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Abstract. It is shown that for knots with a sufficiently regular character variety the Dubois
torsion detects the A-polynomial of the knot. A global formula for the integral of the Dubois
torsion is given. The formula looks like the heat kernel regularization of the formula for
the Witten–Reshetikhin–Turaev invariant of the double of the knot complement. The Dubois
torsion is recognized as the pushforward of a measure on the character variety of the double
of the knot complement coming from the square root of Reidemeister torsion. This is used to
motivate a conjecture about quantum invariants detecting the A-polynomial.
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1. Introduction

There is a close connection between the colored Jones polynomial and the SL2.C/
characters of knot groups. The first intimation of this connection appeared in Bul-
lock’s work on the skein modules of knot complements [5]. The idea was developed
more formally in [6] and [39]. The point is that the Kauffman bracket skein module
of a three manifold M, when the complex parameter is set to be equal to �1, is the
coordinate ring of the unreduced scheme of the SL2.C/-characters of the fundamental
group of M. The connection with the A-polynomial of Cooper, Culler, Gillet, Long,
and Shalen [10] was first developed in [21] and [22]. The idea was to first realize
the A-polynomial as generating the kernel of a map between rings of characters, and
then deform the rings in a canonical way so that the kernel can be understood as a
submodule of a skein module, called the A-ideal. Garoufalidis and Le developed a
more algebraic setting for these ideas, that allowed them to prove the nontriviality of
the noncommutative A-ideal, along with making many compelling conjectures [25].

It has long been conjectured that the asymptotics of the colored Jones polynomi-
als of a knot are modulated by the SL2.C/ or SU.2/-characters of the knot group.

1This material is based upon work supported by and while serving at the National Science Foundation.
Any opinion, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.
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As SL2.C/ is the complexification of SU.2/, there is a common ground for trying
to understand the relations between the representation theory of knot groups and the
values of the colored Jones polynomial.

There is a conjectured asymptotic formula for the Witten–Reshetikhin–Turaev
invariants for links in 3-manifolds; see [50], [20], [27], [28], [29], and [43]. It is
presented here as it appeared in [38], where it was stated only for the empty link in a
closed oriented three manifold M:

ZSU.2/
r .M/

�r!1 e�3�i.1Cb1.M //=4
X
ŒA�

e2�i CS.A/r .h1
A�h0

A/=2e�2�i.IA=4Ch0
A=8/�M .A/

1=2:

(1)

Here b1.M/ is the first Betti number of M, CS.A/ is the Chern–Simons invariant of
the flat SU.2/ connection A, and ŒA� denotes the gauge equivalence class ofA. Next,
hi

A is the rank of the i -th cohomology of M with coefficients in the su.2/-bundle
twisted by the adjoint action of the monodromy of A, and IA is the spectral flow of
the signature operator along a path connectingA to the trivial flat connection. Finally,
�M .A/ is the Reidemeister torsion of the AdA-twisted chain complex C i .M;AdA/.

When the SU.2/-character variety has positive dimension, the sum in the above
formula can be interpreted as an integral with respect to an appropriate volume form.
In this case, if we restrict to connections that are irreducible, the square root of the
Reidemeister torsion defines a natural measure on the character variety. In the case
of torus knots, Kashaev and Dubois have worked out the asymptotics of the colored
Jones polynomial and found in [16] an asymptotic expansion having the same flavor
as formula (1).

In this paper we explore the Reidemeister torsion of Dubois [13] as a measure on
the regular part of the SU.2/-character variety of a knot complement. Exploiting the
connection with the Kauffman bracket skein algebra of the torus [21], we use it to
define a seminorm on that algebra. When the SU.2/-character variety is sufficiently
nonsingular the radical of this seminorm is the ideal of functions that vanish on the
image of the irreducible representations of the knot complement in the character
variety of the torus.

We go on to develop a global formula for the seminorm that looks like the Witten–
Reshetikhin–Turaev invariant of the skein in the double of the knot complement.
This leads us to a conjectural characterization of the A-polynomial of knots with
sufficiently regular character varieties in terms of quantum invariants.

Rozansky [43] first recognized that for regular representations of 3-manifolds,
the square root of the Reidemeister torsion defines an invariant volume form on the
regular part of the character variety. As part of the motivation of our conjecture we
prove that the Dubois torsion of a knot is a geometrically motivated evaluation of the
square root of the Reidemeister torsion of the double of the knot complement.
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The plan of the paper is as follows. In Section 2 we talk about the representation
spaces of knot groups. In Section 3 we review the Dubois torsion and describe
the corresponding seminorm. In Section 4 we prove that the Dubois torsion of a
knot complement is a geometrically motivated evaluation of the square root of the
Reidemeister torsion of its double. In Section 5 we give a global computation of the
seminorm. Finally, in Section 6 we compare the answer from the global computation
to the formula for the Witten–Reshetikhin–Turaev invariants of links in the double of
the knot complement. Throughout the paper we work the example of the trefoil knot
to make the exposition concrete.

The authors thank Thomas Kerler who helped us understand the global computa-
tion, and Paul Kirk who helped with the interpretation of the conjectured asymptotic
formula.

2. Representations of knot groups

In this section we recall the definition of the A-ideal of a knot and illustrate it with
the computation for the trefoil.

2.1. The A-ideal. LetK � S3 be a knot, andN.K/ an open regular neighborhood
ofK so that S3 �N.K/ is a smooth manifold with boundary a torus T 2. The funda-
mental group of the torus is Z � Z with generators the longitude � and meridian �.
We are interested in the image of the representations of the fundamental group of
S3 �N.K/ in the representations of the fundamental group of T 2 under restriction.
Although the study of this image was initiated using SL.2;C/ representations [10], in
this paper we study SU.2/ representations. In [10] the authors also pass to a cover, so
that the image is cut out by a single polynomial, which they dubbed theA-polynomial.
It is common to throw out the component of the abelian representations or just focus
on the component that contains the holonomy of the complete hyperbolic structure
and still refer to the polynomial cutting out that variety as the A-polynomial.

Recall that SU.2/ consists of two by two complex matrices of the form�
˛ ˇ

� Ň N̨
�

where .˛; ˇ/ 2 C2 satisfies j˛j2 C jˇj2 D 1. Alternatively, you can think of SU.2/
as the unit quaternions. In the quaternionic model, each element of SU.2/ can be
written as cos ' C sin ' ÅP , where ÅP is a unit vector in R3. This second model yields
an elegant way of working with the tangent space of SU.2/ at the identity, that is,

su.2/ D T1S
3 D R3:

Under this identification, the adjoint representation Ad W SU.2/ ! End.su.2//,

AdX .Ev/ D X EvX�1
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is easily understood. If X D cos' C sin ' ÅP then AdX acts as a rotation with angle
2' radians about the axis ÅP . This simple picture led to the beautiful computations
of SU.2/ representations of knot groups in [9] and [33]. To simplify notation we
denote the adjoint action of X on su.2/ by a lower dot, AdX.Ev/ D X:Ev. The Lie
bracket in su.2/ is twice the cross product. Given a representation of a group � ,
� W � ! SU.2/, denote by Ad � the representation into endomorphisms of su.2/
obtained by following � with the adjoint action.

If M is a manifold with finitely generated fundamental group, denote the space
of representations of �1.M/ into SU.2/ by R.M/. The space R.M/ is realized as a
subset of the Cartesian product SU.2/k , where the coordinates are the values of the
representation on a finite set of generators of �1.M/. Those tuples that satisfy the
equations coming from the group relators exactly correspond to R.M/, so that not
only is R.M/ a topological space with the subspace topology coming from SU.2/k ,
it is also a real algebraic variety. Actually, more is true: by interpreting the group
relators as matrix equations, and then seeing each coefficient of the matrices as a real
equation, the ideal generated by requiring the value of each relator to be the identity
is an invariant ofM, see [34]. The radical of that ideal is more commonly studied as
an invariant.

The group SU.2/ acts onR.M/ by conjugation. We denote the quotient space by
X.M/. It inherits the quotient topology fromR.M/, and is a real algebraic set, called
the character variety. The respective coordinate rings are denoted by C ŒR.M/� and
C ŒX.M/�, and should be thought of as the rings of polynomial functions on the
sets R.M/ and X.M/, with real coefficients. The ring C ŒX.M/� can be identified
with a quotient of the subring C ŒR.M/�SU.2/ of C ŒR.M/�, that is fixed under the
action of SU.2/, by the ideal of nilpotents. The ring C ŒX.M/� is closely related
to the Kauffman bracket skein module of M, although not necessarily equal to it.
In [6], [7], and [39] the correspondence was constructed between the Kauffman
bracket skein module of M evaluated at a parameter �1 and the coordinate ring of
the unreduced affine scheme of the SL2.C/ characters of the fundamental group of
the manifoldM. In this paper we are working with the SU.2/ characters and with the
reduced coordinate ring over the reals. When M is a surface the SU.2/ characters
are a totally real submanifold of the SL2.C/ characters. Hence the tensor product of
C ŒX.M/� with C is the coordinate ring of the SL2.C/ character variety that contains
the SU.2/ characters. In the case of knot complements, for some knots the ring
C ŒX.M/� might not contain the information about all the SL2.C/ characters, so it
might be a further quotient of the Kauffman bracket skein module.

Any representation � W �1.T
2/ ! SU.2/ is determined by the values on the

longitude and meridian, �.�/ and �.�/ . Since � and � commute, the matrices �.�/
and �.�/ are simultaneously diagonalizable. Thus they are conjugate to a pair��

l 0

0 l�1

�
;

�
m 0

0 m�1

��
; (2)

where l; m 2 S1 � C. These coordinates are ambiguous, since the two matrices can
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be simultaneously conjugated by
�

0 �1
1 0

�
with the result of exchanging the positions

of the eigenvalues l and l�1, and m and m�1. From this we see that the conjugacy
classes of SU.2/-representations of�1.T

2/ can be identified with S1 �S1= � ,where
the equivalence relation � comes from the hyperelliptic involution

	 W S1 � S1 �! S1 � S1;

given by 	.l; m/ D .l�1; m�1/. We have characterizedX.T 2/ as a space that is called
the pillowcase since it can be represented as the result of identifying two squares along
their boundaries, as depicted in Figure 1.

Figure 1. The pillowcase.

The coordinate ring of the pillowcase, C ŒX.T 2/�, can be understood as the subring
of RŒl; l�1; m;m�1� that is fixed by the endomorphism 	 . It can be shown that the
functions of the form lpmq C l�pm�q form a basis for C ŒX.T 2/�, see [21].

