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Abstract. We define a category of planar diagrams whose Grothendieck group contains an
integral version of the infinite rank Heisenberg algebra, thus yielding a categorification of this
algebra. Our category, which is a q-deformation of one defined by Khovanov, acts naturally
on the categories of modules for Hecke algebras of type A and finite general linear groups. In
this way, we obtain a categorification of the bosonic Fock space. We also develop the theory
of parabolic induction and restriction functors for finite groups and prove general results on
biadjointness and cyclicity in this setting.
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1. Introduction

In the 1970s, Geissinger gave a representation-theoretic realization of the bialgebra
Sym of symmetric functions [5]. He considered the Grothendieck groups of repre-

1The research of the second author was supported by a Discovery Grant from the Natural Sciences and
Engineering Research Council of Canada.
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sentations of all symmetric groups over a field k of characteristic zero and constructed
an isomorphism of bialgebras

Sym Š
1M
nD0

K0.kŒSn�-mod/:

In Geissinger’s construction, the algebra structure is the map on the Grothendieck
group induced by the induction functor

ŒInd� W K0.kŒSn�-mod/˝K0.kŒSm�-mod/ �! K0.kŒSnCm�-mod/;

while the coalgebra structure is given by restriction. Mackey theory for induc-
tion and restriction in symmetric groups implies that the coproduct is an algebra
homomorphism. Each class ŒV � 2 K0.kŒSn�-mod/ defines an endomorphism ofL1
nD0K0.kŒSn�-mod/ given by multiplication by ŒV �. These endomorphisms, to-

gether with their adjoints, define a representation of an infinite rank Heisenberg
algebra on the Grothendieck group.

Several generalizations of Geissinger’s construction were subsequently given by
Zelevinsky in [17]. Two of these generalizations involve a kind of q-deformation:
in one the group algebra of the symmetric group kŒSn� is replaced by the Hecke
algebraHn.q/, and in the other by the group algebra kŒGLn.Fq/� of the general linear
group over a finite field. In these cases, too, endomorphisms of the Grothendieck
group given by multiplication by classes ŒV �, together with their adjoints, generate a
representation of the Heisenberg algebra.

In addition to the Heisenberg algebra action on the Grothendieck group, the cat-
egories M

n

kŒSn�-mod;
M
n

Hn.q/-mod; and
M
n

kŒGLn.Fq/�-mod

are interesting for another reason: they are all examples of braided monoidal cate-
gories [8]. In each case, the monoidal operation is given by an induction functor, the
very same functor that defines the algebra structure at the level of the Grothendieck
group. This algebra structure accounts for the action of the creation operators in the
Heisenberg algebra, which are given by multiplication, but not the annihilation op-
erators which are their adjoints. This suggests that in order to describe a categorical
Heisenberg action, one should consider not just induction functors, but also the dual
restriction functors. These functors should descend to a Heisenberg algebra action on
the Grothendieck group. This categorical action should also involve natural transfor-
mations that use both the braiding amongst compositions of induction functors and
the duality between induction and restriction, information that is lost when passing
to the Grothendieck group.

To define such categorical Heisenberg actions is the goal of the current paper.
Precisely, we define a family of categories that act naturally on the above module
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categories. This action is a kind of modification of the notion of a braided monoidal
category which takes into account induction and restriction functors, their composi-
tions, and natural transformations between these compositions.

In [11], Khovanov takes a similar perspective in the study of induction and re-
striction functors between characteristic zero representation categories of symmetric
groups. He defines a monoidal category H that acts naturally on the category of rep-
resentations of all symmetric groups, categorifying Geissinger’s construction. The
Grothendieck group of Khovanov’s H contains, and is conjecturally isomorphic to,
an integral form of the Heisenberg algebra.

In the current paper, we define and study a category H .q/, which is aq-deformation
of Khovanov’s category. When q is not a nontrivial root of unity, the Grothendieck
group of H .q/ contains, and is conjecturally isomorphic to, an integral form of the
Heisenberg algebra. When q is a root of unity, we expect the category H .q/ to
have an interesting structure, though we do not say much about this in the current
paper. The morphism spaces in H .q/ are also objects which we believe to be of
independent interest. In particular, a q-deformation of the degenerate affine Hecke
algebra, which is a subalgebra of the affine Hecke algebra, arises naturally from the
morphisms of H .q/.

Just as Khovanov’s category H is related to Geissinger’s construction, the category
H .q/ is related to both of Zelevinsky’s constructions. In Section 5, we show that
H .q/ acts naturally on

L
nHn.q/-mod, while in Section 6, we show that H .q/ acts

on
L
n kŒGLn.Fq/�-mod. In both cases, passing to the Grothendieck group recovers

the Fock space representation of the Heisenberg algebra. These two representations
of the category H .q/ provide a new perspective on the relationship between Hecke
algebras and finite general linear groups.

In [2], the first author, together with S. Cautis, gave graphical categorifications of
a family of Heisenberg algebras parametrized by the finite subgroups of SL2.C/ and
related these categorifications to the geometry of Hilbert schemes on ALE spaces.
The constructions of the present paper suggest that a q-deformation of the categories
in [2] should also exist. We expect these deformations will be related to the “finite
subgroups” of Uq.sl2/.

Important in the constructions in the current paper is the fact that the Hecke
algebras form a so-called tower of algebras. It is natural to expect that other towers
of algebras (for further examples, see [1], [10], and the references therein) give rise
to graphical categorifications.

The crucial observation that allows us to present our category H .q/ using pla-
nar topology is the cyclic biadjointness of the defining generating objects QC; Q�
of H .q/. In any representation of H .q/, these generators are mapped to biadjoint
functors, that is, functors that are both left and right adjoint to each other. The im-
portance of such functors in low dimensional topology was emphasized in [12] and
more recently in subsequent work [3], [13], [14], and [16] on categorified quantum
groups. In the last section of this paper, we give some examples of cyclic biadjoint
functors arising in the representation theory of finite groups.
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The structure of this paper is as follows. In Section 2, we recall the definitions
of the Hecke algebras of type A and the Heisenberg algebra. We introduce the
category H .q/ in Section 3 and deduce from the definitions various useful relations.
In Section 4 we present the main result giving a categorification of the Heisenberg
algebra. We then define an action of our category on modules for Hecke algebras
and finite general linear groups in Sections 5 and 6 respectively. In particular, in
Section 5, we use the action to prove our main theorem. Finally, in Section 7, we
describe the cyclic biadjointness of parabolic induction and restriction functors for
finite groups.

Acknowledgements. We would like to thank D. Bump, S. Cautis, M. Khovanov,
and M. Mackaay for useful discussions. We also thank M. Khovanov for making
available to us the preprint [11].

2. Hecke algebras and the Heisenberg algebra

In this section, we introduce our main algebraic objects of interest: the Hecke algebra
of type A and the Heisenberg algebra.

Let k be a ring and let q be either an indeterminate or an invertible element of k
(in which case kŒq; q�1� D k).

Definition 2.1 (Hecke algebra). For n � 2, the Hecke algebraHn.q/ is the kŒq; q�1�-
algebra generated by t1; : : : tn�1 with relations

(a) t2i D q C .q � 1/ti ,

(b) ti tj D tj ti for i; j D 1; 2; : : : ; n� 1 such that jj � i j > 1,

(c) ti tiC1ti D tiC1ti tiC1 for i D 1; 2; : : : ; n� 2.

By convention, we set H0.q/ D H1.q/ D kŒq; q�1�. We let 1n denote the identity
element of Hn.q/. To simplify notation, we will write Hn for Hn.q/ in the sequel.

The algebra Hn has a basis ftwgw2Sn
, where for w 2 Sn, tw D ti1 : : : tik , where

w D si1 : : : sik is a reduced expression for w. Note that the generator ti is invertible
with inverse t�1i D q�1ti C .q�1 � 1/.

Definition 2.2 (Heisenberg algebra). The (infinite rank) Heisenberg algebra h is the
associative C-algebra with generators pi ; qi , i 2 NC D f1; 2; : : : g, and relations

piqj D qjpi C ıi;j1; pipj D pjpi ; qiqj D qjqi ; i; j 2 NC:

Remark 2.3. The Heisenberg algebra plays a fundamental role in quantum field
theory and the theory of affine Lie algebras. Is it isomorphic to the Weyl algebra,
which is the algebra of operators on CŒx1; x2; : : : � generated by multiplication by xi ,
i 2 NC, and partial differentiation @=@xi , i 2 NC.
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Definition 2.4 (Integral form of the Heisenberg algebra). Let hZ be the unital ring
with generators an; bn, n 2 NC, and relations

anbm D bman C bm�1an�1; anam D aman; bnbm D bmbn; n; m 2 NC:
(2.1)

Here we adopt the convention that a0 D b0 D 1.

The fact thathZ is an integral form of the Heisenberg algebra can be seen as follows
(we thank M. Mackaay for explaining this to us). Defining generating functions

A.t/ D 1C a1t C a2t
2 C � � � ; B.u/ D 1C b1uC b2u

2 C � � � ;

we can rewrite the relations (2.1) as

A.t/B.u/ D B.u/A.t/.1C tu/: (2.2)

Define

zA.t/ D 1C tA0.�t /A.�t /�1; zB.u/ D 1C uB 0.�u/B.�u/�1;
zA.t/ D 1C Qa1t C Qa2t2 C � � � ; B.u/ D 1C Qb1uC Qb2u2 C � � � :

Using (2.2), one can show that

zA.t/B.u/ D B.u/ zA.t/C B.u/
ut

1� ut ;

from which it follows that

Œ Qan; bm� D ım;n for m � n:

Now note that for each n 2 NC, Qan is equal to .�1/n�1nan plus terms involving
products of am for m < n (and similarly for Qbn). Thus, by symmetry, it follows that

Œ Qan; Qbm� D .�1/n�1ın;mn for m; n 2 NC:

Therefore the elements 1
n
.�1/n�1an; bn, n 2 NC, satisfy the defining relations of

the Heisenberg algebra h. It follows that hZ ˝Z C Š h and so hZ is an integral form
of h.
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3. A graphical category

3.1. Definition. We define an additive kŒq; q�1�-linear strict monoidal category
H 0.q/ as follows. The set of objects is generated by two objects QC and Q�.
Thus an arbitrary object of H 0.q/ is a finite direct sum of tensor products

Q" D Q"1
˝ � � � ˝Q"n

;

where " D "1 : : : "n is a finite sequence of C and � signs. The unit object 1 D Q¿.
The space of morphisms HomH 0.q/.Q"; Q"0/ is the kŒq; q�1�-module generated

by planar diagrams modulo local relations. The diagrams are oriented compact one-
manifolds immersed in the strip R � Œ0; 1�, modulo rel boundary isotopies. The
endpoints of the one-manifold are located at f1; : : : ; mg � f0g and f1; : : : ; kg � f1g,
wherem and k are the lengths of the sequences " and "0 respectively. The orientation
of the one-manifold at the endpoints must agree with the signs in the sequences "
and "0 and triple intersections are not allowed. For example, the diagram

is a morphism from Q�C��C to Q��C. Composition of morphisms is given by the
natural gluing of diagrams. An endomorphism of 1 is a diagram without endpoints.
The local relations are as follows:

= q C .q � 1/ ; (3.1)

= ; (3.2)

= q � q ; D q ; (3.3)
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and

D id, D 0. (3.4)

Note that the upward crossing is invertible with inverse

D q�1 C .q�1 � 1/ : (3.5)

The reader should note that the local relations on upward pointing strands are simply
the relations of the Hecke algebra, where the generator ti corresponds to the crossing
of the i -th and .i C 1/-st strands (numbered from the right). The definitions of the
other local relations are motivated by the following result.

Lemma 3.1. In the category H 0.q/, we have

Q�C Š QC� ˚ 1:

Proof. Consider the following morphisms of H 0.q/:

Q�C

Q�C

QC� 1.

�1 �2

�1 �2

q�1

(3.6)

It is immediate from the defining local relations of H 0.q/ and isotopies that

�2�1 D 0; �1�2 D 0; �1�1 D id; �2�2 D id; �1�1 C �2�2 D id;

which proves the desired isomorphism.
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Definition 3.2 (Grothendieck group). The (split) Grothendieck group of an additive
category C is the abelian group K0.C/ (written additively) with generators ŒX�,
X 2 Ob C , and relations ŒZ� D ŒX�C ŒY � whenever Z Š X ˚ Y .

