
Quantum Topol. 3 (2012), 255–291
DOI 10.4171/QT/29

Quantum Topology
© European Mathematical Society

Modular functors are determined by their genus zero data
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Abstract. We prove in this paper that the genus zero data of a modular functor determines
the modular functor. We do this by establishing that the S-matrix in genus one with one point
labeled arbitrarily can be expressed in terms of the genus zero information and we give an
explicit formula. We do not assume the modular functor in question has duality or is unitary,
in order to establish this.
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1. Introduction

A modular functor is a functor Z from the category of smooth surfaces with certain
extra structure, namely the category of labeled marked surfaces, to the category of
finite-dimensional vector spaces over the complex numbers. In Section 2, we shall

1This article was partially supported by the center of excellence grant “Center for Quantum Geometry
of Moduli Spaces” from the Danish National Research Foundation and by Grant-in-Aid for Scientific
Research No. 19340007 from JSPS (Japan Society for the Promotion of Science).



256 J. E. Andersen and K. Ueno

give the precise axioms for a modular functor following K. Walker’s topological
reformulation [34] of G. Segal’s axioms for a conformal field theory [28].

The objects of the category of labeled marked surfaces are pairs consisting of
a marked surface and a labeling. A marked surface here refers to a quadruple of
structures: a smooth closed oriented surface, a finite set of “marked” points, a tangent
direction at each of the marked points together with a Lagrangian subspace of the
first homology of the surface. Labeled means that each marked point of the surface is
labeled by an element from a certain finite label-set ƒ which is specific to the modular
functor Z. This label set is further required to have an involution � and a preferred
0 2 ƒ, such that 0� D 0. By the factorization property of a modular functor, we
can express the vector space associated to any label marked surface as a direct sum
of tensor products of vector spaces associated to 2-spheres with three marked points
labeled appropriately (see Section 3 for further details). This is done by choosing a
pair of pants decomposition of the surface. Let S2 D C \f1g and vt be the direction
along the positive real axis at t 2 R[1 � S2. We let ‡ D .S2I 0; 1; 1I v0; v1; v1/

as illustrated in Figure 1. Note that, for simplicity, we do not illustrate the tangent
vectors on any of our figures. For �; �; � 2 ƒ, we define

Z�;�;� D Z.‡; �; �; �/:

0 1

1

��

�

Figure 1. A sphere with three labeled marked points.

Any two pair of pants decompositions of a given surface can be obtained, one
from the other by a sequence of flips. Two kinds of flips are needed. The first one
is the change from the pair of pants decomposition of the 2-sphere with four marked
points given by �1 to the one given by �2 in Figure 2. In Figure 2 we have indicated
labels next to the two curves on the surface. These indicate the corresponding labels
after factorization in the respective curves. We will use this convention throughout
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Figure 2. Two pair of pants decompositions of a sphere with four labeled marked points.

the paper. As will be explained in Section 3, these two different factorizations of the
same surface gives us an isomorphism

F
h

� �

� �

i
W

M
�2ƒ

Z�;�;� ˝ Z��;�;� �!
M
Q�2ƒ

ZQ�;�;� ˝ ZQ��;�;� :

The second kind of flip is the change from the pair of pants decomposition of the
torus with one marked point given by ˛ to the one given by ˇ in Figure 3. For each
label � 2 ƒ, we get an isomorphism

S.�/ W
M

�

Z�;�;�� �!
M

�

Z�;�;�� :

For � D 0, we simply write S D S.0/. From the axioms of a modular functor, it
follows that dim Z0;�;�� D 1 for all � 2 ƒ. Further, we will see in Section 3 that the
axioms of a modular functor determine a unique non-zero vector in Z0;�;�� , and so
we get a matrix S D .S�;�/�;�2ƒ. A flip relating two pair of pants decompositions
gives an isomorphism between the corresponding two direct sums of tensor products
of the vector spaces Z�;�;� for appropriately varying �; �; � 2 ƒ. For the first flip,
the corresponding isomorphism is clearly determined by the functor applied to genus
zero surfaces with less than or equal to four marked points. On the other hand, the
second flip involves a genus one surface with one marked point. However, we will
prove in this paper that S.�/ for all � 2 ƒ is determined by the restriction of the
modular functor to genus zero surfaces. We call this restriction to genus zero surfaces
of a modular functor the genus zero data of the modular functor.
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Figure 3. Two pair of pants decompositions of a torus with one labeled marked point.

Theorem 1.1. The genus zero data of any modular functor determines the modular
functor.

We stress that we do not assume that our modular functor satisfies neither the
orientation reversal axiom (Axiom MF-D, Section 2) nor the unitarity axiom (Ax-
iom MF-U, Section 2) in order to prove this theorem; hence, it applies to modular
functors which are not known to admit either duality structure or a unitarity structure.
Please see Section 2 for the precise axioms of a modular functor.

The key ingredient in the proof of this theorem is what we call the curve operators.
Given an oriented, simple, closed curve � on a labeled marked surface and a label
�� 2 ƒ, we construct an endomorphism of the vector space the modular functor
associates to the labeled marked surface. Loosely speaking, they are obtained by
creating two points labeled by �� and �

�
� near each other along � . Move one of them

around � and then annihilate them again. For the precise definition see Sections 4.
The next step is to express the automorphism induced by a Dehn-twist in a simple
closed curve as a linear combination of curve operators for the same curve. In fact this
linear combination is seen to be universal by factoring along the boundary of a tubular
neighborhood of the curve. Moreover, it is then clear that the linear combination is
also determined by genus zero data. Now, since curve operators are determined
completely by genus zero data, as we argue in Section 6, we see that the Dehn-twist
in any simple closed curve is determined by genus zero data. Using the standard
presentation of the mapping class group of a surface of genus one with one marked
point, we conclude that the matrices S.�/ are also determined by the genus zero data.

In fact, we will establish the following explicit formula for S.�/. Pick a basis
�j .�; �; �/, j D 1; : : : dim Z�;�;� for Z�;�;� . For � D �� and � D 0, we will
assume that �1.0; �; ��/ is this preferred vector in Z0;�;�� , as discussed above. We
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then define

F�;Q�
h

� �

� �

i
.�i .�; �; �/ ˝ �j .��; �; �// D

X
k;l

F�;Q�
h

� �

� �

ikl

ij
�k. Q�; �; �/ ˝ �l. Q��; �; �/

and
S.�/.�i.�; �; �� // D

X
�;j

S.�/
�;j
�;i �j .�; �; ��/:

The determination of these linear maps will be discussed in more detail in Section 3.
We further need the following three self-diffeomorphisms of ‡ . The diffeomorphism
R W ‡ ! ‡ is R.z/ D .z � 1/=z. It induces a linear isomorphism

R W Z�;�;� �! Z�;�;�

with the matrix presentation

R.�i.�; �; �// D
X

j
Rij �j .�; �; �/:

The diffeomorphism B W ‡ ! ‡ is the composition of z 7! z=.z � 1/ with a
negative half-twist at 0 and 1 and a positive half-twist at 1. Again, it induces a linear
isomorphism

B W Z�;�;� �! Z�;�;�

with the matrix presentation

B.�i.�; �; �// D
X

j
Bij �j .�; �; �/:

Finally, the Dehn twist in a circle centered in 0 and of a radius bigger than 1

induces a further endomorphism of ‡ . In particular, it induces an isomorphism of
Z0;�;�� to itself. But since this space is 1-dimensional, this isomorphism is simply
given by multiplication by a non-zero complex number d�.

