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Hitchin’s connection in metaplectic quantization
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Abstract. We give a differential geometric construction of a connection, which we call the
Hitchin connection, in the bundle of quantum Hilbert spaces arising from metaplectically
corrected geometric quantization of a prequantizable, symplectic manifold, endowed with a
rigid family of Kähler structures, all of which give vanishing first Dolbeault cohomology
groups.

This generalizes work of both Hitchin, Scheinost and Schottenloher, and Andersen, since
our construction does not need that the first Chern class is proportional to the class of the
symplectic form, nor do we need compactness of the symplectic manifold in question.

Furthermore, when we are in a setting similar to the moduli space, we give an explicit
formula and show that this connection agrees with previous constructions.

Mathematics Subject Classification (2010). 53D50, 32Q55.

Keywords. Geometric quantization, metapletic correction, complex manifolds.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

2 Metaplectic structure and quantization . . . . . . . . . . . . . . . . . . . 333

3 The reference connection . . . . . . . . . . . . . . . . . . . . . . . . . . 336

4 Curvature of the reference connection . . . . . . . . . . . . . . . . . . . 339

5 The Hitchin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

6 Relation to non-corrected quantization . . . . . . . . . . . . . . . . . . . 346

A. Examples of rigid families of complex structures on symplectic manifolds 354

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

1The authors were supported in part by the center of excellence grant “Center for quantum geometry
of Moduli Spaces” from the Danish National Research Foundation.



328 J. E. Andersen, N. L. Gammelgaard and M. R. Lauridsen

1. Introduction

Hitchin constructed in [20] a connection over Teichmüller space. This Hitchin con-
nection is a connection in the bundle obtained from geometric quantization, with
respect to the family of Kähler structures parametrized by Teichmüller space, of the
moduli spaces of flat SU.n/-connections on a closed oriented surface. The signifi-
cance of this connection is its relation to .2 C 1/-dimensional Reshetikhin–Turaev
TQFT; see [27] and [28]. In fact, this geometric construction of these TQFT’s was
proposed by Witten in [31], where he derived, via the Hamiltonian approach to quan-
tum Chern–Simons theory, that the geometric quantization of the moduli spaces of flat
connections should give the 2-dimensional part of the theory. Further, he proposed an
alternative construction of the 2-dimensional part of the theory via WZW-conformal
field theory. This theory has been studied intensively. In particular, the work of
Tsuchiya, Ueno, andYamada in [30] provided the major geometric constructions and
results needed. In [13], their results was used to show that the category of integrable
highest weight modules of level k for the affine Lie algebra associated to any simple
Lie algebra is a modular tensor category. Further in [13] this result is combined with
the work of Kazhdan and Lusztig, [21], [22], and [23], and the work of Finkelberg [18]
to argue that this category is isomorphic to the modular tensor category associated to
the corresponding quantum group, from which Reshetikhin and Turaev constructed
their TQFT. Unfortunately, these results do not allow one to conclude the validity
of the geometric constructions of the 2-dimensional part of the TQFT proposed by
Witten. However, in joint work between Andersen and Ueno, [10], [9], [7], and [8],
they give a proof, based mainly on the results of [30], that the TUY-construction
of the WZW-conformal field theory after twist by a fractional power of an abelian
theory, satisfies all the axioms of a modular functor. Furthermore, they have proved
that the full .2 C 1/-dimensional TQFT that results from this is isomorphic to the one
constructed by Blanchet, Habegger, Masbaum, and Vogel via skein theory; see [16]
and [15]. Combining this with the theorem of Laszlo [26], which identifies (projec-
tively) the representations of the mapping class groups obtained from the geometric
quantization of the moduli space of flat connections with the ones obtained from the
TUY-constructions, one gets a proof of the validity of the construction proposed by
Witten in [31].

In [12], Axelrod, Della Pietra, and Witten gave a differential geometric construc-
tion of the Hitchin connection by using a method of symplectic reduction from the
infinite-dimensional space of all SU.n/-connections. In [4] Andersen constructed the
Hitchin connection in a more general setting. A corollary of the results in [4] is that
the connection constructed by Axelrod, Della Pietra, and Witten in [12] is the same
as Hitchin’s connection constructed in [20].

In this paper, we extend the setting from [4], in which we can construct the
Hitchin connection, to include metaplectic quantization. Let us describe this setting.
Consider a 2m-dimensional symplectic manifold .M; !/, and assume that there exists
a prequantum line bundle .L; h; r/, where L is a complex line bundle with Hermitian
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structure h and compatible connection r with curvature �i!. In prequantization,
one considers the space C 1.M; Lk/ of sections of the k-th tensor power of L. This,
however, does not produce a satisfying quantization, since there are in some sense too
many sections. By studying simple examples from quantum mechanics, such as the
harmonic oscillator, it is clear that prequantization produces wave functions which
depend on both position and momentum coordinates, where they should only depend
on the former.

A standard way of resolving this problem is by choosing a polarization on M,
which is a certain type of integrable Lagrangian subbundle of the (complexified)
tangent bundle, and then consider the subspace of polarized sections of C 1.M; Lk/,
i.e. sections which are covariant constant along the directions of the polarization;
see [32]. One of the major effects of this resolution is that the quantization now
depends on the auxiliary choice of polarization, which, from a physical point of view,
it should not.

To study this dependence, we will focus attention on Kähler polarizations, for
which the quantization procedure is rather well behaved. If we endow .M; !/ with
a Kähler structure J, we get a Kähler polarization from the splitting TMC D T ˚ xT
given by the i and �i eigenspaces of J. By composing the connection r with the
projection onto xT, we get a N@-operator on C 1.M; Lk/. The holomorphic sections
with respect to this N@-operator is exactly the subspace of sections which are covariant
constant along the directions of xT.

From a physical perspective, geometric quantization is still a little too crude. On
basic examples from quantum mechanics, the procedure yields an energy spectrum
which is off by a small shift; see [32].

To counter this effect, the notion of metaplectic correction must be employed.
For a Kähler polarization this involves a choice of square root (if it exists) ıJ of the
canonical line bundle KJ D ^mT �, and then the metaplectically corrected quantum
phase spaces are the holomorphic sections of Lk ˝ ıJ .

Suppose we have a family of Kähler structures parametrized by a manifold T .
We then consider the fibration H .k/ over T with the quantum phase space for the
given Kähler structure as the fiber. To do this, however, one needs make consistent
choices of square roots of the canonical line bundle for all Kähler structures in the
family at the same time. Once this is achieved, we seek to establish that H .k/ is a
vector bundle over T and find a (projectively) flat connection in H .k/ in order to
obtain a quantization, independent of the choice of Kähler structure, given as the
covariant constant sections of H .k/ over T . Such a connection, when given by global
differential operators, will be called a Hitchin connection. Let us now expand on this
in details.

Denote by J W T ! C 1.M; End.TMC// the parametrization of Kähler struc-
tures. Along any vector field V on T , we can differentiate J to get a map V ŒJ � W T !
C 1.M; End.TMC//.
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Define zG.V / 2 C 1.M; S2.TMC// by

V ŒJ � D zG.V /!:

Letting T� denote the holomorphic tangent bundle on .M; J�/ for any � 2 T , we can
further define G.V / 2 C 1.M; S2.T // by the equation

zG.V / D G.V / C xG.V /;

for all vector fields V on T . We shall assume that the family J is rigid (cf. Defini-
tion 5.3), meaning that G.V /� is a holomorphic section of S2.T� /. This assumption
is rather restrictive, but see Appendix A for examples.

