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Abstract. We study the representation theory of the smallest quantum group and its categori-
fication. The first part of the paper contains an easy visualization of the 3j -symbols in terms
of weighted signed line arrangements in a fixed triangle and new binomial expressions for the
3j -symbols. All these formulas are realized as graded Euler characteristics. The 3j -symbols
appear as new generalizations of Kazhdan–Lusztig polynomials.

A crucial result of the paper is that complete intersection rings can be employed to obtain
rational Euler characteristics, hence to categorify rational quantum numbers. This is the main
tool for our categorification of the Jones–Wenzl projector, ‚-networks and tetrahedron net-
works. Networks and their evaluations play an important role in the Turaev–Viro construction
of 3-manifold invariants. We categorify these evaluations by Ext-algebras of certain simple
Harish-Chandra bimodules. The relevance of this construction to categorified colored Jones
invariants and invariants of 3-manifolds will be studied in detail in subsequent papers.
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Introduction

In the present paper we develop further the categorification program of the represen-
tation theory of the simplest quantum group Uq.sl2/ initiated in [4] and continued
in [60] and [24]. In the first two papers the authors obtained a categorification of the
tensor power V ˝n

1 of the natural two-dimensional representation V1 of Uq.sl2/ using
the category O for the Lie algebra gln. In the third paper, this categorification has
been extended to arbitrary finite dimensional representations of Uq.sl2/ of the form

Vd D Vd1
˝ Vd2

˝ � � � ˝ Vdr
;

where Vdi
denotes the unique (type I) irreducible representation of dimension di C1.

In this case the construction was based on (a graded version) of a category of Harish-
Chandra bimodules for the Lie algebra gln, where n D Pr

iD1 di , or equivalently by a
certain subcategory of O. The passage to a graded version of these categories is needed
to be able to incorporate the quantum q as a grading shift into the categorification.
The existence of such a graded version is non-trivial and requires geometric tools; see
[55] and [7]. Algebraically this grading can best be defined using a version of Soergel
(bi)modules; see [55] and [59]). In [40] and [41] Lusztig’s version of the quantum
group itself was categorified. In the following we focus on the categorification of
representations and intertwiners of Uq.sl2/-modules.

There are two intertwining operators that relate the tensor power V ˝n
1 with the

irreducible representation Vn, namely the projection operator

�n W V ˝n
1 �! Vn

and the inclusion operator
�n W Vn �! V ˝n

1 :
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Their composition is known as the Jones–Wenzl projector which can be characterized
by being an idempotent and a simple condition involving the cup and cap intertwiners
(Theorem 5). The Jones–Wenzl projector plays an important role in the graphical
calculus of the representation theory of Uq.sl2/, see [23]. Even more importantly, it
is one of the basic ingredients in the categorification of the colored Jones polynomial
and, in case of q a root of unity, the Turaev–Viro and Reshetikhin–Turaev invariants
of 3-manifolds.

One of the basic results of the present paper is the categorification of the Jones–
Wenzl projector including a characterization theorem. This provides a crucial tool for
the categorification of the complete colored Jones invariant for quantum sl2; see [63].
The fundamental difficulty here is the problem of categorifying rational numbers that
are intrinsically present in the definition of the Jones–Wenzl projector. We show
that the rational numbers that appear in our setting admit a natural realization as the
graded Euler characteristic of the Ext-algebra Ext�H .C;C/ of the trivial module over
a certain complete intersection ring H . The standard examples appearing here are
cohomology rings of Grassmannian Gr.k; n/ of k-planes in Cn. The graded Euler
characteristic of Ext�

H .C;C/ computed via an infinite minimal projective resolution
of C yields an infinite series in q which converges (or equals in the ring of rational
functions) to quantum rational numbers, e.g. the inverse binomial coefficient 1=ŒŒ n

k ��

for the Grassmannian.
In order to apply our categorification of the rational numbers appearing in the

Jones–Wenzl projector we further develop the previous results of [4], [60], and [24]
on the categorification of V ˝n

1 and Vd, and the relations between them.
Among other things, we give an interpretation of different bases in Vd, namely

Lusztig’s (twisted) canonical, standard, dual standard, and (shifted) dual canonical
basis in terms of indecomposable projectives, standard, proper standard and sim-
ple objects. This is a non-trivial refinement of [24], since we work here not with
highest weight modules but with the so-called properly stratified structures. This
allows categories of modules over algebras which are still finite dimensional, but of
infinite global dimension which produces precisely the fractional Euler character-
istics. In particular we prove that the endomorphism rings of our standard objects
that categorify the standard basis in Vd are tensor products of cohomology rings of
Grassmannians. As a consequence we determine first standard resolutions and then
projective resolutions of proper standard objects.

Using the categorification of the Jones–Wenzl projector and inclusion operators
we proceed then to a categorification of various networks from the graphical calculus
of Uq.sl2/. The fundamental example of the triangle diagram leads to the Clebsch–
Gordan coefficients or 3j -symbols for Vk in Vi ˝ Vj : Remarkably its evaluation in
the standard basis of Vi ; Vj ; Vk yields an integer (possibly negative) which we show
can be obtained by counting signed isotopy classes of non-intersecting arc or line
arrangements in a triangle with i; j; k marked points on the edges. We introduce the
notion of weighted signed line arrangements to be able to keep track of the formal
parameter q in a handy combinatorial way.
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We then present various categorifications of the 3j -symbols which decategorify
to give various identities for the 3j -symbols. Our first categorification involves a
double sum of Exts of certain modules. The second realizes the 3j -symbol in terms
of a complex of graded vector spaces with a distinguished basis. The basis elements
are in canonical bijection with weighted signed line arrangements. The weight is
the internal grading, whereas the homological degree taken modulo 2 is the sign of
the arrangement. So the Euler characteristic of the complex is the 3j -symbol and
categorifies precisely the terms in our triangle counting formula. Thus the quite
elementary combinatorics computes rather non-trivial Ext groups in a category of
Harish-Chandra bimodules.

As an alternative we consider the 3j -symbols evaluated in the (twisted) canonical
basis and realize it as a graded dimension of a certain vector space of homomorphisms.
In particular, in this basis the 3j -symbols are (up to a possible overall minus sign) in
NŒq�. This finally leads to another binomial expression of the ordinary 3j -symbols
which seems to be new. Besides it interesting categorical meaning, this might also
have an interpretation in terms of hypergeometric series. Our new positivity formulas
resemble formulas obtained by Gelfand and Zelevinsky in [15] in the context of
Gelfand–Tsetlin bases.

Apart from the 3j -symbol we also give a categorical interpretation of the colored
unknot and the theta-networks as the Euler characteristic of Ext�.L; L/ for some
irreducible Harish-Chandra bimodule L. These examples can be viewed as special
cases of a complete categorification of the colored Jones polynomial. Additionally,
we explain the construction of a categorification of a tetrahedron network, namely
as an (infinite) dimensional graded vector space which in fact is a module over the
four theta networks for the four faces. This approach will be explored in detail in two
subsequent papers.

Lie theoretically, the categorification results are interesting, since it is very hard
to compute the above mentioned Ext-algebras of simple modules in practice. For in-
stance, the well-known evaluations of theta-networks from [34] can be used to obtain
the Euler characteristics of certain Ext algebras, allowing one to gain some insight
into their structure. In this context, 3j -symbols can be viewed as generalizations of
Kazhdan–Lusztig polynomials.

Finally we want to remark that the idea of categorifying the Jones–Wenzl pro-
jectors is not new. The first categorification was obtained in [4], but not studied in
detail there. Independently, to the present work, such categorifications were defined
and studied in [17] and [53]. Based on two theorems characterizing the categorifi-
cations of the Jones–Wenzl projector, Theorem 71, and [17], Section 3, we expect
that these categorifications agree (up to Koszul duality). A detailed proof in the case
n D 2 is given in [64]. On the other hand, our approach gives rise to a different (and
actually much more subtle) colored Jones invariant than the original construction of
Khovanov in [36] and the one in [13]. The difference should become clear from our
computations for the colored unknot. Although the value of the Vn-colored unknot
is a quantum number the categorification is not given by a finite complex, but rather
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by an infinite complex with cohomology in all degrees.
We also expect that our invariants agree (up to some Koszul duality) with the more

general invariants constructed in [68], but the details are not worked out yet. Our
explicit description of the endomorphism rings of standard objects and the description
of the value for the colored unknot will be necessary to connect the two theories.

Organization of the paper. The paper is divided into three parts. The first part
starts with recalling basics from the representation theory of Uq.sl2/ and defines the
3j -symbols. We develop the combinatorics of weighted signed line arrangements.
Part I starts by the construction of rational Euler characteristics which we believe
are interesting on its own. We explain then in detail where these categorifications
occur naturally. This leads to a categorification of the Jones–Wenzl projector. This
part also reviews a few previously constructed categorifications. The third part con-
sists of applications and several new results. It contains the categorification of the
3j -symbols and explains categorically all the formulas obtained in the first part. We
realize 3j -symbols as a sort of generalized Kazhdan–Lusztig polynomials. Finally
we explain a categorification of �-networks and 6j -symbols with some outlook to
work in progress.

Acknowledgements. We thank Christian Blanchet, Ragnar Buchweitz, Mikhail
Khovanov and Nicolai Reshetikhin for interesting discussions and GeordieWilliamson
and the referee for very helpful comments on an earlier version of the paper. The
second author deeply acknowledges the support in form of a Simons Visitor Profes-
sorship to attend the Knot homology Program at the MSRI in Berkeley.

PART I

In this part we recall basic structures on the representation theory of Uq.sl2/ from
[31] and [34] which later will be categorified.

1. Representation theory of Uq.sl2/

Let C.q/ be the field of rational functions in an indeterminate q.

Definition 1. Let Uq D Uq.sl2/ be the associative algebra over C.q/ generated by
E;F;K;K�1 satisfying the relations

(i) KK�1 D K�1K D 1,

(ii) KE D q2EK,

(iii) KF D q�2FK,

(iv) EF � FE D K�K�1

q�q�1 .
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Let Œk� D Pk�1
j D0 q

k�2j �1 and
�

n
k

� D Œn�Š
Œk�ŠŒn�k�Š

: Let xVn be the unique (up to
isomorphism) irreducible module for sl2 of dimension n C 1. Denote by Vn its
quantum analogue (of type I), that is the irreducible Uq.sl2/-module with basis
fv0; v1; : : : ; vng such that

K˙1vi D q˙.2i�n/vi ; Evi D Œi C 1�viC1; F vi D Œn � i C 1�vi�1: (1)

There is a unique bilinear form h_; _i0 W Vn � Vn ! C.q/ which satisfies

hvk ; vli0 D ık;lq
k.n�k/

�
n

k

�
: (2)

The vectors fv0; : : : ; vng where vi D �
1=
�

n
i

��
vi form the dual standard basis charac-

terized by hvi ; v
ii0 D qi.n�i/. Recall that Uq is a Hopf algebra with comultiplication

4.E/ D 1˝E CE ˝K�1;

4.F / D K ˝ F C F ˝ 1;

4.K�1/ D K�1 ˝K�1;

(3)

and antipode S defined as S.K/ D K�1, S.E/ D �EK, and S.F / D �K�1F .
Therefore, the tensor product Vd D Vd1

˝� � �˝Vdr
has the structure of a Uq-module

with standard basis fva D va1
˝ � � � ˝ var

g where 0 � aj � dj for 1 � j � r .
Denote by va D va1 ˝ � � � ˝ var the corresponding tensor products of dual standard
basis elements.

There is also a unique semi-linear form (i.e. anti-linear in the first and linear in
the second variable) h_; _i on Vd such that

hva; v
bi D

8̂̂<̂
:̂

rY
iD1

qai .di �ai / if a D b,

0 otherwise.

(4)

We want to call this form evaluation form since it will later be used to evaluate
networks.

We finally have the pairing ._; _/, anti-linear in both variables, on Vd such that

.va; v
b/ D

8̂̂<̂
:̂

rY
iD1

qai .di �ai / if a D b,

0 otherwise.

(5)

1.1. Jones–Wenzl projector and intertwiners. Next we will define morphisms
between various tensor powers of V1 which intertwine the action of the quantum
group, namely

[W C.q/ �! V ˝2
1
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and
\W V ˝2

1 �! C.q/

which are given on the standard basis by

[.1/ D v1 ˝ v0 � qv0 ˝ v1 (6)

and

\.vi ˝ vj / D

8̂̂<̂
:̂
0 if i D j ,

1 if i D 0 and j D 1,

�q�1 if i D 1 and j D 0.

(7)

We define
\i;n D Id˝.i�1/ ˝ \ ˝ Id˝.n�i�1/

and
[i;n D Id˝.i�1/ ˝ [ ˝ Id˝.n�iC1/

as Uq-morphisms from V ˝n
1 to V ˝.n�2/

1 , and, respectively, V ˝.nC2/
1 . Let

C D [ B \
be their composition and

Ci D Ci;n D [i;n�2 B \i;n:

We depict the cap and cup intertwiners graphically in Figure 1 (reading the diagram
from bottom to top), so that \ B [ is just a circle. In fact, finite compositions of
these elementary morphisms generate the C.q/-vector space of all intertwiners; see
e.g. [23], Section 2.

1 i :::::: iC1 n 1 i::: :::iC1 nC2

Figure 1. The intertwiners \i;n and [i;n .

If we encode a basis vector vd of V ˝n
1 as a sequence of ^’s and _’s according

to the entries of d, where 0 is turned into _ and 1 is turned into ^ then the formulas
in (6) can be symbolized by

D 0 D ; D 1; D �q�1;

S
.1/ D �q :
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The symmetric group Sn acts transitively on the set of n-tuples with i ones and
n� i zeroes. The stabilizer of

ddom D .1; : : : ; 1„ ƒ‚ …
i

; 0; : : : ; 0„ ƒ‚ …
n�i

/

is Si � Sn�i . By sending the identity element e to ddom we fix for the rest of the
paper a bijection between shortest coset representatives in Sn=Si � Sn�i and these
tuples d. We denote by w0 the longest element of Sn and by wi

0 the longest element
in Si � Sn�i . By abuse of language we denote by l.d/ the (Coxeter) length of d
meaning the Coxeter length of the corresponding element in Sn. We denote by jdj
the numbers of ones in d.

Definition 2. For a D .a1; : : : ; an/ 2 f0; 1gn let va D va1
˝ � � � ˝ van

2 V ˝n
1 be

the corresponding basis vector.
� Let �n W V ˝n

1 ! Vn be given by the formula

�n.va/ D q�l.a/ 1�
n
jaj
�vjaj D q�l.a/vjaj (8)

where l.a/ is equal to the number of pairs .i; j / with i < j and ai < aj : This

gives the projection �i1 ˝ � � � ˝ �ir W V ˝.i1C���Cir /
1 ! Vi1 ˝ � � � ˝ Vir :

� We denote by �n W Vn ! V ˝n
1 the intertwining map

vk 7�!
X

jajDk

qb.a/va (9)

where b.a/ D jaj.n� jaj/� l.a/, i.e. the number of pairs .i; j / with i < j and
ai > aj . Define the inclusion �1 ˝ � � � ˝ �r W Vi1 ˝ � � � ˝ Vir ! V

˝.i1C���Cir /
1 :

The composite pn D �n B �n is the Jones–Wenzl projector. We symbolize the
projection and inclusion by and respectively, and the idempotent
pn by or just .

Example 3. For n D 2 we have

�2.v0/ D v0 ˝ v0;

�2.v1/ D qv1 ˝ v0 C v0 ˝ v1;

�2.v2/ D v1 ˝ v1;

and

�2.v0 ˝ v0/ D v0;

�2.v1 ˝ v0/ D v1 D Œ2��1v1;

�2.v0 ˝ v1/ D q�1v1 D q�1Œ2��1v1;

�2.v1 ˝ v1/ D v2:



Jones–Wenzl projector and 3j -symbols 189

Remark 4. Note that our projector �n differs from the one, call it � 0
n, in [23]. This

is due to the fact that Frenkel and Khovanov work in the dual space, but also use a
different comultiplication. The precise connection is explained in Remark 11.

1.2. Direct summands and weight spaces. Any finite dimensional sl2-module, re-
spectively Uq-module, decomposes into weight spaces. For the irreducible modules
we have seen this already in (1). Most important for us will be the decomposition
of V ˝n

1 D Ln
iD0.V

˝n
1 /i , where the index i labels the q.2i�n/-weight space spanned

by all vectors vd with jdj D i . Arbitrary tensor products have an analogous weight
space decomposition, for instance inherited when viewed as a submodule via the
inclusion (9). For any positive integer n there is a decomposition of sl2-modules,
respectively Uq.sl2/-modules

xV ˝n
1 Š

bn=2cM
rD0

xV ˚bn�2r

n�2r ; respectively V ˝n
1 Š

bn=2cM
rD0

V
˚bn�2r

n�2r ; (10)

where bn�2r D dim Homsl2.
xV ˝n

1 ; xVn�2r/. This decomposition is not unique, but the
decomposition into isotypic components (that means the direct sum of all isomorphic
simple modules) is unique. In particular, the summand Vn is unique. The Jones–
Wenzl projector pn D �n B �n is precisely the projection onto this summand. It has
the following alternate definition (see e.g. [23], Theorem 3.4).

Proposition 5. The endomorphismpn ofV ˝n
1 is the unique Uq.sl2/-morphism which

satisfies (for 1 � i � n�1): (i) pn Bpn D pn; (ii) Ci;n Bpn D 0; (iii) pn BCi;n D 0.

1.3. Networks and their evaluations. In Figure 2 we display networks and their
evaluations. The first one represents an intertwiner f W V2 ˝ V3 ! V3 (read from
bottom to top). The second one the evaluation f .v0 ˝ v2/. The third the evaluation
hv1; f .v0 ˝ v2/i, that is the coefficient of v1 when f .v0 ˝ v2/ is expressed in the
dual standard basis. The last one represents the value of the unknot colored by n
(where the strand should be colored by n or be cabled (which means be replaced by
n single strands), viewed either as an intertwiner g W V0 ! V0 evaluated at v0 or as
evaluation hv0; g.1/i. It is easy to see that this value is .�1/nŒnC 1�.

Figure 2. Networks and their evaluations.
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2. 3j -symbols and weighted signed line arrangements in triangles

We determine (quantum) 3j -symbols by counting line arrangements of triangles. This
provides a graphical interpretation of the q-analogue of the van der Waerden formula
for quantum 3j -symbols; see [38] and [39]. Later, in Theorem 75, this combinatorics
will be used to describe the terms of a certain resolution naturally appearing in a Lie
theoretic categorification of the 3j -symbols.

2.1. Triangle arrangements. We start with the combinatorial data which provides
a reformulation of the original definition of 3j -symbols (following [14] and [23],
Section 3.6; see also [31], Section VII.7). Let i; j; k be non-negative integers. We
say i; j; k satisfy the triangle identities or are admissible if k � i C j mod 2 and

i C k � j; j C k � i; i C j � k: (11)

To explain the above notion we consider a triangle with i; j; and k marked points on
each side and call it an i; j; k-triangle. (In the following the precise location of the
marked points will play no role). We refer to the three sides as the i , j and k-side
respectively. A line arrangement for this triangle is an isotopy class of collections
of non-intersecting arcs inside the triangle, with boundary points the marked points
such that every marked point is the boundary point of precisely one arc, and the end
points of an arc lie on different sides; see Figure 3 for an example. Given such a line
arrangementLwe denote by z.L/ (respectively x.L/) the number of arcs connecting
points from the i -side with points from the j -side (respectively k-side), and by y.L/
the number of arcs connecting points from the j -side with points from the k-side.