We introduce the so-called twisted F -isomorphism

zF�;Q�
h

� �

� �

i
W

M
�2ƒ

Z�;�;� ˝ Z�;��;� �!
M
Q�2ƒ

Z�;�;Q� ˝ ZQ��;�;�

defined by
zF�;Q�

h
� �

� �

i
D .BR2 ˝ Id/F�;Q�

h
� �

� �

i
.Id ˝BR/:

In the matrix presentation we get

zF�;Q�
h

� �

� �

ijm

ki
D

X
p;r;s;w

RipBprR2
swBwj F�;Q�

h
� �

� �

ism

kr
:
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Theorem 1.2. For any modular functor we have the following equation:

S.�/
�;j
�;i D "

X
�;m;k

d �1
� d�S��;0

zF��;�

h
� ��

�� �

ijm

ki
Rmk :

Here, " 2 C� is the so-called central charge of the modular functor Z as defined in
Section 2, which is of course clearly determined by the genus zero data. Theorem 1.2
alone does not completely prove that S.�/ is determined by genus zero data, since
it involves S��;0. However, we will in fact first argue that S.�/ for all � 2 ƒ is

determined by genus zero data, in particular S��;0 D S.0/
0;1

��;1
.

This paper is organized as follows. We present the axioms of a modular functor
in Section 2. In Section 3, we recall the notion of basic data as defined by Kevin
Walker. The curve operators are introduced in Section 4. In Section 5, we establish
that the Dehn-twist in any curve can be expressed as a linear combination of the curve
operators associated to the curve. This rests on Proposition 5.2, which is proved in
Section 7. In Section 6, it is argued that the Dehn-twist in the ˇ on the genus one
surface in Figure 3 is determined via genus zero data with respect to the factorization
along the curve ˛. This combined with relations in the mapping class group of a
once marked genus one surface gives a proof of Theorem 1.1. A couple of formulae
involving F and S are derived in Section 7 followed by a proof of Proposition 5.2.
In Section 8, we derive the formula for the S.�/-matrix.

This paper is the third paper in a series of four, the other three being [11], [12],
and [13]. In the first two papers, we construct modular functors from Conformal Field
Theory, and in the fourth, we identify the resulting modular functors which underlie
the Reshetikhin–Turaev TQFT [26], [27], and [30] via the Skein theory realizations
of Blanchet, Habegger, Masbaum and Vogel [17], [18], and [16]. In that paper we
first identify the genus zero part of the two theories. We then rely on the result of this
paper to extend this identification to all genera. For applications of this identification
see e.g. [1], [10], [2], [3], [4], [8], [6], and [7].

2. The axioms for a modular functor

In this section, we shall give the axioms for a modular functor. These are due to Moore
and Seiberg [24] and [25] and to G. Segal [28]. We present them here in a topological
form, which is due to K. Walker [34]; see also [21]. We note that similar, but different,
axioms for a modular functor are given in [30] and in [15]. It is, however, not clear
if these definitions of a modular functor are equivalent to the one presented here.

Let us start by fixing a bit of notation. By a closed surface, we mean a smooth,
real, 2-dimensional manifold. For a closed oriented surface † of genus g, we have
the non-degenerate skew-symmetric intersection pairing

.�; �/ W H1.†; Z/ � H1.†; Z/ �! Z:
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Suppose † is connected. In this case, a Lagrangian subspace L � H1.†; Z/ is
by definition a subspace, which is maximally isotropic with respect to the intersec-
tion pairing. A Z-basis . Ę; Ě/ D .˛1; : : : ; ˛g ; ˇ1; : : : ˇg/ for H1.†; Z/ is called a
symplectic basis if

.˛i ; ǰ / D ıij ; and .˛i ; j̨ / D .ˇi ; ǰ / D 0;

for all i; j D 1; : : : ; g.
If † is not connected, then H1.†; Z/ D L

i H1.†i ; Z/, where †i are the con-
nected components of †. In this paper we define a Lagrangian subspace of H1.†; Z/

to be a subspace of the form L D L
i Li , where Li � H1.†i ; Z/ is Lagrangian.

Likewise, a symplectic basis for H1.†; Z/ is a Z-basis of the form .. Ęi ; Ěi//, where
. Ęi ; Ěi/ is a symplectic basis for H1.†i ; Z/.

For any real vector space V , we define P V D .V � f0g/= R C:

Definition 2.1. A pointed surface .†; P / is an oriented closed surface † with a finite
set P � † of points. A pointed surface is called stable if the Euler characteristic of
each component of the complement of the points P is negative. A pointed surface is
called saturated if each component of † contains at least one point from P .

Definition 2.2. A morphism of pointed surfaces f W .†1; P1/ ! .†2; P2/ is an
isotopy class of orientation preserving diffeomorphisms which maps P1 to P2. Here
the isotopy is required not to change the induced map of the first order Jet at P1 to
the first order Jet at P2.

Definition 2.3. A marked surface † D .†; P; V; L/ is an oriented closed smooth
surface † with a finite subset P � † of points with projective tangent vectors
V 2 tp2P P Tp† and a Lagrangian subspace L � H1.†; Z/.

The notions of stable and saturated marked surfaces are defined just like those of
pointed surfaces.

In the case of genus zero, we omit the Lagrangian subspace from the discussion
since, in this case, it can only be zero subspace.

Definition 2.4. A morphism f W †1 ! †2 of marked surfaces †i D .†i ; Pi ; Vi ; Li /

is an isotopy class of orientation preserving diffeomorphisms f W †1 ! †2 that
maps .P1; V1/ to .P2; V2/ together with an integer s. Hence we write f D .f; s/.

Remark 2.5. Any marked surface has an underlying pointed surface, but a morphism
of marked surfaces does not quite induce a morphism of pointed surfaces, since we
only require that the isotopies preserve the induced maps on the projective tangent
spaces.

Remark 2.6. If in the notation above, we only specify f W †1 ! †2, then it is
assumed that the integer s D 0.
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Let 	 beWall’s signature cocycle for triples of Lagrangian subspaces of H1.†; R /;
see [35].

Definition 2.7. Let f1 D .f1; s1/ W †1 ! †2 and f2 D .f2; s2/ W †2 ! †3 be
morphisms of marked surfaces †i D .†i ; Pi ; Vi ; Li / then the composition of f1 and
f2 is

f2f1 D .f2f1; s2 C s1 � 	..f2f1/�L1; f2�L2; L3//:

With the objects being marked surfaces and the morphism and their composition
being defined as in the above definition, we have constructed the category of marked
surfaces.

The mapping class group 
.†/ of a marked surface † D .†; L/ is the group
of automorphisms of †. One can prove that 
.†/ is a central extension of the
mapping class group 
.†/ of the surface † defined by the 2-cocycle c W 
.†/ !
Z, c.f1; f2/ D 	..f1f2/�L; f1�L; L/. One can also prove that this cocycle is
equivalent to the cocycle obtained by considering two-framings on mapping cylinders;
see [14] and [5].

Notice also that for any morphism .f; s/ W †1 ! †2, one can factor

.f; s/ D ..Id; s0/ W †2 ! †2/ B .f; s � s0/

D .f; s � s0/ B ..Id; s0/ W †1 ! †1/:

In particular .Id; s/ W † ! † is .Id; 1/s .

Definition 2.8. The operation of disjoint union of marked surfaces is

.†1; P1; V1; L1/ t .†2; P2; V2; L2/ D .†1 t †2; P1 t P2; V1 t V2; L1 ˚ L2/:

Morphisms on disjoint unions are accordingly

.f1; s1/ t .f2; s2/ D .f1 t f2; s1 C s2/:

We see that disjoint union is an operation on the category of marked surfaces.

Definition 2.9. Let † be a marked surface. We denote by �† the marked surface
obtained from † by the operation of reversal of the orientation. For a morphism
f D .f; s/ W †1 ! †2 we let the orientation reversed morphism be given by �f D
.f; �s/ W � †1 ! �†2.

We also see that orientation reversal is an operation on the category of marked
surfaces. Let us now consider gluing of marked surfaces.

Let .†; fp�; pCg t P; fv�; vCg t V; L/ be a marked surface, where we have
selected an ordered pair of marked points with projective tangent vectors ..p�; v�/;

.pC; vC//, at which we will perform the gluing.
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Let c W P.Tp�
†/ ! P.TpC

†/ be an orientation reversing projective linear iso-
morphism such that c.v�/ D vC. Such a c is called a gluing map for †. Let z† be
the oriented surface with boundary obtained from † by blowing up p� and pC, i.e.

z† D .† � fp�; pCg/ t P.Tp�
†/ t P.TpC

†/;

with the natural smooth structure induced from †. Let now †c be the closed oriented
surface obtained from z† by using c to glue the boundary components of z†. We call
†c the gluing of † at the ordered pair ..p�; v�/; .pC; vC// with respect to c.

