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A duality formalism in the spirit of Grothendieck and Verdier

Mitya Boyarchenko1and Vladimir Drinfeld2

Abstract. We study monoidal categories that enjoy a certain weakening of the rigidity property,
namely, the existence of a dualizing object in the sense of Grothendieck and Verdier. We
call them Grothendieck–Verdier categories. (They have also been studied in the literature
under the name �-autonomous categories.) Notable examples include the derived category of
constructible sheaves on a scheme (with respect to tensor product) as well as the derived and
equivariant derived categories of constructible sheaves on an algebraic group (with respect to
convolution).

We show that the notions of pivotal category and ribbon category, which are well known
in the setting of rigid monoidal categories, as well as certain standard results associated with
these notions, have natural analogues in the world of Grothendieck–Verdier categories.
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1. Introduction

1.1. Main definitions

Definition 1.1. An object K in a monoidal category M is said to be dualizing if for
every Y 2 M the functor X 7! Hom.X ˝ Y;K/ is representable by some object
DY 2 M and the contravariant functor D W M ! M is an antiequivalence. D is
called the duality functor with respect to K.

Remark 1.2. By Proposition 2.3 below, if a dualizing object exists then it is unique
up to tensoring by an invertible object.

Definition 1.3. A Grothendieck–Verdier category is a pair .M; K/, where M is a
monoidal category and K 2 M is a dualizing object.

Some examples of Grothendieck–Verdier categories are given in §1.2 below.

Remarks 1.4. (1) If .M; K/ is a Grothendieck–Verdier category then D W M ! M

will always denote the corresponding duality functor.

By an abuse of language we will sometimes write Grothendieck–Verdier cate-
gory M instead of Grothendieck–Verdier category .M; K/.

Definition 1.5. A monoidal category M is said to be an r-category if the unit object
1 2 M is dualizing.

So any r-category can be considered as a Grothendieck–Verdier category with
K D 1. The letter ‘r’ in the name “r-category” is related to the words “rigid” and
“regular”; see Examples 1.8–1.9 below.

1.2. Main examples. Below we give some examples of Grothendieck–Verdier cat-
egories. More examples of such categories can be found in §3 and in the works by
M. Barr, who studied them under the name of �-autonomous categories (e.g., see [2],
[3], [4], and [5]).
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Example 1.6. Let M D .D.X/;˝/, where X is a scheme of finite type over a field
k and D.X/ D Db

c .X;
xQ`/ is the bounded derived category of constructible `-adic

sheaves onX , defined as in [14] and [11]. LetKX 2 D.X/ be the dualizing complex.
Then .M; KX/ is a Grothendieck–Verdier category. In this caseD is the usualVerdier
duality functor DX .

Example 1.7. In [16] M. Kashiwara and P. Schapira introduce three variants of the
category M from Example 1.6 in which sheaves are considered with respect to a
usual topology (rather than a Grothendieck topology). More precisely, let X be
either a locally finite simplicial complex or a real-analytic manifold, or a complex-
analytic one. In each of these situations they introduce in [16], Chapter 8, a notion
of constructibility for sheaves of abelian groups on X so that the bounded derived
category of constructible sheaves becomes a Grothendieck–Verdier category.

Example 1.8. Any rigid monoidal category1 is an r-category. The next example (or
the elementary Example 3.3) shows that the converse is false.

Example 1.9. Let X be a smooth scheme of pure dimension d over a field k. Then
the monoidal category .D.X/;˝/ is an r-category and D W D.X/ ! D.X/ is the
functor N 7! .DXN/Œ�2d�.�d/. If d > 0, then .D.X/;˝/ is not rigid because
D.M1 ˝ M2/ 6Š D.M2/ ˝ D.M1/ for some M1;M2 2 D.X/. For instance, let
M1 D M2 D i� xQ`, where i W Speck ,! X is a point. Then D.M1 ˝ M2/ D
D.i� xQ`/ D i� xQ`Œ�2d�.�d/, while D.M2/˝D.M1/ D i� xQ`Œ�4d�.�2d/.

Example 1.10. Let G be a group scheme of finite type over a field k. We define the
equivariant derived category of G as

DG.G/
defD Db

c ..AdG/nG; xQ`/

(i.e. DG.G/ is the bounded derived category of the quotient stack for the conjugation
action of G on itself [17]). The monoidal categories D.G/ and DG.G/ equipped
with the functor of convolution with compact support are r-categories with D being
the functor D�

G D DG B �� D �� B DG , where DG is the Verdier duality functor
on G and � W G �! G is given by g 7! g�1. The proof is straightforward and
easy; see [7], Lemma A.10. The monoidal category DG.G/ has a canonical braided
structure; see [7], Definition A.43.

1.3. Subject of this work. Our goal is to establish some general facts about Gro-
thendieck–Verdier categories, which are well known in the case of symmetric Gro-
thendieck–Verdier categories or in the case of arbitrary rigid monoidal categories.
The proofs are not always straightforward generalizations of existing ones.

1The definition of rigidity is recalled in §11.1, see Definition 11.1.
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For instance, if M is a rigid monoidal category then the well known monoidal
structure on the functor D2 W M ! M is usually defined via the canonical isomor-

phismD.X˝Y / '�! DY ˝DX . In an arbitrary Grothendieck–Verdier category (or
even an arbitrary r-category) D.X ˝ Y / is, in general, not isomorphic toDY ˝DX

(see Example 1.9). Nevertheless, the functorD2 has a canonical monoidal structure,
see §5.

Here is another example. It is well known that the set of twists2 on a rigid braided
category M is equipped with a canonical involution: namely, if � 2 Aut IdM is a
twist then the automorphism � 0 2 Aut IdM defined by � 0

X D D�1.�DX/ is also a
twist. (The fixed points of this involution are called ribbon structures.) For arbitrary
r-categories3 it is still true that � 0 is a twist (see Proposition 8.3 and Remark 8.4), but
the proof has to be modified.

1.4. An1-categorical perspective (after J. Lurie). This subsection is informal.
We hope that somebody will develop these ideas rigorously and systematically.

1.4.1. There is a general notion of En-category, i.e. an .1; 1/-category4 with an
action of the little n-disk operad En. If n D 1 and n D 2 one gets, respectively, the
notions of monoidal and braided .1; 1/-category.

An object of a monoidal .1; 1/-category is said to be dualizing if it is dualizing
in its homotopy category (which is a usual monoidal category). Thus one has a
notion of Grothendieck–Verdier .1; 1/-category. Since E1 � En one has a notion of
Grothendieck–Verdier En-category for each n � 1.

Example 1.11. The Grothendieck–Verdier categories from Example 1.6 and Ex-
amples 1.9–1.10 have natural .1; 1/-categorical “refinements”. In particular, the
“refinement” of the category D.G/ from Example 1.10 is an E1-category and the
“refinement” of DG.G/ is an E2-category.

1.4.2. As explained to us by J. Lurie, he expects (or at least, he does not exclude)
that the results of §§5–9 can be generalized to this setting and interpreted in terms of
a certain canonical action of the topological group5 O.nC 1/ on the 1-groupoid of
Grothendieck–Verdier En-categories, whose restriction to O.n/ � O.nC 1/ comes
from the obvious action of O.n/ on the operad En. This would be very interesting.
In Example 4.4.14 of [18] Lurie sketches a construction of the O.n C 1/-action on
the space of rigid En-categories.

Most of the results of our §§5–9 (and their well known prototypes in the rigid case)
can be interpreted from this perspective. For instance, the fact that any Grothendieck–

2The notion of twist is recalled in §7.1, see Definition 7.2 and Remark 7.6(i).
3For Grothendieck–Verdier categories the statement has to be slightly modified, see Proposition 8.3.
4A .1; 1/-category is an 1-category in which allm-morphisms are invertible for m > 1.
5An 1-groupoid is essentially the same as a topological space, so it can be acted upon by a topological

group.
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Verdier category M has a canonical auto-equivalence (namely,D2 W M
��! M) is re-

lated to the canonical generator of�1 .O.2//, and the fact that for any braided Grothen-

dieck–Verdier category M one has a canonical monoidal isomorphism D4 '�! IdM

(see §7.3) is related to the equality �1.O.3// D Z=2Z.

1.4.3. A related idea is to regard an En-category M as a fiber of a certain local system
of .1; 1/-categories,M, over the sphereSn. To defineM, note that an En-category M

has not a single tensor product but rather a family of tensor products6 ˝! parameter-
ized by ! 2 Sn�1. Accordingly, in a Grothendieck–Verdier En-category M one has

not a single duality functor D but rather a family of equivalences D! W MB ��! M,
! 2 Sn�1 (here MB is the dual .1; 1/-category). To construct M, represent Sn as
the union of hemispheres Sn˙, consider the constant sheaf on SnC (resp. Sn�) with fiber
M (resp. MB) and glue them together using D! , ! 2 Sn�1 D SnC \ Sn� . Note that
in general, M is not a local system of En-categories; in other words, the action of the
loop space �Sn on M defined by M does not preserve the En-structure on M. E.g.
if M is a braided Grothendieck–Verdier category then the image in Aut.IdM/ of the
generator of �1.�S2/ D �2.S

2/ equals the automorphism CM 2 Aut.IdM/ from
§7.1, which is a double-twist in the sense of Definition 7.5 and Remark 7.6(i) rather
than a monoidal automorphism.