4

5

5

negatively oriented arrows

Figure 3. A .4; 5; 5/-triangle with a line arrangementL such thatx.L/ D 2 D z.L/,y.L/ D 3.

Lemma 6. Suppose we are given an i; j; k-triangle 4. Then there is a line arrange-
ment for 4 if and only if the triangle equalities hold. Moreover, in this case the line
arrangement is unique up to isotopy.

Proof. Assume there is a line arrangement L. Then i C j D x.L/C z.L/C z.L/C
y.L/ � x.L/C y.L/ D k, and i; j; k satisfy the triangle identities. Conversely, if
the triangle identities hold, then there is obviously an arrangement Lwith z D z.L/,
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x D x.L/, y D y.L/ as follows

z D i C j � k

2
; x D i C k � j

2
; y D j C k � i

2
: (12)

Assume there is another line arrangement L0. So x.L0/ D x.L/ C a for some
integer a, and then y.L0/ D y.L/ � a and z.L0/ D z.L/ � a. On the other hand
2x.L0/C2y.L0/C2z.L0/ D iCjCk D 2x.L/C2y.L/C2z.L/, hencea D 0. The
uniqueness follows, since the values of x; y; z uniquely determine a line arrangement
up to isotopy.

An oriented line arrangement is a line arrangement with all arcs oriented. We call
an arc negatively oriented if it points either from the i to the j side, or from the k to
either the i or j side, and positively oriented otherwise; see Figure 4 for examples
and Figure 3 for an illustration. To each oriented line arrangement we assign the sign

sgnL D .�1/ number of negatively oriented arcs:

Given an oriented line arrangement L of an i; j; k-triangle, we denote by r D r.L/,
respectively s D s.L/, the number of arcs with end point at the i -side, respectively
the j -side, and the orientation points into the interior of the triangle. Denote by
t D t .L/ the number of arcs with endpoint at the k-side and oriented with the
orientation pointing outside the triangle. We call L an .i; j; k; r; s; t /-arrangement.
The sum of the signs of all the .i; j; k; r; s; t /-arrangements for a fixed i; j; k-triangle

is denoted Arri;j;k
r;s;t , hence Arri;j;k

r;s;t D P
L sgnL.

Figure 4. Ten (out of 16 possible) .4; 5; 5; 2; 2; 2/-line arrangements; the negatively oriented
arcs are in dotted light red, sgn.L/ D 1 for the first two columns, sgn.L/ D �1 for the second
two columns.
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2.2. 3j -symbols. Assume we are given i; j; k satisfying the triangle identities. De-
note by ˆk

i;j W V ˝iCj
1 ! V ˝k

1 the intertwiner given by the diagram

iCk�j
2

iCj �k
2

j Ck�i
2

: (13)

The number at a strand indicates that there are in fact that many copies of the strand,
for instance iCj �k

2
2 Z�0 nested caps.

Definition 7. The Uq-intertwinerAk
i;j W Vi ˝Vj ! Vk is defined as�k Bˆk

i;j B�i ˝�j .

The 3j -symbol C k
i;j .r; s; t / is defined to be hvt ; A

k
i;j .vr ˝ vs/i; where 0 � r � i ,

0 � s � j , 0 � t � k.

Theorem 8. Assume i; j; k satisfy the triangle identity. With the notation from (12),
we have the following results. (i) The classical 3j -symbol counts signed arrange-
ments:

C k
i;j .r; s; t /qD1 D

zX
aD0

.�1/a
�
z

a

	�
x

r � a
	�

y

j � s � a

	
D .�1/ iCj Ck

2
CrCs Arri;j;k

r;s;t :

(ii) The quantum 3j -symbol counts weighted signed arrangements:

C k
i;j .r; s; t / D q�t.k�t/

zX
aD0

.�1/aq�aq�a

�
z

a

��
x

r � a
��

y

j � s � a
�
;

where �a D ..z � a/C .r � a// .y�sCz�a/C.r�a/ ..x � r C a/C .z � a//C
a.z� a/C .j � s� a/.y� j C sC a/. The latter number can be expressed in terms
of .i; j; k; r; s; t /-triangle arrangements as displayed in Figure 5.

C

C

C

C

Figure 5. The combinatorial formula for �a for a fixed oriented triangle arrangement. For
instance the first summand is the number of arcs oriented from the j - to the i-side times the
number of arcs oriented from the k- to the j -side.
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Proof. Consider first the case q D 1. Let vr 2 Vi and vs 2 Vj . Then �r ˝ �s.vr ˝vs/

is the sum over all basis vectors vd 2 V ˝iCj
1 , where d contains r C s ones, r of them

amongst the first i entries. To compute v D ˆk
i;j .vd/ consider the corresponding

f^;_g-sequence for d and place it below the diagram (13). If the caps are not getting
oriented consistently then v D 0, otherwise all caps and vertical strands inherit an
orientation and v D .�1/avd0 , where d0 is the sequence obtained at the top of the
strands, and a denotes the number of clockwise oriented arcs arising from the z caps.
Applying the projection �n and evaluating at vt via the formula (4) gives zero if the
number of 1’s in d0 is different from t and evaluates to .�1/a otherwise. Hence we
only have to count the number of possible orientations for (13) obtained by putting
^’s and _’s at the end of the strands- with r ^’s amongst the first i endpoints and s
^’s amongst the last j endpoints of strands at the bottom of the diagram, and t ^’s
amongst the endpoints at the top. There are

�
z
a

�
ways of arranging the a clockwise

arrows in the z-group. Hence there must be y�jCsCa lines pointing upwards in the
y-group and r � a pointing upwards in the x-group. There are

�
y

j �s�a

�
, respectively�

x
r�a

�
ways of arranging these arrows. Therefore,

C k
i;j .r; s; t / D

X
a�0

.�1/a
�
z

a

	�
x

r � a

	�
y

j � s � a
	
:

Note that the same rules determine the number of signed line arrangements if we
can make sure that the signs match. So, given a line arrangement we compute its
sign. There are a arcs going from the i -side to the j -side, x � r C a arcs from the
k-side to the i -side and j � s � a from the k-side to the j -side. Using (12), the

sign is .�1/aCxCrCaCj CsCa D .�1/ iCj Ck
2

CrCs.�1/a. Up to the constant factor

.�1/ iCj Ck
2

CrCs this agrees with the sign appearing in the formula for the 3j -symbols
and the q D 1 case follows.

Consider now generic q. Let vr , vs be as above. Note first that when splitting
a tuple d apart into say d1 D .d1; d2; : : : ; dl/ and d2 D .dlC1; : : : ; dr / then we
have b.d/ D b.d1/ C b.d2/ C n0.d2/n1.d1/, where n0 respectively n1 counts the
number of 0’s respectively 1’s. Now let vd 2 V ˝iCj

1 appear in �r ˝ �s.vr ˝ vs/ and
v D ˆk

i;j .vd/ 6D 0. We split into four parts, d D vw.d1/ ˝ vg.d2/ ˝ vg0.d3/ ˝ vw 0.d4/,
according to the x-, z- and y- group. More precisely

d1 D .0; : : : ; 0„ ƒ‚ …
i�rCa�z

; 1; : : : ; 1„ ƒ‚ …
r�a

/; d2 D .0; : : : ; 0„ ƒ‚ …
z�a

; 1; : : : ; 1„ ƒ‚ …
a

/;

d3 D .0; : : : ; 0„ ƒ‚ …
a

; 1; : : : ; 1„ ƒ‚ …
z�a

/; d4 D .0; : : : ; 0„ ƒ‚ …
j �s�a

; 1; : : : ; 1„ ƒ‚ …
s�zCa

/:

with w 2 Sx , w0 2 Sy, g; g0 2 Sz the appropriate minimal coset representatives.
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Then this term gets weighted with

c D qb.w/Cb.g/C.z�a/.r�a/Cb.g0/Cb.w 0/C.y�sCz�a/.z�a/

D q.z�a/.r�aCy�sCz�a/qb.w/Cb.w 0/C2b.g/:
(14)

Applying ˆk
i;j then gives .�q�1/acvw.d1/ ˝ vw 0.d4/: Applying the projector �k

from (8) to this element gives

q�t.k�t/ql.w/Cl.w 0/C.r�a/.y�sCz�a/.�1/aq�ac
vt�
k

t

� :
Evaluating with vt using (2) gets rid of the binomial coefficient. Now summing over
all the d using the identity X

w2SmCn=Sm�Sn

q2b.w/�mn D
�
mC n

m

�
(where w runs over all longest coset representatives) gives the desired formula

C k
i;j .r; s; t / D q�t.k�t/

zX
aD0

.�1/aq�aq�a

�
z

a

��
x

r � a
��

y

j � s � a
�
:

It is obvious that �a has the interpretation as displayed in Figure 5.

Example 9. Consider the case i D j D k D 2 and r D s D t D 1. Then
the 3j -symbol evaluates to C 2

2;2.1; 1; 1/ D �q�2 C q2. There are only two line
arrangement which differ in sign. We have �1 D 0 and �0 D 3, hence our formula
says C 2

2;2.1; 1; 1/ D q�1..�1/q�1 C q3/. The other values for i D j D k D 2

are zero except in the following cases: C 2
2;2.1; 0; 0/ D �q�1, C 2

2;2.2; 0; 1/ D �q�1,
C 2

2;2.0; 1; 0/ D q, C 2
2;2.2; 1; 2/ D �q�1, C 2

2;2.0; 2; 1/ D q�1, C 2
2;2.1; 2; 2/ D q.

Example 10. Counting all the .4; 5; 5; 2; 2; 2/-triangle arrangements (see Figure 4)
with signs we obtain C 5

4;5.2; 2; 2/qD1 D 1� 12C 3 D �8. The contributions for the
q-version are

�0 D 2 � 3C 2 � 3C 2 � 2C 0C 0C 0 D 16;

�1 D 1 � 2C 1 � 2C 1 � 1C 1 � 1C 1 � 1C 1 � 2 D 9;

�2 D 0C 0C 0C 0C 0C 1 � 2 D 2;

hence fora D 0we get a contribution of q16 , fora D 1 a contribution of �q8
�

2
1

��
2
1

��
3
2

�
D �.q12C3q10C4q8C3q6Cq4/ and fora D 2 a contribution of

�
3
1

� D q2C1Cq�2.
Altogether,

C 5
4;5.2; 3; 3/ D q�3.q16 � q12 � 3q10 � 4q8 � 3q6 � q4 C q2 C 1C q�2/:
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3. (Twisted) canonical basis and an alternate 3j -formula

In this section we will deduce new integral and positive 3j -formulas by working in a
special basis. They will later be categorified using cohomology rings of Grassman-
nians.

We already introduced the standard basis and dual standard basis of Vd given by
the set of vectors va and va respectively. There is also Lusztig’s canonical basis
fva1

} : : : } var
g and Lusztig’s dual canonical basis fva1 ~ : : : ~ var g, with aj as

above. These two bases are dual with respect to the bilinear form h_; _i0 satisfying
hvi ˝ vj ; v

k ˝ vli0 D ıi;lıj;k . It pairs a tensor product of two irreducible representa-
tions with the tensor product where the tensor factors are swapped. We call this form
therefore the twisted form. For definitions and explicit formulas relating these bases
we refer to [23], Theorem 1.6 and Proposition 1.7. The translation from our setup to
theirs is given as follows.

Remark 11. Let 4FK be the comultiplication and x4FK the dual comultiplication
from (1.2), respectively (1.5), in [23]. Then there is an isomorphism of Uq-modules

� W .V ˝n
1 ;4/ �! .V ˝n

1 ;4FK/; (15)

where � D ql.wi
0

/…w0
D qi.n�i/…w0

and instead of where …w0
is the full positive

twist. For n D 2 the map � is given as follows:

vi ˝ vi 7�! vi ˝ vi ;

v1 ˝ v0 7�! v0 ˝ v1;

v0 ˝ v1 7�! v1 ˝ v0 C .q�1 � q/v0 ˝ v1

(16)

where i D 0; 1. For arbitrarynwe pick a reduced expression of the longest elementw0

of Sn and replace each simple transposition si by the corresponding map (16) acting
on the i th and i C 1-st tensor factor. There is also an isomorphism of Uq-modules

D W .V ˝n
1 ;  ˝  B 4 B  / �! .V ˝n

1 ; x4FK/

va 7�! qjaj.n�jaj/va ;
(17)

where  is the anti-linear anti-automorphism of Uq satisfying  .E/ D E,  .F / D
F ,  .K/ D K�1. The isomorphisms for arbitrary tensor products are completely
analogous, namely va 7! vw0.a/ and va 7! Qr

iD0 q
ai .di �ai /va.

Under these identifications the bilinear form h_; _i0 turns into the anti-bilinear
form ._; _/ on Vd, and we obtain two pairs of distinguished bases of Vd. First, the
image of the canonical basis under��1 paired with the image underD�1 of the dual
canonical basis (the former will turn out to be the twisted canonical basis defined
below) and secondly, the preimage under��1 of the standard basis paired withD�1
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applied to the dual standard basis. We will call the image of the dual canonical basis
underD the shifted dual canonical basis, since its expression in terms of the standard
basis just differs by replacing q�1 by q in the explicit formulas [23], Proposition 1.7,
and additionally multiplication of the q-power involved in the definition of D. The
special role of the dual canonical basis from Section 1 becomes transparent in the
following result [23], Theorem 1.11:

Theorem 12. Let v be an element of the dual canonical basis in V ˝n
1 . Let n D

d1 C d2 C � � � C dr with dj 2 Z�0. Then �d1
˝�d2

˝ � � � ˝�dr
.v/ is either zero or

an element of the shifted dual canonical basis of Vd D Vd1
˝ Vd2

˝ � � � ˝ Vdr
and

every element of the shifted dual canonical basis of Vd has this form with v defined
uniquely.

In the following we will describe, for two tensor factors, a twisted basis which
will turn out to be the image of the canonical basis under ��1.

Definition 13. The twisted canonical basis fvr 	 vs j 0 � r � i; 0 � s � j g of
Vi ˝ Vj is defined as follows.

vr 	 vs D
8<:E

.s/F .i�r/vi ˝ v0; if r C s � j;

F .i�r/E.s/vi ˝ v0; if r C s � j;

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

sX
p0D0

qp0.p0�sCj /

�
p0 C r

p0
�
vrCp0 ˝ vs�p0 if r C s � j ,

i�rX
p00D0

qp00.p00Cr/

�
j � s C p00

p00
�
vrCp0 ˝ vs�p00 if r C s � j .

The following formulas, analogous to the formulas [42], Section 3.1.5, can be
proved by an easy induction. We explicitly mention them here, since we chose a
slightly different comultiplication.

Proposition 14. The comultiplication in the divided powers is given by

4.E.r// D
X
r 0;r 00

r 0Cr 00Dr

q�r 0r 00

E.r 0/ ˝ E.r 00/K�r 0

;

4.F .r// D
X
r 0;r 00

r 0Cr 00Dr

q�r 0r 00

F .r 0/Kr 00 ˝ F .r 00/:

The standard basis can be expressed in terms of the twisted canonical basis as
follows.
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Proposition 15. For 1 � r � i; 1 � s � j the following holds:

vr ˝ vs D

8̂̂̂̂
<̂
ˆ̂̂:

X
�

.�1/�q�.j �sC1/

�
r C �

�

�
vrC� 	 vs�� ; if r C s � j ,

X
�

.�1/�q�.rC1/

�
j � s C �

�

�
vrC� 	 vs�� ; if r C s � j .

Proof. This can be proved by induction on s.

Example 16. In case V1 ˝ V1 we have

v0 	 v0 D v0 ˝ v0; v1 	 v0 D v1 ˝ v0;

v0 	 v1 D qv1 ˝ v0 C v0 ˝ v1; v1 	 v1 D v1 ˝ v1;

and

v0 ~ v0 D v0 ˝ v0; v1 ~ v0 D v1 ˝ v0 � qv0 ˝ v1;

v0 ~ v1 D v0 ˝ v1; v1 ~ v1 D v1 ˝ v1:

Lemma 17. Consider the semi-linear form h ; i on Vk . Then

hvtCa; E
.a/vt i D hF .a/vk�t ; vk�t�ai;

hvt�a; F
.a/vt i D hE.a/vk�t ; vk�tCai:

Proof. This follows by induction on a from the Uq-action, see Section 1 and (2).

Note that the definition of the 3j -symbols depends on a choice of (basis) vectors.
By choosing the twisted canonical basis we define

Dk
i;j .r; s; t / D hvt ; A

k
i;j .vr 	 vs/i:

The following formulas resemble formulas in [15].

Theorem 18 (Positivity). In the twisted canonical basis, the 3j -symbols (up to a

factor of .�1/ iCj Ck
2 ), belong to NŒq; q�1�. More precisely, we have

Dk
i;j .r; s; t / D

8̂̂̂̂
<̂
ˆ̂̂:
.�1/zq�zqt.k�t/

�
i � z
i � r

��
k C z � r

s

�
if r C s � j ,

.�1/zq�zqt.k�t/

�
i � z C s

i � r
��
k � i C z

s

�
if r C s � j ,

in case t D r � z C s, where z D .i C j � k/=2, and Dk
i;j .r; s; t / D 0 otherwise.
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Proof. Assume r C s � j . From the definition of the twisted canonical basis, the
definition of the action of the divided powers, and the definition of Ak

i;j we get

Dk
i;j .r; s; t / D hvt ; A

k
i;j .vr 	 vs/i

D hvt ; E
.s/F .i�r/Ak

i;j .vi ˝ v0/i
D .�1/zq�zhvt ; E

.s/F .i�r/vi�zi

D .�1/zq�z

�
k

i � z
��1

hvt ; E
.s/F .i�r/vi�zi

D .�1/zq�z

�
k

i � z
��1 1

Œi � r�Š
1

Œs�Š
˛ˇhvt ; vr�zCsi;

where
˛ D Œk � i C z C 1�Œk � i C z C 2� � � � Œk C z � r�

and
ˇ D Œr � z C 1�Œr � z C 2� � � � Œr � z C s�:

HenceDk
i;j .r; s; t / vanishes unless t D r � z C s, in which case we have

Dk
i;j .r; s; t / D .�1/zq�zqt.k�t/

�
k

i � z
��1 1

Œi � r�Š
1

Œs�Š
˛ˇ

�
k

r � z C s

�

D .�1/zq�zqt.k�t/ Œi � z�ŠŒk � i C z�Š

Œk�Š

1

Œi � r�Š

1

Œs�Š
˛
Œr � z C s�Š

Œr � z�Š
�

k

r � z C s

�

D .�1/zq�zqt.k�t/

�
i � z

i � r
�
Œk � i C z�Š

Œk�Š

1

Œs�Š

Œk C z � r�Š

Œk � i C z�Š

Œr � z C s�ŠŒk�Š

Œr � z C s�ŠŒk � r C z � s�Š

D .�1/zq�zqt.k�t/

�
i � z

i � r
��
k C z � r

s

�
:

The case r C s � j is similar and therefore omitted.

Remark 19. The condition t D r�zCs fits with Theorem 8, since, assuming we have
a arrows pointing from the i to the j side, then there are .r�a/C.s�z�a/ D r�s�z
arrows pointing out of the k-side. Hence t D r � z C s holds automatically.