Let now †0 be the topological space obtained from † by identifying p� and
pC. We then have natural continuous maps q W †c ! †0 and n W † ! †0. On the
first homology group, n induces an injection and q a surjection, so we can define a
Lagrangian subspace Lc � H1.†c; Z/ by Lc D q�1� .n�.L//. We note that the image
of P.Tp�

†/ (with the orientation induced from z†) induces naturally an element in
H1.†c ; Z/ and as such it is contained in Lc .

Remark 2.10. If we have two gluing maps ci W P.Tp�
†/ ! P.TpC

†/; i D 1; 2;

we note that there is a diffeomorphism f of † inducing the identity on .p�; v�/ t
.pC; vC/ t .P; V / which is isotopic to the identity among such maps, such that
.dfpC

/�1c2dfp�
D c1. In particular, f induces a diffeomorphism f W †c1

! †c2

compatible with f W † ! †, which maps Lc1
to Lc2

. Any two such diffeomorphims
of † induce isotopic diffeomorphims from †1 to †2.

Definition 2.11. Let † D .†; fp�; pCg t P; fv�; vCg t V; L/ be a marked surface.
Let

c W P.Tp�
†/ �! P.TpC

†/

be a gluing map and †c the gluing of † at the ordered pair ..p�; v�/; .pC; vC// with
respect to c. Let Lc � H1.†c ; Z/ be the Lagrangian subspace constructed above
from L. Then the marked surface †c D .†c ; P; V; Lc/ is defined to be the gluing
of † at the ordered pair ..p�; v�/; .pC; vC// with respect to c.

We observe that gluing also extends to morphisms of marked surfaces which pre-
serve the ordered pair ..p�; v�/; .pC; vC//, by using gluing maps which are com-
patible with the morphism in question.

Remark 2.12. Let † D .†; P; V; L/ be marked surface. Assume that � is an
oriented, simple, closed curve on † � P , such that Œ�� 2 L. Assume further we have
a point p on � . We can then cut † along � and obtain a surface with two boundary
components, which are naturally identified with � . By identifying each of the two
boundary components to a point, say fp0; p00g, we get a new closed surface z†, with a
set of marked points zP D O [ fp0; p00g and tangent vectors zV D V [ fv0; v00g. Here
v0 and v00 are induced by p 2 � under the natural identification of � with P.Tp�

†/

and with P.TpC
†/ . Let †0 be obtained from z† by identifying p0 with p00. We have
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the quotient map q W † ! †0 and the identification map n W z† ! †0. We specify a
Lagrangian subspace in zL � H1.z†; Z/ by zL D n�1� q�.L/.

We say that Q† D .z†; zP ; zV ; zL/ is obtained from † by factoring † along .�; p/.
The operation of factoring is an inverse to gluing.

We can now give the axioms for a 2-dimensional modular functor.

Definition 2.13. A label set ƒ is a finite set furnished with an involution � 7! ��

and a trivial element 0 such that 0� D 0.

Definition 2.14. Let ƒ be a label set. The category of ƒ-labeled marked surfaces
consists of marked surfaces with an element of ƒ assigned to each of the marked
points, and morphisms of labeled marked surfaces are required to preserve the label-
ings. An assignment of elements of ƒ to the marked points of † is called a labeling
of †, and we denote the labeled marked surface by .†; �/, where � is the labeling.

We define a labeled pointed surface similarly.

Remark 2.15. The operation of disjoint union clearly extends to labeled marked
surfaces. When we extend the operation of orientation reversal to labeled marked
surfaces, we also apply the involution .�/� to all the labels.

Definition 2.16. A modular functor based on the label set ƒ is a functor V from the
category of labeled marked surfaces to the category of finite-dimensional, complex
vector spaces satisfying Axioms MF1–MF5 below.

MF1 (disjoint union axiom). The operation of disjoint union of labeled marked
surfaces is taken to the operation of tensor product, i.e. for any pair of labeled marked
surfaces, there is an isomorphism

V..†1; �1/ t .†2; �2/// Š V.†1; �1/ ˝ V.†2; �2/:

The identification is associative.

MF2 (gluing axiom). Let † and †c be marked surfaces such that †c is obtained
from † by gluing at an ordered pair of points and projective tangent vectors with
respect to a gluing map c. Then there is an isomorphism

V.†c ; �/ Š
M
�2ƒ

V.†; �; ��; �/;

which is associative, compatible with gluing of morphisms, as well as disjoint unions,
and it is independent of the choice of the gluing map in the obvious way (see Re-
mark 2.10).
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MF3 (empty surface axiom). Let ; denote the empty labeled marked surface. Then

dim V.;/ D 1:

MF4 (once punctured sphere axiom). Let † D .S2; fpg; fvg; 0/ be a marked sphere
with one marked point. Then

dim V.†; �/ D
8<
:

1; � D 0;

0; � ¤ 0:

MF5 (twice punctured sphere axiom). Let † D .S2; fp1; p2g; fv1; v2g; f0g/ be a
marked sphere with two marked points. Then

dim V.†; .�; �// D
8<
:

1; � D ��;

0; � ¤ ��:

In addition to the above axioms, one may have two extra properties.

MF-D (orientation reversal axiom). The operation of orientation reversal of labeled
marked surfaces is taken to the operation of taking the dual vector space, i.e. for any
labeled marked surface .†; �/ there is a pairing

h�; �i W V.†; �/ ˝ V.�†; ��/ ! C ;

compatible with disjoint unions, gluings and orientation reversals (in the sense that
the induced isomorphisms V.†; �/ Š V.�†; ��/� and V.�†; ��/ Š V.†; �/� are
adjoints).

MF-U (unitarity axiom). Every vector space V.†; �/ is furnished with a hermitian
inner product

.�; �/ W V.†; �/ ˝ V.†; �/ ! C

so that morphisms induce unitary transformation. The hermitian structure must be
compatible with disjoint union and gluing. If we have the orientation reversal property,
then compatibility with the unitary structure means that we have a commutative
diagram

V.�†; ��/�

Š

��

Š �� V.�†; ��/�

Š

��

V.†; �/�
Š

�� V.�†; ��/ ;
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where the vertical identifications come from the hermitian structure and the horizontal
ones from the duality.

Remark 2.17. By the factorization axiom combined with the disjoint union axiom,
we see that, for any modular functor Z, there is a unique " 2 C� such that

" IdZ.†;�/ D Z.Id; 1/ W Z.†; �/ �! Z.†; �/

for all labeled marked surfaces .†; �/. In particular, " is determined by and determines
the action of the mapping class group of a once pointed 0-labeled two-sphere as
considered in Axiom MF4 above.

Definition 2.18. The non-zero complex scalar " with the above property is called the
central change of the modular functor Z.

3. Basic data

Following Walker [34], we will review the notion of basic data. Fix throughout the
rest of this paper a modular functor Z with label set .ƒ; 0; �/. We do not assume
that this modular functor Z has a duality structure as in Axiom MF-D or a unitary
structure as in Axiom MF-U.

