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Hitchin’s connection, Toeplitz operators,
and symmetry invariant deformation quantization

Jørgen Ellegaard Andersen1

Abstract. We introduce the notion of a rigid family of Kähler structures on a symplectic
manifold. We then prove that a Hitchin connection exists for any rigid holomorphic family of
Kähler structures on any compact pre-quantizable symplectic manifold which satisfies certain
simple topological constraints. Using Toeplitz operators we prove that the Hitchin connection
induces a unique formal connection on smooth functions on the symplectic manifold. Parallel
transport of this formal connection produces equivalences between the corresponding Berezin–
Toeplitz deformation quantizations. In the cases where the Hitchin connection is projectively
flat, the formal connections will be flat and we get a symmetry-invariant formal quantization.
If a certain cohomological condition is satisfied a global trivialization of this algebra bundle is
constructed. As a corollary we get a symmetry-invariant deformation quantization.

Finally, these results are applied to the moduli space situation in which Hitchin originally
constructed his connection. First we get a proof that the Hitchin connection in this case is the
same as the connection constructed by Axelrod, Della Pietra, and Witten. Second we obtain in
this way a mapping class group invariant formal quantization of the smooth symplectic leaves
of the moduli space of flat SU.n/-connections on any compact surface.
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1. Introduction

In [31] Hitchin introduced a connection over Teichmüller space in the bundle one ob-
tains by applying geometric quantization to the moduli spaces of flat SU.n/-connec-
tions. Furthermore Hitchin proved that this connection is projectively flat. Hitchin’s
construction was motivated by Witten’s study of quantum Chern–Simons theory in
.2C 1/-dimensions in [50]. In fact, Witten constructed via path integral techniques a
quantization of Chern–Simons theory in .2C 1/-dimensions and argued in [50] that
this produced a TQFT indexed by a compact simple Lie group and an integer level k.

Combinatorially this theory was first constructed by Reshetikhin and Turaev using
representation theory of Uq.sl.n;C// at q D e.2�i/=.kCn/; see [40] and [41]. Sub-
sequently these TQFT’s were constructed using skein theory by Blanchet, Habegger,
Masbaum, and Vogel in [20], [21], and [19]. In particular these TQFT’s provide
projective representations of the mapping class groups. The fact that these repre-
sentations agree with the representations obtained from the projective action of the
mapping class group on the projectively covariant constant sections of the Hitchin
connection follows by combining the results of a series of papers. First of all, the
work of Laszlo [33] provides an identification of the Hitchin connection with the
TUY-connection constructed in the bundle of WZW-conformal blocks over Teich-
müller space in [47]. In joint work with Ueno ([8], [9], [10], and [11]), we have
given a proof, based mainly on the results of [47], that the TUY-construction of the
WZW-conformal field theory after twist by a fractional power of an abelian theory,
satisfies all the axioms of a modular functor. Furthermore, we have proved that the full
.2C1/-dimensional TQFT that results from this is isomorphic to the one constructed
by BHMV via skein theory as mentioned above.

From Witten’s path integral formulation of these theories, one expects that these
TQFT’s have asymptotic expansions in the level k of the theory. In [1] we considered
this question in the abelian case and described how one should make this question
precise in the context of the mapping class group representations. As we described
in that paper, the natural asymptotic expansion for these sequences of representations
is a mapping class group invariant deformation quantization of the moduli space
of flat U.1/-connections. In this paper we extend these results to the case of the
above mentioned representations and the SU.n/-moduli space (see Theorem 1.14
below). In fact we consider a more general setting, in which we can construct the
Hitchin connection, build a formal Hitchin connection and understand its relation
to the associated Berezin–Toeplitz deformation quantizations. Let us describe the
generalized setting we will consider.

Let .M; !/ be a compact symplectic manifold. Let I be a family of Kähler struc-
tures on .M; !/ parameterized holomorphically by some complex manifold T . Sup-
pose V is a vector field on T . Then we can differentiate I along V and we denote this
derivativeV ŒI � W T !C1.M;End.TMC//. We define zG.V / 2 C1.M; S2.TMC//

by
V ŒI � D zG.V /!;
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and define G.V / 2 C1.M; S2.T�//
1 such that

zG.V / D G.V /C xG.V /
for all real vector fields V on T . We see that zG and G are one-forms on T with
values in C1.M; S2.TMC// and C1.M; S2.T�// respectively.

Definition 1.1. We say that a complex family I of Kähler structures on .M; !/ is
rigid if

N@�.G.V /� / D 0

for all vector fields V on T and all points � 2 T .

We observe that this condition is restrictive, but we refer to [5] for constructions
of examples.

Assume now that .M; !/ is prequantizable. That means there exists a Hermitian
line bundle .L; .�; �// over M with a compatible connection r such that

Fr D i

2�
!:

For every � 2 T we use the notation M� D .M; I�/ and consider the finite-
dimensional subspace of C1.M;Lk/ given by

H .k/
� D H 0.M� ;L

k/ D fs 2 C1.M;Lk/ j r0;1
� s D 0g:

We will assume that these subspaces of holomorphic sections form a smooth finite
rank subbundle H .k/ of the trivial bundle H .k/ D T � C1.M;Lk/. By semi-
continuity, restriction to an open dense subset of T , if necessary, will guaranty this
assumption. See also Remark 2.5 below.

Definition 1.2. A connection in H .k/ over T of the form

yr D yr t � u
where yr t is the trivial connection in H .k/ and u is a one form on T with values
in differential operators acting on C1.M;Lk/ is called a Hitchin connection if it
preserves the subbundle H .k/.

We have the following existence result.

Theorem 1.3. Suppose that I is a rigid family of Kähler structures on the symplectic
prequantizable compact manifold .M; !/, which satisfies that there exists n 2 Z such
that the first Chern class of .M; !/ is nŒ!� 2 H 2.M;Z/ and H 1.M;R/ D 0. Then

1We denote the holomorphic tangent bundle of .M; I� / by T� .
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there exists a Hitchin connection yr in the bundle H .k/ which preserves the subbundle
H .k/. It is given by

yrV D yr t
V � u.V /;

where yr t is the trivial connection in H .k/, V is any smooth vector field on T and
u.V / is the second order differential operator given by

u.V /.s/ D 1

2k C n

°1
2
�G.V /.s/ � rG.V /dF .s/C 2kV 0ŒF �s

±
; (1)

where �G.V / is a certain second order operator depending linearly and smoothly
on V defined by eq. (5) below, V 0 denotes the .1; 0/-part of the vector field V on T

and F W T !C1
0 .M/ is determined by F� 2 C1

0 .M/ being the Ricci potential for
.M; I�/ for all � 2 T .

We prove this theorem in Section 2. When we apply this theorem to the gauge
theory example discussed in Section 6, we get the following corollary.

Theorem 1.4. The Hitchin connection agrees with the connection constructed by
Axelrod, Della Pietra, and Witten in [17].

This was widely believed to be the case, but has not been established before.
In the work of Scheinost and Schottenloher [43], further gauge theory examples

of the setup in Theorem 1.3 have been provided. We here give a pure differential
geometric construction of the Hitchin connection constructed in their work as well.

Remark 1.5. In [5], in joint work with Gammelgaard and Lauridsen, we use half-
forms and the metaplectic correction to prove the existence of a Hitchin connection
in the context of metaplectic quantization. The assumption that the first Chern class
of .M; !/ is nŒ!� 2 H 2.M;Z/ is then just replaced by the vanishing of the second
Stiefel–Whitney class ofM . Furthermore, [5] also includes the case of non-compact
symplectic manifolds .M; !/. For this to work, the metaplectic correction is not
essential as we will explain in the next remark.

