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Abstract. For a graph embedded into a surface, we relate many combinatorial parameters of
the cycle matroid of the graph and the bond matroid of the dual graph with the topological
parameters of the embedding. This gives an expression of the polynomial, defined by M. Las
Vergnas in a combinatorial way using matroids as a specialization of the Krushkal polynomial,
defined using the symplectic structure in the first homology group of the surface.
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Introduction

Hassler Whitney introduced matroids in 1935 and gave two major examples of ma-
troids, the cycle matroid of a graph and a matroid defined by a finite collection of
vectors in a vector space. Matroids have since found many applications in other parts
of mathematics, including, in particular, topology where the matroidal properties of
a hyperplane arrangement are very closely related to the topological properties of the
arrangement; see [1], [11], [13], [14], and the references therein.

In this paper we show that the matroids associated to graphs are intimately related
to its topology

We consider graphs on surfaces. Suppose that a graph G is embedded into a surface
† in a cellular manner; that is each connected component (face) of the complement to
the graph is homeomorphic to a disc. Then we can define a dual graph G� embedded
into the same surface † in a natural way. We associate cycle matroid C.G/ with
the graph G, and with the dual graph G� we associate its bond matroid B.G�/

dual to C.G�/. In the planar case, when † is a sphere, B.G�/ is isomorphic to
C.G/. Thus the difference between isomorphism classes of C.G/ and B.G�/ can
be considered as a measure of non-planarity of the embedding and should reflect
the topology of the pair .†; G/. Various combinatorial parameters of the matroids
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C.G/ and B.G�/ can be assembled into the Las Vergnas polynomial of a matroid
perspective B.G�/ ! C.G/ introduced in [6], [7], and [8].

On the other hand, the topological parameters of the embedding of G into † can
be assembled into the Krushkal polynomial introduced in [4]. In this paper we show
that the Las Vergnas polynomial is a specialization of the Krushkal polynomial. In the
process, we relate many combinatorial parameters of the matroids C.G/ and B.G�/

with the topological parameters of the embedding.
In Section 1 we briefly review matroids and their combinatorial parameters, and

introduce the Las Vergnas polynomial. We introduce the Krushkal polynomial in
Section 2. The main theorem is formulated in Section 3, wherein we also obtain
the duality property of the Las Vergnas polynomial as a consequence of our main
theorem. We begin to prove the main theorem in Section 3 and finish in Section 4
which consists of three lemmas relating the topological parameters of the embedding
G ,! † with the combinatorial parameters of its matroids. We conclude in Section 5
with a discussion on the relation of the Krushkal polynomial with the Bollobás–
Riordan polynomial of ribbon graphs.

This work has been done as a part of the Summer 2010 undergraduate research
working group Knots and Graphs

www.math.ohio-state.edu/˜chmutov/wor-gr-su10/wor-gr.htm

at the Ohio State University. We are grateful to all participants of the group for
valuable discussions and to the OSU Honors Program Research Fund for the student
financial support. We thank the anonymous referee and editors for various suggestions
improving the exposition of the paper.

1. Matroids and the Las Vergnas polynomial

For additional background on matroids we refer to [9] and [10], in addition to Whit-
ney’s classical paper [12].

Definition 1.1. A matroid is a finite set M with a rank function r that assigns a
number to a subset of M and satisfies the following axioms.

(R1) The rank of an empty subset is zero.

(R2) For any subset H � M and any element y 62 H ,

r.H [ fyg/ D
8<
:

r.H/ or

r.H/ C 1:

(R3) For any subset H and two elements y,z not in H , if r.H [ y/ D r.H [ z/ D
r.H/, then r.H [ fy; zg/ D r.H/.

http://www.math.ohio-state.edu/~chmutov/wor-gr-su10/wor-gr.htm
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There are two major examples of matroids we will be focusing on, although these
examples do not exhaust the collection of matroids. That is to say, there are matroids
that do not represent either of the following situations.