The inclusion map i W T 2 �! S3 �N.K/ induces restriction maps

R.S3 �N.K// ! R.T 2/

and
 W X.S3 �N.K// �! X.T 2/:

We are especially interested in the ring homomorphism induced by  ,

‰ W C ŒX.T 2/� �! C ŒX.S3 �N.K//�:
By definition, if f 2 C ŒX.T 2/�, then ‰.f / D f B  . The radical of the kernel of
‰ is an ideal B.K/ � C ŒX.T 2/� which we call the B-ideal of the knot K. It is the
ideal of polynomial functions on X.T 2/ that are zero on the image of the restriction
map  . We are less interested in the characters of the abelian representations. The
ideal of functions that vanish on the image of the irreducible characters is denoted
by A.K/.

2.2. An example. The complement of the trefoil collapses onto a CW-complex with
one vertex v, two edges x and y, and a single two cell whose attaching map is x2y�3,
see Figure 2.
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y y
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Figure 2. The CW-complex for the trefoil.

This can be visualized by seeing the trefoil as lying on an unknotted torus. In
this setting there is a two complex consisting of the two cores of the handlebodies
bounded by the torus, and a singular annulus that runs twice around one core and
three times around the other, and misses the trefoil. Pinch the singular annulus along
a crosscut. The pinch point is the vertex, the remnants of the cores are the two edges,
and the result of pinching the annulus is the two-cell.

This two–complex gives rise to a presentation of the fundamental group of the
knot complement. There is one generator for each edge and one relator for the two-
cell. It is important to be able to express the meridian and longitude in terms of the
generators. The complement of the trefoil knot has the fundamental group

�1.S
3 � N.K// D hx; y j x2 D y3i:

The meridian is given by� D xy�1, and the longitude is� D x2��6 D x2.xy�1/�6.
The meridian and longitude commute, hence the word ����1��1 in the free group
on x and y is in the normal closure of the relator r D x�2y3. Following Dubois [14],

����1��1 D x2��6��6x�2��1 D xrx�1 �r�1��1:

From this equation, we can build a map of the torus T 2 into the two-complex of the
knot complement which is homotopic to the inclusion of the boundary torus. Fill in
a square with sides from the commutator by two 2-cells corresponding to the word
above. This gives a map of a disk into the two-complex, so that points on opposite
sides of the square get mapped to the same point. The map descends to a map of a
torus into the two-complex. This torus represents the boundary of the knot exterior.

The representations of �1.S
3 �N.K// into SU.2/ can be identified with a subset

of SU.2/ � SU.2/. Give SU.2/ � SU.2/ coordinates .X; Y / and send

� W �1.S
3 � N.K// �! SU.2/

to .�.x/; �.y//. To correspond to a representation, a pair .X; Y / must satisfy the
equation X2 D Y 3. There are two components of this subset of SU.2/� SU.2/: the
points coming from abelian representations, and the points coming from irreducible
representations.
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From [33] we know that if � W �1.S
3 � N.K// ! SU.2/ is irreducible then

�.x2/ D �.y3/ D �1. This leads to an easy parametrization of the components of
R.S3 �N.K//. To parametrize the abelian representations let

˛ W SU.2/ �! SU.2/ � SU.2/

be given by ˛.Z/ D .Z3; Z2/. To parametrize the irreducible representations, let

ˇ W SU.2/ � .0; �/ �! SU.2/ � SU.2/

be given by

ˇ.A; t/ D
�
AiA�1; A

�
cos

�

3
C sin

�

3
.cos t i C sin t j/

�
A�1

�
: (3)

The parametrization ˛ of the abelian representations is one to one. The parametriza-
tion ˇ of the irreducible representations is 2 to 1, because the center of SU.2/ is in
the kernel of the map coming from conjugation. Notice that the abelian representa-
tions have codimension 3 in SU.2/� SU.2/ and the irreducible representations have
codimension 2.

The map ˇ extends smoothly to

Ň W SU.2/ � Œ0; �� �! SU.2/ � SU.2/:

The images of SU.2/ � f0g and SU.2/ � f�g under Ň are two spheres of abelian
representations. The points in the abelian representations that lie in the closure of the
irreducible representations are called bifurcation points. At the bifurcation points the
squares of the eigenvalues of the matrices that are images of the meridian are roots of
the Alexander polynomial of the trefoil knot. This phenomenon occurs for any knot;
see [12], [24], and [33].

The image of the irreducible representations of the complement of the trefoil in
the pillowcase under restriction is depicted in Figure 3.

Figure 3. Image of the characters of the trefoil in the pillowcase.

The A-polynomial of the trefoil is given by

A.l; m/ D l Cm�6;
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where l and m are the upper left hand corner of the diagonalized �.�/ and �.�/
respectively, as in (2). The A-ideal of the trefoil is generated in RŒl; l�1; m;m�1� by
the polynomials

l C l�1 Cm6 Cm�6

and
lmC l�1m�1 Cm5 Cm�5:

The computation can be found in [26].

3. Dubois torsion

This section presents Dubois torsion for knots, which in turn is used to construct a
seminorm on C ŒX.T 2/� whose radical is A.K/.

3.1. Reidemeister torsion and volume. If u D fEuig and w D f Ewj g are two or-
dered bases for the finite dimensional vector space V , then each Ewj D ˛i

j Eui , where,
following Einstein’s summation convention, the last equation represents a sum over
all i . The determinant of the change of basis matrix .˛i

j / is denoted Œw=u�. Given

a finite dimensional cochain complex C D .C i ; ıiC1/ whose cochain groups are
vector spaces over R with preferred ordered basis ci for C i , and a collection hi of
i cochains that give rise to an ordered basis for H i .C /, choose an ordered basis bi

for the complement of the cocycles Zi .C /. Finally let xbi be the image of bi under
ıiC1 W C i ! C iC1. Notice that the concatenation xbi�1; hi ; bi is an ordered basis for
C i . The Reidemeister torsion of the cochain complex C evaluated on the basis h is
defined by:

�.h/ D
ˇ̌̌
ˇ̌ Qi oddŒ

xbi�1; hi ; bi=ci�Q
i evenŒ

xbi�1; hi ; bi=ci�

ˇ̌̌
ˇ̌ : (4)

In the case where the cochain groups are inner product spaces, there is a preferred
class of bases. Specifically, any orthonormal basis can be used. This is because the
change of basis matrix between two orthonormal bases has determinant ˙1. Since
we are working with the absolute value, �.h/ does not depend on the choice of bases
for C i as long as ci are orthonormal.

The Reidemeister torsion transforms as a top dimensional form, i.e. a volume
form, on M

i even

H i .C /˚
M
i odd

.H i .C //�:

The definition and properties of Reidemeister torsion can be found in [37], [40], [45],
[46], and [49]. The tools developed for manipulating torsion in [37] are fundamental.

This paper relies on interpreting the Reidemeister torsion of a chain complex in
terms of Riemannian volume forms. To make this interpretation clear, we review some
geometry of volume. Given an oriented inner product space V there is a distinguished
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top dimensional form characterized by the fact that it evaluates to 1 on any positively
oriented orthonormal ordered basis of V . We call this the volume form.

Recall that, if L W V ! W is a linear map of inner product spaces, we can restrict
the domain of L to the perpendicular of its kernel and restrict its range to its image,
L W .kerL/? ! imL, to get an isomorphism of inner product spaces. We do not
have orientations for these two spaces, so we do not know the sign of the determinant
of L, but we can define the content of L, denoted by kLk, to be

kLk D
p

det.L� BL/ D
p

det.L BL�/; (5)

where we have restricted L as above.
A choice of vectors Ev1; : : : ; Evn of an inner product spaceV is equivalent to defining

a linear map L W Rn ! V . The content of L can be thought of as the n-dimensional
content of the parallelepiped spanned by the vectors Evi . Given a single nonzero vector
Ev 2 V , letL W R ! V be a linear map defined byL.1/ D Ev. Notice that kLk D kEvk,
where the second set of double bars denotes the norm of the vector Ev. Thus even
though in this paper we use the double bar notation in two different ways: for the
content of a linear map as in (5), and for the norm of a vector, the value is the same
regardless.

Let M be an oriented Riemannian m-manifold. The pointwise choice of volume
forms on the tangent spaces defines a smooth m-form onM, 
M, called the Rieman-
nian volume form. IfN � M is a smooth oriented submanifold, then the Riemannian
metric onM induces a Riemannian metric onN and an associated volume form 
N .
The volume forms 
M and 
N are related as follows. At any p 2 N choose an
orthonormal basis n1; : : : ; nk for the orthogonal complement of TpN in TpM so that
as oriented vector spaces,

hn1; : : : ; nki ˚ TpN D TpM:

The Riemannian volume form on N is the interior product of 
M with fn1; : : : ; nkg.
That is, for any .w1; : : :wn/ 2 .TpN/

n,


N .w1; : : : ; wn/ D 
M .n1; : : : ; nk; w1; : : : ; wn/:

Suppose instead that v1; : : : ; vk is an arbitrary basis (not necessarily orthonormal)
for the orthogonal complement of TpN . Then


M .v1; : : : ; vk; w1; : : : ; wn/ D ˙kLk
N .w1; : : : ; wn/;

where L W Rk ! TpM is the linear map that takes the standard basis for Rk to the
vectors v1; : : : ; vk.

3.2. Local definition of Dubois torsion. LetK be a knot and letW � S3 �N.K/
be a two-complex, with one vertex, embedded in S3 � N.K/ so that S3 � N.K/ is
a closed regular neighborhood of W . Alternatively, one can think of S3 � N.K/ as
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having a handle structure with a single zero-handle, k one-handles, and k � 1 two-
handles. Denote the vertex by v1, the edges by ei and the 2-cells by fj . There is a
presentation of the fundamental group of S3 �N.K/ corresponding to this complex,
with one generator xi for each edge ei , and one relator rj for each face fj . The
relator rj is a word in the generators xi coming from the attaching map of the cell
fj . Let C�.W I R/ be the chain complex that corresponds to the homology of W
with basis fv1; ei ; fj g. The dual chain complex C �.W I R/ D Hom.C�.W /;R/ has
the dual basis fv1; ei ; f j g. For instance ei W C�.W I R/ ! R is the linear map so
that ei .ei/ D 1 and the value of ei applied to any other basis element is 0. We
make C �.W I R/ into an inner product space by declaring the basis fv1; ei ; f j g to be
orthonormal.

Define a map
Nr W SU.2/k �! SU.2/k�1 (6)

by substituting the variables xi in the relators .r1; : : : ; rk�1/ by the matrices .X1; : : : ;

Xk/. The representation variety R.S3 � N.K// can be identified with Nr�1.Id; : : : ;
Id/. The group SU.2/ acts on SU.2/k by simultaneous conjugation of the entries,

c W SU.2/ � SU.2/k �! SU.2/k;

i.e.
c.A;X1; : : : ; Xk/ D .AX1A

�1; : : : ; AXkA
�1/; (7)

andR.S3 �N.K// is invariant under that action. The quotient can be identified with
X.S3 �N.K//.

