedding and within it a Cartan subalge-
bra. Relative to this choice, let'

1
be a raising operator of the chosen su.2/ subalgebra,

and let T _
C be the maximal torus of G_

C that commutes with the chosen Cartan sub-
algebra of su.2/. Pick a homomorphism g.z/ W C� ! T _

C such that ' D g'
1
g�1

has no pole at z D 0. The choices for g.z/ are in natural correspondence with the
highest weights ofG representations, and therefore with Wilson operators ofG gauge
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theory. By solving the extended Bogomolny equations with the corresponding ' and
identifying the singular behavior aty D z D 0, we get our candidate for the definition
of the boundary ’t Hooft operator in G_ gauge theory that is dual to a given Wilson
operator of G.

In Section 3.6.4, we will explicitly find the relevant solutions of the extended
Bogomolny equations for G D SU.2/. For G of higher rank, this remains open.

3.6.4. Solving the equations for SU.2/. Starting with the holomorphic data (3.57),
with all other fields vanishing, we want to make a complex gauge transformation
Di ! gDig

�1 so as to obey the extended Bogomolny equations. Since the Di will
obey ŒDi ;Dj � D 0 for any choice of g, we really need only chose g to obey the
remaining condition

P
i ŒDi ;D



i � D 0.

The extended Bogomolny equations are invariant under ' ! ei˛' with ˛ a real
constant. The holomorphic data (3.57) are invariant under this symmetry, up to a
diagonal gauge transformation. So it is natural to choose g so as to preserve the
symmetry. This means that g must be diagonal:

g D
�
ev=2 0

0 e�v=2

�
: (3.60)

Moreover, using the invariance of the extended Bogomolny equations under unitary
gauge transformations (those valued in G_ rather than its complexification), we can
take v to be real. After transforming Di ! gDig

�1, we find

A1 C iA2 D � .@1 C i@2/v

2

�
1 0

0 �1
�
;

F12 D i.@2
1 C @2

2/v

2

�
1 0

0 �1
�
;

'0 D � i @3v

2

�
1 0

0 �1
�
;

' D zrev

�
0 1

0 0

�
:

(3.61)

And finally, the “moment map” equation
P

i ŒDi ;D


i � D 0 becomes

�
� @2

@x2
1

C @2

@x2
2

C @2

@y2

�
v C jzj2r exp.2v/ D 0; (3.62)

where we write y for x3 and z for x1 C ix2.
This equation has the simple exact solution

v D �r log jzj � log y; (3.63)
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corresponding to

' D .z= Nz/r=2

y

�
0 1

0 0

�
: (3.64)

This solution is singular at z D 0, but the singularity can actually be removed by a
unitary gauge transformation ' ! h'h�1 with

h D
�
.z= Nz/�r=4 0

0 .z= Nz/r=4

�
: (3.65)

After this gauge transformation, we arrive at the basic solution (3.18) in which the
gauge field A vanishes while ' is 1=y times a raising operator. This is the solution
that defines the boundary condition we want at boundary points with z 6D 0, that is,
anywhere away from the insertion of the ’t Hooft operator.

To describe an ’t Hooft operator at the boundary, we want a solution with the same
behavior as (3.63) fory ! 0with z 6D 0, but regular along the open ray z D 0, y 6D 0.
Exactly what will happen near z D y D 0 will be determined by the equations. That
will be the answer to our question: the ’t Hooft operator of charge r will be defined
by the singularity that the equation forces upon us at z D y D 0.

It is useful to make a small change of variables:

v D �.r C 1/ log jzj C u: (3.66)

The desired behavior of u is hence8<
:
u 	 log jzj � log y for y ! 0 with z 6D 0;

u 	 .r C 1/ log jzj for z ! 0 with y 6D 0:
(3.67)

(The second condition ensures that v is regular at z D 0, y > 0.) In terms of u, the
equation becomes

�
� @2

@x2
1

C @2

@x2
2

C @2

@y2

�
uC jzj�2 exp.2u/ D 0: (3.68)

Writing the equation this way makes visible a scaling symmetry z ! 	z, y ! 	y.
There is also an obvious symmetry of rotation of the z-plane.

It is natural to expect the fields produced by an ’t Hooft operator at y D z D 0 to
be scale-invariant and rotation-symmetric. For a rotation-symmetric solution, writing
r D jzj, the equation becomes

� ..r@r/
2 C .r@y/

2//uC exp.2u/ D 0: (3.69)

Scale-invariance means that u is a function only of s D r=y. Acting on a function
with this property, we can substitute r@r ! s @s , r@y ! �s2 @s , so the equation
becomes

�
��
s

d

ds

�2 C
�
s2 d

ds

�2�
uC e2u D 0: (3.70)
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This equation can be neatly solved by transforming from s to another coordinate �.s/
with the property that �

s
d

ds

�2 C
�
s2 d

ds

�2 D d2

d�2
: (3.71)

This equation is conveniently equivalent to

�p
s2 C s4

d

ds

�2 D d2

d�2
; (3.72)

leading to
dsp
s2 C s4

D d�: (3.73)

This equation can be integrated, but for the moment let us refrain from doing so. In
terms of � , our equation (3.70) becomes

d2u

d�2
D exp.2u/: (3.74)

This implies that
dup

e2u C b2
D ˙ d�; (3.75)

with an integration constant b2. Setting

eu.
/ D b p.�/; (3.76)

we get
1

b

dpp
p4 C p2

D ˙d�; (3.77)

and comparing to (3.73), we see that we can eliminate � :

1

b

dpp
p4 C p2

D ˙ dsp
s4 C s2

: (3.78)

Using now the indefinite integralZ
dtp
t4 C t2

D � log
� tp

1C t2 � 1

�
C C; (3.79)

we find that
pp

1C p2 � 1 D N
� sp

1C s2 � 1
�˙b

; (3.80)

for a constant N . For y ! 0 with fixed z 6D 0, we have s ! 1, and according
to (3.67), we want u ! 1 in this limit, and hence also p ! 1. It then follows
from (3.80) that we must set N D 1. Compatibility with (3.67) for s ! 0 (that is,
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for z ! 0 with fixed y 6D 0) gives b D r C 1 (and also tells us to use the plus sign
in the exponent in (3.80)). Taking these values and solving for p, we get

p.s/ D 2srC1

.
p
1C s2 C 1/rC1 � .p1C s2 � 1/rC1

: (3.81)

The original variable v.s/ is

ev.s/ D .r C 1/p.s/

jzjrC1
: (3.82)

This is the solution in the presence of a single ’t Hooft operator that is dual to
a Wilson operator with j D r=2. More generally, the singularity of this solution at
y D z D 0 defines what we mean by a boundary ’t Hooft operator of this magnetic
charge.

To understand the solution a little better, let us evaluate the gauge field on the
boundary planey D 0. From (3.82), we havev D � logy�r log zCconstantCO.y/,
so from (3.61) we get

Ai D �ijxj

x2
1 C x2

2

r

2

�
i 0

0 �i
�

C O.y/: (3.83)

This is a familiar type of two-dimensional U.1/ gauge field, except that here it is
embedded in SU.2/. It describes a point vortex with r=2 magnetic flux quanta,
located at z D 0. The gauge field is flat in the boundary, away from z D 0. The
monodromy around the point z D 0 is�

ei�r 0

0 e�i�r

�
: (3.84)

As long as r is an integer, the monodromy is ˙1, and in fact it is always 1 when
regarded as an element of G_. (We recall that odd r corresponds to half-integral
j D r=2, and hence to G D SU.2/, G_ D SO.3/.)

3.6.5. Solutions with a line singularity. In Section 6, we will actually want some
additional solutions of the same equations that have a singularity not just atz D y D 0,
but along the whole ray z D 0, y � 0. We denote this ray as `.

Some new solutions correspond to the case r D �1 of the ansatz (3.61). Thus,
the holomorphic data are given by ' D g'

1
g�1, with g as in (3.60) and

'
1

D
�
0 z�1

0 0

�
: (3.85)

For r D �1, v and u coincide. As for the asymptotic behavior of the solution, for
y ! 0 or s ! 1, we want the usual behavior

v 	 log jzj � log y D log s; s �! 1; (3.86)
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so as to agree at a generic point on the boundary with the usual solution with a
regular Nahm pole. Along the line `, we look first for a solution that is singular but
less singular than 1=jzj. For ' to be less singular than 1=jzj means that we need
v ! �1 for jzj ! 0, but for A to be less singular than 1=jzj means that jvj should
diverge more slowly than log jzj. These conditions force us to take b D 0, which is
not a surprise since in general we had b D r C 1. For b D 0, the substitution (3.76)
is not useful, but we can directly combine (3.75) and (3.73) to get (with v D u)

dv

ev
D dsp

s2 C s4
: (3.87)

Using (3.79) and adjusting the integration constant to match what we want for s ! 1,
we find the unique solution

ev D 1

log.s=.
p
1C s2 � 1//

: (3.88)

A slightly more general solution in which we do not take b D 0 is also of interest.
To find this solution, we simply combine (3.76) and (3.80). We set v D u as we still
assume r D �1, and we keep N D 1 to leave the behavior unchanged for y ! 0 or
s ! 1. The solution is

ev D 2bsb

.
p
1C s2 C 1/b � .p1C s2 � 1/b

: (3.89)

The asymptotic behavior is 8<
:
v 	 log s for s ! 1;

v 	 b log s for s ! 0:
(3.90)

The Nahm pole for y ! 0 or s ! 1 is unchanged, and in particular, if we restrict to
the boundary plane at y D 0, then the monodromy around the point z D 0 remains
trivial (as an element of19 G_ D SO.3/), just as in (3.84). However, the singularity
along ` at a point with y > 0 is controlled by the behavior for z ! 0 with fixed y,
or in other words for s ! 0. This monodromy can be determined by the same
computation that led to (3.84), simply replacing the behavior v 	 �r log jzj assumed
there by v 	 b log jzj. So the monodromy is�

e�i�b 0

0 ei�b

�
: (3.91)

19For G_ D SU.2/, to make the monodromy in the boundary plane trivial, we modify the solution by
twisting by a flat line bundle on the complement of ` whose monodromy around ` is �1. Differently put,
we modify the solution by the gauge transformation (3.65), with r D �1.
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For a further generalization, we continue to require that the singularity in the
holomorphic data corresponds to a simple pole at z D 0, but we drop the assumption
that ' is nilpotent. So we take ' D g'

1
g�1, with

'
1

D 	

z

�
0 1

1 0

�
; (3.92)

where 	 is an arbitrary nonzero complex number. (Equivalently, we could take
'

1
D M=z, where M is any 2 � 2 matrix of determinant �	2, but then we would

have to slightly alter the rest of the ansatz.) So

' D g'
1
g�1 D 	

z

�
0 ev

e�v 0

�
: (3.93)

Keeping the rest of the ansatz (3.61) unchanged, the equation (3.62) is replaced by

�
� @2

@x2
1

C @2

@x2
2

C @2

@y2

�
v C j	j2

jzj2
�
e2v � e�2v

� D 0: (3.94)

We assume that v is a function only of s D jzj=y with´
v 	 log s for s ! 1;

v bounded for s ! 0:
(3.95)

Equation (3.70) is replaced by

�
��
s

d

ds

�2 C
�
s2 d

ds

�2�
v C j	j2.e2v � e�2v/ D 0: (3.96)

Introducing � as in (3.73), we get now

dvp
e2v C e�2v C 2E

D j	j d� D j	j dsp
s2 C s4

; (3.97)

where E is an integration constant. For v to be regular for all s � 0, we have to take
E D �1, whereupon we get

dv

ev � e�v
D j	j dsp

s2 C s4
; (3.98)

leading to
ev � 1
ev C 1

D
�p

s2 C 1 � 1
s

�2j�j
; (3.99)

so that 8<
:
v 	 log s � log j	j C � � � for s ! 1;

v 	 2.s=2/2j�j for s ! 0:
(3.100)
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Equation (3.99) is equivalent to

ev D 1C ..
p
s2 C 1� 1/=s/2j�j

1� ..ps2 C 1� 1/=s/2j�j : (3.101)

Taking 	 ! 0, we get

ev 	 1

j	j log.s=.
p
s2 C 1 � 1// : (3.102)

Thus, even though the form of the differential equation (3.94) suggests that the solution
might become regular in the limit 	 ! 0, this is not the case. However, if we shift v
by � log j	j, then (3.102) coincides with the solution (3.88) in which ' is nilpotent.
Modulo the shift in v (and an ordinary gauge transformation that depends on the
argument of 	), the ansatz (3.93) converges for 	 ! 0 to the ansatz (3.85) with a
nilpotent pole. Thus, starting with the solution (3.99) in which ' has a pole at z D 0

with distinct eigenvalues ˙	, and taking the limit 	 ! 0, we get the solution (3.88)
in which ' has a pole with nilpotent residue. An analogous phenomenon is known
for solutions of Hitchin’s equations with a regular singularity [91].

In the language of Section 6.3, the solution (3.89) has ˛_ 6D 0with ˇ_ D �_ D 0,
while the solution (3.101) has ˇ_; �_ 6D 0 with ˛_ D 0. The solution (3.88) is the
limit for ˛_; ˇ_; �_ ! 0. It would be desirable to find a solution with generic values
of ˛_; ˇ_; �_ (that is, a solution in which ' has a pole at z D 0 whose residue has
distinct eigenvalues and the monodromy around the ray ` is generic). This appears
to require a more complicated ansatz than the one we have used.

3.6.6. Two-sided solutions. The solutions that we have studied so far have been
motivated by the problem of D3-branes on R3�RC, with D3–D5 boundary conditions
and ’t Hooft operators in the boundary. It is also of interest to consider a two-sided
problem20 of D3-branes on R3 � I , where I is a compact interval, for instance the
unit interval 0 � y � 1, and we assume that the D3-branes end on D5-branes both
at y D 0 and at y D 1. A time-independent configuration of ’t Hooft operators is
still described by the three-dimensional equations (3.48) and (3.49). Now we want a
solution that describes ’t Hooft operators on both components of the boundary.

A simple modification of the above ansatz gives examples of solutions of that
type. (It does not give the most general such solutions.) We set

'
1

D
�
0 f .z/

h.z/ 0

�
(3.103)

where f .z/ and h.z/ are two polynomials. Zeroes of f and of hwill be, respectively,
the positions of ’t Hooft operators aty D 0 and aty D 1. We take' D g'

1
g�1 withg

20This problem is related to Chern–Simons theory on the boundary with a complex gauge group, as will
be described elsewhere.
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as in (3.60), and we leave the rest of the ansatz (3.61) unchanged. Equation (3.62)
for v becomes

�
� @2

@x2
1

C @2

@x2
2

C @2

@y2

�
v C jf j2e2v � jhj2e�2v D 0: (3.104)

To understand what sort of solution to look for, first consider the case that f
and h are constants, so that no ’t Hooft operators are present. Then one can look for a
solution21 that depends only on y. An elementary integration gives an implicit form
of the solution

y D C �
Z v

0

dwpjf j2e2w C jhj2e�2w CE
; (3.105)

with constants C;E. These constants can be adjusted in a unique way to ensure that
v ! C1 for y ! 0 and v ! �1 for y ! 1. Then one has v 	 � log y � log jf j
for y ! 0, and v 	 log.1 � y/C log jhj for y ! 1. At both y D 0 and y D 1, the
solution has a regular Nahm pole. Looking at the way v was introduced in (3.60),
we see that a sign change of v can be compensated by a Weyl transformation that
exchanges the two eigenvalues of a diagonal matrix; the structures at y D 1 and
y D 0 are related in this way.

In general, for any polynomials f; h, we look for a solution such that v ! C1 for
y ! 0 andv ! �1 fory ! 1. Then neary D 0, the term �jhj2e�2v is unimportant
in (3.104). The analysis of the boundary behavior is the same as in the one-sided case;
near a boundary point at which f is not zero, we have v 	 � log y � log jf j, while
near a point at which f is zero, the boundary behavior is given by the appropriate
model solution with an ’t Hooft operator. Similarly, near y D 1, the term jf j2e2v is
unimportant. The behavior near y D 1 is the same as the behavior near y D 0 with
the substitutions v ! �v, f ! h, y ! 1 � y.

3.7. The framing anomaly for knots. We have described the singularity associated
to an ’t Hooft operator supported on a knot K for the idealized case that K is a copy
of R linearly embedded in W D R3. For the general case, we simply require that
there should be a singularity alongK that in the directions normal toK looks like this
ideal solution. Away from K, the structure must be what we have already described
in Sections 3.3 and 3.4.

An important consequence of this is the framing anomaly for knots. We will
describe this for G_ D SO.3/, which in any event is the case that we understand
the ’t Hooft operator in most detail. We consider an ’t Hooft operator of spin j
supported on K. In the absence of the ’t Hooft operator, the restriction EjW of E to
W coincides with T W , the tangent bundle to W , as we have seen in Section 3.4. In
what follows, we are only concerned with the behavior along W , so we write simply
E for EjW . In the presence of the ’t Hooft operator, E is modified along K and we
denote this modification as E.j /. The Riemannian connection ! on E is modified to

21This solution is related to one of the original solutions of Nahm’s equation.
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a connection on E.j / that we will call !.j /. In the absence of the ’t Hooft operator,
a step in defining the partition function was to define a real-valued Chern–Simons
function CS.!/ (or CSgrav, but this refinement is not relevant in discussing the framing
anomaly for knots). Similarly, to define the partition function in the absence of the
’t Hooft operator, we need to be able to define a real-valued Chern–Simons function
CS.!.j //. A framing ofW makes it possible to define a lift of CS.!/ to a real-valued
function, but does not suffice for defining a natural real-valued CS.!.j //.

The additional information we need turns out to be a framing ofK. ForK � W a
knot, let NK be the normal bundle to K in W . The fibration NK ! K has structure
group SO.2/ (we have taken W orientable from the beginning, since this is required
in the definition of Chern–Simons theory, and K is certainly orientable, so NK is
orientable). Since K is a one-manifold and SO.2/ is connected, it follows that the
fibration NK ! K is trivial. But it has different homotopy classes of trivializations;
given any one trivialization, any other can be found by twisting the first by a map
from K Š S1 to SO.2/. In other words, two trivializations differ by an element of
�1.SO.2// Š Z. A framing of K is a trivialization of NK up to homotopy. As we
will see below, a real-valued function CS.!j / can be defined if we are given framings
of both W and K. Thus, the knot invariants that we obtain in the G_ description can
be naturally understood as invariants of framed knots in a framed three-manifold.22

Similarly, the knot invariants of Chern–Simons theory are most naturally defined
for framed knots. Let us recall some details of this that will help in understanding
what to look for on the G_ side. The tangent bundle T W , when restricted to a
knot K, is a direct sum TK ˚ NK, where TK is the tangent bundle to K. Unless
K is a geodesic, this decomposition is not invariant under parallel transport along
K. However, the Riemannian connection ! on T W induces a natural SO.2/ connec-
tion $ on NK. Parallel transport of a vector in NK with respect to $ is defined as
transport with respect to ! with a projection back toNK. Concretely, with respect to
the decomposition T W jK D TK ˚NK, $ is the lower right block of !:

! D
�
0 


 $

�
: (3.106)

The holonomy of the connection $ is an element of SO.2/ that we can write
exp.�I / with

I D
�
0 1

�1 0

�
: (3.107)

For a “bare” knot, � takes values in R=2�Z, but for a framed knot, � is R-valued.
Indeed, once a framing is picked, the connection$ becomes$ D 	I , where now 	

22 Here we can make a remark that parallels what was said about framings of three-manifolds at the
end of Section 3.5.2. A knot K � R3 has a canonical framing (relative to which its self-linking number
vanishes). Formulas for the Jones polynomial and related invariants are usually written relative to this
canonical framing. Because the canonical framing cannot be found locally, it is natural to define the
invariants for an arbitrary framing. In any event, in a general three-manifold W , a knot does not have a
canonical framing.
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is an ordinary one-form, and � is simply
H

K
	. If the framing of K is shifted by one

unit (by making an SO.2/-valued gauge transformation of NK ! K with winding
number 1 around K), � transforms by � ! � C 2� .

As essentially found for abelian Chern–Simons theory in [84] and more generally
in [102], in computing the expectation value of a Wilson loop operator WR.K/ in
Chern–Simons theory on W with gauge group G, one runs into an analog of what
was described for three-manifolds in Section 3.5.3. The expectation value of WR.K/

is not independent of the metric of W unless one modifies its classical definition by
including a factor that depends on � :

WR.K/ �! WR.K/ exp.idR�/: (3.108)

Here dR is a constant that can be usefully characterized using the relation of three-
dimensional Chern–Simons theory to conformal field theory in two dimensions. For
k > 0, dR is the dimension of the primary field associated to the representation R in
two-dimensional current algebra with symmetry group G at level k. Thus

dR D c2.R/

k C h sign.k/
; (3.109)

where c2.R/ is the value in the representation R of the quadratic Casimir operator
of G (normalized to equal h in the adjoint representation). This formula is usually
written only for k > 0; we have extended it to all nonzero integers k so that dR is an
odd function of k (this reflects the fact that for k < 0, Chern–Simons theory is related
to an antiholomorphic rather than holomorphic current algebra in two dimensions).
It follows from (3.108), (3.109), and the definition of q in (3.13) that under a unit
change in framing of K, the Wilson loop operator transforms by

WR.K/ �! WR.K/q
ngc2.R/: (3.110)

For example, if G D SU.2/ and R is the spin j representation, then

WR.K/ �! WR.K/q
j.j C1/: (3.111)

The difference betweenE andE.j / is local alongK, so to understand what happens
in the dual G_ description, it suffices to consider a local model of the neighborhood
of K � W . We take such a neighborhood to be W0 D S1 � D where D is a disc
of radius R. We assume that W is the union of two pieces W0 and W1, glued along
their common boundary „ D S1 � zS1, where zS1 is the boundary of D. W1 may be
arbitrarily complicated, but W0 will be very simple. To describe W0, we introduce
an angular coordinate ˛ on S1 and polar coordinates r; ˇ (0 � r � R) onD, and we
take the obvious flat metric:

ds2 D d˛2 C dr2 C r2dˇ2; (3.112)

but with a twist of the following sort. We take ˇ to be an ordinary angular variable,

ˇ Š ˇ C 2�; (3.113)
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while under a 2� shift of ˛, we rotate R2 by an angle � :

˛ ! ˛ C 2�; ˇ ! ˇ � �: (3.114)

The definition ofW0 only depends on � mod 2� , since ˇ ! ˇC2� is an equivalence
anyway. We take the knot K to be located at r D 0. Relative to the obvious
orthonormal frame field

e1 D d˛; e2 D d.r cosˇ/; e3 D d.r sin ˇ/; (3.115)

the Riemannian connection ! simply vanishes. However, it has a nontrivial mon-
odromy around S1 because the orthonormal frame used in (3.115) has a monodromy
under (3.114): �

e2

e3

�
�! exp.�I /

�
e2

e3

�
: (3.116)

It is convenient to work with a single-valued orthonormal frame consisting of e1 and� Qe2

Qe3

�
D exp

�
� �˛

2�
I

� �
e2

e3

�
: (3.117)

Unlike all the previous formulas, this one depends on � as a real number, not just an
angle. In fact, when restricted to K, Qe2 and Qe3 define a framing of K. This framing
is shifted by n units if we modify (3.117) by � ! � C 2�n. The orthonormal
frame e1; Qe2; Qe3 also defines a framing of W0, but this framing contains no relevant
topological information.23 We assume that the framing of W0 given by e1; Qe2; Qe3 (or
at least the corresponding two-framing) is somehow matched to a framing of W1,
giving a framing of W . We want to see what happens to CS.!.j // when we vary the
framing of K while keeping fixed the framing or two-framing of W .