It follows from Lemma 3.1 that in the Grothendieck group K0.H 0.q//, we have

ŒQ��ŒQC� D ŒQC�ŒQ��C 1;

which is the Heisenberg relation.

Remark 3.3. For each r-tuple of complex numbers .u1; : : : ; ur/, one can define
a “higher level” Heisenberg category H 0.q; u1; : : : ; ur/, generalizing the defini-
tion of H 0.q/. The defining objects QC; Q� are the same in H 0.q; u1; : : : ; ur /
as in H 0.q/. The morphisms of H 0.q; u1; : : : ; ur/ look like the morphisms in H 0.q/,
with the caveat that strands are now allowed to carry a new defining dot, which satisfies
a degree r polynomial relation with roots u1; : : : ; ur . (Thus any diagram containing
a strand with more than r dots on it can be written as a linear combination of dia-
grams whose strands carry fewer that r dots.) In this higher level categorification,
the fundamental relationship between QC and Q� becomes

Q�C Š QC� ˚ 1˚r ;

which categorifies the “higher level” Heisenberg relation

ŒQ��ŒQC� D ŒQC�ŒQ��C r:

As we will not have use for these higher level categories in the current paper, we have
elected not to give the details of this generalization here. We note, however, that these
higher level categorifications H 0.q; u1; : : : ; ur/ are related to cyclotomic quotients
of the degenerate affine Hecke algebra in the same way that H 0.q/ is related to the
Hecke algebra (which is the cyclotomic Hecke algebra when r D 1).

3.2. Triple point moves. We have the following equalities of triple point diagrams:

D ; (3.7)

D ; (3.8)
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D ; (3.9)

and

D C q.q � 1/ : (3.10)

Proof. Equality (3.7) is one of the defining the relations. We see (3.8) as follows:

D q�1 � .1� q�1/

D q�1 � .1� q�1/

D C .1� q�1/

� .1 � q�1/

D .
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In the above, the first equality follows from (3.1) applied to the two strands at the
top right. The second equality follows from (3.2) applied to the middle three crossings
(of the first diagram) viewed sideways. The third equality follows from (3.1) applied
to the bottom left two crossings in the first diagram of the previous line.

The proof of (3.9) is analogous and will be omitted. Finally, (3.10) is proven as
follows:

D q�1 C

D q�1 C q

C .q � 1/

D C q.q � 1/ .

Here the first equality follows from (3.1) applied to the two strands at the bottom
right. The second equality follows from applying (3.9) (viewed sideways) to the
three middle three crossings in the first diagram and (3.1) to the double crossing in
the middle of the second diagram. The third equality is obtained by applying the
second relation of (3.3) to the first and third diagrams and the second relation in (3.4)
to the second diagram.

3.3. Right curl moves. We will use a dot to denote a right curl and a dot labeled d
to denote d right curls:

D and d D
μ
d dots.
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We will see in Section 5.7 that dots correspond to Jucys–Murphy elements in Hecke
algebras.

Lemma 3.4. We have the following equalities of diagrams:

D C .q � 1/ C q

and

D C .q � 1/ C q .

Proof. We prove the first equality. The second is analogous. We have

D

D q�1 C

D q�1 C

D C .1 � q�1/ C
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D

C .q � 1/ � .q � 1/ C

D C .q � 1/ C q .

It follows by induction that we have the following equalities:

d

D
d

C .q � 1/
dX
aD1

a .d � a/

C q

d�1X
bD0

b .d � 1� b/

and

d

D
d

C .q � 1/
dX
aD1

a .d � a/

C q

d�1X
bD0

b .d � 1� b/
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Define Qcd to be a counterclockwise oriented circle with d right curls on it, and cd
to be a clockwise oriented circle with d right curls:

Qcd D d and cd D d .

Proposition 3.5. For d � 0 we have

QcdC1 D .q � 1/
dX
aD1

Qcacd�a C q

d�1X
bD0

Qcbcd�1�b:

Note, in particular, that this implies Qc1 D 0.

Proof. We have

QcdC1 D d

D
d

C .q � 1/
dX
aD1

a d � a

C q

d�1X
bD0

b d � 1� b
.

The result then follows from the fact that the left curl is equal to zero.

3.4. Bubble moves. We can move clockwise circles past lines using so called “bub-
ble moves”.

Lemma 3.6. We have the following equality:

D C .1 � q�1/ C .
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Proof. We have

D q�1 C

D C .1 � q�1/ C

where in the first equality we used (3.3) and in the second we used (3.1).

More generally, we can move clockwise circles with dots past lines as follows.

d

D
d

C .d C 1/.1� q�1/ .d C 1/ C .d C 1/ d

� .q � 1/.1� q�1/
dX
aD1

a a

.d � a/

� .q � 1/
d�1X
aD0

.2aC 1/ a .d � 1� a/

� q
d�2X
aD0

.aC 1/ a .d � 2� a/

(3.11)
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3.5. Endomorphism algebras and the affine Hecke algebra

Theorem 3.7. The natural map

 0 W kŒq; q�1�Œc0; c1; c2; : : : � �! EndH 0.q/.1/

is an isomorphism.

Proof. Every element of EndH 0.q/.1/ is a linear combination of closed diagrams.
Using the local relations, any closed diagram can be expressed as a linear combination
of crossingless diagrams consisting of nested dotted circles. The bubble moves imply
that nested dotted circles can be written as linear combinations of dotted circles with
no nesting. Finally, counterclockwise circles can be expressed as linear combinations
of clockwise ones by Proposition 3.5. Therefore, any element of EndH 0.q/.1/ can
be written as a linear combination of products of dotted clockwise circles. It follows
that  0 is surjective.

Assume q is an indeterminate and k D Z. We can view any field k
0 as an

ZŒq; q�1�-module via the map that sends q to 1. Consider the composition

k
0Œc0; c1; : : : �

Š ZŒq; q�1�Œc0; c1; : : : �˝ZŒq;q�1� k
0  0˝id�����! EndH 0.q/.1/˝ZŒq;q�1� k

0

D EndH 0.1/;

where H 0 is the category defined in [11] (for the field k
0). This composition is

precisely the map  0 of [11], which is injective by [11], Proposition 3. It follows
that our map  0 is also injective when we work over the ring k D Z and q is
an indeterminate. Since, for an arbitrary ring k, kŒq; q�1� (where q is either an
indeterminate or an invertible element of k) is a ZŒq; q�1�-module in the obvious
way, we can tensor with kŒq; q�1� and see that  0 is an isomorphism in the general
case.

Let H aff
n denote the affine Hecke algebra of type A,

H aff
n D Hn ˝kŒq;q�1� kŒq; q

�1�Œx˙1
1 ; : : : x˙1

n �:

The Hecke algebraHn and kŒx˙1
1 ; : : : x˙1

n � are subalgebras ofH aff
n , and the defining

relations between these subalgebras are

tixk D xkti ; i ¤ k; k C 1;

and

tixi ti D qxiC1:
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Lemma 3.8. Assume q 2 k
�, q ¤ 1. If, for i D 1; : : : n, we define new elements of

the affine Hecke algebra yi by

yi D .q � 1/xi � q

q � 1;

then

yi tk D tkyi ; i ¤ k; k C 1; (3.12)

tiyiC1 D yi ti C .q � 1/yiC1 C q; (3.13)

and

yiC1ti D tiyi C .q � 1/yiC1 C q: (3.14)

Proof. The first relation is obvious. For the second relation above, we have

tiyiC1 D .q � 1/tixiC1 � q

q � 1
ti ;

while

yi ti D .q � 1/xi ti � q

q � 1ti :

Subtracting, we get

tiyiC1 � yi ti D .q � 1/.tixiC1 � xi ti/: (3.15)

Since t�1i D q�1ti C .q�1 � 1/, after multiplying both sides of the relation tixi ti D
qxiC1 on the left by t�1i we get

xi ti D tixiC1 C .1� q/xiC1;

or

tixiC1 � xi ti D .q � 1/xiC1:

Substituting into (3.15), we obtain

tiyiC1 � yi ti D .q � 1/2xiC1:

Since xiC1 D .q � 1/�1yiC1 C q

.q�1/2 , we get

tiyiC1 � yi ti D .q � 1/yiC1 C q;

as desired. The last relation is similar.
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Let HC
n be the kŒq; q�1�-algebra with generators ti ; yi , 1 � i � n, and defining

relations (3.12)–(3.14). By Lemma 3.8, if q 2 k
�, q ¤ 1, we have

HC
n Š Hn ˝k kŒx1; : : : ; xn� � H aff

n :

It follows from Lemma 3.4 that there is a natural morphism

'n W HC
n �! EndH 0.q/.QCn/

taking tk to the crossing of the k and .k C 1/-st strands and taking yk to a right curl
(or dot) on the k-th strand. More generally, there is a natural morphism

 n D 'n ˝  0 W HC
n ˝kŒq;q�1� kŒq; q

�1�Œc0; c1; : : : � �! EndH 0.q/.QCn/;

where the dotted clockwise circles corresponding to elements of kŒc0; c1; : : : � are
placed to the right of the diagrams corresponding to elements of HC

n .

Theorem 3.9. The morphism  n is an isomorphism of algebras.

Proof. Any diagram representing an element of EndH 0.q/.QCn/ can be inductively
simplified to a linear combination of standard diagrams consisting of a element of
y 2 Hn (written as a strand diagram), some number (possibly zero) of dots on each
strand above the crossings, and a product of dotted clockwise circles to the right:

:

The surjectivity of  n then follows immediately from that of  0.
Assume q is an indeterminate and k D Z. We can view any field k

0 as an
ZŒq; q�1�-module via the map that sends q to 1. Consider the composition

HC
n ˝ZŒq;q�1� k

0Œc0; c1; : : : �

Š .HC
n ˝ZŒq;q�1� ZŒq; q�1�Œc0; c1; : : : �/˝ZŒq;q�1� k

0

 n˝id����! EndH 0.q/.QCn/˝ZŒq;q�1� k
0 D EndH 0.QCn/;

where H 0 is the category defined in [11] (for the field k
0). This composition is

precisely the map  n of [11], which is injective by [11], Proposition 4. It follows
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that our map  n is also injective when we work over the ring k D Z and q is
an indeterminate. Since, for an arbitrary ring k, kŒq; q�1� (where q is either an
indeterminate or an invertible element of k) is a ZŒq; q�1�-module in the obvious
way, we can tensor with kŒq; q�1� and see that  n is an isomorphism in the general
case.

Having explicitly described EndH 0.q/.QCn/, we now turn to the more general
problem of giving an explicit basis for HomH 0.q/.Q"; Q"0/ for any sequences"; "0 . Let
k denote the total number of Cs in " and �s in "0. We have HomH 0.q/.Q"; Q"0/ D 0

if the total number of �s in " and Cs in "0 is not also equal to k. Thus, we assume
from now on that k is also the total number of �s in " and Cs in "0.

Definition 3.10. For two sign sequences "; "0 , letB."; "0/ be the set of planar diagrams
obtained in the following manner.

� The sequences " and "0 are written at the bottom and top (respectively) of the
plane strip R � Œ0; 1�.

� The elements of " and "0 are matched by oriented segments embedded in the
strip in such a way that their orientations match the signs (that is, they start at
either a C of " or a � of "0, and end at either a � of " or a C of "0), each two
segments intersect at most once, and no self-intersections or triple intersections
are allowed.

� Any number of dots may be placed on each interval near its out endpoint (i.e.
between its out endpoint and any intersections with other intervals).

� In the rightmost region of the diagram, a finite number of clockwise disjoint
nonnested circles with any number of dots may be drawn.

The set of diagrams B."; "0/ is parametrized by kŠ possible matchings of the 2k
oriented endpoints, a sequence of k nonnegative integers determining the number of
dots on each interval, and by a finite sequence of nonnegative integers determining
the number of clockwise circles with various numbers of dots.

An example of an element of B.� � C � C;C � C � C � �/ is drawn below.