Let
C i .W IAd �/ D C i. zW I R/˝R.�/ su.2/;

where zW is the universal cover of W and � is the fundamental group of the knot
complement. This product can be identified with

C i.W IAd�/ D C i .W I R/˝R su.2/:

This identification is not canonical since it depends on a choice of lifts of cells.
However, the ambivalence in the induced volume forms discussed below is only up
to sign.

EachC i .W IAd�/ is an inner product space, where the inner product is the tensor
product of the inner product onC �.W /with the standard dot product on R3 D su.2/.
There is a cochain complex

C 0.W IAd�/
ı1

��! C 1.W IAd�/
ı2

��! C 2.W IAd�/; (8)

called the tangential complex. Its boundary maps can be understood as the derivatives
of the action by conjugation and the derivative of Nr . Its cohomology is closely
related to the Zariski tangent space of X.S3 � N.K//, at the conjugacy class of the
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representation � W �1.S
3 �N.K// ! SU.2/, as in [48]. Call the cohomology groups

of complex (8) the cohomology of W with coefficients in the adjoint representation
associated to �.

The boundary operators are as follows. Suppose that �.xi/ D Xi and suppose
that the relator rj is a word in the xi . First,

ı1 W C 0.W IAd �/ �! C 1.W IAd�/

is given by
ı1.v1 ˝ Ew/ D

X
i

ei ˝ .Xi � 1/: Ew:

Next,
ı2 W ˚ ei ˝ su.2/ �! ˚f j ˝ su.2/

is given by the Fox Jacobian of .r1; : : : ; rk�1/ instantiated on .X1; : : : ; Xk/, and
acting by the adjoint action:

ı2.ei ˝ Ew/ D
X

j

f j ˝ @rj

@xi

: Ew:

The Fox calculus and this chain complex are described in [11], [12], [30], and [48].
Under the standard identification of TX SU.2/ with su.2/ by right translation, ı1 is
the derivative of the conjugation map c at the identity (where c is given by (7)), and
ı2 is the derivative of the relator map Nr at the representation � (where Nr is defined
by (6)).

The tangential complex (8) has too much cohomology for its torsion to be inter-
preted geometrically. To get around that Dubois [14] extends the complex so that the
torsion defines a one-form on a large portion of the character variety of the knot.

A representation � W �1.S
3 � N.K// ! SU.2/ is regular, if Ad � is irreducible,

H 1.S3 �N.K/IAd �/ D R, and the restriction of � to the fundamental group of the
boundary torus is not central. We will denote the regular representations byRi .S3 �
N.K//. Regular representations can be defined in the same way for any 3-manifold
with torus boundary. The last condition is superfluous for a knot complement since
the fundamental group of S3 � N.K/ is generated by conjugates of the meridian.
Hence the irreducibility of the representation implies that the meridian is not sent to
an element of the center of SU.2/. Therefore, H 0.T 2IAd �/ D R and it is generated
by v1 ˝ ÅP , where the meridian is sent to cos ' C sin ' ÅP . Euler characteristic
considerations allow us to conclude that if � is regular thenH 2.S3 �N.K/IAd �/ D
R, and the map

H 2.S3 �N.K/IAd�/ �! H 2.T 2IAd�/; (9)

from the long exact sequence of the pair .S3 �N.K/; T 2/ is an isomorphism.
Dubois works with an extended cochain complex

C 0.W IAd �/
ı1

��! C 1.W IAd �/
ı2

��! C 2.W IAd �/
ı3

��! R: (10)
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To define ı3 we need to have a firm grasp on the map (9). It is the adjoint of the
inclusion map on homology with coefficients in Ad �.

Since the knot complement is a regular neighborhood of the two-complex W , it
is clear that the fundamental class of the boundary torus is homologous to a chain
in which each two–cell appears twice, once with positive orientation and once with
negative orientation. This chain can be computed by taking words L and M in
the xi corresponding to the longitude and the meridian and then writing the word
LML�1M�1 as a product of conjugates of relators and their inverses. Each relator
rj will appear twice: once as sj rj s�1

j and once as tj r�1
j t�1

j . The image of ŒT 2�˝ ÅP
in C2.W IAd �/ D C2.W /˝ su.2/ is

P
j fj ˝ .Ad�.sj / � Ad�.tj //: ÅP . Denote

Evj D .Ad�.sj / � Ad�.tj //: ÅP ; (11)

and let
Ev D

X
j

f j ˝ Evj : (12)

The map ı3 W C 2.W IAd �/ ! R is the adjoint of the inclusion map of the boundary
torus into the knot complement on homology. It is equal to the dot product with Ev.

The complex (10) only has cohomology in dimension 1, and that cohomology at
a regular representation � is the tangent space at Œ�� to the character variety of the
knot complement.

Here is how to pass from a tangent vector to the character variety at Œ�� to a cocycle
in C 1.W IAd �/. For any regular representation � there is a neighborhood of � in
X.S3 �N.K// which is a smooth 1-manifold. Since the quotient map

R.S3 �N.K// �! X.S3 �N.K//
is a submersion of smooth manifolds, in a neighborhood of that point we can choose
a slice �t W .�"; "/ ! R.S3 � N.K// lifting any smooth path in X.S3 � N.K// on
a small interval. Let Œ�t � W Œ�"; "� ! X.S3 �N.K// be a smooth path. The cochain

X
i

ei ˝
�d�t .xi /

dt
jtD0

�
�0.x

�1
i /

is a cocycle that represents the tangent vector of the path Œ�t �.
Since the cochain complex (10) we are working with has an inner product, there

is a class of preferred bases used to compute its Reidemeister torsion (4). Let ci be an
orthonormal basis for C i .W IAd�/. Let b0 D c0, and choose b1 as in the definition
of (4). Notice that the complement of the space of 2-cycles is 1-dimensional. Thus
b2 consists of a single vector, which we choose to have length 1. Recall that the only
nonzero cohomology group is H 1.W IAd �/ and that it corresponds to the tangent
space of the character variety at Œ��. Choose a tangent vector h 2 TŒ��X.S

3 �N.K//.
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The absolute value of the Dubois torsion evaluated at h is given by

��.h/ D
ˇ̌̌
ˇ Œxb0; h; b1=c1�kEvk

Œxb1; b2=c2�

ˇ̌̌
ˇ; (13)

where Ev is the vector defined by (12). We use the subscript to emphasize the fact that
we started with a choice of a regular representation �.

Dubois works with a signed refinement of torsion, using a scheme that is dis-
cussed more generally in Turaev’s book [46]. In fact, Dubois proves that the torsion
defines a 1-form on the manifold which is the part of the character variety of the
knot corresponding to the regular representations. As the regular part of the character
variety is oriented there is a well defined notion of what the sign of the integral of the
torsion should be. We can’t get the sign from our approach, as it is not inherent to
the Gaussian integral that we use to get the global formula in Section 5.

3.3. Example continued. We will compute the torsion at the representations of the
fundamental group of the complement of the trefoil knot along the path �t given by

�t .x/ D i; �t .y/ D cos
�

3
C sin

�

3
.cos t i C sin t j/;

where h is the tangent vector of the path. We are using right translation to identify
the tangent space at A of SU.2/ with su.2/, so that the value of h on the word w in x
and y is

d�

dt
.w/�t .w/

�1:

We are interested specifically in the ordered pair .h.x/; h.y// which is�
0; sin

�

3
cos

�

3
.� sin t i C cos t j/C sin2 �

3
k
�
:

Recall from Section 2.2 that the complexW is spanned by one 0-cochain, denoted
here by v1, dual to the single vertex, two 1-cochains, denoted by e1 and e2, dual to
the two edges, and one 2-cochain, denoted by f 1, dual to the single 2-cell.

The boundary operator

ı0.v1 ˝ Eu/ D e1 ˝ .i � 1/:EuC e2 ˝
�

cos
�

3
� 1C sin

�

3
.cos t i C sin t j/

�
:Eu

can be understood as follows. The coefficient of e1 is �2 times the projection onto
the perpendicular to i. The coefficient of e2 is the projection onto the perpendicular to
cos t i C sin t j followed by a counterclockwise rotation by 5�=6 degrees, followed by
a homothety of 2 sin�=6. Luckily, this will not be that important. The next boundary
operator ı1 is given by

ı1.e1 ˝ EuC e2 ˝ Ew/ D f 1 ˝ ..1C �.x//:EuC .1C �.y/C �.y/2/: Ew/:
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We use the following preferred bases for the cochain groups. To start with,
C 0.W IAd �/ has basis c0 D fv1 ˝ i; v1 ˝ j; v1 ˝ kg. The basis for C 1.W IAd �/ is
c1 D fe1 ˝ i; e1 ˝ j; e1 ˝ k; e2 ˝ i; e2 ˝ j; e2 ˝ kg. For C 2.W IAd�/ we use the
basis c2 D ff 1 ˝ i; f 1 ˝ j; f 1 ˝ kg. Finally for R the basis consists of 1.

As � is irreducible, Z0.W IAd �/ D 0 and we can use the basis above for
C 0.W IAd �/ to be b0. A complement of Z1.W IAd�/ is spanned by e1 ˝ i; e2 ˝
.cos t i C sin t j/ so we use this as b1. A complement to Z2.W IAd �/ is given by k so
we use this as b2. The last map is onto so the complement of the cocycles in R is f0g.

The change of basis matrix from c0 to b0 is the identity so Œb0=c0� D 1. The
change of basis matrix from c1 to Sb0hb1 looks like0

BBBBBBBBB@

0 0 0 0 1 0

0 �2 0 0 0 0

0 0 �2 0 0 0

�3
2

C 3
2

cos2.t / � � �
p

3
4

sin t 0 cos t
3
2

sin t cos t � �
p

3
4

cos t 0 sin t

�
p

3
2

sin t � � 3
4

0 0

1
CCCCCCCCCA
: (14)

The stars are there to emphasize that if you expand the determinant correctly, they
do not enter into the computation of the determinant, which is equal 6 sin t .

Applying ı2 to b2 and adjoining k we see that the change of basis matrix from c2

to Sb2k is 0
B@
2 3 cos t 0

0 3 sin t 0

0 0 1

1
CA ; (15)

whose determinant is also 6 sin t .
It remains to compute kEvk defined by (11) and (12). The value of the meridian

under � is

�.�/ D �.xy�1/ D sin
�

3
cos t C cos

�

3
i � sin

�

3
sin tk:

The normalized imaginary part is

ÅP D
cos

�

3
i � sin

�

3
sin tkr

cos 2
�

3
C sin 2

�

3
sin2 t

:

Recall that the inclusion map of the chains on the boundary to chains on W takes
ŒT 2�˝ ÅP to

f1 ˝ .�.x/ � �.�//: ÅP;
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where f1 is the single 2-cell. Thus

Ev D f 1 ˝
2 sin

�

3
sin tkr

cos 2
�

3
C sin 2

�

3
sin2 t

:

Putting it all together as in (13),

�.h/ D
2 sin

�

3
sin tr

cos 2
�

3
C sin 2

�

3
sin2 t

: (16)

Note that this agrees with the Proposition 5.4 in [14], after you account for differences
in notation, and parametrization.