Relative to the orthonormal frame e1; Qe2; Qe3, the Riemannian connection is

! D � d˛

2�

0
@0 0 0

0 0 1

0 �1 0

1
A: (3.118)

It is clumsy to write such a formula with a first row and column of zeroes. Everything
of interest will happen in the lower right 2 � 2 block, and the 2 � 2 matrices will all
be easily constructed from the SO.2/ generator I of (3.107). So we will abbreviate
a formula such as this one as

! D � d˛

2�
I: (3.119)

Now we want to include the ’t Hooft operator. As in (3.83) (which however
was written in the two-dimensional representation while now we are in the adjoint

23Because �1.SO.3// D Z2, the topological class of the framing of W0 depends on n precisely
mod 2. But the two-torsion information contained in a framing is not relevant in Chern–Simons theory.
A convenient way to eliminate it [6] is to pass from a framing of T W to the corresponding framing of
T W ˚ T W .
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representation), this means that the Riemannian connection ! is replaced by a con-
nection !� that is obtained from the Riemannian connection by adding a singular
vortex of flux 2j acting on the normal bundle. In the same abbreviated notation as in
(3.119), we take

!� D 2j
�
dˇ C �

2�
d˛

�
I C � d˛

2�
I: (3.120)

This formula was chosen so that for fixed ˛ it agrees with the singular vortex con-
nection (3.83), and also so that !� is gauge-equivalent to ! for r 6D 0. The gauge
transformation between them is

d C ! D exp.�s/.d C !�/ exp.s/; (3.121)

with
s D �2j

�
ˇ C �˛

2�

�
I: (3.122)

s has been defined so that exp.s/ is single-valued on the complement of the knot K.
We want to modify !� slightly near r D 0 to remove its singularity. We introduce

a cutoff function g.r/ such that g.r/ D 1 for r > � (with some very small � << R)
but g.r/ 	 r2 for r ! 0. We modify !� to

O! D 2j
�
g.r/dˇ C � d˛

2�

�
I C � d˛

2�
I: (3.123)

(One can think of this modification as meaning that instead of restricting the bundleE
literally to the boundary W of V D W � RC, we restrict it to a three-cycle that
coincides with the boundary away from knots, but near a knot K bends slightly into
the interior of V to avoid the singularity along K.)

Now we can describe the desired bundle E.j / ! W and the connection !.j /

on this bundle whose Chern–Simons function we want. On W1, E.j / coincides
with T W1, and the connection is the Riemannian connection !. On W0, E.j / is a
trivial bundle with connection O! defined in (3.123). On the common boundary „
of W0 and W1, the bundles and connections are glued together with the gauge trans-
formation (3.121). The framing (or more exactly the two-framing) of T W0 that is
given by e1, Qe2, Qe3 has an extension over W that will be kept fixed while varying
the framing of K. Everything is in place to compute a real-valued Chern–Simons
function CS.!.j // and determine its dependence on the framing ofK. We use (2.53),
in which CS.A/ is defined for any connection A using a trace in the adjoint repre-
sentation (and we set h D 2). In the present context, it is convenient to evaluate the
right hand side of (2.53) as the sum of an integral over W1 with the connection !,
an integral over W0 with the connection O!, and a correction term on the common
boundary „ ofW0 and W1 that involves the gauge transformation between ! and O!:

CS.!.j // D 1

16�

Z
W1

Trad

�
! ^ d! C 2

3
! ^ ! ^ !

�

C 1

16�

Z
W0

Trad O! ^ d O! � 1

16�

Z
„

Trad ds ^ O!:
(3.124)
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(Trad is the trace in the adjoint representation of SO.3/; some minor simplifications
in (3.124) reflect the fact that O! and the gauge transformation relating it to ! are
actually abelian, taking values in an SO.2/ subgroup. Evaluation of (3.124) uses
Trad I

2 D �2 and the orientation ofW0 given by e1 ^ e2 ^ e3.) The terms in (3.124)
that depend on the framing of K are the integrals overW0 and „. A straightforward
evaluation gives

CS.!.j // D ��j.j C 1/C � � � ; (3.125)

where the ellipses come from the integral overW1 and do not depend on the framing
of K. Using (3.34) (with v D 1 for G_ D SO.3/), the dependence of the partition
function on CS.!.j // is a factor of q�CS.!.j //=2� . So finally, under a unit change
in framing, � ! � C 2� , the partition function is multiplied by qj.j C1/, just as in
Chern–Simons theory.

There is another issue that could be treated here using these ideas. This is to show
that, for W D R3, with a knot K labeled by the spin j representation of SU.2/,
and using our boundary conditions, the instanton number P takes values in Z C j .
Setting j D 1=2, this accounts for the fact that the Jones polynomial is actually q1=2

times a Laurent polynomial in q. More generally, for W D R3 with a link L with �
components labeled by j1; : : : ; j� , P takes values in ZC P�

sD1 js . We will postpone
these issues and consider them in Section 5.4 from a higher-dimensional perspec-
tive. Similarly, in Section 5.4, we will give a new and possibly more transparent
computation of the framing anomaly for knots.

4. T-duality and Khovanov homology

4.1. Lift to five dimensions

4.1.1. Five-dimensional super Yang–Mills and T-duality. So far we have found
a new way to calculate the partition function of three-dimensional Chern–Simons
gauge theory with gauge group G, using G_ gauge theory in four dimensions. To
get to Khovanov homology takes an additional step: we need a fifth dimension.

From a field theory point of view, we can try to proceed by claiming that four-
dimensional maximally supersymmetric Yang–Mills theory is the theory obtained at
low energies by compactifying five-dimensional maximally supersymmetric Yang–
Mills theory on a circle. Thus, instead of considering four-dimensional N D 4

super Yang–Mills theory on a four-manifold V , we consider the corresponding five-
dimensional theory on V �S1 (with supersymmetry-preserving boundary conditions
in going around S1). The twisting along V and the boundary conditions at the
boundary of V preserve the same supersymmetry that they did in the purely four-
dimensional formulation of the theory. (The boundary condition of Section 3.3 can
be lifted to five dimensions in an obvious way; three of the scalar fields have the
singular behavior at the boundary described there.) In particular, the topological
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superchargeQ that is familiar in four dimensions is still a symmetry when the model
is lifted to five dimensions.

Once the model is lifted to V � S1, we can pick a point p 2 S1 and construct
a physical Hilbert space H .V / associated to quantization on the codimension one
submanifold V � p. The path integral on V � S1 can then be written as a trace
in H .V /. In the present approach, H .V / plays the role of the space that was called
by that name in our introductory sketch of Khovanov homology in Section 1.2. Q
automatically acts on H .V /, as it generates a symmetry of the theory. We write K.V /

for the cohomology of Q, acting on H .V /. Then K.V / is our candidate for the
generalization to this situation of Khovanov homology. (Since we do not have a
proof that the cohomology of Q is equivalent to Khovanov homology as defined in
the literature, even if one specializes to the situation of knots in R3 where Khovanov
homology has been defined, we denote the cohomology of Q as K and write k for
Khovanov homology.)

From a D-brane point of view, the lift from four to five dimensions amounts
to T-duality. Thus, for the case that the gauge group is G_ D U.N /, consider
a system of N D3-branes wrapped on V , with some twisting of the normal bun-
dle to V to preserve supersymmetry. This picture was described in Section 2.2.3.
Without changing anything essential in that discussion, we can take one of the space-
time directions transverse to V to be compactified on a circle zS1. Explicitly, we
replace what in Section 2.2.3 was T �V0 � R2 by T �V0 � R � zS1. Then we per-
form T-duality on zS1, converting the spacetime to T �V0 � R � S1. The D3-branes
wrapped on V � V0 are converted to D4-branes wrapped on V � S1. If as in Sec-
tion 2.2.3, the D3-branes end on a D5-brane (wrapped on T �W withW D @V ), then
T-duality converts the D3-branes to D4-branes that end on a D6-brane (wrapped on
T �W � S1). So, when the appropriate geometry exists, the lift to five dimensions
simply amounts to T-duality from the D3–D5 system that we have studied so far
to a D4–D6 system.

None of the approaches just mentioned is entirely satisfactory. The disadvantage
of the description by five-dimensional super Yang–Mills theory is that this theory is
not ultraviolet complete. The brane construction also has a few drawbacks, which
were described in Section 2.2.3. The appropriate Calabi–Yau geometry may not
exist for generic V , and even if it exists, it may entail unnatural choices. The brane
construction does not help very much with exceptional gauge groups. Also, the brane
construction and the full string theory have many degrees of freedom that are not
relevant to the problem of defining an analog of Khovanov homology and relating it
to Chern–Simons theory.

There is a completely satisfactory alternative to the approaches that we have
summarized so far. Five-dimensional maximally super Yang–Mills theory has a
canonical ultraviolet completion in the six-dimensional (0,2) superconformal field
theory. This gives a general and economical framework for the topic considered in
the present paper, and for many purposes it is probably the most powerful framework.
In Section 5, we will develop a top-down approach to the subject with this starting
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point. As an illustration of the power of this viewpoint, we will show that in the six-
dimensional picture, the existence of supersymmetric Wilson and ’t Hooft operators
precisely at the boundary of V follows from standard facts, while in the four and five-
dimensional pictures, this seems to require the detailed computations in Sections 2.2.4
and 3.6.

But some important points, especially the representation (4.10) of the Chern–
Simons partition function as a trace in Khovanov homology, do not require the six-
dimensional machinery. So it seems reasonable to begin with an explanation in five
dimensions.

4.1.2. The bigrading. To agree with Khovanov homology, K.V / should admit a
U.1/� U.1/ action, so that it will be Z � Z graded.24 One generator of U.1/� U.1/
is the instanton number, evaluated on the four-cycle V . The definition is the same as
it was in Section 3.1:

P D 1

32�2

Z
V

���˛ˇ Tr F��F˛ˇ : (4.1)

However, the physical interpretation is different: in the five-dimensional interpreta-
tion, P is an operator acting on quantum states that are obtained by quantizing fields
onV , while in the four-dimensional interpretation, P was a term in the classical action.

The other generator of U.1/ � U.1/ is an R-symmetry generator F that is left
unbroken by the twisting procedure that is used to define a topological field theory.
In the four-dimensional analysis of Section 2.2, we began with the R-symmetry
group SO.6/ of N D 4 super Yang–Mills theory in four dimensions, and twisted
by identifying an SO.4/ subgroup of SO.6/ with the Riemannian holonomy of V .
This left an unbroken subgroup SO.2/ � SO.6/, and we defined the generator of
this SO.2/ Š U.1/ to be F. When we lift to five dimensions, the R-symmetry group
is reduced to SO.5/, so embedding an SO.4/ holonomy group in the R-symmetry
group would not leave an unbroken SO.2/. To compensate for this, we specialize to
V D W � RC (or V D W � S for any one-manifold S ), with W a three-manifold.
This ensures that the holonomy group of V reduces to SO.3/, so that its embedding
in theR-symmetry group, which is now SO.5/, again leaves an unbroken SO.2/. We
again denote the generator of this symmetry as F. For general V , we do not get a
Z-grading by F, but there is always a Z2-grading that distinguishes bosonic states
from fermionic ones. When F can be defined, the Z2-grading by statistics is the
mod 2 reduction of the Z-grading by F. It turns out, however, that the lift to five
dimensions is useful primarily when the conserved charge F can be defined, so we
will be mainly interested in that case.

24This is a slight simplification as in general the eigenvalues of the symmetry generators F and P may
lie in a coset of Z � Z � R � R. The most important consequence of this was described in Section 3.5.
More generally, if G_ is not simply-connected, the eigenvalues of P may lie in a coset of Z=w � R for
some integer w , rather than in a coset of Z. This last effect, which was discussed in relation to (3.14), is
not directly relevant to Khovanov homology, because it does not arise for V D W � RC with the sort of
boundary conditions that we impose on @V .
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Of course, when V has a boundary, to define F, the boundary condition must
be F-invariant. But there is no problem with this. We use the boundary condition
of Section 3.3, lifted to five dimensions. Three of the five scalar fields of five-
dimensional maximally supersymmetric Yang–Mills theory have expectation values
that diverge at the boundary, leaving an unbroken SO.2/-symmetry that rotates the
other two. The two scalars that are rotated by F play the role of the complex field �
of Section 2.2.1. In any supersymmetric classical solution, � vanishes and the value
of F also vanishes. Quantum mechanically, for a quantum state associated to a given
classical solution, the eigenvalue of F is computed by summing over the F quantum
numbers of all fermions in the filled Dirac sea. In that sense, it makes sense to refer
to F as a fermion number.

A more detailed and complete explanation of many of these matters is given in
Section 5 in the context of an ultraviolet completion of five-dimensional superYang–
Mills theory in six dimensions. For now, it is enough to know that, not for all V , but
for V of the form W � RC, K.V / is bigraded, like Khovanov homology.

Since Khovanov homology has been defined in the literature only for links in R3,
to make a precise conjecture about the relation of K.V / to Khovanov homology, we
must restrict to V D R3 � RC. For Khovanov homology, we consider a link L � R3

consisting of a disjoint union of embedded circles Ki � R3. We label each Ki by
an irreducible representation Ri of a compact Lie group G. In the four-dimensional
description of Section 2 via G gauge theory, we include supersymmetric Wilson
operators of the representations Ri , supported onKi � f0g, where f0g is the endpoint
of RC. In the S -dual description in Section 3, the gauge group is G_, the Goddard–
Nuyts–Olive or Langlands dual ofG, and the Wilson operators in the boundary of V
are converted to the dual ’t Hooft operators of G_ gauge theory. The description
of ’t Hooft operators in the boundary of V is somewhat subtle and was described in
Section 3.6. In this situation, K.V / is a candidate for Khovanov homology.

4.1.3. Notation. As we move to five dimensions, the cast of characters will get
longer. To make the arguments easier to follow, in the rest of the paper we write V4

and W3 for the four-manifold and three-manifold that earlier we have called simply
V and W . Thus W3 is always the boundary of V4.

4.2. Procedure for computing K. Now we would like to sketch the concrete pro-
cedure for computing K.V4/, for a four-manifold V4, via five-dimensional super-
symmetric Yang–Mills theory. This procedure is in no way novel; it is a standard
procedure in topological applications of supersymmetric theories; typical examples
involve Morse theory [100] or Floer cohomology [31]. We sketch the procedure here
for completeness.

We want to describe a procedure to determine the space of quantum ground states
of twisted super Yang–Mills theory on the five-manifold M5 D R �V4. For compar-
ison to Chern–Simons theory (or Khovanov homology), we take V4 D W3 � RC for
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some W3, but the general procedure to describe the space of ground states holds for
any V4.

First of all, the condition for a five-dimensional field configuration to preserve the
Q-symmetry gives a system of elliptic differential equations in five dimensions. It is
straightforward to derive these equations, and we will do so in Section 5.2; see (5.36)
for the final result. But for now, we do not need the details. All we need to know is that
these are elliptic differential equations that, in the time-independent case, specialize
to the familiar four-dimensional equations

F � ' ^ ' C ?dA' D 0 D dA?': (4.2)

The first approximation to finding the space of quantum ground states is to find
the space of classical ground states. A classical ground state is a time-independent
classical solution of the five-dimensional equations for unbroken supersymmetry. So
in other words, a classical ground state is a solution of (4.2) on the four-manifold V4.
For simplicity we are going to assume that this equation has a finite set of solutions,
up to gauge transformation, and further that these solutions are all nondegenerate
(there are no bosonic zero modes in expanding around a given solution). Let S be
the set of these solutions. If V4 has a non-empty boundary, then on @V4 we impose
the boundary conditions of Section 3.3; with these boundary conditions, the solutions
are automatically all irreducible (they leave unbroken only a finite group of gauge
symmetries, in fact the center ofG_ ). IfV4 has no boundary, we assume for simplicity
that the solutions are all irreducible.

Nondegeneracy means that the expansion around a given classical solution gives,
at least perturbatively, a single quantum state of zero energy. We will let K0 be the
space of quantum ground states in the classical approximation; it has a basis consisting
of a single state  s for each s 2 S . We let ns be the instanton number P for the sth

classical solution, as defined in (4.1). Assuming that V4 D W3 � RC for some W3,
we let fs be the fermion number F of the sth classical solution. (It equals the value
of F for the filled Dirac sea that one obtains in expanding around the sth solution.)
For any V4, K0 is Z � Z2-graded, where the Z-grading is by the eigenvalue of P,
and the Z2 distinguishes fermionic states from bosonic ones. For V4 D W3 � RC,
K0 is Z � Z graded by the eigenvalues of P and F.

Now we want to consider quantum corrections to this spectrum. Once one has an
asymptotic approximation to the space of supersymmetric states – in this case K0 –
states can only disappear from the supersymmetric spectrum in Bose–Fermi pairs.
The reason for this is familiar: eigenstates of the supersymmetric Hamiltonian with
a nonzero energy occur in pairs, corresponding to a bosonic state and a fermionic
state of the same energy. In the Z � Z2-graded case, a pair of states that are going to
disappear must have the same P eigenvalue (since P commutes withQ) and opposite
statistics. In the Z � Z-graded case, a pair of states that are going to disappear from
the supersymmetric spectrum must have the same eigenvalue of P and eigenvalues
of F that differ by 1. (The last statement is a consequence of the commutation relation
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ŒF; Q� D Q, which implies that a supermultiplet of energy eigenstates with nonzero
energy consists of a pair of states with values of F differing by ˙1.)

In perturbation theory, nothing happens to the supersymmetric spectrum. Indeed,
perturbation theory around a given classical solution only “knows” about a single
approximate supersymmetric state, namely the one obtained by quantizing that clas-
sical solution. In perturbation theory, there is no way for that approximate supersym-
metric ground state to pair up with another one and disappear. However, just as in
supersymmetric quantum mechanics or Floer cohomology, instanton effects involv-
ing tunneling from one classical solution to another can lift a pair of supersymmetric
states away from zero energy. In the present context, instantons are solutions of the
five-dimensional supersymmetric equations, the ones that are presented in (5.36) and
whose reduction to the time-independent case agrees with (4.2). An instanton that
interpolates between one solution of (4.2) in the past and another in the future can
lift away from zero energy the supersymmetric quantum states that correspond to the
two solutions.

Let K be the exact supersymmetric spectrum that we get after allowing for the
effects of instantons. A precise and general recipe for computing K is that it is the
cohomology of a certain operator acting on K0. This operator is simply Q evaluated
in the space K0 generated by the approximate supersymmetric states  s . A precise
formula for Q, up to conjugation, is

Q s D
X

ft2S jft �fsD1g
nst t ; (4.3)

where nst is computed by summing over instantons that begin at the sth solution in the
past and end on the t th solution in the future. Such solutions come in one-parameter
families generated by time translation invariance; each such family contributes 1
or �1 to nst , depending on the sign of the fermion determinant that arises in lin-
earizing around the given solution, after removing the zero mode that comes from
time-translation invariance. The details are standard in Floer cohomology and related
theories, and will not be described here.

4.2.1. Relation to Chern–Simons theory. Now we want to explain how K.V4/, as
just described, is related to the S -dual four-dimensional construction of Section 3.
For brevity, we focus on the Z � Z-graded case V4 D W3 � RC, so that we also will
get a link to Chern–Simons theory on W3. The general case is similar, except that
the function L.q; y/ that is introduced shortly is only defined for y D �1 since the
grading is only by Z � Z2.

First of all, if we know K.V4/, then we can compute the function

L.q; y/ D TrK.V4/ q
PyF: (4.4)

For V4 D W3 � RC, this function is an invariant of W3, or of W3 together with the
knot or link it may contain, if any. However, there is no convenient way to represent
this function by a path integral.
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To get a trace associated to V4, we should consider a path integral on the five-
manifold M5 D V4 � S1. If H is the Hilbert space of all physical states of five-
dimensional super Yang–Mills theory (not necessarily annihilated by Q), H is the
Hamiltonian acting on H , and ˇ is the circumference of S1, then a path integral
on M5 with an insertion of the operator qPyF can compute

G.q; y/ D TrH qPyF exp.�ˇH/: (4.5)

However, this trace receives contributions from states of nonzero energy. A pair of
states with H D E, P D n, and F D f; f C 1 contribute

qn exp.�ˇE/.yf C yf C1/ (4.6)

toG.q; y/. To make this contribution vanish, we must choose y so that yf Cyf C1 D
0; in other words, we need to take y D �1. Otherwise, G.q; y/ is not a topological
invariant. If we set y D �1, G.q; y/ reduces to L.q; y/.

The study of Khovanov homology has shown that the function L.q; y/ contains
quite a lot of information that we lose if we set y D �1. However, the case y D �1
is the case that can be represented by a path integral on M5. For this value of y, the
trace in (4.4) or (4.5) computes what is usually called the index of the operator Q,
or more precisely the equivariant generalization of this index to take account of the
symmetry generated by P. (We get the ordinary index of Q if we set q D 1.) As is
usual, the index of an operator is more readily computed by a path integral than are
other topological invariants.

Not only can L.q;�1/ be represented by a five-dimensional path integral onM5;
it can more simply be represented by a path integral on V4. The reason for this is
as follows. Approximate supersymmetric states that are lifted from the spectrum by
instanton effects do not contribute to L.q;�1/ (since they have the same value of P
and have F differing by 1). So we can calculate L.q;�1/ in the space K0.V4/ of
approximate supersymmetric ground states, instead of the space K.V4/ of states of
exactly zero energy:

L.q;�1/ D TrK0.V4/ q
P.�1/F: (4.7)

Before looking at this formula more closely, let us note as an aside that we could
also, of course, define a more general trace in K0.V4/:

zL.q; y/ D TrK0.V4/ q
PyF: (4.8)

But in general, one should not expect zL.q; y/ to be a topological invariant. The reason
is that, unlike K.V4/, K0.V4/ is not, in general, a topological invariant. In general,
one should expect supersymmetric classical solutions to appear and disappear in
pairs as the metric on V4 is varied; when this occurs, zL.q; y/ will jump with no
change in L.q; y/. Concretely, when one varies the metric of V4 so that a pair
of time-independent classical solutions appears, there also appears a time-dependent
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instanton solution that interpolates between them and ensures that the extra two states
that have appeared in K0.V4/ do not contribute to K.V4/.

Since we want to study topological invariants, we set y D �1. Now let us go
back to the formula (4.7) for L.q;�1/. This trace is a sum over classical solutions
of the time-independent equations (4.2); as before, we assume that the solutions are
nondegenerate and parametrized by a finite set S . For each s 2 S , we write ns and fs

for the P and F eigenvalues of the approximate ground state  s . The explicit formula
for L.q;�1/ is then

L.q;�1/ D
X
s2S

qns .�1/fs : (4.9)

But this coincides with the formula (3.15) for the purely four-dimensional path integral
on V4 provided the sign .�1/gs of the four-dimensional fermion determinant coin-
cides with .�1/fs . The justification for that last statement is that as one varies the
metric of V4 or the background fields A; ' in the Dirac operator, the sign of the
four-dimensional fermion determinant is reversed whenever it has a zero mode; but
these are precisely the points at which, from a five-dimensional point of view, the
value of fs jumps by ˙1. (This argument does not fix an additive constant in gs ;
this constant depends on a choice of trivialization of the determinant line bundle in
four dimensions. We fix the constant to reconcile the four- and five-dimensional
formulas.)

In turn, we know that for V4 D W3�RC, the four-dimensional path integral (3.15)
equals the Chern–Simons path integral ZCS

W3
.q/ on W3. Putting everything together,

we have obtained the relation

ZCS
W3
.q/ D TrK.W3�RC/ q

P.�1/F (4.10)

between Chern–Simons theory onW3 and our candidate K.W3 � RC/ for the gener-
alized Khovanov homology. But in general, something is hidden in the way we have
written this formula.

On the left hand side of this formula, the possible integration cycles of the Chern–
Simons theory onW3 that must be used for computing ZCS

W3
are associated to critical

points of the GC-valued Chern–Simons function on W3 – in other words, to homo-
morphisms � W �1.W3/ ! GC. On the right hand side, K.W3 �RC/ is defined using
a homomorphism �_ W �1.W3/ ! G_

C to set the boundary condition at infinity. To use
the formula in general, we would have to understand the relation between � and �_
determined by S -duality. A more precise version of the formula would involve a sum
as in (3.16) with an unknown matrixm�_;�. We can avoid this problem if we special-
ize toW3 D R3 with a link whose components are labeled by Wilson operators on the
left hand side of (4.10) or by the dual ’t Hooft operators on the right hand side. Then
� and �_ are both trivial, so we do not need to analyze an S -duality transformation
between them. The relation (4.10) becomes – conjecturally – the classical relation
between Khovanov homology (and its generalization to arbitrary representations of
compact Lie groups) and the Jones polynomial (and more general knot invariants
derived from Chern–Simons theory), as described in (1.9) of the introduction.
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4.3. Lie groups that are not simply-laced. We are now going to explain a possibly
surprising fact: when the gauge groupG of Chern–Simons theory is not simply-laced,
there is a perfectly good alternative to what has just been explained.

