
Quantum Topol. 3 (2012), 359–376
DOI 10.4171/QT/32

Quantum Topology
© European Mathematical Society

Cohomology of mapping class groups
and the abelian moduli space
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Abstract. We consider a surface † of genus g � 3, either closed or with exactly one punc-
ture. The mapping class group � of † acts symplectically on the abelian moduli space
M D Hom.�1.†/; U.1// D Hom.H1.†/; U.1//, and hence both L2.M/ and C 1.M/

are modules over � . In this paper, we prove that both the cohomology groups H 1.�; L2.M//

and H 1.�; C 1.M// vanish.
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1. Introduction

Let † be a compact surface of genus g, which is either closed or with one boundary
component. The mapping class group of † is the group

� D �0.DiffC.†; @†//

of orientation-preserving diffeomorphisms of † fixing the boundary (if any) point-
wise, up to isotopy.

There are many natural ways to generate infinite dimensional unitary representa-
tions of the mapping class group via representation varieties of compact Lie groups.
Let us here briefly recall the construction. Let G be a compact Lie group and consider
the moduli space M of flat G-connections on †, i.e

M D Hom.�1.†/; G/=G:

If we choose a set of 2g generators for the fundamental group, we get an induced
identification

M Š G2g=G (1)

1The authors were supported by QGM (Centre for Quantum Geometry of Moduli Spaces, funded by
the Danish National Research Foundation).
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if † has a boundary component and

M Š
°
.Ai ; Bi/ 2 G2g j

gY
iD1

ŒAi ; Bi � D 1
±
=G (2)

if † is closed.
We use these presentations to define the space of smooth functions C 1.M/ on

M. In the case of a surface with boundary, C 1.M/ is simply the G-invariant smooth
functions on G2g . The set S D ˚

.Ai ; Bi/ 2 G2g j Qg
iD1ŒAi ; Bi � D 1

�
is, in

general, not a smooth manifold; we define C 1.S/ to be C 1.G2g/ modulo the ideal
of functions vanishing on S . Then C 1.M/ D C 1.S/G . That these definitions
are independent of the choice of generators follows from [11]. The mapping class
group � clearly acts on M, and this way C 1.M/ becomes a module over � . In the
case where † has one boundary component, we also observe that both Aut.F2g / and
Out.F2g / acts on M, where F2g denotes the free group on 2g generators.

The biinvariant Haar measure on G induces a measure on M via (1) in case †

has one boundary component. In case G is closed, Goldman [8] has constructed a
symplectic form ! on M, which induces the Liouville measure !n=nŠ. In both cases,
the mapping class group action preserves the measure on M, so L2.M/, the space of
complex-valued, square integrable functions on M, becomes an infinite-dimensional
unitary representation of � .

By work of Goldman ([10] and [9]) and Gelander ([7]), the action of Aut.Fn/ on
Hom.Fn; G/ and the action of Out.Fn/ on Hom.Fn; G/=G are both ergodic forn � 3.
Furthermore, Pickrell and Xia ([13] and [14]), based on Goldman’s results, showed
that the action of � on M is ergodic when † is closed. When † has boundary, the
mapping class group preserves the subsets of M defined by requiring a representation
% W �1.†/ ! G to map each boundary component into a prescribed conjugacy class
in G; the action of � on each such subset is ergodic.

Ergodicity in particular means that the only invariant functions are the constants.
Hence, letting L2

0 denote the subspace of L2 corresponding to functions with mean
value 0, the above results may be interpreted as the vanishing of certain 0’th coho-
mology groups, such as H 0.Aut.Fn/; L2

0.Gn// and H 0.�; L2
0.M//.

It is very natural to ask if H 1.�; L2.M// vanishes both in case where † is closed
and in the case where † has one boundary component. In the latter case, we can
also ask if H 1.Aut.F2g/; L2.M// and H 1.Out.F2g /; L2.M// vanishes. As it is
well known, answering any of these questions in the negative implies that the corre-
sponding group does not have Kazhdan’s property (T); see [6]. In case † is closed,
Andersen has established in [3] that the mapping class group does not have Kazhdan’s
property (T) by using the TQFT quantum representations of � . We, however, do not
expect that any of these cohomology groups are non-vanishing and so will not shed
light on this question.

In this paper we answer the first question affirmatively in the abelian case, where
G D U.1/; see Theorem 7.3.
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Theorem. For G D U.1/ we have that H 1.�; L2.M// D 0.

The proof of this theorem uses the fact that for g � 2, the group Sp.2g; Z/ is
known to have property (T), the Hochschild–Serre exact sequence, along with the
following result (Theorem 5.1) which holds for all unitary representations.

