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Cables of thin knots and bordered Heegaard Floer homology
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Abstract. We use bordered Floer homology to give a formula for bHFK.Kp;pnC1/ of any
.p; pnC1/-cable of a thin knot K in terms of �K.t/, �.K/, p, and n. We also give a formula
for the Ozsváth–Szabó concordance invariant �.Kp;q/ in terms of �.K/, p, and q, for all
relatively prime p and q.
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1. Introduction

In [13], Ozsváth and Szabó introduce a powerful knot invariant using Heegaard dia-
grams. In this paper, we study its simplest version, the knot Floer homology bHFK.K/,
which has the structure of a bigraded vector space over F2, the field with two ele-
ments. Its Euler characteristic is the symmetrized Alexander polynomial �K.T /, in
the sense that X

i;j

.�1/iT j rank bHFKi .K; j / D �K.T /:



378 I. Petkova

The indices i and j in the summation stand for the Maslov grading M and the
Alexander grading A, respectively. It is sometimes convenient to make use of a third
grading, ı D A �M .

Originally, knot Floer homology was defined by counting pseudo-holomorphic
curves in the g-fold symmetric product of a genus g Heegaard surface. Later, com-
binatorial versions appeared, including a method using grid diagrams [10]. The
complex coming from a grid diagram has nŠ generators, where n is the arc index of
the knot, so this method only works well in practice for knots with few crossings or
for special families of knots. In this paper, we instead use bordered Floer homology,
which generalizes Heegaard Floer homology to 3-manifolds with boundary, and to
knots in 3-manifolds with boundary [7]. The beauty of this theory is that it allows
us to compute invariants for a space by cutting the space into simpler pieces, and
studying the pieces and their gluing instead. This approach is particularly well suited
for studying knot satellites. It was used by Levine to study generalizations of Bing
and Whitehead doubles [6] and [5]. Here, we apply the bordered method to cables
of thin knots. Our Corollary 2 has since been generalized by Hom to cables of all
knots [4].

Let K be a knot in S3. Recall that the .p; q/-cable of K, denoted Kp;q , is the
satellite knot with pattern the torus knot Tp;q and companion K. In other words,
if Tp;q is drawn on the surface of an unknotted solid torus, then we obtain Kp;q by
gluing the solid torus to the complement of K, identifying its meridian and preferred
longitude with the meridian and preferred longitude of K. Thus, p and q refer to the
winding of the cable in the longitudinal and meridional directions of K, respectively.

A knot K is called Floer homologically thin [9] if its knot Floer homology is
supported in a single ı-grading. Throughout this paper we will say thin to mean
Floer homologically thin. If the homology is supported on the diagonal ı D ��=2,
where � denotes the knot signature, then we say the knot is � -thin, or perfect [17].
The class of � -thin knots contains as a proper subset all quasi-alternating knots [9],
and in particular all alternating knots [12].

Using the knot filtration on cCF.S3/, Ozsváth and Szabó define an integer knot
invariant � [14], independently discovered by Rasmussen [18], whose absolute value
is a lower bound on the four-ball genus. The behavior of � under various satellite
operations, such as cabling, Bing, and Whitehead doubling, has been studied ex-
tensively in recent years; see [3], [8], [1], [20], [19], [6], and [5]. In [3], Hedden
gives upper and lower bounds for �.Kp;pnC1/ in terms of �.K/, p, and n, and, for
sufficiently large jnj, describes the knot Floer homology of the cable in the topmost
Alexander gradings. In the case where K is thin, we extend Hedden’s results to a
complete description of the knot Floer homology of the cable. In particular, we derive
a formula for bHFK.Kp;pnC1/ and for �.Kp;pnC1/ in terms of �.K/, �K.t /, p, and
n. Note that for a � -thin knot, �.K/ D ��.K/=2.
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Theorem 1. Suppose K is a thin knot, and fix integers p > 1 and n. Then �.K/,
�K.t /, p, and n determine the associated graded complex to CFK�.Kp;pnC1/, and in
particular bHFK.Kp;pnC1/. The complete description is given in Section 5. Further,

�.Kp;pnC1/ D

8̂̂̂
<̂
ˆ̂̂̂:

p�.K/C np.p � 1/

2
if �.K/ D 0 and n � 0,

or if �.K/ > 0,

p�.K/C np.p � 1/

2
C p � 1 otherwise.

We prove Theorem 1 using the Pairing Theorem 11:21 of [7]. Our method can
easily be adapted to compute bHFK.Kp;q/ for any relatively prime p and q, as we
explain at the end of Section 4.

We are grateful to Cornelia Van Cott for pointing out the following corollary.

Corollary 2 (Van Cott). Suppose K is a thin knot, and p and q are relatively prime
integers, with p > 0. Then

�.Kp;q/ D

8̂̂<
ˆ̂:

p�.K/C .p � 1/.q � 1/

2
if �.K/ D 0 and q > 0, or if �.K/ > 0,

p�.K/C .p � 1/.q C 1/

2
otherwise.

Note that since K�p;�q D �Kp;q, where�Kp;q is Kp;q with reversed orientation,
and since � does not distinguish orientation, the result of Corollary 2 extends to all
one-component cables of thin knots.

Theorem 1 and Corollary 2, combined with the inequality j� j � g4, provide
information about the four-ball genus of cables. For example, we have the following
result.

Corollary 3. Suppose K is a thin knot with g4.K/ D �.K/, p > 1 is an integer, and
q > 0 is an integer relatively prime to p. Then g4.Kp;q/ D �.Kp;q/.

Note. A Mathematica [21] program implementing this method is available on-
line [16]. The program takes �K.t /, �.K/, p, and n as input, and outputs the
generators of bHFK.Kp;pnC1/ as a list of ordered pairs of Alexander and Maslov
gradings. It then plots the result on the .A; M/-lattice. The program computes bHFK
for cables with thousands of crossings in a matter of seconds, whereas the grid method
would take billions of years. In Section 8 we give the result for the .5; 16/-cable of the
knot 11n50. This knot is interesting as it is the first known example of a homologically
thin (with respect to bHFK, Kh and Kh0), non-quasi-alternating knot [2].
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2. Preliminaries on bordered Floer homology

We review the theory of bordered Floer homology, focusing on the special case of
torus boundary, in particular gluing a knot in the solid torus to a knot complement.
For details and the more general theory, we refer the reader to [7].

Let Y be a closed oriented 3-manifold, and let F be a connected, oriented surface
that separates Y into two manifolds with boundary, .Y1; F / and .Y2;�F /. Fix a
Heegaard diagram H D .†g ; f˛1; : : : ; ˛gg; fˇ1; : : : ; ˇgg; z/ for Y , and assume that
F intersects H in a circle Z that contains the basepoint z and crosses 2k ˛-curves,
twice each, and no ˇ-curves. Assume also that no isotopies can be made to decrease
the number of intersections with the ˛-curves, and that g.F / D k. We call such Z

a pointed matched circle. Two points are matched if they belong to the same ˛-arc.
The circle Z separates H into the two bordered Heegaard diagrams H1 and H2,
representing the two manifolds with boundary. The parametrization of the boundary
is specified by @H1 D Z or @H2 D �Z respectively.

To a pointed matched circle Z we associate an A1-algebra A.Z/ over F2. To a
bordered Heegaard diagram .H ; z/ D .x†; N̨ ; ˇ; z/, we associate either a left type D

structure bCFD.H ; z/ over A.�@H /, or a right A1-module bCFA.H ; z/ over A.@H /.
Similarly, we can represent a knot in a bordered 3-manifold by a doubly-pointed
bordered Heegaard diagram .H ; z; w/ D .x†; N̨ ; ˇ; z; w/, where z and w are in
x† n . N̨ [ ˇ/, and z 2 @H . To this diagram we can associate a right A1-module
CFA�.H ; z; w/, this time over F2ŒU �, where a holomorphic curve passing through
w with multiplicity n contributes U n to the multiplication. Setting U D 0 gives
bCFA.H ; z; w/, where we count only holomorphic curves that do not cross w.