Remark 1.6. The approach presented here also proves the existence of a Hitchin
connection for non-compact .M; !/ and rigid families of complex structures on them,
which satisfies the same assumptions as in Theorem 1.3. This follows from the
remarks made after the proofs of Lemma 2.6, 2.8, and 2.9 in Section 2. We recall
that in [5] we establish that there are many examples in the non-compact case of rigid
families of complex structures which satisfies all the assumptions of Theorem 1.3.

Suppose � is a group which acts on T and on M , such that I is � equivariant.
Assume further that there is an action of � on the prequantum bundle .L; .�; �/;r/
covering the �-action onM . It then follows that Hitchin’s connection is �-invariant.

For compact M, H .k/
� is a finite-dimensional subspace of C1.M;Lk/ D H

.k/
�
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and therefore closed, thus we have the orthogonal projection �.k/
� W H

.k/
� !H

.k/
� .

Since H .k/ is a smooth subbundle of H .k/ the projections �.k/
� form a smooth map

�.k/ from T to the space of bounded operators on theL2-completion ofC1.M;Lk/.
From these projections we can construct the Toeplitz operators associated to any

smooth function f 2 C1.M/, T .k/

f;�
W H

.k/
� !H

.k/
� , defined by

T
.k/

f;�
.s/ D �.k/

� .f s/

for any element s in H
.k/
� and any point � 2 T . We observe that the Toeplitz

operators are smooth sections T .k/

f
of the bundle Hom.H .k/; H .k// and restricts to

smooth sections of End.H .k//.
Let D.M/ be the space of smooth differential operators on M acting on smooth

functions on M . Let Ch be the trivial C1.M/ŒŒh��-bundle over T .

Definition 1.7. A formal connection D is a connection in Ch over T of the form

DV f D V Œf �C zD.V /.f /;
where zD is a smooth one-form on T with values in Dh.M/ D D.M/ŒŒh��, f is any
smooth section of Ch, V is any smooth vector field on T and V Œf � is the derivative
of f in the direction of V .

For a formal connection we get the series of differential operators zD.l/ given by

zD.V / D
1X

lD0

zD.l/.V /hl :

From Hitchin’s connection in H .k/ we get an induced connection yre in the en-
domorphism bundle End.H .k//. The Toeplitz operators are not covariant constant
sections with respect to yre. They are asymptotically covariant constant in k in the
following very precise sense.

Theorem 1.8. Under the same assumptions as in Theorem 1.3, there is a unique
formal Hitchin connection D which satisfies that

yre
V T

.k/

f
� T

.k/

.DV f /.1=.2kCn//
(2)

for all smooth sections f of Ch and all smooth vector fields on T . Moreover

zD D 0 mod h:

Here � means the following: for all L 2 ZC we have that

��� yre
V T

.k/

f
�

�
T

.k/

V Œf �
C

LX
lD1

T
.k/

zD.l/
V

f

1

.2k C n/l

���� D O.k�.LC1//

uniformly over compact subsets of T for all smooth maps f W T !C1.M/.
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This theorem is proved in Section 4. For an explicit formula for zD see (19).
Again in the presence of a symmetry group � as before, the formal Hitchin con-

nection becomes �-invariant.
By the work of Bordeman, Meinrenken, and Schlichenmaier, [22], [44], [45],

and [46], applied to the Kähler manifold .M; !; I�/, we know that for any f; g 2
C1.M/, there is an asymptotic expansion

T
.k/

f;�
T .k/

g;� �
1X

lD0

T
.k/

c
.l/
� .f;g/;�

k�l ;

where c.l/
� .f; g/ 2 C1.M/ are uniquely determined. Moreover it gives a deforma-

tion quantization

f ?BT
� g D

1X
lD0

c.l/
� .f; g/hl

which is known as the Berezin–Toeplitz quantization. By the work of Karabegov and
Schlichenmaier [32], it is known to be a differential deformation quantization.

Proposition 1.9. For every vector field V on T , the formal operatorDV constructed
in Theorem 1.8 is a derivation for ?BT

� .

Let Ah be the vector space of sections of Ch which are covariant constant with
respect to the formal Hitchin connection D over T . Then by Proposition 1.9, we see
that the star products ?BT

� , � 2 T , induces an associative algebra structure on Ah.
Moreover, the symmetry group � will act by automorphisms of Ah.

Theorem 1.10. If the formal Hitchin connection has trivial global holonomy over T ,
then the algebra Ah is a formal quantization of the Poisson algebra of smooth func-
tions on .M; !/.

Remark 1.11. If the Hitchin connection is projectively flat and T is simply connected,
then the formal Hitchin connection has trivial global holonomy over T .

Let C1
h
.M/ D C1.M/ŒŒh��. A formal trivialization of a formal connections is

defined as follows.

Definition 1.12. A formal trivialization of a formal connection D is a smooth map
P W T ! Dh.M/ which modulo h is an isomorphism for all � 2 T and such that

DV .P.f // D 0

for all vector fields V on T and all f 2 C1
h
.M/.
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The existence of a formal trivialization is of course equivalent to the triviality of the
global holonomy ofD over T . In Section 5 we construct a global�-equivariant formal
trivialization under the assumption that the Hitchin connection is projectively flat and
that the first �-equivariant cohomology of M with coefficients in the �-module
consisting of all differential operators on M vanishes. This further leads to the
construction of a � invariant �-product on M , simply because a global trivialization
induces a vector space isomorphism between Ah and C1

h
.M/.

Theorem 1.13. Assume that the formal Hitchin connection D is flat and

H 1
�.T ; D.M// D 0;

then there is a �-invariant trivialization P of D and the �-product

f ? g D P�1
� .P� .f / ?

BT

� P�.g//

is independent of � 2 T and �-invariant.

We apply our results to the moduli space of flat connections on a surface. Let† be
a compact 2-dimensional manifold and M the moduli space of flat SU.n/-connections
on †. Let � be the mapping class group of †. The � action on M is Poisson and
it preserves all the symplectic leaves of M. Let T be Teichmüller space of †. Then
for each smooth symplectic leaf .M; !/ of M we have a holomorphic map I from T

to the space of complex structures on .M; !/ which is �-equivariant.
Applying the above to this moduli space situation, we get the following theorem.

Theorem 1.14. There is a mapping class group invariant formal quantization on the
smooth symplectic leaves .M; !/ of the moduli space of flat SU.n/-connections on
any compact surface.

It seems a very interesting open problem to understand how this formal quantiza-
tion is related to the quantization of the moduli spaces presented in [6] and [7], as we
have done in the abelian case in [1].

We remark that the interplay between Toeplitz operators and Hitchin’s connection
forms the foundation for the proof of the asymptotic faithfulness theorem in [2], the
determination of the Nielsen–Thurston types of mapping classes via TQFT [3] and
forms our example of a representation of the mapping class group, which has no fixed
vectors, but which has an almost fixed vector, i.e. proving the mapping class groups
do not have Kazhdan’s property (T); see [4].
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2. The Hitchin connection

Let .M; !/ be a compact symplectic manifold.