1.5. Structure of the article. We already defined the main objects of our study,
Grothendieck–Verdier categories and r-categories, and remarked that every rigid
monoidal category is an r-category. We begin the article by giving some basic prop-
erties of Grothendieck–Verdier categories in §2 and some further examples of (non-
rigid) Grothendieck–Verdier categories and r-categories in §3. In §4 we characterize
rigid monoidal categories as r-categories satisfying a certain additional property.

We devote §§5–9 to generalizations of certain well-known results and construc-
tions involving rigid monoidal categories to the setting of Grothendieck–Verdier
categories. In particular, in §5 we define a canonical monoidal structure on the
square of the duality functor for an arbitrary Grothendieck–Verdier category. In §6
we define and study pivotal structures on Grothendieck–Verdier categories. In §7
we study braided Grothendieck–Verdier categories. In particular, we prove that for
any such category the square of the duality functor is braided and its fourth power
is canonically isomorphic to the identity functor. In §8 we analyze the relation
between pivotal structures and twists on a braided Grothendieck–Verdier category.
This leads us to introducing in §9 the notion of a ribbon Grothendieck–Verdier cate-
gory (which specializes to the usual notion in the rigid case).

We end the first part of the article by answering in §10 the question of which Gro-
thendieck–Verdier categories can be realized as Hecke subcategories of r-categories.

6In the familiar case n D 1 a monoidal category has two tensor products: the “original” one and the
opposite one. In the Grothendieck–Verdier case the corresponding duality functors areD and D�1.
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The second part of the article (§§11–16) is devoted to the proofs that are too
long and/or too technical to be included into the first part (namely, the proofs of
Propositions 2.5, 4.4, 5.2, 6.7, 7.10, and 10.4, as well as Lemma 7.8).

Acknowledgments. We thank J. Ayoub, A. Beilinson, P. Etingof, D. Gaitsgory,
E. Jenkins, and especially J. Lurie for useful discussions and advice. We also thank
the referee for helpful suggestions and for informing us about the articles [8] and [10].

Part I
Formulations and easy proofs

2. First properties of Grothendieck–Verdier categories

2.1. Some canonical isomorphisms

Remarks 2.1. (1) By definition, in any Grothendieck–Verdier category M one has
an isomorphism

Hom.X ˝ Y;K/
'�! Hom.X;DY / (2.1)

functorial in X; Y 2 M. Since D is an antiequivalence the right-hand side of (2.1)
identifies with Hom.Y;D�1X/. So one also has an isomorphism

Hom.X ˝ Y;K/
'�! Hom.Y;D�1X/ (2.2)

functorial in X; Y 2 M. Thus a Grothendieck–Verdier category equipped with the
opposite tensor product is still a Grothendieck–Verdier category, butD gets replaced
by D�1.

(2) By (2.2), in any Grothendieck–Verdier category M one has a functorial iso-

morphism Hom.D2Y ˝X;K/
'�! Hom.X;DY /. Combining it with (2.1) one gets

a functorial isomorphism

g W Hom.X ˝ Y;K/
'�! Hom.D2Y ˝X;K/; X; Y 2 M: (2.3)
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Equivalently, g is characterized by the commutativity of the diagram

Hom.X ˝ Y;K/

��

g �� Hom.D2Y ˝X;K/

��
Hom.X;DY /

D
�� Hom.D2Y;DX/

(2.4)

whose vertical arrows come from (2.1).

(3) In any Grothendieck–Verdier category there exist right and left7 internal
Hom’s. More precisely, if one sets

Hom.X;Z/ D D�1.DZ ˝X/ (2.5)

and

Hom0.Y; Z/ D D.Y ˝D�1Z/; (2.6)

then (2.1) and (2.2) yield functorial isomorphisms

Hom.X ˝ Y;Z/
'�! Hom.Y;Hom.X;Z// (2.7)

and

Hom.X ˝ Y;Z/
'�! Hom.X;Hom0.Y; Z//: (2.8)

(4) From (2.1) and (2.2) one gets canonical isomorphisms

D1
'�! K and D�11 '�! K: (2.9)

and therefore canonical isomorphisms

1
'�! D21; (2.10)

and

K
'�! D2K; (2.11)

where (2.11) is the composition K
'�! D1

'�! D2D�11 '�! D2K.

7In this article we do not have to decide which of the two internal Hom’s defined by (2.7) and (2.8)
should be called “left.” We prefer the convention that Hom is the right internal Hom and Hom0 is the left
one. Reason: by Proposition 11.2, the right rigid dual ofX (if it exists) equals Hom.X;1/. Note that the
functor of left multiplication by X is adjoint to the functor Hom.X; ‹/, which we would like to call the
right internal Hom. We think this is acceptable.
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(5) The inverse of (2.11) equals the image of idK 2 Hom.1 ˝ K;K/ under the

isomorphism Hom.1˝K;K/
'�! Hom.D2K˝1; K/ coming from (2.3). It is easy

to check this using diagram (2.4) for X D 1 and Y D K.

2.2. Uniqueness of dualizing objects. Let us recall the following definition.

Definition 2.2. If M is a monoidal category, an objectX 2 M is said to be invertible
if there exists an object Y 2 M such that X ˝ Y Š 1 Š Y ˝X .

Proposition 2.3. Let .M; K/ be a Grothendieck–Verdier category.

(i) The functor
L 7�! DL D K ˝ L�1

is an antiequivalence between the full subcategory of invertible objects L 2 M

and the full subcategory of dualizing objects.

(ii) The same is true for the functor

L 7�! D�1L D L�1 ˝K:

(iii) If L 2 M is invertible then so is D2L and one has a canonical isomorphism

K ˝ L�1 '�! .D2L/�1 ˝K:

Proof. By (2.6) and (2.8), an object Z 2 M is dualizing if and only if the functor
Y 7! Y ˝D�1Z is an equivalence. This means thatZ D DL, where L is invertible.
In this case DL D K ˝ L�1 by (2.1). We have proved (i). To prove (ii), use (2.5),
(2.7), and (2.2) instead of (2.6), (2.8), and (2.1).

By (ii), K ˝ L�1 D DL can also be written as QL�1 ˝ K D D�1 QL for some
invertible QL 2 M. Since D�1 QL D DL we have QL D D2L.

Remark 2.4. Proposition 5.2 below yields a canonical isomorphism

.D2L/�1 '�! D2.L�1/: (2.12)

2.3. Invertibility and rigidity of K . We learned the following statement from Den-
nis Gaitsgory. He also explained to us how it can be applied to studying the derived
categories of D-modules on certain algebraic stacks.

Proposition 2.5. A dualizing object of a monoidal category is invertible if and only
if it is rigid in the sense of Definition 11.1.

See §11.3 for the proof.



A duality formalism in the spirit of Grothendieck and Verdier 455

3. More examples of Grothendieck–Verdier categories

We already gave some examples in §1.2. More examples are below.

Example 3.1. As far as we understand, O. Gabber recently proved that .D.X/;˝/
is an r-category for any excellent regular scheme X over ZŒ`�1� (not necessarily of
finite type).

Example 3.2. Here is a generalization of Example 1.10. Suppose we have a groupoid
in the category of schemes of finite type over a field k. Let � denote its “scheme
of morphisms,” and let X denote its “scheme of objects,” so one has the source and

target maps s; t W � ! X , the unit 1 W X ! � , the inversion � W � '�! � and the
product � W � �X � ! � , where

� �X � defD f.	1; 	2/ 2 � � � j s.	1/ D t .	2/g:

ForM1;M2 2 D.�/ set

M1 �M2
defD �Š.p

�
1M1 ˝ p�

2M2/;

where p1; p2 W � �X � ! � are the projections. Then D.�/ becomes a monoidal
category with unit object 1 D 1Š xQ` . DefineK 2 D.�/ by

K
defD 1�KX ;

where KX 2 D.X/ is the dualizing complex. Then .D.�/; K/ is a Grothendieck–
Verdier category with duality functor

D�
�

defD D� B �� D �� B D� :

Moreover, if an algebraic group H acts on .�; X; s; t; �/ then .DH .�/; K/ is a
Grothendieck–Verdier category, where

DH .�/
defD Db

c .Hn�; xQ`/

is the bounded derived category [17] of the quotient stack Hn� . (The proof of these
assertions is very similar to the proof of [7, Lemma A.10], so we omit it.) If X is
smooth and the embedding 1 W X ! � is closed then 1�KX D 1ŠKX is an invertible
object of D.�/, so D.�/ is an r-category. Note that if � D X�X then 1 W X ! � is
the diagonal embedding, so the above closedness condition means thatX is separated.

The following elementary example of a non-rigid r-category is closely related to
the works of Grothendieck in functional analysis. We learned this example from [2].
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Example 3.3. Let M be the category of finite-dimensional normed vector spaces
over R with morphisms being linear operators of norm � 1. For V;W 2 M define
V ˝W to be the tensor product of vector spaces V andW equipped with the maximal
norm such that jjv ˝ wjj � jjvjj ˝ jjwjj for all v 2 V , w 2 W . The symmetric
monoidal category M is an r-category withD being the usual dual of a normed vector
space. But M is not rigid. In fact, an object V 2 M is rigid if and only if dim V � 1

(to prove the “only if” statement, note that if V is rigid then the composition of the
coevaluation map 1 ! V ˝V � and the evaluation map V ˝V � ! 1 has norm � 1,
where V � denotes the dual of V ). By definition, DV ˝W identifies with the space
Hom.V;W / equipped with the nuclear norm. On the other hand, one easily shows
that D.V ˝DW / is the space Hom.V;W / equipped with the operator norm.

