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On knots in overtwisted contact structures
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Abstract. We prove that each overtwisted contact structure has knot types that are represented
by infinitely many distinct transverse knots all with the same self-linking number. In some
cases, we can even classify all such knots. We also show similar results for Legendrian knots
and prove a “folk” result concerning loose transverse and Legendrian knots (that is knots
with overtwisted complements) which says that such knots are determined by their classical
invariants (up to contactomorphism). Finally we discuss how these results partially fill in our
understanding of the “geography” and “botany” problems for Legendrian knots in overtwisted
contact structures, as well as many open questions regarding these problems.
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1. Introduction

Since Eliashberg’s formative paper [10] classifying overtwisted contact structures on
3-manifolds, the study of and interest in such structures has been minimal. However,
in recent years they have been taking a more central role due to their many interest-
ing applications – such as, the construction of achiral Lefschetz fibrations [15] and
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near symplectic structures [19] on certain 4-manifolds and the understanding of the
existence of Engel structures on 4-manifolds [30] – as well as the interesting knot
theory they support. This paper is aimed at studying the Legendrian and transverse
knot theory of overtwisted contact structures. We begin with a brief history of the
subject.

A Legendrian or transverse knot in an overtwisted contact structure � on a 3-man-
ifold M is called loose if the contact structure restricted to its complement is also
overtwisted; otherwise the knot is called non-loose. Though apparently known to
a few experts, the first explicit example of a non-loose knot was given by Dymara
in [8], where a single non-loose Legendrian unknot was constructed in a certain over-
twisted structure on S3. More recently, Eliashberg and Fraser [11] gave a coarse
classification of Legendrian unknots in overtwisted contact structures on S3; see
Theorem 2.2 below. (We say knots are coarsely classified if they are classified up to
co-orientation preserving contactomorphism, smoothly isotopic to the identity. We
reserve the word classified to refer to the classification up to Legendrian isotopy, and
similarly for transverse knots.) An immediate corollary of this work is that there are
no non-loose transverse unknots in any overtwisted contact structure.

In [14] it was shown that there are knot types and overtwisted contact structures for
which there were arbitrarily many distinct non-loose Legendrian knots realizing that
knot type with fixed Thurston–Bennequin invariant and rotation number. While it is
easy to construct non-loose transverse knots in any overtwisted contact structure (one
just observes, cf. [12], that the complement of the binding of a supporting open book
decomposition is tight), two non-loose transverse knots with the same self-linking
numbers were first produced by Lisca, Ozsváth, Stipsicz and Szabó, in [27], using
Heegaard–Floer invariants of Legendrian and transverse knots.

There have been very few results concerning the classification of Legendrian or
transverse knots in overtwisted contact structure (as opposed to the coarse classifica-
tion), but there has been some work giving necessary conditions for the existence of
a Legendrian isotopy; see for example [6], [9], and [11].

Leaving the history of the subject for now we begin by recalling a version of the
Bennequin bound for non-loose knots. This result first appeared in [9] where it was
attributed to Świa̧tkowski.

Proposition 1.1 (Świa̧tkowski, see [9]). Let .M; �/ be an overtwisted contact 3-man-
ifold and L a non-loose Legendrian knot in �. Then

�j tb.L/j C j r.L/j � ��.†/

for any Seifert surface † for L.

We sketch a simple proof of this result below. We now observe a relation between
non-loose transverse knots and their Legendrian approximations as well as non-loose
Legendrian knots and their transverse push-offs.
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Proposition 1.2. If T is a non-loose transverse knot then any Legendrian approxi-
mation of T is non-loose. If L is a non-loose Legendrian knot then the transverse
push-off of L may or may not be non-loose.

The previous two results imply that a version of the Bennequin bound for trans-
verse knots in a tight contact structure also holds for non-loose transverse knots. This
is in stark contrast to what happens for Legendrian knots as Proposition 1.1 indicates
and Eliashberg and Fraser’s coarse classification of unknots, given in Theorem 2.2
below, confirms.

Proposition 1.3. Let .M; �/ be a contact 3-manifold and K a transverse knot in �

with Seifert surface †. If
sl.K/ > ��.†/

then K is loose (and, of course, � is overtwisted). In particular any non-loose knot
K in an overtwisted contact structure satisfies the Bennequin inequality

sl.K/ � ��.†/:

1.1. The coarse classification of loose Legendrian and transverse knots. The
following two theorems make precise the well-known “folk” theorems that loose
Legendrian or transverse knots are coarsely classified by their classical invariants.

Theorem 1.4. Let .M; �/ be an overtwisted contact manifold. For each null-homol-
ogous knot type K and each pair of integers .t; r/ satisfying t C r is odd, there is a
unique, up to contactomorphism, loose Legendrian knot L in the knot type K with
tb.L/ D t and r.L/ D r .

Recall that for any Legendrian knot L we must have tb.L/Cr.L/ odd, so the above
theorem says any possible pair of integers is realized by a unique loose Legendrian
knot in any overtwisted contact structure. For transverse knots we have the following
result.

Theorem 1.5. Let .M; �/ be an overtwisted contact manifold. For each null-homol-
ogous knot type K and each odd integer s there is a unique, up to contactomorphism,
loose transverse knot T in the knot type K with sl.T / D s.

Again recall that the self-linking number of any transverse knot must be odd and
thus the theorem says that any possible integer is realized by a unique loose transverse
knot in an overtwisted contact structure.

These two theorems follow directly from Eliashberg’s classification of overtwisted
contact structures and a careful analysis of homotopy classes of plane fields on man-
ifolds with boundary, which we give in Section 4. Theorem 1.4 also appears in [11]
though the details of the homotopy theory were not discussed, and while these details
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are fairly straight forward they do not seem obvious to the author. In particular, when
studying the homotopy classes of plane fields there is both a 2- and 3-dimensional
obstruction to being able to homotope one plane field to another. The fact that the
3-dimensional obstruct is determined by the Thurston–Bennequin invariant and ro-
tation number seems, at first, a little surprising until one carefully compares the
Pontryagin–Thom construction with a relative version of the Pontryagin–Thom con-
struction. Geiges and independently, Klukas, in private communication, informed
the author of another way to deal the homotopy issues and prove the above theorems.
Similar theorems, with extra hypotheses, concerning Legendrian isotopy were proven
in [6] and [9].

In [28] Chernov defined relative versions of the rotation number for all (not nec-
essarily null-homologous) Legendrian knots as long as the ambient manifold is ir-
reducible and atoroidal or the Euler class of the contact structure is a torsion class
(or the contact structure is tight). In [1] and [28] he defined relative versions of the
self linking invariant (not to be confused with the self-lining number of a transverse
knot) for all (not necessarily null-homologous) framed knots in atoroidal and other
manifolds. This gives the definition of the relative Thurston–Bennequin number for
Legendrian knots in contact manifolds of such topological type. There should be
theorems analogous to those above for non-null-homologous knots in this situation,
but the precise statements would necessarily be more complicated. It would be inter-
esting to see the precise extension of the above theorems to all non-null-homologous
knots in all overtwisted contact manifolds. See [6] and [9] for partial results along
these lines.

1.2. Non-loose transverse knots and the coarse classification of transverse fibered
knots realizing the Bennequin bound. In [5], Colin, Giroux, and Honda proved
that if one fixes a knot type in an atoriodal 3-manifold and a tight contact struc-
ture on the manifold then there are only finitely many Legendrian knots with given
Thurston–Bennequin invariant and rotation number. While this does not imply the
same finiteness result for transverse knots, it seems likely that such a finiteness result
is true for such knots too. Surprisingly this finiteness result is far from true in an
overtwisted contact structure. We begin with some notation and terminology. We
call the open book for S3 with binding the unknot the trivial open book decomposition
and say an open book decomposition is non-trivial if it is not diffeomorphic to the
trivial open book decomposition.

If .M; �/ is a contact 3-manifold and K is a topological knot type we denote by
T .K/ the set of all transverse knots in the knot type K up to contactomorphism
(co-orientation preserving and smoothly isotopic to the identity). (We note that in
some contexts, one might want this to denote the transverse knots up to transverse
isotopy, but in this paper we will only consider the coarse classification of knots.)



On knots in overtwisted contact structures 233

If n is an integer then

Tn.K/ D fT 2 T .K/ W sl.T / D ng
is the set of transverse knots in the knot type K with self-linking number n.

Given a null-homologous knot K we will denote the maximal Euler characteristic
for a Seifert surface for K by �.K/.

Theorem 1.6. Let .B; �/ be a non-trivial open book decomposition with connected
binding of a closed 3-manifold M and let �B be the contact structure it supports.
Denote by � the contact structure obtained from �B by a full Lutz twist along B .
Then T��.B/.B/ contains infinitely many distinct non-loose transverse knots up to
contactomorphism (and hence isotopy too).

This theorem gives the first known example of a knot type and contact structure
which supports an infinite number of transverse knots with the same self-linking
number. We have a similar result using half-Lutz twists.

Theorem 1.7. Let .B; �/ be a non-trivial open book decomposition with connected
binding of a closed 3-manifold M and let �B be the contact structure it supports.
Denote by � the contact structure obtained from �B by a half Lutz twist along B .
Then T�.B/.B/ contains infinitely many distinct non-loose transverse knots up to
contactomorphism (and hence isotopy too).

Finally we have the following less specific but more general theorem along these
lines.

Theorem 1.8. Let K be a null-homologous knot type in a closed irreducible 3-man-
ifold M with Seifert genus g > 0. There is an overtwisted contact structure for
which T2g�1.K/ is infinite and a distinct overtwisted contact structure for which
T�2gC1.K/ is infinite.

Remark 1.9. We note that as mentioned above, and proven in Corollary 2.3 be-
low, any transverse unknot in an overtwisted contact manifold is loose. Hence the
previous theorem implies that the unknot is the unique null-homologous knot in
any (irreducible) manifold that does not have non-loose transverse representatives
in some overtwisted contact manifold (in fact all other null-homologous knots have
non-loose transverse representatives in at least two overtwisted contact manifolds).
The reason for this is simply that the unknot is the unique knot whose complement
has compressible boundary.

Since, as noted above, Legendrian approximations of non-loose transverse knots
are also non-loose, we see that all null-homologous knots have non-loose Legendrian
representatives in some overtwisted contact structure.
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Using results from [18] we can refine Theorem 1.6 for hyperbolic knots to give the
coarse classification of transverse knots in a fibered hyperbolic knot type that realize
the upper bound in Proposition 1.3.

