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New proofs of certain finite filling results
via Khovanov homology
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Abstract. We give a Khovanov homology proof that hyperbolic twist knots do not admit
non-trivial Dehn surgeries with finite fundamental group.
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1. Introduction

Twists knots provide the simplest infinite family of hyperbolic knots. These arise
by considering various twisted Whitehead doubles of the trivial knot, for example.
Alternatively, and better suited to the purpose of this paper, let Kt be the .1; t C1; 1/-
pretzel knot and consider the family fKtg where t � 0 (see Figure 1). With this
convention, K0 is the left-handed trefoil knot and K1 is the figure eight knot. For
t > 0 the knot Kt is hyperbolic.

:::

Figure 1. The twist knots K0, K1 and K2 (left), and a the general twist knot Kt (right) with
strong inversion indicated, where t C 1 gives the number of vertical half twists.

1Partially supported by an NSERC postdoctoral fellowship.
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Given a knot K in S3, consider the three-manifold with torus boundary M D
S3 X �.K/ where �.K/ is an open tubular neighbourhood of the knot. Define

S3
r .K/ D M [h .D2 � S1/

where
h W @.D2 � S1/ �! @M

is the homeomorphism determined by h.@D2 �fpointg/ D p�Cq�. In this notation,
� is the knot meridian, � is the Seifert longitude, and r D p

q
is an extended reduced

rational number. The resulting closed three-manifold is the result of r-surgery on K;
notice that the trivial surgery corresponds to the extended rational 1

0
. For background

consistent with these conventions we refer the reader to Boyer [3].
A non-trivial surgery with finite fundamental group is called a finite filling. These

fillings give a special type of exceptional surgery on a hyperbolic knot; a result
of Thurston states that hyperbolic knots admit finitely many exceptional surgeries
(see [16] and [17]). The aim of this paper is to use Khovanov homology to prove the
following result.

Theorem 1.1 (Delman [7] and Tanguay [15]). Hyperbolic twist knots do not admit
finite fillings.

This result was first proved by Delman using essential laminations [7] and inde-
pendently by Tanguay via character variety methods [15]. A complete classification of
exceptional surgeries on two-bridge knots was subsequently obtained by Brittenham
and Wu [6]. Note also that Boyer, Mattman, and Zhang give a complete description
of the fundamental polygon of any twist knot, from which Tanguay’s proof may be
recovered [4].

An alternate proof of Theorem 1.1 may be obtained via Heegaard Floer homol-
ogy. Since twist knots are alternating, it follows that hyperbolic twist knots do not
admit L-space surgeries (see [13], Theorem 1.5). As manifolds with elliptic geometry
are L-spaces (see [13], Proposition 2.3), Theorem 1.1 follows. This appeals to an
equivalence between manifolds with finite fundamental group and manifolds admit-
ting elliptic geometry, though in the present setting geometrization in full generality
is not required; the presence of a strong inversion (as described below) ensures that
geometrization for orbifolds of cyclic type is sufficient (see [2] and [17]).

A strong inversion is an orientation preserving involution of a three-manifold with
one-dimensional fixed point set. For example, every two-fold branched cover of S3

admits a strong inversion. A knot K in S3 is strongly invertible if the standard strong
inversion on S3 induces a strong inversion on the knot complement M D S3 X�.K/.
That is, M admits an involution with one-dimensional fixed point set meeting @M

transversally in exactly four points. The twist knot Kt is strongly invertible for all t ;
the relevant symmetry is exhibited in Figure 1.

Given a strongly invertible knot, the involution on the knot complement may
be extended to a strong inversion on any surgery [12]. This is referred to as the
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Montesinos trick, and as a result every surgery on a strongly invertible knot may be
realized as a two-fold branched cover of S3 branched over a link. In this setting, the
work in [20] establishes that Khovanov homology may be used to provide obstructions
to finite fillings. This makes use of the Khovanov homology of the branch sets
associated with a surgery on the knot via Montesinos’ work. For example, Khovanov
homology easily recovers the fact that the figure eight knot does not admit finite
fillings; see [20], Theorem 7.2, (this result is originally due to Thurston [16]). The
key observation is that, to a certain degree, relatively simple two-fold branched covers
(in terms of geometry) have branch sets with simple Khovanov homology.

Using the strong inversion on Kt , the goal of this paper is to apply the results
in [20] to prove Theorem 1.1. The proof is entirely combinatorial and new, in the
sense that it does not appeal to any of the machinery described above (Heegaard Floer
homology, character varieties, essential laminations, etc.). However, the relationship
between Heegaard Floer homology and Khovanov homology suggests that the par-
ticular obstructions from these two theories may be related. Part of the motivation
for pursuing a proof via Khovanov homology stems from an interest in comparing
the obstructions from Heegaard Floer homology and from Khovanov homology. Fur-
ther motivation is in establishing methods for applying obstructions from Khovanov
homology to infinite families. This poses the immediate challenge of pushing calcu-
lation techniques beyond the limits imposed by machine calculation, and in turn is a
central focus of this paper.

Proof of Theorem 1.1. The feature of Khovanov homology exploited in this proof is
homological width. For a given link L this is the integer w.L/ recording the number
of diagonals supporting non-trivial homology (see Definition 3.1). Let †.S3; L/

denote the two-fold branched cover of S3 branched over a link L. The following
result is proved in [20].

Theorem 1.2 ([20, Theorem 6.3]). If †.S3; L/ has finite fundamental group then
w.L/ � 2.

With this result in hand the aim of this paper is to establish the following theorem.

Theorem 1.3. The surgery S3
r .Kt / may be realized as the two-fold branched cover

†.S3; �t .r//, where the branch set �t .r/ satisfies w.�t .r// � t C 1.