Definition 2.1. A prequantum line bundle .L; .�; �/;r/ over the symplectic manifold
.M; !/ consist of a complex line bundle L with a Hermitian structure .�; �/ and a
compatible connection r whose curvature is

Fr D i

2�
!;

e.g.
rX rY � rY rX � rŒX;Y � D !.X; Y /

for all vector fields X; Y on M . We say that the symplectic manifold .M; !/ is
prequantizable if there exists a prequantum line bundle over it.

Recall that the condition for the existence of a prequantum line bundle is that
Œ!� 2 Im.H 2.M;Z/!H 2.M;R// and that the inequivalent choices of prequantum
line bundles (if they exists) are parameterized by H 1.M;U.1//; see e.g. [51].

We shall assume that .M; !/ is prequantizable and fix a prequantum line bundle
.L; .�; �/;r/ over .M; !/.

Assume that T is a smooth manifold which smoothly parametrizes Kähler struc-
tures on .M; !/. This means we have a smooth2 map I W T !C1.M;End.TM//

such that .M; !; I�/ is a Kähler manifold for each � 2 T .
We will use the notation M� for the complex manifold .M; I�/. For each � 2 T

we use I� to split the complexified tangent bundle TMC into the holomorphic and
the anti-holomorphic parts, which we denote

T� D E.I� ; i / D Im.Id �iI�/

and
xT� D E.I� ;�i/ D Im.Id CiI�/

respectively.
The real Kähler-metric g� on .M� ; !/ extended complex linearly to TMC is by

definition
g� .X; Y / D !.X; I�Y /;

where X; Y 2 C1.M; TM ˝ C/. Both g� and ! induce isomorphisms

ig�
; i! W TMC ! T �MC

2Here a smooth map from T to C 1.M; W / for any smooth vector bundle W over M means a smooth
section of ��

M .W / over T � M , where �M is the projection onto M . Likewise a smooth p-form on T

with values in C 1.M; W / is by definition a smooth section of ��

T ƒp.T / ˝ ��

M .W / over T � M .

We will also encounter the situation where we have a bundle zW over T � M and then we will talk about
a smooth p-form on T with values in C 1.M; zW� / and mean a smooth section of ��

T ƒp.T / ˝ zW
over T � M .
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and they are related by
ig�

D �I� i! :

We record for later use that since ƒ2.I� /! D !, we get that

.ƒ2ig�
/�1.!/ D .ƒ2i!/

�1.!/: (3)

Suppose V is a vector field on T . Then we can differentiate I along V and we
denote this derivative V ŒI � W T !C1.M;End.TMC//. Differentiating the equation
I 2 D � Id, we see that V ŒI � anti-commutes with I . Hence we get that

V ŒI �� 2 C1.M; .T �
� ˝ xT�/˚ . xT �

� ˝ T�//

for each � 2 T . Let
V ŒI �� D V ŒI �00� C V ŒI �0�

be the corresponding decomposition such that V ŒI �00� 2 C1.M; T �
� ˝ xT�/ and

V ŒI �0� 2 C1.M; xT �
� ˝ T� /.

Now we will further assume that T is a complex manifold and that I is a holo-
morphic map from T to the space of all complex structures on M . Concretely, this
means that

V 0ŒI �� D V ŒI �0�
and

V 00ŒI �� D V ŒI �00�
for all � 2 T , where V 0 means the .1; 0/-part of V and V 00 means the .0; 1/-part of
V over T .

We see that
V Œg�.X; Y / D !.X; V ŒI �Y /:

Since ! is of type .1; 1/ and g is symmetric, we see that

V Œg� 2 C1.M; S2.T �/˚ S2. xT �//

and self-conjugate for real vector fields. Let us now define

zG.V / 2 C1.M; TMC ˝ TMC/

by
V ŒI � D zG.V /!;

where the notation zG.V /! means contraction of tangent and cotangent vectors and
define G.V / 2 C1.M; T� ˝ T� / such that

zG.V / D G.V /C xG.V /
for all real vector fields V on T . We see that zG andG are one-forms on T with values
in C1.M; TMC ˝ TMC/ and C1.M; T� ˝ T�/ respectively. We observe that

V 0ŒI � D G.V /!;
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and G.V / D G.V 0/.
Since V Œg� D !V ŒI �, we see that

V Œg� D ! zG.V /! D i! ˝ i!. zG.V //:
From this it is clear that zG takes values in C1.M; S2.TMC// and therefore that G
takes values in C1.M; S2.T� //.

On Lk we have the smooth family of N@-operators r0;1 defined at � 2 T by

r0;1
� D 1

2
.1C iI�/r:

For every � 2 T we consider the finite-dimensional subspace of C1.M;Lk/

given by

H .k/
� D H 0.M� ;L

k/ D fs 2 C1.M;Lk/ j r0;1
� s D 0g:

We will assume that these subspaces of holomorphic sections form a smooth finite
rank subbundle H .k/ of the trivial bundle H .k/ D T � C1.M;Lk/. See also the
remark regarding this in the introduction and also the Remark 2.5 below.

Let yr t denote the trivial connection in the trivial bundle T � C1.M;Lk/. Let
D.M;Lk/ denote the vector space of differential operators onC1.M;Lk/. For any
smooth one-form u on T with values in D.M;Lk/ we have a connection yr in H .k/

given by
yrV D yr t

V � u.V /
for any vector field V on T .

Lemma 2.2. The connection yr in H .k/ induces a connection in H .k/, i.e. yr is a
Hitchin connection as defined in Definition 1.2, if and only if

i

2
V ŒI �r1;0s C r0;1u.V /s D 0 (4)

for all vector fields V on T and all smooth sections s of H .k/.

Proof. Let s be a section of H .k/ over T and V a vector field on T . Then yrV s is a
section of H .k/, and we compute at a point � 2 T that

r0;1
� ..yrV .s//�/ D r0;1

� .V Œs�� / � r0;1
� ..u.V /s/�/

D � i
2
.V ŒI �r1;0s/� � r0;1

� ..u.V /s/� /;

since
i

2
.V ŒI �r1;0s/� C r0;1

� .V Œs�� / D 0:

Hence yr preserves H .k/ if and only if (4) holds.
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We observe that
V 00ŒI �r1;0s D 0;

so u.V 00/ D 0 solves (4) along the anti-holomorphic directions on T . In other words
the .0; 1/-part of the trivial connection yr t induces a N@-operator on H .k/ and hence
makes it a holomorphic vector bundle over T .

This is of course not in general the situation in the .1; 0/ direction. Let us now
consider a particular u and prove that it solves (4) under certain conditions.

On the Kähler manifold .M� ; !/ we have the Kähler metric and we have the
Levi-Civita connection r in T� . We also have the Ricci potential F� 2 C1

0 .M;R/.
Here

C1
0 .M;R/ D

n
f 2 C1.M;R/ j

Z
M

f!m D 0
o

and the Ricci potential is the element of C1
0 .M;R/ which satisfies

Ric� D RicH
� C2i@�

N@�F� ;

where Ric� 2 �1;1.M�/ is the Ricci form and RicH
� is its harmonic part. We see

that we get this way a smooth function F W T !C1
0 .M;R/.

For any G 2 C1.M; S2.T�// we get a linear bundle map

G W T �
� !T�

and we have the operator

�G W C1.M;Lk/
r1;0

�����! C1.M; T �
� ˝ Lk/

G˝Id�����! C1.M; T� ˝ Lk/

r1;0
� ˝Id C Id ˝r1;0

��������������! C1.M; T �
� ˝ T� ˝ Lk/

Tr���! C1.M;Lk/:

(5)

For any smooth function f on M , we get a vector field

Gdf 2 C1.M; T�/:

Implicit in this definition is the projection from TM Š T� ˚ xT� to T� , which takes
df to @�f .