The first example is the cycle matroid C.G/ of a graph G. The underlying set M

is the set of edges E.G/ and the rank function is given by r.H/ D v.G/ � c.H/,
where v.G/ is the number of vertices of G and c.H/ is the number of connected
components of the spanning subgraph of G consisting of all the vertices of G and
edges of H.

The second example is a finite set of vectors in a vector space. We may think
about them as column vectors of a matrix. The rank function is the dimension of
the subspace spanned by the subset of vectors, or the rank of the corresponding
submatrix. This example generalizes the first one when the matrix (over F2) is the
incidence matrix of G, i.e. the matrix of the simplicial boundary map from the set of
edges of G to the set of vertices of G.

A subset H � M is called independent if r.H/ D jH j. In the first example, the
independent subsets are those subsets of edges which do not contain cycles. In the
second, independent subsets correspond to linearly independent subsets of vectors.
A base of a matroid is a maximal independent set.

A subset H � M is called a circuit if r.H/ D jH j � 1. In the first example, this
new notion of a circuit and the traditional notion of a circuit in a graph match. In
the second example, a circuit is a subset of vectors with precisely one linear relation
between them.

Given any matroid M , there is a dual matroid M � with the same underlying set
and with the rank function given by rM �.H/ D jH j C rM .M n H/ � r.M/. In
particular r.M/ C r.M �/ D jM j. Any base of M � is a complement to a base of M .

The dual matroid to the cycle matroid of a graph G is called the bond matroid
of G: B.G/ D .C.G//�. The circuits of B.G/ are the minimal edge cuts, also
known as the bonds of G. These are minimal collections of the edges of G which,
when removed from G, increase the number of connected components. The Whitney
planarity criteria [12] says that a graph G is planar if and only if its bond matroid
B.G/ is the cycle matroid of some graph. In this case, it will be the cycle matroid of
the dual graph, B.G/ D .C.G//� D C.G�/.

Definition 1.2 ([6], [7], and [8]). For two matroids M and M 0, a bijection M ! M 0
is called a matroid perspective if any circuit of M is mapped to a union of circuits of
M 0. Equivalently,

rM .X/ � rM .Y / > rM 0.X/ � rM 0.Y / for all Y � X;

where rM and rM 0 are the rank functions of matroids M an M 0.

Definition 1.3 ([6], [7], and [8]). The Tutte polynomial of a matroid perspective
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M ! M 0 is the polynomial in variables x; y; z defined by

TM!M 0 D
X

H�M

.x � 1/r.M 0/�rM 0 .H/.y � 1/nM .H/z.r.M/�rM .H//�.r.M 0/�rM 0 .H//;

where nM .H/ D jH j � rM .H/ is the nullity in M .

Properties. The usual Tutte polynomial of matroids M and M 0 can be recovered
from the Tutte polynomial of matroid perspective in the following ways:

TM .x; y/ D TM!M .x; y; z/I
TM .x; y/ D TM!M 0.x; y; x � 1/I

TM 0.x; y/ D .y � 1/r.M/�r.M 0/TM!M 0

�
x; y;

1

y � 1

�
:

For graphs G and G� dually cellularly embedded in a surface †, the natural map of
the bond matroid of G� onto the cycle matroid of G, B.G�/ ! C.G/, is a matroid
perspective. Formally this follows from a theorem of J. Edmonds [3]. Informally, a
circuit c of B.G�/ is a minimal cut of the dual graph G� which separates the vertices
of G� into two sets. The vertices of G� correspond to the faces of the original graph
G. Thus, the minimal cut separates the faces of G. We may think about cutting an
edge of c as cutting the surface † along the corresponding edge of G. Therefore,
in terms of the original graph G, the circuit c corresponds to a subset of edges of G

which separate the surface †. Topologically it represents a zero-homologous cycle
which (in general) consists of several circuits. Hence, a circuit of B.G�/ is mapped
to a union of circuits of C.G/.

We call the Tutte polynomial TB.G�/!C.G/.x; y; z/; of the matroid perspective
B.G�/ �! C.G/ the Las Vergnas polynomial of the graph G on the surface †,
and we denote it LVG;†.x; y; z/. One goal of this paper is to give a topological
interpretation of various combinatorial ingredients of this polynomial.