In case the second Stiefel–Whitney class vanishes, we can choose a metaplectic
structure on the symplectic manifold .M; !/ (see Section 2), which gives rise to a
choice of a square root ı� of the canonical line bundle K� ! M� , varying smoothly
in the parameter � 2 T .

The Levi-Civita connection zr� , corresponding to the Kähler metric on M� , in-
duces a connection in the line bundle ı� ! M� , and thus we get a connection r� in
Lk ˝ ı� ! M� , giving this bundle the structure of a holomorphic line bundle.

For every � 2 T , we have the infinite-dimensional vector space H
.k/
� D C 1.M;

Lk ˝ ı� /, and we consider the subspace of holomorphic sections

H .k/
� D H 0.M� ; Lk ˝ ı� / D fs 2 C 1.M; Lk ˝ ı� / j r0;1

� s D 0g:
It is clear that the spaces H

.k/
� form a smooth vector bundle H .k/ ! T , but it is

not clear that the subspaces H
.k/
� form a smooth subbundle H .k/. However, it is a

corollary of our construction that, under the assumptions stated in Theorem 1.2, the
spaces H

.k/
� do indeed form a smooth bundle over T and that H .k/ ! T is a smooth

subbundle of H .k/. See Remark 5.2 below, where we establish this fact.
The spaces C 1.M; T�/, of smooth sections of the holomorphic tangent bundle,

form a bundle C 1.M; T / ! T , in which we have a connection yrT defined by the
formula

yrT
V � D �1;0V Œ��;

where �
1;0
� W TMC ! T� is the projection, and V Œ�� denotes differentiation in the

trivial bundle T �C 1.M; TMC/. This induces a connection in C 1.M; ı/ ! T , and
with the help of the trivial connection in T � C 1.M; Lk/ this induces a connection
yrr in H .k/ ! T , which we call the reference connection (see Section 3 for further
details).

Definition 1.1. A Hitchin connection is a connection in the bundle H .k/ ! T , which
preserves H .k/ and has the form

rV D yrr
V C u.V /;
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where yrr is the reference connection and u is a 1-form on T with values in differential
operators on C 1.M; Lk ˝ ı/.

In our construction of a Hitchin connection, u.V / will turn out to be a second-
order operator with leading order term given by the operator �G.V / D Tr rG.V /r.
More precisely, we will prove the following theorem.

Theorem 1.2. Let .M; !/ be a prequantizable, symplectic manifold with vanishing
second Stiefel–Whitney class. Further, let J be a rigid family of Kähler structures
on M, all satisfying H 0;1.M/ D 0. Then, there exists a 1-form ˇ 2 �1.T ; C 1.M//

such that the connection r , in the bundle H .k/, given by

rV D yrr
V C 1

4k
.�G.V / C ˇ.V //;

is a Hitchin connection. The connection is unique up to addition of the pullback of
an ordinary 1-form on T .

We can consider rigidity of the family J as a condition on the vector fields V, rather
than considering it as a condition on the family of Kähler structures. We will then get
a partial connection which is defined in these rigid directions. See also Appendix A.

The theorem above can be applied to the moduli space flat SU.n/ connections on
a Riemann surface, and the work in this paper has been greatly inspired by previous
work in this setting. As mentioned above, Witten argued [31] that geometric quan-
tization of the moduli space would produce the 2-dimensional part of a topological
quantum field theory in .2 C 1/-dimensions. The Teichmüller space of the surface
parametrizes a (rigid) family of Kähler structures on the moduli space and Hitchin
constructed [20] a projectively flat connection in the bundle of quantum spaces over
Teichmüller space. This connection was also constructed independently by Axelrod,
Della Pietra, and Witten in [12]. Hitchin’s construction was generalized by Scheinost
and Schottenloher [29] to metaplectic quantization using similar methods to those
applied in [20]. Later, the first author [4] generalized Hitchin’s construction to sym-
plectic manifolds satisfying certain conditions also satisfied by the moduli space, e.g.
compactness and a relationship between the symplectic structure and the first Chern
class. This generalization used only differential geometric methods and produced an
explicit formula in terms of Ricci potentials.

This paper uses similar techniques to produce a Hitchin connection in the meta-
plectic case with fewer assumptions. In particular, we do not need any compactness
assumption and we no longer need the first Chern class of the symplectic manifold
to be even. Also, we show that whenever the assumptions of [4] are met, we can
give a completely explicit formula for the Hitchin connection (that is for ˇ above)
and the connection agrees with the one from [4]. We stress the fact that this is done
in a purely differential geometric fashion, whereas former constructions used both
algebraic geometry and the Index Theorem.
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Let us be more precise about the way the Hitchin connection in metaplectic quan-
tization, constructed in this paper, relates to the one in the non-corrected geometric
quantization, constructed in [4].

Assume that M is compact with H 1.M; R/ D 0, and that J is a holomorphic
family (in the sense of Definition 6.1) of Kähler structures parametrized by a complex
manifold T . That J is a holomorphic family is equivalent to the fact that J gives rise
to a complex structure on T � M.

We then consider the non-corrected setting of geometric quantization of .M; !/,
namely

zH .k/
� D H 0.M� ; Lk/ D fs 2 C 1.M; Lk/ j .rL/0;1

� s D 0g:
Under the additional assumption that the real first Chern class of .M; !/ is given by

c1.M; !/ D n
h !

2�

i
; n 2 Z; (1)

there is a construction in [4] of a Hitchin connection in the trivial bundle T �
C 1.M; Lk/ over T , which preserves the subbundle zH .k/ ! T , extending Hitchin’s
connection constructed in [20]. Now, when (1) is satisfied, we are able to give an
explicit formula for the 1-form ˇ. Moreover the following theorem says, that if we
choose the right normalization of the Ricci potentials, we can compare the Hitchin
connection given by Theorem 1.2 with the one constructed in [4] and in fact they
agree.

Theorem 1.3. Let .M; !/ be a compact, prequantizable symplectic manifold with
vanishing second Stiefel–Whitney class, and H 1.M; R/ D 0. Further, let J be a
rigid, holomorphic family of Kähler structures on M parametrized by a complex
manifold T . Assume that the first Chern class of .M; !/ is divisible by an integer n

and that its image in H 2.M; R/ satisfies

c1.M; !/ D n
h !

2�

i
:

Then, around every point � 2 T , there exists an open neighborhood U , a local
smooth family zF of Ricci potentials on M over U and an isomorphism of vector
bundles over U

' W zH .k�n=2/jU �! H .k/jU ;

such that

'�r D zr ;

where '�r is the pullback of the Hitchin connection given by Theorem 1.2, and zr is
the Hitchin connection in zH .k�n=2/ constructed in [4], both of which are expressed
in terms of zF .
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We plan to address the computation of the curvature and removal of the rigidity
condition in a forthcoming publication. Also, we find it interesting to analyze the
relation between the connection constructed in this paper and the “L2-induced” con-
structed by Charles in [17]. Further, we intend to consider this new construction in
the moduli space setting, in which Hitchin originally constructed his connection, and
which was applied by Andersen in [1].