Using the twisted canonical basis we get expressions for the 3j -symbols in terms
of binomial coefficients, which differ from the ones described in Theorem 8.
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Theorem 20. If r C s � j , then C k
i;j .r; s; t / is equal toX

�

.�1/�C iCj Ck
2 q�1

�
r C �

r

��
i � r � s C t

i � r � �
��
k C s � t � �

s � �
�
;

where

�1 D �.j � s C 1/C t .k � t /C i C j C k

2
;

while, if r C s � j , then it is equal toX
�

.�1/�C iCj Ck
2 q�2

�
j � s C �

�

��
i � r C t � �
i � r � �

��
k � i C r C s � t

s � �
�
;

where

�2 D �.r C 1/C t .k � t /C i C j C k

2
:

Proof. Let us assume r C s � j , the other case is similar. Using Proposition 15 and
Theorem 18 we obtain

C k
i;j .r; s; t / D



vt ; A

k
i;j

�X
�

.�1/�q�.j �sC1/

�
r C �

r

�
vrC� 	 vs��

	�

D
X

�

.�1/�q�.j �sC1/

�
r C �

r

�
hvt ; A

k
i;j .vrC� 	 vs�� /i

D
X

�

.�1/�Czq�.j �sC1�z/qt.k�t/

�
r C �

r

��
i � z

i � r � �
��
k C z � r � �

s � �
�
:

The asserted formula follows since z D r C s � t .

Remark 21. The above formulas seem to be different from the standard formulas in
the literature expressing 3j -symbols as an alternating sum. For instance the formula
using the dual canonical basis; see [23], Proposition 3.18.

PART II

4. Fractional graded Euler characteristics

A general belief in the categorification community is that only integral structures can
be categorified. Note however that (8) includes a division by a binomial coefficient.
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In this section we illustrate how complete intersection rings can be used to categorify
rational (quantum) numbers in terms of an Euler characteristic of an Ext-algebra. This
will later be used in our categorification of the Jones–Wenzl projector. The approach
provides furthermore interesting and subtle categorifications of integers and quantum
numbers in terms of infinite complexes with cohomology in infinitely many degrees.
The most important example will be the colored unknot discussed later in this paper.
For the complete categorification of the colored Jones polynomial we refer to [63].
We start with a few results on Poincaré polynomials of complete intersection rings.

Let ŒŒn�� D 1 C q2 C q4 C � � � C q2.n�1/ be the renormalized quantum number,
set ŒŒn��Š D ŒŒ1��ŒŒ2�� : : : ŒŒn��, and denote the corresponding binomial coefficients by ŒŒ n

k
��.

By convention this binomial expression is zero if one of the numbers is negative or if
k > n.

For an abelian (or triangulated) category A let ŒA� be the Grothendieck group of
A which is by definition the free abelian group generated by the isomorphism classes
ŒM� of objects M in A modulo the relation ŒC � D ŒA� C ŒB� whenever there is a
short exact sequence (or distinguished triangle) of the form A ! C ! B . When
A is a triangulated category, denote n compositions of the shift functor by n . In
the following A will always be a (derived) category of Z-graded modules over some
finite dimensional algebra A. Then ŒA� has a natural ZŒq; q�1�-module structure
where q acts by shifting the grading up by 1. We denote by hii the functor which
shifts the grading up by i . In the following we will only consider the case where ŒA�
is free of finite rank r and often work with the q-adic completion of ŒA�, which is by
definition, the free module over the formal Laurent series ring ZŒŒq��Œq�1� of rank r .
We call this the completed Grothendieck group (see [?] for details).

4.1. Categorifying 1=ŒŒ2��. The complex cohomology ring of CP1 is the graded
ring R D CŒx�=.x2/ where x is homogeneous of degree 2. In particular, ŒŒ2�� agrees
with its Poincaré polynomial. We would like to have a categorical interpretation of
its inverse. As a graded R-modules, R fits into a short exact sequence of the form
Ch2i ! R ! C, where hii means the grading is shifted up by i . Hence, we have the
equality ŒR� D ŒC˚Ch2i� in the Grothendieck group of gradedR-modules. The latter
is a free Z-module with basis given by the isomorphism classes ŒChii�, of the modules
Chii where i 2 Z. Alternatively we can view it as a free ZŒq; q�1�-module on basis
ŒC� where qi ŒC� D ŒChii�. Then the above equality becomes ŒR� D .1 C q2/ŒC�.
We might formally write ŒC� D 1

1Cq2 ŒR� D .1 � q2 C q4 � q6 : : : /ŒR� which then
makes perfect sense in the completed Grothendieck group. Categorically it can be
interpreted as the existence of a (minimal) graded projective resolution of C of the
form

� � � f�! Rh4i f�! Rh2i f�! R
p�!! C; (18)

where f is always multiplication by x and p is the standard projection. The graded
Euler characteristic of the above complex resolving C is of course just equal to
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1 D .1Cq2/�1.1Cq2/. However, the Ext-algebra Ext�R.C;C/ has the graded Euler
characteristic 1

1Cq2 .

4.2. Categorifying 1=ŒŒn��. More generally we consider the ring R D CŒx�=.xn/

viewed as the cohomology ring of CPn�1. Then there is a graded projective resolution
of C of the form

� � � f�! Rh4ni g�! Rh2nC 2i f�! Rh2ni g�! Rh2i f�! R
p�!! C; (19)

where f is multiplication with x and g is multiplication with xn�1. The identity of
formal power series 1

ŒŒn��
D .1 C q2 C q4 C � � � C q2.n�1//�1 D 1 � q2 C q2n �

q2nC2 C q4n � : : : can be verified easily. The algebra Ext�R.C;C/ has graded Euler
characteristic 1

ŒŒn��
.

4.3. Categorifying 1=ŒŒ2��Š. Consider the graded ring

H D Hn D CŒx1; x2; : : : ; xn�=I;

where I is the ideal generated by symmetric polynomials without constant term, and
where xi has degree 2. Via the Borel presentation this ringHn of coinvariants can be
identified with the cohomology ring of the full flag variety GL.n;C/=B , where B is
the Borel subgroup of all upper triangular matrices or with the cohomology ring of
SL.n;C/=.B \ SL.n;C//.

Theorem 22 (Categorification of fractions). (i) We have the equalities ŒHn� D
ŒŒn��ŠŒC� in the Grothendieck group of graded Hn-modules.

(ii) Any projective resolution of the module C is infinite. The graded Poincaré
polynomial of the minimal resolution is of the form

.1C q2t /n�1

nY
j D2

.1� q2j t2/

: (20)

Here t encodes the homological grading, whereas q stands for the internal algebra
grading.

(iii) The Ext-algebra Ext�Hn
.C;C/ has graded Euler characteristic 1

ŒŒn��Š
.

Proof. Since H D Hn is a graded local commutative ring, the first statement is
equivalent to the statement that the Poincaré polynomial of Rn equals ŒŒn��Š, which
is a standard fact, see for example [28], Theorem 1.1, [25], 10.2. To see the second
statement, assume there is a finite minimal projective resolution

0 �! Hnr �! � � � �! Hn0 �!! C: (21)
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Up to shifts, H is self-dual (see [32], Section 26-7) and so in particular injective
as module over itself. Hence, the sequence splits and we get a contradiction to the
minimality of the resolution. Moreover,H has Krull dimension zero, since any prime
ideal is maximal. (To see this let m be the unique maximal ideal and p any prime
ideal. If x 2 m then xk D 0 2 p for big enough k by degree reasons. Hence x 2 p
and therefore m D p.) NowH is minimally generated by the xi ’s for 1 � i � n� 1,
and I is minimally generated by the n� 1 different elementary symmetric functions
of degree r > 2 in the xi ’s for 1 � i � n � 1. Hence R is a complete intersection
ring (see [8], Theorem 2.3.3) and the Poincaré series can be computed using [3]. We
sketch the main steps. For each formal power series P.t/ D 1CP1

iD1 aj t
j , there

exist uniquely defined ck 2 Z such that the equality

P.t/ D

1Y
iD1

.1C t2i�1/c2i�1

1Y
iD1

.1 � t2i /c2i

(22)

holds as formal power series or in the .t /-adic topology. Indeed if we define qi.t / D
.1� .�t /i/.�1/iC1

, then the right hand side of formula (22) is exactly
Q1

iD1 qi .t /
ci .

We define Q0 D 1 and inductively QmC1 D Qm.t /.qmC1.t //
cm with cm de-

fined as P.t/ � Qm.t / � cmt
mC1 .mod tmC2/. By definition we have Qm.t / DQm

iD1 qi .t /
ci . Using the binomial formula we see that P.t/ � Qm.t / .mod tmC1/

holds for all m 2 N.
In the case of the (ungraded) Poincaré polynomial we are interested in the devia-

tions cm are usually denoted by "m.R/ and complete intersections are characterized
(see [3], Theorem 7.3.3) by the property that cm.R/ D 0 for m � 3. Moreover,
c1.Hn/ D n D c2.Hn/ and c1.Cn/ D n � 1 D c2.Cn/; see [3], Corollary 7.1.5.
Formula (22) implies the statement (20) for the ungraded case q D 1. The graded
version follows easily by invoking the degrees of the generators xi and the degrees
of the homogeneous generators of I . The statement (iii) is clear.

Example 23. Consider the flag variety SL.3;C/=B . Then its cohomology algebra
is isomorphic to the algebra of coinvariants

C Š CŒX; Y �=.X2 CXY C Y 2; X3 C 3
2
X2Y � 3

2
XY 2 � Y 3/;

where X and Y correspond to the simple coroots. If we choose as generators of the
maximal ideal the elements x D xX , and y D xX C 2xY , the defining relations turn
into y2 D �3x2, xy2 D x3, and x2y D 0 and the elements 1; x; y; x2; xy; x3 form
a basis of C . By a direct calculation one can check that in this basis the minimal
projective resolution is of the form

� � � �! C 4 f3�! C 3 f2�! C 2 f1�! C
p�!! C (23)



Jones–Wenzl projector and 3j -symbols 203

with the linear maps given by matrices of the form

Œf2iC1� D

0BBBBBBB@

M

M
: : :

M

Œx� Œy�

1CCCCCCCA
and

Œf2i � D

0BBBB@
N

N
: : :

N

1CCCCA ;
where Œx� denotes the matrix describing the multiplication with x and where M and
N are 2 � 6 � 3 � 6 matrices defined as follows:

M D
 
Œx� Œy� 0

Œy� Œ�3x� Œx2�

!
and N D

 
Œ3x� Œy� 0

Œy� Œ�x� Œx2�

!
:

Hence the graded resolution is of the form

�!.2q12 C 2q14 C 2q16 C q20/C�!.2q10 C 2q12 C 2q14/C

�!.2q8 C 2q10 C q12/C�!.2q6 C 2q8/C�!.2q4 C q6/C

�!2q2C�!C
p�!! C:

Pictorially this can be illustrated as follows, where we drew the standard generators
of the free modules as dots labeled by their homogeneous degrees:

: : : �!10� 10� 12� 12� 14� 14� �!8� 8� 10� 10� 12� �!6� 6� 8� 8��!4� 4� 6��!2� 2��!0� : (24)

The graded Euler characteristic of the Ext-algebra Ext�
C .C;C/ equals

.1 � q/2
.1� q2/.1 � q3/

D 1

.1C q/.1C q C q2/
D 1

ŒŒ3��Š

Categorifying 1=ŒŒ n
k �� and inverse quantum multinomial coefficients. Generaliz-

ing the above example one can consider the Grassmannian Gr.k; n/ of k-planes in
Cn. Its complex cohomology ring Hk;n�k D H �.Gr.k; n/;C/ is explicitly known
(see for instance [25]) and by the same arguments as above, a complete intersection
(see e.g. [52]). We have the equality ŒHk;n�k� D ŒŒ n

k
��ŒC� in the Grothendieck group of
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gradedHk;n�k-modules. The graded Euler characteristic of Ext�
Hk;n�k

.C;C/ is equal
to 1=ŒŒ n

k
��. Following again [3] one could give an explicit formula for the Poincaré

polynomial of the minimal projective resolution of C. Note that all this generalizes
directly to partial flag varieties such that the Euler characteristic of Ext�

Hd
.C;C/ is

the inverse of a quantum multinomial coefficient�
n

d1; : : : ; dr

	
D nŠ

d1Šd2Š : : : dr Š.n� d1 � � � � � dr /Š
;

if Hd denotes the cohomology ring of the partial flag variety of type

d D .d1; d2; : : : ; dr/:

5. Serre subcategories and quotient functors

Let A be an abelian category. A Serre subcategory is a full subcategory � such
that for any short exact sequence M1 ! M ! M2 the object M is contained in
� if and only if M1 and M2 are contained in � . Let A be a finite dimensional
algebra and let S be a subset of the isomorphism classes of simple objects. Let X
be a system of representatives for the complement of S . Then the modules with all
composition factors isomorphic to elements from S form a Serre subcategory � of
A D A-mod. In fact, any Serre subcategory is obtained in this way and obviously an
abelian subcategory. The quotient category A=� can be characterized by a universal
property, [26], similar to the characterization of quotients of rings or modules. The
objects in A=� are the same objects as in A, but the morphisms are given by

HomA=�.M;N/ D lim�! HomA.M0; N=N0/;

where the limit is taken over all pairs of submodules M0 	 M and N0 	 N such
that M=M0, and N0 are contained in � . For an irreducible A-module N let P.N/
denote the projective cover ofN . Then the following is well-known (see for instance
[1], Proposition 33, for a detailed proof).

Proposition 24. With the notation above set P D P� D L
N 2X P.N/. Then there

is an equivalence of categories

A=� Š mod - End.P /:

In particular, A=� is abelian.

The quotient functor is then HomA.P; _/ W A ! A=� . We call its left adjoint
P ˝End.P / _ the inclusion functor.
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6. Categorification of the Jones–Wenzl projector – basic example

In the following we will categorify the Jones–Wenzl projector as an exact quotient
functor followed by the corresponding derived inclusion functor, see Theorem 47.

The categorification of both, the 3j -symbol and the colored Jones polynomial is
based on a categorification of the representation V ˝n

1 and the Jones–Wenzl projector.
By this we roughly mean that we want to upgrade each weight space into a Z-graded
abelian category with the action of E, F and K, K�1 via exact functors (see below
for more precise statements). Such categorifications were first constructed in [24]
(building on previous work of [4]) via graded versions of the category O for gln and
various functors acting on this category.

6.1. Categorification of irreducible modules. The categorification from [24], Sec-
tion 6.2, of the irreducible modules Vn has a very explicit description in terms of
cohomology rings of Grassmannians and correspondences. It was axiomatized (us-
ing the language of 2-categories) by Chuang and Rouquier in [16]. Although they
only work in the not quantized setup, their results could easily be generalized to the
quantized version. In the smallest non-trivial case, the example of V2, we consider
the direct sum of categories

C2 D C-gmod ˚ CŒx�=.x2/-gmod ˚ C-gmod

of graded modules. Then there is an isomorphism of C.q/-vector spaces from the
Grothendieck space C.q/ ˝ZŒq;q�1� ŒC � of C to V2 by mapping the isomorphism
classes of simple modules concentrated in degree zero to the dual canonical basis
elements vi . The action of E and F are given by induction functors

C-gmod �! CŒx�=.x2/-gmod, M 7�! CŒx�=.x2/˝C M h�1i
and restriction functors

CŒx�=.x2/-gmod �! C-gmod,

illustrated in Figure 7. For general n, the category C2 should be replaced by Cn DLn
iD0H

�.Gr.i; n//-gmod, see [24], Section 6.2, and [16], Example 5.17.

6.2. Categorification of V1 ˝ V1. The smallest example for a non-trivial Jones–
Wenzl projector is displayed in Figure 6, where the horizontal lines denote the modules
V2 and V1 ˝ V1 respectively with the standard basis denoted as ordered tuples. The
horizontal arrows indicate the action ofE andF in this basis, whereas the loops show
the action ofK. The vertical arrows indicate the projection and inclusion morphisms.
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Uq(slslsl2) (not categorified)

V2 W v0

h�2i
�� Œ1�� ��

�3

��

v1

id

�� Œ2�� ��
Œ2��

��

�3

��

v2

h2i
��

Œ1��
��

�3

��
V1 ˝ V1 W v0 ˝ v0

q�2

��

.1
q/ ��

�3

��

v1 ˝ v0; v0 ˝ v1

.q�1 1/ ��

.q�11/

��

q0

��

�3

��

v1 ˝ v1

.1
q/

��

q2

��

�3

��

Figure 6. Example of a Jones–Wenzl projector and inclusion.

Let A D EndCŒx�=.x2/.C ˚ CŒx�=.x2//. This algebra clearly contains R as a
subalgebra with basis 1; X . One can identify A with the path algebra of the quiver
1��2� (with the two primitive idempotents e1 and e2) subject to the relation 1 ! 2 ! 1

being zero. It is graded by the path length and R D HomA.Ae2; Ae2/ D e2Ae2 Š
CŒx�=.x2/. In particular, R-mod is a quotient category of A-mod. Using the graded
version we haveR-gmodŠ A-gmod=� , where � denotes the Serre subcategory of all
modules containing simple composition factors isomorphic to graded shifts of Ce1.
Figure 7 presents now a categorification of V1 ˝ V1.

V2 W C-gmod

h�2i
�� ind ��

id

		

R-gmod

id

�� res ��
res

��

A˝R_h1i

		

C-gmod

h2i
��

ind
��

id

		
V1 ˝ V1 W C-gmod

h�2i





Ae2˝_ ��

id

��

A-gmod
HomA.Ae2;_/h�1i ��

HomA.Ae2;_/h�1i
��

id





HomA.Ae2;_/h�1i

��

C-gmod
Ae2˝_

��

h2i





id

��

Figure 7. The categorification of the Jones–Wenzl projector and the inclusion (using projective
modules).

Note that the bases from Example 16 have a nice interpretation here. If we identify
the dual canonical basis elements with the isomorphism classes of simple modules,
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then the standard basis, the dual canonical basis, and the twisted canonical basis
corresponds to the isomorphism classes of the following representations of the above
quiver:

˚
ŒC�;

�
C

id �� C
0

��
�
;
�
0

0 �� C
0

��
�
; ŒC�

�
;

˚
ŒC�;

�
0

0 �� C
0

��
�
;
�
C

0 ��
0

0
��

�
; ŒC�

�
; (25)²

ŒC�;

�
C

.1
0/ �� Ch1i ˚ Ch�1i

.0 1/
��

�
;
�
0

0 �� C
0

��
�
; ŒC�

³
which are precisely the classes of standard modules, simple modules, and projective
objects respectively. One can easily verify that, when applied to the elements of the
twisted canonical basis, the functors induce the Uq.sl2/-action and morphisms of the
above diagram. Since however the displayed functors are not exact, one has to derive
them and pass to the (unbounded) derived category to get a well-defined action on
the Grothendieck group. We will do this in Section 8.1 and at the same time extend
the above to a Lie theoretic categorification which works in greater generality.

Remark 25. Note that the algebraA has finite global dimension, hence a phenomenon
as in Theorem 22 does not occur. Note also that for V ˝2

1 we have three distinguished
bases such that the transformation matrix is upper triangular with 1’s on the diagonal.
This is not the case for the irreducible representations. Categorically this difference
can be expressed by sayingA is a quasi-hereditary algebra, whereasR is only properly
stratified; see [45], Section 2.6.

Remark 26. The explicit connection of the above construction to Soergel modules
can be found in [58]. As mentioned already in the introduction we would like to work
with the abelianization of the category of Soergel modules which we call later the
Verma category.