When t > 1, Theorem 1.1 follows immediately from Theorem 1.2 and Theo-
rem 1.3. The case t D 1 corresponds to surgery on the figure eight knot and we
appeal to the amphichirality of K1 combined with the fact that the width bound of
Theorem 1.2 for finite fillings is violated for non-negative surgery coefficients (com-
pare [20], Theorem 7.2).

The remainder of the paper is devoted to establishing Theorem 1.3, and is organ-
ised as follows. The proof has essentially two parts: first describe the exterior of each
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Kt as the two-fold branched cover of a tangle (see Proposition 2.1), and second de-
termine the coarse behaviour of the Khovanov homology (precisely, the homological
width) of various rational closures of these tangles (see Proposition 4.2). The former
is established in Section 2 and is a straightforward application of the Montesinos
trick, while calculations pertaining to the latter occupy Section 4.

A key observation is that relatively few integer surgeries need to be considered in
order to infer the homological width for the infinite family of branch sets associated
with each knot Kt . This exploits some particularly stable behaviour of the families of
links that arise, as developed in [20]. The sense in which the homological width might
be considered coarse information is elucidated through these calculations. Indeed, we
will only calculate the Khovanov homology for certain branch sets up to indeterminate
summands (see Remark 3.4), thus the homological width is obtained without a full
description of the Khovanov homology. Since Khovanov homology can be difficult
to compute for knots with a high number of crossings, this suggests that it may be
possible to calculate (or bound) the homological width in certain settings without
needing to calculate the entire invariant.

For the reader’s reference, we have collected the requisite properties of reduced
Khovanov homology with coefficients in Z=2Z in Section 3. This section constitutes
the bulk of the paper, and may be skipped at first reading by those already familiar
with the invariant.

Acknowledgements. Much of the work associated with this paper was completed
while in residence at MSRI in 2010. The author thanks the organisers of the program
Homology Theories of Knots and Links for providing a stimulating work environment.
Thanks also to Tye Lidman for helpful discussions pertaining to spectral sequences,
Paul Turner for comments on an earlier draft of this paper, and Jeremy Van Horn-
Morris for valuable comments regarding open book decompositions. Finally, the
detailed comments provided by the referees improved the exposition of the paper
throughout.

2. Branch sets

Given a manifold obtained by Dehn surgery on a strongly invertible knot, the Mon-
tesinos trick provides an alternate description of the manifold as a two-fold branched
cover of S3 [12]. To make this precise we review the notation introduced in [20],
Section 3. When K is strongly invertible, the knot exterior S3 X �.K/ is the two-fold
branched cover of a tangle T D .B3; �/ where B3 is a three-ball and � is a pair of
properly embedded arcs. Denote this two-fold branched cover by †.B3; �/. The arcs
� are the image of the fixed point set in the quotient of the involution on the exterior
S3 X �.K/. As a result, the tangle T is well-defined up to homeomorphism of the
pair .B3; �/, and any diagram of T may be regarded as a choice of representative for
the homeomorphism class.
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The boundary of the knot exterior has a preferred generating set for homology
given by the knot meridian � and the Seifert longitude �. It is always possible to make
a choice of corresponding preferred representative for the homeomorphism class of
the pair .B3; �/ as illustrated in Figure 2 (see [20], Corollary 3.8, for example). That
is, S3 Š †.S3; �.1

0
// and S3

0 .K/ Š †.S3; �.0// provide explicit descriptions of
the branch sets corresponding to the trivial and zero surgeries, respectively. This may
be thought of as fixing a framing on the tangle .B3; �/, just as � corresponds to the
Seifert framing of the knot. Throughout this paper we will use .B3; �/ to denote the
preferred representative of the associated quotient tangle of a given strongly invertible
knot.

�

� �. 1
0

/ �.0/

Figure 2. The arcs � and � in the boundary of a tangle (left), labelled – abusing notation
– by their respective lifts in the two-fold branched cover; and the closures �. 1

0
/ and �.0/

corresponding to the trivial and zero surgeries in the cover, respectively.

More generally, branch sets for the integer surgeries are given by the links �.n/ as
in Figure 3 so that S3

n .K/ Š †.S3; �.n//. In particular, notice that the half twist in
the branch set lifts to a full Dehn twist in the cover, so that �.n/ is the branch set for
the manifold obtained by filling along the slope n� C � in the boundary of the knot
exterior. It follows that det.�.n// D jnj (recall that det.L/ D jH1.†.S3; L/I Z/j
whenever H1.†.S3; L/I Z/ is finite, and zero otherwise). It is also possible to
describe p

q
-surgery on a strongly invertible knot (having fixed a continued fraction

expansion of the surgery coefficient) so that S3
p=q

.K/ Š †.S3; �.p
q

//; see [20],
Section 3, for details.

� � �
„ ƒ‚ …

n „ƒ‚…
1

„ ƒ‚ …
3

„ ƒ‚ …
3

Figure 3. The closure �.n/ (left) giving rise to the branch set for integer surgeries (that is,
Dehn fillings along slopes n� C �), and the closure 13

10
D Œ1; 3; 3� (right) corresponding to

13� C 10� Dehn filling, or 13
10

-surgery, in the cover.

The goal of this section is to determine the tangle associated with the strong
inversion on the twist knot Kt illustrated in Figure 1; this will establish the first
part of Theorem 1.3. As a first approximation, we determine the tangle associated
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with the quotient of S3 X �.K/, without keeping track of the preferred representative
(as described above) corresponding to the pair f�; �g. This quotient is described in
Figure 4 and is simplified in Figure 5.