In this paper we assume that † is orientable.

Example 1.4. Let G be a graph with one vertex and two loops embedded into a torus
as shown. Then G� is the similar graph:

G�

;

G

:

In this case the bond matroid M D B.G�/ has rank 2, and the cycle matroid M 0 D
C.G/ has rank 0. For any subset H : rM .H/ D jH j, nM .H/ D 0, and rM 0.H/ D 0.
We have

LVG;†.x; y; z/ D z2 C 2z C 1:
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2. Krushkal polynomial

V. Krushkal discovered his polynomial while researching topological quantum field
theories and the algebraic and combinatorial properties of models of statistical me-
chanics. This polynomial can be seen as a generalization of the Tutte and Bollobás–
Riordan polynomials [4].

Definition 2.1 ([4]). For a graph G embedded into a (not necessarily connected, but
orientable) surface †,

PG;†.X; Y; A; B/ D
X

H�G

Xc.H/�c.G/Y k.H/As.H/=2Bs?.H/=2; (1)

where
� c.H/ is the number of connected components of the spanning subgraph H ;

� the restriction of the embedding G ,! † to H induces a map on the first
homology groups and we define

k.H/ D dim.ker.H1.H I R/ �! H1.†I R///I

� s.H/ is equal to twice the genus of a regular neighborhood of the spanning
subgraph H in † (the neighborhood is a surface with boundary, and its genus is
defined as the genus of the closed surface obtained by attaching a disk to each
boundary circle);

� s?.H/ is equal to twice the genus of the surface obtained by removing a regular
neighborhood of H from †.

Remark. V. Krushkal indicates in his paper [4] that the parameters s.H/ and s?.H/

have the following interpretation in terms of the symplectic bilinear form on the vector
space H1.†I R/ given by the intersection number. For a given spanning subgraph H ,
let V be its image in the homology group:

H1.†I R/ � V D V.H/ D im.H1.H I R/ �! H1.†I R//:

For the subspace V we can define its orthogonal complement V ? in H1.†I R/ with
respect to the symplectic intersection form. Then

s.H/ D dim.V=.V \ V ?//

and

s?.H/ D dim.V ?=.V \ V ?//:
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Example 2.2. Continuing with Example 1.4, for the graph G on the torus †, the
map H1.GI R/ ! H1.†I R/ is not degenerate. Therefore, k.H/ D 0 for any subset
H . Also, c.H/ D 1 for any H . If H 6D G, then its regular neighborhood has
genus 0. Hence, for such H , s.H/ D 0, while s.G/ D 2. Similarly, if H 6D ;,
then the regular neighborhood of its complement also has genus 0. So, for such H ,
s?.H/ D 0, while s?.;/ D 2. Combining all this we get

PG;†.X; Y; A; B/ D B C 2 C A:

3. Main Theorem

Theorem 3.1. Suppose G is cellularly embedded in an orientable surface † of genus
g. Then

LVG;†.x; y; z/ D zgPG;†.x � 1; y � 1; z�1; z/: (2)

Proof. The summands corresponding to each subgraph H of G will be shown to be
equal. Applying the substitution (2) in (1) we arrive at summands of the form

.x � 1/c.H/�c.G/.y � 1/k.H/zg�s.H/=2Cs?.H/=2:

The cycle matroid rank of a graph is given by r.M 0/ D v.G/�c.G/ and that of a
subgraph H � G by rM 0.H/ D v.G/�c.H/. So r.M 0/�rM 0.H/ D c.H/�c.G/

and hence the powers of the .x � 1/ factor coincide.
It remains to prove the equality between the exponents of .y � 1/ and z:

� k.H/ D nM .H/;

� g � s.H/=2 C s?.H/=2 D rM .G/ � rM 0.G/ � rM .H/ C rM 0.H/.

These will be proved separately in the next section.

Corollary 3.2 ([6], [7], and [8]).