One can obtain more examples of Grothendieck–Verdier categories using Lem-
ma 3.7 below. To formulate it, we need the following definition from [7], §2.

Definition 3.4. A morphism � W 1 ! e in M is said to be an idempotent arrow if both
morphisms � ˝ ide W 1 ˝ e ! e˝ e and ide ˝� W 1 ˝ e ! e˝ e are isomorphisms.
An object e of a monoidal category M is said to be a closed idempotent8 if there
exists an idempotent arrow 1 ! e.

Remark 3.5. In the situation of Example 1.10 withG unipotent the categories D.G/

and DG.G/ have many closed idempotents, see [7, §1] (especially §1.11 and Theo-
rems 1.41(a), 1.49(c) from [7]).

If e 2 M is a closed idempotent, we set

eMe
defD fX 2 M j X Š e ˝ Y ˝ e for some Y 2 Mg: (3.1)

The tensor product of objects of eMe clearly belongs to eMe. Equipped with this
tensor product, eMe is a monoidal category with unit object e, see [7], Lemma 2.18.
More precisely, an idempotent arrow � W 1 ! e defines a structure of unit object on e,
see Lemma 10.1(b) below.

Definition 3.6. We call eMe � M the Hecke subcategory of M defined by e.

Lemma 3.7. Let .M; K/ be a Grothendieck–Verdier category, and let e 2 M be
a closed idempotent such that D2e Š e. Then De is a dualizing object of the
monoidal category eMe, so .eMe;De/ is a Grothendieck–Verdier category. In
fact, D.eMe/ D eMe, and the duality functor for .eMe;De/ is isomorphic to the
restriction of D to eMe.

See [7], Lemma A.50, for a more precise version of Lemma 3.7 and a proof.
8In the situation of Definition 3.4 one has e ˝ e ' e, so the name “idempotent” is justified. The

adjective “closed” is due to the fact that closed idempotents in the monoidal category M D D.X/
from Example 1.6 bijectively correspond to closed subsets Y � X . Namely, such Y defines a closed
idempotent e D . xQ`/Y 2 D.X/, and the corresponding monoidal category (3.1) identifies with D.Y /.
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In §10 below we answer the following question: which Grothendieck–Verdier
categories can be realized as Hecke subcategories of r-categories? For example, their
class includes all additive Grothendieck–Verdier categories (apply Proposition 10.4
to f D 0).

4. Rigidity in r-categories

4.1. The second tensor product in an r-category. Let M be an r-category. Define
a new monoidal structure9

ˇW M � M �! M

by
X ˇ Y

defD D�1.DY ˝DX/: (4.1)

Let us define a morphism

X ˝ Y �! X ˇ Y; X; Y 2 M: (4.2)

To this end, note that by (2.1) we have canonical morphisms DX ˝ X ! 1 and
DY ˝ Y ! 1. So we get a morphism DY ˝DX ˝X ˝ Y ! 1, and by (2.2) this
is the same as a morphism X ˝ Y ! D�1.DY ˝DX/ D X ˇ Y . Clearly (4.2) is
functorial in X; Y .

Lemma 4.1. The morphism (4.2) is compatible with the associativity constraints for
˝ and ˇ.

Proof. We have to show that the morphisms

f W X1 ˝X2 ˝X3 D .X1 ˝X2/˝X3 �! .X1 ˇX2/ˇ X3 D X1 ˇX2 ˇX3

and

g W X1 ˝ X2 ˝X3 D X1 ˝ .X2 ˝X3/ �! X1 ˇ .X2 ˇX3/ D X1 ˇX2 ˇX3

coming from (4.2) are equal. By (2.1), we have canonical morphismsDXi ˝Xi ! 1
and therefore a morphism h W DX3 ˝DX2 ˝DX1 ˝X1 ˝X2 ˝X3 ! 1. By (2.2),
this is the same as a morphism h0 W X1 ˝X2 ˝ X3 ! X1 ˇ X2 ˇ X3. Both f and
g equal h0.

Remark 4.2. Since M is an r-category, 1 is a unit object for both ˝ and ˇ. It is not
hard to check that the morphism (4.2) is compatible with the unit constraint for ˝
and ˇ.

Example 4.3. In the situation of Example 1.10 the monoidal functor (4.1) is the
convolution without compact support and (4.2) is the usual morphism.

9One could also consider the monoidal structure given by .X; Y / 7! D.D�1Y ˝ D�1X/, but
Proposition 5.2 below allows us to identify it withX ˇ Y .
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4.2. Rigidity in r-categories. Let us discuss the relation between the notion of rigid
duality from Definition 11.1 and the functor D W M ! M.

Proposition 4.4. Let M be an r-category and " W A ˝ B ! 1 a morphism in M.
Then .B; "/ is a right rigid dual of A if and only if

(a) " induces an isomorphism B
'�! D�1A and

(b) the canonical morphism B ˝ A ! B ˇ A defined in §4.1 is an isomorphism.

In this case the canonical morphisms B ˝ Y ! B ˇ Y and Y ˝ A ! Y ˇ A are
isomorphisms for all Y 2 M.

See §11.2 for the proof of the proposition.

Corollary 4.5. An object X of an r-category M is rigid if and only if the canonical
morphisms X ˝DX ! X ˇDX and D�1X ˝X ! D�1X ˇX defined in §4.1
are isomorphisms. Then the left rigid dual of X equals DX , the right one equals
D�1X , and the canonical morphisms X ˝ Y ! X ˇ Y and Y ˝X ! Y ˇX are
isomorphisms for all Y 2 M.

Corollary 4.6. The following properties of an r-category M are equivalent:

(i) M is rigid;

(ii) the canonical morphism X ˝ Y ! X ˇ Y defined in §4.1 is an isomorphism
for every X; Y 2 M;

(iii) the canonical morphism X ˝ DX ! X ˇ DX is an isomorphism for every
X 2 M.

Remark 4.7. Corollary 4.6 is probably well known; for instance, the equivalence
(i) () (ii) is proved in the last paragraph of [8], Section 5.

Corollary 4.8. The monoidal category D.G/ from Example 1.10 is rigid if and only
if G is proper. The same is true for DG.G/.

Proof. Let M be either D.G/ or DG.G/. We use the equivalence (i) () (ii) from
Corollary 4.6. Recall that ˝ is convolution with compact support, ˇ is convolution
without compact support, and the morphism fXY W X˝Y ! XˇY is the usual one
(see Example 4.3). So if G is proper then fXY is an isomorphism for all X; Y 2 M.
Conversely, if fXY is an isomorphism for X D Y D xQ` (the constant sheaf on G),
then G is proper.
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5. D2 as a monoidal equivalence

By (2.3), for each X; Y1; Y2 2 M one has a canonical isomorphism

Hom.X ˝ Y1 ˝ Y2; K/
'�! Hom.D2.Y1 ˝ Y2/˝X;K/: (5.1)

On the other hand, writing X ˝ Y1 ˝ Y2 as .X ˝ Y1/˝ Y2 and applying (2.3) twice
one gets an isomorphism

Hom.X ˝ Y1 ˝ Y2; K/
'�! Hom.D2Y1 ˝D2Y2 ˝X;K/: (5.2)

Combining (5.1) and (5.2) one gets a functorial isomorphism

Hom.D2.Y1 ˝ Y2/˝X;K/
'�! Hom.D2Y1 ˝D2Y2 ˝X;K/; X; Y1; Y2 2 M:

(5.3)

Lemma 5.1. Let .M; K/ be a Grothendieck–Verdier category and Z1; Z2 2 M.
Then every morphism Hom.Z1 ˝X;K/ ! Hom.Z2 ˝X;K/ functorial in X 2 M

comes from a unique morphism Z2 ! Z1.

Proof. Use the isomorphism Hom.Zi ˝ X;K/
'�! Hom.Zi ; DX/ and Yoneda’s

lemma.

Lemma 5.1 shows that the isomorphism (5.3) comes from a unique functorial
isomorphism

uY1;Y2
W D2.Y1 ˝ Y2/

'�! D2Y1 ˝D2Y2; Y1; Y2 2 M: (5.4)

Proposition 5.2. The isomorphism (5.4) defines a monoidal structure on the functor

D2 W M
��! M. The corresponding isomorphism 1

'�! D2.1/ is equal to (2.10).

As explained to us by J. Ayoub, this can be checked directly: by Lemma 5.1), to

prove that the two isomorphisms D2.Y1 ˝ Y2 ˝ Y3/
'�! D2Y1 ˝ D2Y2 ˝ D2Y3

are equal, it suffices to show that the corresponding isomorphisms

Hom.D2.Y1 ˝ Y2 ˝ Y3/˝X;K/
'�! Hom.D2Y1 ˝D2Y2 ˝D3Y3 ˝X;K/

are equal. In §12.1 we give a slightly different proof of Proposition 5.2.
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6. Pivotal structures on Grothendieck–Verdier categories

6.1. The definition of pivotal structure

Definition 6.1. A pivotal structure on a Grothendieck–Verdier category .M; K/ is a
functorial isomorphism

 X;Y W Hom.X ˝ Y;K/
'�! Hom.Y ˝X;K/; X; Y 2 M (6.1)

such that

 X˝Y;Z B  Y˝Z;X B  Z˝X;Y D id; X; Y; Z 2 M (6.2)

and

 X;Y B  Y;X D id; X; Y 2 M: (6.3)

In particular, one has a notion of pivotal structure on an r-category (which can be
considered as a Grothendieck–Verdier category with K D 1).