Putting these constructions together we consider the following operator for some
n 2 Z such that 2k C n ¤ 0

u.V / D 1

2k C n
o.V /C V 0ŒF � (6)

where

o.V / D 1

2
�G.V / � rG.V /dF � nV 0ŒF �: (7)

The connection associated to this u is denoted yr and we call it the Hitchin con-
nection.
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Definition 2.3. We say that the complex family I of Kähler structures on .M; !/ is
rigid if

N@�.G.V /� / D 0

for all vector fields V on T and all points � 2 T .

We will assume our holomorphic family I is rigid.

Theorem 2.4. Suppose that I is a rigid family of Kähler structures on the compact
symplectic prequantizable manifold .M; !/, which satisfies that there exists n 2 Z
such that the first Chern class of .M; !/ is nŒ!� 2 H 2.M;Z/ and H 1.M;R/ D 0.
Then u given by (6) and (7) satisfies (4) for all k such that 2k C n ¤ 0.

Hence the Hitchin connection yr preserves the subbundle H .k/ under the stated
conditions and we have obtained Theorem 1.3.

Remark 2.5. In fact, suppose we don’t know off hand that the subspacesH .k/
� , � 2 T

form a sub-bundle of H .k/, but that we just have a u, that satisfies (4). Then this u
will induce a connection in H .k/, whose parallel transport will map the subspaces
H

.k/
� , � 2 T to each other. But then parallel transport gives a local trivialization of

these subspaces and hence shows that we do in fact have a sub-bundleH .k/ of H .k/.

Theorem 2.4 is established through the following three lemmas.

Lemma 2.6. Assume that the first Chern class of .M; !/ is nŒ!� 2 H 2.M;Z/. For
any � 2 T and for any G 2 H 0.M� ; S

2.T�// we have the following formula

r0;1
� .�G.s/ � 2rGdF�

.s// D �i.2k C n/G!r1;0
� .s/

� ik Tr.�2G@�F! C r1;0
� .G/!/s;

for all s 2 H 0.M� ;L
k/.

Proof. We compute that

r0;1
� .�G.s//

D Tr.r0;1r1;0Gr1;0.s//

D Tr.r1;0r0;1Gr1;0.s// � ik Tr.!Gr1;0.s// � i Tr.Ric� Gr1;0.s//

D �ik Tr.!Gr1;0.s// � i Tr.Ric� Gr1;0.s// � ik Tr.r1;0.G!s//

D �2ik Tr.!Gr1;0.s// � i Tr.Ric� Gr1;0.s// � ik Tr.r1;0.G/!/˝ s;
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since G is holomorphic and r.!/ D 0 because .M� ; !/ is Kähler. The assumption
c1.M; !/ D nŒ!� implies that RicH

� D n! and so

Ric� D n! C 2i@�
N@�F� :

From this we conclude the stated formula.

Remark 2.7. The proof of Lemma 2.6 really uses thatM is compact, since it is using
Hodge theory as stated. However, based on the assumption c1.M; !/ D nŒ!�, we
can still define F� such that it satisfies that

Ric� D n! C 2id N@F�

for all � 2 T , even thoughM is not compact. This follows since any exact .1; 1/-form
on a complex manifold is @N@-exact. The rest of the proof is a purely local calculation
and therefore we do not need that M is compact for either the statement or the proof
of Lemma 2.6.

Lemma 2.8. We have the following relation

2i N@�.V
0ŒF ��/ D 1

2
Tr.2G.V /@.F /! � r1;0.G.V //!/�

provided H 1.M;R/ D 0.

To prove this lemma, we need a formula for the variation of the Ricci form.

Lemma 2.9. For any smooth vector field V on T we have that

.V 0ŒRic�/1;1 D �1
2
@Tr.r1;0.G.V //!/: (8)

Proof. The Ricci form Ric� of the Kähler manifold .M� ; !/ is by definition

Ric� D R�.!/;

where R� 2 C1.M; S2.ƒ
1;1
� M// is the Kähler curvature and

R�.!/ D R� ..ƒ
2ig�

/�1.!//:

From this we conclude that

V 0ŒRic� D V 0ŒR�..ƒ2i!/
�1.!//

where we have used (3). According to Theorem 1.174(c) in [18], we have for any
four vector fields X; Y;Z; U on M , that

V 0ŒR�.X; Y; Z; U /D 1

2
.r2

Y;Z.V
0Œg�/.X; U /C r2

X;U .V
0Œg�/.Y; Z/

� r2
X;Z.V

0Œg�/.Y; U /� r2
Y;U .V

0Œg�/.X;Z/

C V 0Œg�.R.X; Y /Z; U / � V 0Œg�.R.X; Y /U;Z//;
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where R.X; Y / 2 C1.M;End.TM// is .3; 1/-curvature of r, the Levi-Civita
connection on .M� ; !/ and r2

X;Y D rXrY � rrX Y . The Levi-Civita connec-
tion r of .M� ; !/ and therefore also R.X; Y /� preserves the type decomposi-
tion of tensors on .M� ; !/. Hence when we want to compute V 0ŒR� applied to
.ƒ2i!/

�1.!/ 2 C1.M; T� ^ xT� /, and we are only interested in the .1; 1/ part of
the result, we only get contributions from the third and fourth term. These two terms
give

.V 0ŒRic�/1;1 D �1
2
.Tr.r1;0r1;0.V 0Œg�/˝ .ƒ2i!/

�1.!//

C Tr.r0;1r0;1.V 0Œg�/˝ .ƒ2i!/
�1.!///:

Using that r.!/ D 0 and that V 0Œg� D i! ˝ i!G.V / we get that

.V 0ŒRic�/1;1 D �1
2
@Tr.r1;0.G.V //˝ !/:

Remark 2.10. We observe that the proof is a purely local calculation and therefore
we do not need thatM is compact for either the statement or the proof of Lemma 2.9.

Proof of Lemma 2.8. By the definition of the Ricci potential

Ric D RicH C2id N@F
where RicH D n! by the assumption. Hence

V 0ŒRic� D �dV 0ŒI �dF C 2id N@V 0ŒF �

and therefore
2i@N@V 0ŒF � D .V 0ŒRic�/1;1 C @V 0ŒI �@F:

From the above we conclude that

1

2
Tr.2G.V /@F! � r1;0.G.V //!/� � 2i N@�V

0ŒF �� 2 �0;1
� .M/

is @� -closed. By Lemma 2.6 it is also N@� -closed, hence it is a closed one form on
M . But since we assume that H 1.M;R/ D 0, we see it is exact, but then it in fact
vanishes since it is also of type .0; 1/ on M� .

From the above we conclude that

u.V / D 1

2k C n

°1
2
�G.V / � rG.V /dF C 2kV 0ŒF �

±

solves (4) and hence we have established Theorem 2.4.
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Remark 2.11. The proof of Lemma 2.8 again really uses that M is compact, since
it is using Hodge theory as stated. However we still get F defined as in the remark
above following Lemma 2.6.