LVG�;†.x; y; z/ D z2gLVG;†.y; x; z�1/:

This follows from Krushkal’s formula [4]

PG�;†.X; Y; A; B/ D PG;†.Y; X; B; A/

for cellular embeddings G ,! †.
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4. Matroidal combinatorics and combinatorial topology

In this section we relate the topological parameters of the embedding G ,! † with
the combinatorial parameters of the matroid perspective B.G�/ ! C.G/.

Lemma 4.1. k.H/ D nM .H/.

Proof. Let N D C.G�/ D .B.G�//� D M �. The rank of a dual matroid can
be defined in terms of the rank of a matroid by rM .H/ D jH j C rN .E n H/ �
rN .N /, where H is a subset of edges of G� that can be naturally identified with the
corresponding subset of edges of G. Since the nullity is defined as the number of
edges minus the rank we have that nM .H/ D rN .N / � rN .G� n H/, where G� n H

is the spanning subgraph of G� consisting of the edges not in H and all vertices of
G�. Thus, because N is the cycle matroid of the graph G�, we have

nM .H/ D .v.G�/ � c.G�// � .v.G�/ � c.G� n H// D c.G� n H/ � c.G�/:

Obviously, c.G�/ D c.G/ and is equal to the number of connected component
c.†/ of †.

Now we consider H as a spanning subgraph of G. We want to remove its regular
neighborhood from the surface † and count the number of connected components
c.† n H/. First we remove small discs around all vertices of H , i.e. all vertices of
G. These are exactly the faces of G�. So we are left with a regular neighborhood of
G� in †. Secondly, removing neighborhoods of the edges of H � G from † will
give us the same surface, topologically, as deleting the corresponding neighborhoods
of the edges of H � G�, because these edges are transverse to each other. In other
words c.G� n H/ is the number of components of † n H . Hence

nM .H/ D c.† n H/ � c.G/;

where H is regarded as a spanning subgraph of G.
Let us turn our attention to the number that we wish to show nM .H/ to be equal

to. Denote by i� W H1.H I R/ ! H1.†I R/ the linear map induced by the composition
of embeddings H ,! G ,! †. We have k.H/ D dim.ker.i�//.

The topological pair .†; H/ gives us a long exact sequence of homology groups

� � � �! H2.H/ �! H2.†/ �! H2.†; H/
ı��! H1.H/

i���! H1.†/ ! � � � :

H2.H/ is trivial as H is one dimensional, H2.†/ has dimension equal to the number
of components of †. and H2.†; H/ has dimension equal to the number of compo-
nents of † n H .

So if we turn our attention to the short exact sequence

0 �! Rc.†/ �! H2.†; H/ �! im ı �! 0;
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wherein im ı D ker i�, we see that

dim ker i� D c.† n H/ � c.†/ D c.† n H/ � c.G/ D nM .H/

Thus the .y � 1/ powers in the main theorem coincide.
In fact, the argument with the long exact sequence was used byV. Krushkal [4], end

of proof of Theorem 3.1, where he essentially proved that k.H/ D c.† n H/ � c.†/

using a slightly different terminology. However, the relation of this parameter to the
matroidal nM .H/ was not addressed there.

Lemma 4.2. 2g D rM .G/ � rM 0.G/.

Proof. rM 0.G/ D v.G/ � c.G/ D e.T /, where T is a spanning forest of G. The
bond rank of a graph G� is the maximal number of edges that one can delete from it
without increasing the number of connected components, i.e. all edges but a spanning
forest, T �, of the graph G�. So rM .G/ D e.G�/ � e.T �/ D e.G/ � e.T �/ and
rM .G/ � rM 0.G/ D e.G/ � e.T �/ � e.T /. But the number of edges in a spanning
forest of G is equal to the number of vertices minus the number of components.
Similarly, e.T �/, the number of edges in a spanning forest of G�, is the number of
faces, f , of G minus the number of components. So

rM .G/ � rM 0.G/ D e � .f � c.†// � .v � c.†//

D e � f � v C 2c.†/

D 2g.†/

D 2g:

Lemma 4.3. g C s.H/=2 � s?.H/=2 D rM .H/ � rM 0.H/.