5

3 8

4
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Proposition 3.11. For any sign sequences "; "0, the set B."; "0/ is a basis of the
kŒq; q�1�-module HomH 0.q/.Q"; Q"0/.

The proof, which we include for the sake of completeness, is almost identical to
that of [11], Proposition 5.

Proof. It is straightforward to check that using the defining local relations of H 0.q/,
any element of HomH 0.q/.Q"; Q"0/ can be reduced to a direct sum of elements of
B."; "0/. One uses (3.1) and (3.3) to remove double crossings, Lemma 3.4 to move
dots to the ends of intervals, (3.11) to move circles to the rightmost region, etc.

It remains to show that B."; "0/ is linearly independent. Moving the lower end-
points of a diagram up using cup diagrams, or moving the upper endpoints of a
diagram down using cap diagrams, yields canonical isomorphisms

HomH 0.q/.Q"; Q"0/ Š HomH 0.q/.1; Q N""0/ Š HomH 0.q/.1; Q"0 N"/;

where N" is the sequence "with the order and all signs reversed. It thus suffices to show
that B.¿; "/ is linearly independent for any sequence " with k pluses and k minuses.
We prove this by induction on k and (for each k) by induction on the lexicographic
order (where C < �) among length 2k sequences. Theorem 3.9 implies the base
cases k D 0; 1 and " D Ck�k for any k. Now assume " D "1 � C "2 for some
sequences "1 and "2. By the inductive hypothesis, B.¿; "1"2/ and B.¿; "1 C � "2/
are linearly independent. Lemma 3.1 (more precisely, the two upper morphisms
in (3.6)) gives a canonical isomorphism

Q"1C� "2
˚Q"1"2

Š Q"1�C "2
:

This isomorphism maps the sets B.¿; "1"2/ and B.¿; "1 C � "2/ to subsets B1 and
B2 of HomH 0.q/.Q"1�C "2

/. Let B D B1 [ B2. It is straightforward to check that
B.¿; "1 � C "2/ is linearly independent if and only if B is. Since we know B is
linearly independent by induction, we are done.

3.6. Symmetries. There are some obvious symmetries of the category H 0.q/. Let
�2 be the symmetry of H 0.q/ given on diagrams by reflecting in the horizontal axis
and reversing orientation of strands. This is an involutive monoidal contravariant
autoequivalence of H 0.q/.

Let �3 be the symmetry of H 0.q/ given on diagrams by reflecting in the vertical
axis and reversing orientation. This is an involutive antimonoidal covariant autoe-
quivalence of H 0.q/. By antimonoidal, we mean that �3.M˝N/ Š �3.N /˝�3.M/.

The functors �2 and �3 commute and hence define an action of .Z=2Z/2. When
q D 1, these symmetries reduce to ones defined in [11]. There is a third symmetry, �1,
defined in [11]. This also has a q-deformation but one needs to pass to an appropriate
completion of the category H 0.q/. It follows from Proposition 3.11 and Lemma 3.4
that the morphism spaces of H 0.q/ are filtered by numbers of dots. Let zH 0.q/ be
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the category whose objects are those of zH 0.q/, but where Hom zH 0.q/
.Q"; Q"0/ is

the space of formal infinite linear combinations of elements of HomH 0.q/.Q"; Q"0/

which are locally finite with respect to the filtration by number of dots; thus an element
of Hom zH 0.q/

.Q"; Q"0/ is an infinite linear combination of diagrams such that for all
n � 0 the number of summands with fewer thann dots is finite. Note that composition
of such infinite sums is well-defined. Then let �1 be the endofunctor of zH 0.q/ defined
locally by

7�! � q D � � .1� q/ ;

�1 is the identity on right-oriented caps and cups, and on left-oriented caps and cups,
�1 acts as

7�! � .q�1 � 1/
and

7�!
1X
nD0

.q�1 � 1/n

n

:

One can compute directly that the action of �1 on left, right and downward-oriented
crossings is given by

7�! � � .1� q/ ;

7�! � � .1� q/ ;

7�! � ;



Heisenberg categorification 145

and the action on dots is

7�! �
1X
nD0

.q�1 � 1/n nC 1 :

A straightforward computation shows that �1 is an involutive monoidal covariant
autoequivalence of zH 0.q/. One sees immediately that, when q D 1, the infinite sums
in the definition of �1 become finite, there is no need to pass to the completion zH 0.q/,
and this autoequivalence reduces to the one defined in [11].

4. Categorification of the Heisenberg algebra

In this section, we assume k is a field of characteristic zero and q 2 k
� is not a

nontrivial root of unity.

4.1. Projectors. Let H .q/ be the Karoubi envelope of H 0.q/. More precisely, the
objects of H .q/ are pairs .Q"; e/ where e W Q" ! Q" is an idempotent endomor-
phism, e2 D e. Morphisms .Q"; e/ ! .Q"0 ; e0/ are morphisms f W Q" ! Q"0 in
H 0.q/ such that the following diagram is commutative:

Q"
f ��

f

���
��

��
��

��
��

�

e

��

Q"0

e0

��
Q"

f
�� Q"0 :

In the case q D 1, the category H .1/ is the (conjectural) categorification of the
Heisenberg algebra defined by Khovanov [11].

It follows from the local relations (3.1) and (3.2) that upward oriented crossings
satisfy the Hecke algebra relations and so we have a canonical homomorphism

Hn �! EndH 0.q/.QCn/: (4.1)

Similarly, since each space of morphisms in H 0.q/ consists of diagrams up to isotopy,
downward oriented crossings also satisfy the Hecke algebra relations and give us a
canonical homomorphism

Hn �! EndH 0.q/.Q�n/: (4.2)
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Introduce the complete q-symmetrizer and q-antisymmetrizer

e.n/ D 1

Œn�qŠ

X
w2Sn

tw ; e0.n/ D 1

Œn�q�1 Š

X
w2Sn

.�q/�l.w/tw ; (4.3)

where

Œn�q D
n�1X
iD0

qi :

Both e.n/ and e0.n/ are idempotents in Hn (see [6], §1). We will use the notation
e.n/ and e0.n/ to also denote the image of these idempotents in EndH 0.q/.QCn/ and
EndH 0.q/.Q�n/ under the canonical homomorphisms (4.1) and (4.2). We then define
the following objects in H .q/:

SnC D .QCn ; e.n//; Sn� D .Q�n ; e.n//;

ƒnC D .QCn ; e0.n//; ƒn� D .Q�n ; e0.n//:

Following [4], §6.1 and §6.2, which contains diagrammatics forYoung symmetrizers
and antisymmetrizers for the symmetric group, we depict SnC as a white box labeled
n. The inclusion morphism SnC ! QCn is depicted by a white box with n upward
oriented lines leaving from the top. The projection QCn ! SnC is depicted by
a white box with n upward oriented lines entering the bottom. The composition
QnC ! SnC ! QCn is depicted by a white box with n upward oriented lines leaving
the top and n upwards oriented lines entering the bottom:

n , n , n , n .

We depict the object ƒnC and its related inclusions and projections by the same
diagrams but with white boxes replaced by black boxes:

n , n , n , n .

The objects Sn� and ƒn�, together with their related inclusions and projections, are
depicted by the same diagrams but with downward oriented lines instead of upward
oriented lines.
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Lemma 4.1. Crossings are absorbed into q-symmetrizers at the cost of a factor of q
and into q-antisymmetrizers at the cost of a factor of �1. More precisely, we have
the following equalities:

D q

and

D � .

Here the arrows can either be oriented up or down. We also have analogous relations
with the lines emanating from the bottom of the boxes instead of the top.

Proof. This follows immediately from (4.3) (see [6], p. 843).

Lemma 4.2. We have following relation:

n

n

D qn

n

n

� qnŒn�q

n

n

.

Proof. We prove this result by induction. The case n D 1 is simply the left hand
relation in (3.3). Now assume the result holds for n � 1. Then

n

n

D q

n

n

� q

n

n

D q

n

n

� q2n�1

n

n
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D qn

n

n

� qnŒn� 1�q

n

n

� q2n�1

n

n

D qn

n

n

� qnŒn�q

n

n

,

where in the third equality we used the inductive hypothesis and the fact that a
symmetrizer of size n � 1 on top of (or below) a symmetrizer of size n is equal to a
symmetrizer of size n.

Lemma 4.3. We have the following relation:

m

m

D qm

m

m

� qŒm�q

m

m

.

Proof. The proof is similar to that of Lemma 4.2 and is therefore omitted.

Lemma 4.4. We have the following relations, where the strands can be oriented up
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or down:

n D 1

Œn�q
n � 1 C Œn� 1�q

Œn�q

n � 1

n � 1

and

m D 1

Œm�q�1
m � 1 � Œm � 1�q

Œm�q

m � 1

m � 1

.

Proof. These statements are q-analogues of (6.10) and (6.19) of [4]. We sketch the
proof of the second. The proof of the first is analogous and will be omitted. First
note that

m D 1

Œm�q�1

0
BBBBB@ m � 1 C .�q/�1 m � 1

C .�q/�2 m � 1 C � � �

C .�q/�.m�1/ m � 1

1
CCCCCA :
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We now apply a q-antisymmetrizer of sizem� 1 to the rightmost m� 1 strands. On
the left hand side of the equation, we use the fact that a q-antisymmetrizer of size
m followed by a q-symmetrizer of size m� 1 equals a q-antisymmetrizer of size m,
to see that this side remains unchanged. We then use Lemma 4.1 to simplify all the
terms on the right hand side of the equation.

Define the following morphisms in H .q/:

ƒmC ˝ Sn�

Sn� ˝ƒmC

ƒm�1C ˝ Sn�1�

˛1 ˇ1

˛2 ˇ2

n

m

m

n

m

n

n

m

n

m� 1

m

n� 1

m� 1

n

n� 1

m

:

Proposition 4.5. We have the following:

˛1ˇ2 D 0;

˛2ˇ1 D 0;

˛1ˇ1 D qmnid;

˛2ˇ2 D q.m�1/.n�1/

Œm�q�1 Œn�q
id:
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Proof. We have

˛1ˇ2D

m � 1

n

n � 1

m

m n

D

m � 1 n� 1

m n

D 0:

In the second equality, we use the fact that since the middle q-symmetrizer and q-anti-
symmetrizer are linear combinations of various crossings, the triple point moves (3.8)
and (3.9) allow us to pull them through the lines above them and absorb them into
the upper q-symmetrizer and q-antisymmetrizer. In the third equality, we used the
fact that a left curl is zero. The proof that ˛2ˇ1 D 0 is analogous. The relation
˛1ˇ1 D qmnid follows immediately from the right hand relation in (3.3).

The relation involving ˛2ˇ2 is proved as follows. By applying Lemma 4.4 to the
middle two boxes of ˛2ˇ2, one gets four summands. Two of these contain a left curl
and are therefore equal to zero. Another contains a left curl after applying the right
hand relation in (3.3). Thus only one summand is nonzero. This summand contains
a counterclockwise circle, which is the identity by (3.4). Proceeding in the same way
as for ˛1ˇ1, one gets the factor of q.m�1/.n�1/.
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Define

ˇ0
1 D q�mnˇ1; and ˇ0

2 D Œm�q�1 Œn�q

q.m�1/.n�1/ˇ2:

Then, by Proposition 4.5, we have

˛1ˇ
0
2 D 0; ˛2ˇ

0
1 D 0; ˛1ˇ

0
1 D id; ˛2ˇ

0
2 D id: (4.4)

Proposition 4.6. We have
ˇ0
1˛1 C ˇ0

2˛2 D id:

Proof. We give only a sketch of the proof, which is a straightforward computa-
tion. First, one computes ˇ0

1˛1. As in the proof of Proposition 4.5, the middle
q-symmetrizer and q-antisymmetrizer can be pulled through the crossings and ab-
sorbed into the upper ones. Then one uses Lemmas 4.1 and 4.2 (or 4.3) to show
that

ˇ0
1˛1 D id � Œn�qŒm�q�1

n

n

m

m

:

In showing this relation (and the next), one notes that any diagram containing a
q-symmetrizer and q-antisymmetrizer connected by two or more strands is zero (this
follows immediately from Lemma 4.1 since q ¤ �1). In a similar fashion, one shows
that

ˇ0
2˛2 D Œn�q Œm�q�1

n

n

m

m

:

Adding these two expressions then gives the desired relation.