From here on, let Yp;1 stand for the .p; 1/-cable in the 0-framed solid torus, and
let YK;n be the n-framed knot complement S3 n K, so that Yp;1 [@ YK;n is the pair
.S3; Kp;pnC1/. The separating surface F D @Yp;1 D �@YK;n is a torus, parametrized
by the circle Z in Figure 1. The four ˛-points divide the circle into the four upward-
oriented arcs �0, �1, �2, and �3, where �0 contains the basepoint z. The A1-algebra
A is just a graded algebra; it has two idempotents, one for each ˛-arc, and 6 Reeb
elements, coming from the Reeb chords �1; �2 and �3 (see [7], Section 11.1). In this
case, bCFD.YK;n/ can be derived explicitly from CFK�.K/ (see Section 3.2), and is
represented best using the coefficient maps D1; D2; D3; D12; D23, or D123, which
describe the sequence of Reeb chords that a holomorphic curve passes through.

When at least one of CFA or CFD is bounded [7], Definitions 2.4 and 2.22,
there is a particularly simple description for their A1 tensor product and the tensor
differential. A product a � d is nonzero in CFA � CFD whenever a and d occupy
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complementary sets of ˛-arcs. The differential @�.a1 �d1/ has a2 �d2 in the image
whenever there is a sequence of coefficient maps DI1

; : : : ; DIn
from d1 to d2 and

a multiplication map mnC1.a1; �I1
; : : : ; �In

/ with a2 in the image, both indexed the
same way; see [7], Definition 2.26 and eq. (2.29).

˛1

˛1

˛2

˛2

�0

�1

�2

�3

z

z

Figure 1. The circle Z in the case of torus boundary.

It turns out there is no Z-grading on A, CFA or CFD. Instead, the algebra and
domains are graded by a nonabelian group G, and the left or right modules over
the algebra are graded by left or right cosets of a subgroup of G. That subgroup is
the image of periodic domains in G. For a general discussion of gradings, see [7],
Chapter 10. In our case, the elements of G are quadruples of half-integers .aI b; cI d/

with b C c 2 Z and d 2 Z, with multiplication given by

.a1I b1; c1I d1/ � .a2I b2; c2I d2/

D
�

a1 C a2 C
ˇ̌̌
ˇ b1 c1

b2 c2

ˇ̌̌
ˇ I b1 C b2; c1 C c2I d1 C d2

�
:

The first number is called the Maslov component of the grading, and the pair .b; c/ is
the Spinc component. The fourth number is used in the case of knots to encode the
U grading.

The grading on A is given by

gr.�1/ D .�1
2
I 1

2
;�1

2
I 0/;

gr.�2/ D .�1
2
I 1

2
; 1

2
I 0/;

gr.�3/ D .�1
2
I �1

2
; 1

2
I 0/:

For a homology solid torus, hence for both Yp;1 and YK;n, the group of periodic
domains is isomorphic to Z, and so is its image in G.

For CFD.YK;n/ we find a generator h for this image in Section 3.2. If DI is a
coefficient map from x to y then the gradings of x and y are related by

gr.y/ D ��1gr.�I /�1gr.x/ 2 G=hhi; (1)
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where � D .1I 0; 0I 0/.
For CFA.Yp;1/, we find a generator g for the subgroup in Section 4. For a

multiplication map mlC1.x; �I1
; : : : ; �Il

/ D U iy we have the formula

gr.y/ D �l�1gr.x/gr.�I1
/ � � � gr.�Il

/.0I 0; 0I i/ 2 hginG: (2)

Following the notation in [7], we denote the associated graded objects to CFK� and
bCFK by gCFK� and g bCFK, and the homologies of gCFK� and g bCFK by HFK� and
bHFK. Let H be a provincially admissible Heegaard diagram for Yp;1 with @H D Z.

While CFA�.H / may not be an invariant of Yp;1(Remark 11:20 of [7]), the pairing
theorem [7], Theorem 11.21, says that there are homotopy equivalences

gCFK�.Kp;pnC1/ ' CFA�.H / � bCFD.YK;n/;

g bCFK.Kp;pnC1/ ' bCFA.H / � bCFD.YK;n/;

which respect gradings in the following sense. The tensor product is graded by the
double-coset space hginG=hhi via gr.xy/ D gr.x/gr.y/ (we use the notation xy

to mean x � y). This double-coset space is in turn isomorphic to Z � Z, and for
a homogeneous xy we can always choose a coset representative for gr.xy/ of the
form .aI 0; 0I d/, where a; d 2 Z. We can achieve this by multiplying any other
representative by appropriate powers of g to the left and h to the right. From there,
we recover the absolute Maslov and Alexander grading by the formula

A D d � p�.K/� np.p � 1/

2
;

M D aC 2A:

We discuss this formula in Section 5.

3. bCFD of a thin knot

3.1. The complex CFK� for thin knots. Recall that given a knotK in S3, CFK�.K/

is a free, finitely generated chain complex over F2ŒU �, endowed with an Alexander
filtration A by the integers, and an integer grading, called the Maslov grading. The
differential lowers the Maslov grading by one, respects the Alexander filtration, and
does not decrease the U power. We can illustrate CFK�.K/ graphically as follows.
We choose a basis of generators B for CFK�.K/ over F2ŒU � which is homogeneous
with respect to the Alexander filtration. Then B ˝F2

F2ŒU � is a basis for CFK�.K/

over F2. We plot B ˝ F2ŒU � on the .U; A/-lattice, and draw arrows for the differen-
tial @�. To match preexisting conventions, a generator of the form U x� of Alexander
depth y is at position .�x; y/, where � 2 B.
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If @�.x/ D y1 C � � � C yn, where x; y1; : : : ; yn are elements of B ˝F2
F2ŒU �,

then there is an arrow from x to each yi . In this case we say that x points to each
yi . If yi is below/to the left of x, we say that the arrow from x to yi points down/to
the left. Note that all arrows point non-strictly down and to the left. If the arrow
is vertical, meaning that x and yi have the same U power, then the length of the
arrow is A.x/ � A.yi /. If the arrow is horizontal, meaning that x and yi are in the
same Alexander filtration, then the length of the arrow is the difference between the
U power of y and the U power of x.

From now on, K will be a thin knot. In this case, �K.t / and �.K/ are sufficient
to describe a model for the chain complex CFK�.K/. Note that for a � -thin knot,
this means that the only information we need is the Alexander polynomial and the
signature. This was stated without proof in [12] with regard to alternating knots. We
now state and prove the general claim.

Theorem 4. If K is a thin knot, CFK�.K/ is completely determined by �.K/ and
�K.t /.

The proof relies on two lemmas. First we perform a filtered chain homotopy to
obtain a new complex with a simpler differential. Then we change basis to show that
the complex is isomorphic to a direct sum of three special kinds of complexes.

Lemma 5. There is a filtered chain homotopy equivalence

.CFK�.K/; @�/ Š . bHFK.K/˝ F2ŒU �; @z C U @w/;

where @z counts holomorphic disks that pass once through the basepoint z, and @w

counts disks that pass once through w.