Theorem. Let � ! U.V / be a unitary representation of the mapping class group on
a real or complex Hilbert space V . For a Dehn twist �� , let V� denote the subspace
of V fixed under �� , and let p� W V ! V� denote the orthogonal projection. Then
p�u.�� / D 0 for any cocycle u W � ! V and any simple closed curve � .

We are also able to prove the analogous result of Theorem 7.3 when we replace
L2-functions by smooth functions (Theorem 7.4).

Theorem. For G D U.1/ we have that H 1.�; C 1.M// D 0.

These two results should be compared to the main result from [5]. In that paper,
we considered the case G D SL2.C/ and the space O D O.MSL2.C// of regular
functions on the moduli space (this makes sense, since (1) and (2) give the moduli
space the structure of an algebraic variety). The conclusion in that case was that
H 1.�; O/ D 0. In [4] we considered the algebraic dual module, O� D Hom.O; C/,
and found that H 1.�; O�/ can be written as a countable direct product of finite-
dimensional components, of which at least one is non-zero.

This paper is organized as follows. In the next section, we briefly describe our
motivation for studying this problem, apart from its connection to Property (T). In
Section 4, we briefly recall certain well-known facts about mapping class groups:
relations between Dehn twists, the action of a twist on a homology element, and
generation of the Torelli group by bounding pair maps. The main purpose of section 5
is to prove that for g � 3, a certain necessary condition for the vanishing of the
cohomology group H 1.�; V / is always satisfied, for any unitary representation V

of � (this is the above-mentioned Theorem 5.1). We also quote the results about
Sp.2g; Z/ and property (T) which we need. Section 6 is devoted to describing an
orthonormal basis for the space of L2-functions on the abelian moduli space. This
basis has two nice properties: the mapping class group acts by permuting basis
elements, and there is a simple condition for determining if an L2-function is smooth
in terms of its coefficients in this basis. Finally, in Section 7, we prove the two main
theorems quoted above.

2. Motivation

The motivation for studying the first cohomology group of the mapping class group
with coefficients in a space of functions on the moduli space came from [2]. In
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that paper, the first author studied deformation quantizations, or star products, of the
Poisson algebra of smooth functions on the moduli space MG for G D SU.n/. The
construction uses Toeplitz operator techniques and produces a family of star products
parametrized by Teichmüller space. In [2] the problem of turning this family into
one mapping class group invariant star product was reduced to a question about the
first cohomology group of the mapping class group with various twisted coefficients.
Specifically, one of the results in [2] (Proposition 6) is that, provided the cohomology
group H 1.�; C 1.MG// vanishes, one may find a �-invariant equivalence between
any two equivalent star products. Since it is easy to see that the only �-invariant
equivalences are the multiples of the identity, this immediately implies that within
each equivalence class of star products, there is at most one �-invariant star product.

Considering the results of [1], [2], and the present paper, we get the following
application.

Theorem 2.1. For G D U.1/, there is a unique mapping class group invariant star
product on MG .

Existence follows from [1] and uniqueness from [2] and Theorem 7.4 below.

3. Group cohomology

In this section we will introduce some terminology and basic results which will be
used throughout the rest of the paper. Let G be a group. A G-module is a module
over the integral group ring ZG, or equivalently, an abelian group M together with
a homomorphism � W G ! Aut.M/.

A cocycle on G with values in M is a map u W G ! M satisfying the cocycle
condition

u.gh/ D u.g/ C gu.h/ (3)

for all g; h 2 G. Here, and elsewhere, we suppress the homomorphism defining the
action from the notation; the last term in (3) should be read �.g/u.h/. The space of all
cocycles is denoted Z1.G; M/. It is easy to see from (3) that a cocycle is determined
by its values on a set of generators of G. If 1 2 G denotes the identity element, it
is easy to see that u.1/ D 0. From this it follows that u.g�1/ D �g�1u.g/ for any
g 2 G. It is also easy to deduce the formula u.ghg�1/ D .1�ghg�1/u.g/Cgu.h/.
These observations will be used without further comment.

A cocycle is said to be a coboundary if it is of the form g 7! v � gv D .1 � g/v

for some v 2 M . The space of coboundaries is denoted B1.G; M/, and the first
cohomology group of G with coefficients in M is the quotient

H 1.G; M/ D Z1.G; M/=B1.G; M/: (4)

Notice that in the special case where the group acts trivially on M, the cocycle
condition simply means that u is a homomorphism, and the space of coboundaries
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vanishes. Hence, in that case we have H 1.G; M/ D Hom.G; M/. If

� W G �! Aut.M/

is the homomorphism defining the action, we may also denote H 1 .G; M/ by H 1.G; �/.
If G is a topological group, M is a topological vector space and the action of

G on M is continuous, one may equip Z1.G; M/ with the topology of uniform
convergence over compact subsets. In this topology, B1.G; M/ may or may not be
closed in Z1.G; M/; in any case, the quotient

H 1.G; M/ D Z1.G; M/=B1.G; M/ (5)

is known as the reduced cohomology of G with coefficients in M .