Theorem 4.7. In the category H .q/, we have

Sn� ˝ Sm� Š Sm� ˝ Sn�;

ƒnC ˝ƒmC Š ƒmC ˝ƒnC;

Sn� ˝ƒmC Š .ƒmC ˝ Sn�/˚ .ƒm�1C ˝ Sn�1� /:
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Proof. To see the second isomorphism, consider the morphisms

n

m

m

n

and

m

n

n

m

,

where we recall the definition (3.5) of the inverse crossing, denoted by an open circle.
One easily verifies that these two morphisms compose in either order to yield the iden-
tity. The proof of the first isomorphism in the statement of the theorem is analogous.
The third isomorphism follows immediately from (4.4) and Proposition 4.6.

4.2. The Heisenberg 2-category. In the sequel, we will define actions of our graph-
ical categories on categories of modules for Hecke algebras and general linear groups
over finite fields. These actions are most naturally described in the language of
2-categories. Therefore, we define here a 2-category built from the graphical cate-
gory H .q/.

Definition 4.8 (Heisenberg 2-category). We define the Heisenberg 2-category H0.q/
as follows. The objects of H0.q/ are the integers. For n;m 2 Z D ObH0.q/,
HomH0.q/.n;m/ is the full subcategory of H 0.q/ containing the objects Q", " D
"1 : : : "l , for which

m � n D #fi j "i D Cg � #fi j "i D �g:
We then define H.q/ to be the 2-category whose objects are the integers and for
n;m 2 Z, HomH.q/.n;m/ is the Karoubi envelope of HomH0.q/.n;m/.

Definition 4.9 (Representation ofH.q/). Let X D L
n2Z Xn be a Z-graded additive

category. Then the endofunctors of X naturally form a 2-category whose objects are
the integers, whose 1-morphisms from n tom, n;m 2 Z, are the functors from Xn to
Xm, and whose 2-morphisms are natural transformations. A representation of H.q/
is a functor from H.q/ to such a 2-category of endofunctors.

4.3. A modified Heisenberg algebra. The algebra hZ is Z-graded after setting

deg bm D m; degam D �m; m 2 NC:

For n 2 Z, let hZ.n/ be the subspace of hZ consisting of homogeneous elements of
degree n.

Any graded ring gives rise to a preadditive category with an object for each graded
piece. In this way, we obtain the following category.
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Definition 4.10. Let PhZ be the preadditive category defined as follows:

� Ob PhZ D Z;

� for m; n 2 Z, the morphisms from n to m are hZ.m � n/.
Composition of morphisms is simply given by multiplication in hZ.

4.4. A categorification of the Heisenberg algebra. There is a natural bijection
between the set P .n/ of partitions of n and the set of isomorphism classes of repre-
sentations ofHn (see, for example, [15], Chapter 3). To a partition � D .�1; : : : ; �k/

of n, there corresponds the irreducible representation L�. This is the unique common
irreducible summand of the representation induced from the trivial representation of
the parabolic subgroup H� D H�1

� � � � � H�k
of Hn, and the representation in-

duced from the sign representation of the parabolic subgroup H�� , where �� is the
dual partition. Let e� 2 Hn be the corresponding Young idempotent, so that e2

�
D e�

and L� D Hne�.
For � 2 P .n/, let QC;� D .QCn ; e�/ 2 H.q/. Here we are viewing e� as an

idempotent in EndH.q/.QCn/via the map (4.1). Similarly, defineQ�;� D .Q�n ; e�/,
where we view e� as an idempotent in EndH.q/.Q�n/ via (4.2). In particular, we
have

SnC D QC;.n/; Sn� D Q�;.n/;

ƒnC D QC;.1n/; ƒn� D Q�;.1n/:

Recall that if C is a 2-category, then the (split) Grothendieck group K0.C/ of C
is the category whose objects are the objects of C and whose sets of morphisms are
the (split) Grothendieck groups of the corresponding morphism categories in C. The
Grothendieck group K0.H.q// of H.q/ is naturally a preadditive category.

Definition 4.11. Define a functor

F W PhZ �! K0.H.q//

as follows. On objects, we define F.n/ D n for all n 2 Z. We define F on morphisms
by

F.an/ D ŒSn��; F.bn/ D ŒƒnC�;

and requiring F to be monoidal. The functor F is well defined by Theorem 4.7.

We can identify the subring of hZ generated by the an, n � 1, with the ring of
symmetric functions so that an corresponds to the n-th complete symmetric func-
tion hn. Let a� denote the polynomial in the an’s associated to the Schur function
corresponding to the partition �. Then

F.a�/ D ŒQ�;��:
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Similarly, we identity the subring of hZ generated by the bn, n � 1, with the ring
of symmetric functions so that bn corresponds to the n-th elementary symmetric
function en. Let b� denote the polynomial in the bn’s associated to the Schur function
corresponding to the partition �. Then

F.b�/ D ŒQC;�� �:

The ring hZ has a basis fb�a�g�;�, where � and � run over all partitions. It follows
that fŒQC;��ŒQ�;��g�;� spans the subring F.PhZ/ of K0.H.q//.

Theorem 4.12. For q not a root of unity, the functor F is faithful.

The proof of Theorem 4.12 is given in Section 5.6.

Conjecture 4.13. For q not a root of unity, the functor F is an equivalence.

Remark 4.14. When q is a root of unity, the Hecke algebra and its representation
theory changes considerably. It would be interesting to study the category H .q/ in
this case. When q is not a root of unity, we conjecture that the categories H .q/ for
various q are equivalent to one another.

4.5. Symmetries. The symmetries of H 0.q/ described in Section 3.6 naturally
induce symmetries of H .q/, H.q/, and K0.H.q//. The induced involutions of
K0.H.q// preserve the image of F (which we identify with PhZ).

Since �2 preserves the q-symmetrizer e.n/ and the q-antisymmetrizer e0.n/ (see
eq. (4.3)), it follows that it preserves the objects SnC, Sn�, ƒnC, and ƒn� of H .q/.
The symmetry �2 then naturally induces an involution of H.q/ that is the identity on
objects. The induced functor on PhZ is the identity.

It is easy to check that the induced action of �3 on H .q/ interchanges SnC with Sn�
andƒnC withƒn�. It induces a symmetry on H.q/ that, on objects, sends n to �n, for
n 2 Z. The induced involutive functor on PhZ is the contravariant functor that sends
the object n, n 2 Z, to �n, and interchanges an and bn.

5. Action on modules for Hecke algebras

In this section, we will describe how our graphical category acts on the category of
modules for Hecke algebras of type A. We refer the reader to [10] for an overview
of the type of diagrammatic presentation of functors, natural transformations, and
biadjointness we use here.
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5.1. Bimodules for Hecke algebras. For 1 � k � n, we can view Hk as a sub-
algebra of Hn via the embedding ti 7! ti . We introduce here some notation for
bimodules. First note that Hn is naturally an .Hn; Hn/-bimodule. Via our identifi-
cation of Hk , 1 � k � n, with a subalgebra of Hn, we can naturally view Hn as an
.Hk; Hl/-bimodule for 1 � k; l � n. We will write k.n/l to denote this bimodule.
If k or l is equal to n, we will often omit the subscript. Thus, for instance,

� .n/ denotes Hn, considered as an .Hn; Hn/-bimodule,

� .n/n�1 denotes Hn, considered as an .Hn; Hn�1/-bimodule, and

� n�1.n/ denotes Hn, considered as an .Hn�1; Hn/-bimodule.

5.2. Decompositions. We collect here various results that will be used in the sequel.

Lemma 5.1. The algebra HnC1 is free of rank n C 1 as both a right and a left
Hn-module. In particular, we have the following.

(a) The set ftntn�1 : : : tj j 1 � j � nC 1g is a basis of HnC1 as a left Hn-module.
Here we interpret tntn�1 : : : tj as being 1nC1 when j D nC 1.

(b) The set ftj : : : tn�1tn j 1 � j � nC 1g is a basis ofHnC1 as a rightHn-module.

Proof. We prove the second statement since the first is analogous. To prove that our
set generatesHnC1 as a rightHn-module, it suffices to show that each tw ,w 2 SnC1,
can be written as a right Hn-multiple of tj � � � tn for some 1 � j � n C 1. Let
w 2 SnC1 and set j D w.nC 1/. Then

snsn�1 � � � sjw.nC 1/ D nC 1:

Thus snsn�1 � � � sjw D Qw for some Qw 2 Sn (viewed as the subgroup of SnC1 fixing
nC 1). Then

w D sj � � � sn�1sn Qw (5.1)

and any reduced expression of Qw gives a reduced expression of w via substitution
in (5.1). Therefore,

tw D tj � � � tn�1tnt Qw ; t Qw 2 Hn;
as desired.

It remains to show that the tj � � � tn�1tn are linearly independent. But this is
clear since tj � � � tn�1tnHn is the rightHn-submodule ofHnC1 spanned by the tw for
w 2 SnC1 with w.nC 1/ D j .

The following lemma, which is a Mackey formula forHn-modules, is well known.
We include a proof for the sake of completeness.
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Lemma 5.2. We have the following isomorphism of .Hn; Hn/-bimodules:

n.nC 1/n Š .n/˚ ..n/n�1.n//:

Proof. Let yHnC1 be the subspace of HnC1 spanned by ftw j w 2 SnC1 n Sng. That
is, yHnC1 is spanned by those tw for which w.nC 1/ ¤ nC 1. Then it is clear that

HnC1 Š Hn ˚ yHnC1 as .Hn; Hn/-bimodules:

It remains to show that yHnC1 is isomorphic to .n/n�1.n/ as an .Hn; Hn/-bimodule.
Define a map

.n/n�1.n/ �! yHnC1; tw ˝ tw 0 7�! tw tntw 0 : (5.2)

Since elements ofHn�1 commute with tn, this map is well defined. It is also clearly
a surjective homomorphism of .Hn; Hn/-bimodules. Now, the dimension of yHnC1
is

dim yHnC1 D jSnC1j � jSnj D .nC 1/Š � nŠ D n � nŠ:
On the other hand, the dimension of .n/n�1.n/ is the dimension ofHn times the rank
of Hn considered as a right Hn�1-module. Therefore, by Lemma 5.1, we have

dim.n/n�1.n/ D n � nŠ D dim yHnC1:

Therefore, the map (5.2) is an isomorphism as desired.

5.3. Adjunctions. Let Res denote the functor of restriction from the category of
Hn-modules to the category of Hn�1-modules and let Ind denote the functor of
induction from Hn�1-modules to Hn-modules. In a slight abuse of notation, we use
the notation Res; Ind for different values of n. The goal of this section is to show
that these functors are biadjoint. Note that restriction and induction are realized by
tensoring with appropriate bimodules. In particular, we have

ResM D n�1.n/˝Hn
M; M 2 Hn-mod;

and

IndN D .n/n�1 ˝Hn�1
N; N 2 Hn�1-mod:

Similarly, compositions of induction and restriction functors are given by tensoring
by appropriate bimodules. Then natural transformations between such functors are
simply bimodule homomorphisms. We can thus either work in the 2-category of
categories, functors, and natural transformations or in the 2-category of modules,
bimodules, and bimodule homomorphisms. Most often, it will be convenient for us
to work in the language of bimodules. In any 2-category, one can talk of adjoint
1-morphisms and so we will often talk of adjoint bimodules.

We now define some important bimodule maps.
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(a) Let RCap denote the bimodule map

RCap W .nC 1/n.nC 1/ �! .nC 1/; x ˝ y 7�! xy;

given by multiplication.

(b) Let RCup denote the bimodule map

RCup W .n/ ,�! n.nC 1/n; z 7�! z:

(c) Let LCap denote the bimodule map

LCap W n.nC 1/n �! .n/

given by declaring

LCapjHn
D id and LCap.tn/ D 0:

(d) Let LCup denote the bimodule map

LCup W .nC 1/ �! .nC 1/n.nC 1/

determined by

1nC1 7�!
nC1X
iD1

qi�.nC1/ti : : : tn�1tn ˝ tntn�1 : : : ti :

We set tnC1 D 1 in the above formula, so that the i D nC 1 term in the sum is
1˝ 1.