Let us interpret this computation geometrically. The determinant of matrix (14)
computes the volume form on su.2/˚su.2/ D C 1.W;Ad �/which is the Riemannian
volume form on T.X;Y / .SU.2/ � SU.2// at the ordered pair corresponding to the
representation �t . The last two columns are an orthogonal complement to the image
of T�R.S

3 � N.K// at that point. Up to sign the determinant of this matrix is
computing the Riemannian volume form on the representation variety of the knot at
� inherited from its embedding in SU.2/ � SU.2/. This means that we can interpret
the determinant of matrix (14) as


R

0
BBBBBBBBB@

0 0 0 0

0 �2 0 0

0 0 �2 0

�3
2

C 3
2

cos2.t / � � �
p

3
4

sin t
3
2

sin t cos t � �
p

3
4

cos t

�
p

3
2

sin t � � 3
4

1
CCCCCCCCCA

where 
R is the Riemannian volume form on the representation variety of the knot
evaluated at the column vectors of the matrix. Further contemplation of the formula
reveals that the argument of 
R is the derivative of ˇ.A; t/ at A D Id, where ˇ is the
parametrization given by equation (3). The value of the determinant of (14) is then
equal to

.ˇ.Id;t//
�.
R/

�
i; j; k;

d

dt

�
:

The formula above means that we have used ˇ to pull the volume form 
R back to
T.Id;t/.SU.2/ � .0; �// and then evaluated that pulled back form on an orthonormal
basis.

The first three columns of matrix (14) make up a basis for the tangent space of the
fiber of the projection map from the representation variety of the knot complement to
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the character variety at Œ�t �. If we had chosen an orthonormal basis for this space, the
determinant would be computing the push-forward volume on the character variety.
However, the basis we chose is not orthonormal. Letting c W SU.2/ ! SU.2/2 be
the result of fixing t in ˇ, that is c.A/ D ˇ.A; t/, we could interpret this formula for
fixed t as

kdcIdk.ˇ.Id;t//
�
X

� d
dt

�
;

where 
X is the Riemannian volume form from the push-froward metric on the
character variety of �1.S

3 � N.K// at the point Œ�t �. Notice that dcId is the first
boundary operator in the complex used to define Dubois torsion.

The determinant of matrix (15) is ˙kd Nrk. Finally, the last factor in the formula
for torsion contributes kEvk.

Putting it all together this means that the Reidemeister torsion can be thought of
as a one-form d� on the character variety of the knot complement, given by

d� D kdck kEvk
kd Nrk 
X ; (17)

where dc is the derivative of the map given by conjugation, d Nr is the derivative of
the relator map, and 
X is the push-forward of the Riemannian volume from the
representation variety to the character variety.

However, a more useful formulation for us takes place in the representation variety,
where we see

d�.h/ D 
R.Dˇ.Id;t//kEvk
kd Nrk ;

where

ˇ W SU.2/ � .�"; "/ �! Ri .S3 �N.K//
is of the form

ˇ.A; t/ D A�tA
�1

and

�t W .0; �/ �! Ri .S3 �N.K//
is a slice of the projection mapping

Ri.S3 �N.K// �! X.S3 �N.K//

over the path Œ�t � W .0; �/ ! X.S3 � N.K// whose derivative is the tangent vector
h. Finally, 
R is the Riemannian volume form on Ri .S3 � N.K// coming from its
inclusion in SU.2/k .
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3.4. Construction of the seminorm. A seminorm on a vector space V is a map

k ks W V �! R�0

such that for all Eu; Ew 2 V ,

kEuC Ewks � kEuks C k Ewks ;

and, for any � 2 R,
k�Euks D j�kjEuks:

If V is in addition a commutative algebra, we define the radical of k ks to be the set
of all Eu 2 V such that for all Ew 2 V ,

kEu Ewks D 0:

By design the radical of a seminorm is an ideal. Any norm is a seminorm and its
radical is the zero ideal.

At a regular representation, the sequence

0
��! R.S3 �N.K// i�!

M
k

su.2/
ı2

��!
M
k�1

su.2/
ı3

��! R �! 0 (18)

is exact. This is almost the same sequence as (10). The sequences differ in the
first term, and the map i is an inclusion. We use different notation in the second
and third terms. For instance,

P
i e

i ˝ wi 2 C 1.W;Ad�/ corresponds to the tuple
.w1; : : :wk/ 2 L

k su.2/. Using direct sums of the standard orientations on R and
on su.2/ D R3, we have orientations for

L
k su.2/ and

L
k�1 su.2/. This allows

us to force an orientation on T�R.S
3 � N.K//. As T�R.S

3 � N.K// inherits an
inner product as a subspace of

L
k su.2/ D R3k there is a Riemannian volume 
R

on T�R.S
3 �N.K//.

The torsion of (18) defines a 4-form on T�R.S
3 � N.K//. Using the action of

SU.2/ on R.S3 � N.K// by conjugation we can push the 4-form down to a 1-form
on TŒ��X.S

3 �N.K//. The push-forward is Dubois torsion.
In our example, we could parametrize the regular representations of the funda-

mental group of the complement of the trefoil by taking a path of representations and
conjugating them. You can do this at any regular representation of a knot group. Here
is how. Parametrize X.S3 � N.K// near Œ�� by Œ�t � W .�"; "/ ! X.S3 � N.K//.
Using a slice of the quotient map R.S3 � N.K// ! X.S3 � N.K// lift Œ�t �

to �t W .�"; "/ ! R.S3 � N.K//. Combining with conjugation we get a local
parametrization ˇ W SU.2/ � .�"; "/ ! R.S3 �N.K//;

ˇ.A; t/ D A�tA
�1: (19)
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Computing 
R in these coordinates we get that it is ŒSb0; �
0
t�

�1
t ; b1=c1� up to sign,

as long as we chose our b0 and b1 to be orthonormal. Furthermore, if we choose b2

to be orthonormal as well then ŒSb1; Sb2=c2� is kd Nrk up to sign, where Nr was defined
in (6). Thus if we orient Ri.S3 �N.K// as above then the absolute value of Dubois
torsion at a representation � is

��.h/ D 
R.Dˇ.Id;t//kEvk
kd Nrk :

The manifold Ri.S3 � N.K// is oriented, and the local parametrizations we have
chosen preserve orientation. Hence we can integrate torsion in local coordinates. By
standard arguments these integrals can be woven together to yield a global value so
long as the value of the integral is finite. Hence, for any function

f W Ri.S3 � N.K// �! R

its integral against Dubois torsion is given byZ
Ri .S3�N.K//

fd� D
Z

Ri .S3�N.K//

f
kEvk

kd Nrk

R; (20)

provided that it converges.

Definition 3.1. Let f 2 C ŒX.T 2/�, using restriction we can view f as a function on
R.S3 �N.K//. Define

kf ks D
ˇ̌̌
ˇ
Z

Ri .S3�N.K//

f
kEvk

kd Nrk

R

ˇ̌̌
ˇ (21)

if the integral is defined.

Define the total Dubois torsion of the knot K to be

�.K/ D
Z

Ri .S3�N.K//

d�: (22)

Theorem 3.2. For all knotsK such that the regular representations Ri.S3 �N.K//
form an open dense subset ofR.S3 �N.K// and the total Dubois torsion ofRi .S3 �
N.K// is finite, the seminorm k ks is an invariant of the knot complement. The radical
of this invariant is the A-ideal.

Proof. This follows from the fact that when it is defined, Reidemeister torsion is never
0, so the support of the measure defined by the Dubois torsion is the closure of the
regular irreducible representations.
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In the case of torus knots, the total torsion is exactly computable. For instance the
total Dubois torsion of the trefoil knot is 4�

3
. It is a little more work, but completely

elementary to compute the integral of any peripheral character against Dubois torsion.
This can be done by calculating the integrals of the powers of the real part of the image
of the meridian, and then proving that these are a basis for the values of the integral
against Dubois torsion of the peripheral skeins.

4. Dubois torsion and the square root of Reidemeister torsion of the double

In this section we prove that the Dubois torsion of a knot complement is a geo-
metrically motivated evaluation of the square root of the Reidemeister torsion of its
double. When the character variety of a knot is sufficiently regular, the total Dubois
torsion is proportional to the conjectured formula for the leading asymptotics of the
Witten–Reshetikhin–Turaev invariant of the double of the knot complement, see the
discussion in Section 6.

LetM be a closed, oriented 3-manifold. Suppose that � W �1.M/ ! SU.2/ is irre-
ducible, and h is a basis forH 1.M IAd �/. Choose h� to be a basis forH 2.M IAd �/
that is dual to h with respect to the cup pairing

[W H 1.M IAd �/˝H 2.M IAd �/ �! H 3.M I R/:

Since � is irreducible,

H 0.M IAd �/ ' H 3.M IAd �/ D fE0g:

Thus

H�.M IAd �/ ' H 1.M IAd �/˚H 2.M IAd �/:

The square root of the Reidemeister torsion of M evaluated on fh; h�g, denoted byp
�.M I h/, is the square root of the Reidemeister torsion of the cochain complex

C �.M IAd �/ with respect to the choice of basis fh; h�g. As recognized by Rozan-
sky [43],

p
�.M I h/ is a naturally defined volume on the part of the character variety

of M coming from regular irreducible representations.
There is an approach to Reidemeister torsion due to Milnor [37] based on volumed

vector spaces. A volumed vector space is a vector space V along with a choice of
a nonzero element of the top dimensional exterior power of the vector space, called
the volume. The top dimensional exterior power of the direct sum of two vector
spaces is canonically isomorphic to the tensor product of the top dimensional exterior
powers of the two vector spaces. If fv1; : : : ; vkg is the preferred bases for V then
v1 ^ v2 ^ � � � ^ vk is the preferred volume.
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Suppose that A, B and C are chain complexes defined over a field and there is a
short exact sequence

0 �! A
˛��! B

ˇ��! C �! 0: (23)

Since the chain groups are vector spaces, for each i the sequence splits, so that
Bi Š Ai ˚ Ci . We say the sequence is volume exact if for each i the volume on Bi

is the tensor product of the volumes on Ai and Ci .
From the long exact sequence in cohomology derived from the short exact se-

quence (23), we can split the cohomology groups of A, B and C . Let E D �.J /,
where � is the connecting homomorphism and J is a complement to its kernel. Let
F be a complement to E, and G D ˛.F /. Finally let H be a complement of G
and I D ˇ.H/. With these choices H�.A/ D E ˚ F , H�.B/ D G ˚ H and
H�.C / D I ˚ J .