Definition 6.2. A pivotal Grothendieck–Verdier category is a Grothendieck–Verdier
category with a pivotal structure. A pivotal r-category is an r-category with a pivotal
structure.

The name “pivotal category” goes back to [13], Definition 1.3.

Lemma 6.3. Let M be a Grothendieck–Verdier category and an isomorphism (6.1)
satisfying (6.2). Then  satisfies (6.3) if and only if  K;1 D id.

Proof. Setting Z D 1 in (6.2) we see that (6.3) holds if and only if the isomorphism
 X;1 W Hom.X;K/ ! Hom.X;K/ equals the identity for allX . ByYoneda’s lemma,
this happens if and only if  K;1 D id.

Corollary 6.4. If M is an r-category then (6.2) implies (6.3).

Remark 6.5. By (6.2) and (6.3), a pivotal structure on a Grothendieck–Verdier cat-
egory defines for any integers n � m � 1 a canonical isomorphism

Hom.X1˝� � �˝Xn; K/ '�! Hom.Xm˝� � �˝Xn˝X1˝� � �˝Xm�1; K/; Xi 2 M:
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6.2. Pivotal structures and isomorphisms Id
'�! D2

Lemma 6.6 ([10]). There is a one-to-one correspondence between functorial iso-
morphisms

 X;Y W Hom.X ˝ Y;K/
'�! Hom.Y ˝X;K/; X; Y 2 M

and isomorphisms of functors f W IdM

'�! D2. Namely,  corresponds to f if the
diagram

Hom.D2Y ˝X;K/
.fY ˝idX /

�
�� Hom.Y ˝ X;K/

Hom.X ˝ Y;K/

'
 

X;Y

����������������

'
(2.3)

�����������������
(6.4)

commutes for all X; Y 2 M. Here the left diagonal arrow is the isomorphism (2.3).

Proof. Use Lemma 5.1.

Proposition 6.7. An isomorphism f W IdM

'�! D2 corresponds (in the sense of
Lemma 6.6) to a pivotal structure if and only if it satisfies the following conditions:

(i) f is monoidal and

(ii) fK W K '�! D2K equals the isomorphism (2.11).

In this case
fDX D D.fX/

�1; X 2 M: (6.5)

The proof is given in §14.

Remarks 6.8. (i) If M is an r-category then condition (ii) from Proposition 6.7 clearly
follows from condition (i). For more general Grothendieck–Verdier categories this is
not always the case. For instance, consider the pre-additive category M with objects
0; 1; K and with

Hom.1; K/ D Hom.K; 1/ D 0 and End 1 D EndK D A;

where A is a commutative unital ring. Define the tensor product M ˝ M ! M on
objects so that K ˝ K D 0 and 1 ˝ X D X ˝ 1 D X for all X 2 M, define it
on morphisms using the product in A, and take the associativity constraint in M to
be trivial. Then M is a Grothendieck–Verdier category. In this situation monoidal

isomorphisms Id
'�! D2 bijectively correspond to elements of A�, and only one of

them defines a pivotal structure (namely, the isomorphism corresponding to 1 2 A�/.
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(ii) By the previous remark, in the case of r-categories a pivotal structure can equiv-

alently be defined to be a monoidal isomorphism f W Id
'�! D2. It is this definition

that was used in works on rigid monoidal categories (e.g., see [12], Definition 2.7).

(iii) Here is a way to combine the two conditions on f from Proposition 6.7
into one. Let A be the 2-groupoid of pairs consisting of a monoidal category and an
object in it. A Grothendieck–Verdier category .M; K/ is an object inA. The monoidal

structure onD2 and the isomorphismK
'�! D2.K/ defined in Remark 2.1(iv) allow

us to consider D2 as a 1-automorphism of .M; K/ 2 A. The two conditions on f

from Proposition 6.7 mean that f W Id
'�! D2 is a 2-isomorphism in A.

6.3. Examples of pivotal Grothendieck–Verdier categories

Example 6.9. Every symmetric Grothendieck–Verdier category has an obvious piv-
otal structure.

Example 6.10. The categories D.G/ and DG.G/ from Example 1.10 have a canoni-

cal pivotal structure (see [7], §A.2.3). The corresponding isomorphism Id
'�! D2 D

.DG B ��/2 comes from the obvious isomorphisms .DG/2
'�! Id, .��/2 '�! Id and

DG B �� '�! �� B DG .

Example 6.11. Quite similarly to the previous example, one defines a canonical
pivotal structure on the Grothendieck–Verdier category D.�/ from Example 3.2.

7. Braided Grothendieck–Verdier categories

A braided Grothendieck–Verdier category is a Grothendieck–Verdier category .M; K/

equipped with a braiding ˇX;Y W X ˝ Y
'�! Y ˝X . For any Grothendieck–Verdier

category .M; K/ the functor D2 W M
��! M has a canonical monoidal structure;

see §5. The main goal of this section is to prove the following proposition.

Proposition 7.1. Let .M; K; ˇ/ be a braided Grothendieck–Verdier category. Then

(i) the monoidal functor D2 W M
��! M is braided;

(ii) there is a canonical monoidal isomorphism10 D4 '�! IdM.

To prove Proposition 7.1, we will construct a monoidal equivalence between each

of the monoidal functors D˙2 and a certain braided equivalence JM W M
��! M,

which was defined by Joyal and Street for any braided category M.11 The definition of

10Recall that a braided isomorphism between braided functors is the same as a monoidal isomorphism.
11In terms of §1.4, JM comes from the action of SO.2/ on the operad E2.
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JM is recalled in §7.1, and the canonical monoidal isomorphisms #˙ W J˙1
M

'�! D2

are constructed in §7.2. Using #˙ we define in §7.3 a canonical monoidal isomor-

phism 	M W IdM

'�! D4 and a certain monoidal isomorphism CM W IdM

'�! J 2
M

,
which we call the canonical double-twist. In fact, JM is just the identity functor
equipped with a nontrivial monoidal structure, so one can consider CM as a (non-
monoidal) automorphism of IdM.12

7.1. The Joyal–Street equivalence, twists, and double-twists

Definition 7.2. Let M be a braided category. The Joyal–Street equivalence is the

following braided equivalence J D JM W M
'�! M: as a functor, JM D IdM, but

the isomorphism JM.X ˝ Y /
'�! JM.X/˝ JM.Y / equals

ˇY;X B ˇX;Y W X ˝ Y
'�! X ˝ Y: (7.1)

Lemma 7.3. The isomorphism (7.1) indeed defines a braided structure on the identity
functor IdM W M ! M.

We learned this lemma and its proof given below from [15], Remark 6.1.

Proof. For X; Y 2 M we write

ˇC
X;Y D ˇX;Y W X ˝ Y

'�! Y ˝X

and

ˇ�
X;Y D ˇ�1

Y;X W X ˝ Y
'�! Y ˝X:

Let Mopp be the monoidal category opposite to M; thus Mopp equals M as a category,

but the monoidal structure is given by X
opp˝ Y D Y ˝ X . Then JM is equal to

ˆC.ˆ�/�1, where ˆ˙ W Mopp ��! M are the following monoidal equivalences: as
a functor, ˆ˙ equals IdM, and the isomorphism fromˆ˙.X/˝ˆ˙.Y / D X˝Y to

ˆ˙.X
opp˝ Y / D Y ˝X equals ˇẊ;Y . (The fact thatˆ˙ are indeed monoidal functors

follows immediately from the hexagon axioms.) Moreover, if we equip Mopp with
the braiding

X
opp˝ Y D Y ˝X

ˇY;X����! X ˝ Y D Y
opp˝ X

then ˆ˙ become braided monoidal functors (here the verification is a tautology),
which implies that JM is also braided.

12This automorphism is the image of the generator of �1.�S
2/ D �2.S

2/ under the action of �S2

on M mentioned in §1.4. Note that since our M is a usual category rather than an .1; 1/-category this
action does not feel �i .�S

2/ D �iC1.S
2/ for i > 1.
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Remark 7.4. J�1
M

is the functor IdM W M ! M equipped with the braided structure

.ˇY;X B ˇX;Y /�1 W X ˝ Y
'�! X ˝ Y: (7.2)

In other words, J�1
M

is the Joyal–Street equivalence for M equipped with the opposite

braiding ˇ�
X;Y

defD ˇ�1
Y;X .

Definition 7.5. A twist on a braided category M is a monoidal isomorphism

� W IdM

'�! JM;

where JM is the Joyal–Street equivalence (see Definition 7.2). A double-twist on M

is a monoidal isomorphism IdM

'�! J 2
M

.