It is clear that RCap, RCup, and LCap are indeed maps of bimodules.

Lemma 5.3. The map LCup is a map of bimodules.

Proof. It suffices to show that the sum appearing in the definition commutes with tj
for all 1 � j � n. Now, if j < i � 1, we clearly have

tj .ti � � � tn ˝ tn � � � ti / D .ti � � � tn ˝ tn � � � ti/tj :
If j > i , then

tj .ti � � � tn ˝ tn � � � ti / D ti tiC1 � � � tj�2.tj tj�1tj /tjC1 � � � tn ˝ tn � � � ti
D ti tiC1 � � � tj�2.tj�1tj tj�1/tjC1 � � � tn ˝ tn � � � ti
D ti tiC1 � � � tntj�1 ˝ tn � � � ti
D ti tiC1 � � � tn ˝ tj�1tn � � � ti
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D ti tiC1 � � � tn ˝ tn � � � tjC1.tj�1tj tj�1/tj�2 � � � ti
D ti tiC1 � � � tn ˝ tn � � � tjC1.tj tj�1tj /tj�2 � � � ti
D .ti � � � tn ˝ tn � � � ti/tj :

It remains to consider the terms with j D i � 1; i . We have

tj .q
j�.nC1/tj � � � tn ˝ tn � � � tj C qj�ntjC1 � � � tn ˝ tn � � � tjC1/

D qj�.nC1/.q C .q � 1/tj /tjC1 � � � tn ˝ tn � � � tj
C qj�ntj tjC1 � � � tn ˝ tn � � � tjC1

D qj�ntjC1 � � � tn ˝ tn � � � tj C .q � 1/qj�.nC1/tj � � � tn ˝ tn � � � tj
C qj�ntj � � � tn ˝ tn � � � tjC1

D .qj�.nC1/tj � � � tn ˝ tn � � � tj C qj�ntjC1 � � � tn ˝ tn � � � tjC1/tj :

The result follows.

We will now start using string diagram notation for 2-categories. In particular,
the above bimodule homomorphisms will correspond to diagrams as follows:

RCap D nC 1 ; RCup D n ;

LCap D n ; LCup D nC 1 :

We refer the reader to [10] for an overview of this notation for 2-categories. Note that
the labels of the regions of a string diagram are uniquely determined by the label of
one region and the fact that, as we move from right to left, labels increase by one as we
cross upward pointing strands and decrease by one as we cross downward pointing
strands. An example of a diagram with all regions labeled is as follows.

nn�1
nC 1

n

nC 2nC 2

nC3 nC2
nC1 n

The above diagram corresponds to a bimodule map

nC2.nC 3/nC3.nC 3/nC2.nC 2/nC1.nC 1/n.nC 1/nC1.nC 1/n

�! .nC 2/nC1.nC 2/nC2.nC 2/nC1.nC 1/n:

In what follows, we will use various natural bimodule isomorphisms, such as, for
instance, .n C 1/n.n/ Š .n C 1/n, without mention. When we draw a diagram
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without the regions labeled, we assert that the relation in question holds for all possible
labelings.

Proposition 5.4. The adjunction maps LCap, LCup, RCap, RCup defined above
make .Res; Ind/ into a biadjoint pair.

Proof. This amounts to proving the following four equalities:

D ; D ; (5.3)

D ; D : (5.4)

We will prove the third equality. The rest are similar. If the rightmost region is
labeled nC 1, the left hand side of the third equality is the bimodule homomorphism
n.nC 1/ ! n.nC 1/ given by the composition

n.nC 1/
LCup����! n.nC 1/n.nC 1/

LCap˝id������! .n/n.nC 1/
Š��! n.nC 1/:

Since n.nC1/ is generated by 1nC1, it suffices to determine the image of this element.
We have

1nC1 7�!
nC1X
iD1

qi�.nC1/ti � � � tn�1tn ˝ tntn�1 : : : ti 7�! 1n ˝ 1nC1 7�! 1nC1:

Hence the composition is the identity map, as desired.

As a result of the above proposition, any endomorphism of Ind defines an endo-
morphism of Res in two possible ways (one using the adjunctions RCap and RCup,
and one using LCap and LCup.) When the two endomorphisms of Res defined in this
way are equal to one another (for every endomorphism of Ind), the adjunction data
.RCap;RCup;LCap;LCup/ is said to be cyclic. We refer the reader to [10] for a fur-
ther description of cyclic biadjointness and its relationship to planar diagrammatics
for bimodules.

Proposition 5.5. The adjunction data above is cyclic when q is an indeterminate or
a prime power.

Proof. We prove this in Section 7, where we work in the setting of parabolic induction
and restriction for finite groups (see Corollary 7.12).
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5.4. Crossings. We define the following bimodule map

Ucross D n W .nC 2/n �! .nC 2/n; z 7�! ztnC1:

It follows from Proposition 5.5 that any two isotopic diagrams involving the
2-morphism

n

as well as cups and caps are equal, when q is an indeterminate. Furthermore, spe-
cializing q to any element of k� implies that this is true in general. We define left,
right, and downward crossings to be equal to any composition of cups and caps and
an upward crossing yielding a bimodule map between the appropriate bimodules. By
the above, any two such definitions are equivalent. For instance, we can define the
left, right and downward crossings as follows:

n D n ; (5.5)

n D n ; (5.6)

and

n D n : (5.7)

Lemma 5.6. We have

Dcross D n W n.nC 2/ �! n.nC 2/; z 7�! tnC1z;

Rcross D n W .n/n�1.n/ ,�! n.nC 1/n; w ˝ z 7�! wtnz;
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and

Lcross D n W n.nC 1/n �� .n/n�1.n/; 1nC1 7�! 0;

q1n 7�! 1n:

Proof. We prove the third statement. The proofs of the others are similar. We need
to compute the following map of bimodules.

n

This is the bimodule map n.nC 1/n ! .n/n�1.n/ given by the composition

n.nC 1/n
Š��! n.nC 1/n.n/

id˝LCup������! n.nC 1/n.n/n�1.n/
Š��! n.nC 1/n�1.n/

Ucross˝id�������! n.nC 1/n�1.n/
Š��! n.nC 1/n.n/n�1.n/

LCap˝id˝id��������! .n/n.n/n�1.n/
Š��! .n/n�1.n/:

We compute

1nC1 7�! 1nC1 ˝ 1n

7�!
nX
iD1

1nC1 ˝ qi�nti : : : tn�1 ˝ tn�1 : : : ti

7�!
nX
iD1

qi�nti : : : tn�1 ˝ tn�1 : : : ti

7�!
nX
iD1

qi�nti : : : tn�1tn ˝ tn�1 : : : ti

7�!
nX
iD1

qi�nti : : : tn�1tn ˝ 1n ˝ tn�1 : : : ti

7�! 0;

and

tn 7�! tn ˝ 1n

7�!
nX
iD1

tn ˝ qi�nti : : : tn�1 ˝ tn�1 : : : ti
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7�!
nX
iD1

qi�ntnti : : : tn�1 ˝ tn�1 : : : ti

7�!
nX
iD1

qi�ntnti : : : tn�1tn ˝ tn�1 : : : ti

7�!
nX
iD1

qi�ntnti : : : tn�1tn ˝ 1n ˝ tn�1 : : : ti :

Now, all terms except the i D n term are mapped to zero. The i D n term is equal to

t2n ˝ 1n ˝ 1n D .q C .q � 1/tn/˝ 1n ˝ 1n 7�! q1n ˝ 1n ˝ 1n 7�! q1n ˝ 1n:

5.5. Categorification of bosonic Fock space

Proposition 5.7. The relations (3.1)–(3.4) hold when these diagrams are interpreted
as maps of bimodules.

Proof. Relations (3.1) and (3.2) follow immediately from the definition of Ucross
and the relations

t2i D q C .q � 1/ti ;
ti tiC1ti D tiC1ti tiC1;

in the Hecke algebra. The remaining relations encode the bimodule decomposition

n.nC 1/n Š .n/˚ ..n/n�1.n//

of Lemma 5.2.

Definition 5.8. Let A be the 2-category defined as follows.

� ObA D N [ frg.

� The 1-morphisms from n to m for n;m 2 N, are functors from Hn-mod to
Hm-mod that are direct summands of compositions of induction and restriction
functors. The only 1-morphism from r to r is the identity. For n 2 N, there
are no 1-morphisms from n to r or from r to n.

� The 2-morphisms are natural transformations of functors.

Note that any .Hm; Hn/-bimodule M yields a functor

Hn-mod �! Hm-mod; V 7�! M ˝ V;
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and any homomorphism M1 ! M2 of .Hm; Hn/-bimodules gives rise to a natural
transformation between the corresponding functors. In particular, the bimodules
.n/n�1 and n�1.n/ correspond to induction and restriction, respectively.

Definition 5.9. It follows from Proposition 5.7 that we can define a 2-functor

A W H0.q/ �! A

as follows.
� For n 2 Z D ObH0.q/, A.n/ D n if n � 0, and A.n/ D r if n < 0.
� On 1-morphisms, A mapsQ" 2 HomH0.q/.n;m/ for a sequence " D "1"2 : : : "k ,

to the tensor product of induction and restriction bimodules, where each C
corresponds to the induction bimodule and each � corresponds to the restriction
bimodule. For instance, for QCC��C�� 2 HomH0.q/.n; n� 1/,

A.QCC��C��/

D .n� 1/n�2.n� 2/n�3.n� 2/n�2.n� 1/n�1.n � 1/n�2.n � 1/n�1.n/:

If, for some k, the last k terms of " contain at least .nC 1/ more �’s than C’s,
then A maps Q" 2 HomH0.q/.n;m/ to 0.

� On 2-morphisms, A maps a planar diagram (a 1-morphism of H0.q/) to the
corresponding bimodule map (or, more precisely, to the natural transformation
corresponding to this bimodule map) according to the definitions given in this
section.

Since A is idempotent complete, the functor A induces a functor

A W H.q/ �! A

(which we denote by the same symbol) on the Karoubi envelope H.q/ of H0.q/, and
hence a functor

ŒA� W K0.H.q// �! K0.A/:

The functor A is a representation of H.q/ in the sense of Definition 4.9.

Remark 5.10. The reader should compare the functor A to the analogous functor
defined in [11]. In [11], which is in the language of 1-categories, the category in
question is monoidal but the functor is not. This is one of the main motivations for
the 2-category point of view.

Elements of HomA.n;m/ are direct summands of finite compositions of induc-
tion and restriction functors from Hn-mod to Hm-mod. Therefore, descending to
Grothendieck groups, we obtain a functor

� W K0.A/ �!
M
n;m2N

HomZ.K0.Hn-mod/; K0.Hm-mod//;
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where we view the bigraded ring
L
n;m2N HomZ.K0.Hn-mod/; K0.Hm-mod// as

a category in the natural way. Namely, the objects are nonnegative integers, and the
set of morphisms from n to m is HomZ.K0.Hn-mod/; K0.Hm-mod//.

Consider the composition

�ŒA� W K0.H.q// �!
M
n;m2N

HomZ.K0.Hn-mod/; K0.Hm-mod//:

For ŒM� 2 K0.Hn-mod/, we have

.�ŒA�/.ŒQC;��/.ŒM�/ D ŒInd
Hj�jCk

Hj�j�Hn
.L� ˝M/�;

.�ŒA�/.ŒQ�;��/.ŒM�/ D
8<
:
0 if j�j > n;
HomHj�j

.L�;M/ 2 Hn�j�j-mod if j�j � n;

where, for a partition � D .�1; �2; : : : ; �k/, we define j�j D Pk
iD1 �k . In the

expression HomHj�j
.L�;M/, we restrictM to anHj�j �Hn�j�j-module and take ho-

momorphisms from the irreducible module L� forHj�j. This hom-space is naturally
an Hn�j�j-module.

Remark 5.11. When k is a field of characteristic zero and q 2 k
� is not a nontrivial

root of unity, the functor A W H.q/ ! A is a categorification of the (bosonic) Fock
space representation of the Heisenberg algebra.