7. The Verma category O and its graded version

We start by recalling the Lie theoretic categorification of xV ˝n
1 . Let n be a non-

negative integer. Let g D gln be the Lie algebra of complex n � n-matrices. Let
h be the standard Cartan subalgebra of all diagonal matrices with the standard basis
fE1;1; : : : ; En;ng for i D 1; : : : ; n. The dual space h� comes with the dual basis
fei j i D 1; : : : ; ng with ei .Ej;j / D ıi;j . The nilpotent subalgebra of strictly upper
diagonal matrices spanned by fEi;j j i < j g is denoted nC. Similarly, let n� be
the subalgebra consisting of lower triangular matrices. We fix the standard Borel
subalgebra b D h

L
nC. For any Lie algebra L we denote by U.L/ its universal
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enveloping algebra, so L-modules are the same as (ordinary) modules over the ring
U.L/.

Let W D Sn denote the Weyl group of gln generated by simple reflections
(=simple transpositions) fsi ; 1 � i � n � 1g. For w 2 W and 	 2 h�, let
w � 	 D w.	 C 
n/ � 
n, where 
n D n�1

2
e1 C � � � C 1�n

2
en is half the sum of

the positive roots. In the following we will always consider this action. For 	 2 h�
we denote by W� the stabilizer of 	 2 h�.

Let 	 2 h� and C� the corresponding one-dimensional h-module. By letting nC
act trivially we extend the action to b. Then the Verma module of highest weight 	 is

M.	/ D U ˝U.b/ C�:

Definition 27. We denote by O D O.gln/ the smallest abelian category of gln-mod-
ules containing all Verma modules and which is closed under tensoring with finite
dimensional modules, finite direct sums, submodules and quotients. We call this
category the Verma category O.

This category was introduced in [6] (although it was defined there in a slightly
different way) under the name category O. For details and standard facts on this
category we refer to [29].

Every Verma module M.	/ has a unique simple quotient which we denote by
L.	/. The latter form precisely the isomorphism classes of simple objects in O.
Moreover, the Verma category O has enough projectives. We denote by P.	/ the
projective cover in O. The category decomposes into indecomposable summands
O�, called blocks, under the action of the center of U.g/. These blocks are indexed
by theW -orbits (or its maximal representatives 	, called dominant weights, in h� for
the Bruhat ordering). Note that the module L.	/ is finite dimensional if and only if
	 is dominant and integral. Then the L.w � 	/, w 2 W=W� are precisely the simple
objects in O�.

Weight spaces ofV ˝n
1 will be categorified using the blocks Ok.gln/ corresponding

to the integral dominant weights e1 C � � � C ek � 
n for 1 � k � n. To make
calculations easier denote also by M.a1; : : : ; an/ the Verma module with highest
weight a1e1 C � � � C anen � 
n with simple quotient L.a1; : : : ; an/ and projective
coverP.a1; : : : ; an/ in O.gln/: They are all in the same block and belong to Ok.gln/
if and only if k of the aj ’s are 1 and n�k of them are 0. In this case we can identify the
isomorphism class ŒM.a1; : : : ; an/� ofM.a1; : : : ; an/ with a standard basis vector in
.V ˝n

1 /k via
ŒM.a1; : : : ; an/� 7�! va1

˝ va2
˝ � � � ˝ van

(26)

which then can be reformulated (using e.g. [29], Theorems 3.10 and 3.11) as

Lemma 28 ([4]). The map (26) defines an isomorphism of vector spaces:

C ˝Z Œ

nM
kD0

Ok.gln/� Š xV ˝n
1 :
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Example 29. The natural basis v0 ˝ v0, v1 ˝ v0, v0 ˝ v1, v1 ˝ v1 will be identified
with the isomorphism classes of the Verma modules

M.00/; M.10/; M.01/; M.11/

respectively. The first and last Verma module are simple modules as well and the cat-
egories O0.gln/ and O2.gln/ are both equivalent to the category of finite dimensional
complex vector spaces. The category O1.gln/ is equivalent to the category of finite
dimensional modules over the above mentioned path algebra.

Each block of O is equivalent to a category of right modules over a finite dimen-
sional algebra, namely the endomorphism ring of a minimal projective generator.
These algebras are not easy to describe, see [58] where small examples were com-
puted using (singular) Soergel modules. Therefore, our arguments will mostly be
Lie theoretic in general, but we will need some properties of the algebras. Denote
byAk;n the endomorphism algebra of a minimal projective generator Pk of Ok.gln/,
hence

" W Ok.gln/ Š mod -An;k; M 7�! Homg.Pk ; _/:

The following statement is crucial and based on a deep fact from [7].

Proposition 30. There is a unique non-negative Z-grading on Ak;n which is Koszul.

Remark 31. Note that we only work with very special blocks, hence use very special
cases of [7]. In these cases the Koszul dual algebra AŠ

k;n
can be defined diagrammat-

ically (see [10] and [12]) by slightly generalizing Khovanov’s arc algebra from [35].
Koszulity can then be proved by elementary tools [11].

Proposition 30 allows us to work with the category Ak;n-gmod, hence a graded
version of our Verma category O with the grading forgetting functor

f W Ak;n-gmod �! Ak;n-gmod.

An object in Ok is called gradable if there exists a graded module yM 2 Ak;n-gmod
such that f. yM/ Š ".M/. The following is well-known (note however that not all
modules are gradable by Theorem 4.1 in [59]).

Lemma 32. Projective modules, Verma modules and simple modules are gradable.
Their graded lifts are unique up to isomorphism and grading shift.

Proof. The first part can be proved precisely as for instance in [45], Lemma 8.1,
using the description of Verma modules as in [45], p. 2945. The uniqueness is [7],
Lemma 2.5.3, or [59], Lemma 2.5.
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We pick and fix such lifts yP .a1; : : : ; an/; yM.a1; : : : ; an/ and yL.a1; : : : ; an/ by
requiring that their heads are concentrated in degree zero.

Category O has a contravariant duality which via " just amounts to the fact that
Ak;n is isomorphic to its opposite algebra and after choosing such an isomorphism the
duality is just HomAk;n

._;C/. In particular we can from now on work with the cate-
goryAk;n-gmod of graded left modules and choose the graded lift d D HomAk;n

._;C/

of the duality, see eq. (6.1) in [59]. Then d preserves the yL.a1; : : : ; an/’s. The mod-
ule yr.a1; : : : ; an/ D d. yM.a1; : : : ; an// is a graded lift of the ordinary dual Verma
module r.a1; : : : ; an/. Similarly yI .a1; : : : ; an/ D d. yP .a1; : : : ; an// is the injective
hull of yL.a1; : : : ; an/ and a graded lift of the injective module I.a1; : : : ; an/.

8. Categorification of V ˝n
1

using the Verma category O

Let hri W Ak;n-gmod ! Ak;n-gmod be the functor of shifting the grading up by r such
that ifM D Mi is concentrated in degree i thenM hki D M hkiiCk is concentrated in
degree i C k. The additional grading turns the Grothendieck group into a ZŒq; q�1�-
module, the shift functor hri induces the multiplication with qr . Then we obtain the
following result.

Proposition 33 ([24], Theorems 4.1 and 5.3). There is an isomorphism of C.q/-vector
spaces:

ˆn W C.q/˝ZŒq;q�1�

h nM
kD0

Ak;n-gmod
i

Š V ˝n
1 ;

Œ yM.a1; : : : ; an/� 7�! va2
˝ � � � ˝ van

:

(27)

Under this isomorphism, the isomorphism class of ŒL.a1; : : : ; an/� is mapped to the
dual canonical basis element va1 ~ : : : ~ van .

The following theorem categorifies the Uq-action.

Theorem 34 ([24], Theorem 4.1). There are exact functors of graded categories

yEk W Ak;n-gmod �! AkC1;n-gmod;

yFk W Ak;n-gmod �! Ak�1;n-gmod;

yK˙1
k W Ak;n-gmod �! Ak;n-gmod
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such that

yKiC1
yEi Š yEi

yKi h2i;
yKi�1

yFi Š yFi
yKi h�2i;

yKi
yK�1

i Š Id Š yK�1
i

yK1
i ;

yEi�1
yFi ˚

n�i�1M
j D0

Idhn � 2i � 1� 2j i Š yFiC1
yEi ˚

i�1M
j D0

Idh2i � n � 1� 2j i;

and the isomorphism (27) becomes an isomorphism of Uq.sl2/-modules.

The functor yE D L
i2Z

yEi is defined as a graded lift of tensoring with the natural
n-dimensional representation of gln and yEi is then obtained by projecting onto the
required block. The functors yF D ˚ yFi and yFi are then (up to grading shifts) their
adjoints, whereas yK acts by an appropriate grading shift yKi on each block.

Remark 35. More generally, exact functors yE.r/

k
; yF .r/

k
were defined which categorify

divided powers E.r/; F .r/ (see [24], Proposition 3.2). The ungraded version, denote
them by E

.r/

k
;F

.r/

k
, are just certain direct summands of tensoring with the k-th tensor

power of the natural representation or its dual respectively.

Remark 36. Chuang and Rouquier showed that the (ungraded) functorial action
of sl2 on the Verma category O is an example of an sl2-categorification; see [16],
Sections 5.2 and 7.4. Hence there is an additional action of a certain Hecke algebra
on the space of 2-morphisms or natural transformations between compositions of the
functors E and F .

8.1. Categorification of the Jones–Wenzl projector as a quotient functor. Theo-
rem 12 characterizes the projector as a quotient map which either sends dual canonical
basis elements to shifted dual canonical basis elements or annihilates them. On the
other hand, Theorem 33 identifies the dual canonical basis elements with simple mod-
ules. Hence it is natural to categorify the projector as the quotient functor with respect
to the Serre subcategory � generated by all simple modules whose corresponding dual
canonical basis element is annihilated by the projector.

Let n D d1 C d2 C : : : dr with dj 2 Z�0. Define k�
0
d to be the projector

�d D �d1
˝ �d2

˝ � � � ˝ �dr
.v/ from (27) restricted to the q.2i�n/-weight space of

V ˝n
1 . Consider the set of dual canonical basis vectors inV ˝n

1 annihilated respectively
not annihilated by the projector k�

0
d. Let S and S 0, respectively, the corresponding

set of isomorphism classes of simple modules under the bijection (27) taken with
all possible shifts in the grading. According to Proposition 24 the set S defines a
Serre subcategory � in A D Ak;n-gmod. If we set Pk;d D P� D L

N P.N/,



212 I. Frenkel, C. Stroppel and J. Sussan

where we sum over the projective covers P.N/ of all N from a complete system of
representatives from S 0, then the quotient category A=� is canonically equivalent to
the category of modules over the endomorphism ring Ak;d of Pk;d.

Definition 37. Let e be an idempotent of Ak;n such that Pk;d D Ak;ne. Define the
quotient and inclusion functors

k O�d D HomAk;n
.Ak;ne; _/h�k.n� k/ W Ak;n-gmod �! Ak;d-gmod (28)

and

kO�d D Ak;d˝eAk;de_hk.n� k/i W Ak;d-gmod �! Ak;n-gmod: (29)

Set k O�d D Ln
kD0 k O�d and O�d D Ln

kD0 kO�d.

Lemma 38. The composition Qpk;d D k�
0
dk�

0
d is an idempotent, i.e. Qp2

k;d D Qpk;d Qpk;d.

Proof. This follows directly from the standard fact that k�
0
dk�

0
d is the identity functor;

see [26].

The shift in the grading should be compared with (17). The above functors are
graded lifts of the functors

k�
0
d D HomAk;n

.Ak;ne; _/ W Ak;n-mod �! Ak;d-mod (30)

and

k�
0
d D Ak;d˝eAk;de_ W Ak;d-mod �! Ak;n-mod. (31)

9. The Lie theoretic description of the quotient categories

In this section we recall a well known Lie theoretic construction of the category
Ak;d-mod which then will be used to show that the quotient and inclusion functor,
hence also Qpk;d, naturally commute with the categorified quantum group action.

We first describe an equivalence from Ak;d-mod to the category kH 1
�.gln/ of

certain Harish-Chandra bimodules. Regular versions of such categories in connection
with categorification were studied in detail in [45]. For the origins of (generalized)
Harish-Chandra bimodules and for its description in terms of Soergel bimodules
see [56] and [62]. Ideally one would like to have a graphical description of these
quotient categories Ak;d-mod, similar to [20]. The Lie theoretic details can be found
in [5] and [30], Kapitel 6. Note that in contrast to the additive category of Soergel
bimodules, the categories Ak;d-mod have in general many indecomposable objects,
more precisely are of wild representation type; see [19].

Definition 39. Let 	; � be integral dominant weights. Let O�;�.gln/ be the full sub-
category of O�.gln/ consisting of modules M with projective presentations P2 !
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P1 ! M ! 0 where P1 and P2 are direct sums of projective objects of the
form P.x:	/ where x is a longest element representative in the double coset space
S�nSn=S� and S�;S� are the stabilizers of the weights � and 	 respectively.

The following result is standard (see e.g. [1], Proposition 33, for a proof).

Lemma 40. Let S� Š Sk � Sn�k and S� Š Sd. Then there is an equivalence
of categories ˛ W O�;d.gln/ ! Ak;d- mod such that ˛ B � Š k�

0
d B ˛, where � is the

inclusion functor from O�;�.gln/ to O�.gln/.

The subcategory has a nice intrinsic definition in terms of the following category.

Definition 41. Let g D gln and define for �, 	 dominant integral weights �H 1
�.g/ to

be the full subcategory of U.g/-bimodules of finite length with objects M satisfying
the following conditions:

(i) M is finitely generated as U.g/-bimodule;

(ii) every element m 2 M is contained in a finite dimensional vector space stable
under the adjoint action x:m D xm �mx of g (where x 2 g, m 2 M );

(iii) for any m 2 M we have m�� D 0 and there is some n 2 Z>0 such that
.��/

nm D 0, where ��, resp �� is the maximal ideal of the center of U.g/
corresponding to � and 	 under the Harish-Chandra isomorphism. (One usually
saysM has generalized central character�� from the left and (ordinary) central
character �� from the right).

We call the objects in these categories short Harish-Chandra bimodules.

9.1. Simple Harish-Chandra bimodules and proper standard modules. Given
two g-modules M and N we can form the space HomC.M;N/ which is naturally
a g-bimodule, but very large. We denote by L.M;N/ the ad-finite part, that is the
subspace of all vectors lying in a finite dimensional vector space invariant under
the adjoint action X:f D Xf � fX for X 2 g and f 2 HomC.M;N/. This
is a Harish-Chandra bimodule; see [30], Section 6. This construction defines the
so-called Bernstein–Gelfand–Joseph–Zelevinsky functors (see [5] and [30]):

� N�� W O�.gln/ �! �H 1
�.gln/; � N��.X/ D L.M.�/; X/; (32)

�N�� W �H 1
�.gln/ �! O�.gln/; �N��.M/ D M ˝U.gln/ M.�/: (33)

Theorem 42 ([5]). The functors �N�� and � N�� provide inverse equivalences of cate-
gories between O�;�.gln/ and �H 1

�
.gln/:

From the quotient category construction the following is obvious. It might be
viewed, with Proposition 33, as a categorical version of [23], Theorem 1.11.
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Corollary 43. (i) � N�� maps simple objects to simple objects or zero. All simple
Harish-Chandra bimodules are obtained in this way.

(ii) The simple objects in �H 1
�
.gln/ are precisely the L.M.�/; L.x:	//wherex is

a longest element representative in the double coset space S�nSn=S�. In particular
if � has stabilizer Sd, then the

L.k1; d1 j k2; d2 j � � � j kr ; dr /

D L.M.�/; L.0; : : : ; 0„ ƒ‚ …
d1�k1

1; : : : ; 1„ ƒ‚ …
k1

: : : 0; : : : ; 0„ ƒ‚ …
dr �kr

; 1; : : : ; 1„ ƒ‚ …
kr

//;

for 0 � ki � di and
P
ki D k, are precisely the simple modules in kH 1

d .gln/.

The following special modules are the images ofVerma modules under the quotient
functor and will play an important role in our categorification:

Definition 44. The proper standard module labeled by .k1; d1 j k2; d2 j � � � j kr ; dr /

is defined to be

N.k1; d1 j k2; d2 j � � � j kr ; dr/

D L.M.�/;M.0; : : : ; 0„ ƒ‚ …
d1�k1

; 1; : : : ; 1;„ ƒ‚ …
k1

: : : ; 0; : : : ; 0;„ ƒ‚ …
dr �kr

1; : : : ; 1„ ƒ‚ …
kr

// 2 kH 1
d .gln/:

The name stems from the fact that this family of modules form the proper standard
modules in a properly stratified structure; see [45], Section 2.6,

To summarize, we have an equivalence of categories

Ak;d- mod Š kH 1
�.gln/

under which (after forgetting the grading) the algebraically defined functors (30)
and (31) turn into the Lie theoretically defined functors (32) and (33). Hence
Ak;d-gmod is a graded version of Harish-Chandra bimodules. Let

yL.k1; d1 j k2; d2 j � � � j kr ; dr/ and yN.k1; d1 j k2; d2 j � � � j kr ; dr/

be the standard graded lifts with head concentrated in degree zero of the corresponding
Harish-Chandra bimodules.

Lemma 45. TheUq.sl2/-action from Theorem 34 factors through the Serre quotients
and induces via

k O�d D HomAk;n
.Ak;ne; _/h�k.n� k/i W Ak;n-gmod �! Ak;d-gmod

and

kO�d D Ak;d˝eAk;de_hk.n� k/i W Ak;d-gmod �! Ak;n-gmod:

an Uq.sl2/-action on
Ln

kD0Ak;d-gmod such that O�d yE Š O�d yE and O�d yE Š yEO�d,
similarly for yF , yK�. The composition kO�dk O�d equals Qpk;d, hence is an idempotent.
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Proof. Denote by �k the Serre subcategory of Ak;n-gmod with respect to which
we take the quotient. Consider the direct sum C D Ln

kD0 �k , a subcategory ofLn
kD0 Ak;n-gmod, the kernel of the functor O�d. Recall that the Uq.sl2/-action is

given by exact functors, hence by [26], it is enough to show that the functors preserve
the subcategory C . This is obvious for the functors yK�1, since C is closed under
grading shifts. It is then enough to verify the claim for yE , since the statement for
yF follows by adjointness, see [26]. Since the functor yE is defined as a graded lift

of tensoring with the natural n-dimensional representation of gln and then projecting
onto the required block, it preserves the category of all modules which are not of
maximal possible Gelfand–Kirillov dimension by [30], Lemma 8.8. We will show in
Proposition 59 that this category agrees with C . Hence O�d yE Š O�d yE and O�d yE Š yEO�d
at least when we forget the grading. It is left to show that the grading shift is chosen
correctly on each summand. This is just a combinatorial calculation and clear from
the embedding (39) in [24]. The last statement follows from Lemma 38, since the
two grading shifts cancel each other.

The following theorem describes the combinatorics of our categories and strength-
ens Theorem 4.1 in [24].