We find it very interesting to explore the role of Toeplitz operators and their relation
to the Hitchin connection constructed in the general setting considered in this paper.
In particular, it would be interesting to understand if the results in [4], [5], [2], and [6]
can be generalized to this setting. For the first steps in this direction; see also [3].

This paper is organized as follows. In Section 2, we introduce the notion of a
metaplectic structure on a symplectic manifold and the construction of geometric
quantization with metaplectic correction. Section 3 is devoted to the reference con-
nection and Section 4 to the calculation of its curvature. In Section 5, we derive an
equation that the Hitchin connection should satisfy. Then, we give a solution to this
equation and prove Theorem 1.2. Finally, in Section 6, we study the relation between
our construction and the construction of [4] in the non-corrected case, culminating
with a proof of Theorem 1.3. In Appendix A we construct examples of rigid families
of complex structures on symplectic manifolds.

2. Metaplectic structure and quantization

Consider an almost complex structure J on M, which is compatible with the sym-
plectic structure in the sense that

gJ .X; Y / D !.X; J Y /

defines a Riemannian metric on M. We shall denote the resulting Riemannian mani-
fold by MJ.

The almost complex structure J induces a splitting

TMC D TJ ˚ xTJ

of the complexified tangent bundle into the eigenspaces of J corresponding to the
eigenvalues i and �i respectively. This splitting is explicitly given by the projections
onto each summand

�
1;0
J D 1

2
.Id �iJ /; TJ D Im.�

1;0
J /;

�
0;1
J D 1

2
.Id CiJ /; xTJ D Im.�

0;1
J /:

(2)

The fact that TJ and xTJ are the eigenspaces of J, corresponding to the eigenvalues i ,
respectively �i , is easily verified from these formulas. Very often we shall use the
notation X 0 D �

1;0
J X and X 00 D �

0;1
J X for vector fields X on M.
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Tensors, such as the symplectic form and associated metric, are extended complex
linearly to TMC.

We recall that the first Chern class c1.MJ / is equal to minus the first Chern class
of the canonical line bundle

KJ D
m̂

T �
J :

By integrality, c1.MJ / is independent of J since the space of compatible almost
complex structures on .M; !/ is contractible. Thus, the first Chern class is an invariant
of the symplectic manifold rather than the almost complex one.

Let us assume that the second Stiefel–Whitney class w2.M/ vanishes. Since the
reduction modulo 2 of the first Chern class, that is the image of c1.M/ under the
map H 2.M; Z/ ! H 2.M; Z2/, is equal to the second Stiefel–Whitney class, this
implies that the first Chern class of M is even. Thus the first Chern class of KJ is
even, which is equivalent to the existence of a square root ıJ of KJ. We shall see later
that the choice of such a ıJ determines a square root of the canonical line bundle for
every other almost complex structure on M.

The metric on MJ gives rise to the Levi-Civita connection zrJ. As usual we get
an induced metric and compatible connection in all tensor bundles over M, and we
shall denote all of these by gJ and zrJ as well.

The metric also induces a Hermitian structure hT
J in TJ given by

hT
J .X; Y / D gJ .X; xY /;

for any vectors X and Y in TJ. If we further assume that J is parallel, with respect
to the Levi-Civita connection zrJ, then J must be integrable and MJ Kähler. In this
case zrJ preserves the holomorphic tangent bundle TJ inducing a connection rT

J

compatible with hT
J . These in turn induce a Hermitian structure hK

J and compatible
connection rK

J in the canonical line bundle KJ.
The Ricci tensor rJ on MJ is given by the following trace of the Kähler curvature

rJ .X; Y / D Tr.Z 7! zR.Z; X/Y /;

and the Ricci form �
J

is the associated (1,1)-form given by

�
J

.X; Y / D r.JX; Y /:

We recall for future use that the canonical line bundle KJ has curvature i�
J

.

Finally hK
J and rK

J induce a Hermitian structure hı
J

and compatible connection

rı
J

in the line bundle ıJ .

Definition 2.1. A prequantum line bundle over the symplectic manifold .M; !/ is a
Hermitian line bundle L with a compatible connection rL of curvature

RrL D �i!;
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where Rr.X; Y / D ŒrX ; rY � � rŒX;Y �. Such a triple .L; hL; rL/ is denoted a
prequantum line bundle, and we say that the symplectic manifold is prequantizable
if it admits such a bundle.

Evidently, a necessary condition for the existence of a prequantum line bundle
is that the class Œ !

2�
� in H 2.M; R/ is integral, and in fact this is also sufficient.

Moreover, inequivalent choices of prequantum line bundles are parametrized by the
first cohomology H 1.M; U.1// with coefficients in the circle group U.1/ � C; see
for instance [32]. We shall assume that M is prequantizable, and fix a prequantum
line bundle .L; h; rL/

Now hL and hı
J

induce a Hermitian structure hJ in the line bundle Lk ˝ ıJ , and

we have a compatible connection rJ , induced by rL and rı
J

. Since Lk ˝ ıJ has

curvature �ik! C i
2
�

J
, which is of type (1,1), the operator

r0;1
J D �

0;1
J rJ

defines a N@-operator in Lk ˝ ıJ , making this a holomorphic line bundle over MJ ; see

e.g. [11]. If we consider the space H
.k/
J D C 1.M; Lk ˝ ıJ ) of smooth sections,

then the operator r0;1
J gives rise to the subspace H

.k/
J of holomorphic sections

H
.k/
J D H 0.MJ ; Lk ˝ ıJ / D fs 2 C 1.MJ ; Lk ˝ ıJ / j r0;1

J s D 0g:
We can define a Hermitian inner product on this space by

hs1; s2i D 1

mŠ

Z
M

hJ .s1; s2/!m;

and if we consider the space of square integrable functions we obtain a Hilbert space.
This is the Hilbert space resulting from the half-form corrected geometric quantization
of the Kähler manifold MJ .

We will construct a connection in H .k/ and prove that under certain conditions this
connection preserves the infinitesimal condition for being contained in the subspaces
H

.k/
J . From this we conclude, that the spaces H

.k/
J form a vector bundle over a

manifold that parametrizes choices of J, and the fibers H
.k/
J are related using parallel

translation of the induced connection, which we will call the Hitchin connection.
To be able to do this, we should pay closer attention to the way we choose the

half-form bundle ıJ . Clearly, there is more than one choice of a square root of KJ

(when it exists), and we would like to choose ıJ in a unified way for different J. This
is where the notion of a metaplectic structure comes into the picture. We will follow
the approach of [32] and do not formulate it in terms of the metaplectic group.

Consider the positive Lagrangian Grassmannian LCM consisting of pairs .p; Jp/,
where p 2 M and Jp is a compatible almost complex structure on the tangent space
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TpM. This space has the structure of a smooth bundle over M, with the obvious
projection, and with sections corresponding precisely to almost complex structures
on M.

At each point .p; Jp/ 2 LCM, we can consider the 1-dimensional space KJp
DVm

T �
Jp

. These form a smooth bundle K over LCM, and the pullback by a section

of LCM yields the canonical line bundle associated to the almost complex structure
on M given by the section.

We want to find a square root ı ! LCM of the bundle K ! LCM. Such
a square root is called a metaplectic structure on M. Since LCM has contractible
fibers, we can find local trivializations of K with constant transition functions along
the fibers. The construction of a metaplectic structure on M amounts to choosing
square roots of these transition functions in such a way that they still satisfy the
cocycle conditions. But since the transition functions are constant along the fibers,
we only have to choose a square root at a single point in each fiber. In other words,
a square root ıJ of KJ, for a single almost complex structure J on M, determines a
metaplectic structure. We summarize this in a proposition.