:::
:::

„
ƒ‚

…

t C 1

Figure 4. The quotient of the exterior of a strongly invertible knot determines a tangle: On the
left the knot Kt is shown (with axis of symmetry passing through a point at infinity), and on
the right is the fundamental domain of the involution on the knot exterior. Note that the latter
is always homeomorphic to a ball, and the image of the fixed point set descends to a properly
embedded pair of arcs.

:::

„
ƒ‚

…

t C 1

a

b

c

d

:::

„
ƒ‚

…

t � 1

a

b

c
d

� � �
„ ƒ‚ …

t

a

b c

d

Figure 5. Simplifying the tangle resulting from the quotient of Kt by the strong inversion.
Note that the tangle diagram on the right yields the trivial knot when the endpoints labelled a

and b are identified and the endpoints labelled c and d are identified.

The closure of the tangle diagram in Figure 5 that gives the trivial knot (by joining
a to b and c to d ) identifies the trivial surgery in the cover, and therefore the pre-
ferred representative .B3; �t / for this tangle is obtained by adding some collection of
horizontal twists. That is, the tangle diagram in Figure 5 describes a representative
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for the associated quotient tangle that is compatible with some integer framing, but
not necessarily the Seifert framing. In particular, the right hand half twist between
the strands meeting c and d lifts to a full Dehn twist along the knot meridian � in the
two-fold branched cover.

Recall that h�1; �2 j �1�2�1 D �2�1�2i is a presentation for the three-strand braid
group, where braid words are read from left to right. Our convention for the generators
is given in Figure 6. Figure 5 suggests that the desired collection of branch sets
�t .n/ may be represented by closures of three-strand braids (see Figure 7). From this
observation the relevant family of braids to consider is given by �2�3

1 �2.�2�2
1 �2/t�N

1 ,
and determining the preferred representative amounts to establishing the appropriate
framing, controlled by the integer N .

�2 D�1 D

Figure 6. Standard generators for the three-strand braid group.

� � �
„ ƒ‚ …

t

� � �
„ ƒ‚ …

t

Figure 7. A closure of the quotient tangle associated with some (yet to be determined) integer
framed surgery on Kt on the left. With the braid axis indicated, this gives rise to the positive
braid associated with the quotient of the knot Kt on the right. Changes in framing in the
two-fold branched cover (that is, Dehn twists along the meridian) are realized by the generator
�1 in the base.

We claim that the branch set �t .n/ is the closure of the braid

�2�3
1 �2.�2�2

1 �2/t�N Cn
1

where

N D
8<
:

2 C 2t for t odd;

6 C 2t for t even;

so that S3
n.Kt / Š †.S3; �t .n//. Note that the non-negative integer t determines the

twist knot, while the integer n is the surgery coefficient.
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To see that this is the correct framing, it suffices to verify that det.�t .0// D 0, since
jH1.S3

n.Kt /I Z/j D jnj and �1 lifts to the positive Dehn twist about the meridian.
We leave this verification to the reader (for the moment), but note that calculations in
Section 4 will provide a proof (see Remark 4.7).

The braid relation establishes that �2�2
1 �2�2

1 and � D .�2�1/3 are equivalent,
the latter representing the full twist on three strands. As this element is central in the
braid group, have now shown the following result.

Proposition 2.1. The branch set �t .n/ is given by the closure of the braid

ˇt;n D
8<
:

�2Cn
1 .�2�3

1 �2/�t for t odd;

�6Cn
1 .�2�3

1 �2/�t for t even;

where � D .�2�1/3.

Remark 2.2. It is possible to find the preferred representative directly (as in Bleiler [1],
for example). This amounts to (carefully) carrying the image of the longitude through
the quotient shown in Figure 4 and the subsequent tangle isotopies of Figure 5. In
the present setting, the key observation is that a full twist in the cover (taking Kt to
KtC2) corresponds to the addition of �2 in the base. One checks that the addition
of the full twist �2 in the branch set preserves the Seifert framing in the cover, and
as a result it is possible to induct in t (in fact, two separate inductions for t odd and
t even) to determine the preferred representative .B3; �t /. The base case t D 0 may
be extracted from [20], Section 3.2, together with the Seifert fibre structure on the
trefoil exterior, while the base case t D 1 may be extracted from [20], Section 7.1.

This calculation sets up our second task towards the proof of Theorem 1.1: de-
termine the reduced Khovanov homology for closures of the family of three-braids
ˇt;n. To conclude this discussion, Jeremy Van Horn-Morris points out that realising
the branch set as the closure of a three-strand braid also establishes the following
corollary.

Corollary 2.3. The result of integer Dehn surgery on Kt admits a genus one open
book decomposition, for each t � 0. Moreover, for positive integer Dehn surgeries
the corresponding open book decomposition has positive monodromy.

3. Khovanov homology

3.1. Grading conventions for reduced Khovanov homology. Throughout this
work we make use of the reduced Khovanov homology of a link L, with coeffi-
cients in F D Z=2Z, denoted fKh.L/; see [8] and [9]. For our purposes, this is
a 1

2
Z ˚ 1

2
Z-graded group, with primary (cohomological) grading ı and secondary
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(quantum) grading q. Note that by setting u D ı C q 2 Z the Jones polynomial of
L is given by X

u;q

.�1/utq rk fKhu
q.L/:

In particular, our primary grading is by diagonals of slope 2 in the .u; q/-plane for
the standard bigrading in Khovanov homology [8].

Definition 3.1. The homological width of a link L is the integer w.L/ > 0 determined
by the number of ı-gradings supporting non-trivial homology in fKh.L/.