Proof. In each vertical column of the .U; A/-lattice, the arrows that go between ele-
ments in the same position count disks that do not pass through either basepoint,
and hence form the differential O@. We take homology with respect to these ar-
rows. In terms of basis elements, if @�.a/ D b1 C � � � C bn, and a and b1 have
the same Alexander filtration and U power, and if x1; : : : ; xk are all the other ele-
ments that point to b1, then we replace the basis vectors b1; b2; : : : ; bn; x1; : : : ; xk

with b1 C � � � C bn; b2; : : : ; bn; x1 C a; : : : ; xk C a. In this way, we get an isolated
arrow from a to b1 C � � � C bn, so we can delete it. Repeating this until there are no
more such arrows, we get a complex with generators bHFK.K/˝ F2ŒU �.

Since K is thin, the difference in the Maslov gradings of any two generators
of bHFK is equal to the difference in their Alexander filtrations. Thus, if an arrow
pointing from x to U ly drops the Alexander filtration by k, then M.x/ �M.y/ D
A.x/�A.y/ D k � l , since multiplication by U drops the Alexander filtration by 1.
On the other hand, since the differential always drops the Maslov grading by 1, and
multiplication by U drops it by 2, then 1 DM.x/�M.U ly/ D k� lC 2l D kC l .
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Then either k D 0 and l D 1, or k D 1 and l D 0. In the first case we have a
horizontal arrow of length one pointing to the left and contributing to U @w , and in
the second case we have a vertical arrow of length one pointing down and contributing
to @z .

Definition 6. A free, finitely generated, chain complex C over F2ŒU � is automatically
endowed with a U -power filtration. An Alexander filtration A is a filtration such that

� multiplication by U lowers the A filtration by 1,

� the differential respects A.

The complex C is said to be thin if the differential lowers the sum of A and U -power
filtration by exactly 1.

This definition is equivalent to saying that in the graph of C all arrows are either
vertical or horizontal and have length one.

Given a thin complex, call the map consisting of all vertical arrows @z , and the
map consisting of all horizontal arrows U @w . We choose this notation in order to be
consistent with the case of a knot Floer complex. For a homogeneous element x,

@2x D .@z C U @w/2x D @2
zx C U 2@2

wx C .@z.U @w/C .U @w/@z/x;

where the three homogeneous summands have distinct positions on the lattice. Since
@2 D 0, then all three summands must be identically zero, showing that the maps @z

and U @w are differentials.
The vertical complex Cvert defD C=.U � C/ is a chain complex which inherits the

Alexander filtration from C . We call its homology the vertical homology, denoted
H vert.C/. We also define the horizontal complex Chorz to be the degree zero part of
the associated graded space to C ˝F2ŒU � F2ŒU; U �1� with respect to the Alexander
filtration. It is filtered by the U powers, and inherits a differential from C . We call
its homology the horizontal homology, denoted H horz.C/.

When C Š CFK�.K/, then @z and @w are the differentials for cCF.S3/ with
respect to the two different basepoints. In that case

C vert.CFK�.K// Š C horz.CFK�.K// Š cCF.S3/;

and
H vert.CFK�.K// Š H horz.CFK�.K// Š cHF.S3/ Š F2:

Lemma 7. Suppose C is a thin complex with horizontal and vertical homologies of
rank at most 1. Then C is isomorphic to a direct sum of complexes, each modeled by
one of the complexes in Figure 2. In particular, . bHFK.K/˝ F2ŒU �; @z C U @w/ has
a model complex isomorphic to a direct sum of these model complexes.
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a1
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a2jl j a2jl jC1

a2la2lC1

C Cl for l � 0 Cl for l > 0

Figure 2. Model complexes for CFK� of a thin knot K, where l D �.K/. A w-arrow from x

to y means that y has coefficient U in @x.

Proof. For the sake of simplicity, we slightly abuse notation in this proof. We will
say there is a w-arrow from x to y, to mean that there is a w-arrow from x to Uy. We
will also denote U @w simply by @w , and thus say @wx D y, instead of U @wx D Uy.

We prove the lemma by induction on rkF2ŒU �.C/, since C has finite rank over
F2ŒU �. We change basis in C over F2ŒU � homogeneously to split off a C or a Ci

summand. Then C Š C ˚ C 0 or C Š Ci ˚ C 0, where C 0 has lower rank than
C , and vertical and horizontal homologies of rank at most 1, hence C 0 must split in
the desired way too. Thus, C splits into a direct sum of the model complexes by
induction.

On the .U; A/-lattice, the complex C is supported in a strip of finite width and
slope 1. Choose a nonzero basis element b1 over F2ŒU � of smallestAlexander filtration
possible (so b1 is on the lower boundary edge of the strip).

Case 1. There is a vertical arrow pointing to b1.

Let a be a generator that has a z-arrow to b1. If @za D b1, let b D b1, and
if @za D b1 C � � � C bn and n > 1, change basis by replacing b1; : : : ; bn with
b D b1C� � �Cbn; b2; : : : ; bn. Now @za D b. By our choice of b1, and since @2 D 0,
we know that there is no w-arrow pointing to a or b, and no z-arrow originating at b.
If there are other generators with a z-arrow to b, add a to each of them, so that in the
new basis only a has a z-arrow to b.

Case 1.1. @wb ¤ 0.

We will split off a C summand. Since .@z@w C @w@z/a D 0, we have @wa D
c ¤ 0, @zc D @wb. By changing basis if necessary, we may assume c is a basis
element. Since @2

zc D 0, and a is the only generator with b in the image of its @z
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differential, it follows that a does not appear in @zc D @wb. Thus, we may change
basis if necessary so that @wb D d with d a basis element, without affecting the
choices made so far. Now @2

w D 0 implies that @wd D 0, and @2
z D 0 implies that

@zd D 0.
For any other b0 that has a w-arrow to d , replace it by b C b0, so that b remains

the only generator with a w-arrow to d . In the same way we arrange that c is the
only generator with a z-arrow to d . Now @2

z D 0 implies that no z-arrow points to
c. After the last two changes, a may no longer be the only generator with a z-arrow
to b.

Suppose there is some a0 ¤ a with a z-arrow to b. Since b is the only generator
with a w-arrow to d , and c is the only one with a z-arrow to d , then @z@wC@w@z D 0

implies that a0 also points to c. Similarly, if a0 points to c, it must also point to b.
Add a to all such a0, so that a is the only generator with a z-arrow to b, and the only
one with a w-arrow to c. From @2 D 0 it follows that nothing points to a.

Thus, we have changed basis to split off a C , modeled by the square

zz

w

w
a

b

c

d .

Case 1.2. @wb D 0.

We will split off a Cl summand. Add a to any other generator that has a z-arrow
to b, so that now only a does. Now no z-arrow points to a, since @2

z D 0. Note that
@wb D 0 implies that b survives in horizontal homology. By the rank assumption in
this Lemma, H horz.C/ Š F2, represented by b, and so no other generator survives in
horizontal homology. In particular a does not survive, so @wa ¤ 0. As before, we
may assume that @wa D c, where c is a basis element. Note that @wc D @zc D 0.

Suppose that some a1 ¤ a has a w-edge to c, and add a1 to all other such
generators except a. Now only a and a1 have a w-edge to c. If a1 also has w-edges
to generators other than c, change basis as before to arrange that @w a1 D cCc1, where
c1 is a basis element. We can continue until we get a zig-zag, i.e. basis elements
a; a1; : : : ; an with @wa D c, @wa1 D c C c1, @wa2 D c1 C c2; :::; @wan�1 D
cn�2 C cn�1, and either @wan D cn�1 C cn, or @wan D cn�1, so that no other
w-edge points to any ci . In the first case, we replace the basis vectors c; c1; : : : ; cn

with c; c C c1; c1 C c2; : : : ; cn�1 C cn, and in the second, we get a contradiction to
the fact that the horizontal homology has rank one. Now only a has a w-edge to c.

Case 1.2.1. If no z-arrow points to c, then we split off the C1 staircase

z

w
a

b

c

:
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Case 1.2.2. If there is a z-arrow pointing to c, we may assume that in fact only one
basis element d has a z-arrow to c.