The following part of the proof also applies in the for non-compact M , proving
that

1

2
Tr.2G.V /@F! � r1;0.G.V //!/� � 2i N@�V

0ŒF �� 2 �0;1
� .M/

is a closed one form. But then the assumption that H 1.M;R/ D 0 implies that there
exists a one-form ˇ on T with values in smooth functions on M , such that

N@ˇ� .V / D 1

2
Tr.2G.V /@F! � r1;0.G.V //!/� � 2i N@�V

0ŒF ��

for all vector fields V on T and all � 2 T . We also get that @ˇ�.V / D 0, but in the
non-compact case we cannot in general use this to get the vanishing of ˇ. However,
if we now define

u.V / D 1

2k C n

n1
2
�G.V / � rG.V /dF C 2k.V 0ŒF �C ˇ.V //

o
;

then this u solves (4) and hence gives us the existence of the Hitchin connection in
the non-compact case as promised in the second remark in the introduction.

In the following sections we will be interested in the induced connection yre in
the endomorphism bundle End.H .k//. Suppose ˆ is a section of End.H .k//. Then
for all sections s of H .k/ and all vector fields V on T , we have that

.yre
Vˆ/.s/ D yrVˆ.s/ �ˆ.yrV .s//:

Assume now that we have extendedˆ to a section of Hom.H .k/; H .k// over T . Then

yre
Vˆ D yre;t

V ˆC Œˆ; u.V /� (9)

where yre;t is the trivial connection in the trivial bundle End.H .k// over T .

Lemma 2.12. There exists smooth one-formsXr ; Z and functions Yr ;, r D 1; : : : ; R,
on T with values in C1.M; T�/ such that

1

2
�G.V / � rG.V /dF D

RX
rD1

rXr .V /rYr
C rZ.V /: (10)

for all vector fields V on T .

Proof. We fix a finite partition of unity .Ui ; �i/ of M , such that each Ui is a con-
tractible coordinate neighborhood .Ui ; xi /. Let Q�i be a smooth function with compact
support inUi which is constant 1 on the support of �i . Using the coordinate xi we get
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a trivialization of T .Ui/. By combining these with the projections onto the varying
holomorphic tangent sub-bundle, we get a smoothly varying trivialization of these.
Using this we see that we for each i can find smooth one forms X .j /

i and Y .j /
i on T

with values in C1.Ui ; T .Ui/˝ C/, which maps T�T to C1.M; T�/ for all � 2 T

and such that
G.V /jUi

D 2
X

j
X

.j /
i .V /Y

.j /
i

and hence
G.V / D 2

X
i

X
j
�iX

.j /
i .V / Q�iY

.j /
i :

Thus we conclude there exists smooth one-formsXr and functions Yr , r D 1; : : : ; R,
on T with values in C1.M; T�/ such that

G.V / D 2

RX
rD1

Xr.V /Yr :

We now compute that

1

2
�G.V / � rG.V /dF

D
RX

rD1

rXr .V /rYr
C

RX
rD1

Tr.r.Xr .V ///rYr
� 2

RX
rD1

Xr .V /.F /rYr
:

From this we see that

Z.V / D
RX

rD1

Tr.r.Xr .V ///Yr � 2

RX
rD1

Xr.V /.F /Yr :

This gives us the expression

u.V / D 1

2k C n

� RX
rD1

rXr .V /rYr
C rZ.V / � nV 0ŒF �

�
C V 0ŒF �: (11)

All we need to use about F W T !C1.M/ below is that it is a smooth function, such
that F� is real valued on M for all � 2 T .

Suppose� is a group which acts by bundle automorphisms of L overM preserving
both the Hermitian structure and the connection in L. Then there is an induced action
of � on .M; !/. We will further assume that � acts on T and that I is �-equivariant.
In this case we immediately get the following invariance.

Lemma 2.13. The natural induced action of � on H .k/ preserves the subbundle
H .k/ and the Hitchin connection.
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3. Berezin–Toeplitz deformation quantization on compact Kähler manifolds

For each f 2 C1.M/ we consider the prequantum operator, namely the differential
operator P .k/

f
W C1.M;Lk/!C1.M;Lk/ given by

P
.k/

f
D � 1

k
rXf

C if �

where Xf is the Hamiltonian vector field associated to f .
These operators acts on C1.M;Lk/ and therefore also on the bundle H .k/,

however, they do not preserve the subbundle H .k/. In order to turn these operators
into operators which act on H .k/ we need to consider the Hilbert space structure.

Integrating the inner product of two sections against the volume form associated
to the symplectic form gives the pre-Hilbert space structure on C1.M;Lk/

hs1; s2i D 1

mŠ

Z
M

.s1; s2/!
m:

We think of this as a pre-Hilbert space structure on the trivial bundle H .k/ which
of course is compatible with the trivial connection in this bundle. This pre-Hilbert
space structure induces a Hermitian structure h�; �i on the finite rank subbundle H .k/

of H .k/. The Hermitian structure h�; �i on H .k/ also induces the operator norm k � k
on End.H .k//.

SinceH .k/
� is a finite-dimensional subspace ofC1 .M;Lk/ D H

.k/
� and therefore

closed, we have the orthogonal projection �.k/
� W H

.k/
� !H

.k/
� . Since H .k/ is a

smooth subbundle of H .k/ the projections �.k/
� form a smooth map �.k/ from T to

the space of bounded operators on the L2-completion of C1.M;Lk/. The easiest
way to see this is to consider a local frame for .s1; : : : sRank H .k// of H .k/. Let
hij D hsi ; sj i. Let h�1

ij be the inverse matrix of hij . Then

�.k/
� .s/ D

X
i;j

hs; .si /�i.h�1
ij /�.sj /� : (12)

This formula will be useful when we have to compute the derivative of �.k/ along
vector fields on T .

From these projections we can construct the Toeplitz operators associated to any
smooth function f 2 C1.M/, T .k/

f;�
W H

.k/
� !H

.k/
� , defined by

T
.k/

f;�
.s/ D �.k/

� .f s/

for any element s in H
.k/
� and any point � 2 T . We observe that the Toeplitz

operators are smooth sections T .k/

f
of the bundle Hom.H .k/; H .k// and restrict to

smooth sections of End.H .k//.
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Remark 3.1. Similarly for any pseudo-differential operatorA onM with coefficients
in Lk (which may even depend on � 2 T ), we can consider the associated Toeplitz
operator �.k/A and think of it as a section of Hom.H .k/; H .k//. However, when-
ever we consider asymptotic expansions of such or consider their operator norms,
we implicitly restrict them to H .k/ and consider them as section of End.H .k// or
equivalently assume that they have been precomposed with �.k/.

We recall byTuynman’sTheorem [49] that if we compose the prequantum operator
associated to f by the orthogonal projection, then it can be rewritten as a Toeplitz
operator.

Theorem 3.2 (Tuynman). For any f 2 C1.M/ and any point � 2 T we have that

�.k/
� B P .k/

f
D iT

.k/

f � 1
2k

�� f;�

as operators from H
.k/
� to H .k/

� , where �� is the Laplacian on .M� ; !/.