Remarks 7.6. (i) It is easy to check that the above definition of twist is equivalent
to the usual one, i.e. a twist is an automorphism � of the identity functor on M that
satisfies

�X˝Y D ˇY;X B ˇX;Y B .�X ˝ �Y /; X; Y 2 M:

Similarly, a double-twist is an automorphism f of the identity functor such that

fX˝Y D .ˇY;X B ˇX;Y /2 B .fX ˝ fY /; X; Y 2 M:

(ii) The previous remark implies that for any twist � one has �1 D id1 and for
any double-twist f one has f1 D id1.

(iii) If �1; �2 W IdM

'�! JM are twists then �1�2 W IdM

'�! J 2
M

is a double-twist.
Moreover, �1�2 D �2�1. Indeed, JM equals IdM as a functor, so for eachX 2 M the
isomorphism .�i /X belongs to the center of AutX and .�1�2/X D .�1/X B .�2/X D
.�2/X B .�1/X D .�2�1/X .

(iv) The set of all twists is either empty or a torsor over Aut˝.IdM/, i.e. the group
of monoidal automorphisms of IdM. The same is true for double-twists. The map
.�1; �2/ 7! �1�2 from Remark (iii) agrees with the action of Aut˝.IdM/.

7.2. The canonical monoidal isomorphisms JM

'�! D2 ' � J �1
M

. Let .M;K; ˇ/

be a braided Grothendieck–Verdier category. As in the proof of Lemma 7.3, we write
ˇC
X;Y D ˇX;Y and ˇ�

X;Y D ˇ�1
Y;X for all X; Y 2 M.

Definition 7.7. For each Y 2 M, we let #Ẏ W Y '�! D2Y be the unique isomor-
phism13 such that for every X 2 M, the induced map

Hom.D2Y ˝X;K/ �! Hom.Y ˝X;K/

13The existence and uniqueness of #˙
Y follows from Lemma 5.1
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is equal to the composition

Hom.D2Y ˝X;K/
'�! Hom.X ˝ Y;K/

.ˇ˙
Y;X

/�

������! Hom.Y ˝X;K/;

where the first arrow is inverse to the isomorphism (2.3).

Clearly #Ẏ is functorial in Y , so we have isomorphisms of functors

#˙ W IdM

'�! D2:

The next lemma may be considered as an equivalent definition of #˙.

Lemma 7.8. Let .M; K; ˇ/ be a braided Grothendieck–Verdier category, and let

'˙ W D�1 '�! D be the isomorphisms induced by the compositions

Hom.Y;D�1X/ '�! Hom.X˝Y;K/
.ˇ˙

Y;X
/�

������! Hom.Y˝X;K/ '�! Hom.Y;DX/

for all X; Y 2 M. Then

#Ẏ D 'ḊY ; Y 2 M; (7.3)

and

D.'Ẋ / D .'�
DX /

�1; X 2 M: (7.4)

The lemma will be proved in §13.2.

Remark 7.9. In view of Lemma 7.8, we have

#ḊX D D.#�
X /

�1; X 2 M: (7.5)

By Proposition 5.2, the functor D2 W M
'�! M is equipped with a canonical

monoidal structure. On the other hand, we have the Joyal–Street monoidal equiva-

lence JM W M
'�! M, see Definition 7.2. Since JM equals IdM as a functor, we can

view #˙ as isomorphisms of functors #˙ W J˙1
M

'�! D2.

The next result is proved in §15.

Proposition 7.10. The isomorphisms #˙ W J˙1
M

'�! D2 are monoidal.

Clearly Proposition 7.1 follows from Proposition 7.10.
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7.3. The canonical monoidal isomorphism IdM

'�! D4 and the canonical dou-
ble-twist. Let .M; K; ˇ/ be a braided Grothendieck–Verdier category. In §7.2 we

defined monoidal isomorphisms #C W JM

'�! D2 and #� W J�1
M

'�! D2.

Definition 7.11. We put

	M
defD #C#� W IdM

'�! D4

and call it the canonical monoidal isomorphism between IdM and D4.

The next two remarks give alternative formulas for 	M.

Remark 7.12. One has 	M D #�#C. To see this, note that if C is any monoidal
category and c 2 C is isomorphic to 1C then for each f C; f � 2 Hom.1C ; c/ the
morphism f C ˝ f � W 1C ! c ˝ c equals f � ˝ f C. Now let C be the monoidal
category of functors

c
defD D2; f ˙ defD #˙ W M �! M

(recall that JM equals IdM as a functor).

Remark 7.13. Clearly#� defines a monoidal isomorphism .#�/.�1/ W D�2 '�! JM.

One can check that 	M is equal to the isomorphism IdM

'�! D4 corresponding to

the composition #C B .#�/.�1/ W D�2 '�! D2. We do not use this fact in this article.

On the other hand, the isomorphism .#C/�1 B #� W J�1
M

'�! JM defines a

monoidal isomorphism CM W IdM

'�! J 2
M

, i.e. a double-twist in the sense of Defi-
nition 7.5.

Definition 7.14. CM is called the canonical double-twist of .M; K; ˇ/.

For each X 2 M, the isomorphisms 	M W IdM

'�! D4 and CM W IdM

'�! J 2
M

define isomorphisms 	X W X '�! D4X and CX W X '�! X (recall that JM equals
IdM as a functor). By definition,

CX D .#C
X /

�1 B #�
X : (7.6)

Lemma 7.15. 	X D #C
D2X

B #�
X D D2.#C

X / B #�
X D #�

D2X
B #C

X D D2.#�
X / B #C

X .

Proof. #˙ W IdM

'�! D2 is an isomorphism of functors, so for any X; Y 2 M and
any f W X ! Y one has D2.f / B #Ẋ D #Ẏ B f . Taking Y D D2X , f D #Ẋ one
gets D2.#C

X / D #C
D2X

. Taking Y D D2X , f D #�
X one gets D2.#�

X / B #Ẋ D
#˙
D2X

B #�
X .
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Remarks 7.16. (i) Combining formula (7.6) and Lemma 7.15 with formula (7.5) one
sees that

CDX D D.CX/ (7.7)

and

	DX D D.	X/
�1: (7.8)

(ii) By Remark 7.6(ii), one has C1 D id1. By (7.7), this implies that

CK D idK : (7.9)

8. Pivotal structures on braided Grothendieck–Verdier categories

This section is closely related to [10], Section 4. We thank the referee for informing
us about this fact.

8.1. Pivotal structures and twists. The notion of a pivotal structure on a (not nec-
essarily braided) Grothendieck–Verdier category was introduced in Definition 6.1.
Recall that by Proposition 6.7, a pivotal structure on a Grothendieck–Verdier cate-

gory .M; K/ is the same as a monoidal isomorphism f W IdM

'�! D2 such that

fK W K '�! D2K is equal to the isomorphism (2.11). So by abuse of language,
we often say that f is a pivotal structure. Now suppose that M is equipped with a
braiding ˇ.

Proposition 8.1. Let .M; K; ˇ/ be a braided Grothendieck–Verdier category. Then
the map f 7! .#C/�1 B f defines a bijection between the set of pivotal structures

f W IdM

'�! D2 and the set of twists � on M that satisfy �K D idK .

Proof. This follows immediately from Proposition 7.10 and Definition 7.5.

Remark 8.2. In §6.1 we defined a pivotal structure to be an isomorphism

 X;Y W Hom.X ˝ Y;K/
'�! Hom.Y ˝X;K/; X; Y 2 M;

satisfying certain properties. It is easy to check that the relation between  and the
corresponding twist � is as follows:

 X;Y D .�Y ˝ idX /� B ˇ�
Y;X W Hom.X ˝ Y;K/

'�! Hom.Y ˝X;K/

'�! Hom.Y ˝X;K/:
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8.2. The involution on the set of pivotal structures. Let .M; K; ˇ/ be a braided
Grothendieck–Verdier category. In the next proposition we define a canonical in-
volution on the set of all pivotal structures on .M; K/ or equivalently, on the set of
twists � on .M; ˇ/ such that �K D idK . The fixed points of this involution correspond
to ribbon structures (see Definition 9.1 and Corollary 9.3 below).

Proposition 8.3. Let .M; K; ˇ/ be a braided Grothendieck–Verdier category.

(i) For every twist � W IdM

'�! JM there is a unique twist � 0 W IdM

'�! JM

such that �� 0 W IdM

'�! J 2
M

is equal to the canonical double-twist CM from
Definition 7.14.

(ii) The map � 7! � 0 is an involution.

(iii) If �K D idK then � 0
K D idK .

(iv) If �K D idK then � 0
X D D�1.�DX/.

(v) Suppose that �K D idK . Let f W IdM

'�! D2 and f 0 W IdM

'�! D2 be the
pivotal structures corresponding to � and � 0 by Proposition 8.1. Then the isomor-

phism ff 0 W IdM

'�! D4 equals the canonical isomorphism 	M W IdM

'�! D4

from Definition 7.11.

Remark 8.4. If K ' 1 then the condition �K D idK holds automatically because
by Remark 7.6, �1 D id1.

Proof. Statements (i) and (ii) follow from Remarks 7.6(iii-iv). Statement (iii) follows
from formula (7.9).

Let us prove (iv). By (7.6) and the definition of � 0, this amounts to showing that

�X BD�1.�DX/ D .#C
X /

�1 B #�
X ; X 2 M: (8.1)

By Proposition 8.1, � D .#C/�1 Bf for some pivotal structure f W IdM

'�! D2.
Then for every X 2 M one has �X D .#C

X /
�1 B fX . By (6.5), D�1.fDX/ D f �1

X ,
so by formula (7.5), D�1.�DX / D f �1

X B #�
X . Formula (8.1) follows.