5.6. Proof of Theorem 4.12. Since

Hom PhZ
.n;m/ D hZ.m � n/

D Hom PhZ
.nC k;mC k/

for any m; n; k 2 Z, we have a natural functor

Sk W PhZ �! PhZ

defined on objects by
Sk.n/ D nC k; n 2 Z:

This functor is clearly an isomorphism.
Consider the composition

�ŒA�FSk W PhZ �!
M
m;n2N

HomZ.K0.Hn-mod/; K0.Hm-mod//:

We claim that the direct sum of these maps over all k is injective, from which it
follows that F is faithful. This sum is clearly injective on objects, and so it suffices
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to show it is injective on morphisms. Fix m; n 2 Z D Ob PhZ. An arbitrary element
of Hom PhZ

.n;m/ D hZ.m� n/ is a finite sum of the form

y D
X
�;�

y�;�b�a�; y�;� 2 Z;

where only partitions � and� satisfying j�j�j�j D m�n appear in the sum. Assume
y ¤ 0. Let

l D maxfj�j j y�;� ¤ 0 for some �g;
and choose a partition 	 with j	j D l such that y�;� ¤ 0 for some 
 . Let k D j	j �n.
We have

FSk.y/ D
X
�;�

y�;�ŒQC;���ŒQ�;�� 2 HomK0.H.q//.j	j; j
 j/:

Now, for � with j�j D j	j,
�ŒA�FSk.a�/ D �ŒA�.ŒQ���/ 2 HomZ.K0.Hj�j-mod/; K0.H0-mod//

maps ŒL�� to 0 if j�j D j	j and � ¤ �. It also takes ŒL�� to ŒL¿�, where L¿ is the
irreducible module over H0 D k. Thus, �ŒA�FSk.y/ takes ŒL�� toX

�

y�;�ŒL�� � ¤ 0;

and so �ŒA�FSk.y/ is a nonzero map.

5.7. Jucys–Murphy elements. For k D 0; 1; 2; : : : n, let

LkC1 D
kX
iD1

qi�kti � � � tk � � � ti

D tk C q�1tk�1tktk�1 C q�2tk�2tk�1tktk�1tk�2 C � � � C q1�kt1 � � � tk � � � t1:
By convention, L1 D 0. The Lk (or, more precisely, q�1Lk) are called Jucys–
Murphy elements of HnC1 (see, for example, [15], §3.3). The Lk are significant in
the theory of Hecke algebras, at least in part, because of the following facts.

(a) The elements Lk , k D 1; : : : nC 1, generate an abelian subalgebra of HnC1.

(b) The space of symmetric polynomials in the Lk is the center of HnC1.

(c) The element Lk in HnC1, 1 � k � n C 1, commutes with Hk�1, viewed as a
subalgebra of HnC1 in the usual way.
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Proposition 5.12. Under the definitions of crossings, caps and cups given above, the
right curls are the Jucys–Murphy elements. More precisely,

n

corresponds to the bimodule map

.nC 1/n �! .nC 1/n; z 7�! zLnC1:

Proof. This straightforward calculation will be omitted.

This interpretation of Jucys–Murphy elements as dots in our graphical calculus
allows us to give a purely graphical proof of the following well-known relations (see,
for example, [15], Proposition 3.26).

Corollary 5.13. We have

(a) tlLnC1 D LnC1tl for all 1 � l � n� 1,

(b) LnC1tn D tnLn C .q � 1/LnC1 C q, and

(c) tnLnC1 D Lntn C .q � 1/LnC1 C q.

Proof. This follows immediately from Proposition 5.12 and Lemma 3.4.

6. Action on modules for finite general linear groups

In this section, we will describe how our graphical category acts on the category of
modules for finite general linear groups.

6.1. Representations of finite general linear groups. Letp be a prime number and
let Fq denote a finite field with q D pm elements. We will write GLn for the group of
invertible n� nmatrices with entries in Fq. We embed GLn into GLnC1 in the upper
left, so that the image of GLn in GLnC1 consists of those invertible matrices whose
last row is .0; : : : ; 0; 1/ and whose last column is .0; : : : ; 0; 1/t . This embedding of
groups induces an embedding of k-algebras kŒGLn� ,! kŒGLnC1�. Unless explicitly
mentioned otherwise, all of the embeddings in this section will be induced from this
embedding of algebras. For notational simplicity, we will write An D kŒGLn�.

Let Un;nC1 � GLnC1 denote the subgroup of upper triangular invertible matrices
whose upper left n � n block is the n � n identity matrix and whose last column is
arbitrary. For example, U2;3 is the subgroup of matrices of the form0

@1 0 a

0 1 b

0 0 c

1
A ; c ¤ 0:
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Note that Un;nC1 is a normal subgroup of Pn;nC1 D GLn � Un;nC1. Define an
idempotent vnC1 2 AnC1 by

vnC1 D 1

jUn;nC1j
X

u2Un;nC1

u:

Note that the element vnC1 satisfies

� v2nC1 D vnC1,

� for all x 2 kŒUn;nC1�, xvnC1 D vnC1x D vnC1, and

� for all y 2 An, yvnC1 D vnC1y.

We may consider AnC1vnC1 as an .AnC1; An/-bimodule. Similarly we may con-
sider vnC1AnC1 as a .An; AnC1/-bimodule. We will use notation for these bimodules
and their tensor products similar to the notation used for bimodules over Hecke alge-
bras. In particular,

� .n/ denotes An, considered as an .An; An/-bimodule,

� .n/n�1 denotes Anvn, considered as a .An; An�1/-bimodule,

� n�1.n/ denotes vnAn, considered as an .An�1; An/-bimodule,

� n�1.n/n�1 denotes vnAnvn, considered as an .An�1; An�1/ bimodule, and

� tensor products of these bimodules are denoted by juxtaposition.

The bimodule .n/n�1 D Anvn gives rise to an induction functor

Ind W An�1-mod �! An-mod; M 7�! Anvn ˝An�1
M:

Similarly, the bimodule n�1.n/ D vnAn gives rise to a restriction functor

Res W An-mod �! An�1-mod; N 7�! vnAn ˝An
N:

More generally, an .An; Am/-bimodule X gives rise to a functor from the category
of left Am-modules to the category of left An-modules: this functor takes an Am-
module M to the An-module X ˝Am

M . Composition of functors corresponds to
tensor product of bimodules, and natural transformations correspond to bimodule
maps. Therefore, in order to define natural transformations of compositions of the
functors Ind and Res, we will define bimodule maps between tensor products of the
bimodules .n/n�1 and n�1.n/.
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6.2. Adjunctions

(a) Let RCap denote the bimodule map

RCap W .nC 1/n.nC 1/ �! .nC 1/; xvnC1 ˝ vnC1y 7�! xvnC1y:

(b) Let RCup denote the bimodule map

RCup W .n/ ,�! n.nC 1/n; z 7�! vnC1zvnC1:

(c) Let LCap denote the bimodule map

LCap W n.nC 1/n �! .n/

given as follows. For a group element g 2 GLnC1, we set

LCap.vnC1gvnC1/ D
8<
:
vnC1gvnC1; g 2 Pn;nC1;

0; g … Pn;nC1:

Extending by k-linearity, this defines a .An; An/ bimodule map

vnC1AnC1vnC1 �! vnC1kŒPn;nC1�vnC1 Š An;

as desired. The isomorphism of the last line follows immediately from the
properties of the idempotent vnC1 listed above.

(d) Let LCup denote the bimodule map

LCup W .nC 1/ �! .nC 1/n.nC 1/

determined as follows. Let GLnC1 D `s
iD1 Pn;nC1gi be a decomposition of

GLnC1 into left Pn;nC1 cosets. The element

sX
iD1

g�1
i vnC1 ˝ vnC1gi 2 .nC 1/n.nC 1/

does not depend on the choice of coset representatives fgigsiD1. Moreover, this
element is a Casimir element, so that

a
� sX
iD1

g�1
i vnC1 ˝ vnC1gi

�
D

� sX
iD1

g�1
i vnC1 ˝ vnC1gi

�
a

for alla 2 AnC1. Thus there is a natural bimodule map .nC1/ ! .nC1/n.nC1/
determined by

1nC1 7�!
sX
iD1

g�1
i vnC1 ˝ vnC1gi :
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Proposition 6.1. The adjunction maps LCap, LCup, RCap, and RCup above make
.Res; Ind/ into a cyclic, biadjoint pair.

Proof. We prove this in Section 7, where we work in the more general setting of
parabolic induction and restriction for arbitrary finite groups (see Corollary 7.11).

6.3. Crossings. Let sn 2 GLnC1 denote the symmetric group element

sn D

0
B@
In�1 0 0

0 0 1

0 1 0

1
CA ;

where In�1 is the .n� 1/� .n� 1/ identity matrix. Let tn D qvnC1snvnC1 2 AnC1.
Let

.nC 2/n

denote the bimodule

.nC 2/n D .nC 2/nC1.nC 1/n D AnC2vnC2vnC1:

We define a bimodule map

n W .nC 2/n �! .nC 2/n; zvnC2vnC1 7�! ztnC1vnC2vnC1:

Since An commutes with vnC2, vnC1 and snC1, it follows that the above is a well-
defined map of .AnC2; An/-bimodules. By Proposition 6.1, this 2-morphism is cyclic.
Therefore, any two isotopic diagrams involving this crossing as well as cups and
caps are equal. We define left, right, and downward crossings to be equal to any
composition of cups and caps and an upward crossing yielding a bimodule map
between the appropriate bimodules. By the above, any two such definitions are
equivalent. For instance, we can define the left, right and downward crossings as
in (5.5)–(5.7).

Lemma 6.2. We have

n W n.nC 2/ �! n.nC 2/; vnC1vnC2z 7�! vnC1vnC2tnC1z;

n W .n/n�1.n/ ,�! n.nC 1/n; wvn ˝ vnz 7�! vnC1wtnzvnC1;

and

n W n.nC 1/n �� .n/n�1.n/; vnC1 7�! 0;

vnC1tnvnC1 7�! qvn ˝ vn:
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Proof. All three statements are straightforward computations. In the third computa-
tion, it is useful to note that n.nC 1/n has a bimodule basis consisting of 1n and tn;
thus any bimodule map from n.n C 1/n is completely determined by the image of
these two elements. We omit the details of these three computations.

6.4. Another representation of the graphical category. The following proposition
should be compared to Proposition 5.7.

Proposition 6.3. The relations (3.1)–(3.4) hold when these diagrams are interpreted
as maps of bimodules.

Proof. This follows by direct computation from the definitions and results of Sec-
tions 6.1–6.3.

Some comments about the above proposition are in order. The relations involving
only upward pointing strands follow from the classical work of Iwahori [7]. The
analogues of our upward pointing strands were introduced in Chuang–Rouquier [3]
in the context of sl2 categorifications in the modular representation theory of GLn.
The relations amongst upward pointing braid-like diagrams – that is, diagrams with no
local minima or maxima – are essentially contained in [9], which studies the braided
monoidal structure on the category of characteristic zero representations of all GLn.

Let Bn � GLn denote the Borel subgroup of upper triangular matrices. The rela-
tions involving only upward pointing strands imply that there is a canonical morphism
from the Hecke algebra Hn to EndAn

.IndAn

kŒBn�
1/, the endomorphism algebra of the

induction to An of the trivial kŒBn�-module.

Definition 6.4. Let B be the 2-category defined as follows.
� ObB D N [ frg.

� The 1-morphisms from n to m for n;m 2 N, are functors from An-mod to
Am-mod that are direct summands of compositions of induction and restriction
functors. The only 1-morphism from r to r is the identity. For n 2 N, there
are no 1-morphisms from n to r or from r to n.

� The 2-morphisms are natural transformations of functors.

It follows from Proposition 6.3 that we can define a 2-functor B W H.q/ ! B as
in Definition 5.9 (with Hn replaced by An).