Although this is a general fact, we will, to be concrete, explain it first for the
case that G D Sp.2n/ for some n. The GNO or Langlands dual group is then G_ D
SO.2nC1/. And this is a subgroup of the simply-laced Lie groupG� D SO.2nC2/.
G� admits an outer automorphism that we will call 
 that leaves fixed G_. In the
.2nC2/-dimensional representation ofG�, 
 acts by the matrix diag.1; 1; : : : ; 1;�1/.

As is clear from the explicit description in Section 3.3, a principal su.2/ subalgebra
of SO.2nC 2/ can actually be conjugated into the Lie algebra of SO.2nC 1/. With
this choice, it commutes with 
. This means that the boundary condition of the
D3–D5 system, as described in Section 3.3, or its T -dual, the boundary condition of
the D4–D6 system, as studied in this section, is 
-invariant.

Hence, taking the gauge group to be G�, 
 acts on the set S� of solutions of
the four-dimensional equations (4.2). We denote this space as S�, rather than S (as
before), to emphasize that we are taking the gauge group to be G� rather than G_.
The set S of solutions of the equations (4.2) with gauge group G_ is simply the set
of fixed points of 
 acting on S . We will likewise write K�

0 .V4/ and K�.V4/ for
the spaces of approximate and exact quantum ground states in the G� theory, while
K0.V4/ and K.V4/ will be the corresponding spaces for gauge group G_.

Since 
 acts on the setS�, it also acts on the vector space K�
0 .V4/, which is simply

constructed to have one basis vector  s for every s 2 S�. 
 is also a symmetry of
the five-dimensional “instanton” equations that lift some states in K�

0 .V4/ (this is
hopefully natural even though we will not actually construct those equations until
Section 5), so it acts on K�.V4/ as well.

Using the 
 action on K�.V4/, we can now define a new trace that generalizes (4.4):

L�
� .q; y/ D TrK�.V4/ q

PyF
: (4.11)

Here for brevity, but also because it is the most interesting case, we assume that
V4 D W3 � RC so that we can define the F-symmetry. Note that 
 commutes with P
and with F, as well as with Q.

Just as in the discussion of (4.4), to represent L�
�
.q; y/ by a path integral in a

simple way is only possible if y D �1. So let us consider the relation of L�
�
.q;�1/

to Chern–Simons theory. Just as in (4.7), in computing L�
�
.q;�1/, we can replace

the trace in K�.V4/ by a trace in K�
0 .V4/:

L�
� .q;�1/ D TrK�

0
.V4/ q

P.�1/F
: (4.12)

We can evaluate the trace in (4.12) by summing over the basis of K�
0 given by the

vectors s; s 2 S�. In this basis, we evaluate the trace by summing over the diagonal
matrix elements of qP.�1/F
. Since P and F are diagonal in the chosen basis, the
trace receives contributions only from diagonal matrix elements of 
. The action
of 
 in this basis is easily described. 
 is a permutation matrix determined by the
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action of 
 on the set S�. 
 either leaves fixed a given s 2 S� or exchanges a pair
of elements. Nonzero diagonal matrix elements of 
 are all 1 and correspond to

-invariant elements of S�. But the 
-invariant elements of S� make up precisely the
set S of G_-valued solutions of the four-dimensional localization equations. Hence

L�
� .q;�1/ D

X
s2S

qP.�1/F D TrK.V4/ q
P.�1/F: (4.13)

Since we got the same result for L.q;�1/ in (4.9), we learn that L�
�
.q;�1/ D

L.q;�1/. Since we have already identifiedL.q;�1/with the Chern–Simons partition
function of G D Sp.2n/, we actually now have two alternative formulas for this
function:

ZCS
W3
.q/ D L�

� .q;�1/ D L.q;�1/: (4.14)

Both of these formulas amount to ways of writing the Chern–Simons partition function
as a trace:

ZCS
W3
.q/ D TrK.W3�RC/ q

P.�1/F D TrK�.W3�RC/ q
P.�1/F
: (4.15)

Actually, the attentive reader may notice a small gap in this derivation: we have
assumed that for a given G_-valued classical solution, the values of P and .�1/F
are the same whether calculated in G_ or after embedding of the solution in G�.
For P, this is a classical fact about the instanton number, but a proof of what we want
for .�1/F is not clear at the moment25 and this is a gap in our explanation. A proof
may follow from a vanishing theorem for the five-dimensional Dirac operator.

We have treated the case of G D Sp.2n/, but a similar derivation works for any
gauge group that is not simply-laced. ForG D SO.2nC 1/, we haveG_ D Sp.2n/.
We can take G� to be the simply-laced Lie group SU.2n/, which admits an outer
automorphism 
 that leaves fixedG_. Once again, a principal su.2/ subalgebra ofG_
embeds as a principal su.2/ subalgebra ofG�. This is clear from the description of the
principal subgroups in Section 3.3. So we can repeat all steps in the above derivation,
arriving again at (4.14) and (4.15).

The other cases of non-simply-laced Lie groups are similar, though less obvious.
If G D G2 or F4, then again G_ D G2 or F4. For G_ D G2, we take G� D Spin.8/
with 
 a triality automorphism, which is of order 3. We can pick 
 to leave fixed
G2 � G�, and a principal su.2/ subalgebra ofG2 embeds as one ofG� . ForG_ D F4,
we take G� D E6. E6 admits an outer automorphism 
 of order 2, which we can
choose to leave F4 fixed. Again a principal su.2/ subalgebra of F4 embeds as one
of E6. (Proofs of the statements in this paragraph about principal su.2/ subalgebras
have been sketched by B. Kostant.) So we can repeat the above derivation, leading
to the same conclusions (4.14) and (4.15).

25This actually is clear for the case G_ D G2, G� D Spin.8/. The complement of the G_ Lie algebra
in that of G� is two copies of the irreducible seven-dimensional representation of G_. When we embed
G_ in G�, the fermion determinant is multiplied by the square of a real determinant associated to the
seven-dimensional representation of G_, so its sign does not change.



Fivebranes and knots 79

4.4. Ultraviolet completion. Mathematically, the approach to this subject via five-
dimensional gauge theory has the great advantage of relying on five-dimensional
elliptic differential equations, without needing the full machinery of quantum field
theory and string theory. (We have not yet described explicitly the relevant five-
dimensional equations and their essential properties; this will be done starting in
Section 5.2.) Indeed, this fact is the main reason that the present paper may have
some mathematical impact in the short term.

Physicists will generally prefer a starting point based on an ultraviolet-complete
quantum field theory. This we will present in Section 5. Some of the drawbacks of
relying on five-dimensional supersymmetricYang–Mills theory were described at the
end of Section 4.1.1.

The alternative formulas of (4.15) for the Chern–Simons partition function whenG
is not simply-laced give an interesting challenge for the six-dimensional approach.
In Section 5.5, we will suggest two slightly different six-dimensional starting points
that lead to the two formulas.

5. Top-down approach

So far in this paper, we have worked our way up from three to four and then five
dimensions. The logical end of this process is the six-dimensional superconformal
field theory that provides an ultraviolet completion of five-dimensional super Yang–
Mills theory.

In the present section, we begin in six dimensions and deduce the five-dimensional
picture that was used in Section 4. We also fill in many key gaps in Section 4, mainly by
deriving the explicit form of the relevant elliptic differential equations and describing
their key properties.

The six-dimensional starting point in the present section will also bring us closer
to the brane constructions that have been used previously in related work [82], [53],
[26], [2], and [19].

We began our analysis in Section 2 on a fairly general four-manifold V4 with
boundary W3. In Section 4, we lifted the analysis to the five-manifold S1 � V4. In
that context, as was explained in Section 4.1.2, to maintain the bigrading that gives
Khovanov homology much of its power, one must specialize26 to V4 D W3 � RC, for
someW3, so that the five-dimensional description is based onM5 D S1 �W3 � RC.
However, it turns out that this can be generalized. The five-dimensional version of the
construction makes sense on M5 D M4 � RC, with any oriented four-manifold M4

without boundary, not necessarily of the form W3 � S1. (Note that in the important
case that M5 D S1 � W3 � RC, M4 is not the same as V4; V4 is W3 � RC while
M4 is S1 �W3.) We will define a four-dimensional topological field theory that will

26More generally, one could replace RC by another one-manifold, notably a circle, real line, or compact
unit interval.
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work for an arbitrary M4. Moreover, M4 can be endowed with “surface operators,”
supported on a two-manifold † � M4. Though any M4 is allowed, this theory
is most interesting (for a reason explained in Section 5.2.2 and again involving the
bigrading), if the third Betti number ofM4 is positive – a fairly typical example being
M4 D S1 �W3. We will also write M6 for a fairly general six-manifold, although
we will soon concentrate on the case M6 D M4 �D for a two-manifold D.

We make one change in notation from the earlier part of this paper. In Section 2, to
emphasize that the starting point was a physically sensible, unitary boundary condition
for the D3–NS5 system, we started in Lorentz signature and labeled the coordinates
of the D3 world-volume as x0; : : : ; x3. After establishing some basics, we then
Wick rotated to Euclidean signature (Section 2.1.1), still labeling the coordinates the
same way. But in Section 4, we introduced a new coordinate by T-duality, and it is
natural to think of this as the time coordinate. To make “room” for labeling the new
time coordinate as x0, we relabel the four “old” coordinates by x� ! x�C1. The
main consequence is that when we do gauge theory on a five-dimensional half-space,
starting in Section 5.2, the coordinate normal to the boundary of the half-space will
be y D x4, and not x3 as earlier in this paper.

5.1. Four-dimensional topological field theory from six dimensions

5.1.1. Basics. The basic idea is to construct a four-dimensional topological field the-
ory by twisting of the six-dimensional .0; 2/ superconformal field theory associated to
a simple and simply-laced Lie group27 G. (The idea of twisting was briefly described
in Section 2.2.1.) The R-symmetry group of this theory is SO.5/R or more precisely
its double cover Spin.5/R. As there is no non-trivial homomorphism from Spin.6/
(the structure group of the spin bundle of a generic six-manifold) to Spin.5/R, there
is no way to construct a six-dimensional topological field theory by twisting of the
six-dimensional .0; 2/ model. However, it is possible to construct topological field
theories in dimension five or less.

The specific construction that we want gives a four-dimensional topological field
theory. We use the fact that Spin.5/R contains a subgroup

U D .Spin.3/ � Spin.2//=Z2 � Spin.5/R: (5.1)

We specialize to six-manifolds of the form M6 D M4 �D, whereM4 is an oriented

27 To be more precise, the six-dimensional theory is associated to the Dynkin diagram of G rather than
to the choice of a specific global form of the group G (such as the adjoint group or its simply-connected
cover). In particular, the six-dimensional theory does not distinguish G from G_; in the simply-laced
case, they are two global forms of the same group. On a six-manifold X , this theory has a family of
partition functions labeled by the quantization of a finite Heisenberg group associated to H 3.X; Z/;
here Z D 	_=	 , with 	 the root lattice of G and 	_ its dual. Within this family, one can make a
choice that on reduction to five dimensions leads to a desired global form of G; on further reduction to
four dimensions, the choices that lead to G or G_ are exchanged by S -duality. The details, which are
described in [107], will not be important in the present paper.
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four-manifold and D is an oriented28 two-manifold. The structure group of the
Riemannian (spin) connection of M6 reduces to the subgroup

V D .Spin.4/ � Spin.2//=Z2 � Spin.6/: (5.2)

Furthermore, we have the exceptional isomorphism

Spin.4/ Š Spin.3/` � Spin.3/r : (5.3)

So it is possible to define a homomorphism

� W V �! Spin.5/ (5.4)

that annihilates Spin.3/` and maps .Spin.3/r � Spin.2//=Z2 isomorphically onto U.
We define a subgroup V0 of Spin.6/ � Spin.5/R, isomorphic to V:

V0 D .1 � �/.V/: (5.5)

(In the action of V0, a spacetime rotation by a group element v 2 V is combined with
an R-symmetry transformation �.v/.)

In a standard fashion, we can define a twisted version of the .0; 2/model onM4�D
in which the spin connection couples to the currents that generate V0, rather than V.
For generic M4, the unbroken supersymmetries of the twisted model correspond to
the V0-invariant supersymmetries that the model has if formulated on R6. A standard
group-theoretic exercise, starting with the fact that the global supersymmetries of the
.0; 2/model transform under Spin.6/� Spin.5/R as 4C ˝ 4R (where 4C is a positive
chirality spinor of Spin.6/, and 4R is a spinor of Spin.5/R), shows that there is just
one V0-invariant supersymmetry generator, which we will call Q. Q transforms as a
non-trivial character of Spin.2/R, and we normalize the generator F of Spin.2/R so
that

ŒF; Q� D Q: (5.6)

Q also obeys
Q2 D 0I (5.7)

indeed, if not zero,Q2 would be a universally defined Killing vector field onM4 �D.
Once we restrict to the cohomology of Q, the theory obtained this way is a

topological field theory onM4, but varies holomorphically with the complex moduli
of D. One can understand this without detailed computation as follows. First,
compactify from six to four dimensions on D, making a Spin.2/R twist to preserve
supersymmetry. This leads to a four-dimensional theory with N D 2 supersymmetry.
The remainingR-symmetry group is the subgroup of Spin.5/R that commutes with its
Spin.2/R subgroup; this is precisely U, which is isomorphic to .SU.2/�U.1//=Z2 D
U.2/, the usual R-symmetry group of an N D 2 superconformal field theory in four

28The orientation of M4 is necessary to enable us to make a consistent choice of Spin.3/r in (5.3).
Given this, D must be oriented because the .0; 2/ model is only defined on an oriented six-manifold.
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dimensions. Indeed, if D is a compact Riemann surface without boundary (possibly
with punctures), compactification from six dimensions on D with a supersymmetric
twist gives a four-dimensional superconformal gauge theory [36]; the gauge group is
semi-simple and the coupling parameters �i of its simple factors are the moduli ofD.

Now that we are in four dimensions with N D 2 supersymmetry, there is an
essentially unique R-symmetry twist, resulting from the identification of Spin.3/r
with the corresponding subgroup of U. This leads to a four-dimensional topological
field theory by the same reasoning as in [101]. The observables of this theory are
computed by counting instanton solutions and hence they depend holomorphically
on the instanton counting factors qi D exp.2�i�i /, that is, on the moduli of D.
Thus, reduction of the six-dimensional theory onM4 �D with an R-symmetry twist
that preserves supersymmetry gives a theory that is topological on M4 but varies
holomorphically with the moduli of D.

5.1.2. Brane construction. For the case thatG is of A or D type, and with favorable
choices of M4 and D, this construction has a realization via M5-branes. Just as in
Section 2.2.3, this brane realization is highly informative though not completely
general.

We use the fact that the .0; 2/-model of typeAr�1 arises at low energies on a system
of r parallel M5-branes supported on R6 � R11. In this description, theR-symmetry
group Spin.5/R acts by rotations of the normal bundle to R6. To construct a topo-
logical field theory, we simply replace R6 byM4 �D, twisting the normal bundle to
maintain supersymmetry. To get the model of type Dr, we make an orbifold version
of the same construction, starting with 2r M5-branes and dividing by a Z2-symmetry
that acts as �1 on the normal bundle to the M5-branes.

We letX be the total space of the bundle�2;C.M4/ of self-dual two-forms onM4,
and let Y D T �D be the cotangent bundle ofD. Ideally, we would like to endow X

and Y with complete metrics of holonomy, respectively, G2 and SU.2/ – conditions
that will maintain supersymmetry. Having done so, we consider M -theory on the
product X D X � Y . Then the low energy limit29 of r M5-branes wrapped on
M4 �D will give a realization of the .0; 2/model of type30 Ar on that manifold with
the R-symmetry twist described above. In this description, the R-symmetry twist of
Section 5.1.1 arises geometrically from the twisting of the normal bundle toM4 �D
in X.

Alternatively, we consider M -theory on X=Z2 D .X � Y /=Z2, where the
non-trivial element of Z2 leaves fixed M4 �D and acts as �1 on the normal bundle
to this space. Wrapping 2r M5-branes on M4 �D and taking the low energy limit,
we get now a realization of the .0; 2/ model of type Dr .

29One reaches this low energy limit by scaling up the metric of X so that the radius of curvature becomes
much greater than the natural M -theory length scale.

30Taking account of the center of mass motion of the M5-branes, one actually gets a U.r/ rather than
Ar�1 D SU.r/ theory; that is, one gets a theory that upon compactification on a circle reduces at low
energy to U.r/ gauge theory.
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What has just been described is less than a general construction because the desired
complete metrics of special holonomy only exist for special choices of M4 and D.
For example (see [15] and [43]), the requisite metrics of G2 holonomy exist if M4 is
S4 or CP2, while for D D S2, the Eguchi–Hansen hyper-Kähler metric is suitable.
(In the main example of this paper, D is an open disc with a cigar-like metric and
the Taub-NUT metric has the right properties.) Actually, existence of such complete
metrics is convenient, but is not necessary for any construction we will make. For
one thing, in the M -theory context, all we really care about is the local structure of
X D X � Y near M6 D M4 � D and any M -theory solution with the appropriate
local structure will do. For many choices of M4 and D, M4 �D can be embedded
as a supersymmetric cycle in some X � Y where X and Y are as described above
locally near M4 and D but not globally.

More fundamentally, what we will really study is the six-dimensional .0; 2/model
on M6 with the R-symmetry twist described in Section 5.1.1; this has its own life
independently of how it can be embedded in M -theory.

The utility of the M -theory embedding for the present paper is largely that it
helps to motivate some constructions and to make obvious the outcome of some field
theory computations. We will not consider results that depend on actual existence of
an M -theory embedding of M4 � D. (We do make some arguments that are local
on M4 and use the fact that D can be embedded in a Taub-NUT or Eguchi–Hansen
space.) When anM -theory embedding exists, it can lead to further results, as shown
strikingly in [82], [75], and [53], by analysis of geometric transitions that do follow
from a string/M -theory embedding.

5.1.3. Surface operators. In the twisted .0; 2/ model described in Section 5.1.1,
we want to include surface operators while preserving the topological symmetry.

The six-dimensional .0; 2/ theory has half-BPS surface operators. The simplest
example (see [10] and [48]) arises from the fact that an M2-brane can end on a system
of parallel M5-branes [93]. (For generalizations, see Section 5.1.4.) As above, we
write M6 for the world-volume of the M5-branes. M6 is contained in an M -theory
spacetime M11. We consider an M2-brane whose world-volume is a three-manifold
P3 � M11; we assume that the boundary of P3 is a two-manifold †2 � M6. P3 is
oriented, so †2 is also. Taking the low energy limit of such a configuration gives us
the .0; 2/ model of type A or D in the presence of a surface operator. This surface
operator depends on the “direction” with which P3 ends on †2.

Let us specialize to the caseM6 D M4 �D, embedded in theM -theory spacetime
X D X � Y as described in Section 5.1.2. For a generic choice of †2 � M6 D
M4 � D, the topological supersymmetry of the model is broken. However, it is
preserved if we pick †2 D †0

2 � p, with †0
2 an oriented two-manifold in M4 and p

a point in D, and also pick P3 correctly.
To pick P3, we proceed as follows (in analogy with the construction in [82] of

a Lagrangian brane associated to a knot). Consider a point q 2 †0
2. The oriented

tangent plane to †0
2 at q determines a non-zero two-form on M4 at q, which we can
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take to be normalized in a natural metric. Projecting this two-form to its self-dual
part, we get a non-zero unit vector v 2 �2;C.M4/jq (that is, in the fiber at q of
the bundle �2;C.M4/ of self-dual two-forms on M4). But �2;C.M4/ is the normal
bundle to M4 in X , so v determines a ray in the fiber at q of that normal bundle.
(What we have just done is to identify the trivial summand " of (5.59).) The union of
all these rays for q 2 †0

2 gives a three-manifold P 0
3 � X , with boundary†0

2. We take
the support of our M2-brane to be P3 D P 0

3 � p.
The key point is that an M2-brane supported on P3 does preserve the same

supersymmetry as an M5-brane supported on M4 � D. This can be understood
as an exercise in G2 structures. The tangent space toX at the point q is a copy of R7,
with a G2 structure defined by a three-form ‡ . Choosing on R7 suitable coordinates
xa; a D 1; : : : ; 7 and setting xaC7 D xa, we have

‡ D
7X

aD1

dxa ^ dxaC1 ^ dxaC3

D dx1 ^ dx2 ^ dx4 C � � � C dx3 ^ dx4 ^ dx6 C � � � :
(5.8)

A supersymmetric three-cycleU3 � R7 is a three-cycle whose volume form coincides
with the restriction of ‡ ; similarly, a supersymmetric four-cycle R4 � R7 is one
whose volume form coincides with the restriction of ?‡ . For example, the three-
manifold U3 defined by vanishing of x3, x5, x6, x7, and so parametrized by x1,
x2, x4, is a supersymmetric three-cycle. Similarly, the four-manifold R4 defined by
vanishing of x3, x4, x6, and so parametrized by x1, x2, x5, x7, is a supersymmetric
four-cycle. So branes wrapped on U3 and R4 both preserve the supersymmetry that
is associated to the G2 structure. The geometrical relation between U3 and R4 is
essentially that between P 0

3 and M4 as defined earlier. Indeed, setting M4 D R4,
we can identify X D R7 as �2;C.M4/, and then the G2 structure coming from ‡

coincides with the natural one on �2;C.M4/. In this picture, †0
2 corresponds to the

intersection U3 \R4, and is the subspace ofM4 parametrized by x1 and x2. Finally,
P 0

3 is the half-space in U3 defined by x4 � 0.
This ensures that, for any choice ofp 2 D, an M2-brane supported onP3 D P 0

3�p
preserves the same supersymmetry as a system of M5-branes on M4 �D.

We have presented this construction as ifM4 �D has anM -theory embedding in
X D X � T �D. The construction of the half-BPS surface operator does not really
depend on this, but only on the section v of�2;C.M4/j†0

2
that is described above. It

is helpful to recall the simplest construction of supersymmetric Wilson operators in
N D 4 super Yang–Mills theory. The most simple such operator for a loop K and
representation R is

TrR P exp
I

K

.AC i En � E' ds/; (5.9)

where E' are the adjoint-valued scalar fields of the N D 4 theory, En is a unit vector in
the space of these scalar fields, and ds is the geodesic length element along K. The
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section v is the analog of En in the six-dimensional .0; 2/ theory, though in this theory
one does not have a description by classical fields that would make it possible to write
a formula analogous to (5.9).

5.1.4. General construction of surface operators. What we considered in Sec-
tion 5.1.3 is the most obvious example of a surface operator in the .0; 2/ model,
associated with the boundary of an M2-brane that ends on M5-branes. This gives a
surface operator in the .0; 2/ model of type A. Upon compactification on a circle,
if the support of the surface operator wraps the circle, such a surface operator will
turn into a Wilson line operator in the fundamental representation of the appropriate
A group; in the opposite case, it turns into an ’t Hooft operator with minimal nonzero
magnetic charge, supported on a two-dimensional surface.31

For our applications, we would like to know which Wilson and ’t Hooft operators
in five-dimensional superYang–Mills theory (associated with what representations or
magnetic charges) arise in this way by compactifying a half-BPS surface operator in
six dimensions. In this paper, we will assume that all Wilson and ’t Hooft operators
arise like that, though this statement goes somewhat beyond what has been established
in the literature. In what follows, we indicate some of the known facts.

Large classes of surface operators have been constructed,32 [17], [20], [77], and
[28], in some cases somewhat implicitly, for the models of type AN �1, using the
realization of these models via M -theory on AdS7 � S4, with N units of flux on S4:Z

S4

G

2�
D N: (5.10)

Here G D dC is the curvature of the M -theory three-form field C. These construc-
tions all have better understood and more extensively studied analogs, [45], [110],
and [44], for line operators in N D 4 super Yang–Mills theory that are derived from
branes in AdS5 � S5.