Tuynman’s formula is of course equivalent to

�.k/
� rXf

D T
.k/
i
2

�� .f /;�
:

This formula is really a corollary of a more general formula which we will need.
Suppose we have a smooth section X 2 C1.M; T�/ of the holomorphic tangent

bundle of M� . We then claim that the operator �.k/rX is a zero-order Toeplitz
operator. Suppose s1 2 C1.M;Lk/ and s2 2 H 0.M� ;L

k/, then we have that

X.s1; s2/ D .rXs1; s2/:

Now, calculating the Lie derivative along X of .s1; s2/!m and using the above, one
obtains after integration that

hrX s1; s2i D �hƒd.iX!/s1; s2i;
where ƒ denotes contraction with !. Thus

�.k/rX D T
.k/

fX
; (13)

as operators from C1.N; Lk/ to H 0.N; Lk/, where fX D �ƒd.iX!/.
Tuynman’s formula above now follows from

ƒd.i.Xf /.1;0/!/ D �ƒd.N@�f / D � i
2
��f:

Iterating (13), we find for all X1; X2 2 C1.M; T�/ that

�.k/rX1
rX2

D T
.k/

fX2
fX1

�X2.fX1
/

(14)
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again as operators from C1.M;Lk/ to H 0.M� ;L
k/.

For X 2 C1.M; T�/, the complex conjugate vector field xX 2 C1.M; xT�/ is
a section of the antiholomorphic tangent bundle, and for s1; s2 2 C1.M;Lk/, we
have that

xX.s1; s2/ D .r xXs1; s2/C .s1;rXs2/:

Computing the Lie derivative along xX of .s1; s2/!m and integrating, we get that

hr xX s1; s2i C h.rX/
�s1; s2i D �hƒd.i xX!/s1; s2i:

Hence we see that
.rX /

� D � �r xX � f xX
�

as operators on C1.M;Lk/. In particular, we see that

�.k/.rX/
��.k/ D �T .k/

f xX
jH 0.M� ;Lk/ W H 0.M� ;L

k/!H 0.M� ;L
k/: (15)

For two smooth sections X1; X2 of the holomorphic tangent bundle T� and a smooth
function h 2 C1.M/, we deduce from the formula for .rX/

� that

�.k/.rX1
/�.rX2

/�h�.k/ D �.k/ xX1
xX2.h/�

.k/ � �.k/f xX1

xX2.h/�

� �f xX2

xX1.h/�
.k/ � �.k/ xX1.f xX2

/h�

C �f xX1
f xX2

h�.k/

(16)

as operators on H 0.M� ;L
k/.

The product of two Toeplitz operators associated to two smooth functions will
in general not be the Toeplitz operator associated to a smooth function again for all
levels k, but there is an asymptotic expansion of the product in terms of such Toeplitz
operators on a compact Kähler manifold by the results of Schlichenmaier [44].

Theorem 3.3 (Schlichenmaier). For any pair of smooth functions f1; f2 2 C1.M/,
we have an asymptotic expansion

T
.k/

f1;�
T

.k/

f2;�
�

1X
lD0

T
.k/

c
.l/
� .f1;f2/;�

k�l ;

where c.l/
� .f1; f2/ 2 C1.M/ are uniquely determined since � means the following:

for all L 2 ZC we have that

���T .k/

f1;�
T

.k/

f2;�
�

LX
lD0

T
.k/

c
.l/
� .f1;f2/;�

k�l
��� D O.k�.LC1//

uniformly over compact subsets of T . Moreover, c.0/
� .f1; f2/ D f1f2.
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Remark 3.4. It will be useful for us to define new coefficients Qc.l/
� .f; g/ 2 C1.M/

which correspond to the expansion of the product in 1=.2k C n/ (where n is some
fixed integer):

T
.k/

f1;�
T

.k/

f2;�
�

1X
lD0

T
.k/

Qc.l/
� .f1;f2/;�

.2k C n/�l :

Theorem 3.3 is proved in [44], where it is also proved that the formal generating
series for the c.l/

� .f1; f2/’s gives a formal deformation quantization3 of symplectic
manifold .M; !/.

We recall the definition of a formal deformation quantization. Introduce the space
of formal functions C1

h
.M/ D C1.M/ŒŒh�� as the space of formal power series in

the variable h with coefficients in C1.M/. Let Ch D CŒŒh��.

Definition 3.5. A deformation quantization of .M; !/ is an associative product � on
C1

h
.M/ which respects the Ch-module structure. It is determined by a sequence of

bilinear operators

c.l/ W C1.M/˝ C1.M/ �! C1.M/

defined through

f � g D
1X

lD0

c.l/.f; g/hl ;

where f; g 2 C1.M/. The deformation quantization is said to be differential, if the
operators c.l/ are bidifferential operators. Considering the symplectic action of � on
.M; !/, we say that a �-product � is �-invariant if

	�.f � g/ D 	�.f / � 	�.g/

for all f; g 2 C1.M/ and all 	 2 � .

Theorem 3.6 (Karabegov and Schlichenmaier). The product ?BT
� given by

f ?BT

� g D
1X

lD0

.�1/lc.l/
� .f; g/hl ;

where f; g 2 C1.M/ and c.l/
� .f; g/ are determined by Theorem 3.3, is a differential

deformation quantization of .M; !/.

Definition 3.7. The Berezin–Toeplitz deformation quantization of the compact Käh-
ler manifold .M� ; !/ is the product ?BT

� .

3We have the opposite sign-convention on the curvature, which means our cl are .�1/l cl in [44].
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Remark 3.8. Let �� be the � -stabilizer subgroup of � . For any element 	 2 �� , we
have that

	�.T .k/

f;�
/ D T

.k/

��f;�
:

This implies the invariance of ?BT
� under the � -stabilizer �� .

Remark 3.9. We define a new �-product by

f Q?BT

� g D
1X

lD0

.�1/l Qc.l/
� .f; g/hl :

Then

f Q?BT

� g D �
.f B '�1/ ?BT

� .g B '�1/
� B '

for all f; g 2 C1
h
.M/, where '.h/ D h

2C nh
.

In [32], this Berezin–Toeplitz deformation quantization is identified in terms of
Karabegov’s classification of �-products with separation of variables on Kähler mani-
folds. Adopting the convention where the roles of holomorphic and anti-holomorphic
are interchanged in the condition for a star product to be with separation of variables
from [32], one of the main result of that paper reads

Theorem 3.10 (Karabegov and Schlichenmaier). The Karabegov form Q!� of the
Berezin–Toeplitz �-product ?BT

� is

Q!� D 1

h
! C Ric� :

We will also need the following theorem due to Bordemann, Meinrenken and
Schlichenmaier (see [22]).

Theorem 3.11 (Bordemann, Meinrenken, and Schlichenmaier). For anyf 2 C1.M/

we have that

lim
k ! 1

kT .k/

f;�
k D sup

x2M

jf .x/j:

Since the association of the sequence of Toeplitz operators T .k/

f;�
, k 2 ZC is linear

in f , we see from this theorem, that this association is faithful.
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4. The formal Hitchin connection

We assume the conditions on .M; !/ and I of Theorem 2.4, thus providing us with a
Hitchin connection yr inH .k/ over T and the associated connection yre in End.H .k//.