We let  D .S2I 1I v1/, „ D .S2I 0; 1I v0; v1/ and recall that

‡ D .S2I 0; 1; 1I v0; v1; v1/:

For �; �; � 2 ƒ we define

Z0 D Z.; 0/; Z�;�� D Z.„; �; ��/;

and recall that
Z�;�;� D Z.‡; �; �; �/:

Here dim Z0 D dim Z�;�� D 1 and we define

N �
�;� D dim Z�;�;�� :

The morphisms of the marked surfaces , „ and ‡ act on the vector spaces Z0, Z�;��

and Z�;�;� . Recall the self morphisms R and B of ‡ . They, together with the Dehn-
twist around 0 and the morphisms .Id; 1/, generate the mapping class groupoids of ‡

with all their possible labelings. By factorization, these also determine the action of
the mapping class groupoid of both  and „ with all possible labelings. We shall
make use of the following notation:

B12 D RBR�1; B13 D R�1BR; and B23 D B:
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Further, we denote by T1, T2 and T3 the Dehn-twists around 0, 1 and 1, respectively.
Let ‰ D .S2I �2; �1; 1; 2I v�2; v�1; v1; v2/. Let �1 be the circle of radius 3=2

centered in 0 and �2 the circle of radius 1 centered in 3=2, both considered as simple
closed curves on ‰ (see Figure 2). Factoring ‰ along .�1; 3=2/, we obtain the marked
surface ‰1 say and likewise, factoring ‰ along .�2; 5=2/, we obtain the marked
surface ‰2 say. There is a unique diffeomorphism from ‡

`
‡ to ‰i which takes

the real axes to parts of the real axes on each component, infinity to the respective
quotients of �i , and which maps the first copy of ‡ to the interior of �i in C . We
thus get two isomorphisms

ˆ1.�; �/ W
M
�2ƒ

Z.‡ I �; �; �/ ˝ Z.‡ I ��; �; �/ �! Z.‰; �; �; �; �/

and

ˆ2.�; �/ W
M
Q�2ƒ

Z.‡ I Q�; �; �/ ˝ Z.‡ I Q��; �; �/ �! Z.‰; �; �; �; �/:

We then define

F
h

� �

� �

i
W

M
�2ƒ

Z�;�;� ˝ Z��;�;� �!
M
Q�2ƒ

ZQ�;�;� ˝ ZQ��;�;� (1)

by
F D ˆ�1

2 B ˆ1:

Let ‚ be an oriented genus one surface. Let p be a point on ‚ and vp be a tangent
vector at p. Choose two oriented, simple, closed curves .˛; ˇ/ on ‚�fpg as indicated
in Figure 3. Let L˛ D SpanfŒ˛�g and Lˇ D SpanfŒˇ�g be the Lagrangian subspaces
generated in the first homology group. Let

‚˛ D .‚; p; vp; L˛/

and

‚ˇ D .‚; p; vp; Lˇ /:

Let ‚˛ and ‚ˇ be marked surfaces, which result from factoring ‚˛ along ˛ and
‚ˇ along ˇ, respectively. By factorization we get isomorphisms

ˆ˛ W Z.‚˛; �/ �!
M

�

Z.‚˛; �; �; ��/

and

ˆˇ W Z.‚ˇ ; �/ �!
M

�

Z.‚ˇ ; �; �; ��/:

Pick diffeomorphisms

f˛ W ‡ �! ‚˛
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and

fˇ W ‡ �! ‚ˇ

which map the segment Œ1; 1� onto ˇ and ˛, respectively. Then we can define

S.�/ W
M

�

Z�;�;�� �!
M

�

Z�;�;�� (2)

by
S.�/ D Z.fˇ /�1ˆˇ Z.Id/ˆ�1

˛ Z.f˛/;

where Id W .‚˛; �/ ! .‚ˇ ; �/. Following Walker, eq. (3.6) in [34], we define basic
data as follows:

Definition 3.1 (Walker). Basic data for the modular functor Z consists of the fol-
lowing data.

A. The vector spaces Z0; Z�;�� and Z�;�;� together with the induced actions of the
groupoids of morphism of marked surface acting on them.

B. The linear isomorphism

F
h

� �

� �

i
W

M
�2ƒ

Z�;�;� ˝ Z��;�;� �!
M
Q�2ƒ

ZQ�;�;� ˝ ZQ��;�;�:

C. The linear isomorphism

S.�/ W
M

�

Z�;�;�� �!
M

�

Z�;�;�� :

Lemma 3.2. The basic data determines the modular functor Z uniquely.

This lemma is proven in Section 5 of [34]. Below, we outline the main construction
behind that. Of course, A and B are, by definition, part of the genus zero data of Z.
Further, A and B clearly determine the genus zero part of Z. By definition, S.�/

requires genus one as well. But the main result of this paper is that C is in fact
determined by A and B. Hence

Theorem 3.3. The basic data under A and B determines the modular functor Z.

This theorem follows from Theorem 1.1, which is proven below. Let us now fix a
vector �0 2 Z0 and �.�/ 2 Z�;�� . By the gluing axiom, we get natural isomorphisms

Z0 Š Z0;0 ˝ Z0

and
Z�;�� Š Z�;�� ˝ Z�;�� :
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Under these isomorphisms, we require that

�0 D �.0/ ˝ �0

and
�.�/ D �.�/ ˝ �.�/:

This condition uniquely fixes �.�/ for all � 2 ƒ. We also need to do a computation
in a basis of Z�;�;�, so we fix a basis �j .�; �; �/, j D 1; : : : ; N ��

�;�
for each of these

vector spaces. In case N ��

�;�
D 1, we use the notation �.�; �; �/ D �1.�; �; �/. We

will require that under the isomorphism

Z�;�� Š Z�;��;0 ˝ Z0

we have that
�.�/ D �1.�; ��; 0/ ˝ �0: (3)

We write S D S.0/ and with respect to the preferred basis �.�/ 2 Z�;�� , � 2 ƒ, we
have the matrix presentation S D .S�;�/�;�2ƒ.

Let us now recall the reconstruction of a modular functor from its basic data. On
a marked surface †, one considers pairs .C; …/, satisfying the following conditions.

� C is a finite collection of disjoint simple closed curves, each equipped with a
base point, such that the result of factoring † along C is a disjoint union of
marked surfaces †i , i 2 I for some finite set I. Further, we assume that the
Lagrangian subspace of † is generated by the curves in C.

� … is a disjoint union of morphisms of marked surfaces from an ordered disjoint
union of ’s, „’s and ‡ ’s to the †i , i 2 I, covering each †i exactly once.

Such a pair .C; …/ is called an overmarking of † in [34]. If C is such that jC j is
minimal, then .C; …/ is called a marking in [34] following [22]. We shall call these
pairs decompositions so as to not confuse them with the structure of a marked surface
as introduced in the previous section.

It follows from the results of [22] that any two pairs of decompositions of a
given marked surface are related by a finite sequence of the following changes of
decompositions from say .C 0; …0/ to .C 00; …00/.
M The collection of curves are the same C 0 D C 00, and there are automorphisms

of the ’s, „’s and ‡ ’s, which relates …0 to …00, namely .…00/�1…0.
A Insertion or removal of a component of C 0 to obtain C 00 results in a corresponding

insertion or removal of a copy of „.

D Insertion or removal of a component of C 0 to obtain C 00 results in the replacement
of one „ by one new  and one new ‡ or the converse.

F There are � 0 2 C 0 and � 00 2 C 00 with the property that C 0 � f� 0g D C 00 � f� 00g
and the factorization along C 0 � f� 0g contains a component which via …0 and
…00 is identified with ‰, such that �1 goes to � 0 and �2 goes to � 00.



270 J. E. Andersen and K. Ueno

� There are � 0 2 C 0 and � 00 2 C 00 with the property that C 0 � f� 0g D C 00 � f� 00g
and the factorization along C 0 � f� 0g contains a component which via …0 and
…00 is identified with .‚; p; vp/, such that ˛ goes to � 0 and ˇ goes to � 00.

Let .C; …/ be a decomposition of a labeled marked surface .†; �/. Let †C be
the marked surface, one obtains from factoring † along C . Let ƒc D ƒ�c , where
c D jC j. The factorization axiom gives us an isomorphism

Z.†; �/ Š
M

�2ƒC

Z.†C ; �; �/:

For each � 2 ƒc, we let Z.�; �/ be the corresponding tensor product of the vector
spaces Z�0 ’s, Z�0;.�0/� ’s and Z�0;�0;�0’s. Using … we then get an isomorphism

Z.…/ W Z.�; �/ �! Z.†C ; �; �/

which induces an isomorphism

Z.C; …/ W
M

�2ƒc

Z.�; �/ �! Z.†; �/:

Suppose now .C 0; …0/ and .C 00; …00/ are two decompositions of the same pointed
surface .†; P; V /, which are related by one of the changes M to � . Let L0 and L00
be the Lagrangian subspaces generated by the C 0 and C 00, respectively. In the cases
M to F , we have that L0 D L00, which is not the case for � . Let †0 D .†; P; V; L0/
and †00 D .†; P; V; L00/. We then get an induced isomorphism

Z..C 0; …0/; .C 00; …00// W
M

�2ƒc0

Z.�; �/ �!
M

�2ƒc00

Z.�; �/

given by

Z..C 0; …0/; .C 00; …00// D Z.C 00; …00/�1Z.Id W .†0; �/ �! .†00; �//Z.C 0; …0/:

This isomorphism is determined by the basic data via a finite sequence of the following
changes.