Proposition 2.2. Let M be a manifold with vanishing second Stiefel–Whitney class,
and let ! be any symplectic structure on M. Then .M; !/ admits a metaplectic
structure ı ! LCM.

For the rest of this paper, we shall assume that M satisfies the conditions of this
proposition, and fix a metaplectic structure ı. In this way, for every almost complex
structure J on M, viewed as a section of LCM, we have a canonical choice of square
root of the canonical line bundle, given as the pullback of ı by J.

3. The reference connection

Returning to the setup of the introduction, consider a manifold T , and assume that
we have a smooth family J W T ! C 1.M; End.TM// of Kähler structures on M,
parametrized by T . More precisely, J is a smooth section of the pullback bundle
��

M End.TM/ ! T � M, where �M W T � M ! M is the projection, such that for
every � 2 T , the endomorphism J� defines a complex structure on M, turning this
into a Kähler manifold M� . As in the previous section, the Kähler metric is given by

g� .X; Y / D !.X; J� Y /;

and J� induces a splitting TMC D T� ˚ xT� . Also, we write X 0
� D �

1;0
� X and

X 00
� D �

0;1
� X for any vector field X on M.

Viewing the family J as a map T � M ! LCM, we get a smooth bundle
ı ! T � M, by pulling back the metaplectic structure on M. For any � 2 T , the
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restriction

ı� D ıjf�g�M ! M

is a square root of the canonical line bundle K� on M� . Moreover the Hermitian
structure hı

� D hı
J�

in ı� gives rise to a Hermitian structure hı on ı. Let

piM W T � M �! M

denote the projection and define

yL D ��
M L D T � L;

with Hermitian metric OhL D ��
M hL. When objects are extended to the product

T � M, we shall often use a hat to indicate that we are dealing with the extended
object. Then, yL ˝ ı becomes a smooth line bundle over T � M with Hermitian
metric Oh induced by OhL and hı .

As in the previous section, we consider the space H
.k/
� D C 1.M� ; Lk ˝ ı� /, in

which the connection rJ�
, which we shall denote by r� , gives rise to the subspace

of holomorphic sections

H .k/
� D H 0.M� ; Lk ˝ ı�/ D fs 2 H .k/

� j r0;1
� s D 0g:

In fact the spaces H
.k/
� form a smooth vector bundle H .k/ over T . We will construct

a connection in H .k/ which preserves the spaces H
.k/
� , thereby proving that these

form a smooth subbundle H .k/ of H .k/, and at the same time giving a connection
in H .k/.

First we define a connection yrL in yL simply by extending rL using the trivial
connection in directions tangent to T , i.e. yrL is the pullback connection in the pullback
bundle yL. Concretely, if X is a vector field on T � M, which is tangent to M, and s

is a section of yL, then we define

.yrL
X s/.�;p/ D .rL

X s� /p:

For any vector field V on T � M, which is tangent to T , we have that

.yrL
V s/.�;p/ D V Œsp�� :

Here V Œsp�� denotes differentiation at � 2 T along V of sp ; as a section of the trivial
bundle T � Lp .

Now yrL is easily seen to be compatible with the Hermitian structure OhL, and for
future reference we give the curvature, which is easily calculated.
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Lemma 3.1. The curvature of yrL is given by

RyrL D ��
M RrL D �i��

M !;

where �M W T � M ! M denotes the projection.

Next, we define a connection yrT in the bundle T ! T � M in the following
way. In the directions tangent to M, simply take yrT to be the connection rT induced
from the Levi-Civita connection. More explicitly we define, for any section Y of T

and any vector X 2 TpM,

.yrT
X Y /.�;p/ D ..rT

� /X Y�/p; (3)

where rT
� denotes rT

J�
. For the directions along T , we let V 2 T�T be any vector

on T and define

.yrT
V Y /.�;p/ D �1;0

� V ŒYp�� ; (4)

for any section Y of T, where V ŒYp� denotes differentiation of Yp in the trivial bundle
T � TpMC, and �

1;0
� W T � TMC ! T� is the projection.

Now, yrT induces a connection yrK in K D Vm
T �, which in turn induces a

connection yrı in the square root ı. With the help of the connection yrL, this induces
a connection yrr in the line bundle yLk ˝ ı.

Definition 3.2. The connection

yrr D .yrL/˝k ˝ Id C Id ˝yrı

in yLk ˝ ı ! T � M is called the reference connection.

Notice how the reference connection induces a connection in H .k/ ! T . Indeed,
for any section s of H .k/ (which is the same as a section of yLk ˝ ı over T � M ) and
any vector field V tangent to T , it is simply given by yrr

V s. Moreover, if we restrict to
a point � 2 T and take X to be a vector field tangent to M, then .yrr

Xs/� D .r� /Xs� ,
so the reference connection is a unified description of a connection in H .k/ and the
connections in the bundles Lk ˝ ı� ! M.



Hitchin’s connection in metaplectic quantization 339

4. Curvature of the reference connection

Later, we shall have need for the curvature of the reference connection, which is given
by Propositions 4.1, 4.2, and 4.3 below.

Proposition 4.1. For vector fields X and Y tangent to M, we have

Ryrr .X; Y / D �ik!.X; Y / C i

2
�.X; Y /; (5)

where �� denotes the Ricci form on M� .

Proof. This follows immediately by the curvature of prequantum line bundles and
the fact that the canonical line bundle K� over M� has curvature i�� .

Before giving the curvature in the mixed directions, we introduce some more
notation. Since the symplectic form is non-degenerate, it induces an isomorphism

i! W TMC �! TM �
C;

by contraction in the first entry. Moreover ! is J -invariant, or equivalently of type
(1,1), which implies that i! interchanges types. Similarly the metric induces a type-
interchanging isomorphism ig W TMC ! TM �

C, and the two are related by ig D
�J i! .

For any vector field V tangent to T , we can differentiate the family of complex
structures in the direction of V and obtain

V ŒJ � W T �! C 1.M; End.TMC//:

By differentiation of the identity J 2 D � Id, we see that V ŒJ � anticommutes with J.
This in turn implies that V ŒJ �� interchanges types on M� , whence it decomposes as

V ŒJ �� D V ŒJ �0� C V ŒJ �00� ;

where V ŒJ �0� 2 C 1.M; xT �
� ˝ T�/ and V ŒJ �00� 2 C 1.M; T �

� ˝ xT�/.
Now define zG.V / 2 C 1.M; TMC ˝ TMC/ by the relation

V ŒJ � D .Id ˝i!/. zG.V //

for all vector fields V. We use the notation

zG.V /! D .Id ˝i!/. zG.V //:

The way to interpret this, is to contract the right contravariant part of zG.V / with the
left covariant part of !, as prescribed by .Id ˝i!/. zG.V //. Now observe, that the
combined types of V ŒJ � and ! yield a decomposition

zG.V / D G.V / C xG.V /; (6)
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for all real vector fields V on T , where G.V /� 2 C 1.M; T� ˝ T� / and xG.V /� 2
C 1.M; xT� ˝ xT�/. Differentiating the relation g D !J along V, we have

V Œg� D !V ŒJ � D ! zG.V /! D �.i! ˝ i!/. zG.V //: (7)

Once again, notice how the notation ! zG.V /! is used to denote tracing the right
covariant part of ! with the left contravariant part of zG.V /, as well as tracing the right
contravariant part of zG.V / with the left covariant part of !. Since g is symmetric, so is
V Œg�, which implies that G.V /� 2 C 1.M; S2.T�// and xG.V /� 2 C 1.M; S2. xT� //.