Before proving Theorem 1.8, we need to establish some basic properties.
First, we need a useful formula for the derivative of the orthogonal projection �.k/

along a curve �t in T . To this end, consider a basis of covariant constant sections .si /t ,
i D 1; : : : ;RankH .k/, of H .k/ over a curve �t in T :

.si /
0
t D u.� 0

t /..si/t /; i D 1; : : : ;RankH .k/:

Recall formula (12) for the projection �.k/ W H
.k/
� !H

.k/
� and compute the derivative

along �t : for any fixed s 2 C1.M;Lk/, we have that

.�.k/
�t
/0.s/ D

X
i;j

hs; .si /0t i.h�1
ij /t .sj /t C

X
i;j

hs; .si /t i.h�1
ij /

0
t .sj /t

C
X
i;j

hs; .si /t i.h�1
ij /t .sj /

0
t :

An easy computation gives that

.h�1
ij /

0
t D �

X
l;r

.h�1
il /t .h.sl /0t ; .sr/t i C h.sl /t ; .sr/0t i/.h�1

rj /t ;

so

�.k/
�t
.�.k/

�t
/0.s/ D

X
i;j

hu�
G.� 0

t /
s; .si /t i.h�1

ij /t .sj /t

�
X

i;l;m;j

hs; .si /t i.h�1
il /t h.sl /t ; .sm/0t i.h�1

mj /t .sj /t

D �.k/
�t
u.� 0

t /
�.s/ �

X
m;j

h�.k/
�t
s; u.� 0

t /..si /t /i.h�1
mj /t .sj /t

D �.k/
�t
u.� 0

t /
�.s/ � �.k/

�t
u.� 0

t /
��.k/

�t
.s/:

Hence we conclude that

Lemma 4.1. For any smooth vector field V on T , we have that

�.k/V Œ�.k/� D �.k/u.V /� � �.k/u.V /��.k/: (17)

Let us now apply this formula for the derivative.
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Proof of Theorem 1.8. Using formula (9) we see that

yre
V T

.k/

f
D V ŒT

.k/

f
�C ŒT

.k/

f
; u.V /�

and so we compute

�.k/ yre
V T

.k/

f
�.k/ D �.k/V Œf ��.k/ C �.k/V Œ�.k/�f �.k/

� �.k/u.V /�.k/f�.k/ C �.k/f u.V /�.k/

D �.k/V Œf ��.k/ C �.k/V 00ŒF �f�.k/ � �.k/V 00ŒF ��.k/f�.k/

C �.k/V 0ŒF �f�.k/ � �.k/V 0ŒF ��.k/f�.k/

C 1

2k C n
.�.k/o.V /�f�.k/ � �.k/o.V /��.k/f�.k/

C �.k/fo.V /�.k/ � �.k/o.V /�.k/f�.k//:

Now, by combining (11) with (13) to (16), we get a one-form E on T with values in
D.M/ such that

T
.k/

E.V /f
D �.k/o.V /�f�.k/ C �.k/fo.V /�.k/:

Let H be the one-form on T with values in C1.M/ such that H.V / D E.V /.1/.
Then we get the formula

�.k/ yre
V T

.k/

f
�.k/

D T
.k/

V Œf �
C .T

.k/

V ŒF �f
� T

.k/

V ŒF �
T

.k/

f
/C 1

2k C n
.T

.k/

E.V /.f /
� T .k/

H.V /
T

.k/

f
/:

(18)

From this we obtain, using Theorem 3.3, the wanted estimate by letting

zD.V /.f / D V ŒF �f � V ŒF � Q?BT
f C h.E.V /.f / �H.V / Q?BT

f / (19)

which is clearly divisible by h. The uniqueness of zD follows from Theorem 3.11.

Lemma 4.2. If A is a smooth family of Toeplitz operators of order d , then yre
VA is

also a smooth family of Toeplitz operators of order d and

�d .yre
VA/ D V Œ�d .A/�

for any vector field V on T .

Proof. Since yre
VA is again a smooth section of End.H .k// over T , we have that

yre
VA D � yre

VA:

Now we can simply apply (17) to obtain the desired conclusion.
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Proposition 4.3. Suppose f; g W T !C1.M/ are smooth functions. Then T .k/

f
T

.k/
g

is a smooth family of Toeplitz operators over T and for any vector field V on T we
have that

yre
V .T

.k/

f
T .k/

g / � yre
V .T

.k/

f ?BTg
/;

i.e. for all L 2 ZC we have that

��� yre
V .T

.k/

f
T .k/

g / �
LX

lD0

yre
V .T

.k/

cl .f;g/
/
��� D O.k�.LC1//:

Proof. We use the notation of [44] and [45] and the setup of generalized Toeplitz
operators described there. In this set-up one assigns to the prequantum line bundle
the unit circle bundle of the dual bundle. The above Toeplitz operators T .k/

f
are the

components (with respect to the circle action) of a zero order generalized Toeplitz
operator Tf . The generator of the circle action D' is a generalized Toeplitz operator
of order one. We let

AL D DL
' Tf Tg �

LX
lD0

DL�l
' Tcl .f;g/:

Suppose V be a vector field on T . We will now establish by induction that yreAL is
a zero order Toeplitz operator and

�0.yre
VAL/ D V ŒcL.f; g/�:

Note that Lemma 4.2 implies this claim for A0 D Tf Tg , since we have just argued
this operator is smooth. Assume we have established this claim for yreAL�1. Since

AL D D'AL�1 �D'TcL�1.f;g/;

we see that AL is a smooth family of Toeplitz operators parameterized by T and

yre
VAL D D'

yre
VAL�1 �D'

yre
V TcL�1.f;g/:

We see this is at most a first order operator by induction, but we have

�1.yre
VAL/ D t .�0.yre

VAL�1/ � V ŒcL�1.f; g/�/ D 0

by the previous lemma, so it is at most a 0-order operator. Applying the previous
lemma again we see that

�0.yre
VAL/ D V Œ�0.AL/� D V ŒcL.f; g/�:

This completes the inductive step.
The estimates of the theorem now follow since by induction yre

VAL is a zero order
Toeplitz operator for all L 2 ZC.
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Lemma 4.4. The formal operator DV is a derivation for ?BT
� for each � 2 T , i.e.

DV .f ?
BT g/ D DV .f / ?

BT g C f ?BT DV .g/

for all f; g 2 C1.M/.

Proof. By definition of ?BT
� we have for all � 2 T that

T
.k/

f;�
T .k/

g;� � T
.k/

f ?BT
� g;�

:

Let V be a vector field on T . By Proposition 4.3 we have that

yre
V .T

.k/

f
T .k/

g / � yre
V .T

.k/

f ?BTg
/:

Considering the left hand side, we see that

yre
V .T

.k/

f
T .k/

g / D yre
V .T

.k/

f
/T .k/

g C T
.k/

f
yre

V .T
.k/
g /:

Now apply Theorem 1.8 to get the wanted conclusion.

Proposition 4.5. For two vector fields V1; V2 on T , we have the formula

.Œyre
V1
; yre

V2
� � yre

ŒV1;V2�/.T
.k/

f
/ � T

.k/

.ŒDV1
;DV2

��DŒV1;V2�/.f /.1=.2kCn//
: (20)

From this proposition we conclude in particular that flatness of yre implies flatness
of D.

Proof. By (18) we see that

yre
V1
.yre

V2
.T

.k/

f
// D yre

V1
.T

.k/

V2Œf �
/C yre

V1
.T

.k/

V 0

2
ŒF �f

/ � yre
V1
.T

.k/

V 0

2
ŒF �
T

.k/

f
/

C 1

2k C n
.yre

V1
.T

.k/

E.V2/.f /
/ � yre

V1
.T

.k/

H.V2/
T

.k/

f
//:

But now by applying first Proposition 4.3 and then Theorem 1.8 to this expression,
we see that

yre
V1
.yre

V2
.T

.k/

f
// � T

.k/

DV1
DV2

f
:

The proposition then follows from this and Theorem 1.8.
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5. Formal trivializations and symmetry-invariant �-products

Recalling Definition 1.12, it is clear that a formal Hitchin connectionD will not have
a formal trivialization even locally on T , if it is not flat. However, ifD is flat, which is
implied if yr is projectively flat by Proposition 4.5, then we have the following result.