Theorem 1.10. Let .B; �/ be an open book decomposition with connected binding
of a closed 3-manifold M and let �B be the contact structure it supports. Denote
by � the contact structure obtained from �B by a full Lutz twist along B . If B is a
hyperbolic knot then

T��.B/.B/ D fK�g [ fKigi2A;

where A D N if �B is tight and A D N [ f0g if not; and if � 0 is any overtwisted
contact structure not isotopic to � then

T��.B/.B/ D fK�g:
Moreover

� K� is loose and the knot Ki is non-loose and has Giroux torsion i along a torus
parallel to the boundary of a neighborhood of Ki ;

� the Heegaard–Floer invariants of all knots in T��.B/.B/ vanish except for K0,
which only exists if �B is overtwisted;

� all knots in T��.B/.B/, except possibly K0, if it exists, become loose after a
single stabilization.

We note that K0 in this theorem might or might not be loose after a single sta-
bilization, but it will certainly become loose after a sufficiently large number of
stabilizations.

Remark 1.11. We note that while Theorem 1.7 does allow us to conclude that for the
binding of an open book there is at least one overtwisted contact structure such that
T�.B/.B/ is infinite, the technology in [18] does not appear strong enough to prove a
results similar to Theorem 1.10 in this case.

1.3. Non-loose Legendrian knots and the coarse classification of Legendrian
knots. We can use the coarse classification of transverse knots to understand some
Legendrian knots in the same knot types. If .M; �/ is a contact 3-manifold and K

is a topological knot type, then we denote by L.K/ the set of all Legendrian knots
in the knot type K up to contactomorphism (co-orientation preserving and smoothly
isotopic to the identity). If m and n are two integers then

Lm;n.K/ D fL 2 L.K/ W r.L/ D m and tb.L/ D ng
is the set of Legendrian knots in the knot type K with rotation number m and
Thurston–Bennequin invariant equal to n.
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Theorem 1.12. Let .B; �/ be an open book decomposition with connected binding
of a closed 3-manifold M and let �B be the contact structure it supports. Denote
by � the contact structure obtained from �B by a full Lutz twist along B . If B is a
hyperbolic knot then there is an m 2 Z [ f1g depending only on B such that for
each fixed integer n we have

L�.B/Cn;n.B/ D fL�g [ fLn;igi2An
;

where An D N if �B is tight or n > m and An D N [ f0g if not; and if � 0 is any
overtwisted contact structure not isotopic to � then

L�.B/Cn;n.B/ D fL�g:
See Figure 1. Moreover

� L� is loose and the knot Ln;i is non-loose and has Giroux torsion i along a torus
parallel to the boundary of a neighborhood of Ln;i ;

� the Heegaard–Floer invariants of all knots in L�.B/Cn;n.B/ vanish except for
Ln;0, which is non-zero (recall Ln;0 only exists if �B is overtwisted and n � m);

� all knots in L�.B/Cn;n.B/, except possibly Ln;0, if it exists, become loose after
a single positive stabilization;

� the negative stabilization of Ln;i is Ln�1;i .

As we noted in the transverse case, this theorem provides the first examples of a
knot type and contact structure that support an infinite number of Legendrian knots
with the same classical invariants. We also remark that if the hypothesis on B being
a hyperbolic knot is dropped then, as in Theorem 1.6 for transverse knots, one can
still conclude that there are infinitely many Legendrian knots with fixed invariants as
in the theorem, but we cannot necessarily give a classification of these Legendrian
knots.

We notice now that if �B and B are smoothly isotopic then we can extend the
above classification.

Theorem 1.13. Given the hypothesis and notation of Theorem 1.12, suppose that �B

is smoothly isotopic to B , where �B denotes B with its orientation reversed. Then
for each fixed integer n we have

L��.B/�n;n.B/ D fL�g [ fLn;igi2An
;

where An D N if �B is tight or n > m and An D N [ f0g if not; and if � 0 is any
overtwisted contact structure not isotopic to � then

L��.B/�n;n.B/ D fL�g:
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Figure 1. The knots discussed in Theorem 1.12. A dot at .m; n/ indicates there is a non-loose
knot with rotation number m and Thurston–Bennequin invariant n. The subscript on the dot
indicates the set that indexes the family of non-loose Legendrian knots with invariants given
by the coordinates. The line is given by �m C n D ��.B/.

Reflecting Figure 1 about the r D 0 line depicts the knots described here. More-
over

� L� is loose and the knot Ln;i is non-loose and has Giroux torsion i along a torus
parallel to the boundary of a neighborhood of Ln;i ;

� the Heegaard–Floer invariants of all knots in L��.B/�n;n.B/ vanish except for
Ln;0, which is non-zero (recall Ln;0 only exists if �B is overtwisted and n � m);

� all knots in L��.B/�n;n.B/, except possibly Ln;0 if it exists, become loose after
a single negative stabilization;

� the positive stabilization of Ln;i is LnC1;i .

Remark 1.14. There is an amusing corollary of Theorems 1.12 and 1.13. Consider
the set zLr;t .B/, where the tilde indicates that we are considering Legendrian knots up
to isotopy not just contactomorphism (co-orientation preserving and isotopic to the
identity). There is a natural surjective map zLr;t .B/ ! Lr;t .B/. While it is suspected
that this map is not injective in general (though some times it is, for example when
the ambient contact manifold is S3 with its standard contact structure), it is difficult
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to come by specific non-injective examples. In the following paragraph we show how
to use Theorems 1.12 and 1.13 to construct the first such examples; that is, examples
where one knows there is a difference between the classification Legendrian knots
up to isotopy and the classification up to contactomorphism (isotopic to the identity).
We also note that this fact proves that the space of contact structures on M has a
non-trivial loop based at the contact structure considered in the theorem.

Under the hypothesis of Theorem 1.13, given the non-loose Legendrian L��;i 2
L0;��.B/.B/ from Theorem 1.12 and the non-loose knot L0��;i 2 L0;��.B/.B/ from
Theorem 1.13 we know L��;i and L0��;i are contactomorphic by Theorem 1.12. But
notice that they cannot be Legendrian isotopic since a positive stabilization of L��;i

will result in a loose knot while a positive stabilization of L0��;i will yield a non-
loose knot. (Recall stabilization is a well-defined operation and hence Legendrian
isotopic knots cannot have different stabilizations.) Notice that this fact concerning
stabilizations does not prohibit L��;i and L0��;i from being contactomorphic since
a contactomorphism can reverse the sense of stabilization. (To clarify this last state-
ment, we notice from the proof of Theorem 1.13 that L0��;i D �L��;i . Now let N

be a standard neighborhood of a Legendrian knot L and let N 0 � N be a standard
neighborhood of a stabilization of L. The region N nN 0 D T 2 � Œ0; 1� is a basic slice,
see [24] more on this terminology, and the sign of the basic slice is determined by the
sign of the stabilization. Moreover, the sign of the stabilization is also determined
by the orientation on L. Thus when considering a contactomorphism from L��;i to
�L��;i D L0��;i we get an induced contactomorphism of their complements. Stabi-
lizing one will add a basic slice to its complement and since the contactomorphism
under consideration reverses the orientation on the underlying knot it will reverse the
sign of the basic slice and hence the sense of the stabilization. We notice that the
contactomorphism of the complements of L0��;i and L��;i extends to a co-orientation
reversion contactomorphism of the complements of their stabilizations. We also no-
tice that this phenomena can only happen since, as plane fields, � and �� are isotopic
and the rotation numbers of the knots in question are zero.)

Recall that two Legendrian knots with the same classical invariants will eventually
become isotopic after sufficiently many positive and negative stabilizations. Trying
to understand exactly how many is an interesting question. We have the following
partial results.

Proposition 1.15. Let .B; �/ be an open book decomposition with connected binding
of a closed 3-manifold M and let �B be the contact structure it supports. Assume
that �B is tight and �B is not isotopic to B . (Here �B denotes B with the reversed
orientation.) Consider the contact structure � obtained from �B by a full Lutz twist
along B . If a knot L 2 L.B/ satisfies

tb.L/ � r.L/ > ��.B/

then it becomes loose after 1
2
.��.B/ � tb.L// or fewer positive stabilizations.
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There is a similar statement for the case when B is isotopic to �B . In the next
subsection we discuss the “geography problem” for Legendrian knots and in particular
at the end of the section we discuss the significance of this proposition.

Remark 1.16. We notice that examining the proof of Proposition 1.15 allows one to
drop the hypothesis that �B is not isotopic to B if tb.L/ C r.L/ 6D ��.B/.

1.4. The geography for non-loose knots. Let K be a knot type on a contact man-
ifold .M; �/. We have the map

ˆ W L.K/ �! Z � Z;

L 7�! .r.L/; tb.L//:

Determining which pairs of integers are in the image of ˆ is called the Legendrian
geography problem. The image if ˆ is frequently called the Legendrian mountain
range of K because in the case that � is the tight contact structure on S3 the image
resembles the silhouette of a mountain range. This structure comes from the facts that
when � is the tight contact structure on S3 we know that (1) the image is symmetric,
(2) the Thurston–Bennequin invariant is bounded above, and (3) positive and negative
stabilizations show that the pairs .m � k; n C l/, where k � 0; jl j � k, and l C k is
even, are in the image if .m; n/ is. (Recall that for any Legendrian knot L we must
have that tb.L/ C r.L/ is odd, so (3) says all possible pairs of points in the cone with
sides of slope ˙1 and top vertex .m; n/ are realized by Legendrian knots that are
stabilizations of the given knot.) For a general contact structure we only have (3) and
if the structure is tight (2).

Once one understand the Legendrian geography problem for a knot type K then
the classification of Legendrian knots will be complete when one understands the
preimage of each pair of integers. Determining ˆ�1.m; n/ is known as the botany
problem for K . The weak botany problem asked to determine if ˆ�1.m; n/ is empty,
finite or infinite for each pair .m; n/. As mentioned above if K is a hyperbolic knot
and � is tight then the preimage of any .m; n/ is either empty or finite.

If � is overtwisted then every pair of integers .m; n/ for which m C n is odd
is in the image of ˆ. Thus the general geography problem is not interesting for
overtwisted contact structures and so we need to restrict our attention to non-loose
knots. Let Lnl.K/ be the set of non-loose Legendrian knots in the knot type K .
Determining ˆ.Lnl.K// will be called the Legendrian geography problem when �

is overtwisted, which is what we consider from this point on. Similarly when we
discuss the weak botany problem for overtwisted contact manifolds we will only be
considering the preimage of .m; n/ that lie in ˆ.Lnl.K// (since by Theorem 1.4 we
know the preimage contains exactly 1 loose Legendrian knot if n C m is odd and
none if it is even).