If @zd ¤ c, then we may arrange that @zd D c C c1, where c1 is another
basis element. As before, we can get a zig-zag @zd D c C c1, @zd1 D c1 C c2, …,
@zdk�1 D ck�1 C ck and either @zdk D ck C ckC1, or @zdk D ck , so that di are in
the basis and no other z-arrow points to any of the ci . In the first case, we replace
the basis vectors c; c1; : : : ; ckC1 by c; cC c1; c1C c2; : : : ; ck C ckC1, and we split
off the abc staircase, i.e., a C�1. In the second, we change basis by adding all di to
d , so that only d 0 D d Cd1C � � �Cdk has a z-arrow to c. Then there is no w-arrow
to d 0, so we can repeat the steps of Case 1.2, beginning at d 0 instead of a.

If @zd D c, we can repeat the steps of Case 1.2, beginning at d instead of a.
Since the complex is supported in a diagonal strip of finite width, eventually we

have to stop, and we split off a staircase Cl for some l > 0.

Case 2. There is no vertical arrow pointing to b D b1.

We will split off a Cl summand. If @wb D 0, then we split off a single b. Other-
wise, we may assume that @wb D c, where c is a basis element. Add b to any other
b0 with a w-arrow to c, so that now only b has a w-arrow to c. Since @2b D 0, then
@wc D @zc D 0. Since there is no z arrow to b, then the vertical homology is F2,
represented by b, so there is some d with a z-arrow to c, and we may assume that
d is a basis vector. Add d to all other d 0 that have a z-arrow to c, so that now only
d does. Since @2 D 0, there is no w-arrow to d . We can proceed as in Case 1.2.2.
Eventually we split off a Cl for some l � 0.

In each of the cases we managed to split off a model complex, so by induction on
the rank of C over F2ŒU �, we are done.

In the special case of . bHFK.K/˝F2ŒU �; @zCU @w/, both the vertical and horizon-
tal homologies have rank 1. Hence, the complex splits into exactly one Cl summand,
and possibly multiple C summands.

Proof of Theorem 4. We showed there is an isomorphism

˚k
iD1.C 0

i / Š . bHFK.K/˝ F2ŒU �; @z C U @w/

for some k, where each C 0
i is one of the model complexes in Figure 2. If we restrict

to the vertical column of the .U; A/-lattice where the U -power is zero, we see exactly
one representative over F2ŒU � of each generator of ˚k

iD1C 0
i . For each square C , its

representatives in this column appear in three adjacent Alexander gradings, with two
representatives in the middle grading. For the staircase Cl , its representatives in the
column appear one in each of 2jl j C 1 adjacent gradings. Also note that this column
is isomorphic to bHFK.K/, so its rank in any Alexander grading a equals the rank
of bHFK.K/ in the same Alexander grading a (which also equals the absolute value



388 I. Petkova

of the coefficient of the symmetrized Alexander polynomial in degree a). Figure 3
illustrates these observations for the knot 52.

x1

x1

x2

x2

x3

x3

x4

x4

a1

a1

a2

a2

:::

:::

a3

a3

Figure 3. CFK� of the 52 knot. The U 0 column is highlighted. To keep the figure simple, we
omit writing the U -power of the generators when translating them by the U -action.

The two ends of the staircase are generators for bHF .S3/, a1 with respect to the
basepoint z, and a2jl jC1 with respect to the basepoint w. Thus, the representative for
a1 hasAlexander grading��.K/, and the one for a2jl jC1 hasAlexander grading �.K/

(see Section 6 for the definition of � ). Then the staircase looks like C�.K/. It contains
2j�.K/jC1 elements, one in eachAlexander grading i , where�j�.K/j � i � j�.K/j.

Let a0
i be the rank of the column in Alexander grading i after removing all the

staircase generators. In other words,

a0
i D

8<
:
jai j if ji j > j�.K/j,
jai j � 1 otherwise.

where ai is the coefficient of t i in the symmetrizedAlexander polynomial �K.t /. Let
ci be the number of squares with an upper right corner representative in Alexander
grading i . We see that cg�1 D a0

g , cg�2 D a0
g�1 � 2cg�1, and in general we get the

recursive formula ci D a0
iC1 � 2ciC1 � ciC2. Note, in particular, that ci D c�i .
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3.2. bCFD from CFK�. Theorems 11:27 and A.11 of [7] together provide an al-
gorithm for computing bCFD of any bordered knot complement with framing n from
CFK�. In particular, if K is thin, we take the simplified basis described in Section 3.1
and modify each square and the one staircase as in Figure 4. To simplify our notation
when working with indices and gradings, we will often write � for �.K/ when it is
clear from the context what we mean.

The dashed diagonal arrow Ü stands for

D12���! if n D 2�;

D1���! 	1

D23 ��� 	2

D23 ��� � � � D23 ��� 	m

D3 ��� if n D 2� �m; m > 0;

D123����! 	1

D23���! 	2

D23���! � � � D23���! 	jmj
D2���! if n D 2� �m; m < 0:

Note that when �.K/ D 0 and n � 2�.K/, the type D structure is not bounded. In
that case, to obtain a bounded bCFD.K; n/ we modify the dashed arrow to

D1���! "1
1 � "2

D2 ��� if n D 2�;

D1���! "1
1 � "2

D23���! 	1

D23���! � � � D23���! 	jmj
D2���! if n D 2� �m; m < 0:

Next, we find the gradings of the elements of bCFD.K; n/. Recall that for a
homology solid torus, such as a knot complement, the group of periodic domains
is isomorphic to Z (see, for example, the discussion above [7], Lemma 11.40), so
working with base generator u1, the image of this group 
2.u1; u1/ in G has a single
generator h. Thus, bCFD.K; n/ is graded by G=hhi. We normalize the grading by
setting gr.u1/ D .0I 0; 0I 0/=hhi. Starting at u1 and using (1) and the grading on the
algebra, we go along the staircase, then along the dashed arrow.

Case 1. If �.K/ � 0, the staircase C� is graded as follows

gr.u2kC1/ D .kI 0; 2kI 0/=hhi;
gr.v2kC1/ D .�1

2
I �1

2
; 2k C 1

2
I 0/=hhi;

gr.u2k/ D .k � 1
2
I 0; 2k � 1I 0/=hhi;

gr.v2k/ D .2k � 1
2
I 1

2
; 2k � 1

2
I 0/=hhi:

If m > 0, we have the extra elements 	1; : : : ; 	m, with gradings

gr.	iC1/ D .i � 1
2
I �1

2
; i C 1

2
� 2� I 0/=hhi:

If m � 0 and �.K/ D 0, we have "1 and "2 graded as

gr."1/ D .�1
2
I �1

2
; 1

2
I 0/=hhi;

gr."2/ D .1
2
I �1

2
; 1

2
I 0/=hhi;
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w
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a2
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D1D1

D1

D1

D1

D1

D2

D2

D2

D2

D2

D2

D3

D3

D3

D3

D3

D3

D123D123

D123

D123

D123

D123

y1

y2

y3

y4

a2j� j a2j� jC1

a2�a2�C1

u1

u1

u2

u2

v1

v1

v2

v2

u2j� j u2j� jC1v2j� j

v2j� j�1

u2�u2�C1 v2�

v2��1

Figure 4. From CFK� to bCFD. The table shows each model knot Floer complex on the left,
and the corresponding type D module on the right.
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and for any �.K/ � 0 the additional elements 	1; : : : ; 	jmj when m < 0, with
gradings

gr.	iC1/ D .�i � 1
2
I �1

2
;�i � 1

2
� 2� I 0/=hhi:

In each case, by closing the loop back at u1 along the dashed arrow, we see that the
grading of u1 is also given by

gr.u1/ D .m
2
� 1

2
C � I �1; m� 2� I 0/=hhi:

The difference .m
2
� 1

2
C � I �1; m � 2� I 0/ of the two grading representatives then

lies in hhi. Since this difference is primitive, it equals h or its inverse, so we choose

h D .m
2
� 1

2
C � I �1; m� 2� I 0/:

Case 2. If �.K/ > 0, the staircase C� is graded as follows:

gr.u2kC1/ D .�kI 0;�2kI 0/=hhi;
gr.v2kC1/ D .�1

2
I �1

2
;�2k � 1

2
I 0/=hhi;

gr.u2k/ D .�k C 1
2
I 0;�2k C 1I 0/=hhi;

gr.v2k/ D .�2k C 1
2
I 1

2
;�2k C 1

2
I 0/=hhi;

and h and the gradings of the extra elements for each framing are given by the same
formula as in the �.K/ � 0 case.