Finally, we prove (v). By definition, f D #C B � and

f 0 D #C B � 0 D #C B .#C/�1 B #� B ��1 D #� B ��1

(in the last equality we view ��1 as an isomorphism IdM

'�! J�1
M

). Since � belongs
to the Bernstein center of M (recall that JM D IdM as a functor), we have

ff 0 D .#C B �/ � .#� B ��1/ D #C#� D 	M:
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9. Ribbon Grothendieck–Verdier categories

Definition 9.1. A ribbon structure on a braided Grothendieck–Verdier category
.M; K; ˇ/ is a twist � on .M; ˇ/ such that

�X D D�1.�DX/; X 2 M: (9.1)

A ribbon Grothendieck–Verdier category is a braided Grothendieck–Verdier category
with a ribbon structure.

Lemma 9.2. A twist � satisfies (9.1) if and only if �K D idK and � 0 D � , where � 0
is defined in Proposition 8.3(i).

Proof. By Proposition 8.3(iv), we only have to show that the equality �K D idK
follows from (9.1). This is clear because K D D1 and by, Remark 7.6(ii), we have
�1 D id1.

Corollary 9.3. The correspondence between twists and pivotal structures (see Propo-
sition 8.1) induces a bijection between ribbon structures on .M; K; ˇ/ and those

pivotal structure f W IdM

'�! D2 that are invariant under the involution f 7! f 0
from Proposition 8.3(v).

Proof. This follows from Lemma 9.2 and Propositions 8.1–8.3.

Example 9.4. The r-category DG.G/ from Example 1.10 has a canonical ribbon
structure, see [7], §A.5. It corresponds (in the sense of Proposition 8.1) to the pivotal
structure from Example 6.10. If the group G is finite and the ground field k is
algebraically closed then DG.G/ is the derived category of the abelian category A

formed by modules over the quantum double of the group algebra ofG, and the above-
mentioned ribbon structure on DG.G/ comes from the standard ribbon structure on
A. (The definition of the quantum double and the standard ribbon structure on A can
be found, e.g., in [1], §3.2).

Remark 9.5. Eq. (9.1) holds if and only if for any X; Y 2 M and B W X ˝ Y ! K

one has

B B .idX ˝�Y / D B B .�X ˝ idY /: (9.2)

Note that, unlike (9.1), formula (9.2) makes sense in any braided category with a fixed
objectK (K does not have to be dualizing and M does not have to be Grothendieck–
Verdier). We do not know whether condition (9.2) is really interesting in this gener-
ality.
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10. Relation between r-categories and Grothendieck–Verdier categories

In this section we will use the notions of idempotent arrow, closed idempotent, and
Hecke subcategory (see Definitions 3.4 and 3.6). Lemma 10.3 and Proposition 10.4
below answer the following question: which Grothendieck–Verdier categories can
be realized as Hecke subcategories of r-categories? In order to formulate the answer,
we will need

Lemma 10.1. Let M be a monoidal category and � W 1 ! e an idempotent arrow
in M.

(a) The isomorphisms e D 1 ˝ e
�˝ide�����! e ˝ e and e D e ˝ 1

ide ˝������! e ˝ e are
equal.

(b) If u W e˝ e
'�! e is the inverse of either of the two isomorphisms in (a), then the

pair .e; u/ is a unit object of eMe; see [7], Definition 2.1(3).

(c) If$ W 1 ! e is any other idempotent arrow in M, there is a unique automorphism

f W e '�! e such that f B$ D � .

Proof. Part (a) is [7], Lemma 2.10, part (b) follows from [7], Lemma 2.18, and part (c)
is [7], Corollary 2.40.

10.1. Hecke subcategories of r-categories. Let M be an r-category, and let us
choose an idempotent arrow � W 1 ! e in M. We have a canonical identification

D2.1/
'�! 1, so we may view D2.�/ as a morphism D2.�/ W 1 ! D2.e/. Since

D2 has a natural monoidal structure, it follows that D2.�/ is an idempotent arrow.
Next suppose thatD2.e/ Š e. By Lemma 10.1(c) there is a unique isomorphism

' W D2.e/
'�! e

such that
' BD2.�/ D �:

Moreover, the Hecke subcategory

M0 defD eMe

is a Grothendieck–Verdier category with dualizing object

K 0 defD De;

and the duality functor for .M0; K 0/ can be canonically identified with the restriction
DjM0 , using the isomorphisms14

Hom.X ˝ Y;K 0/ '�! Hom.X ˝ Y; 1/
'�! Hom.X;DY /; X; Y 2 M0:

14See [7], Lemma A.50, for more details.
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(where the first arrow is induced by D� W K 0 ! D1 D 1). We write 10 D e for the
unit object15 of M0, and we keep the notation D for the duality functor of .M0; K 0/.

We definef W K 0 ! 10 to be the compositionK 0 D De
D��! D1 D 1

��! e D 10.

10.2. Properties of the triple .M0; K 0; f /. We begin with the following remark.

Remark 10.2. If .M; K/ is any Grothendieck–Verdier category and f W K ! 1 is a

morphism in M, then using the canonical identifications DK
'�! 1 and D1

'�! K,
we can view Df as a morphism K ! 1.

Lemma 10.3. Let 1
��! e be an idempotent arrow in an r-category M, and let

.M0; K 0; f / be the corresponding triple constructed as in §10.1. Then

(a) Df D f .cf. Remark 10.2/;

(b) for each X 2 M0, the map g 7! g B � is a bijection

Hom.10; X/ '�! Hom.1; X/I

(c) for each X 2 M0, the map h 7! D� B h is a bijection

Hom.X;K 0/ '�! Hom.X; 1/:

Proof. (a) With our identifications, we have D2.�/ D � . Therefore we obtain
Df D D.� BD�/ D D2.�/ BD� D � BD� D f .

(b) This follows from the fact [7], Proposition 2.22(a), that the functor Y 7! e˝Y
is left adjoint to the inclusion functor M0 D eMe ,! M.

(c) This follows from (b) using the fact thatD is an anti-autoequivalence of M.

10.3. The inverse construction

Proposition 10.4. Let .M0; K 0/ be a Grothendieck–Verdier category with unit ob-
ject 10 and duality functorD, and let f W K 0 ! 10 be a morphism such thatDf D f

.cf. Remark 10.2/. Then the triple .M0; K 0; f / arises from a closed idempotent in an
r-category by means of the construction described in §10.1.

The proof of Proposition 10.4 will be given in §§16.1–16.3. In fact, given .M0; K 0/
andf we will construct there a concrete r-category M and a closed idempotent e 2 M

such that .M0; K 0; f / arises from .M; e/. One can characterize this pair .M; e/ by a
universal property, see Remark 16.5.

Remark 10.5. The assumption Df D f in Proposition 10.4 is not satisfied auto-
matically, see §16.4.

15Strictly speaking, we use the structure of a unit object on e coming from Lemma 10.1(b).
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Part II
Proofs of the main results

11. Rigidity

In this section we prove Proposition 4.4 and Proposition 2.5.

11.1. Recollections on rigid duals. Let us consider a monoidal category M and a
morphism " W A˝ B ! 1.

Definition 11.1. We say16 that .A; "/ is a left rigid dual of B or that .B; "/ is a right
rigid dual of A if there exists c W 1 ! B ˝ A such that the compositions

A D A˝ 1
idA ˝c�����! A˝ B ˝ A

"˝idA�����! 1 ˝ A D A (11.1)

and

B D 1 ˝ B
c˝idB�����! B ˝ A˝ B

idB ˝"�����! B ˝ 1 D B (11.2)

are equal to idA and idB , respectively. An object of M is said to be rigid if it has a
left rigid dual and a right one. M is said to be rigid if each of its objects is.

It is well known that the left or right rigid dual of an object X 2 M is unique
up to unique isomorphism. We denote the left rigid dual of X by X� and the right
one by �X . It is also known that in the situation of Definition 11.1 the morphism
c W 1 ! B ˝A is unique. We will formulate a criterion for its existence, which goes
back to [9] and [15].

If M is a monoidal category and X; Y 2 M are objects such that the functor
Z 7! Hom.X ˝Z; Y / is representable, then, following [9], we denote the repre-
senting object by Hom.X; Y /.

Proposition 11.2. Let M be a monoidal category and " W A˝ B ! 1 a morphism
in M. The following statements are equivalent:

(i) .B; "/ is a right rigid dual of A .equivalently, .A; "/ is a left rigid dual of B/;

(ii) Hom.A; Y / exists for each Y 2 M and the morphism B ˝ Y ! Hom.A; Y /
that comes from "˝ idY W A˝ B ˝ Y ! 1 ˝ Y D Y is an isomorphism for
every Y 2 M;

16Some authors use the opposite convention for “left” and “right”. The advantage of our convention is
that if M is the category of endofunctors of some category then the left dual is the same as a left adjoint
functor.
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(ii0) for all Y;Z 2 M, the map

Hom.Z; B ˝ Y / �! Hom.A˝Z; Y / (11.3)

that takes an element f 2 Hom.Z; B ˝ Y / to the composition

A˝Z
idA ˝f�����! A˝ B ˝ Y

"˝idY�����! 1 ˝ Y D Y

is bijective;

(iii) Hom.A; 1/ and Hom.A; A/ exist and the morphisms B ! Hom.A; 1/ and
B ˝ A ! Hom.A; A/ defined in (ii) are isomorphisms;

(iii0) the map (11.3) is bijective for Y D 1, Z D B and for Y D A, Z D 1;

(iii00) the map (11.3) is injective for Y D 1, Z D B and surjective for Y D A,
Z D 1.