Theorem 46 (Arbitrary tensor products and its integral structure). With the structure
from Lemma 45, there is an isomorphism of Uq.sl2/-modules

ˆd W C.q/˝ZŒq;q�1�

h nM
kD0

Ak;d-gmod
i

Š Vd1
˝ � � � ˝ Vdr

;

yL.k1; d1 j k2; d2 j � � � j kr ; dr/ 7�! vk1 ~ vk2 ~ : : : ~ vkr :

(34)

This isomorphism sends proper standard modules to the dual standard basis:

yN.k1; d1 j k2; d2 j � � � j kr ; dr/ 7�! vk1 ˝ vk2 ˝ � � � ˝ vkr : (35)

Proof. Theorem 33 identifies the isomorphism classes of simple objects in the cate-
gorification of V ˝n

1 with dual canonical basis elements and the isomorphism classes
of Verma modules with the standard basis. The exact quotient functor O�d sends
simple objects to simple objects or zero and naturally commutes with the Uq.sl2/-ac-
tion. Since the isomorphism classes of the yL .k1; d1 j k2; d2 j � � � j kr ; dr/ form a
C.q/-basis of the Grothendieck space the map ˆd is a well-defined C.q/-linear iso-
morphism. Let p be the linear map induced by O�d on the Grothendieck space. Then
Proposition 33 and Theorem 12 imply that

ˆd B p D �d Bˆn; (36)

in the basis of the isomorphism classes of simple modules (note that the q-power
q�Qr

iD1 ki .di �ki / appearing in (8) is precisely corresponding to the shift in the grading
appearing in the definition of (28)), and (34) follows. Now p is surjective, and p,
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�d, and ˆd are Uq.sl2/-linear, hence so is ˆd. We observe that, by definition,
yN .k1; d1 j k2; d2 j � � � j kr ; dr/ is (up to some grading shift) the image under k O�d

of yM.a/ for a as in Definition 44. On the other hand the Jones–Wenzl projector
maps va for such a to vk1 ˝ vk2 ˝ � � � ˝ vkr up to some q-power. This q-power
equals q�Qr

iD1 ki .di �ki / by (8), hence, by comparing with the grading shift in (28),
the statement follows from (36).

9.2. The categorification theorem. While the functor ��� is exact, the functor �O��
is only right exact, so we consider its left derived functor L�O��. Note that O�d extends
uniquely to a functor on the bounded derived category, but might produce complexes
which have only infinite projective resolutions. Therefore to be able to apply L�O��
afterwards, we have to work with certain unbounded derived categories. In particular,
it would be natural to consider the graded functors

LkO�d W D�.Ak;d-gmod/ �! D�.Ak;n-gmod/:

where we use the symbolD�._/ to denote the full subcategory of the derived category
D._/ consisting of complexes bounded to the right. The exact functors from the
Uq.sl2/-action extend uniquely to the corresponding D._/ and preserve D�._/.

However passing to D�._/ causes problems from the categorification point of
view. The Grothendieck group of D�._/ might collapse, [49]. To get the cor-
rect or desired Grothendieck group we therefore restrict to a certain subcategory
DO 	 D�.Ak;d-gmod/ studied in detail in [2]. This category is still large enough
so that our derived functors make sense, but small enough to avoid the collapsing
of the Grothendieck group. It is defined as the full subcategory of D�.Ak;d-gmod/
of all complexes X such that for each m 2 Z, only finitely many of the coho-
mologies H i .X/ contain a composition factor concentrated in degree < m. It is
shown in [2] that the Grothendieck group ŒDO.Ak;d-gmod/� is a complete topologi-
cal ZŒq; q�1�-module and that the natural map ŒAk;d-gmod� ! ŒDO.Ak;d-gmod/� is
injective and induces an isomorphism

yK �Ak;d-gmod
� Š ŒDO.Ak;d-gmod/�

where yK �Ak;d-gmod
�

denotes the q-adic completion of ŒAk;d-gmod� which is as

ZŒŒq��Œq�1�-module free of rank equal to the rank of ŒAk;d-gmod�. Let yVd be the
ZŒŒq��Œq�1�-module obtained by q-adic completion of Vd.

Theorem 47 (Categorification of the Jones–Wenzl projector). (i) The composition
Opk;d D .LkO�d/k O�d is an idempotent.

(ii) L.kO�d/ induces a functor

DO.
nM

kD0

Ak;d-gmod/ �! DO.
nM

kD0

Ak;n-gmod/:
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(iii) There is an isomorphism of ZŒŒq��Œq�1�-modules

ˆ W
nM

kD0

yK �
Ak;d-gmod

� Š yVd

sending the isomorphism classes of the standard modules defined in (39) to the cor-
responding standard basis elements.

(iv) Under the isomorphism ˆ the induced map

nM
kD0

ŒL.kO�d/� W
nM

kD0

yK �Ak;d-gmod
� �!

nM
kD0

yK.Ak;n-gmod/

is equal to the tensor product �d1
˝ � � � ˝ �dr

of the inclusion maps.

(v) Moreover,

nM
kD0

ŒL.k O�d/� W
nM

kD0

yK.Ak;n-gmod/ �!
nM

kD0

yK �Ak;d-gmod
�

is equal to the tensor product �d1
˝ � � � ˝ �dr

of the projection maps.

Proof. Note that k O�d is exact and that k O�dLO�d is the identity functor (this follows e.g.
from [45], Lemma 2.1). Hence Opk;d is an idempotent as well. The second statement
is proved in [2] as well as the analogous statement for L.k O�d/. The last statement is
then (36). The statement about the induced action on the Grothendieck group for the
inclusion functors will be proved as Corollary 54 in the next section.

Example 48 (Gigantic complexes). The complexity of the above functors is already
transparent in the situation of Example 3: the projective module P D yP .01/ 2
A1;2-gmod fits into a short exact sequence of the form

yM.10/h1i �! yP .01/ �! yM.01/; (37)

categorifying the twisted canonical basis from Example 16.
Now both yM.10/ and yM.01/ are mapped under the Jones–Wenzl projector to

one-dimensional CŒx�=.x2/-modules only different in the grading, namely to C and
Ch�1i respectively. To compute the derived inclusion L.1O�1;1/we first have to choose
a projective resolution (see (18)) and then apply the functor 1O�1;1. So, for instance
the formula

�2 B �2.v0 ˝ v1/ D �2.q
�1Œ2��1v1/ D Œ2��1.v1 ˝ v0 C q�1v0 ˝ v1/

D ŒŒ2���1.qv1 ˝ v0 C v0 ˝ v1/
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gets categorified by embedding the infinite resolution from (18), shifted by h�1ih1i D
h0i, via 1O�1;1 to obtain

� � � f�! yP .01/h4i f�! yP .01/h2i f�! yP .01/ p�!! C: (38)

This complex should then be interpreted as an extension of ŒŒ2���1 yM.10/h1i and
ŒŒ2���1 yM.01/ recalling that we have a short exact sequence (37).

Note that this is a complex which has homology in all degrees!

A categorical version of the characterization of the Jones–Wenzl projector (Propo-
sition 5) will be given in Theorem 71 and a renormalized (quasi-idempotent) of the
Jones–Wenzl projector in terms of Khovanov’s theory will be indicated in Section 12.2
and studied in more detail in a forthcoming paper.

10. Fattened Verma modules and the cohomology rings of Grassmannians

In this section we describe the natural appearance of the categorifications from Sec-
tion 4 in the representation theory of semisimple complex Lie algebras. More pre-
cisely we will show that the Ext-algebra of proper standard modules has a fractional
Euler characteristic. Hence their homological properties differ seriously from the
homological properties of Verma modules. Verma modules M.�/ are not projec-
tive modules in O, but they are projective in the subcategory of all modules whose
weights are smaller than �. When passing to the Harish-Chandra bimodule category
(using the categorified Jones–Wenzl projector) these Verma modules become proper
standard and the corresponding homological property gets lost. To have objects with
similar properties as Verma modules we will introduce fattened Verma modules or
standard objects. They can be realized as extensions of all those Verma modules that
are, up to shift, mapped to the same proper standard object under the Jones–Wenzl
projector.

Definition 49. The simple modules L.	/ in O are partially ordered by their highest
weight. We write L.	/ < L.�/ if 	 < � in the usual ordering of weights. This
induces also an ordering on the simple modules in Ak;d which is explicitly given by

yL.k1; d1 j k2; d2 j � � � j kr ; dr/ � yL.l1; d1 j l2; d2 j � � � j lr ; dr/

if and only if
Pn

iD1 ki D Pn
iD1 li and

Pj
iD1 ki � Pj

iD1 li for all j .

For a simple module yL D yL.k1; d1 j k2; d2 j � � � j kr ; dr / 2 Ak;d-gmod, let
yP.k1; d1 j k2; d2 j � � � j kr ; dr/ be its projective cover. Then we define the standard

module
y
.k1; d1 j k2; d2 j � � � j kr ; dr/ (39)
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to be the maximal quotient of yP .k1; d1 j k2; d2 j � � � j kr ; dr /h�Qr
iD1 ki .di � ki /i

contained in the full subcategoryA
L
k;d -gmod which contains only simple composition

factors smaller or equal than yL.

Remark 50. After forgetting the grading, the standard objects can also be defined
Lie theoretically as parabolically induced ‘big projectives’ in category O for the Lie
algebra gld D gld1

˚ gld2
˚ � � � ˚ gldr

, in formulas


.k1; d1 j k2; d2 j � � � j kr ; dr /

D U.gln/˝U.p/ .P.k1 j d1/� P.k2 j d2/� � � � � P.kr j dr //;

where the gld-action is extended by zero to p D gld C n; see [45], Proposition 2.9.
Similarly (see [45], p. 2948), the proper standard modules can be defined as

N.k1; d1 j k2; d2 j � � � j kr ; dr/

D U.gln/˝U.p/ .L.k1 j d1/� L.k2 j d2/� � � � � L.kr j dr //:

Proposition 51. The standard objects are acyclic with respect to the inclusion func-
tors, i.e.

Li .kO�d/y
 D 0

for any i > 0 and y
 D y
.k1; d1 j k2; d2 j � � � j kr ; dr /.

Proof. We do induction on the partial ordering. If yL.k1; d1 j k2; d2 j � � � j kr ; dr/ is
maximal, then the corresponding standard module is projective and the statement is
clear. From the arguments in [45], Proposition 2.9, Proposition 2.13, and Lemma 8.4,
it follows that any indecomposable projective module

P.k1; d1 j k2; d2 j � � � j kr ; dr/ 2 Ak;d-gmod

has a graded standard filtration that means a filtration with subquotients isomorphic to
(possibly shifted in the grading) standard modules. Amongst the subquotients, there
is a unique occurrence of y
.k1; d1 j k2; d2 j � � � j kr ; dr/, namely as a quotient, and
all other y
’s are strictly larger in the partial ordering. Hence by induction hypothesis,
using the long exact cohomology sequence we obtain Li .kO�d/y
 for i � 2 and then
finally, by comparing the characters, also the vanishing for i D 1.

The following should be compared with (9).

Proposition 52. Let y
 D .y
.k1; d1 j k2; d2 j � � � j kr ; dr// 2 Ak;d-gmod. kO�d.y
/ 2
Ak;n-gmod has a graded Verma flag. The occurring subquotients are, all occurring

with multiplicity 1, precisely the yM.a/hb.a/i’s, where a runs through all possible
sequences with k ones such that precisely

Pj
iD1 ki appear amongst the first

Pj
iD1 di

indices.
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Proof. As above, the existence of a Verma flag when we forget the grading follows
directly from [45], Proposition 2.18, using Remark 50. In the graded setting this is
then the general argument in [45], Lemma 8.4. To describe the occurring subquotients
we first work in the non-graded setting. The highest weight of 
 is of the form
w � �, where 	 D e1 C � � � C ek � 
n and w 2 S�nSn=S� a longest double coset
representative, where S� D Sk � Sn�k and S� D Sd.

Our claim is then equivalent to the assertion that the occurring modules are pre-
cisely the isomorphism classes of the formM.yw �	/, where y runs through a set of
representatives from

S�=.S� \ .wS�w
�1//: (40)

By Remark 50 the translation functor �0
�

to the principal block maps 
 to 
.w � 0/
(since translation commutes with parabolic induction and translation out of the wall
sends antidominant projective modules to such). The module 
.w � 0/ has by [45],
Proposition 8.3, aVerma flag with subquotients precisely theM.yw�0/’s withy 2 S�.
Since 0N���0

�
Š �0

� �N�� the claim follows directly from the formula Œ�0
�
M.w � 0/� D

Œ
L

x2S�
M.wx � 0/�. Indeed the latter formula says that we have to find a complete

set of representatives for the S�-orbits acting from the right on fyw j y 2 S�g.
Now y0w D ywa for y; y0 2 S� and a 2 S� if and only if y�1y0w D wa or
equivalently y0 D ywaw�1, hence (40) follows. Using the graded versions of
translation functors as in [59], the proposition follows at least up to an overall shift.
Since y
.a/ is a quotient of yP.a/h�Qr

iD1 ki .di �ki /i, the additional shift appearing
in (9) implies that yM.a/ appears as a quotient of kO�d.y
.a// which agrees with the
fact that b.a/ D 0.

Proof of Theorem 47. By Proposition 51, the inclusion applied to a standard module
is a module which has a graded Verma flag as in Proposition 52.

Proposition 53. The standard module y
.k1; d1 j k2; d2 j � � � j kr ; dr /has a filtration
with subquotients isomorphic to yN.k1; d1 j k2; d2 j � � � j kr ; dr/ such that in the

Grothendieck space Œy
� D �
d1

k1

��
d2

k2

�
: : :
�

dr

kr

�
ŒyN�.

Proof. The existence of the filtration follows by the same arguments as in [45], The-
orem 2.16. Note that the projective module P.ki j di / has

�
ki

di

�
occurrences of the

simple module L.ki j di / in a composition series; see [30], Section 4.13. Hence
the module .L.k1 j d1/ � L.k2 j d2/ � � � � � L.kr j dr // occurs

�
k1

d1

��
k2

d2

�
: : :
�

kr

dr

�
times as a composition factor in P.k1 j d1/�P.k2 j d2/� � � � �P.kr j dr /. Since
parabolic induction is exact and the simple module in the head of a proper standard
module appears with multiplicity one, this gives by Remark 50 precisely the number
of proper standard modules appearing as subquotients in a filtration. The formula
therefore holds when we forget the grading. The graded version will follow from the
proof of Theorem 55.
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Corollary 54. Under the isomorphism ˆd the standard basis corresponds to the
standard modules: y
.k1; d1 j k2; d2 j � � � j kr ; dr/ 7! vk1

˝ vk2
˝ � � � ˝ vkr

:

Proof. By Theorem 46, proper standard modules correspond to the dual standard
basis. Theorem 53 and the relationship between the dual standard basis and the
standard basis imply the claim.

The following result will be used later to compute the value of the categorified
colored unknot. It exemplifies Theorem 6.3 in [45] and connects with Section 4.

Theorem 55 (Endomorphism ring of standard objects). Let

y
.k1; d1 j k2; d2 j � � � j kr ; dr/

be a standard object in Ak;d-gmod. Then there is a canonical isomorphism of rings

EndAk;d.
y
.k1; d1 j k2; d2 j � � � j kr ; dr //

Š H �.Gr.k1; d1//˝ � � � ˝H �.Gr.kr ; dr//:

Proof. Abbreviate y
 D y
.k1; d1 j k2; d2 j � � � j kr ; dr/ and let L be its sim-
ple quotient. By definition y
 is a projective object in A
L

k;d , hence the dimension

of its endomorphism ring equals Œy
 W L�, that is the number of occurrences of L
as a composition factor (i.e. as a subquotient in a Jordan-Hölder series). Note
that L occurs precisely once in the corresponding proper standard object yN; see
[45], Theorem 2.16. Since y
 has a filtration with subquotients isomorphic to yN,
we only have to count how many such subquotients we need. This is however ex-
pressed by the transformation matrix from Proposition 53. Hence the two rings
in question have the same (graded) dimension and therefore isomorphic as graded
vector spaces. To understand the ring structure we invoke the alternative defini-
tion of the fattened Verma modules from Remark 50 which says that 
 is iso-
morphic to U.gln/ ˝U.p/ .P.d1/ � P.d1/ � � � � � P.dr//, where P.di / is the
antidominant projective module in Oki

.gldi
/ and p is the parabolic in gln con-

taining gld1
˚ � � � ˚ gldr

. Now by Soergel’s endomorphism theorem (see [55])
we know that the endomorphism ring of P.di / is isomorphic to H �.Gr.ki ; di //.
Hence there is an inclusion of rings H �.Gr.k1; d1// ˝ � � � ˝ H �.Gr.kr ; dr// ,!
EndAk;d.

y
.k1; d1 j k2; d2 j � � � j kr ; dr//. The statement follows.

Corollary 56 (Standard resolution of proper standard modules). Let

y
 D y
.k1; d1 j k2; d2 j � � � j kr ; dr/

be a standard object inAk;d-gmod and yN the corresponding proper standard module.
Then yN has an infinite resolution by direct sums of copies of y
. The graded Euler
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characteristic of Ext�Ak;d
.yN; yN/ equals

1��
d1

k1

����
d2

k2

��
: : :

��
dr

kr

�� :
Proof. The main part of the proof is to show that the situation reduces to the one
studied in Section 4. Let F .yN/ be the full subcategory of Ak;d-gmod containing
modules which have a filtration with subquotients isomorphic to yNhj i with various
j 2 Z. Clearly, F .yN/ contains yN, but also y
. Now assume M;N 2 F .yN/ and
f W M ! N is a surjective homomorphism, then the kernel, ker.f / is contained
in F .yN/: First of all it contains a filtration with subquotients isomorphic to various
shifted proper standard objects. This follows easily from the characterization in
Proposition 2.13(iv) in [45], since given any dual standard module r we can consider
the part of the part of the long exact Ext-sequence

� � � �! ExtiAk;d
.M;r/ �! ExtiAk;d

.ker f;r/ �! ExtiC1
Ak;d

.N;r/ �! � � �
for any i > 0. Then the outer terms vanish, and so does the middle. Since Œker.f /� D
ŒM� � ŒN � in the Grothendieck group, we deduce that all proper standard modules
which can occur are isomorphic to yN up to shift in the grading.

Now the projective cover in Ak;d-gmod of any object X in F .yN/ is just a direct
sum of copies of the projective cover P of F .yN/ which agrees with the projective
cover of y
. Now the definition of standard modules (39) implies that any morphism
P ! X factors through y
. Altogether, we can inductively build a minimal reso-
lution of yN in terms of direct sums of copies (with appropriate shifts) of 
. This
resolution lies actually in A
L

k;d -gmod and is a projective resolution there. Moreover,

ExtiAk;d
.y
;X/ D 0 for any X 2 F .yN/ and i > 0, we can use this resolution to

compute the graded Euler characteristic of the algebra of extensions we are looking
for.

Now consider the functor

G D HomAk;d.
y
; _/ W A
L

k;d -gmod �! mod - End.y
/
This functor is obviously exact and induced natural isomorphisms

HomAk;d.Z1; Z2/ Š HomEnd. y	/
.GZ1; GZ2/;

if Z1 is just copies of (possibly shifted in the grading) y
’s and Z2 arbitrary. Hence,
by Theorem 55, the claim is equivalent to finding a projective (=free) resolution of
the trivial one-dimensional H �.Gr.k1; d1//˝ � � �˝H �.Gr.kr ; dr //-module. Recall
from Section 4 that each factor is a complete intersection ring, hence obviously also
the tensor product. Therefore we can directly apply the methods of that section and
the statement follows.
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Remark 57. Note that the above corollary provides a infinite standard resolutions of
proper standard objects (which are in principle computable). On the other hand, the
minimal projective resolutions of standard objects are quite easy to determine and
in particular finite. This step will be done in Theorem 80. This resembles results
from [68]. Combining the above we are able to determine a projective resolution of
proper standard objects. This is necessary for explicit computations of our colored
Jones invariants from [63] as well as the more general invariants constructed in [68].