To compute the gradings of all squares, we rely on the following lemma.

Lemma 8. All elements of CFK� on a fixed line of slope 1 on the .U; A/-lattice
are converted to elements of the same grading in bCFD. In fact, if x and y are the
generators of bCFD in idempotent �0 corresponding to x0 and y0 in CFK�, and if

M.x0/ �M.y0/ D n D A.x0/ � A.y0/;

then the relative G=hhi grading of x and y is given by

gr.y/ D .n
2
I 0; nI 0/gr.x/:

Proof. The lemma follows directly from [7]. The changes of bases in the proofs
of [7], Theorems 11.27, 11.35, and 11.37, all respect gradings, so it suffices to verify
the statement for generators in a pair of Heegaard diagrams HK and H .n/, as in [7],
Figure 11.8. There is only one Spinc structure for S3, so 
2.x0; y0/ is nonempty. Take
any domain D from x0 to y0, and add to it �nz.D/ copies of the Heegaard surface
for HK , to obtain a domain B 0 from x0 to y0 that misses the basepoint z. From

M.x0/ �M.y0/ D ind.B 0/ � 2nw.B 0/ D n
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and

A.x0/ � A.y0/ D nz.B 0/ � nw.B 0/ D n

it follows that nw .B 0/ D �n and ind.B 0/ D �n. In the bordered diagram H .n/, there
is a corresponding domain B from x to y which crosses the boundary regions labeled
by 2 and 3 with multiplicity �n each. We make use of the more general grading
theory for a moment, and work with the grading group G0.4/, see [7], Section 10.
From [7], equations 10.2, 10.19, and 10.27,

R.g0.B// D .�e.B/� nx.B/ � ny.B/I r�.@@.B///

and

gr 0.y/ D R.g0.B//gr 0.x/:

Observe that

e.B/C nx.B/C ny.B/ D e.B 0/C n

2
C nx0.B 0/C ny0.B 0/

D ind.B 0/C n

2

D �n

2
;

so gr 0.y/ D .n
2
I 0; n; n/gr 0.x/. Switching back to the grading group G, gr.y/ D

.n
2
I 0; nI 0/gr.x/.

We say that a square of bCFD lies in level t if the upper right corner of the corre-
sponding small square of CFK�.K/ is on a line of slope 1 that is t units below the
line through a1, i.e., the upper right corner element has Maslov grading �2�.K/� t

as an element of bHFK. Note that t can be negative, meaning that the square is above
the a1-line. By Theorem 4, there are ctC�.K/ squares in level t . By Lemma 8, each
square in level t has upper right corner x1 in grading . t

2
I 0; t I 0/=hhi, and using (1)

again, the grading of the whole square is given by

gr.x1/ D . t
2
I 0; t I 0/=hhi; gr.y1/; D .t � 1

2
I 1

2
; t � 1

2
I 0/=hhi;

gr.x2/ D . t
2
� 1

2
I 0; t � 1I 0/=hhi; gr.y2/ D .�1

2
I �1

2
; t � 1

2
I 0/=hhi;

gr.x3/ D . t
2
I 0; t I 0/=hhi; gr.y3/ D .t C 1

2
I 1

2
; t C 1

2
I 0/=hhi;

gr.x4/ D . t
2
C 1

2
I 0; t C 1I 0/=hhi; gr.y4/ D .�1

2
I �1

2
; t C 1

2
I 0/=hhi:
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4. CFA� of the .p; 1/-cable in the solid torus

Figure 5 shows a bordered Heegaard diagram for the .p; 1/-cable in the solid torus.

b1 bp�2 bp�1 bp bpC1 b2p�2

a

1

23

z

w

::::::

::::::

Figure 5. The .p; 1/-cable in the solid torus.

The module CFA�.Yp;1/ is generated over F2ŒU � by a; b1; : : : ; b2p�2. The mul-
tiplication maps count certain J -holomorphic curves in †� Œ0; 1��R, whose relative
homology class has index 1. For more detail on the moduli spaces, indices, and
expected dimension for bordered diagrams, see [7], Section 5. Since the Heegaard
surface † is a punctured torus, we can instead count embedded disks of index 1 in its
universal cover C n .Z�Z/ connecting lifts of generators and missing the preimage
of z, modulo vertical and horizontal translations of the lattice. The positive periodic
domains are generated by the domain Ba in Figure 6. It is straightforward to enu-
merate the finitely many embedded disks whose boundary does not project to all of
ˇ. Any other disk that contributes to the multiplication maps is a sum of one of these
and a positive number of copies of Ba. Figure 6 shows the periodic domain, and
the only domain that contributes to m4.b6; �2; �12; �1/ on a portion of the universal
cover for the .4; 1/-cable.
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z

a

1 � � � � � � 1p � 1

p

Figure 6. Left: The generator Ba for positive periodic domains. Right: The lift of the Heegaard
diagram to the universal cover of the punctured torus in the case of the .4; 1/-cable, along with
Ba and the domain for m4.b6; �2; �12; �1/.

We conclude that the only multiplication maps are

m1.bk/ D U p�k � b2p�k�1

for 1 � k � p � 1,

m3Ci .bk ; �2; �12; : : : ; �12„ ƒ‚ …
i

; �1/ D U iC1 � bkCiC1

for 1 � k � p � 2 and 0 � i � p � k � 2,

m3Ci .bk ; �2; �12; : : : ; �12„ ƒ‚ …
i

; �1/ D bk�i�1

for p C 1 � k � 2p � 2 and 0 � i � k � 1 � p,

m2Ci .a; �12; : : : ; �12„ ƒ‚ …
i

; �1/ D b2p�i�2

for 0 � i � p � 2,

m4CiCj .a; �3; �23; : : : ; �23„ ƒ‚ …
j

; �2; �12; : : : ; �12„ ƒ‚ …
i

; �1/ D U pj CiC1 � biC1

for 0 � i � p � 2 and 0 � j , and

m3Cj .a; �3; �23; : : : ; �23„ ƒ‚ …
j

; �2/ D U p.j C1/ � a

for 0 � j .
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Setting U D 0 yields bCFA.Yp;1/ - the generators are a; b1; : : : ; b2p�2, and the mul-
tiplication maps are given by the third and fourth map above.

Applying (2) to the last multiplication map for j D 0, we find an indeterminacy
of .�1

2
I 0; 1Ip/ for the grading of a, i.e. the element g D .�1

2
I 0; 1Ip/ is in the

image of 
2.a; a/ in G. Since g is primitive in G, it is a generator for that image.
Next, we normalize the hginG grading on the generators by setting

gr.a/
defD hgin.0I 0; 0I 0/:

From the fourth multiplication map we see that

gr.b2p�i�2/ D hgin.�1
2
I i C 1

2
;�1

2
I 0/ for 0 � i � p � 2;

and from the first map get

gr.bi / D hgin.1
2
I i � 1

2
;�1

2
I i � p/ for 1 � i � p � 1:

We remind the reader that an alternate choice of multiplication maps for this compu-
tation may at first seem to provide different gradings, but one can verify that those
grading representatives lie in the same coset as the ones provided above.