This grading convention, specifically suited to considerations involving homo-
logical width, is consistent with that of Manolescu and Ozsváth [11]. For example,
let U denote the trivial knot. Then fKh.U / D F supported in bigrading .0; 0/ (with
w.U / D 1), while fKh.U t U / D F ˚ F , with one generator supported in each bi-
grading .�1

2
; 1

2
/ and .1

2
; �1

2
/ (with w.U t U / D 2). These examples are illustrated

in Figure 8.

1

0

0

1

1

� 1
2

1
2

� 1
2

1
2

1

1

� 1
2

1
2

3
2

5
2

Figure 8. The reduced Khovanov homology of the trivial knot U , the two component trivial
link U t U , and the positively clasped Hopf link H C, from left to right. The primary grading
is read horizontally and the secondary grading is read vertically. The entries indicate the rank
of the group at the given bigrading; trivial homology in a given bigrading is left blank.

3.2. The skein exact sequence as a mapping cone. With the above conventions in
place, the long exact sequence in Khovanov homology related to the resolution of a
positive crossing may be expressed as a mapping cone

fKh. / Š H�
�fKh. /Œ�1

2
; 1

2
� ! fKh. /Œ�1

2
c; 1

2
.3c C 2/�

�
(1)

where the connecting homomorphism raises the primary grading by one and fixes the
secondary grading. The shift in bigrading is defined by

fKhı
q.L/Œi; j � D fKhı�i

q�j .L/:

The constant c measures the difference in negative crossings n�. /�n�. / for some
choice of orientation on the components of the resolution that do not inherit an
orientation from . Notice that when L is the closure of a positive braid c D n�. /.
These conventions are consistent with those of Rasmussen [14] and of Manolescu
and Ozsváth [11].
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3.3. Spectral sequences from iterated mapping cones. There are various settings
in which the mapping cone described above may be efficiently iterated to calculate
Khovanov homology. For the present purposes, we establish one such situation given
a link represented as the closure of a positive braid. To this end, let L D Ň where ˇ

is a positive braid, and fix n distinguished crossings. Fixing, additionally, an order
on the distinguished crossings gives rise to a collection of positive braids ˇi obtained
by replacing the first i crossings with the oriented resolution . Similarly, the
link Ň produces a collection of resolutions Ri obtained by replacing the first i � 1

crossings by the oriented resolution and the i th with unoriented resolution .
(A schematic illustrating the case n D 2 in an example is shown in Figure 12.) Of
course, the Ri are no longer link diagrams in closed-braid form. For each link Ri

fix the constant ci D n�.Ri / for some choice of orientation on Ri compatible with
the orientation on the unaffected components of x̌

i , as in the previous section. As a
result, from the grading shifts in (1) we have that

fKh.ˇi�1/ Š H�.fKh. x̌
i /Œ�1

2
; 1

2
� ! fKh.Ri/Œ�1

2
ci ;

1
2
.3ci C 2/�/ (2)

for 1 � i � n, where ˇ D ˇ0. Now define

Ci D
8<
:
eCKh.Ri/Œ�1

2
.ci C i � 1/; 1

2
.3ci C 2 C i � 1/�; 1 � i � n;

eCKh.ˇn/Œ�n
2
; n

2
�; i D n C 1:

(3)

Consulting the definition of eCKh.L/, we see that eCKh.L/ Š LnC1
iD1 Ci as a bigraded

F -vector space. Moreover, omitting the internal differentials on the Ci for brevity,
the structure of the differential relative to this decomposition is given by

C1

C2

��

C3

��

��

C4
��

��

��

(in the case n D 3) so that, by construction, this decomposition of the chain complex
comes with a filtration of the form

Li
j D1 Cj � LiC1

j D1 Cj for 1 � i � n. (The
differential takes the form

P
i�j @i;j in general, where @i;j W Ci ! Cj .) As a result,

there is an associated spectral sequence with E0.ˇ/ Š LnC1
iD1 Ci , converging to

E1.ˇ/ Š fKh.L/. We will be most interested in the E1 page of this spectral sequence
given by

E1.ˇ/ Š fKh. x̌
n/Œ�n

2
; n

2
� ˚ .

Ln
iD1

fKh.Ri/Œ�1
2
.ci � 1 C i/; 1

2
.3ci C 1 C i/�/: (4)

This notation does not reference the order chosen on the resolved crossings, however
the crossings and their order will always be made explicit in applications. Notice that
the differential on the E1 page is lower triangular (and filtered by diagonals) if we
choose a basis corresponding to

fKh. x̌
n/ ˚ fKh.Rn/ ˚ fKh.Rn�1/ ˚ � � � ˚ fKh.R1/
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(the grading shifts have been omitted for brevity). In particular, fKh. x̌
n/Œ�n

2
; n

2
� is

never in the target of the differential.
While the higher differentials may be difficult to calculate in general, the construc-

tion ensures that each of these raises ı-grading by one and fixes the q-grading, as in
the case of the mapping cone from which this spectral sequence is derived. (Note
that we are ignoring the spectral sequence grading and working with the grading
inherited from eCKh.L/.) Indeed, this construction in the case n D 1 gives the two
step complex

fKh. x̌
1/Œ�1

2
; 1

2
� �! fKh.R1/Œ�1

2
c1; 1

2
.3c1 C 2/�

associated with the mapping cone, as in the previous section.
Even in the case n D 1, obtaining the differential essentially amounts to cal-

culating the reduced Khovanov homology directly from the definition. In practice,
computing the homology by way of this spectral sequence is tantamount to n (care-
ful) iterations of the long exact sequence. However, the E1 page described here can
be useful when combined with additional structure (described below). It should be
noted that this spectral sequence is closely related to the spectral sequence used by
Turner [19] to compute the (unreduced) Khovanov homology of .3; q/-torus links
(with coefficients in Q). Indeed, we will revisit this calculation in Section 3.5. How-
ever, we reiterate that the set-up here ignores the spectral sequence gradings; we
opt instead to use the grading inherited from eCKh. Another related instance of this
construction is given in [20], Lemma 4.10; see also Proposition 4.3.