Choose bases f for F , h for H and j for J . Let Nf , Nh, and Nj, denote their images
under ˛, ˇ and � on the chain level. The concatenations fNj; fg, fNf ; hg and f Nh; jg
form bases for the cohomology groups of the complexes A, B and C respectively.
Let �A.Nj; f/, �B.Nf ; h/, �C . Nh; j/ denote the Reidemeister torsion of each complex with
respect to the indicated choice of bases. The following proposition is a consequence
of Theorem 3.2 in [37], or Corollary 1.2 in [17].

Proposition 4.1. �B.Nf ; h/ D �A.Nj; f/�C . Nh; j/:
In order to analyze the cohomology of the double of a knot complement we will

use the Mayer–Vietoris sequence coming from the fact that the double is the union
of two copies of the knot complement. Suppose that M D A [ B is excisive with
inclusion map i W A \ B ! M, and suppose that � W �1.M/ ! SU.2/. There are
two Mayer–Vietoris sequences, one for cohomology with coefficients Ad �,

H i�1.A \ BIAd �/
���! H i .M IAd �/ �! H i .AIAd�/˚H i .BIAd�/

�! H i .A \ BIAd�/;

and the other for cohomology with untwisted coefficients R,

H i�1.A \ BI R/
�0

��! H i .M I R/ �! H i .AI R/˚H i .BI R/ �! H i .A \ BI R/:

The dot product su.2/˝ su.2/ ! R allows us to define a cup pairing,

[W H i .M IAd �/˝H j .M IAd �/ �! H iCj .M I R/:

For any ˛ 2 H i .A \ BIAd �/ and ˇ 2 H j .M IAd �/ we have

�.˛/ [ ˇ D �0.˛ [ i�ˇ/: (24)

This formula is a consequence of the naturality of the connecting homomorphism
along with the fact that the dot product is symmetric and Ad -invariant.
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Suppose now that S3 � N.K/ is a knot complement with boundary T 2. Denote
by M the double of S3, so that M D X1 [ X2, where X1 and X2 are two copies of
S3�N.K/, with the orientation ofX2 the opposite from the orientation onS3 �N.K/,
and X1 and X2 identified along their boundaries via the identity map. There is a
regular CW-decomposition of S3 �N.K/ with one vertex v on the boundary, which
can be doubled to get a CW-decomposition of M.

Let � be a regular SU.2/ representation of �1.S
3 � N.K//. Let � denote the

meridian of S3 � N.K/ and let �.�/ D cos' C sin ' ÅP . Let

g D exp.	 ÅP /; (25)

where 0 � 	 � � . Let
�g W �1.M/ ! SU.2/

be the representation that restricts to � on �1.X2/ and to g�g�1 on �1.X1/. The
construction of a path of representations depending on the variable 	 like this is called
bending. The tangent vector to such a path can be thought of as a tangent vector to
a deformation. Note that C �.S3 � N.K/IAd .g�g�1// is canonically isomorphic
to C �.S3 � N.K/IAd �/, under the isomorphism c� ˝ Ev 7! c� ˝ g:Ev. By dint of
this isomorphism we identify C �.X1IAd .g�g�1// and C �.X2IAd�/with C �.S3 �
N.K/IAd�/.

In order to relate the torsion of the knot complement to the square root of the torsion
of the double we need to choose the bases for the cohomology groups with coefficients
in Ad �, for all the spaces in the Mayer–Vietoris sequence for M D X1 [X2.

Since � restricted to the boundary is not central, we have H�.T 2IAd �/ D
H�.T 2I R/ ˝ R ÅP . A volume basis for H�.T 2IAd �/ can be chosen as follows.
Denote by v� a cochain in C 0.T 2I R/ dual to the vertex v, and let t 2 C 2.T 2I R/ be
a cochain with t ŒT 2� D 1. Finally, let � and 
 be cocycles in C 1.T 2I R/ such that
� [ 
 D t . A volume basis consists of v� ˝ ÅP , � ˝ ÅP , 
˝ ÅP and t ˝ ÅP .

Since � is regular, H 1.S3 � N.K/IAd �/ is one-dimensional and is spanned by
the tangent vector h to a path of representations. The restriction map

H 2.S3 �N.K/IAd �/ �! H 2.T 2IAd �/

is an isomorphism. Finally H 0.S3 �N.K/IAd�/ D 0 as � is irreducible.
From this we conclude that H 1.M IAd �g/ is two-dimensional. One dimension

comes from the image of H 0.T 2IAd �/ under the connecting homomorphism �.
The second is accounted for by the fact that any complement of the image of � is
mapped injectively into the diagonal of the direct sum

H 1.X1IAd .g�g�1//˚H 1.X2IAd �/

D H 1.S3 � N.K/IAd�/˚H 1.S3 � N.K/IAd�/:
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The second cohomology of M is also two-dimensional where analogously one
dimension is accounted for by the image of the connecting homomorphism and any
complement of that image gets mapped injectively into the diagonal of

H 2.X1IAd .g�g�1//˚H 2.X2IAd �/

D H 2.S3 � N.K/IAd�/˚H 2.S3 � N.K/IAd�/:

There is a nondegenerate pairing coming from the cup product on M and the dot
product on the coefficients,

[W H 1.M IAd �g/˝H 2.M IAd �g/ �! H 3.M I R/:

It should be noted that if m 2 H 3.M I R/ is a cohomology class with m.ŒM�/ D 1

then�0.t / D mwhere�0 is the connecting homomorphism from the Mayer–Vietoris
sequence for M D X1 [ X2 with real coefficients.

If t 0 2 H 2.S3 �N.K/IAd�/ is chosen so that restriction of t 0 toH 2.T 2IAd �/ is
t and h is a basis forH 1.S3 �N.K/IAd �/ then the Dubois torsion �.S3 �N.K/I h/
is the Reidemeister torsion of C �.S3 � N.K/IAd�/ with respect to the bases h for
H 1.S3 � N.K/IAd�/ and t 0 for H 2.S3 �N.K/IAd �/.

Theorem 4.2. Let M be the double of S3 �N.K/ and let �g W �1.M/ ! SU.2/ be
obtained from bending � W �1.S

3 � N.K// ! SU.2/ as above. Assume that � and
�g are regular. Choose h as the basis for H 1.S3 � N.K/IAd�/ and choose Qh 2
H 1.M IAd �/ that restricts toh. If we use the basis f�.v�˝ ÅP /; Qhg forH 1.M IAd �/,
then p

�.M I f�.v� ˝ ÅP /; Qhg/ D �.S3 � N.K/I h/:

Proof. The proof is an application of Proposition 4.1 followed by some interpretation.
We apply the proposition to the short exact sequence inducing the Mayer–Vietoris
sequence

0 �! C �.M IAd �g/
.j �

1
;j �

2
/�����! C �.X1IAd .g�g�1//˚ C �.X2IAd�/

.i�
1

;�i�
2

/������! C �.T 2IAd �/ �! 0;

(26)

where j �
1 , j �

2 are induced by restrictions from M to the two knot complements,
and i�1 , i�2 are induced by restrictions to the boundary torus. These are the chain
complexes associated to a regular CW-decomposition of S3 � N.K/ with a single
vertex v on the boundary, which we double to get a CW-decomposition of M. We
use the inner product on C �.M IAd �/, coming from the CW-structure and the dot
product on su.2/ D R3 . Sequence (26) is volume exact.
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Denote by Qh a cocycle in C 1.M IAd �/ that restricts to the basis h chosen for
H 1.S3 � N.K/IAd�/. We use the basis f�.v� ˝ ÅP/; Qhg for H 1.M IAd �g/. The
pair f.h; h/; .h=2;�h=2/g forms a basis for

H 1.X1IAd .g�g�1//˚H 1.X2IAd �/

D H 1.S3 � N.K/IAd�/˚H 1.S3 � N.K/IAd�/:

Notice that the vector .h; h/ is the image of Qh under the map in the Mayer–Vietoris
sequence. Denote the image of .h=2;�h=2/ in H 1.T 2IAd �/ under .i�1 ; i�2 / by t1.
Note that t1 is a tangent vector to the image under restriction of the curve of regular
characters X i .S3 �N.K// in the pillowcase.

Let n be a normal vector to X i .S3 � N.K// at Œ��, so that ft1; ng is a volume
basis for H 1.T 2IAd�/. Let h0 2 C 2.S3 � N.K/IAd�/ be a cocycle that restricts
to t ˝ ÅP in H 2.T 2IAd �/. We use f.h0; h0/; .h0=2;�h0=2/g as a basis for

H 2.X1IAd .g�g�1//˚H 2.X2IAd �/

D H 2.S3 � N.K/IAd�/˚H 2.S3 � N.K/IAd�/:

Leth2 2 C 2.M IAd �g/be a cocycle that pulls back to .h0; h0/. Finally use f�.n/; h2g
as the basis for H 2.M IAd �g/.