M The linear map is given by a direct sum of tensor products of the linear maps
induced by the morphism .…00/�1 B …0 between the appropriate „’s, ’s and
‡ ’s.

A The linear map is induced by insertion or “removal” of the vector �.�/ 2 Z�;��

for the appropriate „.

D The linear map is induced by tensoring the identity with the isomorphism (3) (or
its inverse) inserted at the appropriate place.

F The linear map is induced by tensoring the identity with the isomorphism (1)
inserted at the appropriate place.
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� The linear map is induced by tensoring the identity with the isomorphism (2)
inserted at the appropriate place.

Let .C1; …1/ and .C2; …2/ be any two decompositions of the same labeled pointed
surface .†; P; V; �/. Let Li be the induced Lagrangian subspaces on † and †i D
.†; P; V; Li/ the corresponding marked surfaces. Since .C1; …1/ and .C2; …2/ are
related by a sequence of changes M to � , we get that the isomorphism

Z..C1; …1/; .C2; …2// W
M

�12ƒc1

Z.�; �1/ !
M

�22ƒc2

Z.�; �2/

given by

Z..C1; …1/; .C2; …2// D Z.C2; …2/�1Z.Id W .†1; �/ ! .†2; �//Z.C1; …1/

is also determined by the basic data.
Suppose now that f W .†1; �1/ ! .†2; �2/ is a morphism of marked surfaces

and .C; …/ is a decomposition of †1. Then .f .C /; f B …/ is a decomposition of
†2, and we get a commutative diagram:

L
�2ƒc

Z.�1; �/

Id

��

Z.C;…/ �� Z.†1; �1/

Z.f /

��L
�2ƒc

Z.�2; �/
Z.f .C/;f B…/

�� Z.†2; �2/ :

Suppose now .�; p/ is an oriented, simple, closed curve with a preferred point p

on a marked surface †. Let Q† be obtained from † by factoring along .�; p/. Suppose
that .C; …/ is a decomposition of †, such that � 2 C . Then .C; …/ also induces a
decomposition of Q†, say .zC; z…/ and we get the following commutative diagram

L
�2ƒc

Z.�; �/

Id

��

Z.C;…/ �� Z.†; �/

Š
��L

�02ƒ

L
�002ƒc�1

Z.�; �0; �00/
Z.zC; z…/

�� L
�02ƒ Z. Q†; �; �0; .�0/�/ :

Likewise we trivially get a similar diagram for the case of the disjoint union isomor-
phism.

From this, it follows that the basic data determines the modular functor because
the action of any morphism, the factorization and the disjoint union isomorphisms
are all determined by the basic data.

By considering various finite sequences of decompositions of certain marked sur-
faces, we generate nontrivial relations on the basic data. Ten such universal relations
are given on p. 55 in [34]. We will use some of them in Section 7.
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4. Curve operators

Let † D .†; P; V; L/ be a general marked surface. Let � be a labeling of †.
Let � be an oriented, simple, closed curve on † � P and �� 2 ƒ a fixed label.

We now define an operator

Z.�; �� / W Z.†; �/ �! Z.†; �/

canonically associated to the pair .�; �� /.
Choose an embedding { W D ! † � P of the unit disc D into † � P , such that

{.Œ�1; 1�/ D � \ {.D/ as indicated in Figure 4. Let .�{; p{/ D .{.@D/; {.1//. Let
P 0 D f{.�1

2
/; {.1

2
/g and V 0 be directions along � in the positive direction at P 0. Let

zP D P [ P 0, zV D V [ V 0 and Q† D .†; zP; zV ; L/.

{.D/

†

�

Figure 4. The curve � and the disk {.D/ on †.

The factorization of Q† along �{ has two connected components which we denote
z†0 and z†00. Here, z†0 is obtained from {.D/ by identifying �{ to a point p0 with p{ 2 �{

inducing a tangent direction v0 at p0. Likewise, z†00 is the quotient of † � {.D � @D/,
where we identify �{ to a point p00, again with p{ 2 �{ inducing a tangent direction
v00 at p00.

Let zP 0 D P 0 [ fp0g and zV 0 D V 0 [ fv0g, set Q†0 D .z†0; zP 0; zV 0/. Let zP 00 D
P [ fp00g and zV 00 D V [ fv00g, set Q†00 D .z†00; zP 00; zV 00/.

The gluing and disjoint union axiom give isomorphisms

Z. Q†; �; ��
� ; �� / Š

M
�2ƒ

Z. Q†0; ��
� ; �� ; �/ ˝ Z. Q†00; ��; �/

and

Z. Q†; �; �� ; ��
� / Š

M
�2ƒ

Z. Q†0; �� ; ��
� ; �/ ˝ Z. Q†00; ��; �/:
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The embedding { induces an isomorphism of marked curves { W ‡ ! Q†0, which
therefore gives isomorphisms

Z.{/ W Z.‡; ��
� ; �� ; 0/ �! Z. Q†0; ��

� ; �� ; 0/

and

Z.{/� W Z. Q†0; �� ; ��
� ; 0/� �! Z.‡; �� ; ��

� ; 0/�:

Also, by the gluing and disjoint union axiom combined with axiom MF4, we get
an isomorphism

Z. Q†00; 0; �/ Š Z.†; �/ (4)

which is unique up to scale.
The vector �1.�

�
� ; �� ; 0/ 2 Z.‡; �

�
� ; �� ; 0/ together with the isomorphisms Z.{/

gives us an inclusion

I{.�� / W Z.†; �/ �! Z. Q†; �; ��
� ; �� /:

A vector ˛� 2 Z.‡; �� ; �
�
� ; 0/� together with the isomorphism Z.{/� gives a pro-

jection
P{.�� / W Z. Q†; �; �� ; ��

�/ �! Z.†; �/:

We shall normalize the forms ˛� 2 Z.‡; �; ��; 0/�, � 2 ƒ as follows.
We require that1

˛�.Z.B/.�1.��; �; 0/// D S0;�

S0;0

:

We shall now consider the following diffeomorphism ˆ of Q†. Fix a tubular
neighborhood of � inside † � P . The diffeomorphism ˆ will be the identity outside
this tubular neighborhood. Inside the tubular neighborhood, it rotates and stretches
{.Œ�1

2
; 1

2
�/ onto � � {..�1

2
; 1

2
// and � � {..�1

2
; 1

2
// onto {.Œ�1

2
; 1

2
�/. We see that

Z.ˆ/ W Z. Q†; �; ��
� ; �� / �! Z. Q†; �; �� ; ��

�/:

Definition 4.1. The curve operator associated to .�; �� / is by definition

Z.�; �� / D P{.�� / B Z.ˆ/ B I{.�� /:

We observe that Z.�; �� / does not depend on the choice of {. In fact, Z.�; �� /

only depends on the free homotopy class of � .
We clearly have the following lemma.

Lemma 4.2. Suppose f W †1 ! †2 is a morphism of marked surfaces and �i are
closed, oriented curves on †i � Pi , i D 1; 2, such that f .�1/ D �2. Then

Z.f/�1Z.�2; �/Z.f/ D Z.�1; �/

for all � 2 ƒ.
1We see that S0;0 ¤ 0 by Corollary 7.1.
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If � is contractible on the marked surfaces †, then

Z.�; �� / D S0;��

S0;0

IdZ.†;�/ :

5. The relation between curve operators and Dehn-twists

In this section, we give a formula for the Dehn-twist operator in terms of the curve
operators associated to any oriented, simple, closed curve.