3.4. Turner’s spectral sequence. There is an analogy to Lee’s spectral sequence [10]
for reduced Khovanov homology due to Turner [18], summarized as follows.

Theorem 3.2 (Turner [18]). There is a perturbed version of the reduced Khovanov
complex with homology denoted fKh0.L/ for which rk fKh0.L/ D 2jLj�1. Moreover,
there is a spectral sequence converging to E 01 D fKh0.L/, with E 0

1 D fKh.L/,
satisfying the properties that

(1) the differential di on the E 0
i page is of bi-degree .1 � i; i/ and

(2) for each n 2 Z

rk
M

ıCqDn

fKh0ı
q .L/ D 1

2

ˇ̌̌˚
X � f1; : : : ; jLjg W ı C q D 2

X
l2X;m…X

lk.Ll ; Lm/
�ˇ̌̌

(5)
where the Li denote the components of the link L;

therefore rk
L

ıCqDn
fKhı

q.L/ is at least this quantity.

Our main computational tool will be in combining the structure of fKh0.L/ with
the iterated the mapping cone. Since these both arise from spectral sequence con-
structions, we will endeavour to refer to pairings when higher differentials computing
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fKh0.L/ are in question, and differentials when referring to the iterated mapping cone
in an attempt to avoid confusion.

Remark 3.3. Note that our usage of the label Turner’s spectral sequence differs from
certain instances of the same term in the literature. Our usage refers to the perturbation
described in Theorem 3.2 (the subject of [18]) and not the spectral sequence defined
and exploited in [19].

3.5. The reduced Khovanov homology of a full twist. The reduced Khovanov
homology for the first 3 non-trivial torus links on three strands is described in Figure 9.
The ı-grading is read horizontally and the q-grading is read vertically. The values at
a given lattice point denote the rank of the F -vector space in that bigrading; empty
lattice points are read as rank zero.

1

1

1

�1

1

2

3

4

1

1

1

2

1

�2 �1

2

3

4

5

6

1

1

1

1

1

�3 �2

3

4

5

6

7

8

Figure 9. The Khovanov homology of the .3; 2/-, .3; 3/- and .3; 4/-torus links, from left to
right. Note that the generators have been paired in each case illustrating the higher differentials
present in Turner’s spectral sequence.

Using Lee’s spectral sequence, Turner establishes the full Khovanov homology
(with coefficients in Q) for three-strand torus links [19]. Following this proof, a simi-
lar result may be established in the present setting, modulo a particular indeterminate
summand described in Figure 10. We will ultimately be interested in the .3; 3t/-torus
links T3;3t for t > 0. Note that this is the closure of the braid .�2�1/3t D �t .

1

1

1

1

1

1

Figure 10. The two possibilities for the indeterminate summand, with pairings labelled corre-
sponding to higher differentials in Turner’s spectral sequence.

Remark 3.4. Since we will be interested only in coarse properties of the Khovanov
homology of the full twist in the sequel (in particular, the homological width), the
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actual value of this indeterminate summand will have no contribution. In practice, the
actual rank of this summand is 2 (as in fKh.T3;4/ for example, see Figure 9), though we
will not prove this in general. Calculation up to indeterminate summands is relatively
easy, and in general the homological width of a link seems easier to determine than
the complete Khovanov homology.

Proposition 3.5. The reduced Khovanov homology of the positive T3;q torus link is
described in Figure 11 for q > 0.
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Figure 11. The reduced Khovanov homology of the torus links T3;3t�1, T3;3t and T3;3tC1, for
t > 0, from left to right. Note that fKh.T3;3t�1/ and fKh.T3;3t / have only t � 1 indeterminate
summands.

Following Turner [19], the proof of Proposition 3.5 is by induction in t (with base
case t D 1 provided by Figure 9) in three steps.

Claim 3.6. If the result holds for T3;3t�1 then it holds for T3;3t .

Claim 3.7. If the result holds for T3;3t then it holds for T3;3tC1.

Claim 3.8. If the result holds for T3;3tC1 then it holds for T3;3tC2 D T3;3.tC1/�1.

The strategy to prove each claim is identical: for appropriately chosen q, iterate
the skein exact sequence as summarized in Figure 12 to obtain E1..�2�1/qC1/ as de-
scribed in Section 3.3. In each case this expresses fKh.T3;qC1/ in terms of fKh.T3;q/
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together with a collection of possible new generators. With these possible new gen-
erators in hand, the structure of fKh0.T3;qC1/ forces the behaviour of the differentials
to give the result in each case.

��

R1

c1 ��

��

R2

c2 ��

Figure 12. Schematic for proving the claims: the constants c1 and c2 count the number of
negative crossings – relevant to the grading shifts – in the unoriented resolution R1 and R2 at
each step to construct E1..�2�1/qC1/.
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Figure 13. Proving Claims 3.6, 3.7 and 3.8 from left to right: two iterations of the long
exact sequence provide a collection of possible new generators (these have been shaded in
each case) contributing to E1..�2�1/qC1/ calculating fKh.T3;qC1/. Shaded but otherwise
unmarked lattice points correspond to indeterminate summands, as usual.