We now summarize what we know about the geography problem for non-loose
knots. First, Proposition 1.1 implies that (assuming the knot under consideration is
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not the unknot!) the image of ˆ (when restricted to non-loose knots) is contained in
the region shown in Figure 2. The four black lines l1; : : : ; l4, are the lines

˙ tb.L/ ˙ r.L/ D ��.†/

(where all combinations of ˙ are considered). The region is broken into 7 subregions,
R1; : : : ; R7 as indicated in the figure, by the four lines. The regions Ri are open
regions, when discussing the corresponding closed regions we will of course us the
notations xRi .

R1

R2

R3

R4 R5

R6 R7

tb

r

l1

l2

l3

l4

Figure 2. A non-loose knot must map to the grey region under the map ˆ. The black lines,
labeled l1; : : : ; l4, break the grey region into seven subregions as indicated in the figure. The
regions Ri are open regions (that is not including the points on the black lines).

Question 1. Can there be a non-loose knot with image in R1 or R2?

While we believe the answer to this question is likely “yes”, it seems fairly likely
that the answer to the next, related, questions is “no”.

Question 2. Can there be a .m; n/ 2 R1 [ R2 with ˆ�1..m; n// infinite?
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We know from Colin, Giroux and Honda [5] that if you fix a tight contact structure
on a manifold, a knot type and two integers, there are finitely many Legendrian knots
in the given knot type realizing the integers as their Thurston–Bennequin invariant
and rotation number. This seems close to proving the answer to the following question
is “yes”.

Question 3. Given a knot type K in a manifold M are there only finitely many
overtwisted contact structures on M such that K can have non-loose representatives?

In fact the answer to this question would be “yes” if the following general question
about Legendrian knots could be answered in the affirmative.

Question 4. Given a knot type K in M is there a number n such that if L is any
Legendrian representative in any contact structure on M with tb.L/ < n then L

destabilizes?

Of course this question is also very interesting if one first fixes the contact structure
and then asks for the integer n. If this more restricted question had a positive answer
then the Colin–Giroux–Honda result would imply that for any fixed tight contact
structure � on a manifold M the Legendrian knots in a given knot type K would
be “finitely generated”, by which we mean there would be a finite number of non-
destabilizable Legendrian knots in L.K/ such that all other elements in L.K/ would
be stabilizations of these. This would also be true in overtwisted contact structures
up to Lutz twisting along the knot.

We think it is very likely the answer to the following weaker version of Question 3
is “yes”.

Question 5. Given a knot type K in a manifold M are there only finitely many
overtwisted contact structures on M such that ˆ can have infinite preimage at some
point? (Maybe even at most two such structures.)

With the notation established for Figure 2 we discuss Proposition 1.15. The
proposition says that if L is a Legendrian representative with invariants in the region
R1 [ R4, then once it is positively stabilized into region R5 or R3 it will be loose.
This is surprising given that according to the bounds given in Proposition 1.1 a knot
with invariants in R4 could theoretically be stabilized positively an arbitrary number
of times and stay non-loose.

Acknowledgments. The author thanks Amey Kolati, Lenny Ng, and Bulent Tosun
for useful discussions and e-mail exchanges during the preparation of this work. He
also thanks Hansjörg Geiges and Mirko Klukas for interesting discussions concerning
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the inclusion of Theorem 2.2 that he and the author worked out some years ago. The
author is also grateful to the referees of this paper who made valuable comments that
helped clarify many points in the paper.
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2. Background concepts

We assume the reader is familiar with convex surface theory and Legendrian knots;
see for example [13] and [16]. For convenience we recall some of the key features of
Legendrian and transverse knots used in this paper in Subsection 2.1. In the following
subsection we recall Eliashberg and Fraser’s classification of non-loose Legendrian
unknots. We sketch a simple proof of this result that T. Vogel and the author had
worked out, and observe the immediate corollary concerning non-loose transverse
unknots. In Section 2.3 we recall the definition of Giroux torsion and make several
observations necessary for the proofs of our main results. In the last subsection we
recall the notion of quasi-convexity introduced in [18].

2.1. Neighborhoods of Legendrian and transverse knots. Recall that a convex
torus T in a contact manifold .M; �/ will have an even number of dividing curves of
some slope. We call the slope of the dividing curves on a convex torus the dividing
slope of the torus. If there are just two dividing curves then using the Legendrian
realization principle of Giroux we can arrange that the characteristic foliation has
two lines of singularities parallel to the dividing curves, these are called Legendrian
divides, and the rest of the foliation is by curves of some slope not equal to the dividing
slope. These curves are called ruling curves and their slope is called the ruling slope.
Any convex torus with such a characteristic foliation will be said to be in standard
form. Note that given a torus in standard form we can perturb the foliation to have
two closed leaves parallel to the dividing curves and the other leaves spiraling from
one closed leaf to the other.

The regular neighborhood theorem for Legendrian submanifolds says that given
a Legendrian knot L in a contact manifold .M; �/ there is some neighborhood N

of L that is contactomorphic to a neighborhood N 0 of the image of the x-axis in
R3=.x 7! x C 1/ Š S1 � R2 with contact structure �std D ker.dz � y dx/. By
shrinking N and N 0 if necessary we can assume that N 0 is a disk in the yz-plane
times the image of the x-axis. It is easy to see, using the model N 0, that @N is a
convex torus with two dividing curves of slope 1

n
where n D tb.L/. Thus we can

assume that @N is in standard form. Moreover, notice that L˙ D f.x; ˙"; 0/g � N 0
is a .˙/-transverse curve. The image of LC in N is called the transverse push-off of
L and L� is called the negative transverse push-off. One may easily check that L˙
is well-defined and compute that

sl.L˙/ D tb.L/ � r.L/:

We now recall how to understand stabilizations and destabilizations of a Legen-
drian knot K in terms of the standard neighborhood. Inside the standard neighborhood
N of L we can positively or negatively stabilize L. Denote the result SC.L/, respec-
tively S�.L/. Let Ns be a neighborhood of the stabilization of L inside N . As above
we can assume that Ns has convex boundary in standard form. It will have dividing
slope 1

n�1
. Thus the region N n Ns is diffeomorphic to T 2 � Œ0; 1� and the contact
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structure on it is easily seen to be a “basic slice”; see [24]. There are exactly two
basic slices with given dividing curves on their boundary and as there are two types
of stabilization of L we see that the basic slice N n Ns is determined by the type of
stabilization done, and vice versa. Moreover if N is a standard neighborhood of L

then L destabilizes if the solid torus N can be thickened to a solid torus Nd with
convex boundary in standard form with dividing slope 1

nC1
. Moreover the sign of the

destabilization will be determined by the basic slice Nd n N .
Denote by Sa the solid torus f.'; .r; �// j r � ag � S1�R2, where .r; �/ are polar

coordinates on R2 and ' is the angular coordinate on S1, with the contact structure
�cyl D ker.d' C r2 d�/. Given a transverse knot K in a contact manifold .M; �/

one may use a standard Moser type argument to show that there is a neighborhood
N of K in M and some positive number a such that .N; �jN / is contactomorphic
to Sa. Notice that the tori @Sb inside of Sa have linear characteristic foliations of
slope �b2. Thus for all integers with 1p

n
< a we have tori Tn D @S1=

p
n with linear

characteristic foliation of slope � 1
n

. Let Ln be a leaf of the characteristic foliation of
Tn. Clearly Ln is a Legendrian curve in the same knot type as T and tb.Ln/ D �n.
Any Legendrian L Legendrian isotopic to one of the Ln so constructed will be called
a Legendrian approximation of K.

Lemma 2.1 (Etnyre and Honda, 2001, [16]). If Ln is a Legendrian approximation
of the transverse knot K then .Ln/C is transversely isotopic to K. Moreover, LnC1

is Legendrian isotopic to the negative stabilization of Ln.

2.2. Non-loose knots in S 3. In this section we recall the following coarse classifi-
cation of unknots in overtwisted contact structures on S3. To state the theorem we
recall that the homotopy class of a plane field � on M can be determined by com-
puting two invariants [23]: the 2-dimensional invariant, which is determined by the
spinc structure s� associated to the plane field (if H 2.M I Z/ has no 2-torsion then s�

is determined by the Euler class e.�/ of �) and the 3-dimensional invariant d3.�/. In
particular, on the 3-sphere the 2-dimensional invariant of a plane field vanishes and
so it is determined by its 3-dimensional invariant d3.�/ 2 Z.

Theorem 2.2 (Eliashberg and Fraser, 2009, [11]). There is a unique overtwisted
contact structure � on S3 that contains non-loose Legendrian unknots. This contact
structure has d3.�/ D 1 and is shown in Figure 3. Every Legendrian unknot with
tight complement has tb > 0 and up to contactomorphism there are exactly two such
knots with tb D n > 1, they are distinguished by their rotation numbers which are
˙.n � 1/, and a unique such knot with tb D 1.

We include a brief proof of this result that the author worked out with Thomas
Vogel but never published. This is essentially the same as the proof in [11], though
it is couched in somewhat different language and we identify a surgery picture for
the minimal tb example in Figure 3. Before giving the proof we notice two simple
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.C1/

.C1/

Figure 3. The two contact surgeries on the left give the contact structure � in Theorem 2.2.
The dotted Legendrian becomes a Legendrian unknot L with tb D 1 in the surgered manifold.
The disk L bounds is indicated on the right.

corollaries concerning transverse unknots and non-loose unknots in other contact
manifolds.

Corollary 2.3. Any transverse unknot in any overtwisted contact manifold is loose
and hence coarsely determined by its self-linking number.

Proof. Since any non-loose Legendrian unknot can be negatively stabilized until it is
loose, Lemma 2.1 implies that any transverse unknot is the transverse push-off of a
loose Legendrian. Since the transverse push-off can be done in any C 1-neighborhood
of the Legendrian knot it is clear that the overtwisted disk in the complement of the
Legendrian is also in the complement of the transverse knot. Thus any transverse
unknot in an overtwisted contact structure is loose. The rest follows from Theorem 1.5

Corollary 2.4. On a fixed 3-manifold M with fixed spinc structure s there is an over-
twisted contact structure having non-loose Legendrian unknots and associated spinc

structure s if and only if there is a tight contact structure on M with associated spinc

structure s. Moreover, the number of such overtwisted contact structure associated
to s is equal to the number of tight contact structures associated to s.