The representations ofH.q/ given here and in Section 5.5 are closely related. Thus
our categorical Heisenberg actions provide another perspective on the appearance of
the Hecke algebra in the representation theory of GLn. Let us explain the relationship
between the two H.q/ representations in a bit more detail. Let Cn � An-mod denote
the full subcategory ofAn-mod consisting of direct summands of modules of the form
IndrM , r 2 N, M an A0-module. Equivalently, the objects of Cn are the unipotent
An-modules, that is, the modules which occur as a direct summand of the induction
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of a trivial kŒBn�-module to An. Let C be the 2-category defined as in Definition 6.4,
but with An-mod replaced by Cn. It follows that the category C is a representation
of H.q/. Define the idempotent

bn D 1

jBnj
X
b2Bn

b D vnvn�1 � � �v1

in the Borel subgroup Bn. The subalgebra bnAnbn � An is the sum of the unipotent
blocks of An. Note that any M 2 Cn contains a vector fixed by kŒBn�. Thus, the
inclusion of M into a free module A˚k

n , k 2 N, factors through .Anbn/˚k . Since
HomAn

.Anbn; Anbn/ D bnAnbn, we have a functor

HomAn
.Anbn;�/ W Cn �! bnAnbn-mod:

It is straightforward to check that this functor is an equivalence of categories, with
the inverse functor given by tensoring with the .An; bnAnbn/-bimodule Anbn.

Iwahori’s theorem [7] implies that for each n there is an isomorphism

bnAnbn Š Hn:

These isomorphisms for all n are compatible with the embeddings

bnAnbn � bnC1AnC1bnC1
and

Hn � HnC1;
and thus with the actions of the 1-morphisms QC and Q�. It is then easy to see
that the isomorphisms bnAnbn Š Hn are compatible with the defining cup, cap, and
crossing 2-morphisms. Thus we have the following proposition.

Proposition 6.5. The equivalence of categoriesL
n HomAn

.Anbn;�/ W L
n Cn �! L

nHn-mod

induces an equivalence C ! A of H.q/ representations. In other words,

H.q/ ��

���
��

��
��

��
��

�
C

��
A

is a commutative diagram (up to isomorphism) with the functor C ! A being an
equivalence of 2-categories.

Remark 6.6. Proposition 6.5 implies that the functor H.q/ ! C is another cat-
egorification of bosonic Fock space. The functor B to the entire category B is a
categorification of an infinite sum of bosonic Fock spaces.
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7. Parabolic induction and restriction for finite groups

The purpose of this section is to describe the cyclic biadjointness of parabolic induc-
tion and restriction functors which show up naturally in the representation theory of
finite groups. We recommend the survey [10] for an introduction to cyclic biadjoint
functors.

7.1. Bimodules from the group algebra of a semi-direct product. Recall that k
is a field of characteristic zero. Let L and U be subgroups of a finite group G such
that

� L normalizes U , i.e. U is a normal subgroup of P D LU , and

� L\ U D f1g.

Let � W U ! C� be a multiplicative character of U normalized by L, so that

�.mum�1/ D �.u/; m 2 L; u 2 U:

Let v� 2 kŒP � be defined by

v� D 1

jU j
X
u2U

�.u/�1u:

Lemma 7.1. The element v� satisfies the following:

� v�v� D v� ,

� for u 2 U , uv� D v�u D �.u/v� , and

� for m 2 L, mv� D v�m.

Proof. All three facts follow from direct computations which are omitted.

The space kŒP �v� has the natural structure of a .kŒP �; kŒP �/-bimodule, and, by
restriction, the structure of a .kŒL�; kŒL�/-bimodule.

Corollary 7.2. kŒP �v� Š kŒL� as a .kŒL�; kŒL�/-bimodule.

Proof. It follows from Lemma 7.1 that the map

kŒL� �! kŒP �v� ; 1 7�! v� ;

is a .kŒL�; kŒL�/-bimodule isomorphism.
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7.2. Parabolic induction and restriction functors. We define functors

IndU;� W kŒL�-mod �! kŒG�-mod

and
ResU;� W kŒG�-mod �! kŒL�-mod

depending on the subgroup U and the character � , as follows.

Definition 7.3. The parabolic induction functor

IndU;� W kŒL�-mod �! kŒG�-mod

is defined by tensoring with the .kŒG�; kŒL�/-bimodulekŒG�˝kŒP �kŒP �v� Š kŒG�v� :

IndU;� .M/ D .kŒG�˝kŒP � kŒP �v�/˝kŒL�M:

Definition 7.4. The parabolic restriction functor

ResU;� W kŒG�-mod �! kŒL�-mod

is defined by tensoring with the .kŒL�; kŒG�/-bimodule kŒP �v� ˝kŒP � kŒG�:

ResU;� .M
0/ D .kŒP �v� ˝kŒP � kŒG�/˝kŒG�M

0:

Note that the functors IndU;� , ResU;� , depend on both the subgroup U and on
the character � . Some basic properties of the functors IndU;� and ResU;� are listed
below. We also refer the reader to [17] for further details.

(a) IndU;� and ResU;� are additive.

(b) LetN andV be subgroups ofL and let� 0 be a character ofV such that the functors
IndV;� 0 W kŒN �-mod ! kŒL�-mod and ResV;� 0 W kŒL�-mod ! kŒN �-mod are
defined. Define a character �0 of U 0 D UV by

�0.uv/ D �.u/� 0.v/; u 2 U; v 2 V:
Then there are isomorphisms of functors

IndU;� B IndV;� 0 Š IndU 0;�0 ;

ResV;� 0 B ResU;� Š ResU 0;�0 :

(c) Let H be another finite group. For M 2 kŒH �-mod, there are functors

T lM W kŒL�-mod �! kŒL �H�-mod; T lM .M
0/ D M ˝kM

0

and

T rM W kŒL�-mod �! kŒH � L�-mod; T rM .M
0/ D M 0 ˝k M
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given by outer tensor product withM on the left and on the right. The parabolic
induction functor

IndU;� W kŒL�-mod �! kŒG�-mod

induces a parabolic induction functor

IndU�1;��1 W kŒL �H�-mod �! kŒG �H�-mod:

Then there are isomorphisms of functors

T rM B IndU;� Š IndU�1;��1 B T rM :
In other words, parabolic induction commutes with T rM (and also with T lM ).
Similarly, parabolic restriction commutes with T rM and T lM .

7.3. Cyclic biadjointness for parabolic induction and restriction. We now define
natural transformations RCap, RCup, LCap, and LCup which will serve as biadjunc-
tion morphisms.

(a) Let
RCap W IndU;� B ResU;� �! idkŒG�;

where idkŒG� is the identity functor on the category of kŒG�-modules, be the
natural transformation given as follows. The left hand side is given as a functor
by tensoring with the .kŒG�; kŒG�/-bimodule

kŒG�˝kŒP �kŒP �v� ˝kŒL� kŒP �v� ˝kŒP � kŒG� Š kŒG�˝kŒP � kŒP �v� ˝kŒP � kŒG�:

Thus the bimodule map defined on a k-basis by

g ˝ bv� ˝ h 7�! gbv�h 2 kŒG�

gives a natural transformation to idkŒG�.

(b) Let
RCup W idkŒL� �! ResU;� B IndU;�

be the natural transformation given by the bimodule map

kŒL� �! kŒP �v� ˝kŒP � kŒG�˝kŒP � kŒP �v� ;

determined by
1 7�! v� ˝ 1˝ v� :

(c) Let
LCap W ResU;� B IndU;� �! idkŒL�

be the natural transformation given by the bimodule map

kŒP �v� ˝kŒP � kŒG�˝kŒP � kŒP �v� �! kŒL�;
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defined as follows. Let ProjP W kŒG� ! kŒP � be the k-linear map defined, for
g 2 G, by

ProjP .g/ D
8<
:
g; g 2 P;
0; otherwise.

Then define LCap as the composition

LCap W kŒP �v� ˝kŒP � kŒG�˝kŒP � kŒP �v�

1˝ProjP ˝1��������! kŒP �v� ˝kŒP � kŒP �˝kŒP � kŒP �v�

���! kŒP �v� ' kŒL�;

where � is the multiplication map bv� ˝ p ˝ b0v� 7�! bv�pb
0v� D bpb0v� .

(d) Let
LCup W idkŒG� �! IndU;� B ResU;�

be the natural transformation given by the bimodule map

LCup W kŒG� �! kŒG�˝kŒP � kŒP �v� ˝kŒP � kŒG�

defined as follows. Let G D `m
iD1 Pgi be a decomposition of G into left

P -cosets. The element

mX
iD1

g�1
i ˝ v� ˝ gi 2 kŒG�˝kŒP � kŒP �v� ˝kŒP � kŒG�

does not depend on the choice of representatives fgigmiD1. Indeed, if g0
i D pigi

for 1 � i � m, then

mX
iD1
.g0
i /

�1 ˝ v� ˝ g0
i D

mX
iD1

g�1
i p�1

i ˝ v� ˝ pigi D
mX
iD1

g�1
i ˝ v� ˝ gi

(since elements of P move across the tensor products and past v� ). Thus we
may define a bimodule map LCup by declaring that

1 7�!
mX
iD1

g�1
i ˝ v� ˝ gi :

Then, for g 2 G,

LCup.g/ D
mX
iD1

g�1
i ˝ v� ˝ gig D

mX
iD1

gg�1
i ˝ v� ˝ gi :
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The last equality is needed to ensure that we have a bimodule map, and is proven
as follows. Suppose that gig D pig

0
i for some pi 2 P and some bijection

i 7! i 0 of f1; : : : ; mg. Then
mX
iD1

g�1
i ˝ v� ˝ gig D

mX
iD1

g�1
i ˝ v� ˝ pig

0
i

D
mX
iD1

g�1
i pi ˝ v� ˝ g0

i

D
mX
iD1

g.g0
i /

�1 ˝ v� ˝ g0
i

D
mX
iD1

gg�1
i ˝ v� ˝ gi ;

as desired.

Proposition 7.5. The natural transformations RCap, RCup, LCap, and LCup make
IndU;� and ResU;� into a biadjoint pair.

Proof. We must show four adjunction relations.

(a) .RCap ˝ idIndU;�
/.idIndU;�

˝ RCup/ D idIndU;�
:

To show this we must show that the composition of bimodule maps

kŒG�˝kŒP � kŒP �v�

id˝RCup������! kŒG�˝kŒP � kŒP �v� ˝kŒL� kŒP �v� ˝kŒP � kŒG�˝kŒP � kŒP �v�

RCap˝id������! kŒG�˝kŒP � kŒP �v�

is the identity. We check that for g 2 G and b 2 P ,

g ˝ bv� 7�! .g ˝ bv� /˝ .v� ˝ 1˝ v� / 7! gbv� ˝ v� D g ˝ bv� ;

as desired.

(b) .idResU;�
˝ RCap/.RCup ˝ idResU;�

/ D idResU;�
.

The composition of bimodule maps

kŒP �v� ˝kŒP � kŒG�

RCup˝id������! kŒP �v� ˝kŒP � kŒG�˝kŒP � kŒP �v� ˝kŒL� kŒP �v� ˝kŒP � kŒG�

id˝RCap������! kŒP �v� ˝kŒP � kŒG�
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is given, for b 2 P and g 2 G, by

bv� ˝ g 7�! bv� ˝ 1˝ v� ˝ g 7! bv� ˝ v�g D bv� ˝ g;

as desired.

(c) .LCap ˝ idResU;�
/.idResU;�

˝ LCup/ D idResU;�
.

The composition of bimodule maps

kŒP �v� ˝kŒP � kŒG�

id˝LCup������! kŒP �v� ˝kŒP � kŒG�˝kŒP � kŒP �v� ˝kŒP � kŒG�

LCap˝id������! kŒL�˝kŒL� kŒP �v� ˝kŒP � kŒG� Š kŒP �v� ˝kŒP � kŒG�

is given, for b 2 P , g 2 G, by

bv� ˝ g 7�!
mX
iD1

bv� ˝ gg�1
i ˝ v� ˝ gi 7! bv�gg

�1
j v� ˝ gj D bv� ˝ g;

where j 2 f1; : : : ; mg is the unique index such that gg�1
j 2 P (the other

summands are killed by LCap). Thus the composition is the identity, as desired.

(d) .idIndU;�
˝ LCap/.LCup ˝ idIndU;�

/ D idIndU;�
.