Proof of Claim 3.6. For t > 1 we have that c1 D c2 D 4t � 1 where the unoriented
resolutions are the links R1 ' U t U and R2 ' U . As a result, the relevant grading
shift on fKh.Ri / from (3) is

Œ�1
2
.ci C i � 1/; 1

2
.3ci C 2 C i � 1/� D Œ�2t C 1 � i

2
; 6t � 1 C i

2
�

for i D 1; 2. Now fKh.T3;3t/ is computed from E1..�2�1/3t /, which according to (4)
is described by

fKh.T3;3t�1/Œ�1; 1� ˚ .fKh.U /Œ�2t; 6t � ˚ fKh.U t U /Œ�2t C 1
2
; 6t � 1

2
�/:
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Hence we need only consider 3 possible new generators added to fKh.T3;3t�1/Œ�1; 1�

in order to calculate fKh.T3;3t/; the relevant portion of this calculation is illustrated in
Figure 13. Since the possible differentials raise ı-grading by 1 and fix the q-grading,
there is only one possible non-trivial differential to consider.

Now notice that rk fKh0.T3;3t / D 4 as T3;3t is a three component link. Moreover,
applying Theorem 3.2 we see that the three new generators added to ı C q D 4t

must survive in fKh0.T3;3t / (along with the generator in ı C q D 0). Since the
remaining generators admit a unique pairing corresponding to the higher differentials
calculating fKh0.T3;3t /, we conclude that the possible differential under consideration
must be zero, and

fKh.T3;3t /

Š fKh.T3;3t�1/Œ�1; 1� ˚ fKh.U /Œ�2t; 6t � ˚ fKh.U t U /Œ�2t C 1
2
; 6t � 1

2
�

establishing the desired result.

Proof of Claim 3.7. In this case we have that ci D 4t and the unoriented resolutions
are R1 ' U and R2 ' U t U respectively. The relevant grading shift on fKh.Ri /

from (3) is

Œ�1
2
.ci C i � 1/; 1

2
.3ci C 2 C i � 1/� D Œ�2t C 1

2
� i

2
; 6t C 1

2
C i

2
�

for i D 1; 2. As a result fKh.T3;3tC1/ is computed from E1..�2�1/3tC1/, which
according to (4) is described by

fKh.T3;3t/Œ�1; 1� ˚ .fKh.U t U /Œ�2t � 1
2
; 6t C 3

2
� ˚ fKh.U /Œ�2t; 6t C 1�/:

The relevant portion of this calculation, again featuring three new possible generators,
is shown in Figure 13. In this case, the differentials are necessarily non-trivial.
Indeed, since fKh0.T3;3tC1/ Š F supported in ı C q D 0, all other generators offKh.T3;3tC1/ (in particular, those illustrated in Figure 13) must pair according to
higher differentials computing fKh0.T3;3tC1/. As a result, there must be a non-trivial
differential corresponding to F 2 ! F 2 in Figure 13, however this is precisely the
setting wherein the indeterminate summand plays a role. That is, we note that there
are two possibilities for such a pairing (as in Figure 10), and hence two possibilities
for the rank of the differential in question. Regardless of which occurs however, we
obtain the result as claimed.

Proof of Claim 3.8. Here c1 D 4t C2 while c2 D 4t C1, however the resolutions Ri

are trivial knots in each case. As a result we have only two new possible generators
to consider in computing fKh.T3;3tC2/ using E1..�2�1/3tC2/:

fKh.T3;3tC1/Œ�1; 1� ˚ .fKh.U /Œ�2t � 1; 6t C 3� ˚ fKh.U /Œ�2t � 1; 6t C 4�/:
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This is again summarized in Figure 13. Notice that fKh0.T3;3tC2/ Š F supported
in ı C q D 0. As a result, the new generators must cancel in fKh0.T3;3tC2/, and
the only way this can occur is for the new generators to pair with each other. As
a result, the only possible non-trivial differential in this case must be zero, so thatfKh.T3;3tC2/ Š E1..�2�1/3tC2/ described by

fKh.T3;3tC1/Œ�1; 1� ˚ fKh.U /Œ�2t � 1; 6t C 3� ˚ fKh.U /Œ�2t � 1; 6t C 4�:

Consulting Figure 11 (replacing t with t C 1 so that T3;3.tC1/�1 D T3;3tC2), this is
the desired result.

4. Homological width

To complete the proof of Theorem 1.1 it remains to establish the second part of
Theorem 1.3.

Definition 4.1. Given a strong inversion on a knot K, and preferred representative
for the associated quotient tangle .B3; �/, define wK D minr2Q fw.�.r//g.

It is established in [20], Section 4, that this value is both well-defined and calcu-
lable. Our goal then is to determine wKt

for the twist knots Kt described in Figure 1.

Proposition 4.2. wKt
D t C 1 for all t � 0.

In the present setting wKt
is completely determined by the reduced Khovanov

homology of two branch sets corresponding to integer surgeries (for any t � 0). To
see this, let

` D
8<
:

�1 for t odd;

�5 for t even;

and consider the particular branch set �t .`/ (so that S3
`
.Kt / Š †.S3; �t .`//). Before

turning to the proof of Proposition 4.2, we will need to calculate fKh.�t .`//. As in
Section 3.5, fKh.�t .`// will be expressed up to indeterminate summands.

4.1. `-framed surgery on twist knots. The following proposition gives a useful
special case of the iterated mapping cone construction of Section 3.5.