One basic construction [17] uses an M5-brane supported on ‚ D AdS3 � S3 �
AdS7 � S4. (The M5-brane can be regarded as a bound state of several parallel
M2-branes, which polarize to an M5-brane via a Myers effect [81]. The support
of the surface operator is, as usual, given by the asymptotic behavior of ‚ at the
boundary of AdS7.) Here AdS3 is linearly embedded in AdS7 in an obvious sense.
And S3 is embedded in S4 as follows. We view S4 as the unit sphere in R5. Then for
some unit vector v 2 R5 (v corresponds to the object that was denoted by the same

31 In any dimension, a Wilson operator is defined by the holonomy of a gauge field, integrated along
a curve. So Wilson operators are always supported on curves. By contrast, ’t Hooft operators in gauge
theory are always supported in codimension three, since an ’t Hooft operator is defined, as sketched in
Section 3.6.1, by a codimension three singularity. The codimension three singularity is that of a singular
Dirac magnetic monopole in the three dimensions normal to the support of the ’t Hooft operator. So
an ’t Hooft operator is supported on a point in three dimensions, a curve in four dimensions, or a two-
dimensional surface in five dimensions.

32I thank J. Gomis for a guide to this literature and for sharing and giving me permission to summarize
some of his insights.
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name in Section 5.1.3), we parametrize S3 by a point x 2 S4 that obeys .v; x/ D �,
where . ; / is the natural inner product in R5 and � is a constant.

The constant � is not arbitrary for the following reason. The M5-brane supports a
two-form field whose curvatureT equals the restriction to the fivebrane world-volume
of C ; differently put, C is trivialized when restricted to the fivebrane world-volume.
This means that

R
S3 C=2� must equal an integer, a condition that allows only finitely

many choices of �. Instead of discussing the gauge-dependent fieldC , it is convenient
to let B be a closed four-ball in S4 of boundary S3; concretely, we define B by the
inequality .v; x/ � �. The condition on C and � is equivalent to integrality of

t D
Z

B

G

2�
: (5.11)

In AdS7 � S4 compactification, G=2� is the volume form of S4, normalized so its
integral over S4 is N . Its integral over B is positive but less than N . Hence the
possible values of t are 1; 2; 3; : : : ; N � 1.

The interpretation, [17] and [20], is that upon compactification on a circle, the
surface operator just described reduces to a Wilson operator associated to the t th

antisymmetric tensor power of the definingN -dimensional representation. We denote
this representation as Rt . The Rt are known as the fundamental representations
of SU.N /. In general, every simple Lie group G of rank r has r fundamental repre-
sentations, associated to the nodes of the Dynkin diagram of G; the highest weights
of these representations are called fundamental weights. The highest weight of any
irreducible representation is a positive integer linear combination of the fundamen-
tal weights. Related to this, every irreducible representation of G appears in the
algebra of tensor products of fundamental representations provided that we are will-
ing to allow integer linear combinations with coefficients that are not necessarily
positive.33

For applications to Khovanov homology, one would like to know if the .0; 2/model
has additional surface operators such that negative coefficients can be avoided. This
will determine whether Khovanov homology groups can be defined for a knot labeled
by an arbitrary representation of G, or only for those representations that appear in
the tensor algebra of the fundamental representations without negative coefficients.
In fact, for the .0; 2/ model of type A, there is, [20] and [77], a second construction
of half-BPS surface operators with precisely the same half-BPS properties that again
is based on M5-branes. The M5-brane world-volume is again AdS3 � S3, but this
time AdS3 � S3 is embedded in AdS7 (as the locus of all points a fixed distance d
from an AdS3 subspace of AdS7) and is supported at a single point v 2 S4 (the same
point v that entered the first construction). Surface operators of this type are believed
to correspond after compactification on a circle to symmetric tensors of SU.N /, with

33For example, let R be an irreducible representation of SU.N / described as a third rank tensor that is
neither completely symmetric nor completely antisymmetric. Then R can be expressed as R1 ˝R2�R3,
since it can be constructed as R1 ˝ R2 with the completely antisymmetric part subtracted out.



Fivebranes and knots 87

a rank determined by34 the distance d .
More generally, a supergravity analysis [28] of half-BPS solutions of M -theory

with AdS7 �S4 asymptotics indicates that surface operators exist that are associated
to an arbitrary Young tableau (fig. 2 of the paper appears to show the data of a Young
tableau), or in other words (after reduction on a circle) to an arbitrary irreducible
representation of SU.N /.

For the .0; 2/ model of type Dr, all of these constructions have analogs, starting
with the realization of the model via M -theory on AdS7 � RP4. This may give
surface operators that correspond after reduction on a circle to an arbitrary irreducible
representation of Dr. Unfortunately, this sort of construction has no close analog for
groups of type E.

5.1.5. U.1/D-symmetry. Now we return to our six-dimensional theory on M6 D
M4 � D. For what follows, we require an action of U.1/ on the two-manifold D.
Moreover, the theory is ultimately more interesting if the U.1/ action onD has a fixed
point. IfD is to be a complete Riemannian manifold, there are two possible choices.
We can takeD D R2, with U.1/ acting by rotation around a single fixed point, which
we can think of as the origin in R2. Or we can take D D S2, which admits a U.1/
action with two fixed points. We write U.1/D for the U.1/ action on D. We denote
its generator as P. (When we reduce back to five dimensions in Section 5.2.1, P will
turn into instanton number.)

We can define P in the quantum theory so that it commutes with the unbroken su-
persymmetryQ. (This condition is needed to define the quantum operator P uniquely;
without it, one could add to P a multiple of F.) Thus, recalling (5.6) and (5.7), we
have

Q2 D 0; ŒF; Q� D Q; ŒP; Q� D 0: (5.12)

Vanishing ofQ2 implies that one can define a cohomology ofQ (on either operators
or states). The commutation relations imply that F and P act on this cohomology, so
the cohomology of Q is Z � Z-graded by the eigenvalues of F and P.

In view of [53] or of arguments given earlier in this paper, we anticipate that
Khovanov homology arises from the case D D R2. (The other choice D D S2

apparently leads to a close relative of Khovanov homology, related to Chern–Simons
theory with a complex gauge group; we will not explore this in the present paper.)
ForD D R2, it is convenient to endow D with a “cigar-like” metric

ds2 D dy2 C f .y/2 d 2; (5.13)

where is an angular variable of period 2� and f .y/ is a smooth, increasing function
with f .r/ 	 r for r small and f .r/ ! constant for r ! 1. With a suitable choice

34The AdS3 � S3 solution for the M5-brane has a nonzero value of
R

S3 T=2� , where T is the selfdual
three-form curvature that propagates on the M5-brane world-volume. One expects that Dirac quantization
of the flux of T leads to a quantization condition on the possible values of d . This is somewhat analogous
to quantization of the parameter t in (5.11).
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of f, the cotangent bundle ofD can be endowed with a complete hyper-Kähler metric,
namely the Taub-NUT metric. This is convenient for the M -theory construction of
Section 5.1.2. More importantly, the cigar-like nature of the metric will enable us to
reduce to a gauge theory description in Section 5.2. For D D S2, one can similarly
regardD as a supersymmetric cycle in a hyper-Kähler manifold (the Eguchi–Hansen
manifold).

The remarks of the last paragraph mean that although we cannot use the brane
construction of Section 5.1.2 globally alongM4 for arbitrary M4 (as a generalM4 is
not a supersymmetric cycle in a manifold of G2 holonomy), we can do so globally
alongD and locally alongM4. Indeed, locally, we approximateM4 by R4, which we
embed in the flat manifold R7, whose holonomy (being trivial) is certainly contained
in G2. Thus, to get the model of type A, we consider M -theory on

X D R7 � Y; (5.14)

where Y is a hyper-Kähler manifold (Taub-NUT or Eguchi–Hansen ifD is R2 orS2),
with M5-branes wrapped on

M6 D R4 �D; (5.15)

D being a supersymmetric cycle in Y. For the model of type D, we similarly wrap
M5-branes on X=Z2, where Z2 acts as �1 on the normal bundle to M6.

If surface operators are present, then as described in Section 5.1.3, we wish to
choose them so as to preserve the U.1/D-symmetry as well as supersymmetry. We
do this by taking the support †2 of the surface operator to be †0

2 � p, where †0
2 is a

two-manifold in M4 and p 2 D is a fixed point of the U.1/ action. For example, for
the case D D R2, surface operators are required to live at the unique fixed point of
U.1/D, the origin in R2.

5.1.6. Hamiltonian description. To get Khovanov homology, we go to a Hamilto-
nian description. For this, we takeM4 D R�W3, for some three-manifoldW3 . Here R
parametrizes the “time.” The overall six-manifold is therefore nowM6 D R�W3�D.

We write H for the (infinite-dimensional) physical Hilbert space of the twisted
.0; 2/ model in this geometry. Actually, we want to consider a generalization with a
surface operator included. In order to be able to construct a space of physical states
in the presence of a surface operator, we wish the surface operator to have time-
independent support. So in the case of a surface operator supported on†2 D †0

2 �p,
as in Section 5.1.5, we want†0

2 D R�K, whereK � W3 is a knot (as usual, one can
generalize to a link, that is, a disjoint union of knots) and R parametrizes the time.
The space of physical states in this situation we designate as HK. We take p to be the
fixed point of the U.1/D action on D. In this case, HK is Z � Z-graded, because of
the U.1/R � U.1/D-symmetry.

The operatorQ acts on HK. We write K.K/ or simply K for the cohomology of
Q, acting on HK. K.K/ inherits the Z � Z grading of HK. This is the candidate for
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the Khovanov homology of K. In Section 5.2, we relate the present six-dimensional
description to the gauge theory description that was the basis for Section 4.

Of course, we are not limited to the case that the two-dimensional surface †0
2 �

R � W3 is of the form R � K with K a knot or link. A more general case, known
mathematically as a link cobordism, was already mentioned in Section 1.2. We pick
two linksL andL0 in R�W3, and pick†0

2 to coincide with R�L in the past and with
R �L0 in the future. Then we consider the .0; 2/model onM6 D R �W3 �D with a
surface operator on†2 D †0

2 �p. This determines a U.1/� U.1/-invariant quantum
transition operator from K.L/ to K.L0/. In other words, we get a Z � Z-graded
linear transformation

ˆ†2
W K.L/ �! K.L0/: (5.16)

Link cobordisms can be glued together in an obvious way, and the corresponding
linear transformations multiply.

Actually, the sense in which ˆ†2
is Z � Z graded is a little subtle. It shifts the

q-grading in a way that depends on the topology and normal bundle of †2. This is
a known result in Khovanov homology, and will be explained from the present point
of view in Section 5.4.

5.2. Gauge theory description

5.2.1. Reducing to five dimensions. Our next task is to reduce this six-dimensional
description, which rests upon the mysteries of the .0; 2/model, to the five-dimensional
gauge theory description of Section 4.

The basic idea is simply to use the U.1/D-symmetry of the Riemann surface D.
By standard arguments, if the metric on M4 �D is scaled in a way that we describe
momentarily, the .0; 2/model onM4 �D has a low energy description via maximally
supersymmetric gauge theory on M4 �D=U.1/D .

We consider the case that D is R2, endowed with the cigar-like metric of (5.13):

ds2 D dy2 C f .y/d 2; 0 � y < 1; 0 �  � 2�: (5.17)

The U.1/D-symmetry of D acts by constant shifts of the angular variable  .
While keeping fixed the metric on M4, we multiply the metric of D by a small

constant so that the asymptotic value of f .y/ for y ! 1 becomes small. In the
limit, the .0; 2/model onM4 �D has a low energy description in terms of maximally
supersymmetricYang–Mills theory onM4 �RC. Here RC is the half-lineD=U.1/D,
parametrized by y.

This five-dimensional gauge theory description is actually the same one that we
used in Section 4. To see this, consider the description in terms of M5-branes wrapped
onM4 �D � X � TN, where TN is a Taub-NUT manifold in whichD is embedded.
U.1/D acts on TN, with a unique fixed pointp (which coincides with the fixed point at
y D 0 in the action of U.1/D onD � TN). In the limit that the U.1/D orbits are small,
M -theory onX�TN reduces to Type IIA superstring theory onX�TN=U.1/D. The
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quotient TN=U.1/D is simply a copy of R3, but with a key subtlety, [95] and [49]:
in the Type IIA description based on this quotient, there is a D6-brane supported on
X � p.

Additionally, when we reduce fromM -theory to Type IIA, the M5-branes wrapped
on M4 � D become D4-branes wrapped on M4 � RC, where RC D D=U.1/D is
a half-line in R3 that ends at p. What we have arrived at is a D4–D6 system, with
D4-branes supported onM4 �RC and ending on a D6-brane. But this is precisely the
system that was investigated in Section 4. The advantage of deducing this description
from a reduction of the .0; 2/ model in six dimensions is that the latter provides an
ultraviolet completion of five-dimensional super Yang–Mills theory.

To be consistent with the notation used in Section 4.1.1 and earlier in this paper, we
will denote as G_ the gauge group of the five-dimensional description that arises by
reducing on the U.1/D orbits. As explained in footnote 27, it is a little subtle how the
global form of G_ (as opposed to its Lie algebra) is encoded in the six-dimensional
theory. The details of this will not be important in the present paper.

5.2.2. The symmetry group. Now we have to ask how the U.1/� U.1/-symmetry
generated by P and F is realized in the gauge theory description.

Let us first consider the generator P of rotations ofD. In general, when the .0; 2/
model is reduced on a circle, the momentum around the circle becomes instanton
number in the description by five-dimensional gauge theory. (This is clear in theM -
theory description. Momentum around the circle turns into D0-brane charge in Type
IIA superstring theory. But, in the gauge theory of a system of Type IIA D4-branes,
D0-brane charge is carried by instantons.) So P corresponds in the gauge theory
description to instanton number. In the earlier part of this paper, this result was found
in another way (in this other approach, the coupling of the theta-angle to instanton
number in the D3–NS5 system was converted after some dualities to instanton number
as a conserved charge in the D4–D6 system).

Perhaps we should clarify the precise meaning of the statement that P corresponds
to instanton number. Instanton number is associated to the closed four-form TrF ^F ,
which in five dimensions is dual to a conserved current. The claim is that this is the
conserved current that generates U.1/D-symmetry. Its integral over an initial value
surface, such as a surface of fixed time inM5 D R�W3�RC, is a conserved quantity P.
Actually in making this claim, we have to be careful, just as in Section 3.5, with the
behavior at both y D 0 and y D 1. That behavior will be analyzed in Section 5.4,
and has some significant consequences. But the conserved instanton number current
does lead to a Z-grading that hopefully corresponds to the q-grading of Khovanov
homology.

The topological field theory derived from twisting the .0; 2/ model on M4 � D
can be defined on any (oriented) M4, but it is probably more interesting if M4 has a
suitable35 three-cycle, leading to a four-cycle in M4 � RC. In the absence of such

35This three-cycle may be non-compact, as in our main example M4 D R�R3, in which the three-cycle
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a four-cycle, we effectively lose the grading associated with instanton number. But
Khovanov homology loses much of its power if we forget the q-grading; this would
be analogous roughly to taking the classical limit q D 1 in Chern–Simons theory.

The other conserved quantity F of the .0; 2/ model is the generator of an R-
symmetry that is left unbroken by the twisting procedure. It has the same type of
interpretation in the description by five-dimensional gauge theory.

5.2.3. Details of notation. Our next goal is to fill a major gap from Section 4 and
identify the elliptic partial differential equations that are associated with supersym-
metry in this problem.

Some notational preliminaries will be helpful. It is convenient to formulate max-
imally supersymmetricYang–Mills theory in five dimensions via dimensional reduc-
tion from ten dimensions. This means that we combine the five components of the
five-dimensional gauge field, together with five scalars in the adjoint representation,
and regard them as components of a ten component “gauge field” AI . (AI has ten
components, but they depend only on the five coordinates of M5 D M4 � RC.)
We label the five coordinates ofM5 D M4 �RC as x0; x1; : : : ; x4, where x0; : : : ; x3

parametrize M4 and x4 D y. When we specialize to M4 D R � W3, with a three-
manifold W3, we will take x0 to parametrize R and call it the “time” coordinate.
As for the scalars, we call them 'I where I D P1; P2; P3; P4; P5. (We do not label any
of the scalars as P0, since none will have “timelike” properties.) The curvature is
defined as FIJ D ŒDI ; DJ �, where DI is a covariant derivative if I D 0; 1; 2; 3; 4

and otherwise DI is one of the scalar fields 'I .
The fermions fields 	 of maximally supersymmetric Yang–Mills theory can be

regarded as a positive chirality spinor field of SO.1; 9/ with values in the adjoint
representation. We write �I for the gamma matrices of SO.1; 9/; again I takes
values 0; 1; 2; 3; 4 and P1; P2; P3; P4; P5. Both 	 and the supersymmetry generator " obey
a chirality condition. In Euclidean signature, we can take this condition to be

x�	 D �i	; x�" D �i"; (5.18)

with x� D �0�1 : : : �4�P1�P2 : : : �P5.

5.2.4. The boundary condition. Now we want to consider this theory on a half-
space R4 � RC, where RC is the half-line y � 0, and we want the boundary
condition at y D 0 that corresponds to reduction on U.1/D orbits of a system of
M5-branes on R4 �D. In particular, this boundary condition will break the R-sym-
metry group Spin.5/R to .Spin.3/� Spin.2//=Z2. The Spin.3/-symmetry will later
be used in maintaining some supersymmetry when R4 is replaced by an arbitrary
four-manifold M4.

The scalar fields '
I

represent normal fluctuations in the D4-brane position. In
the context of the D4–D6 system, they play quite different roles. Three scalars,

is f0g � R3, with f0g a point in R.
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which we will call 'P1; 'P2; 'P3, describe fluctuations in the D4-brane position along
the D6-brane. And the remaining two scalars, which we will call 'P4 and 'P5, describe
fluctuations normal to the D6-brane.

The normal fluctuations must vanish at y D 0 where the D4-brane ends on
the D6-brane, so the boundary conditions for the last two scalars at y D 0 are
'P4 D 'P5 D 0. We combine these two fields to a complex scalar field

� D 'P4 � i'P5p
2

: (5.19)

We define a Spin.2/R subgroup of the Spin.5/ R-symmetry group of the theory that
rotates 'P4 and 'P5 and acts trivially on the other scalars. We define the generator F of
Spin.2/R D U.1/R so that � has F D 2; the fermions then have U.1/ charges ˙1.
When we eventually define a topological field theory by picking a superchargeQ that
obeys Q2 D 0, Q will have F D 1. The field � will then inevitably be Q-invariant:

ŒQ; �� D 0: (5.20)

Indeed, the quantum numbers of ŒQ; �� (it has spin 1=2, F D 3, and dimension 3/2,
and transforms in the adjoint representation of the gauge group) do not coincide
with those of any elementary or composite fermion field of five-dimensional super
Yang–Mills theory.

The three scalar fields that describe the motion of the D4-branes along the D6-brane
have a polar behavior at y D 0. This polar behavior is a general property of the
Dp-D.pC 2/ system for any p and was described in the context of the D3–D5
system in Section 3.3. The polar behavior is that

' Pk D �.tk/

y
C � � � ; k D 1; 2; 3; (5.21)

where the tk are a standard set of su.2/ generators and � W su.2/ ! g is a principal
embedding. We will combine the' Pk , k D 1; 2; 3 to a three-vector E'. (For the moment,
this three-vector lives in an abstract space; it will be reinterpreted in (5.28).) One can
define a subgroup Spin.3/ of the R-symmetry group that rotates E'. It preserves the
boundary condition when combined with a gauge transformation. As expected, the
boundary condition has reduced the R-symmetry group from Spin.5/ to .Spin.3/ �
Spin.2//=Z2.

The polar behavior of E' preserves half of the supersymmetry of the model.
To describe which half, we recall that the supersymmetry transformation law for
fermions is

ı	 D 1

2
�IJFIJ "; (5.22)

where " is the supersymmetry generator. (As usual a symbol such as �I1:::Ik
vanishes

if two indices are equal and otherwise equals the product of the indicated gamma
matrices.) Nahm’s equations (3.17) for the scalar fields 'P1; 'P2, 'P3 can be regarded as
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a selfduality condition in the four-dimensional subspace corresponding to directions
4P1P2P3. Writing �y for �4, Nahm’s equations preserve those supersymmetries whose
generator obeys

�y P1P2 P3" D ": (5.23)

The solution (5.21) of Nahm’s equations preserves the supersymmetry of (5.23)
for any choice of homomorphism � W su.2/ ! g. However, in the case of D4-branes
ending on a single D6-brane, the appropriate choice is that � is a principal embedding.
More general choices of � correspond to D4–D6 systems with multiple D6-branes;
this has been described in detail in [39]. In terms of the six-dimensional .0; 2/ theory,
these more general choices correspond to formulating that theory on M4 � D with
a suitable defect operator (of a type considered in [36]) supported onM4 �p. These
more general choices can be analyzed by methods similar to those of the present
paper; they do not lead precisely to Khovanov homology, but to an interesting analog
of it.

5.2.5. Twisting along M4. So far we have described the boundary condition at
y D 0 that breaks half of the supersymmetry and reduces the R-symmetry group
to .Spin.3/ � Spin.2//=Z2. As explained in Section 5.1.1, the next step is to twist
along M4, making a Spin.3/ twist so that one supersymmetry remains unbroken for
an arbitrary M4.

It is straightforward to describe this one unbroken supersymmetry. The Spin.4/-
symmetry of R4 is generated by operators ��� D 1

2
Œ��; ��� acting on spinors. When

we decompose Spin.4/ D Spin.3/` � Spin.3/r , the two factors are generated by
the anti-selfdual and selfdual parts of ��� , respectively. According to Section 5.1.1,
the desired supersymmetry generator" is invariant under Spin.3/` and under a diagonal
combination of Spin.3/r and a group of R-symmetries; we will denote this combi-
nation as Spin.3/0r . The condition that " is invariant under Spin.3/` is that

.�01 � �23/ " D 0; (5.24)

along with similar statements that follow by cyclic permutation of indices 123.
The condition that " is also invariant under Spin.3/0r is

.�12 C �P1 P2/" D 0; (5.25)

again with similar statements obtained by simultaneous cyclic permutations of indices
123 and P1P2P3.

The conditions (5.23), (5.24), and (5.25) have a one-dimensional space of solutions,
which corresponds to the unbroken supersymmetry of the twisted model on a gen-
eral M4. For practice, let us use these conditions to determine how " transforms
under the U.1/R D Spin.2/R group that commutes with the Nahm pole. Taking
the generator of this symmetry to be F D i�P4 P5, we use (5.24), (5.18), and (5.23) to
deduce that

F" D �"; (5.26)
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implying that the corresponding supercharge Q has F D C1.
By standard arguments, any quantum computation in the twisted model can be

localized on fields that are invariant under the topological supersymmetry. As in other
models of this type, such as the twisted version of N D 2 super Yang–Mills theory
that is related to Donaldson theory, there will be equations – generalizing the instanton
equations ofYang–Mills theory – that characterize what fields are invariant under this
supersymmetry. The necessary condition is that the supersymmetry variations of the
fermions – given in (5.22) – should vanish. In other words, we want

0 D �IJFIJ ": (5.27)

Having characterized ", we can work out the consequences of this condition.
The analysis will lead to differential equations onM5 D M4 � RC that will have

only four-dimensional symmetry. Because of this, we introduce some notation that
uses the product structure of M5. It will be convenient to write �2;C.M4/ for the
bundle of self-dual two-forms on M4, pulled back to M5. An important preliminary
point is that in the twisted theory, the scalar fields 'P1; 'P2; 'P3 are best understood as
a section of �2;C.M4/, with values in the adjoint bundle ad.E/ (derived from the
underlying G_ bundle E ! M5). Thus, we define a self-dual antisymmetric tensor
field B by

B0i D 'Pi ; Bij D �ijk' Pk ; i; j; k D 1; : : : ; 3: (5.28)

We regard B as a section of �2;C.M4/ ˝ ad.E/. A useful fact is that �2;C.M4/

is of rank 3, which ensures that there is a “cross product” operation on sections
of �2;C.M4/ ˝ ad.E/; this operation is inherited from the usual cross product for
vectors in R3, along with the Lie algebra structure of ad.E/. Explicitly, given B , we
define a new section B � B of �2;C.M4/˝ ad.E/ by

.B � B/�� D
X




ŒB�
 ; B�
 �; (5.29)

where on the right hand side Œ ; � is the commutator in the Lie algebra. The right hand
side of (5.29) is selfdual ifB is, so in particularB�B is valued in�2;C.M4/˝ad.E/,
as promised. One final preliminary is that given a two-form F on M4 – such as the
gauge curvature F – we define its selfdual projection FC D .1C ?/F=2, with ? the
Hodge star (defined so ?.dx0 ^ dx1/ D dx2 ^ dx3).