Proposition 5.1. Assume that D is flat and that zD D 0 mod h. Then locally around
any point in T there exists a formal trivialization. IfH 1.T ;R/ D 0 then there exists
a formal trivialization defined globally on T . If further H 1

�.T ;D.M// D 0 then we
can construct P such that it is �-equivariant.

In this PropositionH 1
� .T ;D.M// simply refers to the�-equivariant first de Rham

cohomology of T with coefficients in the real �-vector space D.M/.

Proof. We write the formal trivialization we seek as

P D
1X

lD0

Plh
l

where Pl W T ! D.M/. We need to solve

DVP D
1X

lD0

V ŒPl �h
l C

1X
lD0

lX
rD1

zD.r/.V /Pl�rh
l :

Hence we need that

V ŒPl � D
lX

rD1

zD.r/.V /Pl�r : (21)

Now P0 D Id solves this equation for l D 0. Assume that we have solved (locally,
globally on T respectively �-equivariantly on T ) this equation for Pr , for r < l .
Then let ˛l 2 �1.T ;D.M// be given by

˛l .V / D
lX

rD1

zD.r/.V /Pl�r :

We observe that ˛l is �-invariant. A short computation shows that the flatness of D
implies that ˛l is closed on T . Hence we can (locally, globally on T respectively
�-equivariantly on T ) solve (21) for Pl .

Now suppose we have a formal trivializationP of the formal Hitchin connectionD
determined by (2). Then P is constant mod h and we may and will assume that

P D Id mod h:
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We can then define a new smooth family of star products, parametrized by T , by

f ?� g D P�1
� .P�.f / ?

BT

� P�.g//

for all f; g 2 C1.M/ and all � 2 T .

Proposition 5.2. The star-products ?� are independent of � 2 T .

Proof. Let f; g 2 C1.M/. SinceDV is a derivation for ?BT
� for any � 2 T , we have

that
DV .P�.f / ?

BT

� P� .g// D 0:

However we have

DV .P�.f / ?
BT

� P�.g// D zD.V /.P�.f / ?
BT

� P� .g//C V ŒP� �.f / ?
BT

� P�.g/

C P�.f / ?
BT

� V ŒP� �.g/C P�.f /V Œ?
BT

� �P�.g/;

which we compare with

V Œf ?� g� D V ŒP�1
� �.P�.f / ?

BT

� P�.g//C P�1
� .V ŒP� �.f / ?

BT

� P� .g//

C P�1
� .P� .f / ?

BT

� V ŒP� �.g//C P�1
� .P�.f /V Œ?

BT

� �P� .g//

and conclude, since PV ŒP�1� D zD.V /, that

V Œf ?� g� D 0:

From the above we conclude Theorem 1.13.
Now, let us analyze equivalences between symmetry invariant �-products. Sup-

pose we have two differential �-invariant �-products � and �0, which are equivalent
under some equivalence

T D Id C
1X

j D1

hjTj ;

where Tj W C1.M/!C1.M/ is a linear map for each j 2 N, such that

T .f � g/ D T .f / �0 T .g/:

By Theorem 2.22 in [30] it follows that Tj is a differential operator for all j 2 N.

Proposition 5.3. If the first discrete cohomology of� with coefficient in the�-module
C1

0 .M/,H 1.�; C1
0 .M// and first de Rham cohomology ofM with real coefficients,

H 1.M;R/, both vanish, then we can find a�-invariant equivalence between � and �0.

Please see our joint work with Villemoes [12], [13], and [14] where we prove the
vanishing of the first cohomology of the mapping class group with coefficients in
modules of functions (of various kinds) on moduli spaces. This is also related to our
application in Section 6 below.
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Proof. We consider the given equivalence T and by a short computation we get that

T �1	�.T /.f � g/ D T �1	�.T /.f / � T �1	�.T /.g/;

hence T �1	�.T / is an automorphism of �. Since H 1.M;R/ D 0 we get by Propo-
sition 3.3 in [30] that there exists a� 2 C1

h
.M/ for each 	 2 � such that

T �1	�.T / D exp.ad� a� /: (22)

We observe for u; f 2 C1.M/ that

ad�.u/.f / D fu; f ghCO.h2/;

and that ad�.c/ D 0 for all c 2 Ch. If we have that a� D P1
j D0 a

.j /
� hj , then we may

assume that a.j /
� 2 C1

0 .M/. Furthermore a� is then uniquely determined by (22).
Let us now assume that

a.i/
� D 0

for all 	 2 � and i D 0; : : : j �1. We will then show that we can modify Tj to obtain
a new equivalence which through (22) produces a new a� , which vanishes modulo
hj C1.

First we see that

exp.ad� a�1�2
/ D exp.ad� a�1

/ exp.ad� 	�
1 .a�2

//

D exp.ad�.a�1
B� 	�

1 .a�2
///

by Lemma 4.1 in [30], where B� is the Campbell–Baker–Hausdorff composition

a B� b D a C
Z 1

0

 .exp.ad� a/ B exp.t ad� b//b dt;

where

 .z/ D z log.z/

z � 1
:

One has for a; b 2 C1.M/ that

a B� b D a C b CO.h1/:

From the above we may conclude that

a.j /
�1�2

D a.j /
�1

C 	�
1 .a

.j /
�2
/:

Hence we see that
.a.j /

� / 2 Z1.�; C1
0 .M//:

But by assumption H 1.�; C1
0 .M// D 0, so this means that there exists a.j / 2

C1
0 .M/ such that

a.j /
� D 	�.a.j // � a.j /:
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Now replaceTj byTj exp.ad�.a.j /hj // and obtain a new equivalence which produces
a new a� with the required vanishing. By induction we have the conclusion of the
proposition.

Remark 5.4. From this we conclude that if the commutant of � in D.M/ is trivial,
i.e. it contains only scalar multiples of the identity, then a � invariant differential
�-product on M is unique.

6. Applications to moduli space of flat connections

Let † be a compact oriented surface possibly with boundary. Let M be the moduli
space of flat SU.n/-connections on †

M D Hom.�1.†/; SU.n//=SU.n/:

There is a natural Poisson structure on M; see [27] and [28]. The symplectic leaves are
specified by fixing the conjugacy-class of the holonomy around each component of the
boundary of†. Let .M; !/ be a smooth symplectic leaf of M. Pick a prequantum line
bundle on .M; !/. Teichmüller space of† parametrizes a complex family of complex
structures on each .M; !/. Then the assumptions of Theorem 1.3 are satisfied, since
Hitchin’s proof from [31] generalizes word for word to this situation and shows
that this family of complex structures is rigid. We get the existence of the Hitchin
connection given by (1).

As a corollary of Lemma 2.8 (which gives an explicit expression for the function
Hitchin calls fG in his paper [31]), we get that Hitchin’s connection agrees with the
connection constructed by Axelrod, Della Pietra and Witten in [17], as is stated in the
introduction in Theorem 1.4.

Now the techniques used in [31] to show that the Hitchin connection is projectively
flat apply in our situation, hence we conclude that the induced connection in the
endomorphism bundle yre is flat. Since Teichmüller space is contractible, we can
apply Theorem 1.10 to obtain Theorem 1.14.
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