Proposition 4.3. Let ˇ D ˇ1�n
i ˇ2 be a positive braid. According to (4), by applying

the iterated mapping cone to the crossings �n
i , fKh. Ň/ may be computed by a spectral

sequence with

E1.ˇ1�n
i ˇ2/ Š

�fKh.ˇ1ˇ2/ ˚
� n�1M

qD0

fKh.R/Œ�1
2
.c � 1/; 1

2
.3c C 1 C 2q/�

��
Œ�n

2
; n

2
�



New proofs of certain finite filling results 369

where R is the link obtained by replacing the entire twist region corresponding to
�n

i with the unoriented resolution and c D n�.R/. In particular, the links Ri of
Section 3.3 differ from R by a series of Reidemeister 1 moves and ci D c C n � i .

As before, this provides a candidate collection of generators that may be used to
determine the homology by making use of the additional structure of Theorem 3.2.
Now notice that the knot �t .`/ is the closure of the braid �1�2�3

1 �2�t (see Proposi-
tion 2.1). Using the result in Proposition 3.5, and a similar strategy of proof employing
Proposition 4.3, it is possible to determine the reduced Khovanov homology, up to
indeterminate summands, for the branch set �t .`/.

Proposition 4.4. The reduced Khovanov homology of the branch set �t .`/ is described
in Figure 14 for t � 0.
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Figure 14. The reduced Khovanov homology of the .3; 3t/-torus link as computed in Propo-
sition 3.5 (left), and the reduced Khovanov homology of the branch set �t .`/ (right).
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Proof. The strategy of proof is to iterate Proposition 4.3, as in the schematic of
Figure 15, to the closure of the braid �1�2�3

1 �2�t :

�1�2�3
1 �2�t oriented

resolution
�� �2�3

1 �2�t oriented

resolution
�� �2

2 �t oriented

resolution
�� �t :

It is straightforward to verify that the constants and unoriented resolutions are as
claimed in Figure 15. The relevant piece of the group corresponding to each of the
following steps is summarized in Figure 16.

�t

		

U

�t

cD4tC2

�1





�t

��

�t

H C

cD4t

�3





�t

��

U t U

�t

cD4t

�2





�t

Figure 15. Schematic of the proof of Proposition 4.4: at each step the number �n indi-
cates the number of iterations of the long exact sequence using Proposition 4.3 to produce
E1.�1�2�3

1
�2�t / computing fKh.�t .`//. Recall that H C denotes the positively clasped Hopf

link, with fKh.H C/ as in Figure 8.

We have

E1.�2
2 �t /

Š
�fKh.�t/ ˚

� 1M
qD0

fKh.U t U /Œ�2t C 1
2
; 6t C 1

2
C q�

��
Œ�1; 1�;

E1.�2�3
1 �2�t /

Š
�fKh.�2

2 �t / ˚
� 2M

qD0

fKh.H C/Œ�2t C 1
2
; 6t C 1

2
C q�

��
Œ�3

2
; 3

2
�;

E1.�1�2�3
1 �2�t /

Š
�fKh.�2�3

1 �2�t / ˚ fKh.U /Œ�2t � 1 C 1
2
; 6t C 4 � 1

2
�
�
Œ�1

2
; 1

2
�:
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Figure 16. The potential new generators (shaded) appearing in E1.�2
2

�t /, E1.�2�3
1

�2�t /

and E1.�1�2�3
1

�2�t / (left to right) when using Proposition 4.3 to compute fKh.�2
2

�t /,

fKh.�2�3
1

�2�t / and fKh.�1�2�3
1

�2�t /.

This illustrates how Proposition 4.3 is used to generate a collection of new gen-
erators, and these have been highlighted in Figure 16. In particular, fKh.�t .`// may
be computed by considering

E1.�1�2�3
1 �2�t /

Š fKh.T3;3t /Œ3; 3� ˚

0
BBB@

L1
qD0

fKh.U t U /Œ�2t C 1
2
; 6t C 1

2
C q�Œ�3; 3�

L2
qD0

fKh.H C/Œ�2t C 1
2
; 6t C 1

2
C q�Œ�2; 2�

fKh.U /Œ�2t � 1; 6t C 4�

1
CCCA

in combination with fKh0.�t .`//. Notice that only 11 possible new generators appear
(see the right-most shaded group described in Figure 16).

Since �t .`/ is a knot, the single generator of fKh0.�t .`// appears in grading
.�2 � 3t; 2 C 3t/, see Figure 14. As a result, the portion of the homology group
shown in Figure 16 must collapse in fKh0.�t .`//, placing constraints on the potential
differentials calculating fKh.�t .`//. This analysis is shown in Figure 17 and described
below.

First notice that the top- and bottom-most generators must each pair as in Fig-
ure 17(b). Since this leaves nothing with which the right-most generator can pair,
there must be a differential cancelling this generator. Similarly, as shown in Fig-
ure 17(c), the upper most F 2 cannot be cancelled by any higher differential as is
required; this forces a second non-trivial differential as shown and determines the
pairing in Figure 17(d).
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Figure 17. Using the pairing computing fKh0.�t .`// to determine fKh.�t .`// up to indeterminate
summands.

This determines the homology, up to indeterminate summands. In particular, as in
the proof of Claim 3.7, there is a single differential of the form F 2 ! F 2 that is non-
trivial whereby either a single pair or all 4 generators are cancelled (see Figure 17(d)).
This gives rise to the t th indeterminate summand shown in Figure 14.