Note. We can construct a Heegaard diagram similar to the one in Figure 5 to study
any cable Kp;q. Given any relatively prime integers p and q, with p > 1, let i

be the unique integer 1 � i < p, i D q mod p. One can construct a genus 1

bordered diagram for the .p; i/-cable as follows. Theorem 3.5 of [11] provides an
algorithm for constructing genus 1 Heegaard diagrams for .1; 1/ knots. In particular,
the construction for the diagram of the torus knot Tp;i can be modified to provide a
bordered diagram for the .p; i/-cable in the solid torus. We first find the Heegaard
normal form of the attaching curve ˇ (Figure 3.11 of [11] demonstrates this process
for T5;3) so that the corners of the fundamental domain for the flat torus coincide
with the basepoint w. Then we draw two ˛-circles through the basepoint w, one
identified with the two vertical segments of the boundary of the domain, hence isotopic
to the meridian of the torus, the other identified with the two horizontal segments
of the boundary, hence isotopic to the standard longitude and to ˇ, and remove a
neighborhood of w. To be consistent with our conventions, we rename z to w, and
place a new basepoint z in the bottom rightmost region of the diagram. Since the
diagram has genus 1, it is straightforward to compute the multiplication maps for
CFA�.p; i/. By tensoring with bCFD.K; .q� i/=p/ as in Section 5, we can compute
bHFK.Kp;q/ and �.Kp;q/.

5. The tensor product CFA� � bCFD

We now compute the gradings of the tensor product in .N; A0/ notation, and list the
differentials. Then we find the shifting constant c.
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Since bCFD.K; n/ splits as a direct sum of squares and a staircase, its tensor product
with CFA�.Yp;1/ splits as a direct sum of the tensor products of CFA�.Yp;1/ with
each square and the staircase too. For this reason, we refer to the corresponding direct
summands of the tensor product as squares and a staircase too.

Each of the ctC�.K/ squares in level t is graded by

gr.ax1/ D .t;�pt/;

gr.ax2/ D .�1C t; p � pt/;

gr.ax3/ D .t;�pt/;

gr.ax4/ D .1C t;�p � pt/;

gr.bky1/ D .�2k C 2k� � kn � k2nC t C 2kt; k C knp � pt/;

gr.b2p�i�2y1/ D .�3�2i C 2� C 2i� �2n�3in�i2nC 3t C 2it;

p C np C inp �pt/;

gr.bky2/ D .1� 2k � 2� C 2k� C kn� k2n � t C 2kt;

k � np C knp � pt/;

gr.b2p�i�2y2/ D .�2� 2i C 2i� � in � i2nC t C 2it; pC inp � pt/;

gr.bky3/ D .1C 2k� � kn � k2nC t C 2kt; k � p C knp � pt/;

gr.b2p�i�2y3/ D .�2l C 2i� � 2n � 3in� i2nC 3t C 2it; npC inp � pt/;

gr.bky4/ D .2l C 2k� C kn � k2n � t C 2kt; k � p � np C knp � pt/;

gr.b2p�i�2y4/ D .�1C 2i� � in � i2nC t C 2it; inp � pt/;

where 1 � k � p � 1 and 0 � i � p � 2.
Matching up the coefficient maps of bCFD.K; n/ with the multiplication maps in

the beginning of this Section, we see that the non-trivial differentials on each square
are

@.ax1/ D b2p�2y4 C Ub1y2 C U pax2;

@.ax2/ D b2p�2y2;

@.ax4/ D U pax3;

@.bkyj / D U p�kb2p�k�1yj ;

@.biy1/ D U p�i b2p�i�1y1 C UbiC1y2;
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@.bp�1y1/ D Ubpy1;

@.b2p�i�1y1/ D b2p�i�2y2;

where 1 � i � p � 2, j D 2; 3; 4 and 1 � k � p � 1.
The gradings and differentials on the staircase, including the diagonal string con-

necting a1 and a2j� jC1, depend on �.K/.

Case 1. If �.K/ � 0, the gradings on the staircase are

gr.au2tC1/ D .2t;�2pt/;

gr.au2t / D .�1C 2t; p � 2pt/;

gr.bkv2tC1/ D .�2� C 2k� C kn� k2n � 2t C 4kt;

k C knp � np � p � 2pt/;

gr.bkv2t / D .�2k C 2k� � kn � k2nC 2t C 4kt; k C knp � 2pt/;

gr.b2p�i�2v2tC1/ D .�1C 2i� � in � i2nC 2t C 4it; inp � 2pt/;

gr.b2p�i�2v2t / D .�3� 2i C 2� C 2i� � 2n � 3in� i2nC 6t C 4it;

p C np C inp � 2pt/:

For m D 2�.K/ � n > 0, we have

gr.b2p�i�2	j C1/ D .�1C 2j C 2ij � 2� � 2i� � in� i2n;�jpC 2p� C inp/;

gr.bk	j C1/ D .2jk � 2k� C kn� k2n; k � p � jp C 2p� � np C knp/;

and, for m < 0,

gr.b2p�i�2	j C1/ D .�2� 2i � 2j � 2ij � 2� � 2i� � in� i2n;

p C jp C 2p� C inp/;

gr.bk	j C1/ D .1� 2k � 2jk � 2k� C kn � k2n;

k C jp C 2p� � np C knp/:

When �.K/ D 0 and m � 0, we also have

gr.bk"1/ D .kn� k2n; k � p � np C knp/;

gr.bk"2/ D .1C kn� k2n; k � p � np C knp/;

gr.b2p�i�2"1/ D .�1� in� i2n; inp/;

gr.b2p�i�2"2/ D .�in� i2n; inp/:
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Case 2. If �.K/ > 0, the gradings on the staircase are

gr.au2tC1/ D .�2t; 2pt/;

gr.au2t / D .1 � 2t;�pC 2pt/;

gr.bkv2tC1/ D .1 �2k �2� C 2k� C kn � k2nC 2t � 4kt;

k � np C knp C 2pt/;

gr.bkv2t / D .1C 2k� � kn� k2n � 2t � 4kt; k � p C knp C 2pt/;

gr.b2p�i�2v2tC1/ D .�2 � 2i C 2i� � in � i2n � 2t � 4it; pC inp C 2pt/;

gr.b2p�i�2v2t / D .2� C 2i� � 2n� 3in� i2n� 6t � 4it; np C inp C 2pt/:

The gradings on all bi	j are given by the same formula as in Case 1.

Next, we list the non-trivial differentials.