Also, we introduce a 2-form 	 on T, with values in C 1.M/. For any vector fields
V and W on T we define

	.V; W / D � i

4
TrŒV ŒJ �; W ŒJ � ��1;0; (8)

where the outer brackets denote the commutator. In other words, we restrict the
commutator the holomorphic tangent bundle and take the trace of this restriction.
Evidently, this yields an anti-symmetric and real 2-form on T .

By a small calculation, we obtain another useful formula for the connection yrT

in the directions tangent to T . Indeed, we have that

yrT
V Y D V Œ�1;0Y � � V Œ�1;0�Y D V ŒY � C i

2
V ŒJ �Y; (9)

for any section Y of T.
Now we are ready to calculate the curvature of the reference connection in the

remaining directions. To do this, we recall the general fact, which was already
implicitly used to find the curvature of the half-form bundle, that the curvature of yrı

is given by

Ryrı D �1

2
Tr RyrT ; (10)

where we take the trace of the endomorphism part of RyrT 2 �2.T � M; End.T //.

The change of sign appears when we induce yrT in T �, the trace appears when we
induce in K D Vm

T �, and the division by two appears when we induce in ı. Then
we have the following result.

Proposition 4.2. For vector fields V and W tangent to T we have

Ryrr .V; W / D i

2
	.V; W /: (11)

Proof. Take V and W to be pullbacks of vector fields on T such that ŒV; W � D 0.
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Then using (9), we find that

yrT
V

yrT
W Y D yrT

V

�
W ŒY � C i

2
W ŒJ �

�

D V W ŒY � C i

2
V W ŒJ �Y C i

2
W ŒJ �V ŒY �

C i

2
V ŒJ �W ŒY � � 1

4
V ŒJ �W ŒJ �Y:

Using that V and W commute we get

RyrT .V; W /Y D yrT
V

yrT
W Y � yrT

W
yrT

V Y

D �1

4
.V ŒJ �W ŒJ � � W ŒJ �V ŒJ �/Y

D �1

4
ŒV ŒJ �; W ŒJ ��Y;

and so by (10) we get

Ryrr .V; W / D R
.k/

yrL
.V; W / � 1

2
Tr RyrT .V; W / D i

2
	.V; W /;

as desired, since RyrL.V; W / D 0.

Now, we calculate the curvature of the reference connection in the mixed direc-
tions.

Proposition 4.3. For vector fields V and X , tangent to T and M respectively, we
have

Ryrr .V; X/ D i

4
Tr zr. zG.V //!X: (12)

Proof. First we calculate the curvature of yrT. Let X and V be pullbacks of real
vector fields on M and T respectively, and let Y be any section of T. Then we get

RyrT .V; X/Y D yrT
V

yrT
X Y � yrT

X
yrT

V Y

D �1;0V ŒzrX Y � � zrX�1;0V ŒY �

D �1;0V ŒzrX Y � � �1;0 zrXV ŒY �

D �1;0V Œzr�X Y:

By Theorem 1.174 in [14], we get that the variation of the Levi-Civita connection
in the tangent bundle is a symmetric (2,1)-tensor given by

g.V Œzr�X Y; Z/

D 1

2
.zrX.V Œg�/.Y; Z/ C zrY .V Œg�/.X; Z/ � zrZ.V Œg�/.X; Y //

(13)
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for vector fields X , Y and Z on M and V on T . We focus our attention on a point
p 2 M, and let e1; : : : ; em be a basis of TpM satisfying the orthogonality condition
that g.e0

j ; e00
l
/ D ıjl . Then

Tr RyrT .V; X/ D Tr �1;0V Œzr�X �1;0 D
X

�
g.V Œzr�X e0

� ; e00
�/:

But taking into account the type of V Œg�, and the fact that zr preserves types, we get

g.V Œzr�X e0
� ; e00

�/ D 1

2
zre0

�
.V Œg�/.X; e00

�/ � 1

2
zre00

�
.V Œg�/.X; e0

�/

D 1

2
X! zre0

�
. zG.V //!e00

� � 1

2
X! zre00

�
. zG.V //!e0

�

D i

2
X! zre0

�
.G.V //ge00

� C i

2
X! zre00

�
. xG.V //ge0

�

D � i

2
g.zre0

�
.G.V //!X; e00

�/ � i

2
g.zre00

�
. xG.V //!X; e0

�/:

Summing over 
, we conclude that

Tr RyrT .V; X/ D � i

2
Tr zr.G.V //!X � i

2
Tr zr. xG.V //!X

D � i

2
Tr zr. zG.V //!X;

at the point p which was arbitrary. Finally we get by 3.1 and (10) that

Ryrr .V; X/ D R
.k/

yrL
.V; X/ � 1

2
Tr RyrT .V; X/

D i

4
Tr zr. zG.V //!X;

which was the claim.

5. The Hitchin connection

Let D.M� ; Lk ˝ ı�/ denote the space of differential operators on H
.k/
� D C 1.M� ;

Lk ˝ ı� /, and consider the bundle D.M; OLk ˝ ı/ over T having these spaces as
fibers. One could think of D.M; yLk ˝ ı/ as the space of differential operators on
sections of yLk ˝ ı, which are of order zero in the directions tangent to T . Then, for
any 1-form u on T with values in D.M; yLk ˝ ı/, we have a connection r in the
bundle H .k/ D C 1.M; Lk ˝ ı/ over T given by

rV D yrr
V C u.V /;
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for any vector field V on T . Now we wish to find a u such that r preserves the sub-
spaces H

.k/
� , thereby proving that these form a subbundle and inducing a connection

in this subbundle.

Lemma 5.1. The connection r preserves H .k/ if and only if

r0;1u.V /s D i

2
V ŒJ �rs C i

4
Tr zr.G.V //!s; (14)

for all vector fields V on T , and all s 2 H .k/.

Proof. Let X and V be the pullbacks of a vector field on M and T respectively. Then
we see that

ŒV; X 00� D i

2
V ŒJ �X: (15)

Now, assume that s 2 H
.k/
� and consider any extension of s to a smooth section of

H .k/ ! T . Then we get

rX 00rV s D yrr
X 00

yrr
V s C rX 00u.V /s

D yrr
V

yrr
X 00s � Ryrr .V; X 00/s � yrr

ŒV;X 00�s C rX 00u.V /s

D � i

2
rV ŒJ �X s � i

4
Tr.zr.G.V //!X/s C rX 00u.V /s;

at the point � 2 T , where we used (15) and Proposition 4.3 for the last equality. This
tells us, that r preserves H .k/ if and only if u satisfies the equation in the lemma.

Remark 5.2. Once we have a u which satisfies (14), we get induced a connection r
in H .k/. Its parallel transport then produce a local trivialization of the collection of
subspaces fH .k/

� g�2T , and thereby establishes that H .k/ is a subbundle of H .k/.