We consider first the part of (5.27) with F D �1. It is convenient to observe
that the spinors with F D �1 transform under Spin.3/` � Spin.3/0r as .1=2; 1=2/˚
.0; 1/˚ .0; 0/. The .0; 0/ part of the equation is satisfied identically. The .0; 1/ part
of the equation is

� 3X
�;�D0

���F�� C 2

3X
PiD1

�y�
PiDy'Pi C

3X
Pi ; Pj D1

�
Pi Pj Œ'Pi ; ' Pj �

�
" D 0: (5.30)
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Using the conditions obeyed by ", the condition for this to vanish is

FC � 1

4
B � B � 1

2
DyB D 0: (5.31)

To derive this formula, it is convenient to look at a particular component, say the 01
component. A part of equation (5.30) is

.�01F01 C �23F23 C �y P1Dy'P1 C �
P2; P3Œ'P2; 'P3�/" D 0: (5.32)

Using (5.24), we can replace �01 by �23; using (5.23), we can replace �y P1 by �� P2P3;
and using (5.25), we can replace � P2 P3 by ��23. At this stage the gamma matrices
drop out and we find the equation F01 C F23 � Dy'P1 � Œ'P2; 'P3� D 0. Using the
definitions of B and B �B , this is equivalent to FC

01 � 1
2
DyB01 � 1

4
.B �B/01 D 0,

which is a component of (5.31). The equation of type .1=2; 1=2/ can be written�
�y��Fy� C ��

X
kD1;2;3

�
PkD�' Pk

�
" D 0: (5.33)

Reducing this equation in a similar way to what has just been described, we arrive at

Fy� C
3X

�D0

D�B�� D 0; 
 D 0; : : : ; 3: (5.34)

We also need to analyze the part of (5.27) with F D 1. This, however, is more
straightforward. We simply learn that

D�� D Dy� D ŒB; �� D 0; (5.35)

where � was defined in (5.19). Equation (5.35) says that a gauge transformation
generated by the adjoint-valued field � is a symmetry of the solution. Since our
boundary condition at y D 0 forces the solution to be irreducible (and even if we
relax the assumption that � W su.2/ ! g is a regular embedding, supersymmetry
requires that � D 0 at y D 0), these conditions force � to vanish.

Having reinterpreted E' in the twisted theory as a section B of�2;C.M/˝ad.E/,
we should reconsider the boundary conditions at y D 0 that were described in
Section 5.2.4. This will be done in Section 5.3.4.

5.2.6. What are these equations good for? According to (5.31) and (5.34), the
equations for a supersymmetric field configuration in this theory read

FC � 1

4
B � B � 1

2
DyB D 0;

Fy� C D�B�� D 0;

(5.36)
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along with � D 0. We will call these simply the supersymmetric equations.
What is one supposed to do with these equations? This question was answered

in Section 4.2. Time-independent solutions of these equations supply a basis for
a space K0 of approximate supersymmetric ground states. The actual space K of
supersymmetric ground states is found by constructing the superchargeQ as a linear
transformation of K0 and computing its cohomology. Concretely,Q is constructed as
in (4.3) by counting time-dependent solutions of the equations (5.36) that interpolate
between specified limits in the far past and future. Both K0 and K are Z�Z-graded
by the action of P and F. The eigenvalue of P is given by the classical instanton
number; that of F is found by computing the charge of the filled Dirac sea of negative
energy states. That is why we refer to F as fermion number, though in the full
supersymmetric gauge theory it is carried by some bosons (notably � ) as well as
fermions.

In Section 5.3, we will describe some useful properties of the supersymmetric
equations (5.36). But it may be well to mention here their most basic property,
without which the counting of solutions outlined in Section 4.2 would not make
sense: they are elliptic modulo the action of the gauge group. This actually follows
from the relation of these equations to the underlying superYang–Mills theory, as we
will explain in Section 5.3.3.

5.3. Some properties of the equations

5.3.1. Reductions to four dimensions. Another basic property of the equations is
that they can be specialized to more familiar equations in lower dimensions.

We begin with the most obvious specialization. We can look for solutions on
M4 � RC that are independent of y. We do not assume that the solution is a pullback
from M4; rather, we replace the covariant derivative D=Dy with the commutator
with an adjoint-valued scalar field C . So the equations become

FC � 1

4
B � B � 1

2
ŒC; B� D 0;

�D�C C D�B�� D 0:

(5.37)

These equations have been obtained previously [99] by topological twisting of four-
dimensional N D 4 super Yang–Mills theory. For our purposes, we do not want to
study solutions that are independent ofy everywhere, because our boundary condition
at y D 0 does not allow this. However, it is natural onM4 �RC to consider solutions
that are y-independent for y ! 1, and thus we define our boundary condition at
y D 1 by specifying a solution of the equations (5.37). In the important case that
M4 D R � W3, we are primarily interested in boundary conditions at y D 1 that
are invariant under time translations. In the time-independent case, equations (5.37)
describe complex-valued flat connections A D P

i .AiCiB0i /dxi . (This will be clear
from another reduction that we describe momentarily.) So, as in most of this paper,
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we define the boundary condition by specifying a complex-valued flat connection at
infinity.

It is not hard to see why our supersymmetric equations (5.36), for fields that are
independent of y, give an equation that can be derived from N D 4 super Yang–
Mills theory. Suppose that for our starting point, we had taken the .0; 2/ model on
M6 D M4 � D, with now D equal to a two-torus zS1 � S1 rather than R2. Then,
upon reducing on S1, the same derivation would lead to the same supersymmetric
equations (5.36) onM4� zS1, withy now an angular variable parametrizing zS1 . It now
makes sense to take the solutions to be independent of y, and this leads to (5.37).
The two-step process of reducing on first one circle and then the other amounts to the
usual two-torus compactification from the .0; 2/ model in six dimensions to N D 4

super Yang–Mills in four dimensions. So naturally it leads to equations that can be
obtained by a topological twist of the N D 4 theory.

There is another reduction of (5.36) that is more surprising if one simply starts
with those equations, though it is obvious from the derivation we have given. This
comes if we specialize to the caseM4 D R�W3, for someW3, and ask for a solution
of (5.36) onM4 � RC that is time-independent, that is invariant under translations of
R. This process amounts to undoing the lift from four to five dimensions which was
the first step in Section 4. Starting with the supersymmetric equations of the D4–D6
system, if we drop the dependence on time we will get the corresponding supersym-
metric equations of the D3–D5 system. We already know what these equations are,
from (3.6). They are the familiar equations

F � ' ^ ' C ?dA' D 0 D dA?' (5.38)

for a pair .A; '/ where A is a connection on a G-bundle E ! W3 � RC and ' is an
ad.E/-valued one-form on W3 � RC.

To actually get these equations by a time-independent reduction of our five-
dimensional ones, we proceed as follows. First of all, parametrize R by a time
coordinate x0 and W3 by local coordinates xi , i D 1; : : : ; 3. As in the case already
considered, we look for a solution on R�W3 �RC that is invariant under translations
of x0, but we do not assume that the solution is a pullback from W3 � RC. In partic-
ular, we do not assume that A0, the component of the connection in the x0 direction,
vanishes. Now we define an adjoint-valued one-form on W3 � RC by

' D
3X

kD1

B0k dxk � A0 dy: (5.39)

Notice thatA0, which was the component of the connectionA in the x0 direction, has
been reinterpreted (apart from a minus sign) as what we might call 'y , the component
of the one-form ' in the y direction. Of course, this only makes sense because both
the x0 direction and the y direction have been factored out in M5 D M4 � RC D
R �W3 � RC.
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It is a short calculation, starting with the five-dimensional supersymmetric equa-
tions (5.36) and the definition (5.39), to arrive at the four-dimensional supersymmetric
equations (5.38). The reason that this result is important is that, as explained in Sec-
tion 4.2, the time-independent solutions of the supersymmetric equations (5.36) are
the basis for the classical approximation K0 to the space K of supersymmetric ground
states. Understanding these time-independent solutions is the starting point in study-
ing Khovanov homology via five-dimensional gauge theory in the way described
here.

Even though we had a good reason to expect the above results and they are not
difficult to prove, they should give us a renewed appreciation for the fact that the five-
dimensional equations (5.36) actually are elliptic. These equations can be obtained
in either of two ways from an elliptic equation in four dimensions by replacing a field
with a covariant derivative. We start with (5.37) and substitute C ! D=Dy, or we
start with (5.38) and substitute 'y ! �D=Dx0. It is quite exceptional that starting
with an elliptic differential equation and replacing one of the fields by the derivative
with respect to a new variable, one arrives at an elliptic differential equation in one
dimension more. However, equations (5.37) and (5.38) both have this property. From
the point of view developed in the present paper, the fact that the four-dimensional
equations (5.38) can be “lifted” in this sense to five dimensions is part of the reason
that Chern–Simons gauge theory can be “categorified,” which is just a fancy way to
say that it can be derived from a theory in one dimension higher. Similarly, the fact
that the four-dimensional equations (5.37) can be lifted to five dimensions means that
the four-dimensional invariant given by counting solutions of those equations can be
categorified. Modulo a certain vanishing theorem, this four-dimensional invariant
is the Euler characteristic of instanton moduli space [99], and its categorification is,
modulo the vanishing theorem and various technicalities involving the noncompact-
ness of the moduli space, the cohomology of instanton moduli space.

5.3.2. Relation to Morse theory. The twisted version of super Yang–Mills theory
that we are studying here has in general one supercharge Q when formulated on
M5 D M4 � RC. However, when we specialize to M4 D R �W3, for some W3, the
theory becomes unitary and a second supercharge appears, namely the adjoint of Q.
Supersymmetric quantum mechanics with two supercharges is commonly related to
Morse theory [100], and as we will now show, this is the case here.

In general, on a manifold Z, with local coordinates ui , a metric tensor �ij , and a
Morse function S , the flow equations of Morse theory read

dui

dt
D �� ij @S

@uj
: (5.40)

We wish to show that in the gauge A0 D 0, our supersymmetric equations (5.36) can
be written as such flow equations, if we pick a suitable metric on the space of fields
and a suitable Morse function.
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This is actually a straightforward exercise. We endow W3 � RC with a metric
gij dxi dxj C dy2. On the space of fields on W3 � RC, we define the metric

ds2 D �
Z

W3�RC

d3x dy
p
g Tr.gij ıAiıAj C ıAyıAy C gij ıB0iıB0j /: (5.41)

And then we define the Morse function

S D �
Z

W3�RC

d3x dy Tr
�p
ggijFyiB0j

C 1

2
�ijk

�
Ai@jAk C 2

3
AiAjAk � B0iDjB0k

�
C p

gw
�
;

(5.42)

with w a constant chosen so that the integral converges for y ! 1. (The required
constant of course depends on whichG_

C-valued flat connection A D .Ai C iB0i /dxi

is used to define the boundary conditions at y D 1.) A straightforward computation
shows that the supersymmetric equations (5.36), in the gaugeA0 D 0, are indeed the
flow equations with S as a Morse function.

What we have just described is really the proper input for Section 4.2, in which
we sketched the use of Morse theory (as extended to field theory problems in [31])
to describe the space K of supersymmetric ground states. The starting point is
a knowledge of the time-independent solutions of the supersymmetric equations.
These correspond to critical points of the Morse function S, and they furnish a basis
of a space K0 of approximate quantum ground states. One then realizes Q as a
linear transformation of K0 via the formula (4.3); the main step in constructing this
formula is to count, with appropriate signs, the solutions of the Morse theory flow
equations (5.40) that connect two given critical points. The cohomology of Q gives
then the space K of exact supersymmetric ground states.

Because of the connection with Morse theory, the value of F associated to a given
critical point has an interesting interpretation: it is the regularized Morse index of that
critical point. In the case of two critical points on bundles of the same topological
type (that is, two critical points with the same value of P), the difference of F at the
two critical points can be computed by spectral flow. To evaluate this spectral flow,
one counts the fermion states of F D 1 or F D �1 that pass through zero energy
when one interpolates between the two critical points.

The attentive reader might notice an apparent clash between what we have said
in Section 5.3.1 about time-independent solutions of the supersymmetric equations
and what we have just described. In interpreting the time-independent solutions as
Morse theory flow equations, the first step was to go to the gauge A0 D 0. On the
other hand, in Section 5.3.1, we carefully did not set A0 to zero, and instead gave
it a new name �'y . The resolution of this puzzle is that (5.38) is actually subject
to a vanishing theorem: in a solution on W3 � RC with the boundary conditions of
interest to us, 'y vanishes; see36 the analysis of (4.13) in [108]. The claim that time-
independent solutions of our supersymmetric equations (5.36) correspond to critical

36 In brief, after squaring the equations, integrating, and integrating by parts, one finds that 'y is
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points depends on this vanishing theorem. Equations (5.38) are covariant and elliptic
with 'y included. If one uses the vanishing theorem to set 'y to zero, the equations
are of course no longer covariant in four dimensions; they also are not elliptic modulo
the gauge group (but, assuming that one is expanding around a classical solution, they
can be embedded in a larger elliptic complex). However, setting 'y to zero makes
the Morse theory interpretation of these equations clearer. This is so both for the
five-dimensional equations (5.36) and for the four-dimensional equations (5.38) that
were related to Morse theory in a similar way in [108].

The vanishing theorem that we just encountered has a perhaps more familiar
analog for Floer theory of the space of connections on a three-manifold. If on a
four-manifold of the form R � W3, one looks for time-independent solutions of the
instanton equation FC D 0, one gets in three dimensions the Bogomolny equations
F C ?DA0 D 0. These equations are the analog of (5.38); they are elliptic modulo
the action of the gauge group, and they do not correspond directly to the critical
points of any Morse function. However, assuming that W3 is compact and we want
nonsingular and irreducible solutions, one can deduce from the Bogomolny equations
a vanishing theorem A0 D 0. (The proof is made by the same sort of argument as
in footnote 36.) From this vanishing theorem, one learns that the time-independent
solutions of the instanton equation actually correspond to flat connections on W3.
These are the critical points of a Morse function, namely the Chern–Simons function
CS.A/. The equation F D 0 that we get after using the vanishing theorem is not
elliptic modulo the gauge group, but it is part of a larger elliptic complex.

The Chern–Simons function CS.A/ of standard Floer theory is not quite well
defined as a real-valued function on the space of gauge fields modulo gauge trans-
formations (but only as a circle-valued function); because of this, Floer theory is
ultimately not Z-graded by the Morse index of a critical point, but Z=4hZ-graded,
where h is the dual Coxeter number of the gauge group. By contrast, in our present
problem, the Morse function S is actually a well-defined real-valued function, and
hence the grading by the fermion number F is an actual Z-grading, as we have asserted
throughout this paper. To verify that S is well defined, a slightly subtle point is the
following. One contribution in the definition (5.42) of S is the integral overW3 �RC
of a Chern–Simons three-form (times dy). This contribution may look dangerous
since the Chern–Simons integral is not quite well defined as a real number, but we
pick the constant w to cancel the limiting value of the Chern–Simons integral at
y D 1, and then that integral causes no further difficulties.

5.3.3. The action. By analogy with familiar facts about the equations for Yang–
Mills instantons, we anticipate that the first-order supersymmetric equations (5.36)
imply the second order Euler–Lagrange equations of supersymmetric Yang–Mills
theory. In many examples, an efficient way to establish such a result is to square the

annihilated by a strictly positive operator. This implies vanishing of 'y , a result that was also used in
Section 3.6.2 above. Note that our 'y is called 't in [108].
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first-order equations, integrate over spacetime, and compare the result to the action
of the underlying physical theory.

In the case at hand, setting

Y�� D .FC � 1

4
B � B � 1

2
DyB/��; Z� D Fy� CD�B��; (5.43)

so that the supersymmetric equations are Y D Z D 0, we find the following identity

�
Z

M4�RC

d4x dy
p
g Tr.Y��Y

�� CZ�Z
�/

D �
Z

M4�RC

d4x dy
p
g Tr

�1
2
F��F

�� C Fy�F
y� C 1

4
.DyB��/

2

C 1

4
.D˛B��/

2 C 1

16
.B � B/��.B � B/��

C R

8
B��B

�� � 1

4
R���
B

��B�

�

C � � � :

(5.44)

Here R���
 and R are the Riemann tensor and Ricci scalar of M4; these curvature
couplings are dictated by supersymmetry when M4 becomes curved. In (5.44), the
ellipses represent the omission of certain terms whose local variations vanish – both
surface terms and a multiple of the instanton number evaluated on M4. In fact, with
our boundary conditions, both the volume integral on the right hand side of (5.44) and
the omitted terms are divergent. Because their local variations vanish, the omitted
terms do not affect the argument below.

The right hand side of (5.44) is essentially the bosonic part of the action of
maximally supersymmetricYang–Mills theory in five dimensions.37 What do we learn
from this relationship? If Y D Z D 0, then the left hand side of (5.44) is certainly
stationary. So the right hand side is also. It follows, then, that the Euler–Lagrange
equations derived from the right hand side of (5.44) are consequences of the first
order supersymmetric equations. Those Euler–Lagrange equations are essentially
the usual field equations of super Yang–Mills theory (with some scalar fields twisted
to the two-form B , with fermions and � omitted, and with some curvature couplings
added).

We can use this relation between the first order and second order equations to show
that the first order equations in question are elliptic. Linearization and gauge-fixing38

of the equations Y D Z D 0 gives a linear differential operator that we may denote
as D . The leading symbol of D is given by the highest order part of D , written in
momentum space. Let us denote this leading symbol as � . In the present example,

37To be more precise, (5.44) can be obtained from the super Yang–Mills action by setting two of the
five scalar fields to zero, twisting the other three to a selfdual two-form B , and adding some curvature
couplings that are needed to preserve some supersymmetry when M4 is curved.

38 It is convenient to use a “background field” version of Landau gauge, in which the fluctuation ıA of
the gauge field A is constrained to obey dA?ıA D 0.
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D is a first order operator and � is a matrix-valued linear function of the momentum.
Ellipticity of a system of equations means that the leading symbol of the linearization
is invertible for any nonzero (real) momentum. Letting � t denote the transpose of
� , certainly � is invertible if � t� is. But the relation (5.44), or more exactly the
relation between first order and second order equations that it implies, means that
� t� is the leading symbol of the equations obtained by linearizing the second order
equations of super Yang–Mills theory. Those equations are certainly elliptic; indeed
(in the gauge mentioned in footnote 38), their leading symbol is the identity matrix
multiplied by the leading symbol of the Laplace operator on scalars. That symbol is
simply the function of a momentum vector p given by f .p/ D p2; it is nonzero for
real nonzero p.

5.3.4. The boundary condition after twisting. Finally, we should reconsider the
boundary conditions at y D 0 for the supersymmetric equations (5.36) onM4 � RC.
For the special case M4 D R4 without surface operators, these boundary conditions
have already been described in Section 5.2.4: E' has a regular Nahm pole at y D 0.
What happens now that we have reinterpreted E' in the twisted theory as a section B
of �2;C.M4/˝ ad.E/?

In fact, what happens is quite similar to what we have already described in one
dimension less in Section 3.4. The field E', which was a section of T W3 for a three-
manifold W3, has been promoted to a self-dual two-form B on a four-manifold M4.
With this change, all of the previous statements have close analogs.

Since we are interested in what happens at y D 0, let us write simply E for the
restriction of the gauge bundle E to M4 � fy D 0g. Suppose first that G_ D SO.3/.
Let us write B D b=y C � � � near y D 0. Then, by virtue of the vanishing of the
terms of order 1=y2 in the supersymmetric equations (5.36), b establishes an iso-
morphism between�2;C.M4/ and ad.E/, and this isomorphism identifies the metric
on �2;C.M4/ with that of ad.E/. In Section 3.4, we used analogous statements,
which were deduced in the same way, to identify the polar residue of E' with the vier-
bein e. Here the analogous statement is that b can be identified with the selfdual part
of e^e. Moreover, the vanishing of the term of order 1=y in the supersymmetric equa-
tions implies that dAb D 0. And this in turn implies39 that the identification between
�2;C.M4/ and ad.E/ given by b is covariantly constant, meaning that the restriction
to M4 of the G_ connection A is simply the Riemannian connection on �2;C.M4/.
So just as in Section 3.4, the restriction to the boundary of the bundle E and the
connection A are directly determined by the Riemannian geometry.

For any G_, there is a similar story making use of a principal su.2/ embedding
� W su.2/ ! g_. The restrictions of ad.E/ and A to the boundary are obtained
from �2;C.M4/ and the Riemannian connection on it via the homomorphism �.
(In general, depending on the global form of G_, the construction of E itself as

39Once one knows that b is the selfdual part of e ^ e, the analysis of the condition dAb D 0 to show
that A is the Riemannian connection on �2;C.M4/ is a problem that has been considered in the context
of canonical quantum gravity [4].
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opposed to its adjoint form may require a lift of the structure group of �2;C.M4/

from SO.3/ to Spin.3/.) Similarly the polar part of B establishes an isomorphism
between �2;C.M4/ and a subbundle of ad.E/ corresponding to �.su.2// � g_.

It is illuminating to consider the case that M4 D S1 � W3 (or R � W3) with
a product metric, and to look for solutions on M4 � RC that are pulled back from
W3 � RC. Equations (5.36) then reduce, according to Section 5.3.1, to the four-
dimensional equations whose boundary conditions were considered in Section 3.4.
And, as �2;C.M4/ is the pullback to M4 of T W3, the boundary conditions that we
have just described in the five-dimensional case do reduce to the four-dimensional
boundary conditions of Section 3.4.

So far we have described the appropriate boundary condition away from sur-
face operators. In the presence of surface operators, we proceed just as we did in
Section 3.6. We first look at a local problem with a surface operator supported on
†2 D R2 linearly embedded in M4 D R4. For this local problem, we find a model
solution onM4�RC that is invariant under translations along†2 and has a singularity
in the normal plane to †2 that is associated to a given irreducible representation R
of G. Since the solution is invariant under translations of †2, it is the pullback to
M4 � RC of a solution of reduced three-dimensional equations on R2? � RC, where
R2? is the normal plane. But in fact, the relevant reduced equations coincide with
the ones already analyzed in Section 3.6. This again follows from the statements
in Section 5.3.1 about dimensional reduction. So in particular, for G_ D SO.3/
or SU.2/, the relevant model solutions have been fully described in Section 3.6.4.

Once the model solutions are known, a surface operator supported on a general
embedded oriented two-manifold †2 � M4 and labeled by a representation R is
defined rather as in Section 3.6: we define a boundary condition for the supersym-
metric equations such that near a generic boundary point, the singular behavior is that
of the regular Nahm pole, while along†2 the singular behavior is that of the relevant
model solution.

There is one important phenomenon that does not quite have an analog in one
dimension less: the topology of †2 and of its normal bundle influence the q-grading
of Khovanov homology. This we consider next.