� When � < 0 and m > 0, the non-trivial differentials are

@.au1/ D b2p�2v1;

@.au2tC1/ D b2p�2v2tC1 C U pau2t ;

@.au2j� jC1/ D b2p�2	1 C U pau2j� j;

@.bkvs/ D U p�kb2p�k�1vs;

@.bk	j / D U p�kb2p�k�1	j :

� When � < 0 and m D 0 the non-trivial differentials are

@.au1/ D b2p�2v1;

@.au2tC1/ D b2p�2v2tC1 C U pau2t ;

@.au2j� jC1/ D b2p�3v1 C U pau2j� j;

@.bkvs/ D U p�kb2p�k�1vs:

� When � < 0 and m < 0 the non-trivial differentials are

@.au1/ D b2p�2v1;

@.au2tC1/ D b2p�2v2tC1 C U pau2t ;

@.au2j�jC1/ D U pau2j�j;

@.bkvs/ D U p�kb2p�k�1vs;
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@.bk	j / D U p�kb2p�k�1	j ;

@.bi	jmj/ D UbiC1v1 C U p�i b2p�i�1	jmj;

@.bp�1	jmj/ D Ubp	jmj;

@.b2p�i�1	jmj/ D b2p�i�2v1:

� When � D 0 and m > 0, the non-trivial differentials are

@.au1/ D b2p�2	1;

@.bk	j / D U p�kb2p�k�1	j :

� When � D 0 and m D 0 the non-trivial differentials are

@.au1/ D b2p�2"1;

@.bk"1/ D U p�kb2p�k�1"1;

@.bi"2/ D bi "1 C UbiC1"1 C U p�i b2p�i�1"2;

@.bp�1"2/ D bp�1"1 C Ubp"2;

@.bp"2/ D bp"1;

@.b2p�i�1"2/ D b2p�i�1"1 C b2p�i�2"1:

� When � D 0 and m < 0 the non-trivial differentials are

@.au1/ D b2p�2"1;

@.bk"1/ D U p�kb2p�k�1"1;

@.bk"2/ D bk"1 C U p�kb2p�k�1"2;

@.b2p�k�1"2/ D b2p�k�1"1;

@.bk	j / D U p�kb2p�k�1	j ;

@.bi	jmj/ D UbiC1"1 C U p�i b2p�i�1	jmj;

@.bp�1	jmj/ D Ubp	jmj;

@.b2p�i�1	jmj/ D b2p�i�2"1:
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� When � > 0 and m > 0, the non-trivial differentials are

@.au2t / D b2p�2v2t�1 C U pau2tC1;

@.au2� / D b2p�2v2��1 C Ub1	1 C U pau2�C1;

@.au2�C1/ D b2p�2	1;

@.biv2� / D UbiC1	1 C U p�i b2p�i�1v2� ;

@.b2p�i�1v2� / D b2p�i�2	1;

@.bp�1v2� / D Ubpv2� ;

@.bkvs/ D U p�kb2p�k�1vs:

� When � > 0 and m D 0 the non-trivial differentials are

@.au2t / D b2p�2v2t�1 C U pau2tC1;

@.bkvs/ D U p�kb2p�k�1vs:

� When � > 0 and m < 0 the non-trivial differentials are

@.au2t / D b2p�2v2t�1 C U pau2tC1;

@.bkvs/ D U p�kb2p�k�1vs;

@.bk	j / D U p�kb2p�k�1	j :

The indices vary as follows:

1 � s �
8<
:

2j� j � 1 if m > 0; � > 0;

2j� j otherwise,

1 � j �
8<
:
jmj � 1 if m < 0; � � 0;

jmj otherwise,

1 � t �
8<
:
j� j if m < 0; � > 0;

j� j � 1 otherwise,

1 � i � p � 2;

1 � k � p � 1;
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and

1 � s �
8<
:

2j� j � 1 if m > 0; � > 0;

2j� j otherwise,

1 � j �
8<
:
jmj � 1 if m < 0; � � 0;

jmj otherwise,

1 � t �
8<
:
j� j if m < 0; � > 0;

j� j � 1 otherwise,

1 � i � p � 2;

1 � k � p � 1:

Recall that the absolute N grading is obtained by requiring that the homology
H�

�
gCFK�.Kp;pnC1/=U D 1

� Š F2 lives in N grading 0, see the discussion in [7],
Section 11.3, specifically eq. 11.17 and the paragraph preceding it. Set U D 1 above.

� When � > 0, au1 splits as a direct summand of the chain complex, so it represents
H�

�
gCFK�.Kp;pnC1/=U D 1

� Š F2, implying that N.au1/ D 0.

� When � < 0, the subcomplex D generated by au1; b1v1; and b2p�2v1 splits,
and

H�.D/ D ker.D/

im.D/
D hau1 C b1v1i;

so N.au1 C b1v1/ D 0.

� When � D 0 and m > 0, the subcomplex D generated by au1; b1	1; and
b2p�2	1 splits, and

H�.D/ D ker.D/

im.D/
D hau1 C b1	1i;

so N.au1 C b1	1/ D 0.

� When � D 0 and m D 0, The image and kernel of the differential are

im D hb1"1 C b2"1 C b2p�2"2; b2"1 C b3"1 C b2p�3"2; : : : ;

bp�2"1 C bp�1"1 C bpC1"2;

bp�1"1 C bp"2; bp"1; bpC1"1; : : : ; b2p�2"1i
ker D im˚ hau1 C b1"1i;

so au1 C b1"1 survives in homology, implying that N.au1 C b1"1/ D 0.
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� When � D 0 and m < 0, the subcomplex D generated by au1, b1"1, b1"2,
b2p�2"1, and b2p�2"2 splits, and

H�.D/ D ker.D/

im.D/
D hau1 C b1"1; b1"1 C b2p�2"2; b2p�2"1i

hb1"1 C b2p�2"2; b2p�2"1i ;

so N.au1 C b1"1/ D 0.

In each case N.au1/ D 0, so the first component of the grading provided earlier
in this section is, in fact, the absolute N grading.

Next, we find the absolute Alexander grading, by requiring that the Euler charac-
teristic of g bCFK is the symmetrized Alexander polynomial. The formula

�Kp;pnC1
.t / D �K.tp/�Tp;pnC1

.t /

implies that if the degree of the symmetrized �K.t / is d , then the degree of the
symmetrized �Kp;pnC1

.t / is

pd C .jpj � 1/.jpnC 1j � 1/

2
D

8̂̂<
ˆ̂:

pd C np.p � 1/

2
if n � 0;

pd � np.p � 1/

2
� p C 1 otherwise,

so we look for the highest relative Alexander grading in which generators survive
when taking Euler characteristic, and shift to make it equal this degree.

If d > j� j, then this highest grading is realized by the following generators coming
from all squares in level d � � � 1:

if n > 0; bpy1I
if n D 0; ax2; bpy1; bpC1y1; : : : ; b2p�2y1; bpy2; bpC1y2; : : : ; b2p�2y2I
if n < 0; b1y2:

In each case, the contribution of each square to �.g bCFK/ is rank 1 and in Maslov
grading d � � mod 2.

If d < j� j or if K is the unknot, then the highest grading is realized by staircase
generators:

if � > 0; n > 0; bpv2� I
if � > 0; n D 0; au2�C1; bpv2� ; bpC1v2� ; : : : ; b2p�2v2� ;

bp	1; bpC1	1; : : : ; b2p�2	1I
if � � 0; n < 0; b1	1I
if � � 0; n > 0; bp	jmjI
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if � D 0; n D 0; au1I
if � < 0; n D 0; au1; bp	jmj; bpC1	jmj; : : : ; b2p�2	jmj;

bpv1; bpC1v1; : : : ; b2p�2v1I
if � < 0; n < 0; b1v1:

In each case, the contribution of the staircase to �.g bCFK/ is rank 1 and in Maslov
grading 0 mod 2.

If d D j� j, then the highest grading is realized by the listed generators from
squares in level d � � � 1 combined with the listed staircase generators. The rank 1

contribution to �.g bCFK/ has Maslov grading 0 mod 2 both for the staircase, and for
each square, so there are no further cancellations.

In each of these cases, we need to shift by the constant c D �p� � np.p� 1/=2.
Together with the fact that N D M � 2A, we now have a complete description of
gCFK�.Kp;pnC1/. Setting U D 0 in the above differentials gives g bCFK.Kp;pnC1/.

For completeness, we include a list of the generators of bHFK.Kp;pnC1/. Through-
out, the indices will vary as follows:

p C 1 � i � 2p � 2;

1 � k � p;

1 � j � jmj � 1;

1 � t � � if � > 0;

0 � t � j� j � 1 if � < 0:

For each square direct summand, all generators survive in homology except

ax1; bi�1y2;

ax2; b2p�2y2;

biy1; b2p�2y4:

The staircase summand depends on � and the framing.