As a special case we get the following generalized version of Soergel’s endomor-
phism theorem; see [55].

Corollary 58. There is an equivalence Ak;.n/-gmod Š H �.Gr.k; n//-gmod.

Proof. In this case we have precisely one simple object and the corresponding stan-
dard module is projective.

11. Decomposition into isotypic components, Lusztig’s a-function,
and sl2-categorification

The Jones–Wenzl projector projects onto a specific summand using the fact that the
category of finite dimensional Uq-modules is semisimple. However, their categori-
fication is not. In this section we explain what remains of the original structure and
connect it to the theory of Chuang and Rouquier on minimal categorifications of
irreducible sl2-modules.

The tensor product of irreducible representations can be decomposed as a sum of
its weight spaces or as a direct sum of irreducible representations which occur in it.
In terms of categorification, we have already seen the weight space decomposition as
a decomposition of categories into blocks. Here, we give a categorical analogue of
the decomposition (10) based on Gelfand–Kirillov dimension (which is directly con-
nected with Lusztig’s a-function; see [46], Remark 42). For the definition and basic
properties of this dimension we refer to [30]. The idea of constructing such filtrations
is not new and was worked out earlier in much more generality for modules over
symmetric groups and Hecke algebras (see [27], Section 6.1.3, and [46], Section 7.2)
and over Lie algebras (see [16], Proposition 4.10, and [54], Theorem 5.8).

In this paper we want to describe this filtration in terms of the graphical calculus
from [23] with an easy explicit formula for the Gelfand–Kirillov dimension of simple
modules: basically it just amounts to counting cups in a certain cup diagram.

11.1. Graphical calculus, GK-dimension and Lusztig’s a-function. Recall from
eq. (34) the bijection between dual canonical bases elements ofV ˝n

1 and isomorphism
classes of simple objects in

Ln
kD0Ak;n-gmod up to grading shift. In [23], p. 444,

to each dual canonical basis was assigned in a unique way an oriented cup diagram.
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This finally provides a graphical description of the dual canonical basis in Vd. The
cup diagram Cup.a/ associated with v~

a is constructed as follows. First we turn the
sequence a into a sequence 	 D 	.a/ of ^’s and _’s by replacing 1 by ^ and 0 by
_. Then we successively match any ^, _ pair (in this ordering), not separated by
an unmatched ^ or _, by an arc. We repeat this as long as possible. (Note that it
is irrelevant for the result in which order we choose the pairs. It only matters that
the pairs do not enclose an unmatched ^ or _). Finally we put vertical rays for the
unmatched ^’s and _’s. The result is a cup diagram consisting of clockwise oriented
arcs and oriented rays which do not intersect. Figure 8 displays the 10 cup diagrams
associated to sequences with 3 ^’s and 2 _’s.

Figure 8. Diagrams associated with simple modules. The Gelfand–Kirillov dimensions are
8; 8; 8; 8; 8; 9; 9; 9; 9; 10.

Proposition 59. The Gelfand–Kirillov dimension of L.a/ 2 O.gln/ is equal to

GKdim.L.a// D n.n � 1/=2� c;
where c denotes the number of cups in Cup.a/.

Remark 60. The simple modules with minimal Gelfand–Kirillov dimension corre-
spond under Koszul duality to precisely the projective modules which are also tilting;
see [11], Theorem 6.1.

Before we start the proof we want to fix a bijection between the set of longest
coset representatives from Sn=Sk � Sn�k and either of the following sets

� sequences x1 > x2 > � � � > xk and xkC1 > xkC2 > � � � > xn of distinct
numbers 1 � xj � n, (1 � j � n) by mapping w 2 Sn to the sequence with
xj D w.j /;

� f^;_g-sequences of length n with k ^’s and n � k _’s by mapping w 2 Sn to
the sequence '.w/ which has _’s at the places w.1/; w.2/; : : : ; w.k/ and ^’s at
all the other places.

In the situation above the longest increasing subsequence of .w.1/; : : : ; w.n// has
length at most 2 and the total number of such length 2 subsequences equals the
number of cups in Cup.'.w//. On the other hand, the Robinson–Schenstedt al-
gorithm (see e.g. [25], Section 4, and [30], Section 5) associates to the sequence
.w.1/; w.2/; : : : ; w.n// a pair of standard tableaux of the same shape Y.w/.
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Example 61. Letn D 4, k D 2. Then the bijections from above identify the elements

_ _ ^ ^ _ ^ _ ^ _ ^ ^ _ ^ _ _ ^ ^ _ ^ _ ^ ^ _ _ (41)

with the values .x1; x2; x3; x4/ D .w.1/; w.2/; w.3/; w.4// in the following list:

.4; 3; 2; 1/ .4; 2; 3; 1/ .3; 2; 4; 1/ .4; 1; 3; 2/ .3; 1; 4; 2/ .2; 1; 4; 3/ (42)

and the Young diagrams Y.w/ of the form

: (43)

Proof of Proposition 59. Let w 2 Sn. Joseph’s formula for the Gelfand–Kirillov
dimension (see e.g. eq. 10.11(2) in [30]) states that

2GKdim.L.w � 0// D n.n � 1/ � �i .�i � 1/;
where� is the partition encoding the shape of the tableaux associated to .w.1/; w.2/;
: : : ; w.n//. If w is a longest coset representative as above, then Y.w/ has at most
two columns, the second of length c, the number of cups in Cup.'.w//, and the first
column of length n � 2c, hence GKdim.L.w:0// D n.n � 1/=2 � c. Now it is
enough to prove the following: let 	 be an integral dominant weight with stabilizer
Sk � Sn�k , then

GKdim.L.w:	// D GKdim.L.w:0//:

To see this let T �
0 W O0 ! O� and T 0

�
W O� ! O0 be translation functors to and out

of the wall in the sense of [30]; in particular T �
0 L.w:0/ D L.w � 	/. By definition,

translation functors do not increase the Gelfand–Kirillov dimension [30]. Thus

GKdim.L.w:	// D GKdim.T �
0 L.w:0// � GKdim.L.w:0//:

Also, GKdim.L.w:	// � GKdim.T 0
�
L.w:	//: Now L.w:0/ is a submodule of

T 0
�
L.w:	/, as

Homg.L.w:0/; T
0
�L.w:	// D Homg.T

�
0 L.w:0/; L.w:	//

D Homg.L.w:	/; L.w:	//D C

using the adjunction properties of translation functors, and so there is a nontrivial
map ˆ W L.w:0/ ! T 0

�
L.w:	/ which is clearly injective, since L.w:0/ is a simple

object. Thus GKdim.L.w:0// � GKdim.T 0
�
L.w:	//; see [30], Section 8.8. This

gives GKdim.L.w:	// � GKdim.L.w:0// and the statement follows.

The following is then a direct consequence of Proposition 59 and [30], Sec-
tion 10.12.

Corollary 62. Let � 2 h� be integral and dominant. If L .M.�/; L.a// 6D 0 then

GKdim .L .M.�/; L.a/// D 2GKdim.L.w:	// D n.n � 1/ � 2c:
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11.2. Filtrations. Let .Oi.gln//
k denote the full subcategory of objects having

Gelfand–Kirillov dimension at most n.n � 1/=2 � k. Then there is a filtration of
categories

Ok.gln/ D .Ok.gln//
0 
 .Ok.gln//

1 
 � � � 
 .Ok.gln//
bn=2c (44)

which induces, by [30] Section 8.6, a corresponding filtration of Serre subcategories

Ak;n-gmod D .Ak;n-gmod/0 
 .Ak;n-gmod/1 
 � � � 
 .Ak;n-gmod/bn=2c: (45)

Theorem 63 (Categorical decomposition into irreducibles). (i) The category

nM
kD0

.Ak;n-gmod/j

is (for any j ) stable under the functors yE and yF .

(ii) There is an isomorphism of Uq-modules

C.q/˝ZŒq;q�1� Œ

nM
kD0

.Ak;n-gmod/j � Š
bn=2cM
rDj

V
˚bn�2r

n�2r

where bn�2r D dim Homsl2.
xV ˝n

1 ; xVn�2r/.

(iii) Set r D Pbn=2c
tD0 bn�2t . The filtration (45) can be refined to a filtration

f0g D �r 	 �r�1 	 �r�2 	 � � � 	 �1 	 �0 D
nM

kD0

Ak;n-gmod

such that �mC1 is a Serre subcategory inside �m for allm. With the induced additional
structure from Remark 36, the quotient �m=�mC1 is, after forgetting the grading, an
sl2-categorification in the sense of [16]. It is isomorphic to a minimal one in the
sense of [16], Section 5.3.

Proof. We formulate the proof in the ungraded case, the graded case follows then
directly from the definitions. The first part is a consequence of the fact that tensor-
ing with finite dimensional modules and projection onto blocks do not increase the
Gelfand–Kirillov dimension; see [30], Section 8.8.

Consider all simple modules in xSr D Ln
kD0 Ok.gln/ of minimal GK-dimension.

By Proposition 59 these are precisely the ones corresponding to cup diagrams with
the maximal possible number, say c, of cups. Amongst these take the ones where k
is minimal, and amongst them choose L.a/minimal (in terms of the ^-_-sequences
a sequence gets smaller if we swap some ^ with some down _, moving the ^ to the
right.) Let hL.a/i be the subcategory generated by L.a/ (that means the smallest
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abelian subcategory containing L.a/ and closed under extensions). Since simple
modules have no first self-extensions, hL.a/i is a semisimple subcategory with one
simple object. Proposition 33 and Lemma 28 in particular imply that the simple
composition factors of EkL.	/ can be determined completely combinatorially using
the formula in [23], p. 445. This formula says that given Cup.a/, then the composition
factors of EkL.a/ are labeled by the same oriented cup diagram but with the rightmost
down-arrow turned into an up-arrow or by cup diagrams with more cups. If neither
is possible, then EkL.	/ is zero, see Figure 9.

Consider the smallest abelian subcategory x�r of x�0 containing L.a/ and closed
under the functorial sl2-action. Now by [16], Section 7.4.3, and by Remark 36, the
categorification of xV ˝n

1 can be refined to the structure of a strong sl2-categorification
which induces such a structure of a strong sl2-categorification on x�0. From the
combinatorics it then follows directly that this is a sl2-categorification of a simple
sl2-module where the isomorphism class ofL.a/ corresponds to the canonical lowest
weight vector. Since L.a/ is projective in hL.a/i, hence also in x�r , it is a minimal
categorification by [16], Proposition 5.26. Note that it categorifies the n � 2c C 1-
dimensional irreducible representation (with c as above). Next consider the quotient
of x�0=x�r and choose again some L.a/ there with the above properties and consider
the Serre subcategory x�r�1 in x�0 generated by x�r and this L.a/. Then the same
arguments as above show that x�r�1=x�r is a minimal categorification. In this way we
can proceed and finally get the result.

In Figure 9 we display the simple modules from
Ln

kD0.Ok.gl4// in terms of their
cup diagrams. The bottom row displays the subcategory in the bottom of our filtration,
whereas the top row displays the quotient category in the top of the filtration. The red
arrows indicate (up to multiples) the action of E on the subquotient categories giving
rise to irreducible Uq.sl2/-modules. The black arrows give examples of additional
terms under the action of E which disappear when we pass to the quotient. Note that
the filtration by irreducibles strictly refines the filtration given by the Gelfand–Kirillov
dimension.

Remark 64. The above filtration should be compared with the more general, but
coarser filtrations [16], Proposition 5.10, and [46], Section 7.2. Although the above
filtrations carry over without problems to the quantum/graded version, the notion of
minimal categorification is not yet completely developed in this context, but see [54].

The above Theorem 63 generalizes directly to arbitrary tensor products, namely
let .Ak;d-gmod/j be the Serre subcategory of Ak;d-gmod generated by all simple
modules corresponding to cup diagrams with at most j cups, then the following
holds.
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Figure 9. The filtration of V1 ˝ V1 ˝ V1 ˝ V1.

Theorem 65. (i) The category
Ln

kD0.Ak;d-gmod/j is (for any j ) stable under the
functors E and F .

(ii) There is an isomorphism of Uq-modules

C.q/˝ZŒq;q�1� Œ

nM
kD0

.Ak;d-gmod/j � Š
bn=2cM
tDj

V
˚bn�2t

n�2t

where bn�2t D dim Homsl2.
xVd; xVn�2t /:

(iii) Set r 0 D Pbn=2c
tD0 bn�2t . Then the filtration (45) induces a filtration which can

be refined to a filtration

0 	 �r 0 	 �r 0�1 	 � � � 	 �1 	 �0 D
nM

kD0

Ak;d-gmod

such that �m�1 is a Serre subcategory inside �m for all m and, after forgetting the
grading and with the induced additional structure from Remark 36, the quotient
�m=�m�1 is an sl2-categorification in the sense of [16], isomorphic to a minimal one
in the sense of [16], Section 5.3.

The case of V2 ˝ V2 is displayed in Figure 10 (note that then only cups which
connect one of the first two points with one of the last two points are allowed.)
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GKdim

8

10

12

Figure 10. The filtration of V2 ˝ V2.

12. Categorified characterization of the Jones–Wenzl projector

In this section we give a categorical version of the characterizing property of the
Jones–Wenzl projector. We first recall the special role of the cup and cap functors
and put them into the context of Reshetikhin–Turaev tangle invariants. The first
categorification of Reshetikhin–Turaev tangle invariants was constructed in [60]. The
main result there is the following

Theorem 66 ([60] Theorem 7.1 and Remark 7.2). Let T be an oriented tangle from
n points to m points. Let D1 and D2 be two tangle diagrams of T: Let

ˆ.D1/; ˆ.D2/ W Db

 nM

kD0

Ak;n-gmod
�

�! Db

 mM

kD0

Ak;m

�
-gmod

be the corresponding functors associated to the oriented tangle. Then there is an
isomorphism of functors

ˆ.D1/h3�.D1/i Š ˆ.D2/h3�.D2/i;

where �.D/ denotes twice the linking number of the diagram D.

We have to explain briefly how to associate a functor to a tangle. This is done
by associating to each elementary tangle (cup, cap, braid) a functor and checking the
Reidemeister moves. To a braid one associates a certain derived equivalence whose
specific construction is irrelevant for the present paper. We however introduce the
cup and cap functors, since they are crucial.

Note that we work here in a Koszul dual picture of the one developed in [60],
since we focus more on the quantum group action which is easier in our context.
The translation between these two picture is given by the result in [48], Theorems 35
and 39, relating the corresponding functors via the Koszul duality equivalence of
categories.
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12.1. Functors associated to cups and caps. In the following we briefly recall the
definition of the functors and the main properties which will be used later, illustrated
by a small example. For each 1 � i � n we will define now functors which send
a module to its maximal quotient which has only composition factors from a certain
allowed set.

Given such i consider the set S of isomorphism classes of simple Ak;n-modules
L.a1; a2; : : : ; an/ where the sequence a D a1; a2; : : : ; an is obtained from the se-
quence1k0n�k by applying an elementw 2 Sn which is a shortest coset representative
in Si � Sn�inSn such that each other element in the same Sn=Sk � Sn�k-coset has
again this property (see e.g. [47] for an interpretation in terms of tableaux combina-
torics). Let Ai

k;n
-mod be the full subcategory of Ak;n-mod containing only modules

with simple composition factors from the set S . There are the natural functors

"i W Ai
k;n-gmod �! Ak;n-gmod and Zi W Ak;n-gmod �! Ai

k;n-gmod;

of inclusion of the subcategory respectively of taking the maximal quotient contained
in the subcategory. Note that Zi is left adjoint to "i .

The category Ai
k;n

-mod is a graded version of the so-called parabolic category
O defined as follows: let pi be the i -th minimal parabolic subalgebra of g which
has basis the matrix units Er;s , where s � r or r; s 2 fi; i C 1g. Now replace
locally b-finiteness in Definition 27 by locally pi -finiteness and obtain the parabolic
category Oi

k
.gln/, a full subcategory of Ok.gln/; see [29], Section 9.3). We have

Oi
k
.gln/ Š Ai

k;n
- mod. In this context Zi is the Zuckerman functor of taking the

maximal locally finite quotient with respect to pi . That means we send a module
M 2 Ok.gln/ to the largest quotient in Oi

k
.gln/. A classical result of Enright and

Shelton [21] relates parabolic category O with non-parabolic category O for smaller
n. This equivalence had been explained geometrically in [57] and was lifted to the
graded setup in [50].

Proposition 67. Let n � 0. There is an equivalence of categories

�n W Ok.gln/ ! O1
kC1.glnC2/

which can be lifted to an equivalence Ak;n-gmod Š A1
kC1;nC2

-gmod, where for
n D 0 the corresponding category is equivalent to the category of graded vector
spaces.

Now there are functors (up to shifts in the internal and homological degree) pair-
wise adjoint in both directions

\i;n D �n
�1 yZ1 B O"2

yZ2 B : : : B O"iL yZi W Db.Ak;n-gmod/ �! Db.Ak;n�2-gmod/;

[i;n D O"i
yZi B : : : B O"2L yZ2 B O"1�n W Db.Ak;n-gmod/ �! Db.Ak;nC2-gmod/;



Jones–Wenzl projector and 3j -symbols 231

where we denote O"i D L"i , the standard lift of the inclusion functor compatible
with (6) and the lift yZi D LZi ŒŒ1��h�1i of the Zuckerman functor.

The following theorem means that these functors provide a functorial action of
the Temperley–Lieb category.

Theorem 68. Let j � k. There are isomorphisms

(1) y\iC1;nC2 y[i;n Š bId;
(2) y\i;nC2 y[iC1;n Š bId;
(3) y\j;n y\i;nC2 Š y\i;n y\j C2;nC2 ;

(4) y[j;n�2 y\i;n Š y\i;nC2 y[j C2;n ;

(5) y[i;n�2 y\j;n Š y\j C2;nC2 y[i;n ;

(6) y[i;nC2 y[j;n Š y[j C2;nC2 y[i;n ;

(7) y\i;nC2 y[i;n Š bIdŒŒ1��h1i ˚ bIdŒŒ�1��h�1i
of graded endofunctors of

Ln
kD0Ak;n-gmod. In the Grothendieck group, Œy\i;n� D

\i;n and Œy[i;n� D [i;n.

Proof. The first part was proven in the Koszul dual case in [60], Theorem 6.2, and then
holds by [48], Section 6.4. The second part follows directly from [4], Proposition 15,
and from Lemma 69 below.

The following lemma is the main tool in computing the functors explicitly and
categorifies (6).

Lemma 69. Let yM.a/ 2 Ak;n-gmod be the standard graded lift of the Verma module
M.a/ 2 Ok.gln/. Let b be the sequence a with ai and aiC1 removed. Then there are
isomorphisms of graded modules

LZi
yM.a/ Š

8̂̂<̂
:̂
0 if ai D aiC1,

yM.b/h�1iŒŒ�1�� 2 Ak;n�2-gmod if ai D 1, aiC1 D 0,

yM.b/ 2 Ak;n�2-gmod if ai D 0, aiC1 D 1,

Whereas O"i . yM.b// is quasi-isomorphic to a complex of the form

: : : �! 0 �! yM.c/h1i �! yM.d/ �! 0 �! : : :

where c and d are obtained from b by inserting 01 respectively 10 at the places i and
i C 1.