Proposition 3.1. Assume 1 ! K ! G ! Q ! 1 is a short exact sequence of
groups, and that M is a G-module on which K acts trivially (hence making M a
Q-module). Then there is an exact sequence

0 �! H 1.Q; M/ �! H 1.G; M/ �! H 1.K; M/G : (6)

Here H 1.K; M/G denotes the subset of H 1.K; M/ D Hom.K; M/ which is
invariant under G. The action is given by .g �u/.k/ D g�1u.gkg�1/, so an invariant
homomorphism is one that satisfies the equivariance condition

u.gkg�1/ D gu.k/ (7)

for all g 2 G and k 2 K.
This exact sequence comes from an abstract beast known as the Hochschild–Serre

spectral sequence, and really continues with two H 2 terms. Also, in the more general
case one does not need to require that K acts trivially on M ; instead, the cohomology
of Q is taken with coefficients in the submodule M K invariant under K. However,
we only need the part of the exact sequence shown in (6), and we are able to give an
explicit hands-on proof of this proposition which does not involve a spectral sequence.

Proof. The first map above is given by precomposing a cocycle u W Q ! M with
the projection map � W G ! Q. This clearly maps cocycles to cocycles. If u 2
Z1.Q; M/ is the coboundary of some element v 2 M, then the cocycle u B � 2
Z1.G; M/ is also the coboundary of v. Hence the first map above is well-defined.
Furthermore, if u B � is a coboundary, then u.q/ D u.�. Qq// D .1 � Qq/v D .1 � q/v,
where Qq is any element of G mapping to q under � . This proves that the first map
above is injective, and hence proves exactness at H 1.Q; M/.

The second map above is given by restricting a cocycle u W G ! M to K. It is
easy to see that the restricted map is a homomorphism from K, and that restricting a
coboundary gives the zero map, so that the map is well-defined. To see that the map
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actually takes values in the space of invariant homomorphisms follows from the little
calculation

.g � u/.k/ D g�1u.gkg�1/

D g�1
�
.1 � gkg�1/u.g/ C gu.k/

�
D u.k/ C .1 � k/g�1u.g/

D u.k/

since k acts trivially on M.
Clearly, if u is a cocycle Q ! M, the composition K ! G ! Q ! M is

zero, so the image of the first map is contained in the kernel of second. Conversely,
assume that u W G ! M is a cocycle which satisfies u.k/ D 0 for any k 2 K.
For any q 2 Q, choose some g 2 G mapping to q, and put Qu.q/ D u.g/. This is
well-defined, as another choice g0 of lift would differ from g by an element k 2 K,
and then u.g0/ D u.gk/ D u.g/ C gu.k/ D u.g/. If q1; q2 2 Q, choose lifts
g1; g2 2 G. Then the product g1g2 is a lift of q1q2, and we have

Qu.q1q2/ D u.g1g2/ D u.g1/ C g1u.g2/ D Qu.q1/ C q1 Qu.q2/;

so Qu is a cocycle on Q. This proves exactness at H 1.G; M/.

4. Twists and relations

Lemma 4.1. Dehn twists on disjoint curves commute.

Lemma 4.2. If ˛ and ˇ are simple closed curves intersecting transversely in a single
point, the associated Dehn twists are braided. That is, �˛�ˇ �˛ D �ˇ �˛�ˇ .

Lemma 4.3. If ˛ is a simple closed curve on † and f 2 � , we have f �˛f �1 D �f .˛/.

Lemma 4.4 (Chain relation). Let ˛, ˇ and � be simple closed curves in a two-holed
torus as in Figure 1, and let ı, " denote curves parallel to the boundary components
of the torus. Then .�˛�ˇ �� /4 D �ı�".

Lemma 4.5 (Lantern relation). Consider the surface †0;4, i.e a sphere with four
holes. Let �i denote the i ’th boundary component, 0 � i � 3, and �ij a loop
enclosing the i ’th and j ’th boundary components, 1 � i < j � 3. Let �i D ��i

and
�ij D ��ij

. Then

�0�1�2�3 D �12�13�23: (8)

For a picture of the lantern relation, see the left-hand part of Figure 3.