For any vector field V tangent to T , the tensor G.V /� 2 C 1.M� ; S2.T� //

induces a linear map G.V /� W TM �
C ! TMC, by the formula

˛ 7�! Tr.G.V /� ˝ ˛/ D G.V /�˛:

Obviously this is in fact a map G.V /� W T �
� ! T� . We then define a second-order op-

erator �G.V /�
2 D.M; Lk ˝ ı� / by �G.V /�

D Tr r�G.V /� r� , or more explicitly
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by the diagram

C 1.M� ; TM �
C ˝ Lk ˝ ı� /

G.V /� ˝Id ˝ Id

��
C 1.M� ; Lk ˝ ı�/

r�

������������������
C 1.M� ; T� ˝ Lk ˝ ı�/

zr� ˝Id C Id ˝r�

��
C 1.M� ; TM �

C ˝ T� ˝ Lk ˝ ı�/:

Tr

����������������

(16)

We shall make the additional assumption, that the family J is rigid in the sense
that G.V /� is a holomorphic section of S2.T�/ over M� .

Definition 5.3. The family J of Kähler structures on .M; !/ is called rigid if

zr0;1
� .G.V /�/ D 0

for all vector fields V tangent to T and � 2 T .

This is a rather restrictive condition, but see Appendix A for constructions of rigid
families of complex structures.

From now on, we will for simplicity often suppress the subscription � from the
notation. Assuming that J is rigid, we have the following lemma.

Lemma 5.4. At every point � 2 T , the operator �G.V / satisfies

r0;1�G.V /s D �2ik!G.V /rs C ik Tr zr.G.V //!s � i

2
Tr zr.G.V /�/s

for all vector fields V on T and all (local) holomorphic sections s of the line bundle
Lk ˝ ı ! M.

Proof. The proof is by direct calculation. Letting G denote G.V / we have

r0;1�Gs D r0;1 Tr rGrs D Tr r0;1rGrs:

Working further on the right side we commute the two connections, giving as extra
terms the curvature of M� and of the line bundle Lk ˝ ı� ,

r0;1�Gs D Tr rr0;1Grs � ik!Gr1;0s C i

2
�Grs � i�Grs:

Collecting the last two terms, and using the fact that J is rigid on the first, we obtain

r0;1�Gs D Tr rGr0;1rs � ik!Grs � i

2
�Grs:
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Commuting the two connections, and using that s is holomorphic, we get

r0;1�Gs D ik Tr rG!s � i

2
Tr rG�s � ik!Grs � i

2
�Grs:

Expanding the covariant derivatives in the first two terms by the Leibniz rule, and
using the fact that ! is parallel, we get the following, after collecting and cancelling
terms,

r0;1�Gs D ik Tr zr.G/!s � 2ik!Grs � i

2
Tr zr.G�/s:

This was the desired expression. Moreover we notice, that the above is a local
computation, so that the identity is valid for local holomorphic sections of Lk ˝ ı as
well.

Corollary 5.5. Provided that H 0;1.M/ D 0, we have that Tr zr.G.V /�/ is exact
with respect to the N@-operator on M.

Proof. By appealing to Lemma 5.4 in the case where k D 0, we get for any local
holomorphic section s of Lk ˝ ı� ! M� that

0 D i

2
r0;1

� Tr zr�.G.V /� ��/s D i

2
N@� .Tr zr�.G.V /��� //s:

This immediately implies that

0 D N@�.Tr zr�.G.V /� ��//;

and since H 0;1.M/ D 0, the corollary follows.

We remark that, by the Hodge decomposition theorem, the assumption H 0;1 .M/ D 0

is satisfied for any compact Kähler manifold with H 1.M; R/ D 0.
By Corollary 5.5, we choose any smooth 1-form ˇ 2 �1.T ; C 1.M// such that

N@ˇ.V / D i

2
Tr zr.G.V /�/; (17)

for any vector field V on T . Then finally, we define

u.V / D 1

4k
.�G.V / C ˇ.V //; (18)

which clearly solves eq. (14). Thus, we have proved Theorem 1.2.
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6. Relation to non-corrected quantization

We now impose the same assumptions as in [4] in order to give an explicit formula for
the Hitchin connection and eventually compare with the one previously constructed
in [4].

Thus, from now on M is assumed to be compact with H 1.M; R/ D 0. The real
first Chern class of .M; !/, that is the image of the first Chern class in H 2.M; R/, is
assumed to satisfy

c1.M; !/ D n
h !

2�

i
; (19)

where n 2 Z is some integer, which must be even by our assumption on the second
Stiefel–Whitney class of M. Finally, T is assumed to be a complex manifold and the
map J to be holomorphic in the following sense.

Definition 6.1. The family J, of Kähler structures on M parametrized by T , is called
holomorphic if it satisfies

V 0ŒJ � D V ŒJ �0 and V 00ŒJ � D V ŒJ �00;

for every vector field V tangent to T .

These assumptions have a number of consequences which we shall explore in the
following. First we give an alternative characterization of holomorphic families of
Kähler structures.

Let I denote the integrable almost complex structure on T induced by its complex
structure. Then we have an almost complex structure yJ on T � M defined by

yJ .V ˚ X/ D IV ˚ J� X; and V ˚ X 2 T.�;p/.T � M/: (20)

The following gives another characterization of holomorphic families.

Proposition 6.2. The family J is holomorphic if and only if yJ is integrable.

Proof. We show that J is holomorphic if and only if the Nijenhuis tensor for yJ
vanishes. By the Newlander–Nirenberg Theorem this will imply the proposition; see
e.g. [24].

Clearly the Nijenhuis tensor vanishes, when evaluated only on vectors tangent
to T , since I is integrable. Likewise it will vanish when evaluated only on vectors
tangent to M, since J is a family of integrable almost complex structures. Thus we
are left with the case of mixed directions.

Let X and V be pullbacks to T � M of vector fields on M and T respectively.
Then since X is constant along T and V is constant along M we find that

ŒV; JX� D V ŒJ �X: (21)
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Now consider the following evaluation of the Nijenhuis tensor

N.V 0; X/ D ŒIV 0; JX� � ŒV 0; X� � yJ ŒIV 0; X� � yJ ŒV 0; JX�

D i ŒV 0; JX� � yJ ŒV 0; JX�

D iV 0ŒJ �X � J V 0ŒJ �X

D 2i�0;1V 0ŒJ �X:

Similarly one shows, that N.V 00; X/ D �2i�1;0V 00ŒJ �X . Thus we see that N.V; X/

vanishes if and only if

�0;1V 0ŒJ �X D 0 and �1;0V 00ŒJ �X D 0:

This proves the proposition.

We shall denote by Od the differential on T � M, which splits as

Od D dT C dM

into the sum of the differentials on T and M respectively. Similar notation is used
for @ and N@.

6.1. Explicit formula for ˇ.V /. As a first consequence of our additional assump-
tions we are able to give an explicit formula for the 1-form ˇ in (18).

Since the curvature of the canonical line bundle K� is i�� , the real first Chern class
of M� is represented by ��

2�
. Since the Kähler form is harmonic, assumption (19) is

then equivalent to �H
� D n!, where �H

� denotes the harmonic part of the Ricci form.
Since any real exact (1,1)-form on a Kähler manifold is @N@-exact, there exists, for

any � 2 T , a real function F� , called a Ricci potential, satisfying

�� D �H
� C 2i@�

N@�F� :

By compactness of M, any two Ricci potentials on M� differ by a constant. Thus,
choosing a particular normalization, such asZ

M

F� !m D 0; (22)

would yield a real smooth function F 2 C 1.T � M/, with F� a Ricci potential on
M� for every � 2 T . In fact, we shall call any smooth real function F 2 C 1.T �M/

satisfying

� D n! C 2i@M
N@M F (23)

a smooth family of Ricci potentials over T , and the normalization (22) is just one way
to single out a particular among such functions. Later, we will need to work with
another family of Ricci potentials.