5.4. Surface operators and q-grading. In general, suppose that in five dimensions
one is given a conserved current J. Then the four-form ?J is a conserved charge
density, and given an initial value surface �, we define the conserved charge

q D
Z

�

?J: (5.45)

We are interested in the case that ?J is the instanton current:

?J D 1

32�2
���˛ˇ Tr F��F˛ˇ : (5.46)

We have normalized the instanton current so that, for any simply-connected G_, the
conserved charge q takes integer values if � is compact and without boundary.
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Let us now specialize to M4 D R �W3 and thus M5 D R �W3 � RC. Given a
conserved current J , we define a charge at time t 2 R by integration of this four-form
over the initial value surface ftg �W3 � RC:

q.t/ D
Z

ftg�W3�RC

?J: (5.47)

Is q.t/ independent of time? Conservation of J is not quite enough to ensure this,
since current might disappear at the ends y D 0 and y D 1. In general the change
in q between initial and final times ti and tf is

q.tf / � q.ti/ D
Z

�0.tf ;ti /

?J �
Z

�1.tf ;ti /

?J: (5.48)

Here �0.tf ; ti/ is defined by y D 0, tf � t � ti , and �1.tf ; ti/ by y D 1,
tf � t � ti . Taking tf ! C1, ti ! �1 and writing just �0 and �1 for the
boundaries at y D 0 and y D 1, the total change in the charge is

�q D
Z

�0

?J �
Z

�1

?J: (5.49)

In the case of the instanton current, naively the conserved charge is the instanton
number

P.t / D 1

32�2

Z
ftg�W3�RC

���˛ˇ TrF��F˛ˇ : (5.50)

Actually, as in (3.33), to eliminate a dependence on the metric of W3 (replacing it
with a dependence on a framing of W3), we should subtract from P a multiple of the
gravitational Chern–Simons function CSgrav, replacing P with

yP D P � v CSgrav

8�
: (5.51)

Since we will take the metric on W3 to be time-independent, this correction term is
time-independent. So the total change in yP between the far past and the far future is
the same as the change in P. From (5.49), it is the sum of two contributions given
by the fluxes of the conserved current at y D 0 and y D 1. In the present context,
those two terms are the instanton numbers of the G_ bundle E, restricted to y D 0

or y D 1. We write P.y D 0/ and P.y D 1/ for the instanton number evaluated at
y D 0 or at y D 1, so

�yP D �P D P.y D 0/ � P.y D 1/: (5.52)

We want to apply this to Khovanov homology, meaning that the boundary con-
dition at y D 1 is that the connection A approaches a fixed, time-independent flat
connection. This ensures that P.y D 1/ D 0. Likewise, P.y D 0/ will vanish if
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the boundary condition at y D 0 is time-independent. This will happen if there are
no knots at y D 0, since then the boundary condition says that the restriction of the
connection to y D 0 is the pullback of the Riemannian connection on W3. More
generally, this will happen if all knots are static and time-independent, for then the
boundary condition still identifies the restriction of the connection to y D 0 with a
pullback from W3.

We want to allow time-dependence by including a surface operator supported on
a possibly time-dependent two-manifold †2 � R �W3. Such surface operators are
associated to the knot cobordisms of Khovanov homology. To describe a transition
from the Khovanov homology of a link L in the far past to the Khovanov homology
of another link L0 in the far future, we require that in the past †2 looks like R � L
and in the future it looks like R � L0. We assume in addition that †2 is an oriented,
embedded surface without boundary and with no other ends apart from the ones just
described. Otherwise, †2 may have an arbitrary time-dependence. The quantum
transition amplitude in this situation from an initial state in K.L/ to a final state
in K.L0/ will give a linear map ˆ†2

W K.L/ ! K.L0/. This linear map is, in
mathematical language, the morphism of Khovanov homology associated to the link
cobordism †2.

Including †2 makes the boundary condition at y D 0 time-dependent, so there is
no reason for �yP to vanish. Instead, �yP will simply equal P.y D 0/, the instanton
number of the bundle E restricted to y D 0. �yP is equal to the amount by which the
quantum transition amplitude ˆ†2

shifts the q-grading of Khovanov homology.
The fundamental case to understand is the case that †2 is compact and L and L0

are empty. After treating this case in Section 5.4.1, we will reintroduce the knots in
Section 5.4.2.

The problem we consider in Section 5.4.1 is somewhat like the one studied for
framing of knots in Section 3.7, but it is simpler because we will be computing
a characteristic class (the instanton number) rather than a secondary characteristic
class (the Chern–Simons function). We will see in Section 5.4.2 that the simpler
computation we do here actually implies the result of Section 3.7.

5.4.1. Compactly supported surface operator. In the following, we consider a
surface operator of compact support in an arbitrary four-manifold M4, which we
regard as the boundary at y D 0 of M5 D M4 � RC. We write simply †, rather
than †2, for the support of the surface operator, and we write simply E for the
restriction of the gauge bundle E to M4, that is, to y D 0. As in our study of knot
framings, we will do this analysis for G_ D SO.3/. The instanton number of E is
1/4 times the first Pontryagin class of ad.E/:

P.y D 0/ D 1

4

Z
M4

p1.ad.E//: (5.53)

(The factor of 1=4, which corresponds to 1=2h_ in (3.11), comes from the ratio
of the trace of the four-form F ^ F in the two-dimensional and three-dimensional
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representations of SU.2/.)
In the absence of a surface operator, ad.E/ is simply �2;C.M4/, so P.y D 0/

can be expressed in terms of the Euler characteristic and signature of M4. We want
to determine the shift in P.y D 0/ due to the presence of the surface operator:

�P.y D 0/ D 1

4

Z
M4

.p1.E/ � p1.�
2;C.M///: (5.54)

Let us first describe the restriction to † of �2;C.M4/. At a point p 2 †, we
pick an orthonormal basis of one-forms e1; e2 and f1; f2, such that the ei are tangent
to † and the fj are normal to †. Also we orient them so that e1 ^ e2 and f1 ^ f2

determine the orientations of the tangent bundle T† to† and its normal bundleN†,
respectively, and hence the orientation of M4 corresponds to e1 ^ e2 ^ f1 ^ f2.

Now let us simply write down an orthonormal basis of self-dual two-forms at p.
We can take one such form to be w1 D e1 ^ e2 C f1 ^ f2. For the other two such
forms, we write

w2 C iw3 D .e1 C ie2/ ^ .f1 C if2/ (5.55)

or
w2 D e1 ^ f1 � e2 ^ f2; w3 D e1 ^ f2 C e2 ^ f1: (5.56)

Clearly,w1; w2; andw3 are indeed selfdual and (in a natural inner product) orthonor-
mal.

The definition of w1 was completely natural, so �2;C.M4/j† contains a one-
dimensional trivial real summand that we will call ". As for w2 C iw3, it is best
understood as lying in the fiber at p 2 † of a complex line bundle M ! †.
To construct this line bundle, we view T �† and N �† (the duals of T† and N†)
as rank one complex line bundles, placing on them the complex structures that act by

I.e1 C ie2/ D i.e1 C ie2/; J.f1 C if2/ D i.f1 C if2/: (5.57)

Evidently, M Š T �†˝C N
�†, since e1 C ie2 takes values in T �† and f1 C if2

in N �†. So the restriction of �2;C.M4/ to † is

�2;C.M4/j† D "˚ M; (5.58)

where M is regarded as a real vector bundle of rank 2.
As a real bundle of rank 2, M is equivalent to its dual. (In fact, the Riemannian

metric onM4 gives a natural identification between them.) This means that in (5.58),
we can replace M by L D M�1. Here L D T†˝CN† D T ˝ N , where we write
simply T and N for T† and N† regarded as complex line bundles. Thus (5.58) is
equivalent to �2;C.M4/j† D "˚ L: A small neighborhood U of † is contractible
onto †, and this isomorphism automatically extends over U:

�2;C.M4/jU Š "˚ L: (5.59)
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Now we want to modify �2;C.M4/ along † by gluing in along † an ’t Hooft
operator supported on † and dual to the spin j representation of G D SU.2/. In the
full five-dimensional description, the support of the ’t Hooft operator is on†�fy D 0g
� M4 � RC, so it is of codimension three as expected for ’t Hooft operators. We
denote the modified bundle as E.j /. We can understand the structure of E.j / from
the model solution described in Section 3.6.4 – lifted now to five dimensions rather
than to four as assumed in Section 3.6. The gauge field of the model solution is
u.1/-valued (though the full model solution including the other fields is irreducible).
In the context of a knot K in a three-manifold W3, the U.1/ in question acts on the
normal bundle to K. When we lift to a surface † in a four-manifold M4, the U.1/
in question acts on the subbundle of �2;C.M4/j† that is orthogonal to ". In other
words, it acts on L.

To constructE.j / , we are supposed to glue in2j units of flux in this U.1/ subgroup.
This means that E.j / restricted to † will have the form "˚ � where � is a complex
line bundle with the following properties: (1) Away from †, � is isomorphic to L,
ensuring that E.j / is equivalent to �2;C.M4/. (2) The isomorphism between L and
� has a zero along † of degree 2j . This second condition captures the idea that Ej

is obtained from �2;C.M4/ by adding 2j units of flux in the normal direction.
The two conditions have a simple and unique solution. In general, if † is a

Riemann surface, there is no natural way to pick a section of a complex line bundle
� ! †. But letX be the total space of the line bundle � ! † and let � W X ! † be
the natural projection, and pull back � to a line bundle ��� ! X . Then ��� does
have a natural section, which moreover has a simple zero along† � X . This section
is defined as follows: for q 2 X , define p 2 † by p D �.q/. Then q lies in �p , the
fiber of � over p. But by the definition of pullback, �p is naturally isomorphic to the
fiber of ��� over q. This isomorphism maps q to an element s.q/ of this fiber, and
the map q ! s.q/ is the desired section of ��� ! X .

The most familiar example of this construction is the case that � is the canonical
bundle K† of †; K† has no natural section, but its pullback to the total space of the
fibration K† ! † does have a natural section, usually written as p dx, where x is
a local coordinate on † and p is a fiber coordinate. We note that p dx has indeed a
simple zero at p D 0, that is, along †, and is nonzero for p 6D 0.

If s is a section of ��� ! X with a simple zero along †, then s2j is a section of
.���/2j ! X with a zero along † of degree 2j and no other zeroes. Moreover, up
to isomorphism, .���/2j and s2j are the unique line bundle and section with these
properties.

To apply this to our problem, we observe that a small neighborhood U of† � M4

can be identified, in a way that is unique up to homotopy, with a neighborhood of the
zero section in the total space of the fibration ��N ! †. So a line bundle over U

that has a section vanishing in degree 2j along † and nowhere else is the pullback
to U of .��N /2j . More informally, we call this line bundle simply N 2j .

So a line bundle that is isomorphic to L away from † by an isomorphism that
has a zero of degree 2j along † is simply L ˝ N 2j . We thus arrive at a description
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of E.j /. In a neighborhood of † it is

E.j /jU D "˚ L ˝ N 2j D "˚ T ˝ N 2j C1: (5.60)

In general, if E is a rank three real vector bundle that is given globally as " ˚ R,
where " is a trivial real line bundle and R is a complex line bundle that we view
as a real vector bundle of rank two, then p1.E/ D c1.R/

2. So from (5.54), if the
formulas (5.59) and (5.60) are valid globally onM4, not just in a neighborhood of†,
then the change in the instanton number due to the surface operator is

�P.y D 0/ D 1

4

Z
M4

.c1.T ˝ N 2j C1/2 � c1.T ˝ N /2/: (5.61)

It is possible for (5.59) and (5.60) to be valid globally, if T and N are suitably
extended over M4. This happens if M4 is a complex manifold and † is a complex
submanifold. In this case, �2;C.M4/ D "˚KM4

, where KM4
is the canonical line

bundle of M4. As a real bundle of rank two, KM4
is equivalent to the anticanonical

bundle K�1
M4

. When restricted to †, K�1
M4

Š T ˝ N , showing that (5.59) holds
globally. Similarly (5.60) holds, with N interpreted as the line bundle O.†/ whose
holomorphic sections are meromorphic functions that may have a simple pole along†.
Not only is it possible for (5.59) and (5.60) to hold globally, but this can be the case
with no restriction on the topology of † or its normal bundle. So cases of this type
must suffice to determine the general result.

Actually, one can justify (5.61) more directly without reference to the question of
whether (5.59) and (5.60) may hold globally. The formal difference E ��2;C.M4/

represents a class in theK-theory of U with compact support (sinceE and�2;C.M4/

are isomorphic on the complement of†). The difference between the formulas (5.59)
and (5.60) is a valid formula in thisK-theory with compact support, and this is enough
to justify (5.61), which involves only the first Pontryagin class of E ��2;C.M4/.

As for the actual evaluation of the right hand side of (5.61), all that one needs
to know is that the integral of c1.N /2 is † \ †, the self-intersection number of †,
and that the integral of c1.N / � c1.T / is �.†/, the Euler characteristic of †. Both
statements follow from the fact that N has a section with a simple zero along †. So
finally the shift in the q-grading due to the surface operator is

�P.y D 0/ D j �.†/C j.j C 1/† \†: (5.62)

5.4.2. Transitions between knots. Now let us consider link cobordisms. For brevity
in the exposition, let us assume that there are no knots in the past and there is a single
knot K in the future. The generalization to arbitrary links in the past and future
does not change much; the remarks that follow apply to each boundary component
separately. So we take † to be compact toward the past and to have an end toward
the future that looks likeK � RC. (This RC is future-pointing and does not coincide
with the usual RC that is parametrized by y.)
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Nothing changes in the above derivation provided the line bundles T and N are
trivialized near the noncompact end of †. T has a natural trivialization near t D 1
associated with a vector field that generates time translations alongK�RC. One can
think of this as the reason that there is no problem to define the Euler characteristic of
a noncompact Riemann surface like †. However, a time-independent trivialization
of N near t D 1 corresponds to a framing of †. If the framing of K is shifted
by 1 unit, then † \ †, defined relative to this trivialization, shifts by 1 unit. This
shifts �P.y D 0/ by j.j C 1/, so the q-grading of the final state in K.K/ is also
shifted by j.j C 1/. This is consistent with the fact that the expectation value of a
Wilson operator supported on K in Chern–Simons theory is multiplied by qj.j C1/

under a unit shift in framing of K, a fact that we have also explained in another way
in Section 3.7.

Another interesting effect results from the term in (5.62) proportional to �.†/.
For a closed Riemann surface †, � is even, but for a Riemann surface ending on a
single knot, � is odd. It follows then that if j is half-integral, �P.y D 0/ is also
half-integral and the shift in q-grading in a transition from the vacuum (no knots)
to a state in the Khovanov homology of a single knot is half-integral. This gives a
new explanation of why the Jones polynomial of a knot (the invariant associated to
j D 1=2) is q1=2 times a series in (positive and negative) integer powers of q. More
generally, by the same reasoning, the Jones polynomial of a link with � components
is q�=2 times a series in integer powers of q.

5.5. Gauge groups that are not simply-laced

5.5.1. Preliminaries. Starting with Section 5.1.1, the groups G and G_ have been
simply-laced, for the simple reason that our main tools, the .0; 2/ models in six
dimensions, are associated to simply-laced groups. Nonetheless, it is possible to
deduce S -duality in four dimensions for a gauge group G that is not simply-laced
by starting [98] with the six-dimensional model of a simply-laced group G�. The
relation between G and G� is the same as it was in Section 4.3: G� has an outer
automorphism 
, such that the subgroup of G� that commutes with 
 is G_, the
dual of G. As we have seen in Section 4.3, when G is not simply-laced, there are
two different Khovanov-like formulas, both presented in (4.15), that express the knot
invariants of G Chern–Simons theory as traces in some space akin to Khovanov
homology. Our goal here is to identify two six-dimensional constructions, starting
with the .0; 2/ theory of type G�, that lead to these two formulas.

The first basic fact that one needs to know is that for every pair .G�; 
/ that
appeared in Section 4.3, the .0; 2/ model of type G� has 
 as a global symme-
try. One way to see this is to use the unified description [104] of .0; 2/ models for
all A � D � E groups in terms of Type IIB superstring theory at the corresponding
A � D � E singularity. In all cases, 
 acts as a hyper-Kähler automorphism of the
singularity of type G� (this fact was first used in string theory in [5]) and hence as a
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symmetry of the corresponding .0; 2/ model.40

Before generalizing to include the automorphism 
, let us recall the standard claim
about compactification of the .0; 2/ model of type G� on a two-torus zS1 � S1. If
one formulates the .0; 2/model onM4 � zS1 �S1 for someM4, and scales down the
metric of zS1, then it reduces to supersymmetric gauge theory onM4 �S1. The gauge
group in this description is a global form of the group G�. Which global form arises
depends on a subtle choice one makes in defining the theory in six dimensions; see
footnote 27. If instead one reduces on S1, one gets a five-dimensional gauge theory
based on a possibly different global form of G� – the Langlands or GNO dual form.
(This duality exchanges the center of G� with its fundamental group, so for instance
the adjoint form of the group is dual to the simply-connected form.)

Now let us repeat this discussion with 
 included. We consider the .0; 2/ model
of type G� on M4 � zS1 � S1, but now with a twist by 
 in going around one of the
two circles. Again, we consider what happens when zS1 is scaled down. There are
two cases:

(i) If the twist is made around S1, then the reduction on zS1 gives five-dimensional
G� gauge theory onM4 � S1, just as if there were no twist. But in this gauge theory
description, one sees a twist by 
 in going around S1. The twist breaks G� down
to G_, so in four dimensions one gets G_ gauge symmetry.

(ii) If instead the twist is made around zS1, one gets in five dimensions gauge
theory on M4 � S1 with gauge group G, the dual of G_. Since there is no twist
around S1, the compactification on S1 does not affect the gauge group observed in
four-dimensions at scales large compared to the radius of S1.

Statements (i) and (ii) are related by electric-magnetic duality in four dimensions,
since obviously exchanging the two circles (which is the basic operation of electric-
magnetic duality) is equivalent to changing the circle around which the twist is made.
Statement (ii) is used in the literature as a way to generate non-simply-laced gauge
symmetry starting from M -theory or Type II superstring theory.

We need to know one more fact about the .0; 2/ model of type G�, beyond the
fact that it admits 
 as a global symmetry. This model admits a half-BPS defect
consisting of a codimension two submanifold around which all fields undergo the
automorphism 
. This fact has been briefly mentioned in [29] and exploited in [94].

40As has been pointed out by the author of [94], it is not true that all outer automorphisms of simply-laced
groups act as hyper-Kähler automorphisms of the corresponding singularity. Rather, this is so precisely for
the pairs .G�; �/ that are associated to groups G_ that are not simply-laced. These pairs are G� D A2n�1

with the automorphism of complex conjugation combined with a suitable inner automorphism (related to
G_ D Cn D Sp.2n/), G� D D2n with the automorphism a reflection of one variable (related to
G_ D Bn�1 D SO.2n � 1/), G� D E6 with its outer automorphism (related to G_ D F4), and
G� D D4 with an outer automorphism of order 3 (related to G_ D G2). A concise way to state the
relation between these pairs is that (by the usual duality that exchanges long and short roots of the Dynkin
diagram) the loop group of G_ is GNO or Langlands dual to the �-twisted loop group of G�. The example
of an outer automorphism that does not arise as a hyper-Kähler symmetry of the appropriate singularity
and is not related to a non-simply-laced Lie group is A2n with the automorphism of complex conjugation.
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5.5.2. Two constructions. Using these facts, we can now describe two six-dimen-
sional constructions that are related to the two formulas presented in (4.15) for the
knot invariants derived from Chern–Simons theory of a simple but not simply-laced
Lie group G. In explaining these formulas, as in Section 4.3, G� will be a simply-
laced Lie group that possesses an outer automorphism 
 that leaves fixedG_, the dual
of G. Now, however, we will also need a simply-laced Lie group G˘ that is related
to G the way G� is related to G_. Thus, G˘ admits an outer automorphism 
0 that
leaves fixedG. If G is of type G2 or F4, then G D G_ and G˘ D G�. The case that
G˘ and G� are different is that G D Sp.2n/ and G_ D SO.2nC 1/ (or vice versa);
then G� D SO.2nC 2/ and G˘ D SU.2n/.

Now we consider two constructions that will lead to the two formulas in (4.15):
(1) The first construction is familiar. We consider the .0; 2/ model of type G�

on M6 D R �W3 �D. We write K� for its space of physical ground states. After
reducing on the U.1/D orbits, K� can be computed by solving the supersymmetric
equations (5.36) in G� gauge theory.

(2) In the second construction, we start with the .0; 2/ model of type G˘, again
onM6 D R �W3 �D. Now, however, we include a defect operator associated to the
outer automorphism 
0 and supported on R�W3 �p, where p 2 D is the U.1/D fixed
point. Reducing on the U.1/D orbits, we get a description by supersymmetric gauge
theory on R�W3 �RC with gauge groupG_. This assertion reflects statement (ii) in
Section 5.5.1, except that, since we started withG˘ instead ofG�, the roles ofG and
G_ are exchanged. In determining the gauge symmetry in this description, it suffices
to consider the situation at large y, and we do not need to know what is happening
at y D 0. However, because of the supersymmetry of the problem, we expect the
boundary condition at y D 0 to be the usual one with the regular Nahm pole (for the
five-dimensional bulk gauge group G_, of course).

We write K for the space of physical ground states in construction (2). It can be
obtained by studying the supersymmetric equations (5.36) in G_ gauge theory. So
in particular the spaces K� and K that arise in our two constructions coincide with
the ones that were denoted the same way in Section 4.3.

Now we compactify the time direction, possibly with a global symmetry twist:
(10) In case (1), we replaceM6 by S1�W3�D, but making a twist by 
 around the

S1 direction. The resulting path integral on S1 �W3 �D can be interpreted as a trace
in K�. In the absence of the twist, the path integral would compute TrK� qP.�1/F,
but as we have included the twist, we get instead TrK� qP.�1/F
. This is the right
hand side of one of the two formulas in (4.15).

(2 0) In case (2), we again replaceM6 by S1 �W3 �D, but now without any twist
in the S1 direction. The path integral around S1 now computes TrK qP.�1/F. This
is the right hand side of the other formula in (4.15).

As for why these two six-dimensional constructions agree with the left hand-side
of (4.15) – that is, with the path integral of Chern–Simons theory with gauge group
G – we simply observe the following. In either of the two constructions, at distances
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large compared to the size ofS1, we get a description byG_ gauge theory onW3�RC
with D3–D5 boundary conditions. Given this, we can retrace our way through the
steps of Sections 3 and 2, first making an S -duality to a description byG gauge theory
with D3–NS5 boundary conditions, and finally relating this to Chern–Simons theory
on W3 with gauge group G.

6. Another path to six dimensions

6.1. Overview

6.1.1. Some background. In this section, we will repeat the analysis of the present
paper along a different route.

For a first orientation, let us recall some of the defect operators in gauge theories.
A basic defect operator in dimension 1 is the Wilson line operator. In codimension 3,
there are ’t Hooft operators. These are the two types of defect operator that we have
considered so far.

More obvious than the ’t Hooft operator is another type of defect operator that
appears in codimension 2. This is an operator associated with a prescribed mono-
dromy. In gauge theory with gauge group G on any manifold X, let U be a subman-
ifold of codimension 2. Let C be a conjugacy class in G. Then one considers gauge
theory on XnU with the condition that the gauge fields have a monodromy around
U that is in the conjugacy class C . A surface operator supported on U is defined by
asking in addition that the fields should have the mildest type of singularity consistent
with this monodromy or (depending on the context) by imposing additional condi-
tions on the singular behavior along U. We will call codimension two operators of
this sort monodromy defects. We introduce this terminology because, in comparing
related theories in different dimension, we want a way to emphasize the codimension
rather than the dimension on which the defect is supported.