Cohomology of mapping class groups and the abelian moduli space 365

ı ˇ "

�

˛

ı

ˇ

ˇ

"

��
˛

(a) A two-holed torus. (b) A more schematic picture.

Figure 1. The chain relation.

Corollary 4.6. If g � 2, the Dehn twist on a boundary component of †g;r can be
written in terms of Dehn twists on non-separating curves.

Proof. The assumption on the genus implies that we may find an embedding of
†0;4 ! †g;r such that �0 is mapped to the boundary component in question
and the remaining six curves involved in the lantern relation are mapped to non-
separating curves (think of †g;r as being obtained by gluing three boundary com-
ponents of †g�2;rC2 to �1, �2 and �3, respectively). Then the relation �0 D
�12�13�23��1

3 ��1
2 ��1

1 also holds in �g;r .

Corollary 4.7. When g � 3, �g;r is generated by Dehn twists on non-separating
curves.

Proof. We already know that the mapping class group is generated by Dehn twists. If
� is a separating curve in †, cut † along � and apply Corollary 4.6 to the component
which has genus � 2, showing that �� can be written in terms of twists on non-
separating curves in †.

4.1. Action on homology. Let � be a simple closed curve on †, let E� denote one of
its oriented versions, and let ŒE�� 2 H1.†/ denote the homology class of E� . Then for
any homology class m 2 H1.†/, the action of �� on m is given by the formula

�� m D m C i.ŒE��; m/ŒE��; (9)

where i.�; �/ denotes the intersection pairing on homology. Clearly, the right-hand
side of (9) is independent of the choice of orientation of � . By induction and using
linearity and antisymmetry of i , eq. (9) may be generalized to

�n
� m D m C ni.ŒE��; m/ŒE�� (10)

This formula immediately implies an important fact.
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Lemma 4.8. If �� acts non-trivially on m, the orbit f�n
� m j n 2 Zg is infinite.

Let .x1; y1; : : : ; xg ; yg/ be a 2g-tuple of oriented simple closed curves represent-
ing a symplectic basis for H1.†/; that is, i.xj ; yj / D 1 and i.xj ; xk/ D i.yj ; yk/ D 0

for all j; k and i.xj ; yk/ D 0 for j 6D k. Such a basis induces a norm on H1.†/ by
putting

jmj D ja1j C jb1j C � � � C jag j C jbg j (11)

for m D a1x1 C b1y1 C � � � C agxg C bgyg .
We will need the following little technical result later.

Lemma 4.9. Given any symplectic basis and any non-zero homology element m, there
exists a curve � such that at least one of the sequences j�n

� mj, j��n
� j, n D 0; 1; 2; : : :,

is strictly increasing.

Proof. Let .a1; b1; : : : ; ag ; bg/ 2 Z2g be the coordinates of m with respect to the
given basis. At least one of these coordinates is non-zero. Assume without loss of
generality that a1 6D 0 and put � D b1. Then, for any n 2 Z, the coordinates of �n

� m

are
.a1; b1 C na1; a2; b2; : : : ; ag ; bg/

by (10) above. Then clearly if a1 and b1 have the same sign (b1 may be 0), the
sequence j�n

� mj is increasing, while if a1 and b1 have opposite signs the sequence
j��n

� mj is increasing.

Note that we may in fact in all cases choose the Dehn twist from a finite collection
of twists.

4.2. The Torelli group. An important subgroup of � is the Torelli group T , which
by definition is the kernel of the homomorphism � ! Sp.H1.†// Š Sp2g.Z/. By
work of Johnson [12], it is known that the Torelli group is generated by genus 1

bounding pair maps. By definition, a bounding pair is a pair .�; ı/ of non-isotopic,
non-separating simple closed curves �; ı, such that the union � [ ı separates the
surface. The genus of such a pair is, in the case of a closed surface, the minimum of
the genera of the two subsurfaces separated by �[ı, and in the case of a once-puncture
surface, the genus of the subsurface not containing the puncture. The bounding pair
map (or BP map) associated to .�; ı/ is the map �� ��1

ı
. Since � and ı are homologous,

�� and �ı acts identically on the homology of †, so it is trivial that bounding pair
maps belong to the Torelli group.

5. Unitary representations

In this section, we will observe some general facts about cocycles on the mapping
class group with values in a unitary representation. Throughout this section, let V
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be a real or complex Hilbert space endowed with an action of � preserving the inner
product.