Let .†; �/ be a labeled marked surface. Let � be an oriented, simple, closed
curve on † � P . Let '� W .†; �/ ! .†; �/ be the Dehn twist in the curve � . By
construction '� is the identity outside some tubular neighborhood of � . Similarly,
Z.�; �� / is also a local construction within a tubular neighborhood of � . Pick a point
p on � and let Q† be obtained from †, by factoring † along .�; p/. Then we get an
isomorphism

Z.†; �/ Š
M

�

Z. Q†; �; �; ��/:

Both of the operators Z.'� / and Z.�; �� / are diagonal with respect to this direct sum
decomposition and act by multiples of the identity on each of the summands. This
follows immediately from factoring along the boundary of a tubular neighborhood
of � . One also sees this way that these multiples by which these operators act by are
independent of both � and .†; �/.

Proposition 5.1. There exist uniquely determined constants c��
2 C such that for

any simple closed oriented curve � on any labeled marked surface .†; �/ we have
that

Z.'� / D
X

�� 2ƒ

c��
Z.�; �� /:

Recall that „ D .S2I 0; 1I v0; v1/ and let � be the unit circle oriented in the
positive direction.

We define C�;� 2 C to be the scalar by which Z.�; �/ acts on Z.„; �; ��/ D
Z�;�� , for �; � 2 ƒ. Further, we recall that d� 2 C is the scalar by which Z.'� /

acts on Z.„; �; ��/ D Z�;�� .

Proposition 5.2. The matrix C�;� is invertible.

We will prove this proposition in Section 7.

Proof of Proposition 5.1. The constants c�, which we seek has to satisfy

d� D
X

�

c�C�;�:
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By Proposition 5.2, the matrix C is invertible, so there is a unique solution to this set
of equations.

We remark that since C is invertible, the c� are determined by the genus zero data.
Eq. (9) below gives an explicit formula for the c�’s.

6. The reduction from a once punctured genus one surfaces to genus zero

Recall the simple, closed curves ˛ and ˇ on ‚�fpg from Figure 3. Let S W ‚˛ ! ‚˛

be the morphism of marked surfaces, which satisfies that

S.˛/ D ˇ; S.ˇ/ D ˛�1;

where we here interpret ˛ and ˇ as generators of the fundamental group of ‚ � fpg
based at their intersection point.

Theorem 6.1. The morphism

Z.S/ D Z.‚˛; �/ �! Z.‚˛; �/

is determined by the genus zero part of Z for all � 2 ƒ.

Proof. We recall that the mapping class group 
 of ‚ � fpg is


 Š fS; T j .ST /3 D S2g;
where S is as specified above and T is the Dehn-twist in ˛.

We see that
S D T �1ST �1S�1T �1

in the mapping class group 
 . It is easily checked that this gives the relation

S D T �1ST �1S�1T �1 B .Id; �1/

in 
.‚˛/. Hence, if we let T 0 be the Dehn-twist in ˇ, then

S D T �1.T 0/�1T �1 B .Id; �1/:

But by Proposition 5.1, we have that there are constants Qc� such that

Z.T 0/�1 D
X

�ˇ2ƒ

Qc�ˇ
Z.ˇ; �ˇ /:

So
Z.S/ D "�1

X
�ˇ2ƒ

Qc�ˇ
Z.T �1/Z.ˇ; �ˇ /Z.T �1/:
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Let | W A ! ‚ � fpg be an embedding of an annulus A into ‚ � fpg as shown
in Figure 5.

�

ˇ

p0
�

p0
C

˛1 ˛
˛2

q1
q

2

r

A

Figure 5. A once punctured surface of genus one with an annulus A around the ˛ curve.

Let ˛1 and ˛2 be the two boundary curves of |.A/, with base points say q1 2 ˛1

and q2 2 ˛2. Let ‚1 and ‚2, respectively, be obtained from ‚ by factoring along
˛1 and ˛2, respectively. We denote the resulting base point and tangent direction by
.P1; V1/ D .fq0

1; q00
1g; fvq0

1
; vq00

1
g/ and .P2; V2/ D .fq0

2; q00
2g; fvq0

2
; vq00

2
g/ on ‚1 and

‚2, respectively. Let z† be obtained from ‚1, by factoring along ˛2 or equivalently
from ‚2 by factoring along ˛1. Pick a point r 2 |.A � @A/ \ � and the tangent
direction vr at r along ˇ in the positive direction.

Now choose an embedding { W D ! ‚ � .|.A/ [ fpg/ and a diffeomorphism
ˆ with the properties required in the construction of Z.ˇ; �ˇ /. In fact we will
choose a ˆ which is a composite of two diffeomorphisms ˆ1 and ˆ2 as follows. Let
p0� D {.�1

2
/ and p0C D {.1

2
/ and vp0

�
and vp0

C
, respectively, be the induced tangent

directions along ˇ.
Let P D fp; p0�; p0Cg and V D fvp; vp0

�
; vp0

C
g. Let P 0 D fp; p0C; rg and

V 0 D fvp; vp0
C

; vrg. Further set

zPi D P [ Pi ; zVi D V [ Vi ;

zP 0
i D P 0 [ Pi ; zV 0

i D V 0 [ Vi ;

for i D 1; 2.
We pick

ˆ1 W .‚2; zP2; zV2/ �! .‚2; zP 0
2; zV 0

2/

such that ˆ1 is the identity outside a tubular neighborhood of the piece of ˇ from p0�
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to r and it maps ˆ1.p0�/ D p0C and ˆ1.p0C/ D r . The map

ˆ2 W .‚1; zP 0
1; zV 0

1/ �! .‚1; zP1; zV1/

is chosen such that it is the identity outside a neighborhood of the piece of ˇ from
r to p0� and it maps ˆ2.r/ D p0�. By re-gluing ‚1 and ‚2 to obtain ‚, we see
that ˆ1 and ˆ2 induce diffeomorphisms ˆ0

1 and ˆ0
2 of ‚, which preserve ˛2 and ˛1,

respectively. We let

ˆ D ˆ0
2 B ˆ0

1 W .‚; P; V / �! .‚; P; V /:

Thus we have the linear maps for all choices of �; �0 2 ƒ,

Z.ˆ1/� W Z.‚2; zP2; zV2; �; ��
� ; �� ; �; ��/ �! Z.‚2; zP 0

2; zV 0
2; �; ��

� ; �� ; �; ��/

and

Z.ˆ2/�0 W Z.‚1; zP 0
1; zV 0

1; �; ��
� ; �� ; �0; .�0/�/

�! Z.‚1; zP1; zV1; �; �� ; ��
� ; �0; .�0/�/:

We further have the following two commutative diagrams:

Z.‚; P; V; �; �
�
� ; ��/

���
��

��
��

��
��

��
��

�

Z.ˆ0
1

/

������������������

Z.‚; P 0; V 0; �; �
�
� ; ��/

���
��

��
��

��
��

��
��

�

L
�2ƒ Z.‚2; zP2; zV2; �; �

�
� ; �� ; �; ��/

L
�2ƒ Z.ˆ1/�

������������������

L
�2ƒ Z.‚2; zP 0

2; zV 0
2; �; �

�
� ; �� ; �; ��/

and

Z.‚; P 0; V 0; �; �� ; �
�
�/

���
��

��
��

��
��

��
��

�

Z.ˆ0
2

/

������������������

Z.‚; P; V; �; �� ; �
�
�/

���
��

��
��

��
��

��
��

�

L
�02ƒ Z.‚1; zP 0

1; zV 0
1; �; �� ; �

�
� ; �0; .�0/�/;

L
�02ƒ Z.ˆ2/�0

������������������

L
�02ƒ Z.‚1; zP1; zV1; �; �� ; �

�
� ; �0; .�0/�/
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where the vertical arrows are the factorization isomorphisms.
By the commutativity of factorization, we also have the following commutative

diagram of isomorphisms:

Z.‚; P 0; V 0; �; �� ; �
�
�/

���
��

��
��

��
��

��
��

��
��

��
��

��
��

�����������������������������

L
�2ƒ Z.‚1; zP 0

1; zV 0
1; �; �� ; �

�
� ; �; ��/

���
��

��
��

��
��

��
��

��
��

��
��

��
��

L
�02ƒ Z.‚2; zP 0

2; zV 0
2; �; �� ; �

�
� ; �0; .�0/�/:

��

�����������������������������

L
�;�02ƒ Z.z†; zP ; zV ; �; �� ; �

�
� ; �; ��; �0; .�0/�/

Now consider the curve operator Z.ˇ; �ˇ /. Since factorization along non-inter-
secting curves commute, we see that both P{.�ˇ / and I{.�ˇ / are determined by genus
zero morphism by factoring along say ˛1, which commutes with the factorization
along �{ .