Remarks 11.3. (1) It is easy to see that (ii) H) (ii0) and (iii) H) (iii0). Tautologically,
(ii) H) (iii) and (ii0) H) (iii0) H) (iii00).

(2) The equivalence between (ii) and (i) is proved in [9], Proposition 2.3. The
equivalence between (ii0) and (i) is stated in [15], p. 70. So it remains to prove that
(iii00) H) (i).

Proof of the implication (iii00) H) (i) in Proposition 11.2. Applying hypothesis (iii00)
with Y D A andZ D 1, we see that there is a morphism c W 1 ! B˝A such that the
composition (11.1) equals idA. Now let ˛ denote the composition (11.2). It remains
to show that ˛ D idB . Using the fact that the composition (11.1) equals idA, it is easy
to check that the composition

A˝ B
idA ˝˛������! A˝ B

"��! 1

equals ". Thus the assumption of (iii00) with Y D 1 andZ D B forces ˛ D idB .

11.2. Proof of Proposition 4.4

Proof. We will apply the equivalences (i) () (ii) () (iii) from Proposition 11.2.
First, recall that by Remark 2.1(iii), the existence of Hom.A; Y / is automatic;

namely,
Hom.A; Y / D D�1.DY ˝ A/;

which can also be written as Hom.A; Y / D D�1AˇY by formula (4.1). In particular,
Hom.A; 1/ D D�1A.

So the condition that the morphism B ! Hom.A; 1/ is an isomorphism (see
Proposition 11.2) is equivalent to condition (a) of Proposition 4.4. If it holds,
the morphism B ˝ Y ! Hom.A; Y / from Proposition 11.2 can be considered as
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a morphism B ˝ Y ! Hom.DB; Y / D B ˇ Y , and one checks that it equals the
morphism B ˝ Y ! B ˇ Y defined in §4.1.

Now applying the equivalence (i) () (iii) from Proposition 11.2 we see that
.B; "/ is a right rigid dual ofA if and only if (a) and (b) hold. Applying the equivalence
(i) () (ii) we see that in this case the canonical morphism B ˝ Y ! B ˇ Y is an
isomorphism for every Y 2 M. Now replacing ˝W M � M ! M with the opposite
tensor product andB withAwe see that the canonical isomorphism Y ˝A ! Y ˇA

is an isomorphism for every Y 2 M.

11.3. Proof of Proposition 2.5

Lemma 11.4. Let .M; K/ be a Grothendieck–Verdier category. Then the canonical
morphisms 1 ! Hom.K;K/ and 1 ! Hom0.K;K/ are isomorphisms.

Here Hom and Hom0 are the internal Hom’s, see Remark 2.1(iii).

Proof. Use (2.5)–(2.8) and (2.9).

Now let us prove Proposition 2.5, which says that a dualizing object of a monoidal
category is invertible if and only if it is rigid.

Proof. Any invertible object is rigid. Now suppose that a dualizing object K of
a monoidal category M is rigid. Let �K (resp. K�) be its right (resp. left) rigid
dual. By Proposition 11.2(iii), �K ˝K ' Hom.K;K/, so Lemma 11.4 shows that
�K ˝K ' 1. Similarly, K ˝K� ' 1.

12. The monoidal structure on D2

12.1. Proof of Proposition 5.2. We first make an obvious remark, then formulate its
“categorification,” and finally explain how to apply it to define a monoidal structure
on D2 W M ! M, which, in fact, equals the one defined by (5.4).

12.1.1. Obvious remark. Let A be an associative ring and let us fix an .A; A/-
bimodule N . Suppose that for some n0 2 N the maps A ! N defined by a 7! n0a

and a 7! an0 are injections with the same image. Define the map ' W A ! A by the
equality an0 D n0'.a/. Then ' is a ring automorphism.

12.1.2. Categorification: a way to construct monoidal auto-equivalences. Let A

be a monoidal category and let N be an .A;A/-bimodule category (i.e. we are given
a monoidal functor from A � Aopp to the monoidal category of functors N ! N ,
where Aopp is the category A equipped with the opposite tensor product). Suppose
that for somen0 2 N the functors A ! N defined byX 7! n0˝X andX 7! X˝n0
are fully faithful and have the same essential image. Then there exists an equivalence



A duality formalism in the spirit of Grothendieck and Verdier 475

ˆ W A
��! A such that one has isomorphisms fX W X˝n0 '�! n0˝ˆ.X/ functorial

in X 2 A; such a pair .ˆ; f / is unique up to unique isomorphism. We claim that ˆ
has a canonical structure of monoidal equivalence. Namely, define

uX1;X2
W ˆ.X1 ˝X2/

'�! ˆ.X1/˝ˆ.X2/

so that the diagram

X1 ˝X2 ˝ n0

idX1
˝fX2

��

fX1˝X2 �� n0 ˝ˆ.X1 ˝X2/

idn0
˝uX1;X2

��
X1 ˝ n0 ˝ ˆ.X2/

fX1
˝idˆ.X2/

�� n0 ˝ˆ.X1/˝ˆ.X2/

(12.1)

commutes. Similarly, we have a natural isomorphismˆ.1/
'�! 1. The isomorphisms

uX1;X2
are compatible with the associativity constraint and the unit constraints and

thus define a structure of monoidal functor on ˆ.

12.1.3. Application. Take A D MB, where MB is the category dual to M. Let
N be the category of functors F W MB ! fSetsg. It has a canonical structure of
.MB;MB/-bimodule category such that

.m1 ˝ F ˝m2/.m/ D F.m2 ˝m˝m1/

(the associativity constraints of the bimodule category are the obvious ones). Let

Y W M ,�! N

be the Yoneda embedding and let

n0
defD Y.K/ 2 N :

Using (2.1) and (2.2) one checks that m˝ n0 D Y.Dm/ and n0 ˝m D Y.D�1m/.
So the above construction of a monoidal equivalence ˆ W MB ��! MB is applicable

and the functor M
��! M corresponding to ˆ equals D2. Thus we get a structure

of a monoidal functor on D2.

12.1.4. Conclusion. One checks that the isomorphism

uX1;X2
W D2.X1 ˝X2/

'�! D2.X1/˝D2.X2/

defined above equals the isomorphism (5.4) and that the isomorphism 1
'�! D2.1/

defined above equals the isomorphism (2.10). Proposition 5.2 follows.
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12.2. A remark (to be used in §15). Suppose that in the situation of §12.1.2 we
have two pairs .ˆ; f / and . Q̂ ; Qf /, so the functors ˆ and Q̂ are both monoidal. Let

˛ W Q̂ '�! ˆ be the unique isomorphism such that the diagram

n0 ˝ Q̂ .X/ idn0
˝˛X �� n0 ˝ˆ.X/

X ˝ n0

Qf
'

�������������
'
f

�������������

commutes. Then ˛ is monoidal. To see this, compare (12.1) with a similar commu-
tative square for . Q̂ ; Qf / by drawing a cube.

13. Proof of Lemma 7.8

13.1. An abstract lemma. In this subsection M is an abstract category rather than
a monoidal one. The following lemma is used in the proof of Lemma 7.8 and
Proposition 6.7.

Lemma 13.1. Let M be a category equipped with an anti-equivalenceD W M ! M.
Let S be the set of functorial families of bijections

	X;Y W Hom.X;DY /
'�! Hom.Y;DX/; X; Y 2 M:

(a) For each 	 2 S there is a unique isomorphism '� W D�1 '�! D such that for all

X; Y 2 M the corresponding map Hom.Y;D�1X/ '�! Hom.Y;DX/ is equal
to the composition

Hom.Y;D�1X/ D�! Hom.X;DY /
�

X;Y����! Hom.Y;DX/: (13.1)

The map S ! Isom.D�1; D/ given by 	 7! '� is a bijection.

(b) Define an involution

_W S '�! S

by
.	_/X;Y D 	�1

Y;X :

Define a bijection

_W Isom.D�1; D/ '�! Isom.D�1; D/

by
.'_/X

defD D.'�1
D�1X

/:
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Then
'�

_ D .'� /_; 	 2 S: (13.2)

In particular, _ is also an involution on Isom.D�1; D/ and can alternatively be
defined by the formula

.'_/X D D�1.'�1
DX/; X 2 M:

Proof. Yoneda’s lemma implies statement (a) and gives explicit formulas for '� and
.'� /�1. Namely, to obtain a formula for '�X , where X 2 M, apply the composi-
tion (13.1) for Y D D�1X to idD�1X 2 Hom.D�1X;D�1X/; to obtain a formula
for .'�X /

�1, consider the composition (13.1) for Y D DX and apply its inverse to
idDX 2 Hom.DX;DX/. Thus

'
�
X D 	

X;D�1X
.idX/ (13.3)

and
.'
�
X /

�1 D D�1.	�1
X;DX

.idDX//: (13.4)

Now let us deduce (13.2) from (13.3)–(13.4). By (13.3), '�
_

X D 	�1
D�1X;X

.idD�1X /.