For a simple closed curve � , we let V� D V �� denote the set of vectors fixed
under the action of the twist �� , and we let p� W V ! V� denote the orthogonal
projection onto the (obviously closed) subspace V� . If ˛ and � are disjoint simple
closed curves, the unitary actions �˛ and �� on V commute. Hence the associated
projections p˛ and p� commute with each other and with �˛; �� . If '�˛'�1 D �ˇ ,
then 'p˛'�1 D pˇ for ' 2 � .

5.1. A satisfied coboundary condition. From now on, let u denote a fixed cocycle.
We will now investigate a certain condition for u to be a coboundary, which will turn
out to be satisfied whenever g � 3. If u.'/ D .1 � '/v for some vector v, it is clear
that u.'/ is killed by the projection onto the subspace V ' fixed by '. Hence if ˛ is a
simple closed curve, it is natural to consider the entity p˛u.�˛/. The main result of
this section is the following theorem.

Theorem 5.1. Let † be a surface of genus at least 3 and let V be a unitary repre-
sentation of the mapping class group � of †. For any cocycle u W � ! V and any
simple closed curve ˛ we have p˛u.�˛/ D 0.

The proof of this theorem only requires the simple relations in the mapping class
group mentioned in Section 4.

We will use the shorthand notation s˛ for p˛u.�˛/.

Lemma 5.2. The entity s is natural in the sense that s'.˛/ D 's˛ for ' 2 � and any
simple closed curve ˛.

Proof. Since �'.˛/ D '�˛'�1, it is easy to see that p'.˛/ D 'p˛'�1. Hence

s'.˛/ D p'.˛/u.�'.˛//

D 'p˛'�1u.'�˛'�1/

D 'p˛'�1..1 � '�˛'�1/u.'/ C 'u.�˛//

D 'p˛u.�˛/

D 's˛

as claimed.

Lemma 5.3. Let ˛ be a simple closed curve, and let ' 2 � be any element commuting
with �˛ . Then 's˛ D s˛ .

Proof. We have '�˛ D �˛'. Applying u and the cocycle condition we obtain the
equation u.'/ C 'u.�˛/ D u.�˛/ C �˛u.'/. Applying p˛ on both sides, the terms
involving u.'/ cancel (since obviously p˛�˛ D p˛), so we obtain p˛'u.�˛/ D s˛ .
The claim then follows from the fact that p˛ and ' commute.
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Assume ˛ and ˇ are two non-separating simple closed curves such that ˛ [ ˇ is
non-separating, and consider the number c˛ˇ D hs˛; sˇ i.

Lemma 5.4. The number c˛ˇ only depends on the cocycle u, not on the pair .˛; ˇ/

used to compute it.

Proof. Let .˛0; ˇ0/ be any other pair such that ˛0 [ ˇ0 does not separate †. Then, by
the classification of surfaces, there is a diffeomorphism ' 2 � such that '.˛/ D ˛0
and '.ˇ/ D ˇ0. Then by the naturality from Lemma 5.2 we have

hs˛0 ; sˇ 0i D hs'.˛/; s'.ˇ/i D h's˛; 'sˇ i D hs˛; sˇ i
since ' acts unitarily.

The vector s˛ D p˛u.�˛/ 2 V obviously only depends on the cohomology
class Œu� 2 H 1.�; V / of u. Hence, we have essentially proved that there exists
a well-defined map c W H 1.�; V / ! C, whose value on Œu� is given by picking
any two jointly non-separating simple closed curves ˛; ˇ and computing the number
c.Œu�/ D hp˛u.�˛/; pˇu.�ˇ /i.

Lemma 5.5. When g � 3, the map c is identically 0.

Proof. In any surface of genus at least 2, one may embed the two-holed torus rela-
tion (Lemma 4.4) in such a way that � and ı are non-separating (the curves ˛; ˇ; �

occurring in the two-holed torus relation are always non-separating). If the genus of
the surface is at least 3, the complement of the two-holed torus is a surface of genus
at least 1. Hence, in that subsurface we may find a sixth non-separating curve �.
Observe that � makes a non-separating pair with each of the other five curves. See
Figure 2.

ı

ˇ ""

�
˛

�

Figure 2. A two-holed torus embedded in a surface of genus � 3.

Applying u and the cocycle condition repeatedly to the two-holed torus relation
yields the equation

u.�˛/ C �˛u.�ˇ / C � � � D u.�ı/ C �ıu.�"/: (12)
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The dots on the left-hand side represent 10 terms involving various actions of �˛ ; �ˇ ; ��

on the values of u on these twists. Since each of the five curves is disjoint from �, we
have �˙1

˛ s� D s�, and similarly for ˇ; �; ı; ". Now we take the inner product of (12)
with s� to obtain

4hu.�˛/; s�i C 4hu.�ˇ /; s�i C 4hu.�� /; s�i D hu.�ı/; s�i C hu.�"/; s�i (13)

using the fact that h'x; yi D hx; '�1yi. But since �˛s� D s�, we also have
p˛s� D s� , and since the projection p˛ is self-adjoint, the first term in (13) is
equal to 4hs˛; s�i D 4c. Similar remarks apply to the other terms, so (13) reduces to
12c D 2c, so c D 0.