By representing T as the Dehn-twist in ˛1 and ˛2, respectively,we get diffeomor-
phisms

T1 W .‚2; zP 0
2; zV 0

2/ �! .‚2; zP 0
2; zV 0

2/

and

T2 W .‚1; zP 0
1; zV 0

1/ �! .‚1; zP 0
1; zV 0

1/:

Since both of these diffeomorphisms are the identity in a neighborhood of {.D/, we
get the equation

Z.S/ D "�1
X

�ˇ2ƒ

Qc�ˇ
P{.�ˇ /Z.T �1

2 ˆ0
2/Z.ˆ0

1T �1
1 /I{.�ˇ /:

Tracing through the previous three commutative diagrams, we see that Z.ˆ0
1T �1

1 /

and Z.T �1
2 ˆ0

2/ are determined by genus zero data.



Modular functors are determined by their genus zero data 279

We observe that the same argument can be used to show that the action of a Dehn-
twist along any curve on a marked surface equipped with a fixed decomposition is
determined by the isomorphisms M to F .

Proof of Theorem 1.1. We consider the morphism

S W .‚˛; �/ �! .‚ˇ ; �/

and observe that it is compatible with the factorizations in ˛ and ˇ and via f˛ and
fˇ is compatible with the identity morphism Id W ‡ ! ‡ . We have the composition
identity

S W .‚˛; �/ �! .‚ˇ ; �/.Id W .‚˛; �/ �! .‚ˇ ; �// B .S W .‚˛; �/ �! .‚˛; �//:

Here, we have taken the liberty to use the same letter S to denote the two different
morphisms, which, however, involve the same underlying diffeomorphism. From
this, we conclude that

Z.f �1
˛ /Z.S W .‚˛; �/ �! .‚˛; �//Z.f˛/ D S.�/�1:

Since Z.S/ W Z.‚˛; �/ ! Z.‚˛; �/ is determined by genus zero data, we see that
so is S.�/ for all � 2 ƒ.

7. Consequences of the universal relations on the basic data

In this section we will prove Proposition 5.2. It follows immediately from Proposi-
tion 7.6 below. However, we first need to derive a couple of consequences from the
pentagon relation for F (Figure 7) and the relations between F and S (Figure 6).

Consider the isomorphism (1). If one of the labels �; �; �; � equals 0 2 ƒ, this
is a special case. In this case, all of the terms in the direct sum of the domain and
codomain of (1) are zero, except for one of them.

Lemma 7.1. We have the formulae:

� D 0; F.�.��; 0; �/ ˝ v D R2.v/ ˝ �.��; �; 0/;

� D 0; F.�.��; �; 0/ ˝ v/ D �.��; 0; �/ ˝ R.v/;

� D 0; F.v ˝ �.��; �; 0// D R.v/ ˝ �.��; 0; �/;

� D 0; F.v ˝ �.��; 0; �// D �.��; �; 0/ ˝ R2.v/:

Proof. The case � D 0 is precisely Relation 5 on p. 55 of [34]. They are all obtained
by considering the two ways of decomposing ‡ along a system of two curves, related
by an F change and such that the factorization of both gives two copies of ‡ and
one copy of , as illustrated in Figure 27 on p. 53 of [34].
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For each � 2 ƒ we define

E� D F0;0

h
� ��

�� �

i
:

Lemma 7.2. We have the following formula:

S0;0E� D S0;�� :

for all � 2 ƒ.

Proof. We consider Relation 3 on p. 55 of [34], which is obtained from considering
six decompositions of a genus one surface with two marked points as depicted in
Figure 6. See also Figure 18 on p. 43 and Figure 26 on p. 52 of [34].

�

�

�

��

��

�

�

��

����

����

��

0

0

0

00

0

0

0

0

FF

FFF

SS

Figure 6. A relation between S and F.
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Starting at the domain of the morphism S on the right of Figure 6 and going
counter clockwise around to the codomain of the same morphism, we get that

�.0; ��; �/ ˝ �.0; 0; 0/

� F �� �.��; �; 0/ ˝ �.�; 0; ��/

� B�1
23

˝B�1
23 �� �.��; 0; �/ ˝ �.�; ��; 0/

� F �� �.0; �; ��/ ˝ �.0; 0; 0/

� Id ˝T �1
3

T1B23 �� �.0; �; ��/ ˝ �.0; 0; 0/

� Id ˝S �� S0;0�.0; �; ��/ ˝ �.0; 0; 0/

� F �� S0;0�.�; ��; 0/ ˝ �.��; 0; �/

� R�1˝R �� S0;0�.0; �; ��/ ˝ �.0; �; ��/

� F �� S0;0E��.0; ��; �/ ˝ �.0; ��; �/:

Whereas the morphism S of course gives

�.0; ��; �/ ˝ �.0; 0; 0/
� Id ˝S �� S0;���.0; ��; �/ ˝ �.0; ��; �/:

From this, we conclude the formula

S0;0E� D S0;�� :

Corollary 7.3. We have that S0;0 ¤ 0 for any modular functor.

Lemma 7.4. For all �; �; � 2 ƒ, we have the relation

E��

X
i;j;r

F0;�

h
� �

�� ��

iij

11
RjrF�;0

h
� ��

�� �

i11

rl
R2

is D ısl : (5)

Proof. The pentagon relation, as depicted in Figure 7, gives a relation between five
applications of the F -isomorphism between five decompositions of a genus zero
surface with five marked points. This is Relation 1 on p. 55 of [34] which is also
illustrated in Figure 24 on p. 50 of [34].
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Figure 7. The pentagon relation for F.

Starting in the upper left-hand corner and going counter clockwise around, we get
that

�.0; �; ��/ ˝ �.0; �; ��/ ˝ �l.�
�; �; ��/

� F ˝Id ��
X
�;i;j

F0;�

h
� �

�� ��

iij

11

�i .�; ��; ��/ ˝ �j .��; �; �/ ˝ �l .�
�; �; ��/
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� Id ˝R˝Id ��
X

�;i;j;r

F0;�

h
� �

�� ��

iij

11
Rjr

�i.�; ��; ��/ ˝ �r.�; �; ��/ ˝ �l.�
�; �; ��/

� Id ˝F ��
X

�;i;j;r

F0;�

h
� �

�� ��

iij

11
RjrF�;0

h
� ��

�� �

i11

rl

�i.�; ��; ��/ ˝ �.��; �; 0/ ˝ �.0; ��; �/

� Id ˝R˝Id ��
X
i;j;r

F0;�

h
� �

�� ��

iij

11
RjrF�;0

h
� ��

�� �

i11

rl

�i.�; ��; ��/ ˝ �.��; �; 0/ ˝ �.0; ��; �/

� F ˝Id ��
X

i;j;r;s

F0;�

h
� �

�� ��

iij

11
RjrF�;0

h
� ��

�� �

i11

rl
Ris

�s.�
�; ��; �/ ˝ �.�; 0; ��/ ˝ �.0; ��; �/

� Id ˝R˝Id ��
X

i;j;r;s

F0;�

h
� �

�� ��

iij

11
RjrF�;0

h
� ��

�� �

i11

rl
Ris

�.0; ��; �/ ˝ �.0; ��; �/ ˝ �s.��; ��; �/

� F ˝Id �� E��

X
i;j;r;s

F0;�

h
� �

�� ��

iij

11
RjrF�;0

h
� ��

�� �

i11

rl
Ris

�.0; �; ��/ ˝ �.0; �; ��/ ˝ �s.�
�; ��; �/

� Id ˝R˝Id �� E��

X
i;j;r;s

F0;�

h
� �

�� ��

iij

11
RjrF�;0

h
� ��

�� �

i11

rl
Ris

�.0; �; ��/ ˝ �.�; ��; 0/ ˝ �s.�
�; ��; �/

� Id ˝F �� E��

X
i;j;r;s

F0;� � �����ij

11 RjrF�;0 � �����11
rl R2

is

�.0; �; ��/ ˝ �.�; 0; ��/ ˝ �s.�
�; �; ��/

� Id ˝R˝Id �� E��

X
i;j;r;s

F0;�

h
� �

�� ��

iij

11
RjrF�;0

h
� ��

�� �

i11

rl
R2

is

�.0; �; ��/ ˝ �.0; ��; �/ ˝ �s.��; �; ��/:

This proves the stated equation.