Proof. Let U be an unknot in M and U 0 be an unknot in S3. The unique prime
decomposition of tight contact manifolds [2] implies that any tight contact structure on
M nU comes from tight contact structures on M and S3 nU 0. The result follows.

We now turn to the classification of non-loose unknots in S3.

Proof of Theorem 2.2. Let � be any overtwisted contact structure on S3 and L a
Legendrian unknot in .S3; �/. We can decompose S3 as

S3 D V1 [' V2
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where Vi D S1 � D2 and ' W @V1 ! @V2 is the map given by

' D
�

0 1

1 0

�

in meridian-longitude coordinates on each @Vi . Moreover we can assume that V1 is a
standard neighborhood of L with convex boundary having dividing slope 1=n where
n D tb.L/. If we assume the complement of L is tight then the contact structure
on V2 is tight (of course, the contact structure on V1 is always tight). The boundary
of V2 is convex and has dividing slope n. Clearly L, up to contactomorphism, is
determined by the contact structure on V2. In [21] and [24] tight contact structures on
solid tori were classified and this leads to the following possibilities for tight contact
structures on V2. If n < 0 then there are precisely jnj distinct tight contact structures
on V2 with the given dividing curves on the boundary. All of the contact structures
are realized as the complement of a tb D n, Legendrian unknot in the standard tight
contact structure on S3. Thus they never show up as the complement of an unknot
in an overtwisted contact structure. If n D 0 then V2 has dividing slope 0 and hence
the contact structure must be overtwisted. Thus n 6D 0 if the complement of L is
tight. Finally, if n > 1 then there are two tight contact structures on V2 and only one
tight contact structure on V2 when n D 1. Thus we have shown there is a unique
Legendrian knot in an overtwisted contact structure on S3 that has tb D 1 and there
are at most two when tb > 1. We are left to show that these all occur in the same
contact structure, that contact structure has d3 D 1 and all these knots are distinct.
We begin by inductively showing that the Legendrian knots with tb D n are in the
same overtwisted contact structure as the knot with tb D 1. To this end let L be the
Legendrian unknot with tb D 1. The unique tight contact structure on V2 has relative
Euler class e D 0. Thus from [16] we see that r.L/ D 0. Now V2 can be written as
V2 D S [ N where S is as solid torus and N Š T 2 � Œ0; 1� where T 2 � f1g D @V2

and T 2 � f0g is glued to @S . We can arrange that @S is convex with two dividing
curves of slope 2. The contact structure on N is a basic slice. There are two basic
slices and they are distinguished by the sign of the bypass on a meridional annulus.
Moreover, we can realize both signs for N inside V2 as may be easily checked in a
model for V2. Thinking of N as glued to V1 now, instead of V2 we see that V1 [ N

is a solid torus with convex boundary having two dividing curves of slope 1
2

. This
is a standard neighborhood of a Legendrian unknot L0 with tb D 2. Moreover L

is a stabilization of L0 and which stabilization it is depends on the sign of the basic
slice N ; see Section 2.1 above. Thus if L is in the contact structure � then there are
two Legendrian unknots LC and L� in � such that S�.L˙/ D L. So tb.L˙/ D 2

and r.LC/ D 1 D �r.L�/ and we see that LC and L� are distinct Legendrian knots
and they exist in the same contact structure as L.

Now suppose we have shown that the Legendrian unknots with tb � n and tight
complements all exist in the same overtwisted contact structure and satisfy r.L/ D
˙.tb.L/�1/. Consider a Legendrian unknot L with tb D n. We can decompose V2 as
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above, but with @S having dividing slope nC1. Now N is again a basic slice, but only
one basic slice can be a subset of V2. Using the relative Euler class discussed in [16]
one may easily see the sign of the bypass determining the contact structure on N agrees
with the sign of r.L/. For the rest of the argument we assume the sign is positive.
As above, V1 [ N is a neighborhood of a Legendrian unknot L0 with tb.L0/ D n C 1

and S�.L0/ D L. (Note the sign of the bypass switches since we turned N upside
down.) Thus r.L/ D r.L0/ � 1 and r.L0/ D r.L/ C 1 D .n � 1/ C 1 D n.

We are left to identify the contact structure containing the unknot with tb D 1.
This is shown in Figure 3. One may easily compute

d3.�/ D 1

4
.c2.X/ � 3�.X/ � 2�.X// C 2 D 1;

where X is the bordism from S3 to S3 given in the figure, �.X/ D 0 its the signature
of X , �.X/ D 2 its Euler characteristic of X and c2 D 0 is the square of the “Chern
class” of the (singular) almost complex structure on X . (For a discussion of this
formula see [7].) If L is the knot indicated in the figure, then Legendrian surgery on
L cancels one of the C1-contact surgeries in the figure. Thus the resulting manifold
is the contact manifold obtained by C1-contact surgery on the tb D �1 unknot in
the standard tight contact structure on S3. This is well known to be the tight contact
structure on S1�S2 (see [7]). Thus the complement of L (which is a subset of the tight
contact structure on S1 � S2) is clearly tight. Moreover, in Figure 3 we see a disk L

bounds in the surgered manifold, indicating that L is an unknot. This disk gives L

a framing that is 2 less than the framing given by a disk in S3 before the surgeries.
Thus we see that the contact framing with respect to this disk is 1 D �1 C 2.

2.3. Giroux torsion. Given a contact manifold .M; �/ and an isotopy class of tori
ŒT � in M we define the Giroux torsion of .M; �/ in the isotopy class ŒT �, denoted
tor..M; �/; ŒT �/, to be the maximum natural number n such that there exists a contact
embedding

' W .T 2 � Œ0; 1�; �n/ �! .M; �/;

where '.T 2 � f0g/ 2 ŒT � and the contact structure �n on T 2 � Œ0; 1� (thought of as
R2=Z2 � Œ0; 1�) is given by �n D ker.sin.2n�t/ dx Ccos.2n�t/ dy/. We sometimes
refer to “half-Giroux” torsion when T 2 � Œ0; 1=2�, with the above contact structure,
can be contact embedded in .M; �/.

The Giroux torsion of .M; �/ is the maximal Giroux torsion taken over all isotopy
classes of tori in M . Recall that the Giroux torsion of M is infinite in all isotopy
class of tori if � is overtwisted. It is unknown if the Giroux torsion is finite when �

is tight, though this is frequently the case [4]. We make a simple observation about
Giroux torsion that we will need below.
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Lemma 2.5. Let .M; �/ be a contact manifold with boundary a torus T and ŒT � the
isotopy class of T . Assume the characteristic foliation on @M is linear. Then

tor..M; �/; ŒT �/ D tor..int M; �jint M /; ŒT �/;

where int M denotes the interior of M .

Proof. The inequality tor..M; �/; ŒT �/ � tor..int M; �jint M /; ŒT �/ is obvious. For
the other inequality assume we have the contact embedding ' W .T 2 � Œ0; 1�; �n/ !
.M; �/. One of the boundary components of T 2 � Œ0; 1� is mapped into the interior
of M (recall M only has one boundary component and it is in the isotopy class ŒT �).
Assume that it is T 2 � f1g that maps into the interior (the other case being similar).
We can extend ' to an embedding of T 2 � Œ0; 1 C "� for some ", where the contact
structure on T 2 � Œ0; 1C"� is given by ker.cos.2n�t/dx C sin.2n�t/dy/. From this
we easily find a contact embedding of .T 2 � Œ0; 1�; �n/ into the interior of M .

2.4. Quasi-compatibility. In [18] the notion of quasi-compatibility was introduced.
Let � be an oriented contact structure on a closed, oriented manifold M and .L; †/

an open book for M . We say � and .L; †/ are quasi-compatible if there exists a
contact vector field for � which is everywhere positively transverse to the fibers of
the fibration .M n L/ ! S1 and positively tangent to L.

One can construct contact structure quasi-compatible with an open book using
a slight modification of the standard construction of compatible contact structures.
Specifically, given the open book .L; †/ we notice that M �L is the mapping torus of
some diffeomorphism ' W † ! †, where ' is the identity map near @†. According
to [20], given any collection of closed curves 	 on † that divide † (in the sense of
dividing curves for a convex surface) and are disjoint from @†, we can construct an
R-invariant contact structure � on † � R that induce the curves 	 as the dividing
curves on † � ftg for any t 2 R. If '.	/ is isotopic to 	 then we can find (after
possibly isotoping ') a negative function h W † ! R such that the top and bottom of
the region between †�f0g and the graph of h can be glued via ' so that � restricted to
this region induces a contact structure on M � L. After slightly altering this contact
structure near L we can then extend this contact structure over L in the standard
manner. This gives a contact structure � that is quasi-compatible with .L; †/ (and
induces the given ' invariant dividing curves on all the pages).

One of the main technical results of [18] was the following.

Theorem 2.6 (Etnyre and Van Horn-Morris, 2010, [18]). Let .B; †/ be a fibered
transverse link in a contact 3-manifold .M; �/ and assume that � is tight when re-
stricted to M n B . If sl�.B; †/ D ��.†/, then � is quasi-compatible with .B; †/

and either

(1) � is supported by .B; †/, or

(2) � is obtained from �.B;†/ by adding Giroux torsion along tori which are incom-
pressible in the complement of B .
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3. Observations about non-loose knots

Though proven in [9] we give a quick proof of Proposition 1.1 for the convenience of
the reader. Though essentially the same as the proof given in [9] it uses quite different
language.

Proof of Proposition 1.1. Notice that the inequality to be proved is equivalent to

tb.L/ ˙ r.L/ � ��.L/ if tb.L/ � 0,

� tb.L/ ˙ r.L/ � ��.L/ if tb.L/ > 0.

To establish this let N be a standard convex neighborhood of L with ruling slope 0
(that is, given by the Seifert framing) and L0 a ruling curve on @N . Clearly L0 is
null-homologous in the complement of L. The dividing curves on @N have slope

1
tb.L/

thus twisting of L0 with respect to @N is �j tb.L/j; however, since the framing
on L0 induced by the Seifert surface for L0 and by @N are the same we also see that
tb.L0/ D �j tb.L/j. Checking that r.L/ D r.L0/ one obtains the desired inequalities
from the Bennequin inequality applied to L0 in .M �N /. To see that r.L/ D r.L0/ we
can trivialize the contact planes in the neighborhood N by extending the unit tangent
vector to L to a non-zero section of �. Then any Legendrian longitude on @N that
is oriented in the same direction as L clearly was winding zero with respect to this
trivialization and thus the rotation numbers of this longitude and L will agree.