Now we are ready to prove the main result of this section.

Proof of Theorem 5.1. We first treat the case where ˛ is non-separating. We cannot
simply put ˛ D ˇ in the computation of c, since .˛; ˛/ is not a non-separating
pair. But when the surface has genus at least 3, we may embed the lantern relation
(Lemma 4.5) in such a way that all seven curves are non-separating. Furthermore,
it can be done in such a way that �0 makes a non-separating pair with each of the
other six curves. On Figure 3 this is shown for a genus 3 surface; note that the
shown surface has been cut along �0. The right-hand part of the cut surface (a sphere
with four holes) could be replaced by a surface with any genus and four boundary
components. Now the cocycle condition applied to the lantern relation gives

u.�0/ C �0u.�1�2�3/ D u.�12�13�23/: (14)

Finally, taking the inner product with s�0
on both sides and applying computations

similar to those above, we get hs�0
; s�0

i D hu.�0/; s�0
i D 0. Hence s�0

D 0, and by
naturality (Lemma 5.2) this holds for any non-separating curve.

�0�0

�1

�2

�3

�13

�12

�23

Figure 3. An embedding of the lantern relation such that all seven curves are non-separating.
The �0 on the left is identified with that on the right.
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If ˛ is separating, we use the fact that one of the sides of ˛ has genus at least 2

and Corollary 4.6 to write �˛ as a product of twists in six non-separating curves. For
some appropriate choice of signs "j , we thus have �˛ D Q6

j D1 �
"j

j , where the �j are
the twists in the appropriate non-separating curves disjoint from ˛. Now apply the
cocycle condition and take the inner product with s˛ to obtain

hs˛; s˛i D hu.�˛/; s˛i D hu.�
"1

1 /; s˛i C � � � C h�"1

1 �
"2

2 �
"3

3 �
"4

4 �
"5

5 u.�
"6

6 /; s˛i:
By Lemma 5.3, �˙1

j s˛ D s˛ , so using the unitarity of the action this reduces to

hs˛; s˛i D
6X

j D1

hu.�
"j

j /; s˛i:

Finally, we conclude that each term on the right-hand side vanishes by writing s˛

as pj s˛ , moving the self-adjoint projection pj to u.�
"j

j / and using that sˇ D 0 for
non-separating curves ˇ.

5.2. Property (T) and Property (FH). Two properties of topological groups, known
as Property (T) and Property (FH), respectively, are intimately related to the coho-
mology of groups with coefficients in real or complex Hilbert spaces. A thorough
exposition of these properties and their relationship to group cohomology is far be-
yond the scope of this paper. We instead refer the interested reader to the very
comprehensive book [6]. In this short section we will simply outline the facts we
need.

Proposition 5.6. For g � 2, the discrete group Sp.2g; Z/ has Property (T).

Proof. By Theorem 1.5.3 of [6], the locally compact group Sp.2g; R/ has Prop-
erty (T), and by Theorem 1.7.1, Property (T) is inherited by lattices in locally compact
groups. Finally, Sp.2g; Z/ is known to be a lattice in Sp.2g; R/.

For finitely generated groups, a number of conditions are known to be equivalent
to Property (T). The following is quoted from [6], Theorem 3.2.1.

Theorem 5.7. Let G be a locally compact group which is second countable and
compactly generated. The following conditions are equivalent:

(i) G has Property (T);

(ii) H 1.G; �/ D 0 for every irreducible unitary representation � of G;

(iii) H 1.G; �/ D 0 for every irreducible unitary representation � of G;

(iv) H 1.G; �/ D 0 for every unitary representation � of G.

In fact, one can add a fifth element to the list.
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Lemma 5.8. Let G be a group satisfying the conditions of Theorem 5.7. Then con-
ditions (i)–(iv) are also equivalent to

(v) H 1.G; �/ D 0 for every unitary representation � of G.

Proof. Clearly (v) implies (ii) and hence the other conditions. By the Delorme–
Guichardet Theorem (Theorem 2.12.4 in [6]), Property (T) and Property (FH) are
equivalent for the class of groups considered, so Property (T) implies that H 1 .G; �/ D
0 for any orthogonal representation � . Any unitary representation is in particular
an orthogonal representation, so H 1.G; �/ D 0 for any unitary representation as
well.