We will need the following lemma, the proof of which is given in [4].
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Lemma 6.3. Any smooth family F of Ricci potentials satisfies

N@M V 0ŒF � D � i

4
Tr zr.G.V //! � i

2
@M F G.V /!; (24)

for any vector field V tangent to T .

Then we have the following

Lemma 6.4. Let F be a smooth family of Ricci potentials. Then the 1-form ˇ 2
�1.T ; C 1.M// given by

ˇ.V / D �2nV 0ŒF � � @M F G.V /@M F � Tr zr.G.V /@M F /

satisfies N@M ˇ.V / D i

2
Tr zr.G.V /�/.

Proof. Throughout this proof we shall denote @M and N@M for short by @ and N@ re-
spectively. Since ! is parallel, with respect to the Levi-Civita connection zr, we
get

Tr zr.G.V /�/ D Tr zr.G.V /.n! C 2i@N@F //

D n Tr zr.G.V //! C 2i Tr zr.G.V /@N@F /:

Moreover, it is easily verified that

Tr zr.G.V /@N@F / D �i@F G.V /� C N@ Tr zr.G.V /@F /

D �in@F G.V /! C 2@F G.V /@N@F C N@ Tr zr.G.V /@F /:

Then the lemma follows by Lemma 6.3 and the identity

N@.@F G.V /@F / D 2@F G.V /@N@F;

which is easily verified, using the symmetry of G.V /.

Thus, under the assumptions of this section, we have a completely explicit formula
for the Hitchin connection.

6.2. Curvature of the reference connection revisited. Notice that the type of !,
and the fact that J is holomorphic, implies

V 0ŒJ � D V ŒJ �0 D G.V /!;

which in turn gives G.V / D G.V 0/. Then, having calculated the curvature of the
reference connection in all directions, we see that it is of type (1,1) over T � M and
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thus the (0,2)-part of the curvature vanishes. This means that the reference connection
defines a holomorphic structure on the line bundle yLk ˝ ı, over the complex man-
ifold T � M. Moreover, we observe that .yrr/0;1 preserves the bundle H .k/ ! T ,
since u.V 00/ D 0 solves (14). Thus the reference connection defines a holomorphic
structure on the bundle H .k/ ! T .

We now prove that, at least locally over T , the curvature of the reference connection
can be expressed in terms of a certain family of Ricci potentials.

First we have the following lemma, which is an immediate consequence of
Lemma 6.3 by direct verification.

Proposition 6.5. For any smooth family F of Ricci potentials and any vector fields
V on T and X on M, the curvature of the reference connection satisfies

Ryrr .V; X/ D �O@NO@F.V; X/:

Proof. Let V and X be pullbacks of real vector fields on T and M respectively. Then,
we have

NO@O@F.X 00; V 0/ D Od O@F.X 00; V 0/

D X 00.O@F.V 0// � V 0.O@F.X 00// � O@F.ŒX 00; V 0�/

D X 00V 0ŒF � C i

2
O@F.V 0ŒJ �X/

D X 00V 0ŒF � C i

2
@M F G.V /!X 00

D � i

4
Tr zr.G.V //!X 00

D �Ryrr .V 0; X 00/;

where we use Lemma 6.3 and Proposition 4.3 for the last two equalities. The case of
X 0 and V 00 is similar by conjugation of the identity in Lemma 6.3.

To express the 2-form 	 in terms of Ricci potentials, we first prove the following
lemma.

Lemma 6.6. For any smooth family F of Ricci potentials, the expression

	 � 2i@T
N@T F (25)

defines an ordinary 2-form on T .
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Proof. Take V, W, and X to be commuting vector fields so that V and W are tangent
to T and X is tangent to M. We must prove that (25) takes values in constant functions
on M, i.e. that

0 D XŒ	.V; W / � O@NO@F.V; W /�:

Now, by the differential Bianchi identity and by Proposition 4.2 we have

0 D d rr

Rrr .X; V; W /

D rr
XRrr .V; W / � rr

V Rrr .X; W / C rr
W Rrr .X; V /

D i

2
XŒ	.V; W /� C rr

W Rrr .X; V / � rr
V Rrr .X; W /:

Then Proposition 6.5 yields

i

2
	.V; W / D W ŒO@NO@F.X; V /� � V ŒO@NO@F.X; W /�

D W XV 00ŒF � � W VX 00ŒF � � VXW 00ŒF � C V W X 00ŒF �

D XW V 00ŒF � � XV W 00ŒF �

D �XŒO@NO@F.V; W /�

as desired.

This allows us to prove

Proposition 6.7. Over any open subset U of T with H 1.U; R/ D 0, we can find a
family zF of Ricci potentials satisfying

	 D 2i@T
N@T

zF : (26)

Proof. Let � 2 T and fix a smooth family F of Ricci potentials, say the one satisfy-
ing (22). Let V and W be vector fields tangent to T . Then, by Lemma 6.6, we can
define a 2-form ˛ 2 �1;1.T / by

˛ D 	 � 2i@T
N@T F: (27)

By applying the Bianchi identity to the reference connection it follows that 	 is closed
on T . Thus, we see that ˛ is a closed 2-form on T . Since 	 is real, so is ˛, and therefore
we can find a real function A on U such that

˛jU D 2i@T
N@T A:

But then zF D F jU C A defines a new smooth family of Ricci potentials with the
desired property.
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The previous two propositions can be combined with Proposition 4.1 to prove

Theorem 6.8. Let .M; !/ be a compact, prequantizable, symplectic manifold with
the real first Chern class satisfying c1.M; !/ D nŒ !

2�
�, H 1.M; R/ D 0 and vanish-

ing second Stiefel–Whitney class. Let J be a rigid, holomorphic family of Kähler
structures on M, parametrized by a complex manifold T . Then, for any open subset
U of T with H 1.U; R/ D 0 there exists a family of Ricci potentials zF over U such
that

R
.k/

yrr
D R

.k�n=2/

yrL
� O@NO@ zF ; (28)

where R
.k/

yrr
denotes curvature of the reference connection in yLk ˝ ı and R

.k�n=2/

yrL

denotes the curvature of yrL in yLk�n=2.

Proof. Let X and Y be vector fields tangent to M, and let V and W be vector
fields tangent to T . Use Proposition 6.7 to find a family of Ricci potentials over U

satisfying (26). Then, by Proposition 4.1 and (23) we have that

Ryrr .X; Y / D �ik!.X; Y / C i

2
�.X; Y /

D �i.k � n
2
/!.X; Y / � @M

N@M
zF .X; Y /

D R
.k�n=2/

yrL
.X; Y / � O@NO@ zF .X; Y /:

By Lemma 3.1, the curvature R
.k�n=2/

yrL
vanishes in the remaining directions, and so

the theorem follows from Proposition 6.5 and (26).

Using this result, we are able to relate our construction of the Hitchin connection
to the construction of Andersen [4] in the non-corrected setting.