We are now ready to establish Proposition 1.2 that explains the relation between
a non-loose transverse or Legendrian knot and it Legendrian approximations or, re-
spectively, transverse push-offs.

Proof of Proposition 1.2. For the first statement let L be a Legendrian knot such
that its positive transverse push-off LC is transversely isotopic to T . If there is an
overtwisted disk D in the complement of L then D is in the complement of some
small neighborhood of L. Since LC can taken to be in any neighborhood of L we
see that D is in the complement of LC. Thus extending the transverse isotopy of
LC to T to a global contact isotopy we can move D to an overtwisted disk in the
complement of T .

To prove the second statement in the theorem we note, Corollary 2.3, that all
transverse unknots in an overtwisted contact structure are loose, but by Theorem 2.2
we know there are non-loose Legendrian unknots in a particular contact structure
on S3. Thus the transverse push-off of a non-loose Legendrian knot does not need
to be non-loose. On the other hand, the proof of Theorem 1.12 shows that all the
non-loose Legendrian knots considered in that theorem, have non-loose transverse
push-offs.

The proof of Proposition 1.3 is a fairly easy consequence of the previous two
proofs.
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Proof of Proposition 1.3. Let K be a transverse knot with sl.K/ > ��.†/ and let
L be a Legendrian approximation of K, so tb.L/ � r.L/ > ��.†/. Notice that if
tb.L/ � 0 then it does not satisfy the bound given in Proposition 1.1 and thus L is
loose and by the proof of Proposition 1.2 we see that K is loose as well. By Lemma 2.1
all negative stabilizations of L will be Legendrian approximations of K. Since after
stabilizing enough times we can assume that L has non-positive Thurston–Bennequin
invariant we see that K must be loose.

4. Loose knots

In this section we explore the homotopy theory of plane fields in the complement
of Legendrian knots. More generally, we study homotopy classes of plane fields
on manifolds with boundary. We assume the reader is familiar with the Pontryagin–
Thom construction on a closed manifold and its implications for classifying homotopy
classes of plane fields on a 3-manifold; see for example [7] and [23]. We end this
section by proving Theorems 1.4 and 1.5 concerning the coarse classification of loose
Legendrian and transverse knots.

4.1. Homotopy classes of plane fields on manifolds with boundary. We begin
by recalling the Pontryagin–Thom construction in the context of 3-manifolds with
boundary. Let M be an oriented 3-manifold with boundary. The space of oriented
plane fields on M is denoted P .M/ and if one is given a plane field 
 along @M then
the set of oriented plane fields that extend 
 to all of M will be denoted P .M; 
/.
Similarly we denote the space of unit vector fields on M by V.M/ and the set of
unit vector fields extending a given unit vector field v on the boundary is denoted
by V.M; v/. All of these spaces can be topologized as a space of sections of an
appropriate bundle. Also notice that P .M; 
/ and V.M; v/ might be empty depending
on 
 and v.

Choosing a metric on M we can identify oriented plane fields in M with unit
vector fields on M by sending a plane field � to the unit vector field v such that v

followed by an oriented basis for � orients TM . Thus a choice of metrics identifies
the following spaces

P .M/ Š V.M/ and P .M; 
/ Š V.M; v/;

where v is the unit vector field along the boundary of M associated to 
 by the metric
and orientation.

It is well known that the tangent bundle of M is trivial. Fixing some trivialization,
we identify TM D M � R3 and the unit tangent bundle of M with M � S2. Using
these identifications we can identify the space of unit vector fields V.M/ and the space
of smooth functions from M to S2, which we denote by Maps.M; S2/. Similarly
if the vector field v along @M corresponds to the function fv then V.M; v/ can be
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identified with the space of smooth functions from M to S2 that agree with fv on
@M , which we denote by Maps.M; S2I fv/.

We now assume that fv W @M ! S2 misses the north pole of S2 (and hence is
homotopic to a constant map, which we know must happen if V.M; v/ 6D ;). Now
given an element f 2 Maps.M; S2I fv/ we can homotope f so that it is transverse
to the north pole p. Then Lf D f �1.p/ is a link contained in the interior of M .
Moreover we can use f to give a framing ff to Lf . As f homotopes through maps in
Maps.M; S2I fv/, the framed link .Lf ; ff / changes by a framed cobordism. Thus to
any homotopy class of vector field extending v we can assign a well-defined framed
cobordism class of framed links contained in the interior of M . The standard proof
of the Pontryagin–Thom construction in the closed case easily extends to show this is
actually a one-to-one correspondence. This establishes the following relative version
of the Pontryagin–Thom construction.

Lemma 4.1. Assume that 
 is a plane field defined along the boundary of M that
in some trivialization of TM corresponds to a function that misses the north pole of
S2 (as discussed above). There is a one-to-one correspondence between homotopy
classes of plane fields on M that extend 
 on @M and the set of framed links in the
interior of M up to framed cobordism.

Let F .M/ denote the group of framed links in the interior of M up to framed
cobordism. If .L; f/ is a framed link in the interior of M then L represents a homology
class ŒL�, so we can define a homomorphism

ˆ W F .M/ �! H1.M I Z/;

.L; f/ 7�! ŒL�:

The homomorphism ˆ is clearly surjective. In order to determine the preimage of a
homology class we first recall that there is a natural “intersection pairing” between
H1.M I Z/ and H2.M; @M I Z/. Let i� W H2.M I Z/ ! H2.M; @M I Z/ be the map
induced from the inclusion .M; ;/ ! .M; @M/. For h 2 H1.M I Z/ set

Dh D fh � Œ†� W Œ†� 2 i�.H2.M I Z//g;
where h � Œ†� denotes the intersection pairing between the two homology classes. The
set Dh is clearly a subgroup of Z. Let d.h/ be the smallest non-negative element
in Dh.

Lemma 4.2. With the notation as above

ˆ�1.h/ D Z=d.2h/Z;

for any h 2 H1.M I Z/.

The proof of this lemma is an easy adaptation of the argument for the closed case
in [23], so the reader is referred there for the proof.
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Remark 4.3. It is well known in the closed case that if .L� ; f�/ is a framed link
representing a plane field � then 2ŒL� � is the Poincaré dual of the Euler class of �.
The same reasoning shows in the relative case that 2ŒL� � is the Euler class of � relative
to v.

4.2. Homotopy classes of plane fields on link complements. We are now ready
to prove Theorems 1.4 and 1.5. We begin by observing the following consequence
of our discussion above. This result is a “folk” theorem that has appeared in the
literature, see for example [11], though details of the argument have not appeared.
Geiges and, independently, Klukas have also given unpublished proofs of this result
using different techniques.

Lemma 4.4. Let L and L0 be two null-homologous Legendrian knots in a contact
manifold .M; �/. Let N and N 0 denote standard neighborhoods of L and L0 respec-
tively. If L and L0 are topologically isotopic, tb.L/ D tb.L0/ and r.L/ D r.L0/ then
(after identifying N 0 with N via any preassigned isotopy and pushing � 0 forward by
this isotopy) �jM nN is homotopic as a plane field to �jM nN 0 relative to the boundary.

Recall if the Euler class of � is non-zero then to define the rotation number one
needs to specify a homology class for the Seifert surface of L. In this case we assume
the Seifert surfaces for L and L0 are related by the same ambient isotopy that relates
L and L0.

Proof. By assumption there is an ambient isotopy of M taking L0 to L. Pushing �

forward by this isotopy we have two plane fields � and � 0 that agree on a standard
neighborhood N of L D L0. To prove the theorem it suffices to show �jM nN is
homotopic, rel boundary, to � 0jM nN . By Lemma 4.1 the homotopy class of these
plane fields is determined by the framed links .L� ; f�/ and .L� 0 ; f� 0/ associated to
them by the Pontryagin–Thom construction. According to Lemma 4.2 we need to
check that L� and L� 0 represent the same element in H1.M n N I Z/ and that the
framings differ by a multiple of 2d.ŒL� �/.

When applying Lemma 4.1 and Lemma 4.2 we can use any fixed framing of the
tangent bundle that satisfies the hypothesis of Lemma 4.1. To make the computations
below easier we choose a convenient trivialization. We begin by taking the Reeb
vector field v to the contact structure �. After fixing a metric we denote the plane
field orthogonal to the vector v by �v (we begin with a metric for which � is orthogonal
to v). At this point we would like to emphasize that we are currently constructing
a trivialization of the tangent bundle of M and alterations to �v below do not affect
either � or � 0.

Along L D L0 choose the unit tangent vector field u to L if r.L/ D r.L0/
is even, otherwise choose u to be the unit tangent vector in �v along L with one
negative (clockwise) twist added to it. The vector field u can be extended to the
neighborhood N of L (recall � and � 0 agree on N ). We would like to extend u to
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all of M . This is, in general, not possible so we begin by modifying v and u. To
this end notice that a simple computation reveals that with X D M n N we have
H 2.X; @X I Z/ Š H1.X I Z/ Š H1.M I Z/ ˚ Z, with the Z factor generated by the
meridian � to L. Thus the Euler class of �v relative to u on @X is determined by
its evaluation on absolute chains in X � M (that is determined by the Euler class
of �v on M ) and by the evaluation on the Seifert surface of L in X . Since �v is a
contact structure we may perform half Lutz twists on transverse curves in X . Each
such twist changes the Euler class of �v by twice the Poincaré dual of the transverse
curve. Since �v is oriented the component of the relative Euler class in H1.M I Z/ is
even and by the choice of u above the component of the relative Euler class in Z is
also even. Thus by Lutz twists we can arrange that the Euler class of �v , relative to
u on @X , is zero, so u may be extended, as a section of �v , over X . Now choosing
an almost complex structure J on �v we can let w D J u. We can use �v; u; w to
trivialize TM and TX . (That is the vector field v maps to the south pole of S2.)

Using this trivialization we have the framed links .L� ; f�/ and .L� 0; f� 0/ associated
to � and � 0 by the Pontryagin–Thom construction. Moreover, each of these links is
also associated to the contact structure � on M (since we arranged that v describes
� in N and it maps to the south pole of S2). Thus the components of L� and L� 0 in
H1.M I Z/ agree. Moreover, if the rotation number of L is even then it is clear that
L� \ † D r.L/, where † is the Seifert surface. Similarly for L� 0 and r.L0/. If the
rotation numbers are odd then L� \ † D r.L/ C 1 D r.L0/ C 1 D L� 0 \ †. Thus
we see that L� is homologous to L� 0 .