Corollary 5.9. For any unitary representation � W Sp.2g; Z/ ! U.V /, the cohomol-
ogy group H 1.Sp.2g; Z/; V / vanishes.

6. Functions on the abelian moduli space

From now on, we let M D Hom.�1.†/; U.1// D Hom.H1.†/; U.1// denote the
modulo space of flat U.1/ connections on †. The mapping class group acts on M by
.' �%/.m/ D %.'�1m/ for ' 2 � , % 2 M and m 2 H1.†/. This action is smooth and
preserves the measure on M, so there are induced actions on C 1.M/ and L2.M/

given by .' � f /.%/ D f .'�1%/ for smooth or square integrable functions f .
Let C denote the space of constant functions on M . Then there are splittings of

�-modules

C 1.M/ Š C 1
0 .M/ ˚ C;

L2.M/ Š L2
0.M/ ˚ C;

where C 1
0 .M/ and L2

0.M/ denotes the space of smooth, respectively square inte-
grable, functions with mean value 0. The action of � on C is obviously trivial, so
H 1.�; C/ D Hom.�; C/, but since the abelianization of � is known to be trivial for
g � 3, the latter is trivial. This yields the isomorphisms

H 1.�; C 1.M// Š H 1.�; C 1
0 .M//;

H 1.�; L2.M// Š H 1.�; L2
0.M//:

6.1. Pure phase functions. Topologically, M is simply a 2g-dimensional torus.
There is a natural orthonormal basis for L2.M/ parametrized by H1.†/, which can
be described in several different ways.

The intrinsic definition is rather simple. To a homology element m 2 H1.†/, we
associate the function zm on M given by evaluation in m, i.e we put

zm.%/ D %.m/ 2 U.1/ � C
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for % 2 M D Hom.H1.†/; U.1//.
A choice of basis .x1; y1; : : : ; xg ; yg/ for H1.†/ induces a diffeomorphism M Š

U.1/2g given by
% 7�! .%.x1/; %.y1/; : : : ; %.xg/; %.yg//:

Under this identification, the function corresponding to the homology element m D
a1x1 C b1y1 C � � � agxg C bgyg is simply the trigonometric monomial

.z1; w1; : : : ; zg ; wg/ 7�! z
a1

1 w
b1

1 � � � zag
g w

bg
g

on U.1/2g . From this description it is clear that the family f zm j m 2 H1.†/g
constitutes an orthonormal basis for L2.M/.

For any (discrete) set S , we use `2.S/ to denote the set of square summable
function S ! C, that is, the set ff W S ! C j P

s2S jf .s/j2 < 1g. We will write
such a function as a formal linear combination

P
s2S fss.

Lemma 6.1. There is a mapping class group equivariant isomorphism

L2.M/ Š `2.H1.†// (15)

where H1.†/ is considered as a discrete set.

Proof. We compute

.' � zm/.%/ D zm.'�1 � %/ D .'�1 � %/.m/ D %.' � m/ D A' � m.%/;

proving the equivariance claim.

Since the element 0 2 H1.†/ clearly corresponds to the constant function 1 on M,
we immediately obtain the following result.

Lemma 6.2. Put H 0 D H1.†/ � f0g, considered as a discrete set. Then there is a
mapping class group equivariant isomorphism

L2
0.M/ Š `2.H 0/: (16)

It is very convenient that the action of the mapping class group can be described
by a permutation action on an orthonormal basis.

6.2. Smooth functions. Now we know that elements of L2
0.M/ can be thought of as

formal linear combinations
P

m2H 0 cmm with
P

m2H 0 jcmj2 < 1. We will also need
to know under which conditions a collection of coefficients .cm/ defines a smooth
function. Choose a basis for H1.†/, and let jmj denote the norm of a homology
element as defined by (11).
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Proposition 6.3. The formal sum
P

m2H1.†/ fmm defines a smooth function on M

if and only if jfmj approaches 0 faster than any polynomial in jmj�1, or equivalently,
if and only if for each k 2 N, there is a constant Fk such that

jmjk jfmj � Fk (17)

for all m 2 H1.†/.

These conditions are independent of the chosen basis for H1.†/.

7. Cohomology computation

In this final section, we will state and prove the main results of this paper.