We have chosen our bases as in the hypothesis of Proposition 4.1. Thus

�.M I f�.v� ˝ ÅP /; Qh;�.n/; h2g/
D �.T 2; fv� ˝ ÅP ; t1; n; tg/�

�.C �.X1IAd �/˚ C �.X2IAd�/I
f.h; h/; .h=2;�h=2/; .h0; h0/; .h0=2;�h=2/g/:

(27)

We chose the basis for T 2 to be a volume basis, so

�.T 2; fv� ˝ ÅP ; t1; n; tg/D 1: (28)

We need to show that the basis f�.v� ˝ ÅP /; Qh;�.n/; h2g for H�.M IAd �/ can be
used to compute

.
p
�.M I f�.v� ˝ ÅP /; Qhg//2:
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This entails showing that the volume form onH 2 .M IAd �/ induced by f�.n/; h2g
coincides with the volume form induced by the basis dual to f�.v� ˝ ÅP /; Qhg. This
is done by showing that the determinant of the matrix of cup pairings is equal to 1.
To see this we need to compute the four cup pairings

�0.v� ˝ ÅP / [�1.n/;

�0.v� ˝ ÅP / [ h2;

Qh [�1.n/;

and
Qh [ h2:

We do this by repeated applications of (24). The first cup product is

�0.v� ˝ ÅP/ [�1.n/ D �1.v� ˝ ÅP [ i��1.n// D 0;

as i��1.n/ D 0. The second cup product is

�0.v� ˝ ÅP / [ h2 D �2.v� ˝ ÅP [ i�h2/ D 1;

as i�h2 D t ˝ ÅP . The third cup product is

Qh [�1.n/ D �1.n/ [ Qh D �2.n[ i� Qh/ D �1;
since i� Qh D t1. We do not care what the last pairing is because

det

�
0 1

�1 �
�

D 1

for any �. Thus it is possible to make a volume preserving change of basis from
f�.v� ˝ ÅP /; Qh;�.n/; h2g to get the basis formed by f�.v� ˝ ÅP/; Qhg and its dual.
We showed that

�.M I f�.v� ˝ ÅP /; Qh;�.n/; h2g/ D .
p
�.M I f�.v� ˝ ÅP /; Qhg//2 (29)

Finally, we interpret

�.C �.X1IAd �/˚ C �.X2IAd�/I f.h; h/; .h=2;�h=2/; .h0; h0/; .h0=2;�h0=2/g/
as the square of the Dubois torsion of the knot complement. Change bases by ele-
mentary row operations that do not change volume to get

�.C �.X1IAd �/˚ C �.X2IAd�/I f.h; h/; .h=2;�h=2/; .h0; h0/; .h0=2;�h0=2/g/
D �.C �.X1IAd �/˚ C �.X2IAd �/I f.h; 0/; .0;�h/; .h0; 0/; .0;�h0/g/:
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Since the basis f.h; 0/; .0;�h/; .h0; 0/; .0;�h0/g is a direct sum of bases for the spaces
H�.X1IAd �/ and H�.X2IAd �/, the torsion now splits as the product of torsions,
which both compute the Dubois torsion of S3 � N.K/ at �,

�.C �.X1IAd �/˚ C �.X2IAd �/I f.h; 0/; .0;�h/; .h0; 0/; .0;�h0/g/
D �.X1I h/�.X2I h0/

D .�.S3 �N.K/I h//2:
(30)

Substituting (28), (29), and (30) into (27) we obtain the desired result.

To understand Theorem 4.2 geometrically, consider a path of representations of
�1.S

3 �N.K// that covers an arc of regular characters. Denote this path by Y.S3 �
N.K//. Bending gives rise to a circle bundle overY.S3�N.K// in the representation
variety of the fundamental group of the double of the knot complement. Call this
bundle Y.M/. Denote the projection that restricts a representation of the double to
the second copy of the knot complement by

� W Y.M/ �! Y.S3 �N.K//: (31)

The derivative of � can be understood as a map

d� W H 1.M IAd �/ �! H 1.S3 �N.K/IAd�/:

The kernel of d� is the span of�0.v� � ÅP /. The partial derivative of the parametriza-
tion of Y.M/ by bending, with respect to the variable 	 defined in (25), is equal to
�0.v� � ÅP /.

Proposition 4.3. The measure on Y.S3 � N.K// coming from Dubois torsion is 1
�

times the pushforward measure under � of the measure on Y.M/ coming from the
square root of Reidemeister torsion.

Proof. The volume of the fiber is �k�0.v� � ÅP /k which is �kEvk, where Ev is the
vector defined by (12). If S � Y.S3 � N.K// is measurable, then the measure of
��1.S/ is �-times the measure of S .

Remark 4.4. The factor kEvk that appears in (13) and in (17) for Dubois torsion can
be attributed to partial integration over the fiber of the map � from (31).

Assume now that K � S3 is a knot such that the regular representations are
dense in the nonabelian representations, and the map X.S3 � N.K// ! X.T 2/

is an embedding away from finitely many points. The character variety of M has
a component coming from bent representations lying over each component coming
from regular representations of �1.S

3 �N.K//.
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Proposition 4.5. LetY i .M/ be the part of the representation variety ofM that comes
from bending regular representations of �1.S

3 � N.K//. Let

f W Ri.S3 � N.K// �! R

be integrable, then Z
Y i .M /

f
p
�.M/ D �

Z
Ri .S3�N.K//

f d�;

where we lift f to Y i .M/ via the projection map.

5. A global computation of the seminorm

The aim of this section is to derive a global formula for integrating against Reide-
meister torsion. We introduce a function on SU.2/k that involves a parametrix of the
heat kernel trace, and show that the limit of integrals against that function yields the
seminorm defined in Section 3. The proof involves an auxiliary family of integrals
to which Laplace’s method can be applied. Finally, we replace the parametrix of the
heat kernel with the heat kernel trace, to obtain a global formula. The local evalua-
tion of the seminorm allows us to interpret it geometrically, while the global formula
exhibits similarity to quantum invariants.

5.1. Two pointwise close Dirac delta functions. We are working with Cartesian
products of SU.2/ and intervals in the real line. We treat SU.2/ as the unit sphere in
R4. The volume form 
SU.2/ from the Riemannian metric is 2�2 times Haar measure.
A good parametrization of SU.2/ is given by three angles .';  ; 	/, where ' and  
vary from 0 to � , and 	 varies from 0 to 2� . The parametrization is

X.';  ; 	/ D .cos'; sin ' sin cos 	; sin ' sin sin 	; sin ' cos /:

The angle ' is the angle thatX.';  ; 	/makes with .1; 0; 0; 0/ D 1. The projection of
X.';  ; 	/ into the perpendicular to .1; 0; 0; 0/ is a vector in R3 with length sin ' that
makes an angle  with the z-axis, and whose projection into the xy-plane makes an
angle 	 with positive x-axis. The volume form from the Riemannian metric inherited
from R4 is


SU.2/ D sin2 ' sin d' ^ d ^ d	:
There are two approximate Dirac delta functions of 1 with respect to the measure


SU.2/ we would like to use. The first is

ˇ�.';  ; 	/ D
� �
4�

�3=2

e��'2=4:
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There is a very nice coordinate system for working with this Gaussian. Recall the
exponential map, exp W R3 ! S3, given by

exp. Ew/ D cos k Ewk C sin k Ewk Ew
k Ewk :

When restricted to the open ball of radius � centered at the origin, B�.E0/, the expo-
nential map is a diffeomorphism onto S3 � f�1g, and has an inverse

log W S3 � f�1g ! B�.E0/;
which is a normal coordinate chart. In these coordinates,

ˇ�. Ew/ D
� �
4�

�3=2

e��k Ewk2=4:

Suppose that r W M ! SU.2/ is a smooth function from a smooth manifold M
so that r.p/ D 1, and let U be a coordinate chart with coordinates xi at p, so that
w D log.r/ is defined in U. Since exp.w/ D r we have that for any @

@xi jp ,

@

@xi
r jp D @

@xi
exp.w/jp D exp.w.p//

@

@xi
w:

Since exp.w.p// D r.p/ D 1, we have that

Dr jp D Dwjp: (32)

The second approximate Dirac delta function is the heat kernel trace ��. The
reason for working with SU.2/ as the 3-sphere in R4 is to have the eigenvalues of the
Laplace operator be integers. In the .';  ; 	/ coordinates,

��.';  ; 	/ D 1

2�2

1X
cD0

.�1/c.c C 1/e�c.cC2/=�sc.�2 cos'/; (33)

where sc is the c-th Chebyshev polynomial defined by the recursion, s0 D 1, s1 D x,
and sn D xsn�1 � sn�2. In fact,

sc.�2 cos'/ D .�1/ctrc (34)

where trc is the trace in the .cC 1/-dimensional irreducible representation of SU.2/.
These Chebyshev polynomials are the same as the ones used to define the colored
Jones polynomial.

The relationship between these two approximate Dirac delta functions is that the
first is the parametrix for the heat kernel trace and the second is the heat kernel trace.
By design they are pointwise close.
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Lemma 5.1. For every " > 0 there exists C > 0 andU a neighborhood of 1 in SU.2/
so that for � 	 C , and A 2 U ,

jˇ�.A/ � ��.A/j < ":
Proof. This follows directly from lemma 3.18 of [42], by substituting � for 1=t .

The fact that these two Dirac delta functions are asymptotically equivalent is
sometimes called Migdal’s equivalence [36]. We were first exposed to this type of
local-global argument by reading [4]. Recently Bonzom and Smerlak used the same
approach to understand the Reidemeister torsion of two complexes [3].

5.2. Laplace’s method. LetM be a Riemannian manifold with Riemannian volume
form 
M. Let ˆ W M ! R be a nonnegative function that takes on the value 0 along
the codimension k submanifold N with induced Riemannian volume form 
N . Let
HN .ˆ/ be the restriction of the Hessian ofˆ to the normal space to N. Assume that
HN .ˆ/ is nondegenerate at each point in N, and that there is an "-neighborhood of
N outside of which the functionˆ is bounded away from 0. It is an easy computation
in local coordinates to see that if the integral on the left exists for the smooth function
f W M ! R, then

lim
�!1

��
�

�k=2
Z

M

fe��ˆ
M D
Z

N

f 
Np
.det.HN //

: (35)

Equation (35) is sometimes referred to as Laplace’s method; see [51], and [2].
We will need to use Laplace’s method in a slightly more general context. Given a

smooth nonnegative real-valued function ˆ defined on a subset of M, let N D fp 2
M j ˆ.p/ D 0g. Let † be the subset of M consisting of three types of points:

� points where ˆ is not defined;
� points where N is not a manifold;
� points where N is a manifold but the Hessian of ˆ restricted to the normal

direction to N is degenerate.

Let U" be an epsilon neighborhood of †. If the limit

C."/ D lim
�!1

��
�

�k=2
Z

U"

e��ˆ
M

exists, and lim"!0C."/ D 0 then we say that the singularities of ˆ are tame.

Proposition 5.2. Let M be compact. Suppose that the singularities † of a smooth,
nonnegative, real-valued function ˆ defined on a subset of M are tame and let
f W M ! R be smooth; then

lim
�!1

� �
�

�k=2
Z

M

fe��ˆ
M D
Z

N�†

f 
Np
.det.HN //

: (36)
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5.3. The integral. We will define a function ˆ whose maximum occurs along rep-
resentations of the knot complement. We then use Laplace’s method to compute an
appropriately normalized limit of an integral of this function. The answer turns out
to be the seminorm defined by the Dubois torsion. The function ˆ depends on an
additional parameter, which can be integrated out to recognize the parametrix of the
heat kernel, yielding a local formula for integrating against the Dubois torsion. Using
Migdal’s equivalence we replace the parametrix of the heat kernel by the heat kernel
trace, which gives us a global formula for the Dubois torsion.