From (5), we conclude that E� ¤ 0 and, therefore, also that S0;� ¤ 0 for all
� 2 ƒ. Consider now (5) as a product of two matrices, namely on the one hand the
terms involving E�� , the first F and R2 and on the other the second F and R. The
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equation states that these two matrices are each other’s inverses. But then they also
satisfy the equation where we multiply them in the other order:

X
l;u;v

F0;�

h
� ��

�� �

ilm

11
R2

luF��;0

h
� ��

�� �

i11

vu
Rtv D E�1

�� ıtm: (6)

By summing over m in (6) we get

X
m;u;l;v

F0;�

h
� ��

�� �

ilm

11
R2

luF�;0

h
� ��

�� �

i11

vu
Rmv D E�1

�� N �
�;�: (7)

As above, ‚ is an oriented genus one surface and ˛ and ˇ are simple, closed
curves, as indicated in Figure 3. Let ‚ 0̨ and ‚0

ˇ
be marked surfaces, which result

from factoring .†; L˛/ along ˛ and .†; Lˇ/ along ˇ, respectively. By factorization,
we get isomorphisms

ˆ0̨ W Z.‚; L˛/ �!
M

�

Z.‚ 0̨ ; �; ��/

and
ˆ0

ˇ W Z.‚; Lˇ / �!
M

�

Z.‚0
ˇ ; �; ��/:

Pick diffeomorphisms
f 0̨ W „ �! ‚ 0̨

and
f 0

ˇ W „ �! ‚0
ˇ

which map the real axis onto ˇ and ˛, respectively.
Then we get a basis �˛

�
for Z.†; L˛/ and �

ˇ
� for Z.†; Lˇ / by

�˛
� D .ˆ0/�1

˛ Z.f 0̨/.��/

and
�ˇ

� D .ˆ0/�1
ˇ Z.f 0

ˇ /.��/:

We have of course that
�

ˇ

�
D

X
�

S�;��˛
�: (8)

Proposition 7.5. We have the following equation:

Z.ˇ; �/�˛
� D

X
�

N �
�;��˛

� :
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Proof. We compute the action of Z.ˇ; �/ on �˛
� by computing the compositions

indicated in Figure 8.

�

�

�

��

��

��

�

�

�

��

��

��

�

�
�

��

�� ��

0

O

Figure 8. The curve operator along ˇ on the genus one surface ‚.

�˛
�

� �� �.0; �; ��/ ˝ �.0; �; ��/

� F ��
X
�;i;j

F0;�

h
� ��

�� �

ij i

11
�j .�; ��; �/ ˝ �i .�

�; ��; �/

� R2˝R ��
X

�;i;j;r;t

F0;�

h
� ��

�� �

ij i

11
R2

jrRit�r.�; �; ��/ ˝ �t .�
�; �; ��/

� F ��
X

�;i;j;r;t

F0;�

h
�� ��

� �

ij i

11
R2

jrRitF��;0

h
� ��

�� �

i11

tr
�.0; ��; �/ ˝ �.0; ��; �/

D
X

�

E�1
�� N �

�;��.0; ��; �/ ˝ �.0; ��; �/

� ��
X

�
E�1

�� N �
�;��˛

� :
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Hence

Z.ˇ; �/.�˛
�/ D

X
�

N �
�;��˛

� ;

since

˛�.Z.B/�.�; ��; 0// D E��

by definition and by Lemma 7.2.

Proposition 7.6. We have the following equation:

C�;� D S�;�=S�;0:

Proof. From the equation in Proposition 7.5 and (8), we deduce that

S�;%C�;� D
X

�
N �

�;%S�;�:

Letting % D 0, we get that

S�;0C�;� D S�;�;

which proves the stated equation, since we also conclude that S�;0 ¤ 0 from this.

Corollary 7.7. We have the following equation for the coefficients c�:

c� D d��S��;0: (9)

Proof. One easily checks this equation by substitution.

8. The formula for S.�/

We begin by establishing a formula for the curve operator in terms of the F , R, B ,
and the d�’s.

Lemma 8.1. For all �; � 2 ƒ and all j D 1; : : : N �
�;� we have that

Z.ˇ; �/.�i .�; �; ��//

D
X

�;j;r;k;m;s;w;p

d �1
� RipBprF��;�

h
� ��

�� �

ism

kr
RmkR2

swBwj �j .�; �; ��/:

Proof. The curve operator Z.ˇ; �/ acts as follows (see Figure 9):
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Figure 9. The curve operator along ˇ via changes M to F.

�i.�; �; ��/

� �� �.��; �; 0/ ˝ �i .�; �; ��/ ˝ �.0; �; ��/

� .Id ˝R˝Id/P 231.F ˝Id/ ��
X

p
Rip�.0; �; ��/ ˝ �.0; �; ��/ ˝ �p.�; ��; �/

� F ˝Id ��
X

	;p;l;m

RipF0;	

h
� ��

�� �

ilm

11

�l.�; ��; �/ ˝ �m.��; ��; �/ ˝ �p.�; ��; �/
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� Id˝R˝B23 ��
X

	;p;k;l;m;r

Rip.B23/prRmkF0;	

h
� ��

�� �

ilm

11

�l.�; ��; �/ ˝ �k.��; �; ��/ ˝ �r .�; �; ��/

� Id ˝F ��
X

	;�;l;m;p;k;r;s;t

Rip.B23/prRmkF0;	

h
� ��

�� �

ilm

11
F��;�

h
� ��

	� �

ist

kr

�l.�; ��; �/ ˝ �s.�; ��; �/ ˝ �t .�
�; ��; �/

� P 231.R2˝Id ˝R/ ��
X

	;�;l;m;p;k;r;s;t;u;v

Rip.B23/prRmkF0;	

h
� ��

�� �

ilm

11
F��;�

h
� ��

	� �

ist

kr

R2
luRtv�s.�; ��; �/ ˝ �v.��; �; ��/ ˝ �u.�; �; ��/

� Id ˝F ��
X

�;l;m;p;k;r;s;t;u;v

Rip.B23/prRmkF0;�

h
� ��

�� �

ilm

11
F��;�

h
� ��

�� �

ist

kr

R2
luRtvF��;0

h
� ��

�� �

i11

vu
�s.�; ��; �/ ˝ �.0; ��; �/ ˝ �.0; ��; �/:

We now apply (6) to this expression, and we get that

�i .�; �; ��/

7�!
X

�;l;m;p;k;r;s

Rip.B23/prF��;�

h
� ��

�� �

ism

kr
Rmk

�s.�; ��; �/ ˝ �.0; ��; �/ ˝ �.0; ��; �/

7�!
X

�;l;m;p;k;r;s

Rip.B23/prF��;�

h
� ��

�� �

ism

kr
Rmk.B12/swR2

wj d �1
� �j .�; �; ��/

from which the formula follows.

Proof of Theorem 1.2. By the calculations in Section 6 and Proposition 5.1, we get
that

S.�/
�;j
�;i D "d�

X
�

c�Z.ˇ; �/
�;j
�;id�:

Combining this with (9) and the formula for Z.ˇ; �/ from Proposition 8.1, we
obtain the equation stated in Theorem 1.2.
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