7.1. Applying Hochschild–Serre. From now on, we fix a symplectic basis

.x1; y1; : : : ; xg ; yg/

for H1.†/, and using this basis we identify Sp.H1.†// with Sp.2g; Z/. Consider
the short exact sequence

1 �! T �! � �! Sp.2g; Z/ ! 1:

Since the Torelli group, by definition, acts trivially on H1.†/ and hence on `2.H 0/,
we are in a position to apply the exact sequence (6). This now takes the guise

0 �! H 1.Sp.2g; Z/; `2.H 0// �! H 1.�; `2.H 0// �! H 1.T ; `2.H 0//� : (18)

Lemma 7.1. The last map in (18) is the zero map.

Proof. We must prove that any cocycle u W � ! `2.H 0/ restricts to zero on the Torelli
group. To this end, we use the fact that the Torelli group is generated by genus 1

bounding pair maps. Let t D ����1
ı

be such a generator for T . Since t is invariant
under conjugation by �� , the equivariance (7) of u restricted to T implies that

u.t/ D u.�� t��1
� / D �� u.t/

which in turn implies that u.t/ D p�u.t/. Now, using the fact that �� and �ı acts
identically on H1.†/, we know that p� D pı on `2.H 0/. Hence using the fact that
u is in fact defined on all of � , we obtain

u.t/ D p�u.t/ D p� .u.�� / � �� ��1
ı u.�ı// D p�u.�� / � �� ��1

ı pıu.�ı/ D 0

by Theorem 5.1.
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Corollary 7.2. The map

H 1.Sp.2g; Z/; `2.H 0// �! H 1.�; `2.H 0//

is an isomorphism.

Now the first main theorem.

Theorem 7.3. The cohomology group

H 1.�; L2
0.M//

vanishes.

Proof. By Corollary 5.9, the cohomology group H 1.Sp.2g; Z/; `2.H 0// vanishes,
and by Corollary 7.2 the same is true for H 1.�; `2.H 0//. Finally, `2.H 0/ and L2

0.M/

are isomorphic as �-modules by Lemma 6.2.

7.2. Smooth coefficients. The second main result looks similar to the first, and its
proof is also based on it.

Theorem 7.4. The cohomology group

H 1.�; C 1
0 .M//

vanishes.

Proof. Letu W � ! C 1
0 .M/ by a cocycle. Composing with the inclusion C 1

0 .M/ !
L1

0 .M/ Š `2.H 0/ we may think of u as a cocycle � ! `2.H 0/. Hence, by Theo-
rem 7.3 there exists an element f D P

m2H 0 fmm in `2.H 0/ such that u.�/ D f ��f

for each � 2 � . We claim that f is in fact a smooth function.
To see this, we must verify the condition (17) from Proposition 6.3. It is clearly

enough to do this for all large enough k, so assume k � 2. We must find a constant Fk

such that jmjk jfmj � Fk for all m 2 H 0. Consider the 2g Dehn twists �1; �2; : : : ; �2g

in the simple closed curves representing our fixed basis for H1.†/. By assumption,
for each j D 1; : : : ; 2g, the element

u.�˙1
j / D f � �˙1

j f D
X

m2H 0

.fm � f
�

�1
j

m
/m

defines a smooth function. Putting gṁ;j D fm � f
�

�1
j

m
, there is a constant GkC1

such that
jmjkC1jgṁ;j j � GkC1

for all m 2 H 0 and all j D 1; 2; : : : ; 2g (such a constant exist for each �˙1
j ; we

may choose the largest of these 4g numbers). We claim that Fk D GkC1=k suffices.
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To see this, observe that jfmj ! 0 as jmj ! 1 since the collection .fm/ is square
summable. Now, let m 2 H 0 be any given element. Choose, by Lemma 4.9, a
j 2 f1; 2; : : : ; 2gg and " D ˙1 such that j�"n

j mj is strictly increasing. Assume
without loss of generality that " D C1. For each R � 1, we have the telescoping
sum

f�R
j

m � fm D gC
�R
j

m;j
C gC

�R�1
j

m;j
C � � � C gC

�j m;j D
RX

rD1

gC
�r
j

m;j

and hence, since f�R
j

m ! 0 for R ! 1, we obtain

jfmj D
ˇ̌
ˇ

1X
rD1

gC
�r
j

m;j

ˇ̌
ˇ

�
1X

rD1

jgC
�r
j

m;j
j

� GkC1

1X
rD1

1

j� r
j mjkC1

� GkC1

1X
rDjmjC1

1

rkC1

< GkC1

Z 1

jmj
1

rkC1
dr D GkC1

kjmjk

using the fact that j� r
j mj is a strictly increasing sequence of integers and elementary

estimates.
In case " D �1, we instead use the identity

fm D
1X

rD1

g�
��r
j

m;j

and proceed exactly as above.
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