Proof. Consider rM .H/ � rM 0.H/. For either matroid, M or M 0, rank is equal to
the number of edges minus nullity. So rM .H/ � rM 0.H/ D nM 0.H/ � nM .H/. We
have seen in Lemma 4.1 that nM .H/ D k.H/. Eq. (2.5) in Krushkal’s paper [4] tells
us that this nullity

nM 0.H/ D k.H/ C g C s.H/=2 � s?.H/=2:

So we have rM .H/ � rM 0.H/ equaling

k.H/ C g C s.H/

2
� s?.H/

2
� k.H/ D g C s.H/

2
� s?.H/

2
:

Lemma 4.2 is a particular case of Lemma 4.3 where we take H D G. Indeed, in
this case we have s.G/ D 2g and s?.G/ D 0.

Lemmas 4.2 and 4.3 together imply

g � s.H/=2 C s?.H/=2 D rM .G/ � rM 0.G/ � rM .H/ C rM 0.H/:

Thus the z powers in the main theorem coincide. This completes the proof of the
main theorem.
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5. Krushkal and Bollobás–Riordan polynomials

A cellular embedding G ,! † may be studied in terms of a ribbon graph which
represents a regular neighborhood G of G in †. Working backwards, starting with a
ribbon graph G , we can construct a surface † by capping all boundary components
of G by discs. Then the core graph G of G , obtained by contracting all edge-ribbons
to their central lines and all vertex-discs to their central points, can be cellularly
embedded in †. For ribbon graphs, we have the Bollobás–Riordan polynomial [2]
defined as

BRG .X; Y; Z/ D
X

H�G

.X � 1/c.H/�c.G /Y n.H/Zc.H/�bc.H/Cn.H/;

where bc.H / is the number of boundary components of the spanning ribbon subgraph
H . Note that the exponent c.H / � bc.H / C n.H / is equal to 2g.H / for oriented
ribbon graphs.

V. Krushkal proved in [4], Lemma 4.1, that

BRG .X; Y; Z/ D Y gPG;†.X � 1; Y; YZ2; Y �1/: (3)

It was proved in [2], Theorem 2, that BRG is universal in the class of polynomials
satisfying the contraction/deletion property. The Krushkal polynomial also satisfies
a contraction/deletion property; see [4] Lemma 2.1. Based on that V. Krushkal wrote
that BRG and PG;† carry equivalent information. However this is not the case as
the contraction/deletion properties for BRG and for PG;† are not quite the same.
The problem arises when deletion of an edge of a ribbon graph changes its genus.
The genus might decrease by 1 with removal of an edge. For example, if we delete
a loop e from the ribbon graph G corresponding to G from Example 1.4, then the
resulting graph with a single loop will have genus zero. So, while in the Bollobás–
Riordan approach it is considered as a graph embedded into a sphere, in the Krushkal
approach it is still embedded into the torus. We cannot apply the substitution (3) to
that graph since its embedding on the torus is no longer cellular. Thus the Krushkal
polynomial does not satisfy the contraction/deletion property in the sense of Bollobás
and Riordan.

We also find that the Las Vergnas polynomial LVG;†.x; y; z/ does not satisfy the
contraction/deletion property in the sense of Bollobás and Riordan either.

Example 5.1. This is an example of a calculation of the three polynomials. Here G

is a graph on torus with two vertices and three edges a, b, and c. Its dual G� has one
vertex and three loops. The ribbon graph corresponding to G is denoted G . We use
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the same symbols a, b, c to denote the corresponding edges in all three graphs

G� D

a

b

c

; G D
a

b
c

;

and

G D
a

b c

:

The matroid M 0 D C.G/ is of rank 1, and for any nonempty subset H , rM 0.H/ D 1.
The cycle matroid C.G�/ of the dual graph is of rank zero because G� has only loops.
So its dual M D B.G�/ has rank 3, all subsets H are independent and rM .H/ D jH j.
The next table shows the value of various parameters and contributions of all eight
subsets H � fa; b; cg to the three polynomials.