Since � and � 0 are homotopic as plane fields on M we know that f� and f� 0 differ
by the divisibility of the image of the Euler class of � on H2.M I Z/. But this is
exactly 2d.ŒL� �/ as defined above. Thus � and � 0 on M n N are homotopic relative
to the boundary.

Proof of Theorem 1.4. Eliashberg’s classification of overtwisted contact structures
in [10] says that two contact structures are isotopic as contact structures if and only if
they are homotopic as plane fields. Thus if L and L0 are two loose Legendrian knots
with the same Thurston–Bennequin invariant and rotation number, then Lemma 4.4
implies the complements of L and L0 are contactomorphic (rel boundary). The
contactomorphism can clearly be extended over the solid torus neighborhood of L

and L0. Thus L and L0 are coarsely equivalent.
Now given a knot type K and an overtwisted contact structure � there is an

overtwisted disk D and a knot K in the knot type K that is disjoint from D. We can
C 0-approximate K by a Legendrian knot L. Thus we may assume that L is disjoint
from D. Let U and U 0 be the Legendrian boundary of D with opposite orientations.
Notice that tb.U / D tb.U 0/ D 0 and r.U / D � r.U 0/ D 1. It is well known,
see [17], how the Thurston–Bennequin invariant and rotation numbers behave under
connected sums, so we can conclude that

tb.L#U / D tb.L/ C tb.U / C 1 D tb.L/ C 1
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and

r.L#U / D r.L/ C r.U / D r.L/ C 1:

Since connect summing L with U or U 0 does not change the knot type of L we see
that we can find a Legendrian knot in the knot type of K with Thurston–Bennequin
invariant one larger than that of L and with rotation number one larger or one smaller
(by connect summing with U 0).

We can assume that D is convex and hence there is an embedding of D2 � Œ�1; 1�

such that D2 � ftg is an overtwisted disk for all t 2 Œ�1; 1�. Thus we have arbitrarily
many copies of U and U 0. By repeated connect summing of L with U and U 0 or
stabilizing L we can change the Thurston–Bennequin invariant to any desired integer.
Moreover, it is easy to combine connect summing with U and U 0 and stabilization to
realize any integer, of the appropriate parity, as the rotation number of a Legendrian in
the knot type K without changing the Thurston–Bennequin invariant. This finishes
the proof of the theorem.

Proof of Theorem 1.5. Given two loose transverse knots T and T 0 in an overtwisted
contact manifold .M; �/ with the same self-linking number, we can choose Legen-
drian approximations L and L0 of T and, respectively, T 0 such that they have the
same Thurston–Bennequin invariant and rotation number (just take any Legendrian
approximations of each knot and negatively stabilize one of them if necessary). We
can choose L to be in any pre-chosen neighborhood of T . Thus we can choose L

so that it is loose. Similarly we can assume that L0 is loose. From Theorem 1.4
there is a contactomorphism of .M; �/ taking L to L0. As the transverse push-off
of a Legendrian knot is well-defined, we can isotope this contactomorphism through
contactomorphisms so that it takes T to T 0.

Lastly, we can clearly use the Legendrian knots realized in Theorem 1.4 to realize
all the claimed self-linking numbers.

5. Non-loose transverse knots

In this section we prove our main theorems concerning transverse knots, that is
Theorems 1.6 through 1.10. We begin with the construction of infinite families of
transverse knots with the same classical invariants.

Proof of Theorem 1.6. As in the statement of the theorem let .B; �/ be a non-trivial
open book for the manifold M , and �B its corresponding contact structure. Let �n be
the contact structure obtained from �B by adding n full Lutz twists along B . Let Bn

be the core of the Lutz twist tube in �n. Clearly each of the �n; n > 0, is overtwisted
and homotopic, as a plane field, to �B for all n. Thus Eliashberg’s classification of
overtwisted contact structures in [10] implies all the �n; n > 0, are isotopic contact
structures and we denote a representative of this isotopy class by �. Isotoping all the
�n to � we can think of Bn as a transverse knot in �.



On knots in overtwisted contact structures 253

We claim that all the Bn are non-loose. Indeed denote the complement of Bn

in .M; �/ by .Cn; � 0
n/. To show .Cn; � 0

n/ is tight we give a different construction of
these contact manifolds. Consider a standard neighborhood N.B/ of B in .M; �B/.
In particular there is some a such that N.B/ is contactomorphic to f.'; .r; �// 2
S1 �R2 j r � ag with the contact structure ker.' Cr2 d�/, where ' is the coordinate
on S1 and .r; �/ are polar coordinates on R2. Thus the characteristic foliation on
@N.B/ is a linear (in particular pre-Lagrangian) foliation by lines of some slope s.
Notice that we can choose numbers sn 2 Œ2n�; 2n� C �=2� such that the manifold
T 2�Œ0; sn� with the contact structure ker.sin t dxCcos t dy/, where t is the coordinate
on Œ0; sn� and .x; y/ are coordinates on T 2, which we denote by .Tn; �n/, has the
following properties:

(1) the characteristic foliation on T 2 � fsng is a linear foliation by lines of slope s,

(2) the characteristic foliation on T 2 � f0g is a linear foliation by lines of slope 0,

(3) the Giroux torsion of .Tn; �n/ is n, and

(4) .Tn; �n/ is universally tight.

Items (1) and (2) are obvious, Item (3) is proved in [21] and [26] as is Item (4), though
it is also easily checked.

Let . xCn; N�n/be the manifold obtained by gluing .M � N.B/; �jM �N.B// and
.Tn; �n/ along their boundaries. It is clear that the complement Cn of Bn in .M; �/

is the interior of . xCn; N�n/. Since it is well known that the complement of the binding
of an open book is universally tight, see [12], it is clear .M � N.B/; �jM �N.B// is
universally tight. We now recall that Colin’s gluing theorem, see [3], says that gluing
two universally tight contact structure along a pre-Lagrangian incompressible torus
results in a universally tight contact structure. Thus . xCn; N�n/, and hence .Cn; � 0

n/, is
universally tight.

To show infinitely many of the Bn are distinct we need the following observation
that follows immediately from Lemma 5.2, which is proven below.

Lemma 5.1. Let ŒT � be the isotopy class of tori in Cn � xCn parallel to the boundary.
The Giroux torsion of . xCn; N�n/ in the isotopy class ŒT � is finite:

tor.. xCn; N�n/; ŒT �/ < 1:

Hence tor..Cn; �jCn
/; ŒT �/ is also finite.

Since it is clear the Giroux torsion of .Cn; �jCn
/ in the isotopy class of ŒT � is

greater than or equal to n and all the Cn’s have finite torsion, we can conclude that
infinitely many of the Cn are distinct and hence infinitely many of the Bn are distinct.

Finally we notice that sl.Bn/ D ��.B/ for all n. Indeed notice that a Seifert
surface for Bn can be built by taking a Seifert surface for B (that is a page of the
open book) and extending it by the annulus fpg � S1 � .0; sn� in Tn. As we have an
explicit expression for the contact structure in a Lutz tube it is easy to see that this
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annulus can be perturbed to have no singularities. As the self-linking number of Bn

can be computed from the singularities of a Seifert surface for Bn we see the all the
self-linking numbers must agree with sl.B/ which is well known to be ��.B/.

Proof of Theorem 1.7. The argument here is almost identical to the one given above
for Theorem 1.6. The only difference being that one begins by performing a half Lutz
twist on B and notices that this changes the self-linking number of B from ��.B/

to �.B/.

We now turn to the proof of the above lemma. Using the notation established in
the previous proof, we will actually compute the Giroux torsion of . xCn; N�n/ in the
isotopy class of ŒT �, which by Lemma 2.5 is the same as tor..Cn; �jCn

/; ŒT �/.
For each n, the manifold xCn is (canonically up to isotopy) diffeomorphic to

M � N.B/ since xCn n M � N.B/ is T 2 � Œ0; 1�. We denote this common dif-
feomorphism type as xC and think of the contact structures N�n constructed above as
contact structures on xC .

Lemma 5.2. With notation as above

tor.. xC; N�n/; ŒT �/ D n:

Notice that Lemma 5.1 immediately follows from this result. The proof of this
lemma is inspired by Proposition 4.6 in [25]. Slightly modifying our proof above,
we could cite this result in place of Lemma 5.2 to prove the above theorem, but to
prove our results below we need to identify the actual Giroux torsion which takes
more work.

We begin by defining an invariant and establishing a few properties. Let † be a
page of the open book .B; �/ in M . This gives a properly embedded surface, also
denoted †, in xC . Let � be a properly embedded non-separating arc in †. Considering
the contact structure N�n we know that the characteristic foliation of @ xC consists of
meridional curves. We can assume that @† is (positively) transverse to this foliation.
Let L.�/ be the set of all Legendrian arcs � 0 embedded in . xC ; N�n/ satisfying

(1) the arc � 0 lies on some convex surface †0 with (positively) transverse boundary
in @ xC , and

(2) there is a proper isotopy of †0 to † through surfaces with transverse boundary
on @ xC that takes � 0 to � .

Set
mt.�/ D max

� 02L.�/
ftw.� 0; †0/g

where tw.� 0; †0/ is the twisting of the contact planes along � 0 with respect to the
framing given to � 0 by †0. We can show that this invariant is bounded by the Giroux
torsion of 
n.
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Lemma 5.3. With the notation as above we have the inequality

mt.�/ � �2 tor.. xC ; N�n/; ŒT �/:

We can also compute the invariant.

Lemma 5.4. In the contact manifold . xC ; N�n/ we have mt.�/ D �2n.

Before proving Lemmas 5.3 and 5.4 we note that the previous two lemmas im-
mediately yield our main lemma above.

Proof of Lemma 5.2. Lemmas 5.3 and 5.4 allow us to conclude that tor.. xC; 
n/; ŒT �/

� n. But from construction we know tor.. xC ; 
n/; ŒT �/ � n.

We also observe that the proof of Lemma 5.4 is just as easy.

Proof of Lemma 5.4. As we know there is an embedding of .T 2 � Œ0; 1�; �n/ into
. xC; N�n/ we can use Lemma 5.3 to see that mt.�/ � �2n. But we can explicitly
construct a curve � 0 on a surface †0 with tw.� 0; †0/ D �2n. The surface †0 is
constructed as at the end of the proof of Theorem 1.6; that is, it is the union of
a Seifert surface for B and an annulus in Tn. We can Legendrian realize a curve
on the Seifert surface for B (note one must be careful at this point as the Seifert
surface has transverse boundary) and using an explicit model for Tn this curve can
be extended across the annulus so that it represents the isotopy class of � and has
tw.� 0; †0/ D �2n.