4.2. A lower bound for homological width. Much of the strength of Khovanov
homology is retained by relaxing the absolute 1

2
Z˚ 1

2
Z-grading to a relative Z˚ Z-

grading. Moreover, by ignoring the secondary q-grading, the reduced Khovanov
homology takes the form fKh.L/ Š Lw.L/

ıD1
.F bı /ı ; the positive integer w.L/ is

the homological width of the link L (as in Definition 3.1). Given this relatively
Z-graded version, it is easy to verify that det.L/ D ˇ̌ P

ı.�1/ıbı

ˇ̌ D 	.fKh.L//

(see [20], Proposition 2.2, for example). In the present setting, we have the following
consequence of Proposition 4.4:

fKh.�t .`// Š .F b1/1 ˚ � � � ˚ .F btC1/tC1

as a relatively Z-graded group, where bi > 0 for each 1 � i � t C 1 (of course, due
to indeterminate summands, the integers bi have not been determined exactly).

Proposition 4.5. The reduced Khovanov homology of the branch set �t .` C 1/, as a
relatively Z-graded group, is

fKh.�t .`// Š .F b1/1 ˚ � � � ˚ .F btC1/tC1 ˚ .F /tC2:

Moreover, the quantum grading of the generator in the .t C 2/nd (relative) grading,
is strictly smaller than the largest quantum grading in the .t C 1/st (relative) grading
supporting non-trivial homology.
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Proof. First we determine fKh.�.` C 1// as an absolutely bigraded group. Applying
the mapping cone (1),

fKh.�.` C 1// Š H.
fKh.�.`//Œ�1

2
; 1

2
� �! fKh.U /Œ�2t � 3

2
; 6t C 11

2
�/

Š H�.fKh.�.`// �! .F /ıD�2t�1
qD6tC5 /Œ�1

2
; 1

2
�

since c D 4t C 3. Notice that fKh�2�2t
6tC7 .�.`// Š F from Figure 14, verifying the

second claim of the proposition.
To verify the first claim, we analyse the potential new generator as in Figure 18

(note that the pairings in the portion the group that is not displayed are uniquely
determined). In particular, by applying Theorem 3.2 we have that fKh0.�.`C1// Š F 2

with generators supported in ı C q D 0 and ı C q D 4t C 4. The latter must be the
generator that does not pair with the top-most generator in Figure 18 (for absolute
gradings, consult Figure 14). Despite this indeterminacy Turner’s spectral sequence,
as in the proof of Proposition 4.4, ensures that this new generator is present and

fKh.�t .` C 1// Š .F b1/1 ˚ � � � ˚ .F btC1/tC1 ˚ .F /tC2

as a relatively Z-graded group.

1

1

1

1

1

1

1

H)

1

1

1

1

1

1

1

Figure 18. Determining fKh.�t .` C 1//, showing only the (relative) ı-gradings t; t C 1; t C 2.
Notice that the .t C 2/nd ı-grading is forced to appear in the group fKh.�t .` C 1//, despite the
indeterminacy in the pairing for higher differentials as shown.

Corollary 4.6. The tangle .B3; �t / is generic in the sense of [20], Definition 5.15.

Proof. Each of the bi in the expression for fKh.�t .` C 1// are positive so there are
no blank diagonals (see [20], Remark 4.19). Note that w.�.` C 1// D w.�.`// C 1;
the second part of Proposition 4.5 verifies expansion long form for �.` C 1/, while
�.`/ has expansion short form by Proposition 4.4; see [20], Definition 5.3. These
observations ensure that the tangle is expansion generic [20], Definition 5.7, hence
generic [20], Definition 5.15.
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Proof of Proposition 4.2. First notice that w.�t .`// D t C 1 � w.�t .n// � t C 2 D
w.�t.` C 1// for all n, by [20], Lemma 4.20; we have identified the single integer
framing at which the branch sets change homological width. By Corollary 4.6 the
tangle is generic. Hence the minimum width on branch sets corresponding to integer
surgeries provides a lower bound for the width of a branch set associated with any
non-trivial surgery [20], Theorem 5.16. That is, wKt

D t C 1.

This completes the proof of Theorem 1.1. Notice that in the case t D 1 (where
K1 is the figure eight knot), we only have w.�1.n// > 2 for n � 0. From this it
follows that w.�1.r// > 2 for any rational r � 0, confirming that 
1.S3

r .K1// must
be infinite for non-negative surgery coefficients; see [20], Theorem 7.2. However
S3

r .K1/ Š S3�r.K1/ since K1 is amphichiral.

Remark 4.7. In general

fKh.�t .` C m// Š .F b1/1 ˚ � � � ˚ .F bt /t ˚ .F b�
tC1/tC1 ˚ .F btC2/tC2

where 0 < b�
tC1 � btC1 and 0 < btC2 � m, as can be seen from the spectral

sequence with E1.�1Cm
1 �2�3

1 �2�t / (resolving the first m crossings) following an
argument similar to the proof of Proposition 4.5. Note that setting

m D
8<
:

1 for t odd;

5 for t even;

gives

det.�t .0// D 	.fKh.�.0// D 	.E1.�1Cm
1 �2�3

1 �2�t // D 0

as claimed (and left to the reader) in the proof of Proposition 2.1.

This calculation of fKh.�t .` C m// should be compared with [20], Lemma 4.10,
which establishes the same stable behaviour for tangles associated with a strongly
invertible knot in general. While we have appealed to the machinery of [20] in order
to establish the width bound of Proposition 4.2, the reader should be assured that the
computations required for this paper could be made entirely self contained. One need
only fix a convention for the branch sets �t .r/ when r 2 Q (as in [20], Section 3),
and iterate the mapping cone from Section 3.2. The condition that the tangle be
generic simply ensures that this calculation is possible without the need to calculate
any differentials.

It seems worth noting that results of Boyer and Zhang ensure that a finite filling on
a knot in S3 can only occur with integer or half-integer surgery coefficient [5]. While
our proof does not appeal to this fact, it is interesting that the Khovanov homology of
only two branch sets associated with integer surgeries suffice to prove Theorem 1.1.
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