Chern–Simons theory is a theory in dimension 3, and since 3 � 2 D 1, in this
case the defect operators defined by monodromy are also line operators, just like
the Wilson operators.41 Moreover, in Chern–Simons theory, the two types of line
operator are equivalent. This statement is a slight reformulation of matters explained
in [102] and [105] and in much more detail in [8]. The basic reason for a relation
between the two types of line operator can be seen for G D U.1/. Consider U.1/
Chern–Simons theory on a three-manifold W3 at level k, coupled to a knot K that is

41Similarly, since 3 � 3 D 0, an ’t Hooft operator in a three-dimensional theory is simply a local
operator. However, the Chern–Simons function CS.A/ is not gauge-invariant in the presence of the
singularity corresponding to an ’t Hooft operator, and hence there are no ’t Hooft operators in pure Chern–
Simons theory. ’t Hooft operators – which in this context are often called monopole operators – do exist
in Chern–Simons theories with matter fields; see [66] and [14].
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labeled by the charge n representation of U.1/. The action is

I D � k

4�

Z
W3

A ^ dA � n

I
K

A: (6.1)

The equation of motion is

F D �2�n
k
ıK ; (6.2)

where ıK is a delta function that is Poincaré dual toK. This means that the gauge field
A has a singularity along K, the monodromy aroundK being M D exp.�2�in=k/.
It is equivalent to consider Chern–Simons theory for ordinary U.1/ gauge fields onW3

with a Wilson operator of charge n on the knot K or Chern–Simons theory on W3

for U.1/ gauge fields that are required to have a singularity alongK of the form (6.2).
This construction is particularly simple for G D U.1/ because a representation is

one-dimensional and aWilson operator exp.in
H

K
A/ is constructed by exponentiating

a local expression that can be included in the action. The analog for a nonabelian
gauge group G with a Wilson line associated to an irreducible representation R is
to include in the microscopic description a matter system, supported on K, whose
quantization gives the representation R. In view of the Borel–Weil–Bott theorem,
such a system is the theory of maps K ! G=T, where the “flag manifold” G=T
is endowed with a homogeneous line bundle whose first Chern class is the highest
weight 	R of the representation R. Thus, one considers a quantum theory of pairs
.A;ˆ/, where A is a connection on a G-bundle E ! W3 and ˆ is a section of
the G=T bundle E ! K that is associated to E (if E is understood as a principal
G-bundle, one can set E D G=T �G E).

After introducing ˆ, one can gaugeˆ away, since G=T is a homogeneous space,
and then the equation of motion for A takes the form of (6.2) with the integer n
replaced by the Lie algebra element 	R . The monodromy around K, if computed
classically, turns out to be M D exp.�2�	�

R=k/. (	R is naturally an element of
t_; we have used the usual metric in which short roots have length squared two to
map 	R to an element of t that we denote as 	�

R .) It is known, however, that many
formulas take their simplest form if k is replaced by ‰ D k C h sign k and 	�

R

by 	�
R C %�, where % is one-half the sum of the positive roots. The shift from k

to ‰ has an interpretation that was explained in Section 2.4, and this interpretation
indicates that all formulas of N D 4 superYang–Mills theory should be expressed in
terms of ‰. Unfortunately, we do not have an equally clear picture of what the shift
	R ! 	R C % means in the context of N D 4 super Yang–Mills theory and hence
we do not know whether this shift should be included in the microscopic formulas
in this description. When we introduce the description by N D 4 super Yang–Mills
theory, we will not incorporate this shift, and thus we will take the monodromy to
be M D exp.�2�	�

R=‰/. But this is only a provisional choice and is one of many
points in the present section that merit a more careful reconsideration.
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6.1.2. Contents of this section. Although Wilson operators and monodromy defects
are equivalent in Chern–Simons theory, they lead to two quite different pictures when
we lift to four dimensions. A one-dimensional defect in three dimensions can be lifted
to four dimensions as a one-dimensional defect. This is what we have done in the
present paper, beginning in Section 2, in relating Wilson operators in three dimensions
to Wilson or ’t Hooft operators in four-dimensional gauge theory. Alternatively, a
codimension two defect in three dimensions can be lifted to four dimensions as a
codimension two defect. That will be our approach in the present section. The use
of codimension two defects in four dimensions to describe Wilson operators in three
dimensions is not essentially new; this actually was done in [108]. The motivation
there was to study a semiclassical limit of Chern–Simons theory in which k and 	R

are both large, with a fixed ratio so that the monodromy M remains fixed. This semi-
classical limit is related to the volume conjecture for Chern–Simons theory (see for
instance [80] and [50]), and related developments. In the present paper, we started
with Wilson operators rather than monodromy defects because this seemed to give
the most direct route to Khovanov homology. However, in the present section we will
describe at least the beginnings of an analogous story based on monodromy defects.

Monodromy defects in four dimensions are supported on a surface of dimension
two and are often called surface operators. The appropriate ones were described
in [55] and will be reviewed in Section 6.2, where we will also describe the basic four-
dimensional construction that is related to Chern–Simons theory in this perspective. In
Section 6.3, we describe theS -dual construction in four dimensions, and the resulting
formulas for knot invariants, in terms of counting of solutions of elliptic differential
equations. In Section 6.4, we lift the story to five dimensions, giving a description of
Chern–Simons theory in terms of dimensions of vector spaces rather than counting
of solutions, and in Section 6.4.3, we make the further lift to an ultraviolet-complete
description in six dimensions. Finally, in Section 6.5, we attempt to use this form of
the duality to actually say something about Chern–Simons knot invariants. What we
are able to say is quite limited.

Thus, in brief, in the rest of this paper, we aim to recapitulate what we have done
so far with Wilson operators of Chern–Simons theory replaced by the equivalent
monodromy defects. But we make only the barest beginnings in this direction.

6.2. From three dimensions to four

6.2.1. Review of monodromy defects. Our first step is to relate Chern–Simons
theory on a three-manifoldW3 to N D 4 superYang–Mills theory on V4 D W3 �RC,
but now in the presence of a monodromy defect. Just as in Section 2.4, in doing this,
it is convenient to take the twisting parameter t to be real, so as to get a localization
on the solutions of the elliptic differential equations VC D V� D V0 D 0. And it is
convenient to take the Q-invariant complex connection on the boundary of V4 to be
simply A D AC i'.
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A monodromy defect supported on a knot K � W3 will be extended to a mono-
dromy defect in V4. The monodromy defect is defined by specifying the singularity
that fields are supposed to have along a two-dimensional surface C � V4. For our
analysis, we will take C D K � RC, but more generally one may take C to be any
surface in V4 whose boundary is the original knot K � f0g.

The singularity alongC must be compatible with the localization equations VC D
V� D V0 D 0. In fact, the relevant monodromy defects, which have been described
in [55], are half-BPS and are compatible with the localization equations for any value
of the twisting parameter t .

The singular solution that defines the monodromy defect operator is a solution
on R2 with an isolated singularity at the origin 0 2 R2. One can think of this R2 as the
normal plane to C . The relevant solution on R2 is a solution of Hitchin’s equations

F � ' ^ ' D 0;

dA' D 0;

dA?' D 0

(6.3)

for the pair .A; '/. Any solution of these equations on R2, when pulled back to
R4 D R2 � R2, obeys the four-dimensional equations VC D V� D V0 D 0 for
every value of t. This is related to the fact that Hitchin’s equations are actually half-
BPS, that is, they preserve one-half the supersymmetry of N D 4 super Yang–Mills
theory.

We will consider only the most basic monodromy defect operator considered
in [55] (as opposed to refinements that depend on the choice of a non-minimal Levi
subgroup of G). The defect operator has parameters .˛; ˇ; �; �/. Here ˛; ˇ; and �
are elements of the Lie algebra t of a maximal torus T � G (as described later, ˛
is more precisely an element of t=ƒcochar D T /. Introducing polar coordinates r; �
on R2, the singular solution of Hitchin’s equations corresponding to ˛; ˇ; � 2 t is

A D ˛ d�; (6.4)

' D ˇ
dr

r
� � d�: (6.5)

The defect operator is defined by saying that one studies N D 4 super Yang–Mills
fields in a space of fields that coincide with this singular solution modulo less singular
terms, that is, modulo terms with a singularity milder than 1=r . As an important
example of the subtlety of this definition, let us consider the case that ˛; ˇ; � ! 0,
or more generally, the case that the triple .˛; ˇ; �/ becomes nonregular. (We call
this triple regular if the subgroup of G that leaves fixed the solution (6.4) is only
the maximal torus; more generally, we say that a collection of elements of t, T,
and /or T _ is regular if the collection is not left fixed by any nontrivial element of the
Weyl group.) Naively, for ˛; ˇ; � ! 0, it seems that the singularity associated to the
defect operator disappears, but the correct statement is that the limit as ˛; ˇ; � ! 0 is
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a surface operator characterized by the fact that the singularity in the fields is milder
than 1=r . The generic behavior of Hitchin’s equations for ˛; ˇ; � ! 0 is given, as
found in [91], by a solution that is slightly less singular than 1=r . (We have seen a
similar behavior in Section 3.6.5; for 	 ! 0, the solution (3.101) does not become
regular at z D 0, but reduces to the solution (3.88) that has a singularity that is slightly
milder than 1=jzj.) The gauge theory surface operator with nonregular parameters
must be defined to allow the same behavior, as explained in detail in [55].

The parameters˛ and� in (6.4) have the following simple interpretation. By virtue
of Hitchin’s equations, the complex connection A D ACi' is flat on the complement
of the point r D 0. Its monodromy around that singular point is

M D exp.�2�.˛ � i�//: (6.6)

The combination ˇ C i� also has a simple interpretation. Write ' for the .1; 0/ part
of the one-form '; then away from the singularity, ' is holomorphic by virtue of
Hitchin’s equations. It has a pole at z D 0 with polar residue .ˇ C i�/=2:

' D 1

2
.ˇ C i�/

dz

z
: (6.7)

Because of the subtlety noted in the last paragraph, we have to be careful in inter-
preting these formulas if the pairs .˛; �/ or .ˇ; �/ are nonregular. For example, for
˛ D � D 0, although the model solution has monodromy M D 1, a generic solution
that coincides with the model solution modulo terms less singular than 1=r , and there-
fore is allowed in the presence of the monodromy defect, has nontrivial but unipotent
monodromy (that is, M�1 is nilpotent but otherwise unconstrained). This is relevant
in the G_ description introduced in Section 6.3, because there the vanishing of the
parameters analogous to ˛ and � will be natural.

The fourth parameter � has a more quantum mechanical nature. As long as
.˛; ˇ; �/ is a regular triple, the presence along a surface C � V4 of a singularity of
the form (6.4) means that, along C, the structure group of the G-bundle E ! V4 is
reduced to T. For G D SU.2/, this means that the structure group of EjC reduces to
T D U.1/. A U.1/ bundle over a two-manifold C has a Z-valued first Chern class c1.
We can introduce a theta-angle � and include in the path integral a factor exp.2�i�c1/.
If G is of rank greater than one, then, as explained in [55], a T -bundle over C has
a natural characteristic class m that takes values in a lattice in t that is known as the
cocharacter lattice ƒcochar . The generalization of a theta-angle is a homomorphism
from ƒcochar to U.1/; we write this homomorphism as m ! exp.2�i.�;m//, where
� takes values in t_=ƒchar. Here t_ is the dual of t and ƒchar � t_ is the character
lattice. (More informally, � is simply a collection of theta-angles, one for each U.1/
subgroup of T.) Moreover, t_=ƒchar is naturally isomorphic to the maximal torus T _
of the GNO or Langlands dual group G_.

Reciprocally, a gauge transformation with a singularity at r D 0 can shift ˛ by
an element ofƒcochar, so ˛ is naturally an element of t=ƒcochar , which is the maximal
torus T � G. The element of T corresponding to ˛ is simply exp.�2�˛/.
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The quadruple of parameters .˛; ˇ; �; �/ thus take values in T � t � t � T _ or
more precisely in the quotient of this space by the Weyl group of G. Under electric-
magnetic duality, T and T _ are exchanged, and t is mapped to t_. A metric on t gives
a map from t to t_; we use the usual metric in which short roots have length squared 2,
and write ˇ� and �� for the images of ˇ and � in t_. The electric-magnetic duality
transformation � ! �1=ng� then maps the quadruple .˛; ˇ; �; �/ to the quadruple
.˛_; ˇ_; �_; �_/ defined in [55]:

.˛_; ˇ_; �_; �_/ D .�; j� jˇ�; j� j��;�˛/: (6.8)

If the triple .˛; ˇ; �/ is nonregular, then our definition of � does not make sense.
For example, if G D SO.3/, the only nonregular triple is ˛ D ˇ D � D 0; this
leaves SO.3/ unbroken and so the reduction of the structure group of EjC to T ,
which we assumed in the definition of �, does not hold. Nevertheless, there is a well-
behaved surface operator as long as the quadruple .˛; ˇ; �; �/ is regular. For example,
a surface operator with parameters .0; 0; 0; �/ is hard to define directly in terms of
G gauge theory, but in the S -dual description by G_ gauge theory, the parameters
are .�; 0; 0; 0/, and now it is obvious that there is no problem as long as � is regular.
An alternative description of the surface operator which makes it clear that it behaves
well as long as the quadruple .˛; ˇ; �; �/ is regular is presented in Section 3 of [56].
In this approach, the surface operator is defined by coupling gauge fields on the
four-manifold V4 to a supersymmetric sigma-model that is supported on the two-
manifold C � V4. In this description, ˛; ˇ; � , and � are parameters of the sigma-
model. The sigma-model becomes singular (Coulomb and Higgs branches intersect)
precisely when the quadruple .˛; ˇ; �; �/ is nonregular.

In Section 6.3, we will useG_ gauge theory to develop a semiclassical method to
calculate in the presence of a monodromy defect. Even though the monodromy defect
makes sense as long as the quadruple .˛_; ˇ_; �_; �_/ is regular, a semiclassical
picture based on G_ gauge theory is possible only under the stronger condition that
.˛_; ˇ_; �_/ is regular. So we will usually make this assumption.

6.2.2. Specialization to V4 D W3 � RC. So far, we have considered a monodromy
defect supported on an arbitrary surface C in a general four-manifold V4. Now let us
specialize to the case that V4 D W3 � RC with C D K � RC, K being a knot inW3.
Moreover, since our interest is in Chern–Simons theory, we assume that the boundary
conditions at y D 0 are the D3–NS5 boundary conditions discussed in Section 2, or
their generalization discussed from a more purely topological field theory point of
view in [109].

The starting point in relating Chern–Simons theory onW3 to N D 4 superYang–
Mills theory on W3 � RC is supposed to be that, given a critical point of the Chern–
Simons function on W3, one uses this critical point to define boundary conditions at
y D 1 for the N D 4 path integral. To be more precise, in the absence of a knot, a
critical point is a flat bundleE ! W3, and, invoking a theorem of Corlette [22], such
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a flat bundle (given a mild condition of semi-stability) can be promoted to a solution
of the supersymmetric equations, which in three dimensions readF �'^' D dA' D
dA?' D 0. In the presence of a knotK labeled by parameters ˛; ˇ; � , these equations
acquire delta function sources:

F � ' ^ ' D 2�˛ ıK ;

dA?' D 2�ˇ ds ^ ıK ;
dA' D 2�� ıK :

(6.9)

In these equations, ıK is a delta function two-form Poincaré dual to K, and ds is a
one-form defined along K that measures the length element of K defined using the
Riemannian metric onW3. (Multiplying it by ıK, we promote it to a closed three-form
ds ^ ıK on W3.) A generalization of Corlette’s theorem to include such singularities
is apparently not known in the context of Riemannian geometry, though there are
such results in the context of Kähler manifolds, the most basic case being a Riemann
surface [91]. Given a solution of these equations, we use it to define initial conditions
for the Morse theory flow equations at y D 1. The space of solutions of the flow
equations gives an integration cycle � for Chern–Simons theory on the boundary at
y D 0, in the presence of a monodromy defect. This procedure has been described
in [108], though without the physical interpretation by N D 4 super Yang–Mills
theory.

The N D 4 path integral on W3 � RC with the given boundary conditions at
y D 1 reproduces the path integral of Chern–Simons theory on the integration
cycle � . However, we do face the fact that, at least generically, � is not equivalent
to any standard integration cycle of Chern–Simons theory. In our earlier analysis
in which knots were associated to Wilson operators rather than monodromy defects,
to partly avoid this problem, we relied on the fact that there is an important case
in which there is only one possible integration cycle. This was the case W3 D R3:
as R3 is simply-connected, the Chern–Simons functional for gauge fields on R3 has
only one critical point up to a gauge transformation, and any possible integration
cycle is equivalent to the standard one. Hence results obtained by the procedure of
the present paper can be compared to results of ordinary Chern–Simons theory for
expectation values of knots in R3. As soon as we allow a monodromy defect operator
supported on some K � R3, the critical point and the integration cycle are no longer
unique. (This is because there typically are inequivalent flat connections over R3nK
with prescribed monodromy around K.) We will try to find something almost as
convenient as we had from the Wilson loop point of view, but this will involve some
assumptions and to some extent has been included in the present paper only to orient
the reader about what one might hope for.

From the point of view of Chern–Simons theory, the natural problem involving a
monodromy defect was described in Section 6.1.1: it is a path integral in the space
of gauge fields on W3 that have a singularity along K with prescribed monodromy.
For simplicity, we assume that the monodromy is given by a semisimple (diago-
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nalizable) element M 2 GC (the more general case is discussed in [108]). Then
M can be conjugated to the complex maximal torus TC � GC and has the form
M D exp.�2�.˛ � i�//, with ˛; � 2 t. To describe a Chern–Simons path integral
for gauge fields with monodromy conjugate to M, we must use a monodromy defect
operator with ˛ and � as two of its parameters.

What about the other parameters ˇ and �? We must set the parameter � to zero
for the following reason. What �multiplies is supposed to be a topological invariant,
which for G D SU.2/ would be the first Chern class of a U.1/ bundle over C D
K�RC. To define the first Chern class as a topological invariant on the non-compact
Riemann surface C , one needs trivializations of the U.1/ bundle at both y D 1 and
y D 0. Although our boundary condition does allow a trivialization at y D 1, it does
not allow a trivialization at y D 0, where arbitrary fluctuations in A D AC i' are
allowed. More fundamentally, the integration cycle in Chern–Simons theory defined
by Morse theory flow from a critical point (or even a connected family of critical
points) is connected, so there is no hope of decomposing it in components according
to the values of a generalized first Chern class.

As regards the parameter ˇ, it has no natural meaning in Chern–Simons theory.
This makes one wonder if one should set ˇ to zero, but that does not seem to be the
case in general. Given a flat bundle E ! V4nC , for any value of ˇ for which we
can find a solution of (6.9), we can use this to give a boundary condition on N D 4

super Yang–Mills theory at y D 1. Since ˇ has no role in the Chern–Simons
interpretation of the theory, one would expect the resulting path integral onW3 � RC
to be independent of the choice ofˇ. A smooth deformation of the integration cycle� ,
such as one gets by varying ˇ, should not change its homology class.

There is, however, one important situation in which ˇ must definitely be set
to zero. Suppose that G D U.1/. Then the second equation in (6.9) reduces to
d?' D 2�ˇ ds ^ ıK, and this equation has no solution except for ˇ D 0. The reason
for this last statement is that the closed three-form ds ^ ıK represents a nonzero
element of de Rham cohomology (its integral is the circumference of the knotK), so
unless ˇ D 0, the closed form 2�ˇ ds ^ ıK cannot be written as d?' for any '.

More generally, for any G, in the case of a flat bundle E ! W3nK whose
monodromy reduces to an abelian subgroup of G, the same argument shows that we
must take ˇ D 0.

It seems likely that what has just been described is essentially the only obstruction
to varying ˇ away from zero, and that for example in the case of an irreducible flat
GC-bundle E ! W3nK, one may take arbitrary ˇ. However, as already noted, the
appropriate generalization of Corlette’s theorem does not appear to be available in
the literature.

Comparing the formula M D exp .�2�.˛ � i�// to the discussion at the end of
Section 6.1.1, we see that if we want to use N D 4 super Yang–Mills theory with a
monodromy defect to generate a Chern–Simons path integral (albeit on an unusual
integration cycle) with a Wilson loop in the representation R, we must relate the
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parameters by
	�

R

‰
D ˛ � i�: (6.10)

Here as usual ‰ D k C h sign.k/, and the formula is provisional in the sense that
possibly we should replace 	R by 	R C %. A notable fact is that, since 	�

R; ˛, and �
are all elements of the real Lie algebra t, in order to have � 6D 0 we must take ‰
off the real axis. In this case, q D exp.2�i=ng‰/ does not have modulus 1, and a
description by ordinary Chern–Simons theory (in which k and ‰ are integers) is not
possible. In any event, from the point of view of N D 4 superYang–Mills theory, we
are certainly not limited to values of ˛, � , and ‰ that obey a relation such as (6.10)
for some representation R.

6.2.3.An important detail. In the standard perturbative expansion of Chern–Simons
theory on a three-manifold W3 around a flat connection A� associated to a repre-
sentation � of the fundamental group, the leading contribution in the semiclassical
limit is simply the exponential of the classical action exp.�ikCS.A�//. A one-loop
correction converts this to

ZCS 	 exp.�i‰CS.A�//; (6.11)

and this is the leading behavior of the Chern–Simons partition function for large ‰.
In the analogous calculation in N D 4 super Yang–Mills on V4 D W3 � RC,

we use A� to define a boundary condition at y D 1. To emphasize this, in the
N D 4 context, we write A1 instead of A�. Apart from an inessentialQ-exact term,
the N D 4 description differs from the Chern–Simons description by an important
constant in the action – the constant �i‰ CS.A1/, which can be found in (2.69). This
means that while the leading behavior of the Chern–Simons path integral expanded
around a flat connection A� D A1 is the exponential factor (6.11), this factor is
completely absent in the corresponding N D 4 path integral: it cancels between
y D 0 and y D 1. The relation between them is

ZCS D N0 exp.�i‰CS.A1//ZN D4; (6.12)

where we allow for the possibility of a constant factor N0 as in (2.66).
This is not important in studying knots in R3 via Wilson loops, because in that

context A1 is trivial. However, when we study knots via monodromy defects, A1
has a prescribed monodromy around K and is not trivial.

In the present paper, we will consider one question for which this is important.
This is the framing anomaly for knots. Under a change in framing of a knot K, ZCS

transforms by a power of q – the framing anomaly. But in fact, the exponential of
the classical action exp.�i‰CS.A1// itself has a framing anomaly. As we will now
explain, in a sense most of the framing anomaly is contained in the classical action
and only a quantum correction to the framing anomaly is contained in ZN D4.

Consider first the case G D U.1/. Inserting a Wilson operator exp.in
H

K
A/
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in effect adds a linear term to the action, namely the second term in (6.1). Since the
action is quadratic in A, once we shift to a classical solution in the presence of the
knot, the linear term in the action disappears. At this point, except for an additive
constant – the value of the action at the classical solution – the action coincides with
what it would be in the absence of the knot, and the rest of the quantum computation
proceeds as if the knot were absent. Hence, for U.1/ gauge theory, the framing
anomaly for knots arises entirely from the evaluation of the classical action. For a
discussion of the U.1/ framing anomaly in this vein, see [78], Section 2.4.

The result of the computation is that for U.1/ Chern–Simons theory, the partition
function transforms under a unit change in framing of a knot by

ZCS �! ZCS q
n2=2 D ZCS exp.�i‰m2/; (6.13)

where we use the fact that ‰ D k for U.1/, and m D n=k D n=‰ is essentially the
logarithm of the monodromy around the knot (that monodromy is M D exp.�2�im/,
as we explained in relation to (6.2)). We stress that this formula is purely classical in
the sense that it comes entirely from evaluating the classical action.

For a general compact Lie group, the analog is

ZCS �! ZCS q
ng.�RC2%;�R/=2; (6.14)

where . ; / is the usual inner product on t_ in which short roots have length
squared two, and .	R; 	R C 2%/=2‰, which reduces to n2=2k in the abelian case,
is the dimension of a chiral primary field of highest weight 	R in two-dimensional
current algebra at level k. As usual, q D exp.2�i=ng‰/, so the factor of ng is absent
if the formula is written in terms of ‰.

In the same sense that the framing anomaly for knots is entirely classical in abelian
gauge theory, it is mostly classical in the nonabelian case. IfG is a nonabelian group,
then the flat connection A1 over W3nK may have nonabelian monodromy. But its
restriction to a neighborhood ofK inW3nK is always abelian, since the fundamental
group in such a neighborhood is the abelian group Z � Z. The classical part of the
framing anomaly comes only from the behavior of the classical solution near K, and
can be obtained from the abelian formula (6.13) by replacing m2 by .m;m/, where
m is the logarithm of the monodromy. Form we will take 	�

R=‰, as explained at the
end of Section 6.1.1. But this choice really needs more justification; it is not clear
whether we should be making a shift 	R ! 	R C %. At any rate, with our choice,
we can express the factor by which Z transforms under a change in framing as

qng.�RC2%;�R/=2 D exp.�i‰.m;m//qng.�R;%/: (6.15)

On the right hand side, the first factor is classical and the second, which is subleading
in the semiclassical limit (large ‰ with fixed m), is a quantum correction. However,
there has been some guesswork in the way we have written the formula.