We now turn to the proof of Lemma 5.3.

Proof of Lemma 5.3. Suppose we have a contact embedding of

' W .T 2 � Œ0; 1�; �k/ �! . xC ; N�n/

in the isotopy class of ŒT �. We need to show that mt.�/ � �2k. To this end take any
� 0 2 L.�/ and let †0 be the convex surface containing � 0.

Notice that there are 2k tori in the image of ' whose characteristic foliations
consist of leaves isotopic to meridians. On these tori a curve isotopic to @† can be
made transverse to the foliation. Half the time it will be positively transverse the
other half it will be negatively transverse. It is clear that we can choose one of the tori
T where the curve is positively transverse and cobounds with @ xC a manifold A such
that .A; . N�n/jA/ is contactomorphic to .T 2 � Œ0; 1�; �k/. We now set D D xC n A.

We glue two copies of xC together by the diffeomorphism ' of @ xC that preserves
the meridian (and its orientation) and reverses the orientation on the longitude. Denote
the resulting manifold P D xC ['

xC . Since ' preserves the characteristic foliation
we clearly have a contact structure 
n induced on P from N�n on xC , we note however
that with our choice of gluing map we have N�n on one of the copies of xC and �N�n

on the other. Let zP be the infinite cyclic cover of P that unwinds the meridian of
xC � P . If we denote the double of † by S , then it is clear that zP is S � R.
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Claim 5.5. The pullback Q
n of 
n is an R-invariant tight contact structure and S

can be assume to be convex with dividing set 	S containing at least 4k � 1 curves
parallel to @† � S .

Given this we can finish the proof of the lemma as follows. Let c be the double
of � 0 sitting on S . We clearly have that the twisting of the contact structure 
n along
c measured with respect to S , which we denote by t .c/, is twice the twisting along
of � 0. So if we can show t .c/ � �4k C 1 then the lemma will be established (notice
that since t .c/ D 2 mt.�/ we know t .c/ is even so this inequality actually implies
t .c/ � �4k). We can lift c to zP and notice that its twisting is unchanged (since the
covering map regularly covers a small neighborhood of c).

We recall that Giroux’s “semi-local Bennequin inequality” says the following.

Theorem 5.6 (Giroux 2001, [22]). Let � be an R invariant tight contact structure on
S �R where S is a closed orientable surface of genus greater than zero. Let 	 be the
dividing set on S � f0g (which is clearly convex) and C an essential simple closed
curve in S � f0g. Then for any Legendrian curve L smoothly isotopic to C we have

tw.L; F / � �1

2
.	 � C /;

where tw.L; F / denotes the twisting of the contact planes along L measured with
respect to the framing F given by S � f0g and 	 � C denotes the minimal geometric
intersection between curves isotopic to 	 and C .

Thus any curve c0 isotopic to c satisfies t .c0/ � �1
2
.	S �c0/, where 	S �c0 denotes

the minimal geometric intersection of a curve isotopic to c0 with 	S . Since c0 �@† D 2

and 	S contains 4k � 1 curves parallel to @† it is clear that 	S � c0 � 8k � 2 from
which the lemma follows.

We now establish the claim. Let Dc be the manifold D with the leaves in the
characteristic foliation on @D collapsed to points (topologically we are just Dehn
filling along the meridional slope). The contact structure . N�n/jD descends to give a
contact structure 
 on Dc and the image of @D in Dc is a positive transverse curve B 0.
One easily sees that B 0 is the binding of an open book for Dc and the page of this open
book is diffeomorphic to †. We notice that B 0 is the image of a positive transverse
curve zB 0 in D � xC . This curve cobounds an annulus in A with a positive transverse
curve zB in @ xC that descends to the binding B of the open book for M when the
characteristic foliation on @ xC is collapsed to form M . We know from construction
that sl.B/ D ��.†/. Thus one may easily conclude the same for zB; zB 0, and B 0.
From Theorem 2.6 we now see that 
 is quasi-compatible with B 0. Thus there is a
contact vector field v on Dc � B 0 that is transverse to the pages of the open book.
One may easily check (by considering a local model for B 0) that v may be assumed
to be meridional (that is, its flow lines are meridians) inside a neighborhood of B 0 but
outside a smaller neighborhood of B 0. Thus we may alter v on Dc � B 0 D D � @D



On knots in overtwisted contact structures 257

so that in a neighborhood of B 0 minus B 0 the orbits of v are meridians, and hence we
can then easily be extended over all of D. Moreover, we can find a contact vector
field on A that also has meridional flow lines and then use it to extend v to a contact
vector field on all of xC that is transverse to † (and all the pages of the open book).
It is clear that the dividing set on † induced by v contains at least 2k closed curves
parallel to @†, one of them being @†. The manifold P is obtained by gluing together
two copies of xC . Observing that the gluing map preserves v we can get a contact
vector field on .P; 
n/ that is transverse to S (and all the fibers in the fibration of
P over S1). Thus on the Z-cover zP D S � R of P we can lift v to a vector field
Qv that preserves Q
n and is transverse to S � ftg for all t 2 R. We can use the flow
of Qv to identify zP with S � R so that the contact structure is R-invariant. From our
observation about the dividing set on † we see that S has at least 4k � 1 dividing
curves parallel to @†. (The minus one comes from the fact that one of the dividing
curves on † was @† so when the two copies of † are glued together, two of the
dividing curves are identified.)

Proof of Theorem 1.8. Let K be a null-homologous knot type in the irreducible man-
ifold M , with a Seifert surface † of genus g > 0, where g is the genus of K. Set
C D M � N where N is a solid torus neighborhood of K. Let 	 be the union of two
embedded meridional curves on @C . It is easy to check that .C; 	/ is a taut sutured
manifold and thus according to Theorem 1.1 in [25] there is a universally tight contact
structure � on C for which @C is convex with dividing curves 	 . Moreover, in the
proof of Theorem 1.1 in [25] we see that one may assume that @† is Legendrian and
† is convex with a single dividing curve that is boundary parallel.

Now let T D T 2�Œ0; 1/ with the contact structure �T D ker.cos z dxCsin z dy/.
Using the convex version of Colin’s gluing criterion, Theorem 5.7 in [25] we see that
we can glue .C; �/ and either .T; �T / or .T; ��T / together to get a universally tight
contact structure � on a manifold C 0 diffeomorphic to C .

There is a sequence of disjoint tori Tn; n 2 N, in T � C 0 that have linear
characteristic foliation each leaf of which is a meridional curve in C 0. Moreover we
can arrange that Tn and TnC1 cobound a T 2 � Œ0; 1� with Giroux torsion 1. Let Cn

be the compact component of C 0 n Tn. Notice that if each leaf of the characteristic
foliation of @Cn D Tn is collapsed to a point (that is, topologically we Dehn fill Cn)
we get a manifold diffeomorphic to M (and this diffeomorphism is canonical up to
isotopy). Moreover there is a neighborhood U of Tn in Cn and a neighborhood V of
K D S1 � f.0; 0/g in S1 � D2, with contact structure d' C r2 d� , such that U � Tn

and V � K are contactomorphic. The collapsing process going from Cn to M can
be thought of as removing U and replacing it with V . Thus we see that Cn induces
a contact structure �n on M and in that contact structure there is a knot Kn such that
M �Kn is contactomorphic to Cn�Tn. Notice that all of the �n are overtwisted and �n

is obtained from �n�1 by a full Lutz twist on Kn. Thus by Eliashberg’s classification
of overtwisted contact structures we know all the �n are isotopic to a fixed overtwisted
contact structure which we denote 
. As above each Kn gives a transverse knot, still
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denoted Kn, in 
. Each Kn is clearly non-loose. Moreover the surface † above can
be extended by an annulus in T so that in M it gives a Seifert surface for Kn. It is
clear from construction that † is convex with dividing curves parallel to the boundary.
One can choose the Tn so that † will always have an even number of dividing curves
or an odd number of dividing curves. If we choose the former then it is clear that all
the Kn have self-linking number ��.†/ D ��.K/. If we choose the latter then all
the Kn have sl.Kn/ D �.K/. Also note that going between the former and the latter
amounts to doing a half-Lutz twist on the knots Kn. Thus we see that the contact
structure where the Kn have self-linking number ��.K/ and the contact structure
where they have self-linking number �.K/ differ by a half-Lutz twist and hence are
not contactomorphic.

Thus we will be done with the theorem once we see that all the Kn are non
contactomorphic. If we perturb the boundary of Cn so that it is convex with two
dividing curve then the resulting contact structures are the same as the ones constructed
in Proposition 4.2 of [25]. In Proposition 4.6 of that paper it is also shown that all these
contact structures are not contactomorphic. Now if there was a contactomorphism of
.M; 
/ taking Kn to Km then Cn �Tn would be contactomorphic to Cm �Tm Denote
the contactomorphism by '. Let B be a torus in Cn � Tn with linear characteristic
foliation of slope 0 (that is the leaves are null-homologous in Cn ). Let .Cn�Tn/nB D
P [ Q with Q the non-compact component. We can assume B was chosen so that
Q is minimally twisting (that is there are no convex tori with negative slope in Q).
The torus '.B/ breaks Cm � Tm into two similar such pieces P 0 and Q0 and ' gives
a contactomorphism from P to P 0. By adding the appropriate basic slice to both P

and P 0 we can extend ' to a contactomorphism of the contact structures constructed
in Proposition 4.2 of [25]. This would contradict Proposition 4.6 of that paper unless
m D n.

We now turn to the classification of transverse knots with maximal self-linking in
the hyperbolic knot type of the binding of an open book supporting the given contact
structure.

Proof of Theorem 1.10. We are given an open book decomposition .B; �/ with con-
nected binding. Since B is a hyperbolic knot the monodromy ' of the open book is
pseudo-Anosov. Let � be the contact structure obtained from �B by performing a full
Lutz twist on B . Clearly � is overtwisted and in the same homotopy class of plane
field as �B , so if �B is overtwisted then � and �B are isotopic contact structures.