6.3. Hitchin’s connection in non-corrected quantization. We wish to relate the
quantum spaces of half-form corrected quantization to the spaces of non-corrected
geometric quantization, with the intent to describe, in the non-corrected setting, our
construction of a Hitchin connection and relate it to the construction in [4].

It turns out that the choice of prequantum line bundle plays a role in this. This is
because of the choice of metaplectic structure we made. We note that what we really
chose was a half of c1.M; !/, so all we know is that ı is a line bundle satisfying
2c1.ı/ D �c1.M; !/. Thus, if we impose on .M; !/ that n divides c1.M; !/, then
we get that n

2
divides c1.ı/. We will need that the prequantum line bundle is related

to the metaplectic structure in a certain way, and the following lemma ensures that
this is possible.
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Lemma 6.9. If c1.M; !/ is divisible by n in H 2.M; Z/, there exists a prequantum
line bundle L over M such that

n

2
c1.L/ D �c1.ı/:

Proof. Let L0 be any prequantum line bundle on M and pick an auxiliary Kähler
structure J on M. Let FJ be a Ricci potential on M and consider the line bundles
.L

�n=2
0 ; eFJ hL0/ and .ıJ ; hı

J
/ over M. Then it is easily calculated, that the line

bundles have the same curvature. Thus, the tensor product of the former with the
dual of the latter yields a flat Hermitian line bundle L1. Since c1.ı/ is divisible
by n

2
, there exists a flat Hermitian line bundle L2 such that L

n=2
2 Š L1. Finally,

the line bundle L D L0 ˝ L2 has the structure of a prequantum line bundle, and
n
2
c1.L/ D c1.Ln=2/ D �c1.ı/. Thus L is the desired prequantum line bundle.

From now on, we will assume that our prequantum line bundle satisfies n
2
c1.L/ D

�c1.ı/. We note, that only when H 2.M; Z/ has torsion, is the assumption a further
restriction on .M; !/, as otherwise the curvature determines the line bundle com-
pletely.

Next, let zF be a family of Ricci potentials over U , with H 1.U; R/ D 0, such
that (28) is satisfied. We wish to construct an isomorphism O' of holomorphic Her-
mitian line bundles over U � M

O' W . yLk�n=2; e
zF OhL/ �! . yLk ˝ ı; Oh/: (29)

Since n
2
c1.L/ D �c1.ı/, the line bundles are isomorphic as complex line bundles,

and with the given Hermitian structures, a simple calculation and application of (28)
reveals that they have the same curvature. Thus, the obstruction to finding the structure
preserving isomorphism O' lies in the first cohomology of U � M. But this is trivial
by the Künneth formula, since H 1.U; R/ D 0 and H 1.M; R/ D 0 by assumption.

Moreover, it is easily seen that the pullback under O' of the reference connection
is given by

O'� yrr D yrL C O@ zF ; (30)

since the right hand side is the unique Hermitian connection compatible with the
holomorphic structure of yLk�n=2.

In the paper [4], Andersen constructs a Hitchin connection in T � C 1.M; Lk/,
preserving the subbundle of holomorphic sections. His construction is valid for any
rigid, holomorphic family of Kähler structures on M parametrized by T , provided
that H 1.M; R/ D 0 and c1.M; !/ D nŒ !

2�
�.

Now, the existence of the isomorphism (29) enables us to compare his construction
to the one presented in this paper. Thus, we shall briefly recall that the Hitchin
connection constructed in [4] is given by

zrV D yrL
V C Qu.V /; (31)
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where

Qu.V / D 1

4k C 2n
.�L

G.V / C 2rL

G.V /@ zF C 4kV 0Œ zF �/; (32)

and �L
G.V /

is the operator given by the diagram

C 1.M� ; TM �
C ˝ Lk/

G.V /� ˝Id

��
C 1.M� ; Lk/

rL

������������������
C 1.M� ; T� ˝ Lk/

zr� ˝Id C Id ˝rL

��
C 1.M� ; TM �

C ˝ T� ˝ Lk/:

Tr

����������������

(33)

We leave it to the reader to verify, using (30), that the pullback by O' of the operator
�G.V /, acting on sections of yLk ˝ ı, is given by

O'��G.V / D �L
G.V / C 2rL

G.V /@M
zF � ˇ.V / � 2nV 0Œ zF �; (34)

where ˇ.V / is given by the expression in Lemma 6.4, but in terms of zF .
Furthermore, in the bundle yLk�n=2, the formula (32) becomes

Qu.V / D 1

4k
.�L

G.V / C 2rL

G.V /@M
zF � 2nV 0Œ zF �/ C V 0Œ zF �

D 1

4k
. O'��G.V / C ˇ.V // C V 0Œ zF �

D O'�u.V / C V 0Œ zF �:

(35)

But this means, that the pullback of our Hitchin connection by O' is given by

O'�rV D O'� yrr
V C O'�u.V /

D yrL
V C V 0Œ zF � C O'�u.V /

D yrL
V C Qu.V /

D zrV :

(36)

Thus the two connections agree, and we have proved Theorem 1.3.
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Appendix A. Examples of rigid families
of complex structures on symplectic manifolds

Hitchin showed that the family of complex structures on moduli spaces of semi-stable
bundles over Riemann surfaces parametrized by Teichüller space is Rigid. Scheinost
and Schottenloher generalized this to moduli space of semi-stable bundles on arbitrary
families of Kähler manifolds. In general the Rigid condition gives a distribution on
the space of complex structures on a symplectic manifold. Any sub-family which is
tangent to this distribution satisfies the rigidity condition. – In general the condition
is rather restrictive. – Let us however show that we can construct local examples in
all dimensions.

Let .M; !/ be an open subset of R2 with the standard symplectic form ! D dx^dy

and let T D Rl . We want to analyze a family of complex structures,

J�

� @

@x

�
D A.�; x; y/

@

@x
C B.�; x; y/

@

@y
;

given by functions A; B 2 C 1.T � M/. Then, the identity J 2 D � Id yields

J�

� @

@y

�
D �

� 1

B
C A2

B

� @

@x
� A

@

@y
:

It is clear that ! is J� invariant and that g� is positive definite when B > 0.
For simplicity, suppose that B is constant along T . Given a vector field V on T ,

the variation of J� is then given by

V ŒJ � D V ŒA�
@

@x
dx �

�2AV ŒA�

B

@

@x
C V ŒA�

@

@y

�
dy

and the identity zG.V /! D V ŒJ � gives the formula

zG.V / D �2V ŒA�
@

@x

@

@y
� 2AV ŒA�

B

@2

@x2
:

From this we can calculate G.V / as

G.V / D �2iV ŒA�

B

@2

@z2
;

which implies that J� is rigid if

0 D �V ŒA�
@B

@y
C B

@V ŒA�

@y
D V ŒA�

@B

@x
� B

@V ŒA�

@x
:

These equations have solutions B.x; y/ D B0.x; y/ and A.�; x; y/ D A0.x; y/ CPl
iD1 �iB0.x; y/ where A0 and B0 are arbitrary functions on .M; !/. This means
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that given any initial complex structure

J0

� @

@x

�
D A0.x; y/

@

@x
C B0.x; y/

@

@y

we have obtained a rigid family of deformations parametrized by Rl .
By taking cross products of this construction with itself m times, one gets examples

on any open subset of R2m with the standard symplectic form.
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