The reason that we have made this decomposition is the following. In view
of (6.12), the classical part of the framing anomaly in ZCS is contained in the factor
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exp.�i‰CS.A1//. Only the quantum correction to the framing anomaly will appear
in ZN D4. If therefore we accept the decomposition (6.15) at face value, then the
transformation of ZN D4 under a unit change in the framing of a knot will be

ZN D4 �! ZN D4 q
ng.�R;%/: (6.16)

6.3. The S -dual in the presence of a monodromy defect. The next step isS -duality.
The gauge group is transformed from G toG_, and the boundary condition at y D 0

becomes that of a D3–D5 system. The partition function can be evaluated by counting
solutions of the supersymmetric equations VC D V� D V0 D 0with the appropriate
elliptic boundary conditions.

In particular, the boundary condition at y D 0, away from the monodromy defect,
is the familiar one associated with a regular Nahm pole. Near the monodromy defect,
the boundary condition must be modified. As usual the corrected boundary condition
is based on a model solution. The model solution should now be a solution on R2�RC
of the three-dimensional reduction of our supersymmetric equations. We assume that
a monodromy defect is present on the ray ` D p � RC, with p some point in R2.
Near any point in R2 except p, the model solution should have a regular Nahm pole,
and around any point of the ray ` except the endpoint at y D 0, it should have the
singularity (6.4) of a monodromy defect. The interest in the model solution is its
behavior at the exceptional point p� fy D 0g where `meets the boundary; whatever
this behavior is, we define a boundary condition by requiring this behavior where
a monodromy defect meets the boundary. Happily, for G_ D SO.3/, the requisite
model solutions have been found, though not in complete generality, in Section 3.6.5.
Equation (3.101) is the solution with ˛_ D 0, ˇ_; �_ 6D 0; equation (3.89) corre-
sponds to ˛_ 6D 0, ˇ_ D �_ D 0; and equation (3.88) exhibits the subtle behavior
for ˛_; ˇ_; �_ ! 0.

Now let us discuss what values we should take for the parameters .˛_ ; ˇ_; �_; �_/
in the context of topological field theory on W3 � RC. Since ˛_ corresponds to � in
the description of Section 6.2, and in that context we had to set � D 0, we expect that
we will have to set ˛_ D 0. Indeed, there is a simple reason for this, which can be
stated most briefly forG_ D SO.3/. The solution (3.89) with ˛_ 6D 0makes perfect
sense when W3 is flat, but has a monodromy exp.�2�˛_/ around K. However, as
we know from Section 3.4, away from a monodromy defect, theG_ bundleE ! W3

is the tangent bundle to W3 with its Riemannian connection. For generic W3, the
Riemannian connection is irreducible and there is no way to “twist” it by a monodromy
exp.�2�˛_/ around a knotK � W3, while leaving it locally unchanged up to gauge
transformation on the complement ofK. Hence, the boundary condition of the D3–D5
system with generic W3 and a monodromy defect only makes sense if ˛_ D 0.

As concerns ˇ_, its status seems to be just parallel to that of ˇ in the context
of the Chern–Simons like description. At y D 1, we pick a homomorphism
�_ W �1.W3nK/ ! G_, and then try to promote this to a solution of the supersym-
metric equations (6.9) in the presence of the monodromy defect, now with parameters
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˛_; ˇ_; �_, of course. For a given �_, we may use whatever ˇ_ is compatible with
the equations.

To understand S -duality between the two descriptions, we need to know how
the homomorphism � W �1.W3nK/ ! G that is used to determine a boundary
condition at y D 1 on one side of the duality is related to the homomorphism
�_ W �1.W3nK/ ! G_ that is similarly used on the other side. We get a clue from
the hypothesis that the only case in which ˇ or ˇ_ must vanish is an abelian represen-
tation. The relation ˇ_ D j� jˇ� shows that ˇ_ is constrained to vanish if and only
if ˇ is so constrained. So we are led to conjecture that �1.W3nK/ is mapped by �
to a commutative subgroup of G if and only if it is mapped by �_ to a commutative
subgroup of G_. This conjecture is particularly powerful if W3 D S3, for then there
is precisely one choice of � or �_ with given monodromy aroundK and with abelian
image. (This statement would not hold if we replace the knotK by a link with several
components.) So in that case, the conjecture is that the abelian representation � is
mapped to the abelian representation �_.

More generally, the number of free parameters in the choice of ˇ or ˇ_ is the
rank ofG minus the rank of the automorphism group of � or �_. So a generalization
of the above argument indicates that the map from � to �_ preserves the rank of the
automorphism group.

As for the other parameters, from (6.8) we have �_ D �˛, �_ D j� j��. In the
Chern–Simons-like description, the model depends holomorphically on the logarithm
of the monodromy ˛ � i� , so in the dual description, it depends holomorphically on
�_ C i� .

An important detail is dual to the discussion of (6.7). In the G_ description, for
˛_ D �_ D 0, the monodromy around K is unipotent, but not necessarily 1.

6.3.1. The partition function. In Section 3, solutions of the supersymmetric equa-
tions VC D V� D V0 D 0 were labeled by the instanton number P (whose precise
definition depended on a framing of both W3 and K). The contribution of a given
solution to the partition function was .�1/gqP, where .�1/g is the sign of the fermion
determinant in expanding around the given solution, P is its instanton number, and
q D exp.2�i=ng‰/. In the present context, assuming ˇ_ and �_ are not both zero
(we have set ˛_ D 0), there is an additional topological invariant. When the G_
bundle E ! V4 is restricted to a two-manifold C � V4, its structure group reduces
to T _, so roughly speaking it has a generalized first Chern class m_ valued in ƒchar.
(We postpone to Section 6.3.2 some subtleties that arise if C is not compact, which
is the case in our application to knots.)

How does the contribution of a given classical solution to the partition function
depend on �_ and �_? The dependence on �_ is a simple factor of exp.2�i.�_;m_//
D exp.�2�i.˛;m_//. Since the partition function is holomorphic in ˛ � i� , the
full dependence on ˛ and � must be a factor exp.�2�i.˛ � i�;m_//. We will
not show explicitly how to calculate the � -dependence, but we expect that this will
involve a computation somewhat analogous to (2.60) and (2.62): in the presence of a
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monodromy defect, when one writes the action as a Q-exact term plus a topological
invariant, the topological invariant includes a multiple of .�;m_/.

We can now write a formula for the partition function along the lines of (3.15).
Let S be the set of solutions of the supersymmetric equations. For s 2 S , let ns , m_

s ,
and .�1/gs be the values of P, m_, and the sign of the fermion determinant for the
classical solution corresponding to s. The partition function is then

Z.q/ D
X
s2S

qns exp.�2�i.˛ � i�;m_
s //.�1/gs : (6.17)

Making use of (6.10) and the definition of q, we can write this as

Z.q/ D
X
s2S

qns�ng.�R;m_
s /.�1/gs : (6.18)

Alternatively, let wr;c be the “number” of solutions of P D r and m_ D c, where
in computing this number we weight each solution with the sign of the fermion
determinant. Then

Z.q/ D
X
r;c

wr;cq
r�ng.�R;c/: (6.19)

These formulas have the usual proviso that 	R should possibly be replaced by 	R C%.
To be more exact, though we have kept the notation minimal, all these formulas de-

scribe a partition function in N D 4 supersymmetric G_ gauge theory with a bound-
ary condition at y D 1 set by a suitable homomorphism �_ W �1.W3nK/ ! G_,
and with a monodromy defect operator whose parameters are determined by the rep-
resentation R of G. For some purposes, it may be best to write these formulas in
terms of the logarithm of monodromy ˛ � i� , but as they can be elegantly written in
terms of 	R, we have done so.

6.3.2. The framing anomaly revisited. For the case V4 D W3 �RC,C D K�RC,
because C is not compact, the definition of m_ depends on a trivialization of EjC at
both ends of RC. The dependence on a choice of trivialization at y D 1 means that
the right topological data in fixing the boundary condition at infinity is a little more
than the choice of �_, but we will not say more about this.

The dependence on the trivialization at y D 0 leads to a framing anomaly for
the N D 4 partition function on W3 � RC in the presence of a monodromy defect.
We can see this as follows. The restriction of the G_ bundle E ! W3 � RC to
the boundary W3 � fy D 0g is the tangent bundle T W3 of W3, or more exactly it
is the G_ bundle associated to the SO.3/ bundle T W3 by a principal embedding
� W su.2/ ! g_. A framing of the knot K trivializes the restriction of T W3 to K, so
it trivializes the restriction of EjC to C \ fy D 0g. Thus a framing of K (together
with whatever data was used at y D 1) makes m_ well-defined, so that we can
write the formula (6.19) for the N D 4 partition function. Under a unit change of
framing of K, m_ transforms to m_ � %, and this gives the expected formula (6.16).
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The statement about how m_ transforms under a change in framing amounts to the
following. For G_ D SO.3/, a unit change of framing shifts m_ by one unit, that
is by %SU.2/. (A weight of G D SU.2/ is an element of t_ D tSO.3/, so in particular
%SU.2/ 2 tSO.3/.) A minus sign comes from comparing orientations. For general G,
the homomorphism � W su.2/ ! g maps %SU.2/ 2 tso.3/ to % D %G 2 t_ � g_ (this
is a standard fact about principal su.2/ subalgebras), and this gives our result. But
since we do not really know where the shift 	R ! 	R C% should enter in the present
formalism, what we have described is more a scenario than a derivation of the framing
anomaly.

6.4. Lifting to five or six dimensions

6.4.1. Five dimensions. The next step is to lift to five dimensions, following the
same logic as in Section 4. We promote the solutions of the four-dimensional equa-
tions VC D V� D V0 D 0 on V4 D W3 � RC to time-independent solutions of the
five-dimensional supersymmetric equations (5.36) on S1 � V4. Here S1 is viewed
as the time direction. We lift the monodromy defect supported on K � RC � V4 to
a monodromy defect supported on S1 �K � RC.

The basic idea of a monodromy defect in five-dimensional super Yang–Mills
theory on a five-manifold M5 is similar to what it is in four dimensions, and can be
described without specializing to the setting of the present paper. The support of a
monodromy defect is now a three-manifold U which is of codimension two in M5.
As long as the triple of parameters .˛_; ˇ_; �_/ is regular, a monodromy defect in
five dimensions can be defined by postulating in the normal plane to U the same type
of singularity as in (6.9). For ' in this formula, we take two of the scalar fields of
five-dimensional super Yang–Mills theory. Which two depends on the context. In
our application, M5 D M4 � RC, U D C � RC for some C � M4, and three of the
scalar fields are twisted to a field B 2 �2;C.M4/˝ ad.E/. Along C ,�2;C.M4/ has
the decomposition (5.59) with a two-dimensional real subbundle corresponding to L,
and the part of B valued in this subbundle is what appears in the five-dimensional
analog of (6.9).

The most striking difference from four dimensions is possibly that the monodromy
defect operator has no parameter corresponding to �_, because the generalized first
Chern class is now associated not to a spacetime history but to a physical state. In
other words, if the triple .˛_; ˇ_; �_/ is regular, then the bundle E ! M5, when
restricted toU , has abelian structure group T _ and its curvature is a t_-valued closed
two-form f that is defined along U . Then ?Uf (here ?U is the Hodge star operator
for the three-manifold U ) is a conserved current defined onU . Its integral on an initial
value surface C � U is a conserved quantity in the sense that it only depends on the
homology class of C . We call this conserved quantity m_. (What m_ means when
the triple .˛_; ˇ_; �_/ is nonregular will be explained in Section 6.4.2. Technical
issues in the definition of m_ involving the fact that in our application to knots, the
relevant C is not compact were discussed in Section 6.3.2.)
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For our application, we take M5 D R �W3 � RC, U D R � K � RC, where K
is a knot in the three-manifold W3. The space K of physical states defined on the
initial value surface K � RC is then graded by the conserved charges P; F, and m_.

The time-independent solutions onM5 supply a basis for a space K0 of approxi-
mate supersymmetric ground states. A salient fact here – just as in the absence of the
monodromy defect – is that from a four-dimensional perspective, a time-independent
solution has a Z2-valued invariant, the sign of the fermion determinant. But from
a five-dimensional perspective, this Z2-valued invariant is the mod 2 reduction of a
Z-valued invariant, the R-charge or fermion number F. This is a large part of the
reason that the lift to five dimensions gives a richer theory than the four-dimensional
one.

K0 is an approximation to the space K of exact supersymmetric ground states. To
determine K, one follows the standard recipe described in Section 4.2. One considers
solutions that interpolate between different time-independent solutions in the far past
and the far future. By counting such solutions in an appropriate way, one constructs
the operator Q of (4.3) whose cohomology is K.

By the same reasoning as in Section 4.2.1, we can restate (6.19) as a formula for
the partition function via a trace in K:

Z.q/ D TrK qP�ng.�R;m_/.�1/F: (6.20)

More generally, we can consider knot cobordisms interpolating between two knots
K andK 0 by considering in R�W3 �RC a monodromy defect supported onC �RC,
where C � R �W3 is asymptotic to R �K in the past and R �K 0 in the future. Still
more generally, we can replace R �W3 with any oriented four-manifold M4, and C
by any oriented two-manifold in M4.

6.4.2. The non-regular case and an action of G . The description of the mon-
odromy defect in five dimensions via the singularity (6.9) is adequate when the triple
.˛_; ˇ_; �_/ is regular. For the general case, one needs a more powerful point of
view.

The monodromy defect can be alternatively defined by coupling the five-di-
mensional G_ gauge theory to a three-dimensional supersymmetric theory known
as T .G_/. (T .G_/ was systematically discussed in [40] for all G_; the prototype
T .SU.2// is a basic example of three-dimensional mirror symmetry [60]. T .G_/
is a rather subtle theory which, for example, can be interpreted as the universal ker-
nel of geometric Langlands duality, as briefly explained in Section 3.5 of [107].)
The theory T .G_/ has OSp.4j4/ superconformal symmetry; it has an action of G_
on its Higgs branch and G on its Coulomb branch.42 We couple T .G_/ to G_

42It is believed that the groups that act faithfully are the adjoint forms of G_ and G, so the distinction
between them is unimportant in the simply-laced case. The mirror of T .G_/ is T .G/. In parallel with the
Fayet–Iliopoulos parameters that are introduced momentarily, there is a mirror triple of mass parameters
that violate the G_-symmetry; these are not relevant in the present context as the G_-symmetry is gauged.
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gauge theory using the G_ action on the Higgs branch. T .G_/ can be deformed by
Fayet–Iliopoulos parameters .˛_; ˇ_; �_/; this breaks the G-symmetry to the max-
imal torus, eliminates the Coulomb branch, and makes the Higgs branch smooth.
Once the Higgs branch is smooth, the theory is infrared free and one can aim for a
classical description of the defect operator associated to coupling to T .G_/. This
classical description involves the singularity postulated in (6.9). The steps involved
in reducing from a description involving a coupling to a field theory on the defect to
a description involving the singularity are similar to what they are in one dimension
less; see Section 3 of [56].

Describing the defect operator by coupling the bulk gauge theory to T .G_/ has
the advantage of making sense when the triple .˛_; ˇ_; �_/ is nonregular. Let us
consider the extreme case that these parameters vanish. Then the theory admits
an action of G, acting only on fields supported along the defect. The conserved
quantities m_ generate the action of the maximal torus of G, in the sense that the
group element corresponding to �_ 2 T is exp.2�i.�_;m_//.

Naively speaking, it appears that, upon setting ˛_; ˇ_, and �_ to zero, since
the theory has a G action, the cohomology of Q would also admit such an action
and the trace (6.20) would then be a trace in a G-module. This would have strong
implications for the knot invariants – probably too strong. An instructive problem
arises here. Precisely when the triple .˛_; ˇ_; �_/ is nonregular, the theory T .G_/
flows to a non-trivial CFT in the infrared. The noncompactness of the initial value
surface K � RC then becomes essential and it is likely that the continuous spectrum
cannot be ignored. Even in the nonregular case, it is possible to express the partition
function Z.q/ as a trace analogous to (6.20) in a much bigger Hilbert space – the
space of all physical states of the .0; 2/ model, without reducing to the cohomology
of Q. But it may not be possible to reduce to a discrete spectrum of BPS states with
G action. For example, trying to do so would entail setting jqj D 1 in the expansions
made for the unknot in Section 6.5.

6.4.3. Lifting to six dimensions. The last step of this type is the lift to an ultraviolet-
complete description in six dimensions, along the lines of Section 5. The six-
dimensional geometry is now M4 � D, where D is a two-manifold with U.1/-
symmetry.

The six-dimensional theory is classified by the choice of a simply-laced Dynkin
diagram, and the distinction between G and G_ arises from a subtle choice men-
tioned in footnote 27. (To relate the six-dimensional theory to gauge theory of a Lie
group that is not simply-laced, one makes one of the two constructions described in
Section 5.5.2.) Since the six-dimensional theory is not infrared-free, it is not clear
that a system consisting of the six-dimensional theory with a codimension two defect
can be obtained by coupling the six-dimensional theory to a four-dimensional the-
ory that is defined independently. However, the combined system consisting of the
six-dimensional theory with a four-dimensional defect does exist. In fact, there are
a family of half-BPS codimension two defects; see [36], [37], and [9]. They parallel
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the corresponding half-BPS monodromy defects described in gauge theory in [55]
and associated to Levi subgroups of G. We will consider here only the “full” defect
which in reduction to gauge theory corresponds to a monodromy defect operator with
the full set of parameters .˛; ˇ; �; �/.

The six-dimensional theory does not have a Lie group or gauge group of symme-
tries, but in the presence of a codimension two defect, it does have a global symmetry
group, which is a form of G. The full defect corresponds after reduction on a cir-
cle to the monodromy defect in five-dimensional gauge theory that we have derived
from (6.4). In six dimensions, the full defect is characterized only by the parameters
ˇ_ and �_. (One may as well call these parameters ˇ and � , as the six-dimensional
description is symmetrical between G and G_.) ˛_ arises if, in compactifying on a
circle to get to five dimensions, one twists by the element exp.�2�˛_/ of the global
symmetry group.43 As we have already discussed, �_ is not present as a parameter
in five dimensions; instead the five-dimensional theory has a conserved current with
m_ as the conserved charge.

It is clear what to do with a codimension two defect in the context of the present
paper. We place such a defect onC�D � M4�D, whereC � M4 is an oriented two-
manifold. Upon reducing on the U.1/ orbits onD, we return to the five-dimensional
construction that we have already analyzed. To study a knot, we make the usual
specialization to M4 D R �W3, C D R �K.

6.5. Using the duality. In the part of this paper that was based on representing
knots by Wilson operators, there were a few technical problems in actually using the
duality to learn about Chern–Simons theory for knots in a three-manifold W3. One
problem is that ifW3 is compact, then gauge theory onW3 � RC with a reducible flat
connection at infinity leads to infrared divergences. Their role in the duality is not yet
understood. Another problem is that in defining a boundary condition at y D 1, we
have to pick a homomorphism � W �1.W3/ ! GC; we do not know how this is related
to the homomorphism �_ W �1.W3/ ! G_

C that one introduces in the dual description.
Happily, in an important situation – knots in R3 with only gauge transformations that
are trivial at infinity allowed – these issues do not arise.

For the equivalent story with monodromy defects, we are not so fortunate. We can
still avoid infrared divergences by taking W3 D R3. But now to study a knot K, we
have to consider homomorphisms from the fundamental group of R3nK toGC orG_

C,
with a prescribed monodromy aroundK. Because of the prescribed monodromy, there
is no longer a trivial flat connection, and once one only allows gauge transformations
that are trivial at infinity, any non-trivial flat connection becomes non-isolated. So to
proceed, we need to learn something about the relation between the Chern–Simons
path integral and that of N D 4 superYang–Mills for the case that the flat connection
at infinity is not isolated. Also, for generic K, there are multiple homomorphisms of

43The form of G that acts as a global symmetry group in six dimensions has not been fully analyzed and
may depend on a choice as in footnote 27. It appears that after reducing on a circle, the global symmetry
group coincides with the gauge group.
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�1.R3nK/ to GC or G_
C, even when the conjugacy class of the monodromy around

K is prescribed. So we cannot avoid the question of the relation under duality of the
homomorphisms � and �_:

In short, to actually use the duality based on monodromy defects, we need to learn
more. And so far we have only mentioned questions of principle. In practice, for
either the duality based on Wilson operators or that based on monodromy defects, to
learn a lot one will need to know more about actually solving the equations.

Rather than say nothing at all, we will make a few remarks about the unknot
K0 � R3. The fundamental group of R3nK0 is simply the abelian group Z, so it has
up to conjugacy only one homomorphism to G or G_ with prescribed monodromy,
and the image of this homomorphism is abelian. So there is essentially only one
possible integration cycle in Chern–Simons theory, and the standard integration cycle
must coincide with the one we get in the G_ description using the unique possible
flat connection at infinity. The Chern–Simons action of an abelian flat connection
vanishes (with the canonical framing), so we do not need to worry about a factor
in the duality involving the classical action. There might be a correction to the
formula involving the fact that the abelian flat connection is not isolated (in the
context of R3nK0), or a constant N0, as in (2.66), but we will just proceed and see
what happens.

For simplicity, we consider the case ofG D SU.2/. The path integral for a Wilson
operator in the spin j representation placed on the unknot in R3 is

J.qIK0; j / D q.2j C1/=2 � q�.2j C1/=2

q1=2 � q�1=2
: (6.21)

We would like to express this function in the form of (6.19), which forG D SU.2/
should become

J.qIK0; j / D
X
r;c

wr;cq
r�cj : (6.22)

What sort of expansion will this be? Actually, there are two expansions that we should
make. In general, in the G_ description, we have ˛_ D 0, and in the present case,
we are relying on an abelian homomorphism �_, so also ˇ_ D 0. Hence if �_ D 0,
then we are in the nonregular case described at the end of Section 6.4.2, where the
space of BPS states may not be well defined. So we prefer to take �_ 6D 0. In this
case, as explained at the end of Section 6.2.2, q does not have modulus 1, so there
are two cases, jqj < 1 or jqj > 1. In these two cases, we will interpret (6.22) as a
Laurent series around q D 0 or q D 1, respectively.

There are simple expansions of this type which moreover are consistent with the
fact that in (6.22) the coefficients wr;c are supposed to be independent of j . We use
either

1

q1=2 � q�1=2
D �q1=2

1X
tD0

qt ; jqj < 1; (6.23)
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or
1

q1=2 � q�1=2
D q�1=2

1X
tD0

q�t ; jqj > 1: (6.24)

For example, the first leads to the formula

J.qIK0; j / D ��qj C1 C q�j
� 1X

tD0

qt ; (6.25)

in which the finite Laurent polynomial J is written as the difference of two infinite
Laurent series. This expansion takes the form (6.22); the coefficientswr;c are nonzero
if and only if c D ˙1 and r is a positive integer, or r D 0 with c D 1. A similar
formula can be written straightforwardly for jqj > 1. Of course, to be satisfied with
the expansion (6.25) or its cousin for jqj > 1, one would like to know that solutions
with the claimed topological invariants actually exist. In the present context, it is
unclear why there are solutions leading to the geometric series in (6.25). Possibly a
hint comes from recent approaches to related problems such as [27].

The fact that one has to make two different expansions may be special to a reducible
flat connection. In the case of an irreducible flat connection, one is free to takeˇ_ 6D 0,
and this means that �_ can be varied in an arbitrary way while avoiding nonregular
triples. This suggests that the contribution to the path integral of an irreducible flat
G_ connection with monodromy around K will be given by a Laurent polynomial
(powers of q bounded above and below) rather than a Laurent series (powers of q
bounded in only one direction). At any rate, there is plenty to understand.
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