� If � > 0; m > 0, all generators survive except

au2t ; biv2� ;

au2�C1; bi	1;

b2p�2v2t�1; bp	1:



404 I. Petkova

� If � > 0; m � 0, all generators survive except

au2t ; b2p�2v2t�1:

� If � < 0; m > 0, all generators survive except

au2tC1; b2p�2v2tC1;

au2j� jC1; b2p�2	1:

� If � < 0; m D 0, all generators survive except

au2tC1; b2p�2v2tC1;

au2j� jC1; b2p�3v1:

� If � < 0; m < 0, all generators survive except

au2tC1; bi	jmj;
b2p�2v2tC1; bi�1v1:

� If � D 0 and m > 0, all generators survive except

au1; b2p�2	1:

� If � D 0 and m D 0, the homology has rank one and is represented by

ı au1 C
2p�2X
sDp

bs"2:

� If � D 0 and m < 0, the homology is generated by

ı au1 C b2p�2"2;

ı bk	jmj;
ı bi�1"2 C bi	jmj;
ı bk	j ;

ı bi	j :

This completes the description of bHFK.Kp;pnC1/.
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6. � of the cable

In [14], Ozsváth and Szabó define a concordance invariant �.K/ arising from the
Alexander filtration on cCF.S3/. Alternatively, � can be defined in terms of the asso-
ciated graded object HFK�.K/ by

�.K/ D �maxfs j for all d � 0; U d HFK�.K; s/ ¤ 0g:

(see Lemma A.2 of [15]).

We do not need to fully compute the homology of gCFK�.Kp;pnC1/. It is enough
to observe that U pHFK� vanishes for each direct summand of the tensor product
coming from a square in the D module. Thus, � of the .p; pnC1/ cable only depends
on the staircase summand, which agrees with gCFK� of the .2; 2� C sgn.�//-torus
knot, and hence

�.Kp;pnC1/ D �..T2;2�Csgn.�//p;pnC1/:

Since j�.T2;2�Csgn.�//j D g.T2;2�Csgn.�//, we can use [3], Theorem 1.2, to determine
�..T2;2�Csgn.�//p;pnC1/.

Alternatively, one can work out the computation independently by using the com-
plex gCFK�.Kp;pnC1/ provided in Section 5. For example, when �.K/ < 0 and
m > 0, the staircase summand splits further, and all direct summands vanish in
U 2pHFK�, except for the one generated by au1; b1v1, and b2p�2v1. The homol-
ogy of this summand is generated by U p�1au1 C b1v1, and survives in all pow-
ers of U . The Alexander gradings are A.U p�1au1/ D A.au1/ � 2.p � 1/ D
�p� � np.p�1/

2
� 2pC 2 and A.b1v1/ D �p� � np.p�1/

2
�pC 1, so the Alexander

filtration level of U p�1au1C b1v1 is �p� � np.p�1/
2
�pC 1, hence �.Kp;pnC1/ D

�.�p� � np.p�1/
2
� pC 1/. The computation in the remaining cases goes the same

way. The only generator in HFK� that survives in all U -powers is U p�1au1C b1v1

if � < 0, U p�1au1 C b1	1 if � D 0 and n < 0, in which cases

�.Kp;pnC1/ D p�.K/C np.p � 1/

2
C p � 1;

and au1 if � D 0 and n � 0, or if � > 0, in which cases

�.Kp;pnC1/ D p�.K/C np.p � 1/

2
:

This completes the proof of Theorem 1. Observe that this agrees with the results
in [3], where Hedden computes � of .p; pnC 1/-cables for sufficiently large jnj.
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7. Proof of corollaries

We prove the two corollaries stated at the end of Section 1.

Proof of Corollary 2. Since K1;q D K for all q, the result for p D 1 is a tautology.
Fixing K and p > 1, Van Cott [1] defines the function

h.q/ D �.Kp;q/ � p � 1

2
q

with domain all integers relatively prime to p, and proves that h is non-increasing.
By Theorem 1, h.pnC 1/ is constant as a function of n for � D 0 and n � 0, or

� > 0, and is given by

h.pnC 1/ D p�.K/� p � 1

2
;

implying that for � D 0 and any q > 0, or � > 0 and any q,

h.q/ D p�.K/� p � 1

2
:

We see that

�.Kp;q/ D h.q/C p � 1

2
q

D p�.K/C .p � 1/.q � 1/

2
:

It is shown that � changes sign under reflection[14]. Thus, since Kp;q D xKp;�q,
it follows that for �.K/ D 0 and q < 0, or �.K/ < 0 we have

�.Kp;q/ D ��. xKp;�q/

D �
�
p�. xK/C .p � 1/.�q � 1/

2

�

D p�.K/C .p � 1/.q C 1/

2
:

Proof of Corollary 3. Since �.K/ D g4.K/ � 0 and q > 0, Corollary 2 implies that

�.Kp;q/ D p�.K/C .p � 1/.q � 1/

2
:

Substituting g4.K/ for �.K/ we see that

�.Kp;q/ D pg4.K/C .p � 1/.q � 1/

2
:
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On the one hand, we know that

g4.Kp;q/ � pg4.K/C .p � 1/.q � 1/

2
;

since we can construct a surface for Kp;q in the four-ball by connecting p parallel
copies of the surface for K via .p � 1/q twisted bands. Thus g4.Kp;q/ � �.Kp;q/.
On the other hand, g4.Kp;q/ � �.Kp;q/ for any knot, implying the desired result.

8. An example

The author programmed the results of this paper into Mathematica [21] to be able to
compute specific examples. The program takes �K.t /; �.K/; p; and n as input, and
outputs bHFK.Kp;pnC1/. We use the program to compute bHFK of the .5; 16/-cable of
the knot 11n50. We include the relevant data for 11n50 for the reader’s convenience:

�11n50.t / D 2t�2 � 6t�1 C 9 � 6t C 2t2;

�.11n50/ D 0:

Note that here p D 5 and n D 3.
We describe bHFK of the cable as a polynomial, where the coefficient of xAyM is

the rank of bHFK in Alexander grading A and Maslov grading M :

2x�40y�78 C 2x40y2 C 2x�39y�77 C 2x39y C 4x�35y�69 C 4x35y

C 4x�34y�68 C 4x34 C 5x�30y�60 C 5x30 C 5x�29y�59 C 5x29y�1

C x�25y�52 C 2x�25y�51 C x25y�2 C 2x25y�1 C x�24y�51 C 4x�24y�50

C x24y�3 C 4x24y�2 C 2x�23y�49 C 2x23y�3 C 3x�20y�44 C 2x�20y�43

C 3x20y�4 C 2x20y�3 C 5x�19y�43 C 5x19y�5 C 4x�18y�42 C 4x18y�6

C 2x�15y�37 C 3x�15y�36 C 2x15y�7 C 3x15y�6 C 4x�14y�36 C 4x14y�8

C 5x�13y�35 C 5x13y�9 C 3x�10y�30 C 2x�10y�29 C 3x10y�10 C 2x10y�9

C 2x�9y�29 C 2x9y�11 C x�8y�29 C 4x�8y�28 C x8y�13 C 4x8y�12

C 2x�7y�27 C 2x7y�13 C 3x�5y�24 C 2x�5y�23 C 3x5y�14 C 2x5y�13

C 5x�3y�23 C 5x3y�17 C 4x�2y�22 C 4x2y�18 C 2y�19 C 3y�18:

We also plot the result on the .A; M/-axis (without marking the rank at each
coordinate):
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Figure 7. bHFK of the .5; 16/-cable of the knot 11n50
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