H ; fag fbg fa; bg fcg fa; cg fb; cg fa; b; cg
c.H/ 2 1 1 1 1 1 1 1

k.H/ 0 0 0 0 0 0 0 0

s.H/ 0 0 0 0 0 0 0 2

s?.H/ 2 2 2 0 2 0 0 0K
ru

sh
ka

l

PG;† XB B B 1 B 1 1 A

rM .H/ 0 1 1 2 1 2 2 3

rM 0.H/ 0 1 1 1 1 1 1 1

nM .H/ 0 0 0 0 0 0 0 0

L
as

V
er

gn
as

LVG;† .x � 1/z2 z2 z2 z z2 z z 1

c.H / 2 1 1 1 1 1 1 1

n.H / 0 0 0 1 0 1 1 2

bc.H / 2 1 1 2 1 2 2 1

B
ol

lo
bá

s

R
io

rd
an

BRG .X � 1/ 1 1 Y 1 Y Y Y 2Z2

Thus

PG;† D 3 C 3B C XB C A;

LVG;† D 3z C 3z2 C .x � 1/z2 C 1;

and

BRG D 3 C 3Y C .X � 1/ C Y 2Z2:
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One can readily confirm the relations (2) and (3) from here.
Now if we contract the edge c, the graph G=c still will be cellularly embedded

into the same torus †, and its regular neighborhood coincides with the ribbon graph
G =c. Examples 1.4 and 2.2 and the right part of the table above give the following
polynomials:

PG=c;† D B C 2 C A;

LVG=c;† D z2 C 2z C 1;

and

BRG=c D 1 C 2Y C Y 2Z2:

Meanwhile if we delete the edge c, then

PG�c;† D XB C 2B C 1:

But the graph G � c is not cellularly embedded into the torus † any more. Thus
the Las Vergnas and the Bollobás–Riordan polynomials are not defined for it. Its
regular neighborhood gives the ribbon graph G � c which, after capping the discs to
its two boundary components, results in the sphere S2. Thus the graph G �c embeds
cellularly into the sphere S2. For this embedding we have

PG�c;S2 D X C 2 C Y;

LVG�c;S2 D .x � 1/ C 2 C .y � 1/;

and

BRG�c D .X � 1/ C 2 C Y:

Therefore

PG;† D PG�c;† C PG=c;†

and

BRG D BRG�c C BRG=c ;

but

PG;† ¤ PG�c;S2 C PG=c;†

and

LVG;† ¤ LVG�c;S2 C LVG=c;†:

Currently, according to relations (2) and (3), the Krushkal polynomial is the most
general polynomial of graphs on surfaces and so it clearly deserves further research.
Also, because the two relations look quite different, the LasVergnas and the Bollobás–
Riordan polynomials seem to be independent.
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Very recently the Krushkal polynomial was generalized to higher dimensional
simplicial complexes; see [5]. It is related to a matroid on the sets of simplices of the
middle dimension for a triangulation of an even dimensional sphere, where a subset
of simplices is independent if and only if they are mapped into the linear independent
chains by the simplicial boundary map. It turns out that the dual matroid corresponds
to the dual triangulation and the Tutte polynomial of this matroid corresponds to
the “higher dimensional” Tutte polynomial of the simplicial complexes; see [5] for
details.

6. Note added in proof

After the paper has been submitted to the journal Jonathan Michel found the following
example of two ribbon graphs with the same Las Vergnas polynomials but different
Krushkal polynomials:

G1 D ; G2 D :

Let †1 (resp. †2) be a surface obtained from G1 (resp. G2) by gluing a disc to its
boundary component, and G1 � †1 (resp. G2 � †2) be the corresponding core
graph. Then LVG1;†1

D LVG2;†2
D .1 C z/4. But

PG1;†1
D A2 C 4A C 2AB C 4 C 4B C B2

and

PG2;†2
D A2 C 4A C 4AB C 2 C 4B C B2:

Jonathan Michel also found two different ribbon graphs with the same Krushkal
polynomials:

G3 D ; G4 D :

For the corresponding core graphs G3 � †3 and G4 � †4 we have

PG3;†3
D PG4;†4

D YA C 4Y C A C 2YB C 3 C 2B C XYB C X C XB2:
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