Proof. This follows directly from [59], Theorems 8.2 and 5.3, and Koszul duality;
see [48], Theorem 35.
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Example 70. Consider the special case n D 2, k D 1 D i . Then A1
1;1-mod has one

simple object, L.10/. Note that yL.10/ has a resolution of the form

yM.01/h1i �! M.10/:

In particular, yL.10/ is quasi-isomorphic to this resolution and so the functor O"1 cat-
egorifies the first formula in (6). On the other hand LZ1

yM.10/ D Z1
yM.10/, since

M.10/ is projective. Furthermore, Z1
yM.10/ D L.10/. To compute LZ1

yM.10/ we
apply he functor to a projective resolution and get the complex

Z1
yP .10/h1i �! Z1

yP .01/
isomorphic to M.01/h1i shifted in homological degree by 1. Hence yZ1 categorifies
the second formula in (6).

The following should be viewed as a categorification of Proposition 5 and will be
used in [63] in the proof of the categorification of the colored Jones polynomial to
show that one can slide projectors along strands.

Theorem 71. Assume F W Ln
kD0 Ak;n-gmod ! Ln

kD0 Ak;.n/-gmod is a non-zero
exact functor such that

(i) Q D .
Ln

kD0 L.kO�n/F is an idempotent (i.e. Q2 Š Q),

(ii) F commutes with theUq.sl2/-action (i.e. FH Š HF , whereH D yE ; yF ; yK),

(iii) F"i D 0 for 1 � i � n,

(iv) LZiQ D 0 for 1 � i � n.

Then F Š Ln
kD0 k O�n.

Proof. First we prove thatG D Ln
kD0 k O�n has the required properties. The first two

properties are clear by Theorem 47, and the third or fourth can be checked on the
Grothendieck group. By Theorem 47 this follows then from Proposition 5. For the
converse let L D yL.a/ be a simple object in Ak;n-gmod. Without loss of generality
concentrated in degree zero. ThenQL 6D 0 is equivalent to FL 6D 0. If we have now
a simple module of the form L D L.a/ where a contains two consecutive numbers
ai D 1, aiC1 D 0 for some i not of the form d1 C d2 C d3 C � � � C ds for 1 � s � r ,
thenL is in the image of "i (see [21], Proposition 5.5) and so annihilated by F by the
third property. Since F commutes with the Uq.sl2/-action, its restriction Fk of F
to Ak;n-gmod has image in Ak;d-gmod. Since Q is an idempotent and F non-zero,
we necessarily have F0 D 0 O�d. Thanks to Theorem 63 we see that F annihilates
the subcategory S1, i.e. rows 2–5 in Figure 9, that is all modules which are not of
maximal Gelfand–Kirillov dimension. Using again the Uq.sl2/-action, it follows
that F sends all the other simple modules to the corresponding simple module in
Ak;d-gmod. This property together with the exactness determines F uniquely up to
isomorphism by [56], p. 90.
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12.2. A simplified categorification and connection with Khovanov homology.
Instead of working with fractional Euler characteristics one could renormalize the
Jones–Wenzl projector pn for instance by multiplication with Œn�Š. This has the
disadvantage that the projection is not an idempotent anymore. It might be possible
to use this to categorify a renormalized Jones polynomial which would be much easier
to compute than ours, but there is no hope this might be a functor valued colored tangle
invariant. (Note that the categorification of the Jones polynomial presented in [36]
has unfortunately similar deficiencies.)

12.3. Example: categorification of the colored unknot

12.3.1. The unknot for color V1. Let L be the unknot. The Reshetikhin–Turaev
invariant associated to L (colored by the vector representation V1) can be obtained
as follows: we consider the Uq.sl2/ homomorphism V0 ! V1 ˝ V1 ! V0 given by
coevaluation followed by evaluation, explicitly

1 7�! v1 ˝ v0 � qv0 ˝ v1 7�! .q�1 C q/1

using the formulas (6). Hence q�1 C q is the (renormalized) Jones polynomial
associated to the unknot colored by V1. Now the associated functor F.L/ is L yZ1 O"1

which by Lemma 69 first produces a complex of length two

: : : �! 0 �! yM.01/h1i �! yM.10/ �! 0

with two graded Verma modules which then both get sent to a graded lift of trivial
module yL.10/, but shifted in homological degree,

yL.10/ŒŒ�1��h�1i ˚ yL.10/ŒŒ1��h1i: (46)

Altogether we therefore considered a functor from a semisimple graded category
(namely the graded version of the category of finite dimensionalgl2-modules with triv-
ial central character) with unique simple object yL.10/ up to grading shift which then
is mapped under F.L/ to (46) which gives �.q C q�1/ŒyL.10/� in the Grothendieck
group. Hence it categorifies �.qC q�1/ in a quite trivial way. On the other hand, we
could realize L as a pairing of a cup with a cap. The evaluation form from (4) gets
categorified by the bifunctor Ext�A1;1-gmod._:_/, see Proposition 72 below; we have

Ext�A1;1-gmod.
yL.10/; yL.10// Š CŒx�=.x�1/ categorifying 1C q2.

12.3.2. The colored unknot for color V2. We illustrate the categorification of
the colored unknot with color V2. The general case is similar and is sketched be-
low. Cabling the unknot means that we first apply two nested cup functors to C.
This produces the simple module yL.1100/. Applying the Jones–Wenzl projector
yields the simple module yL.2; 2 j 0; 2/. The evaluation from (4) gets categori-
fied by the bifunctor Ext�A2;.2;2/

._; _/ up to a grading shift. Hence we compute
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Ext�A2;.2;2/
.yL.2; 2 j 0; 2/; yL.2; 2 j 0; 2//. Lemma 69 tells as, that yL.1100/ has a

resolution of the form

yM.0011/h2i �! yM.0101/h1i ˚ yM.1010/h1i �! yM.1100/: (47)

By applying the Jones–Wenzl projector and Theorem 46 we obtain a corresponding
resolution of yL.2; 2 j 0; 2/ in terms of proper standard modules

yN.0; 2 j 2; 2/h2i �! yN.1; 2 j 1; 2/h3i ˚ yN.1; 2 j 1; 2/h1i �! yN.2; 2 j 0; 2/: (48)

On the other hand, yL.2; 2 j 0; 2/ is self-dual, hence dualizing the complex gives a
coresolution in terms of dual proper standard modules d yN.a/ D yH.a/.

Unfortunately, proper standard modules and their duals do not form dual families
with respect to our semi-linear Ext-pairing. However, the standard modules and the
dual proper standard modules form such a pairing,

ExtiAk;d


y
.a/
D rY

iD1

ki .di � ki /
E
; yH.b/

�
D
´
0 if i 6D 0,

ıa;bC if i D 0.
(49)

Therefore we want to replace (48) by a resolution in terms of standard objects.
Note that the outer terms are already standard modules,

yN.0; 2 j 2; 2/ D y
.0; 2 j 2; 2/; yN.2; 2 j 0; 2/ D y
.2; 2 j 0; 2/:

Combinatorially we have ŒyN.1; 2 j 1; 2/� D 1
Œ2�Œ2�

Œy
.1; 2 j 1; 2/� and we have the
standard resolution from Corollary 56.

Now we can compute the graded Euler characteristic of our Ext-algebra by pairing
with the dualized complex (48). Then y
.2; 0 j 2; 2/ contributes a morphism of
internal and homological degree zero, whereas y
.0; 2 j 2; 2/ contributes an extension
of homological and integral degree 4, hence together 1 C q4. On the other hand,
y
.1; 2 j 1; 2/ contributes 1

Œ2�Œ2�
q�2.q C q3/2 D q2. Therefore, the graded Euler

characteristics of the Ext-algebra equals

1C q2 C q4 D ŒŒ3��:

The value of the unknot differs now only by a total shift in the grading. Since
the cup functor is right adjoint to the cap functor up to the shift h�1i, and there are
two cups, we finally get q�2ŒŒ3�� D q�2.1 C q2 C q4/ D Œ3� as the graded Euler
characteristic of the categorified unknot colored by 2.

12.3.3. The colored unknot for arbitrary color. In general, we have to replace (48)
by a resolution with 2n Verma modules following the recipe indicated in Figure 11
for n D 3.
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yM.100110/h2i ��

����
���

���
��

yM.110100/h1i

����
���

���
��

yM.000111/h3i ��

������������

����
���

���
��

yM.010101/h2i

������������

����
���

���
��

yM.101010/h1i �� yM.111000/

yM.001011/h2i ��

������������
yM.011001/h1i

������������

Contributions to the graded Euler characteristics:

q6 q�4.q2Cq4Cq6/2

Œ3�Œ3�
D q4 q�4.qCq3Cq5/2

Œ3�Œ3�
D q2 1

Figure 11. The resolution computing the colored unknot.

13. Categorified evaluation form and pairing

A comparison of (49) with (4) using Theorem 46 and Corollary 54 implies the fol-
lowing result.

Proposition 72. The evaluation form (4) is categorified via the bifunctor

ExtiAk;d
._; _/:

The semilinear form h; i W Vn � Vn ! C.q/ from (2) can be categorified via the
following bifunctor.

Lemma 73. The anti-bilinear form ._; _/ is categorified by

.ŒM�; ŒN �/ D
X
i;j

.�1/j dim Hom.M; dN hiiŒj �/ qi ; (50)

Proof. In [24], Theorem 5.3(d), the bilinear form h_; _i0 was categorified by

hŒM�; ŒN �i D
X
i;j

.�1/j dim Hom.dN; yTw0
M hii/Œj �/ qi ; (51)

whereM ,N are objects in
Ln

kD0 Ad-gmod or in the bounded above derived category,
yTw0

is the categorification of Q…w0
and d is the graded duality categorifying D from

Remark (4). Applying the duality to (51), we take morphisms from X D d yTw0
M

to Y D d dN . Under the identifications from Remark 4, this is equivalent to taking
morphisms from M to dN . Hence the lemma follows.
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PART III

14. Categorifications of the 3j -symbol

In this section we present three categorifications of the 3j -symbols corresponding to
their three different descriptions.

14.1. In terms of an abstract graded vector space of extensions. Recall from
Section 2 the intertwiner Ak

i;j W Vi ˝ Vj ! Vk with the associated functor yAk
i;j D

O�k B ŷ k
i;j B LO�i;j , and the standard objects (39) corresponding to the standard basis

by Corollary 54. It follows now directly from Lemma 73 that the 3j -symbol can be
realized as a graded Euler characteristics as follows.

Theorem 74. Let i; j; k; r; s; t be natural numbers such that C k
i;j .r; s; t / is defined.

Then

C k
i;j .r; s; t / D

X
˛

X
ˇ

.�1/ˇ dim.ExtˇAk;.k/
.y
.t j k/; yAk

i;j
y
.r; i j s; j /h�˛i//q˛:

14.2. In terms of a complex categorifying the triangle counting. Note that under
the equivalence of Corollary 58, the standard module y
.t j n/ is mapped to the
projective (free) module H �.Gr.t; n//. To describe a categorification of the triangle
counting from Theorem 74 it is enough to describe the complex yAk

i;j
y
.r; i j s; j /

of graded H �.Gr.t; n//-modules and then take morphisms from H �.Gr.t; n// to it.
The result is a complex K� D K�.i; j; k; r; s; t / of graded vector spaces and we are
interested in its graded Euler characteristics.

Theorem 75 (Categorified triangle counting). Each graded vector space Ki in the
complex K�.i; j; k; r; s; t / comes along with a distinguished homogeneous basis Bi

labeled by certain weighted signed triangle arrangements such that the weight agrees
with the homogeneous degree and the sign agrees with the parity of the homological
degree and such that the elements from

S
i Bi are in bijection to all possible signed

weighted .i; j; k; r; s; t /-arrangements. In particular, its graded Euler characteristic
agrees with the alternating graded dimension formula in Theorem 74.

Proof. We verify the theorem by showing that a systematic counting of the triangles
from Section 2 coincides with a step by step construction of the complex.

� Start with a standard module y
.r; i j s; j / and apply the functor LO�.i;j /. The
result will be a module (Proposition 51) with a graded Verma flag given by the
combinatorics in (9).
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� The usual passage from short exact sequences to long exact homology sequences
allows us to restrict ourselves to understanding the functors on each gradedVerma
module appearing in the filtration.

� Fix such a graded Verma module. This corresponds then to fixing the arrows at
the two bottom sides of the triangle in Figure 4. Applying the cap functors maps
such a Verma module either to zero or to a Verma module shifted by one in the
homological degree, as described in Lemma 69.

� In our combinatorial picture it survives precisely when the cap creates an oriented
arc. The highest weight of the result can be read of the arrow configuration at the
top of the triangle. Applying then the projector O�.i;j / maps each Verma module
to a simple module which we identify with the unique simple 1-dimensional
module for the corresponding ring H �.Gr.t; k//. Hence if the result is non-
trivial, it corresponds to precisely one signed oriented line arrangement from
Theorem 8 and each signed oriented line arrangement is obtained precisely once.

� The signs match the homological degree shifts, whereas the q-weights match the
grading degree shifts.

Hence, our diagram counting corresponds precisely to the basis vectors of a complex
of graded vector spaces whose graded Euler characteristic agrees with the alternating
graded dimension formula in Theorem 74.

14.3. In terms of a positive categorification using the basis of projectives. Instead
of working in the basis of standard modules, we could work in the basis of projectives.
In this case the categorification is easier and explains the positive formulas from
Theorem 18. Let yP .r; i j s; j / be the projective cover of y
.r; i j s; j /. The binomial
coefficients arising in Theorem 18 gets categorified in terms of cohomologies of
Grassmannians.

Theorem 76 (Integrality). Let Dk
i;j .r; s; t / be as in Theorem 18. Then

Dk
i;j .r; s; t /

D
X

˛

dim HomH �.Gr.t;k//-gmod.H
�.Gr.t; k//; yAk

i;j
yP.r j i; s j j /h˛i/q˛

D
X

˛

dim yAk
i;j

yP.r; s/h�˛iq˛:

(52)

HenceDk
i;j .r; s; t / is the graded dimension of the vector space yAk

i;j
yP .r; s/.

Proof. The second equation follows obviously from the first. By Proposition 77
below, projective modules correspond to the twisted canonical basis. Now yAk

i;j is by
definition a composition of functors, where we first have a graded lift of the Bernstein–
Gelfand functor from the Harish-Chandra category to category O, taking projective
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objects to projective objects, then a graded Zuckerman functor which takes projective
objects to projective objects in the parabolic subcategory. The next part of the functor
is the Enright–Shelton equivalence of categories which again takes projective objects
to projective objects. The last part of the functor is at least exact on the abelian
category. Hence yAk

i;j
yP .r; s/ is a module (that means a complex concentrated in

degree zero). Using Lemma 73, we evaluate the bilinear form categorically by taking
Ext. Since yP.r; s/ is a projective object and the functor yAk

i;j
yP .r; s/ a complexes

concentrated in one homological degree we can replace Ext by Hom and the statement
follows.

The indecomposable projective objects correspond to the twisted canonical basis.

Proposition 77. We have the following equality

Œ yP .r; i j s; j /� D vr 	 vs 2 Vi ˝ Vj :

Hence, the formula in Definition 13 determines the constituents of a standard flag.

Proof. When ignoring the grading, that means setting q D 1, this was shown in [4],
p. 223. The graded version follows then by induction from Remark 35 and The-
orem 46, since the graded lifts of the standard objects appearing in yEP uniquely
determine the graded lifts in yE.k/P for any k an graded projective module P .

15. Projective resolutions of standard modules

In this section we compute projective resolutions of standard modules. To keep
formulas simpler, we do this only in the non-graded version. It generalizes in a
straight-forward (but tedious) way to the graded (or quantum) version.

Theorem 78. We have the following equality in the Grothendieck group:

Œ
.r; i j s; j /� D

8̂̂̂̂
<̂
ˆ̂̂:

X
��0

.�1/�
�
r C �

�

	
ŒP.r C �; i j s � �; j /� if r C s � j ,

X
��0

.�1/�
�
s � j C �

�

	
ŒP.r C �; i j s � �; j /� if r C s � j .

The above formula determines the Euler characteristic of

ExtA.i;j /-mod .
.r; i j s; j /; L.r C �; i j s � �; j // : (53)

The first statement of this theorem follows directly from Corollary 54 and Propo-
sition 77, but we will give an alternative proof at the end of this section. To verify
the second statement it is enough to construct a projective resolution of the standard
modules with the corresponding projectives as indicated in the theorem. Abbreviate
r �iCj
.r; i j 0; j / 2 Ar;iCj -mod by 
.r; i j 0; j /, then the following holds.
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Proposition 79. (i) Let 0 � s � j . The projective module E.s/
.r; i j 0; j / has a
filtration

MsC1 � Ms � � � � � M1 � M0 D f0g
such that

Mu=Mu�1

Š
8<:0 if u < r C s C 1� i ;


.r C s C 1 � u j i; u� 1 j j /˚.rCsC1�u
sC1�u / otherwise.

(ii) Let r � i . The projective module F .i�r/
.i; i j s; j / has a filtration

Mi�rC1 � Mi�r � � � � � M1 � M0 D f0g
such that

Mu=Mu�1

Š
8<:0 if u < i � r � s C 1;


.i � uC 1 j i; r C s � 1� i C u j j /˚.iCj �r�s�uC1
j �s / otherwise.

Proof. We prove the first part, the second is completely analogous. Recall the al-
ternative construction of standard modules from Remark 50. Since tensoring with
finite dimensional modules behaves well with respect to parabolic induction (see [4],
Lemma 3), we only have to compute the functors applied to the outer product of “big
projectives” and then induce. Moreover, by [4], Proposition 11, there is a filtration
of the functor F D E.s/ by a sequence of exact functors

F D FsC1 � Fs � � � � � F1 � F0 D 0

such that the quotientF u D Fu=Fu�1 applied to
.r; i j s; j / can be computed easily.
Concretely, F u.
.r; i j s; j // is the parabolically induced outer tensor product of
E.sC1�u/P.a/, and E.u�1/P.b/ where a is the sequence of i � r zeroes followed
by i ones and, where b is the sequence of j � s zeroes followed by s ones. Since
the functors categorifying the divided are exact, hence send projective objects to
projective objects, this is just a calculation in the Grothendieck group. One easily
verifies directly that

E.sC1�k/P.a/ D
M.rCsC1�k

sC1�k /

lD1
.P. 0; : : : ; 0;„ ƒ‚ …

i�r�s�1Ck

1; : : : ; 1„ ƒ‚ …
rCsC1�k

//;

and

E.k�1/P.b/ D P.0; : : : ; 0;„ ƒ‚ …
j �kC1

1; : : : ; 1„ ƒ‚ …
k�1

//
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respectively. Parabolically inducing the external tensor product of these two projec-
tive objects gives just a direct sum of

�
rCsC1�k

sC1�k

�
many copies of the standard module


.r C s C 1 � k; i j k � 1; j / which is one layer of the filtration we wanted to
establish.