The composition of bimodule maps

kŒG�˝kŒP � kŒP �v�

LCup˝id������! kŒG�˝kŒP � kŒP �v� ˝kŒP � ˝kŒG�˝kŒP � kŒP �v�

id˝LCap������! kŒG�˝kŒP � kŒP �v�

is given, for g 2 G and b 2 P , by

g ˝ bv� 7�!
mX
iD1

g�1
i ˝ v� ˝ gig ˝ bv� 7! g�1

j ˝ v�gjgbv� D g ˝ bv� ;

where j 2 f1; : : : ; mg is the unique index such that gjg 2 P . Thus the compo-
sition is the identity, as desired.

This completes the proof of biadjointness.
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7.4. Bimodule endomorphisms. We begin by discussing the endomorphism alge-
bra of the functors ResU;� and IndU;� . Consider the .kŒL�; kŒG�/-bimodule

kŒP �v� ˝kŒP � kŒG�:

Let .kŒP �v�˝kŒP �kŒG�/
P denote the subspace ofP -invariants under the conjugation

action of P :

.kŒP �v� ˝kŒP � kŒG�/
P D fx 2 kŒP �v� ˝kŒP � kŒG� j mx D xm for all m 2 P g:

Any x 2 .kŒP �v� ˝kŒP � kŒG�/
P gives rise to a .kŒL�; kŒG�/-bimodule map

0x W kŒP �v� ˝kŒP � kŒG� �! kŒP �v� ˝kŒP � kŒG�;

determined by setting
0x.v� ˝ 1/ D x;

so that, for b 2 L, g 2 G,
0x.bv� ˝ g/ D bxg:

Therefore, any x 2 .kŒP �v� ˝kŒP � kŒG�/
P may be considered as a natural transfor-

mation
ResU;� �! ResU;� :

We may define a multiplication on .kŒP �v� ˝kŒP � kŒG�/
P by� X

g2G
�g.bgv� ˝ g/

�� X
h2G

�h.dhv� ˝ h/
�

D
X

.g;h/2G�G
�g�h.dhbgv� ˝ gh/:

(Note the order of the terms in the product on the right.) It follows from Lemma 7.6
that this multiplication makes .kŒP �v� ˝kŒP � kŒG�/

P into a k-algebra, with unit
element v� ˝ 1.

Lemma 7.6. The assignment a 7! 0a induces an isomorphism of k-algebras

.kŒP �v� ˝kŒP � kŒG�/
P ' Hom.ResU;� ;ResU;� /;

where Hom.ResU;� ;ResU;� / denotes the k-algebra of natural transformations of the
functor ResU;� .

Proof. The k-algebra Hom.ResU;� ;ResU;� / is isomorphic to the space

ff W kŒP �v� ˝kŒP � kŒG� �! kŒP �v� ˝kŒP � kŒG�g
of .kŒL�; kŒG�/-bimodule maps. First we show that the map a 7! 0a intertwines
the multiplication on the two sides. To see this, let a D P

g2G �g.bgv� ˝ g/ and
c D P

h2G �h.dhv� ˝ h/ be elements of .kŒP �v� ˝kŒP � kŒG�/
P . Then

0.ac/.v� ˝ 1/ D
X

.g;h/2G�G
�g�h.dhbg ˝ gh/:
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We also have

.0a0c/.v� ˝ 1/ D 0a
� X
h2G

�h.dhv� ˝ h/
�

D
X
h2G

�hdh
0a.v� ˝ 1/h

D
X

.g;h/2G�G
�g�h.dhbg ˝ gh/;

so that
0.ac/.v� ˝ 1/ D .0a0c/.v� ˝ 1/;

and therefore
0a0c D 0.ac/:

To see that the map a 7! 0a is injective, let a; c 2 .kŒP �v� ˝kŒP � kŒG�/
P such that

0a D 0c as bimodule maps. Then

a D a.v� ˝ 1/ D 0a.v� ˝ 1/ D 0c.v� ˝ 1/ D c.v� ˝ 1/ D c:

Thus the map is injective. It also now follows that .kŒP �v�˝kŒP �kŒG�/
P is an algebra,

since it is a subalgebra of Hom.ResU;� ;ResU;� /.
To see surjectivity, suppose that

f W kŒP �v� ˝kŒP � kŒG� �! kŒP �v� ˝kŒP � kŒG�

is a bimodule map, and set a D f .v� ˝ 1/. Then is it easy to check that

a 2 .kŒP �v� ˝kŒP � kŒG�/
P

and that f D 0a as bimodule maps.

Thus the k-algebra .kŒP �v� ˝kŒP � kŒG�/
P is isomorphic to the algebra of natural

transformations of ResU;� . Similarly, we may consider .kŒG�˝kŒP � kŒP �v�/
P as an

algebra, with multiplication� X
g2G

�g.g ˝ bgv� /
�� X

h2G
�h.h˝ dhv� /

�
D

X
.g;h/2G�G

�g�h.hg ˝ bgdhv� /:

Lemma 7.7. The map


 W .kŒP �v� ˝kŒP � kŒG�/
P
op �! .kŒG�˝kŒP � kŒP �v� /

P ;X
g2G

�g .bgv� ˝ g/ 7�!
X
g2G

�g.g ˝ bgv�/

is an isomorphism of algebras.
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Proof. The proof of this statement is a straightforward check, which is omitted. Note
that the subscript “op” denotes the opposite algebra.

Thus, in complete analogy with Lemma 7.6, we have the following.

Lemma 7.8. The algebra .kŒG� ˝kŒP � kŒP �v�/
P is isomorphic to the algebra of

natural transformations of the functor IndU;� , with the element

a 2 .kŒG�˝kŒP � kŒP �v� /
P

giving a bimodule map via
a0.1˝ v�/ D a:

Proof. The proof is essentially the same as the proof of Lemma 7.6.

7.5. Cyclicity. Given an element a 2 .kŒP �v� ˝kŒP � kŒG�/
P , we may also consider

a as an element of the opposite algebra

a 2 .kŒP �v� ˝kŒP � kŒG�/
P
op

��! .kŒG�˝kŒP � kŒP �v� /
P :

Thus the element a of the opposite algebra is identified with the element 
.a/ in the
algebra .kŒG�˝kŒP � kŒP �v� /

P . From now on, we will identify the bimodule maps
0a and a0 with the corresponding natural transformations of ResU;� and IndU;� . So
we have

0a W ResU;� �! ResU;� ; and a0 W IndU;� �! IndU;� :

Proposition 7.9. For any a 2 .kŒP �v� ˝kŒP � kŒG�/
P , there are the following equal-

ities of natural transformations:

RCap.a0 ˝ idResU;�
/ D RCap.idIndU;�

˝ 0a/; (a)

.0a ˝ idIndU;�
/RCup D .idResU;�

˝ a0/RCup; (b)

LCap.0a ˝ idIndU;�
/ D LCap.idResU;�

˝ a0/; (c)

.a0 ˝ idResU;�
/LCup D .idIndU;�

˝0 a/LCup: (d)

Proof. For a 2 .kŒP �v� ˝kŒP � kŒG�/
P , denote by Na the image of a under the natural

multiplication map in kŒG�,

.kŒP �v� ˝kŒP � kŒG�/
P �! kŒG�P ; a 7�! Na:

Similarly, for a 2 .kŒG�˝kŒP � kŒP �v�/
P , we will also denote by Na the image of a in

kŒG� under the multiplication map

.kŒG�˝kŒP � kŒP �v�/
P �! kŒG�P ; a 7�! Na:
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Note that
0a.v� ˝ 1/ D a0.1˝ v� / D Na 2 kŒG�P ;

so this abuse of notation is mostly harmless.

(a) The left and right hand sides are given by bimodule maps

kŒG�˝kŒP � kŒP �v� ˝kŒP � kŒG� �! kŒG�:

For g 2 G, b 2 L, the left hand side is the map

g ˝ bv� ˝ h 7�! .gab/˝ h 7�! g Nabh 2 kŒG�;

while the right hand side is the map

g ˝ bv� ˝ h 7�! g ˝ .bah/ 7�! gb Nah:
But b Na D Nab, since b 2 P and Na 2 kŒG�P . Hence the two sides agree.

(b) The left and right hand sides are given by bimodule maps

kŒL� �! kŒP �v� ˝kŒP � kŒG�˝kŒG� kŒG�˝kŒP � kŒP �v� :

Write a 2 .kŒP �v� ˝kŒP � kŒG�/
P as a D P

g2G �g.v� ˝ g/, �g 2 k, so that
the left hand side is the map which sends

1 7�! v� ˝ 1˝ 1˝ v� 7�! a˝ 1˝ v� D
X
g2G

�g.v� ˝ g ˝ 1˝ v� /;

while the right hand side is given by

1 7�! v� ˝ 1˝ 1˝ v� 7�! v� ˝ 1˝ a D
X
g2G

�g.v� ˝ 1˝ g ˝ v� /;

where now
a D

X
g2G

�g.g ˝ v�/ 2 .kŒG�˝kŒP � kŒP �v� /
P

induces the natural transformation a0. Since g moves across the middle tensor
product ˝kŒG�, the left and right hand sides agree.

(c) The left and right hand sides are given by bimodule maps

kŒP �v� ˝kŒP � kŒG�˝kŒP � kŒP �v� �! kŒP �v� ' kŒL�:

The left hand side is given by the bimodule map

v� ˝ g ˝ v� 7�! ag ˝ v� 7�! ProjP . Nag/v� :
Similarly, the right hand side is given by the bimodule map

v� ˝ g ˝ v� 7�! v� ˝ ga 7�! ProjP .g Na/v� :
The agreement of the two sides is given by the equality ProjP .g Na/ D ProjP . Nag/,
for Na 2 kŒG�P , g 2 G, which is straightforward to check.
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(d) Both sides are bimodule maps

kŒG� �! kŒG�˝kŒP � kŒP �v� ˝kŒP � kŒG�:

Writing a D P
g2G �g.v� ˝ g/, the bimodule map on the left hand side is

determined by the image

1 7�!
mX
iD1

g�1
i ˝ v� ˝ gi 7�!

X
g2G

mX
iD1

�g.g
�1
i g ˝ v� ˝ gi /:

Since the element
Pm
iD1 g�1

i ˝ v� ˝ gi is independent of the choice of left P
coset representatives gi , the left hand side can also be written as

1 7�!
X
g2G

mX
iD1

�g.g
�1
i 0 p

�1
i g ˝ v� ˝ pigi 0/;

for any pi 2 P and bijections i 7! i 0 of f1; : : : ; mg, one bijection for each
g 2 G.

The right hand side, on the other hand, is given by

1 7�!
mX
iD1

g�1
i ˝ v� ˝ gi 7�!

X
g2G

mX
iD1

�g.g
�1
i ˝ v� ˝ ggi /:

Now, for each fixed g, we may write ggi D pigi 0 , for some pi 2 P and some
bijection i 7! i 0 of f1; : : : ; mg. Then g�1

i D g�1
i 0 p

�1
i g, and the right hand side

may be written as

1 7�!
X
g2G

mX
iD1

�g.g
�1
i 0 p

�1
i g ˝ v� ˝ pigi 0/;

which agrees with the left hand side.

Thus we have the following theorem.

Theorem 7.10. The natural transformations RCap, RCup, LCap, and LCup make
IndU;� and ResU;� into a cyclic biadjoint pair.

Corollary 7.11. The functors Ind and Res from Section 6.2 are a cyclic biadjoint
pair.

Proof. This follows immediately from Theorem 7.10 after setting G D GLn, L D
GLn�1, U D Un�1;n, and taking � to be the trivial character.
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Corollary 7.12. The adjunction data of Section 5.3 is cyclic when q is an indetermi-
nate or a prime power.

Proof. Corollary 7.11, together with the equivalenceM
n

HomAn
.Anbn;�/ W

M
n

bnAnbn-mod �!
M
n

Hn-mod

of Section 6.4, gives the result for q a prime power. Now suppose that q is an
indeterminate. Proving the adjunction data is cyclic amounts to proving four equalities
of bimodule maps as in Proposition 7.9. After choosing a kŒq; q�1�-basis, such maps
can be represented by matrices with entries in kŒq; q�1�. Since we have the desired
equalities when q is specialized to any prime power, the equalities follow for q an
indeterminate (here we use the fact that if two elements of kŒq; q�1� are equal at an
infinite number of values of q, they are equal).
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