Recall that given a knot K � S3, we denoted the regular representations of
�1.S

3 � N.K// into SU.2/ by Ri.S3 � N.K// and the abelian representations of
�1.S

3�N.K// into SU.2/ byAb.S3�N.K//. We work with a 2-complex embedded
in the complement of the knotK as a deformation retract, giving rise to k � 1 relator
maps, denoted .r1; : : : ; rk�1/, corresponding to the two-cells .f1; : : : ; fk�1/. Define
the set S � SU.2/k as the locus along which any of the relators takes on the value �1.
The set S has measure zero as long as there is some regular representation at which
the variety Ri .S3 � N.K// has dimension 4. For a knot in S3 this is equivalent to
the statement that the set of regular representations Ri .S3 �N.K// is nonempty.

Notice that Ev defined by (12) can be described by word maps that are well defined
for all points in SU.2/k . Let

Nv D 1

k.Ev1; : : : ; Evk�1/k2

X
j

f j ˝ Evj :

The normalized vector Nv is not defined on a set consisting of points where Ev D E0.
Call this set of points T . Thus the vector Nv can be extended to a function

Nv W SU.2/k � T �! su.2/k�1:

If the set of regular representations of the fundamental group of the knot is nonempty
then T has measure 0.

Notice that Ri.S3 �N.K//\ T D ; and Ab.S3 �N.K// � T . This is because

Ev D ..Ad�.s1/ � Ad�.t1//: ÅP ; : : : ; .Ad�.sk�1/ � Ad�.tk�1//: ÅP /; (37)

where si ; ti where defined by (11), and the vector ÅP D Im �.�/
kIm �.�/k , where � is the

meridian of K. At an abelian representations the vector ÅP is fixed by Ad�.�/ for all

� 2 �1.S
3 � N.K//. Thus the vector Ev D E0, and its norm is zero for any abelian

representation.
In our definition of the functionˆ below we will use the tuple notation as opposed

to the tensor used in (12). Thus

kEvk D k.Ev1; : : : Evk�1/k; (38)

and

Nv D 1

kEvk2
.Ev1; : : : Evk�1/ D . Nv1; : : : ; Nvk�1/: (39)
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Fixing a relator ri , let Ewi D log ri . We have that all Ewi are well defined as
functions from SU.2/k � S to R3. Since each Nvi is well defined as a function from
SU.2/k � T to R3 we can put it all together to define

ˆ D
P

i k Ewik2 C t2k Nvik2

4
W .SU.2/k � .S [ T // � R ! R: (40)

The function ˆ attains its global minimum along Ri.S3 � N.K// � f0g, and that
minimum is equal to 0. We can apply Proposition 5.2 to the computation of the ap-
propriately normalized limit of an integral of this function, which yields the following
formula.

Theorem 5.3 (Local computation). Let K be a knot in S3 such that the regular
representations Ri.S3 � N.K// form an open dense subset of R.S3 � N.K// and
the total Dubois torsion of the knotK is finite. Suppose that the mapˆ defined by (40)
above has tame singularities. Let f W SU.2/k ! R be any smooth invariant function.
ThenZ

Ri .S3�N.K//

fd� D lim
�!1

r
4�

�

Z
SU.2/k

2.3k�3/=2f
Y
j

ˇ�.rj /kEvk
k : (41)

Here ˇ� is the Dirac delta function defined in Section 5.1, the maps rj are the relator
maps, vector Ev is given by (12) and (37), 
k is the volume form from the inclusion of
SU.2/k into R4k , and d� is the measure from Dubois torsion.

Proof. Let f W SU.2/k ! R be a smooth function. Consider the integral,

� �
4�

�.3k�3/=2
Z

SU.2/k�R
fe��ˆ
kdL; (42)

where dL is the Lebesgue measure on the real line.
If the singularities ofˆ are tame, then we can evaluate the limit of the integral (42)

as � goes to infinity via Laplace’s method, as in Proposition 5.2. Hence, we need
to compute the Hessian of ˆ along Ri.K/ � f0g. Notice that ˆ involves a sum of
terms of the form w � w=4 where w is a function from a Riemannian manifold into
an inner product space, and the critical values occur on the locus w D 0. Computing
the derivative of a term of this form using the product rule we get D.w � w/=4 D
.1=2/Dw �w. Differentiating again we get

.1=2/.D2w � w CDw �Dw/:
This handles the Hessian of the terms involving k Ewik2. The terms of the form t2k Nvik2

are easier as we are only interested along the locus t D 0. Hence the only contributions
come from differentiating with respect to t twice.
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Since we only care about the case when w D 0, we get

H.w/ D .1=2/Dw �Dw:
Since the sum of the Hessians is the Hessian of the sum, we have that, alongRi .S3 �
N.K// � f0g,

H
�P

i k Ewik2 C t2k Nvik2

4

�
D 1

2

X
i

 
D Ewi �D Ewi 0

0 Nvi � Nvi

!
;

where we split the tangent space of .SU.2/k � .S [ T // � R at .�; 0/ as

T�SU.2/k ˚ T0R:

From the properties of the logarithm, and the fact that we are working along the
locus where the relators take on the value 1, we have that D Ewi D Dri (compare
with (32)). The Hessian splits as a direct sum over orthogonal matrices so that

p
det.HN .ˆ// D 1

2.3k�3/=2

kd Nrk
kEvk : (43)

Assuming that the singularities of ˆ are tame with respect to the Gaussian, we
see that S [ T has measure zero. The functions f are bounded, so we can consider
the following limit:

lim
�!1

� �
4�

�.3k�3/=2
Z

SU.2/k�R
f exp

�
��

P
i k Ewik2 C t2k Nvik2

4

�

kdL: (44)

By Laplace’s method this is equal to

�1
4

�.3k�3/=2
Z

Ri .S3�N.K//

f 
Rp
det.HN .ˆ//

;

where 
R is the Riemannian metric on Ri .S3 � N.K// inherited from SU.2/k and
jdet.HN .ˆ/j is the determinant of the Hessian of ˆ restricted to the normal of the
tangent space to Ri.S3 � N.K// in SU.2/k . Substituting the value for the Hessian
computed in (43) this is further equal to

�1
4

�.3k�3/=2

2.3k�3/=2

Z
Ri .S3�N.K//

f kEvk
R

kd Nrk
By (20) this is a multiple of the integral against Dubois torsion,

1

2.3k�2/=2

Z
Ri .S3�N.K//

fd�:
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Going back to (44), the dependence on t can be factored out so that it is of the
form� �
4�

�.3k�3/=2
Z

SU.2/k�R
f exp

�
� �

P
i k Ewik2 C t2k Nvik2

4

�

kdL

D
� �
4�

�.3k�3/=2
Z

SU.2/k

f exp
�

� �
P

i k Ewik2

4

�� Z
R

exp
�

� �t
2kEvk
4

�
dL

�

k :

Next we integrate out the t to get,r
4�

�

� �
4�

�.3k�3/=2
Z

SU.2/k

f exp
�

� �

P
i k Ewik2

4

�
kEvk
k:

Putting this into the equation derived from Laplace’s method we have,

lim
�!1

r
4�

�

� �
4�

�.3k�3/=2
Z

SU.2/k

f exp

�
�

P
i k Ewik2

4

�
kEvk
k

D 1

2.3k�2/=2

Z
Ri .S3�N.K//

fd�:

Finally, we recognize
� �
4�

�.3k�3/=2

exp
�

� �
P

i k Ewik2

4

�
D
Y
j

ˇ�.rj /;

which ends the proof of the theorem.

Since the Gaussian is pointwise close to the heat kernel trace we can replace ˇ�

by �� in the right hand side of the equation (41) to get

lim
�!1

r
4�

�

Z
SU.2/k

2
3k�3

2 f kEvk
k�1Y
iD1

��.ri/

k ;

which yields a global formula for Dubois torsion.

Theorem 5.4 (Global formula). LetK be a knot in S3 such that the regular represen-
tations Ri .S3 � N.K// form an open dense subset of R.S3 � N.K// and the total
Dubois torsion of the knot K is finite, and suppose that the map ˆ defined by (40)
has tame singularities. For any smooth invariant function f W SU.2/k ! R we haveZ

Ri .S3�N.K//

fd� D lim
�!1

2
3k�3

2

r
4�

�

Z
SU.2/k

f kEvk
k�1Y
iD1

��.ri /

k (45)

Here �� is the Dirac delta function defined in Section 5.1, the maps rj are the relator
maps, vector Ev is given by (12) and (37), 
k is the volume form from the inclusion of
SU.2/k into R4k , and d� is the measure from Dubois torsion.
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Proof. This follows directly from Theorem 5.3 and Lemma 5.1.

6. Interpreting the global formula

The purpose of this section is to interpret integration against Dubois torsion in terms
of quantum invariants of the knot complement.

Suppose that the assumptions of Theorem 5.4 are satisfied. Substituting (33)
and (34) into the global formula (45) for integration against the Dubois torsion yields
the following:Z

Ri .S3�N.K//

fd�

D lim
�!1

2
3k�3

2

r
4�

�

Z
SU.2/k

f kEvk
k�1Y
iD1

1

2�2

1X
cD0

.�1/c.c C 1/e�c.cC2/=�sc.�tr.ri //

k:

(46)

In order to relate this formula to quantum invariants we need to recall the definition
of the Yang–Mills measure [8].

6.1. The Yang–Mills measure in a handlebody. In this section we recall the defi-
nitions of the Kauffman bracket skein module of a handlebody and of theYang–Mills
measure functional on that module. A good reference for the standard definitions is
the book [35]. More details and proofs relating to the Yang–Mills measure can be
found in [8].

Given t 2 C, recall that the Kauffman bracket skein module of a manifold M,
denoted byKt .M/, is defined as a quotient of a vector space over C, with basis given
by the set of equivalence classes of framed links in the manifold (including an empty
link), by the relations that define the Kauffman bracket:


 [ L D �.t2 C t�2/L

and

D t C t�1 :

The elements of the Kauffman bracket skein module are called skeins.
Let H be a handlebody. There is a convention of modeling skeins on admissibly

colored framed trivalent graphs in H . An admissible coloring is an assignment of
a nonnegative integer to each edge, so that the colors at trivalent vertices satisfy all
possible triangle inequalities. The skein corresponding to such a graph is obtained by
inserting an appropriate Jones–Wenzl idempotent at each edge, inserting a Kauffman
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triad at each vertex, and joining those with parallel strands. For the definitions of the
Jones–Wenzl idempotents and the Kauffman triads see [35].

The Yang–Mills measure is a local, diffeomorphism invariant trace defined on
Kt .H/,

YM W Kt .H/ �! C:

Here is how to compute YM. Given a handlebody H of genus g, its double is diffeo-
morphic to the connected sum of g copies of S1 � S2. The Yang–Mills measure YM
is the linear functional given by taking the inclusion of H into ]gS

1 � S2 followed
by the canonical isomorphism of Kt .]gS

1 � S2/ with C. This isomorphism can be
described in the following way. Choose a system of spheres that cut down ]gS

1 �S2

to a punctured ball. Represent a skein as a linear combination of colored trivalent
graphs intersecting the spheres transversely in the interior of edges, with each graph
intersecting any sphere at most once. If a graph intersects a nonseparating sphere in
a single point on one edge then this graph represents zero in the skein module. Thus
we can assume that the graphs miss the spheres. TheYang–Mills measure is the value
of the Kauffman bracket of the resulting skein in the punctured ball.