Now we are prepared to construct a projective resolution of the standard object

.r; i j s; j /. (Similar constructions and arguments appear in [68], Proposition 3.15.)
Set x D mC n � d1 � � � � � dm�1 and define

ar;s
n;m D

X
.d1;:::;dm/

d1C���CdmDmCn

�
r CmC n

d1

	�
r CmC n � d1

d2

	
: : :

�
r C x

dm

	
;

br;s
n;m D

X
.d1;:::;dm/

d1C���CdmDmCn

�
j � s CmC n

d1

	�
j � s CmC n � d1

d2

	
: : :

�
j � s C x

dm

	
:

(54)

Theorem 80. The standard module
.r; i j s; j / has a minimal projective resolution

0 �! Ql �! : : : �! Q1 �! Q0 �! 
.r; i j s; j / �! 0:

where Q0 D P.r; i j s; j / and the other components are as follows. (i) In case
r C s � j we have l D s and for s � m < 0,

Qm D
s�mM
nD0

P
˚a

r;s
n;m

rCmCn;s�m�n :

(ii) In case r C s � j we have l D r and for r � m > 0

Qm D
s�mM
nD0

P
˚b

r;s
n;m

rCmCn;s�m�n :

Proof. Assume that r C s � j . The other case is similar. We construct a resolution
by induction on s. For the base case s D 0, the object 
.r; i j s; j / is projective
and there is nothing to prove. Assume by induction that the proposition is true for all

.p; i j q; j /where q < s. By Proposition 79, and the induction hypothesis, we have
a projective resolution for the standard subquotients of MsC1 D E.s/
.r; i j 0; j /,
except for the top quotient MsC1=Ms D 
.r; i j s; j /. Explicitly, the induction
hypothesis gives the following resolution of Ms:

0 �! Vs �! : : : �! Vm �! : : : �! V1 �! Ms �! 0
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where

Vm D
s�mM
nD0

P
˚c

r;s
n;m

rCmCn;s�m�n

with

cr;s
n;m D

�
r C 1

1

	
a

rC1;s�1
n;m�1 C

�
r C 2

2

	
a

rC2;s�2
n�1;m�1 C � � �C

�
r C nC 1

nC 1

	
a

rCnC1;s�n�1
0;m�1 :

By Proposition 77 and Definition 13 E
.s/
r 
.r; i j 0; j / Š P.r; i j s; j /. Finally, take

the cone of the morphism Ms ! P.r; i j s; j /. Then Lemma 82 below gives the
asserted projective resolution of 
.r; i j s; j /.
Lemma 81. The following holds:

a
r;s
n;1 � ar;s

n�1;2 C a
r;s
n�2;3 � � � � C .�1/nar;s

0;nC1 D .�1/n
�
r C nC 1

nC 1

	
and

b
r;s
n;1 � b

r;s
n�1;2 C b

r;s
n�2;3 � � � � C .�1/nbr;s

0;nC1 D .�1/n
 
j � s C nC 1

nC 1

!
:

Proof. Assume that no entry in a tuple d D .d1; : : : ; dm/ is zero. Consider

a
r;s
nC1�m;m D

X
dD.d1;:::;dm/

d1C���CdmDnC1

�
r C nC 1

d1

	�
r C nC 1 � d1

d2

	
: : :

�
r C nC 1 � d1 � � � � � dm�1

dm

	
:

Expanding these binomial coefficients gives

a
r;s
nC1�m;m D

�
r C nC 1

nC 1

	 X
dD.d1;:::;dm/

d1C���CdmDnC1

�
nC 1

d1; : : : ; dm

	
: (55)

Then we have

nC1X
mD1

.�1/mC1a
r;s
nC1�m;m D

�
r C nC 1

nC 1

	 nC1X
mD1

.�1/mC1
X

dD.d1;:::;dm/

d1C���CdmDnC1

�
nC 1

d1; : : : ; dm

	
:

This sum is .�1/n�rCnC1
nC1

�
since

nC1X
mD1

.�1/mC1
X

dD.d1;:::;dm/

d1C���CdmDnC1

 
nC 1

d1; : : : ; dm

!
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counts the number of permutations of the set f1; : : : ; n C 1g whose descent set is
f1; : : : ; n C 1g times .�1/n. See Exercises 4.7.4 and 4.7.6 of [9] for more details.
The proof of the second identity is similar to that of the first.

The following are recursion formulas for the numbers defined in (54).

Lemma 82. We have

ar;s
n;m D

�
r C 1

1

	
a

rC1;s�1
n;m�1 C

�
r C 2

2

	
a

rC2;s�2
n�1;m�1

C � � � C
�
r C nC 1

nC 1

	
a

rCnC1;s�n�1
0;m�1

and

br;s
n;m D

�
j � s C 1

1

	
b

rC1;s�1
n;m�1 C

�
j � s C 2

2

	
b

rC2;s�2
n�1;m�1

C � � � C
�
j � s C nC 1

nC 1

	
b

rCnC1;s�n�1
0;m�1 :

Proof. By equation (55),

ar;s
n;m D

 
r C nCm

nCm

! X
.d1;:::;dm/

 
mC n

d1; : : : ; dm

!

where the sum is over all tuples .d1; : : : ; dm/ such that no dp is zero and

d1 C � � � C dm D mC n:

The right hand side of the lemma is

nX
�D0

�
r C � C 1

� C 1

	
a

rC�C1;s���1
n��;m�1

D
nX

�D0

�
r C � C 1

� C 1

	 X
.d1;:::;dm�1/

�
r CmC n

mC n � � � 1

	
.mC n � � � 1/Š
d1Š : : : dm�1Š

where the second summation is over tuples .d1; : : : ; dm�1/ such that

d1 C � � � C dm�1 D mC n � � � 1
and no dp is zero. This simplifies to�

r CmC n

mC n

	 nX
�D0

X
.d1;:::;dm�1/

.mC n/Š

.� C 1/Šd1Š : : : dm�1Š
:

This is easily seen to be equal to ar;s
n;n. The identity for br;s

n;m is similar.
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Proof of Theorem 78. By Proposition 80 we have

Œ
.r; i j j; s/�

D ŒP.r; i j j; s/�C
s�1X
nD0

..�ar;s
n;1 C a

r;s
n�1;2 C � � � C .�1/nC1a

r;s
0;nC1/

ŒP.r C nC 1; i j s � n � 1; j /�/:

Then by Lemma 81, this is equal to:

ŒP.r; i j j; s/�C
s�1X
mD0

.�1/nC1

�
r C nC 1

nC 1

	
ŒP.r C nC 1; i j s � n � 1; j /�

which gives the proposition after reindexing. The second equality follows similarly.

Theorems 78 and 52 give a categorical interpretation of Theorem 18.

16. 3j -symbols as generalized Kazhdan–Lusztig polynomials

Recall from Theorems 33 and 46 that simple modules correspond to dual canonical
basis elements. The graphical calculus from Section 11.1 associates to each dual
canonical basis element an oriented cup diagram. Forgetting the orientations we
obtain a cup diagram which we can view as a functor via Theorem 66. The following
theorem explains the precise connection between the different interpretations.

Theorem 83. Let a be a sequence of n � k zeroes and k ones. Let yL.a/ be the
corresponding simple object in Ak;n-gmod, concentrated in degree zero. Forgetting
the orientations in Cup.a/ we obtain a cup diagram C.a/. Assume that the cup
diagram has the maximal possible number minfk; n � kg of cups. Let F be the
functor associated via Theorem 66. Then the source category for F is equivalent
to the derived category of graded vector spaces. Let C be the 1-dimensional vector
space concentrated in degree zero. Then

F.C/ Š yL.a/:

Proof. The cup functors are just a composition of exact Enright–Shelton equivalences
and an exact inclusions, hence map simple modules to simple modules. The highest
weight can easily be computed using (6) and the source category is by the Enright–
Shelton equivalence equivalent to a semisimple category with one simple object.
(Alternatively, the theorem can be deduced from [12], Lemma 4.9 and Theorem 1.2,
by Koszul duality).
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Theorem 83 and Proposition 43 show that the diagrams from Figure 12 symbolize
uncategorified shifted dual canonical basis elements, and categorified simple objects.

Figure 12. Cup diagrams turn into simple objects.

Recall the definition of 3j -symbols from Definition 7. By bending the picture (13)
with the three Jones–Wenzl projectors attached we obtain the last diagram in Figure 12
where the projectors are �i , �j , �k respectively. The number of cups is given by
formula (12). The 3j -symbol can alternatively be defined by Figure 13.

r i�r k�t t s j �s

Figure 13. The renormalized 3j -symbol yCk
i;j
.r; s; t/.

Proposition 84. The 3j -symbol C k
i;j .r; s; t / equals the evaluation yC k

i;j .r; s; t / of the

diagrams in Figure 13 multiplied with c D .�1/�r.�q/s�jqr.i�r/qs.j �s/:

Proof. We first argue in the classical case q D 1. Take the diagram on the left
hand side of Figure 13 without putting the two outer projectors on top, hence we get
an intertwiner f with values in V ˝i

1 ˝ Vk ˝ V
˝j

1 . Let f .1/ be its value written
in our standard basis. Let p be the projection of f .1/ to the space spanned by
all basis vectors where the number of v0 factors appearing in V ˝i

1 is r and the
number of v0 factors appearing in V ˝j

1 is s. Reading from bottom we first apply
the nested cups which gives a vector h in V ˝i

1 ˝ V ˝i
1 ˝ V

˝j
1 ˝ V

˝j
1 . This is a

linear combination of basis vectors, where only those survive at the end which are not
annihilated by p. The key point is now that the middle part V ˝i

1 ˝ V
˝j

1 determines
already the whole vector and agrees with the image of �i ˝ �j .vr ˝ vs/. Putting back
the two Jones–Wenzl projectors, the claim follows for q D 1 now directly from the
definitions. For generic q let v D va ˝ vb ˝ vc ˝ vd be a basis vector occurring in
h 2 .V ˝i

1 /˝ .V ˝i
1 /˝ .V

˝j
1 /˝ .V

˝j
1 /. By a direct calculation is follows that the
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coefficient differs from the corresponding vector in �i ˝ �j .vr ˝ vs/ by the scalar

.�q/n0.a/.�q/n1.d/ql.a/ql.d/

wheren0 respectively n1 counts the number of 0’s respectively 1’s. Putting the Jones–
Wenzl projectors gives an extra factor qr.i�r/q�l.a/qs.j �s/q�l.d/ and the statement
follows.

Example 85. The non-zero evaluations yC k
i;j .r; s; t / for i D j D k D 2 are

yC 2
2;2.1; 1; 1/D q2 � q�2; yC 2

2;2.1; 0; 0/D q; yC 2
2;2.2; 0; 1/D �q3;

yC 2
2;2.0; 1; 0/D �q; yC 2

2;2.2; 1; 2/D q; yC 2
2;2.0; 2; 1/D q�1;

yC 2
2;2.1; 2; 2/D �q:

This should be compared with Example 9.

Let L be the simple object associated to the last diagram 12 where the projectors
are �i , �j , �k respectively. This is an object in Ad-gmod, where d D .i; j; k/. With
this notation the categorification is then the following.

Theorem 86 (3j -symbols as generalize Kazhdan–Lusztig polynomials). The 3j -
symbol C k

i;j .r; s; t / is the graded Euler characteristic of

Ext�Ad-gmod.
y
.r; i j s; j j t; k/; L/h�i (56)

with � D c � r.i � r/ � j.s � j / � t .k � t / as in Lemma 84.

Proof. By Proposition 84 it is enough to categorify the evaluation from Figure 13.
Our desired categorification will then just differ by a shift in the grading by �c. We
start from the bottom of the diagram and translate it into categorical objects. By the
arguments above, the cup diagram with the Jones–Wenzl projectors attached presents
a simple object L in Ad-gmod corresponding to the shifted dual canonical basis. Let
L0 D Lhˇi be concentrated in degree zero. Hence ˇ D c � � . Now putting the
arrows on top of the diagram means (not categorified) that we apply the evaluation
form (4) picking out the coefficient in front of the dual standard basis vector indicated
at the top of the diagram. By (35) the proper standard modules yN.r; i j s; j j t; k/
correspond to the shifted dual standard basis vector. Their isomorphism classes form
a basis of the Grothendieck group and so we need a categorical way to pick out a
specific dual standard vector in ŒL� or equivalently a shifted dual standard vector in
the expression for ŒL0�. The main tool here is a homological fact for properly stratified
structures: the duals d y
 of standard modules y
 are homological dual to the proper
standard modules N. By this we mean Exti .N; d y
/ D 0 for any standard module
y
 and any proper standard N for i > 0, and Hom.N; d y
/ D 0 unless N D N.a/
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and 
 D 
.a/ for the same a; see [18], Theorem 5. The Exts can be taken here
either in the category Ad-gmod or in the ungraded category Ad- mod. Therefore, the
evaluation of the diagram from Figure 13 equals the Euler characteristic of

Ext�Ad
-gmod.L0; d y
/:

Applying the contravariant duality the latter equals

Ext�Ad
-gmod.y
;L0/ D Ext�Ad

-gmod.y
;L/h�ˇi:
Hence the graded Euler characteristic of

Ext�Ad
-gmod.y
;L/h�ˇ C ci

equals C k
i;j .r; s; t /. Since �ˇ C c D � the statement of the theorem follows.

Note that the standard objects inAk;n-gmod agree with the proper standard objects
and are just the graded lifts of the Verma modules. In this case the Euler characteristic
of the space Ext�

Ak;n-gmod.
y
;L/ of extensions between a standard object and a sim-

ple object is given by certain parabolic Kazhdan–Lusztig polynomials. Lascoux and
Schützenberger [43], found explicit formulas for these polynomials; see also [11],
Section 5. Hence our results introduce new generalized Kazhdan–Lusztig polynomi-
als for the categories of Harish-Chandra modules. The formulas of Theorem 8 are
as far as we know the first explicit formulas for dimensions of extensions between
standard and simple Harish-Chandra modules.

17. Example: categorified 3j -symbol

We finish the study of 3j -symbols by describing the generalized Kazhdan–Lusztig
polynomials in case i D 2, j D k D 1. Using Theorem 8 one easily calculates the
3j -symbols

C 1
2;1.2; 0; 1/D �q�1; C 1

2;1.1; 0; 0/D �q�1;

C 1
2;1.1; 1; 1/D q; C 1

2;1.0; 1; 0/D 1:

and the evaluations

yC 1
2;1.2; 0; 1/D q2; yC 1

2;1.1; 0; 0/D �1;
yC 1

2;1.1; 1; 1/D �q; yC 1
2;1.0; 1; 0/D 1:

Now the category A4;2-gmod has the projective modules

yP .1100/; yP.1010/; yP.0110/; yP.1001/; yP.0101/; yP.0011/:
The projective modules in A.2;1;1/;2-gmod are then

yP .1100/; yP.0110/; yP.0101/; yP.0011/I
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in terms of standard modules

Œ yP .1100/� D Œ
.1100/�;

Œ yP .0110/� D Œ
.0110/�C q2Œ
.1100/�;

Œ yP .0101/� D Œ
.0101/�C qŒ
.0110/�C .q C q3/Œ
.1100/�;

Œ yP .0011/� D Œ
.0011/�C qŒ
.0101/�C q2Œ
.0110/�C q4Œ
.1100/�:

There are projective resolutions of the form

yP .1100/ �!y
.1100/;
yP.1100/h2i �! yP .0110/ �!y
.0110/;

yP.1100/h1i ˚ yP.0110/h1i �! yP .0101/ �!y
.0101/;
yP .1100/h2i ˚ yP .0110/h2i �! yP.0101/h1i �! yP .0011/ �!
.0011/:

Setting L D yL..1; 1/; 2 j 0; 1 j 0; 1/, the values of the Poincaré polynomials of
Ext.y
;L/ for y
 running through the above list of standard objects are 1, �q2, �q
and q2 respectively. On the other hand setting � D r.i�r/s.j �s/t.k� t /we obtain

yC 1
2;1.0; 1; 0/q

� D 1; yC 1
2;1.1; 1; 1/q

� D �q2;

yC 1
2;1.1; 0; 0/q

� D �q; yC 1
2;1.2; 0; 1/q

� D q2:

This confirms Theorem 86.

18. Categorification of 6j -symbols or tetrahedron network

Consider the ‚-network displayed in Figure 14. Assume the three projectors from
left to the right are �i , �j , �k with i D 2a, j D 2b, k D 2c and denote its value
by ‚.i; j; k/. The value of the network is explicitly given by the following formula
(see [34], Section 3.1.7).

Lemma 87. The value of the ‚-network is

‚.i; j; k/ D .�1/aCbCc ŒaC b � c�ŠŒa � b C c�ŠŒ�c C aC b�ŠŒaC b C c C 1�Š

Œ2a�ŠŒ2b�ŠŒ2c�Š
:

In case i D j D n, k D 0 we get .�1/nŒnC 1�, the value of the n-colored unknot.

Categorically this network can be interpreted naturally as a complex of graded
vector spaces (namely – analogously to Theorem 83 – a functor F applied to C,
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but now with values in the derived category of graded vector spaces). Even more, it
comes along with a natural bimodule structure and after an appropriate shift in the
grading, with a natural algebra structure.

Figure 14. Theta networks turn into Ext groups or even Ext algebras of simple objects.

The ‚-network is the Euler characteristic of the Ext-algebra of a simple Harish-
Chandra bimodule.

Theorem 88. LetL be the simple module symbolized by the last picture in Figure 12.
Then the‚-network displayed in Figure 14 is, up to an overall shift by j hj i for some

j , isomorphic as (possibly infinite) graded vector space to Ext�Ak;d
.L; L/. Hence,

incorporated this shift, it carries a natural algebra structure. In its natural occurrence
without shift it is a bimodule over the above algebra.

Corollary 89. In particular, the ‚ value from Lemma 87 is up to an overall power
of �q the graded dimension of an Ext-algebra (possibly infinite dimensional).

Corollary 90. In case of the colored unknot with color n, the value ŒŒn�� is the graded
dimension of an Ext-algebra (possibly infinite dimensional).

Proof of Theorem 88. The bottom half of the network represents by Lemma 83 a
simple object L realized as L Š F.C/ for some functor F . Hence the value of the
network is either GF.C/, where G is (up to shifts) the left adjoint functor of F , or
alternatively we can use the above theorem and realize it as evaluation of the pairing
hŒL�; ŒL�i which is the graded Euler characteristic of the algebra Ext�.FL; FL/ up
to shifts.

Figure 15 represents a tetrahedron network. The crosses indicate the four faces
clued together at the six edges indicated by the boxes. As drawn, the network can be
read from bottom to top as composition of intertwiners. Using the functors introduced
above categorifying the intertwiners, this network turns into an infinite complex of
graded vector spaces categorifying the 6j -symbol. In general, its value is hard to
compute, even its Euler characteristics.
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e

a f

b

d

c

�

�

�

�

Figure 15. The tetrahedron network (the numbers indicate that there are that many copies of
the strand). The Jones–Wenzl projectors correspond to the 6 vertices of the tetrahedron.

Theorem 91. Assume we are given a tetrahedron network T as in Figure 15. De-
pending on the labels Ri we can find some positive integer n and a composition d of
n and graded An;d-modules M , N such that the value of T equals the graded Euler
characteristics of Ext�An;d

.M;N/.

Using the results from [63] it follows that, up to isomorphism in the derived
category of complexes of graded vector spaces, the value of the tetrahedron does not
depend on how we draw the network. In particular we can always start with the lower
half of a tetrahedron network from the top as well as the bottom. In other words it is
possible to choose M D L or N D L with L as in Theorem 88 and deduce that the
categorification of the tetrahedron is a module over the Ext-algebra categorifying the
‚-network of either face of the tetrahedron.

The 6j -symbol represented by the tetrahedron network is in general a q-rational
number and by Theorem 88 can be viewed as a graded Euler characteristic. The
parallel result for the 3j -symbol is Theorem 74. In the latter case the fractional
graded Euler characteristic turned out to be a q-integer and had a purely combinatorial
interpretation. This fact leads to the natural question of the existence of an integral
version of 6j -symbols and its combinatorial and categorial interpretation. A detailed
study of these question will be presented in a subsequent paper.
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