We are trying to determine the set T��.B/.B/. Since any knot type has a loose
knot with any odd self-linking number there is clearly a loose knot K� in T��.B/.B/.
Moreover, Theorem 1.5 says that this is the unique loose knot with given knot type
and self-linking number so K� is the only loose knot in T��.B/.B/. Since loose and
non-loose knots are not contactomorphic we are left to classify the non-loose knots
in T��.B/.B/.
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If K is a non-loose knot in T��.B/.B/ then Theorem 2.6 implies that � is ob-
tained from �B by adding Giroux torsion along tori which are incompressible in the
complement of B . Since the monodromy ' is pseudo-Anosov the only such tori are
isotopic to the boundary of a neighborhood of B . Adding Giroux torsion along this
torus is equivalent to performing some number of full Lutz twists along B in �B .
Thus K is clearly one of the Bn constructed in the proof of Theorem 1.6. Notice that
B0, the knot obtained from B by doing no Lutz twists, is a transverse knot in � if
and only if �B is overtwisted to begin with. Thus we see that any non-loose knot in
T��.B/.B/ is contactomorphic to one of the knots fBngn2A where A is the indexing
set in the statement of the theorem. Finally Lemma 5.2 guarantees that Bn and Bm

are not contactomorphic if n 6D m since they have different contact structures on their
complement.

Renaming Bn to Kn, we have now classified the transverse knots in T��.B/.B/

and established the first bullet point in the theorem. The second bullet point follows
from [29] since all the knots except K0 have either an overtwisted disk or Giroux
torsion in their complement.

To establish the last bullet point in the theorem we notice that each Kn for n > 0

has a neighborhood contactomorphic to S1 � D2 D f.'; r; �/ W r � 2� C "g for
some ", with the contact structure ker.cos r d' C r sin r d�/. Thus we can choose a
convex torus T outside of the solid torus fr � 2�g with two dividing curves inducing
the framing �m for some m (where we use the page of the open books to define the
0 framing). Thus we can find a neighborhood N of Kn that breaks into two pieces
A D T 2 � Œ0; 1� and N 0 D S1 � D2, with the following properties. The contact
structure on A is not invariant in the Œ0; 1� direction and the boundary of A is convex
with each boundary component having two dividing curves inducing the framing �m.
The contact structure on the solid torus N 0 is minimally twisting and the boundary of
N 0 is convex with two dividing curves inducing the framing �m. From [16] and [24]
we know N 0 is the standard neighborhood of a Legendrian curve L whose positive
(if L is oriented in the same way that Kn is oriented) transverse push-off is Kn. If we
stabilize L positively then its positive transverse push-off is a transversely isotopic
to the stabilization of Kn; see [16]. Let N 00 be a neighborhood of the stabilized
Legendrian inside of N 0. From [16] we know that we can write N 0 as the union of
A0 D T 2 � Œ0; 1� and N 00 where A0 is a basic slice. The sign of this basic slice depends
on the stabilization of L that we perform. One may easily check that all the basic
slices in any decomposition of A into basic slices all have the same sign and that sign
is opposite the one associated to A0 if we positively stabilize L. Thus the contact
structure on A [ A0 is a non-minimally twisting contact structure made from basic
slices with different signs. Such a contact structure must be overtwisted; see [24].
Since the transverse push-off of the stabilized L is contained in N 00 we see that the
complement of this transverse knots is overtwisted since it contains A [ A0. Thus the
complement of a stabilization of Kn is overtwisted and we see that a stabilization of
Kn, for n > 0, is loose.
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Theorem 1.5 then guarantees all the stabilizations of the Kn; n > 0 are contacto-
morphic to the stabilization of K�. We note that it is not clear if the stabilizations of
K0, if it exists, are loose or not.

Finally, If � 0 is some overtwisted contact structure and T is a transverse knot in
T��.B/.B/ that is non-loose then Theorem 2.6 implies that � 0 is obtained from �B by
adding some number of full Lutz twists along B (notice that the only incompressible
tori in the complement of B are boundary parallel tori). Thus if � 0 is not so obtained
then T�.B/.B/ D fK�g.

6. Non-loose Legendrian knots

Using well know facts concerning the relation between Legendrian and transverse
knots, mostly reviewed in Subsection 2.1 above, we can upgrade the coarse classifi-
cation of transverse knots from Theorem 1.10 to Legendrian knots.

Proof of Theorem 1.12. By Theorem 1.10 we know that we have T��.B/.B/ D
fK�g [ fKigi2A, where A D N if �B is tight and A D N [ f0g if not. For any
i 2 N the transverse knot Ki was the core of a full Lutz twist. Thus it has a
neighborhood Ni that is contactomorphic to S1 � D2

2� , with the contact structure
ker.cos r d' C r sin r d�/, where D2

a is the disk of radius a. There is an infinite
sequence of radii rj ; j an integer, such that S1 � D2

rj
has a linear characteristic fo-

liation of slope 1
j

. Let Lj;i be a leaf in this foliation. Lemma 2.1 says that Ki is
the transverse push-off of Lj;i . Since the contact framing of Lj;i is the same as the
framing coming form the torus @.S1 � D2

rj
/ it sits on, we see that tb.Lj;i / D j and

hence r.Lj;i/ D �.B/ C j . If �B is overtwisted then we can similarly construct
Legendrian approximations Li;0 of K0 for all i less than some m, where m is either
an integer or 1. It is clear from Proposition 1.2 that all the Li;j constructed here
are non-loose. Moreover, they are all distinct as they either have different transverse
push-offs or they have different Thurston–Bennequin invariants.

All the bullets points in the theorem, except the last, follows from the corre-
sponding statements for the transverse knots Ki . The last bullet point follows from
Lemma 2.1.

Since there is a unique loose Legendrian knot with given invariants we are left to
show that, up to contactomorphism, any non-loose Legendrian knot in L�.B/Cn;n.B/

is one of the ones constructed above.
Let L be a non-loose Legendrian knot in L�.B/Cn;n.B/. We begin by assuming

that tb.L/ D �k � 0 and hence r.L/ D �.B/�k. Let N be a standard neighborhood
of L with convex boundary. We assume the characteristic foliation on @N has two
closed leaves and all leaves are transverse to a ruling of @N by longitudes. Let †

be a fiber in the fibration of M n N . From our set up @† is a transverse curve
T � @N . Moreover it is easy to see that T is the transverse push-off of L and
sl.T / D ��.B/ D ��.†/.
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By Lemma 3.3 in [18] we can isotope † so that it has a Morse–Smale characteristic
foliation and no negative singular points. Thus † is convex and dividing curves are
disjoint from @†. From the proof of Lemma 3.4 in [18] we see that † may be isotoped
so that the dividing curves 	† on † are invariant under the monodromy of the open
book. As the monodromy is pseudo-Anosov the only dividing curves † can have are
ones parallel to @†. Assume that † has been isotoped (keeping @† transverse and
contained in @N ) to minimize the number of dividing curves.

We show that the contact structure on the complement of N is determined by the
dividing curves on †. Taking a neighborhood N 0 of N [ † and rounding corners we
see that @N 0 is obtained by gluing together two copies of †, denoted †1 and †2, and
an annulus A. We can assume that @N 0 is convex and that its dividing curves consist
of a copy of 	† on each †i and one curve in the center of A; see [18]. Since † is a
page of an open book for M we see that M nN 0 is a handlebody. Moreover, applying
Lemma 3.5 in [18] we see that the minimality of the number of components of 	†

implies that the dividing curves on compressing disks are uniquely determined by
	†. Thus the contact structure on M n N 0 is determined by the number of curves in
	†. Moreover, since the difference between M nN 0 and M nN is a neighborhood of
†, a similar argument says that M n N is determined by the number of curves in 	†.
One may easily check that L�k;n has a convex surface with the same configuration
of dividing curves in the complement of a standard neighborhood, where 2n is the
number of components in 	†. Thus L is contactomorphic to L�k;n.

If tb.L/ D k > 0, and hence r.L/ D �.B/ C k, then we can proceed as above
except now the ruling longitudinal curves on @N , oriented in the same direction as
L, are negatively transverse curves. Thus @† is a negatively transverse curve T on
@N . We can identify N as a neighborhood of a transverse curve T 0 that is a positive
transverse push-off of L, and hence has sl.T 0/ D ��.B/. The curves T and T 0
cobound an annulus A whose characteristic foliation as a single closed leaf L0. The
Legendrian L0 is clearly topologically isotopic to L and has Thurston–Bennequin
number 0. Moreover, T 0 is its positive transverse push-off and T its negative push-
off. From the first fact we see r.L0/ D �.B/ and from the second fact we see
sl.T / D �.B/.

Notice that if we orient T in the same direction as B and † so that it has oriented
boundary T , then the characteristic foliation on † points in along T (because T will
be a negatively transverse to the contact structure). By the proof of Lemma 3.3 in [18]
we can isotope † so that it has a Morse–Smale characteristic foliation and no positive
singular points. We can now argue as above to conclude that L is contactomorphic
to Lk;n for some n.

Proof of Theorem 1.13. The hypothesis of the theorem says that L and �L are in the
same knot type, up to diffeomorphism. Thus if L is in L�.B/Cn;n.B/ then �L is in
L��.B/�n;n.B/, so the result follows from Theorem 1.12. Moreover, all the knots
claimed to be in L��.B/�n;n.B/ can be obtained knots in L�.B/Cn;n.B/ by reversing
the orientation on the knot.
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Finally we establishes our result about stabilizing Legendrian knots with large
Thurston–Bennequin invariant.

Proof of Proposition 1.15. We assume that �B is not isotopic to B . This condition
implies there is no diffeomorphism taking B to �B that is isotopic to the identity.
Thus a contactomorphism that is smoothly isotopic to the identity and takes a Legen-
drian knot L in L.B/ to itself must preserve the orientation on L and hence on any
surface with boundary on L. So we can conclude if the contactomorphism is also co-
orientation preserving then it preserves the sense of a stabilization. By this we mean
that if L D SC.L0/ and ' is such a contactomorphism of � then '.L/ D SC.'.L0//.

Now suppose that L 2 L.B/ and tb.L/ � r.L/ > ��.B/. Set n D 1
2
.��.B/ �

tb.L//. Notice that tb.SnC.L// � r.SnC.L// D ��.B/. Thus by Theorem 1.12 we
know there is a contactomorphism ' sending SnC.L/ to one of the Legendrian knots
described in the theorem (one may also check that ' preserves the co-orientation of
the contact structure), and from the observation above SnC'.L/ is isotopic to one of
the knots described in the theorem. If it is isotopic to any knot other than L�, that
is the loose knot, then any number of negative stabilization will stay non-loose. It is
clear, however, that there is some m such that Sm� .'.L// cannot be non-loose since
it does not satisfy �j tb j C j r j � ��.B/. Thus Sm� .SnC.'.L/// cannot be non-loose
resulting in a contradiction unless SnC.'.L// is already loose, which of course implies
SnC.L/ is loose.
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