Alternatively, a handlebody H can be thought of as H D F � I , where F is a
compact, oriented surface with boundary. The skein module of F � I has an algebra
structure, where multiplication is generated by laying one skein over another, with
the direction given by the interval I . Choosing a trivalent spine for F yields a basis
for Kt .H/ given by the skeins corresponding to all possible admissible colorings
of that spine. The Yang–Mills measure of any skein is the coefficient of the skein
coming from labeling all the edges of the spine with 0. Note that this does not apply
to the skein algebra of the disk (which is spanned by the empty skein) nor to the skein
module of the annulus (i.e. of the solid torus), which is spanned by all nonnegative
colorings of the core of the annulus.

When t D e
�i
2r , the Yang–Mills measure is defined the same way as above on the

reduced Kauffman bracket skein module, Kr;f .H/, which is obtained from Kt .H/

by taking its quotient by the submodule spanned by all the skeins corresponding to
the framed trivalent graphs where some edge is colored with r � 1. The canonical
basis for Kr;f .H/ is finite since colors cannot be larger than r � 2. In this case the
admissibility condition carries an additional requirement that the sum of the three
colors at any vertex is less than or equal to 2r � 4.

The projector ! is an element of the reduced skein module of the solid torus
defined below:

! D
r�2X
iD0

.�1/i Œi C 1�si ; (47)

where Œn� denotes the quantum integer,

Œn� D t2n � t�2n

t2 � t�2
;
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and si denotes the skein in the annulus which is the result of coloring the core with
the i -th Jones–Wenzl idempotent. Note that Œn� is defined for all t ¤ 0. At t D ˙1
the formula we gave has a removable singularity and lim t!˙1Œn� D n. As the level
r approaches infinity, t approaches �1.

Evaluating the Yang–Mills measure of a skein s in the handlebody H can be
understood in terms of the Kauffman bracket of a surgery diagram in the three-sphere.
EmbedH in S3 so that its complement is also a handlebody. Put an unknotted zero-
framed circle decorated with the projector ! around each handle ofH , and then take
the value of the Kauffman bracket in the 3-ball of the skein which is a union of those
decorated circles with the skein s. Finally divide the result by X2g , where

X D
p

r�2X
cD0

Œc C 1�2: (48)

The fact that this agrees with the definition of the Yang–Mills measure follows from
the Turaev–Wenzl identity, fusion, and the shadow world formula for theYang–Mills
measure [23].

When the parameter t is equal to �1, the algebra K�1.H/ is isomorphic to the
coordinate ring of the SU.2/-characters of�1.H/; see [6] and [39]. The isomorphism
is given by sending a skein given by a disjoint union of simple closed curves ci to the
function that sends a representation � toY

i

�tr.�.ci//:

Weyl orthogonality implies that via this isomorphism at t D �1 the Yang–Mills
measure on a handlebody of genus g is equal to integration on SU.2/g against Haar
measure.

6.2. Quantum 3-manifold invariants. In this section we discuss the evaluation of
some quantum invariants of 3-manifolds.

Suppose that a closed, oriented 3-manifold M is obtained by surgery on a framed
linkL. Let bC (respectively b�) denote the number of positive (negative) eigenvalues
of the linking matrix of L. The Witten–Reshetikhin–Turaev invariant of M at level
r , where r > 3 is a positive integer, can be obtained as the following expression:

Zr.M/ D hL.!/ihUC.!/i�bChU�.!/i�b� :

In this formula L.!/ denotes decorating each component of a given link with !, the
symbol UC (respectively U�) denotes an unknot with framing C1 (respectively �1),
and hLi denotes taking the value of the Kauffman bracket of a link L in a 3-sphere
evaluated at 4r-th root of unity. This formula is taken from Lickorish [35]. Note that
in this normalization, Zr.S

3/ D 1 for all r .
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TheTuraev–Viro invariant, TV.M/, was originally defined combinatorially in [47]
using triangulations of 3-manifolds and quantum 6j -symbols. Roberts [41] proved
that the square of the norm of the Witten–Reshetikhin–Turaev invariant of any 3-man-
ifold M is equal to TV.M/. The proof involved showing that the Turaev–Viro in-
variant is equal to the chain-mail invariant derived from a Heegaard diagram of M.
Roberts used a different normalization than Lickorish. His normalization agrees with
Witten’s, where Zr .S

3/ D 1
X

.
Consider the presentation of the 3-manifold M by a Heegaard diagram on a

standard handlebody H in S3. Let � D 1
X
!. The chain-mail link consists of the

attaching curves decorated with � along with the push-offs of a complete set of
meridians of H, which link the attaching curves and are the 0-framed unlink with g
components, and are also decorated with �. The chain-mail invariant is equal to the
value of the Kauffman bracket of the chain-mail link multiplied by 1

X2 . Note that the
link consisting of meridians and attaching curves obtained from a Heegaard diagrams
yields a surgery presentation for M] xM .

While the Yang–Mills measure is defined at all roots of unity (including t D �1)
and when the complex parameter t has absolute value different than 1, the Witten–
Reshetikhin–Turaev and Turaev–Viro invariants of 3-manifolds are not defined away
from roots of unity nor for t D �1. Although the terms of the state sum originally
used to define the Turaev–Viro invariant of a manifold M are all well defined when
the value of the parameter is equal to �1, the sum is infinite and does not converge.

6.3. Total torsion versus quantum invariants. By (46) the total Dubois torsion is
equal to

lim
�!1

2
3k�3

2

r
4�

�

Z
SU.2/k

kEvk
k�1Y
iD1

1

2�2

1X
cD0

.�1/c.c C 1/e�c.cC2/=�sc.�tr.ri//
k :

(49)
Recall from Section 6.1 that integration on SU.2/k against Haar measure agrees

with theYang–Mills measure on the Kauffman bracket skein module of a handlebody
of genus k at t D �1. Note also that the induced Riemannian measure on SU.2/
viewed asS3 � R4 is equal to�2 times the Haar measure. Unfortunately, it is difficult
to recognize the integrand in (49) as a skein. Looking at a portion of the formula
(which is just the Fourier expansion of the Dirac delta over SU.2/ with respect to
Haar measure)

1X
cD0

.�1/c.c C 1/sc.�tr.ri // D lim
n!1

nX
cD0

.�1/c.c C 1/sc.�tr.ri //; (50)

and comparing it with (47), note that on the right we have a skein in a handlebody,
which is obtained by decorating the attaching curve for a handle corresponding to
the i -th relator with an analogue of ! 2 Kr;f .S

1 � D2/. Thus we can view the
left-hand side of (50) as coloring the attaching curves corresponding to relators ri
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with !1. Recall now the method of computing the Yang–Mills measure in Kr;f via
the Kauffman bracket of a surgery diagram in the 3-sphere. The analogous equation
in Kr;f for the value of the Yang–Mills measure of the skein

k�1Y
iD1

r�1X
cD0

.�1/c.c C 1/sc.�tr.ri//

is obtained by computing the Kauffman bracket of a chain mail link, which is a surgery
diagram for the double of the knot complement.

If we tried naively to extend the Witten–Reshetikhin–Turaev invariant from 4r-th
roots of unity to the value t D �1, we could begin by trying to compute the Kauffman
bracket of a chain mail link, where instead of decorating the appropriate curves with!
we used !1. Unfortunately this infinite sum does not converge. The corresponding
model, called the Ponzano–Regge model, was studied in [1], [3], [18], and [19],
where one can find explicit conditions guaranteeing convergence, divergence and
invariance.

The second attempt would be to regularize using a bump function. Thus we could
interpret the limit

lim
�!1

r
4�

�

Z
SU.2/k

k�1Y
iD1

1

2�2

1X
cD0

.�1/c.c C 1/e�c.cC2/=�sc.�tr.ri//

k

as the regularized Witten–Reshetikhin–Turaev invariant of the double of the knot
complement at level �1. Alas, this quantity is not a manifold invariant. In order
to obtain an invariant we need to multiply the integrand by the factor kEvk, where
Ev is the vector (defined by (12)), which appears in the computation of the Dubois
torsion. Appearance of this vector was interpreted in Remark 4.4. This way we get
an invariant of the double of the knot complement, which is equal to the total Dubois
torsion of the knot.

The limit of the Witten–Reshetikhin–Turaev invariants of the double of the knot
complement, as the level r tends to infinity, does not exist due to oscillation. However,
the deliberations in this paper lead us to the following conjecture.

Conjecture 6.1. Let K be a knot in S3 whose complement has sufficiently regular
SU.2/-representation variety. Denote by T 2 the boundary torus of the knot com-
plement and by M the 3-manifold which is the double of the knot complement. Let
f 2 K�1.T

2/ be a peripheral skein, and let Zr.M/ denote the Witten–Reshetikhin–
Turaev invariant of M at level r . Then

lim sup
r!1

1

r
jZr.M; f /j

defines a seminorm on K�1.T / whose radical is the A-ideal of the knot.
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Recall the conjectured formula

ZSU.2/
r .M/

�r!1 e�3�i.1Cb1.M //=4

�
Z

ŒA�

e2�i CS.A/r .h1
A�h0

A/=2e�2�i.IA=4Ch0
A=8/�M .A/

1=2

(51)

for the leading asymptotics of the Witten–Reshetikhin–Turaev invariant. Let M be
the double of the knot complementS3�N.K/. We consider the right hand side of (51)
at characters of representations ofM that come from bending regular representations
of �1.S

3 � N.K//. With this restriction h1 D 2, h0 D 0, b1.M/ D 1, the Chern–
Simons invariant is an integer, and the spectral flow is zero; see [31] and [32]. Thus
along the regular representations the absolute value of the right hand side of (51)
reduces to

r

Z
ŒA�2Xi .M /

�M .A/
1=2:

If we naively assume that there were no contributions to the leading order asymp-
totics coming from the singular points of the character variety, then the total Dubois
torsion of S3 �N.K/ is proportional to the leading order asymptotics of the Witten–
Reshetikhin–Turaev invariants of the double.

Comparing this now to Conjecture 6.1, we are working with the conjectural asymp-
totic formula extended to the Witten–Reshetikhin–Turaev invariant for a knot that lies
in the boundary of the knot complement inside of the double of the knot complement.
In the case of knots with very well behaved character varieties our conjecture is a
consequence of the conjectured asymptotics of the Witten–Reshetikhin–Turaev in-
variant.
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