Comparing this with (13.4), we see that '�
_

X D D..'
�

D�1X
/�1/, which is equivalent

to (13.2). The remaining assertions of (b) follow at once.

Corollary 13.2. Let 	 and '� be as in Lemma 13.1. For brevity, set

'
defD '� :

The following properties are equivalent:

(i) 	
X;Y

B 	
Y;X

D id for all X; Y 2 M;

(ii) 'X D D.'D�1X/
�1 for all X 2 M.

Proof. Property (i) means that 	_ D 	 . Property (ii) means that '_ D '. So, by
Lemma 13.1(b), (i) () (ii).

13.2. Proof of Lemma 7.8. Let .M; K; ˇ/ be a braided Grothendieck–Verdier cat-

egory and D W M
��! M the duality functor. Let ˇ˙ be as in Lemma 7.8. Apply

Lemma 13.1 to the functorial families of isomorphisms

	Ẋ;Y W Hom.X;DY /
'�! Hom.Y;DX/; X; Y 2 M;

induced by the pullback maps

.ˇẎ;X/
� W Hom.X ˝ Y;K/

'�! Hom.Y ˝X;K/:

The isomorphism '�
˙

from Lemma 13.1(a) equals the isomorphism '˙ from Lem-
ma 7.8. With the notation of Lemma 13.1(b), .	˙/_ D 	�. Thus the second assertion
of Lemma 7.8 is equivalent to (13.2).
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To prove the first assertion, note that the composition

Hom.D2Y;DX/
D�1

����! Hom.X;DY /
�˙

X;Y����! Hom.Y;DX/

equals .#Ẏ /
� W Hom.D2Y;DX/

'�! Hom.Y;DX/ by Definition 7.7. Hence the
map

Hom.Y;D�1X/ �! Hom.Y;DX/

induced by 'Ẋ W D�1X ! DX is equal to the composition

Hom.Y;D�1X/ D2

���! Hom.D2Y;DX/
.#˙

Y
/������! Hom.Y;DX/I

more explicitly, 'Ẋ B f D .D2f / B #Ẏ for all f 2 Hom.Y;D�1X/. Taking
X D DY and f D idY yields #Ẏ D 'ḊY , as claimed.

14. Proof of Proposition 6.7

Throughout this section we fix a Grothendieck–Verdier category .M; K/ together
with a functorial family of isomorphisms

 X;Y W Hom.X ˝ Y;K/
'�! Hom.Y ˝X;K/; X; Y 2 M;

and let f W IdM

'�! D2 be the corresponding isomorphism (see Lemma 6.6).

14.1. Formulating the lemmata. The following three lemmata will be proved
in §§14.3–14.5.

Lemma 14.1. With the notation above, f is monoidal if and only if

 X˝Y;Z B  Y˝Z;X D  Y;Z˝X ; X; Y; Z 2 M: (14.1)

Lemma 14.2. Identity (6.3) holds if and only if fDX D D.fX/
�1 for all X 2 M.

Lemma 14.3. The following conditions are equivalent:

(a) fK W K '�! D2K equals the isomorphism (2.11);

(b) one has
 1;X D id; X 2 MI (14.2)

(c)  1;K W Hom.K;K/ ! Hom.K;K/ maps idK to itself.
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14.2. Deducing Proposition 6.7 from the lemmata. Assume that  is a pivotal
structure. Identities (6.2)–(6.3) imply (14.1), so f is monoidal by Lemma 14.1.
Next, Lemma 14.2 shows that fDX D D.fX/

�1 for all X 2 M. Taking X D 1, we
obtain fK D D.f1/

�1. Since f is monoidal, f1 is equal to the isomorphism (2.10),
and therefore fK is equal to the isomorphism (2.11). Thus f satisfies conditions
(i)–(ii) of Proposition 6.7 and also satisfies (6.5).

Now suppose that f satisfies conditions (i)–(ii) of Proposition 6.7. Then (14.1)
and (14.2) hold by lemmata 14.1 and 14.3. Setting Y D 1 in (14.1) and using (14.2)
we see that

 X;Z B  Z;X D id : (14.3)

Clearly (14.1) and (14.3) imply that  is a pivotal structure, see Definition 6.1.

14.3. Proof of Lemma 14.1. Fix X; Y;Z 2 M. According to the definition of the
correspondence between f and  (see Lemma 6.6), the isomorphism

 Y;Z˝X W Hom.Y ˝ Z ˝X;K/
'�! Hom.Z ˝X ˝ Y;K/

is equal to the composition of

Hom.Y ˝Z ˝X;K/
(2.3)���! Hom.D2.Z ˝X/˝ Y;K/

and

.fZ˝X ˝ idY /
� W Hom.D2.Z ˝X/˝ Y;K/

'�! Hom.Z ˝X ˝ Y;K/:

Similarly, the isomorphism

 X˝Y;Z B  Y˝Z;X W Hom.Y ˝Z ˝X;K/
'�! Hom.Z ˝ X ˝ Y;K/

is equal to the composition of the isomorphisms

Hom.Y ˝Z ˝X;K/
(2.3)���! Hom.D2X ˝ Y ˝Z;K/

(2.3)���! Hom.D2Z ˝D2X ˝ Y;K/

followed by

.fZ ˝ fX ˝ idY /� W Hom.D2Z ˝D2X ˝ Y;K/
'�! Hom.Z ˝X ˝ Y;K/:

So property (14.1) is equivalent to the commutativity of the outer pentagon in the
diagram
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Hom.Y ˝Z ˝ X;K/

(2.3)

��

(2.3) �� Hom.D2X ˝ Y ˝Z;K/

(2.3)

��
Hom.D2.Z ˝X/˝ Y;K/

.fZ˝X ˝idY /
�

����
���

���
���

���
���

�
Hom.D2Z ˝D2X ˝ Y;K/

.uZ;X ˝idY /
�

		

.fZ˝fX ˝idY /
�



���
���

���
���

���
���

Hom.Z ˝X ˝ Y;K/

In this diagram uZ;X W D2.Z ˝X/
'�! D2Z ˝D2X is the isomorphism defining

the monoidal structure on D2. By the definition of u (which was given immediately
before Proposition 5.2), the top square of the diagram commutes. So the commuta-
tivity of the outer pentagon is equivalent to that of the bottom triangle. The latter is
equivalent to f being monoidal (see Lemma 5.1).

14.4. Proof of Lemma 14.2. Let 	 denote the functorial family of bijections

	
X;Y

W Hom.X;DY /
'�! Hom.X ˝ Y;K/

 
X;Y����! Hom.Y ˝X;K/

'�! Hom.Y;DX/

where the first and third arrows come from (2.1). Let ' be as in Corollary 13.2.
Comparing Lemma 13.1(a) with Lemma 6.6 we see that 'X D fD�1X . So by
Corollary 13.2, the condition

 X;Y B  Y;X D id; X; Y 2 M;

is equivalent to the condition

fD�1X D D.fD�2X /
�1; X 2 M:

The latter condition holds if and only if fDX D D.fX/
�1 for all X 2 M.

14.5. Proof of Lemma 14.3. The isomorphism

 1;X W Hom.X;K/
'�! Hom.X;K/

is functorial inX 2 M, so (b) () (c) byYoneda’s lemma. To prove that (a) () (c),

it suffices to show that  1;K D 	 B fK , where 	 W D2K
'�! K is inverse to (2.11).

Diagram (6.4) for X D 1 and Y D K tells us that  1;K D 	 0 B fK , where 	 0 2
Hom.D2K;K/ is the image of idK 2 Hom.1 ˝K;K/ under the isomorphism (2.3).
But 	 0 D 	 by Remark 2.1(v).
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15. Proof of Proposition 7.10

The idea of the proof is to use the relation between monoidal auto-equivalences and
bimodule categories explained in §12.1.

Just as in §12.1.3, we let N denote the category of functors MB ! fSetsg, we
write

Y W M ,�! N

for the Yoneda embedding and put

n0
defD Y.K/ 2 N :

We equip N with the .MB;MB/-bimodule structure from §12.1.3. For this structure,
.X˝n0/.Z/ D Hom.Z˝X;K/ and .n0˝X/.Z/ D Hom.X˝Z;K/ for allX;Z 2
M. In §12.1.3 we defined the monoidal structure on D2 using the isomorphism

X ˝ n0
'�! n0 ˝D2X; X 2 M; (15.1)

which comes from (2.3). On the other hand, the isomorphisms

.ˇẊ;Z/
� W Hom.Z ˝X;K/

'�! Hom.X ˝ Z;K/; X;Z 2 M;

define isomorphisms

fẊ W X ˝ n0
'�! n0 ˝X; X 2 M: (15.2)

By §12.1.2, each of the isomorphisms (15.2) defines a monoidal structure s˙ on the
identity functor IdM. By §12.2, we have a canonical monoidal isomorphism

˛˙ W .IdM ; s˙/ '�! D2:

Thus to prove Proposition 7.10 it suffices to prove the following lemma.

Lemma 15.1. (i) The isomorphism ˛˙ W IdM

'�! D2 defined above equals the

isomorphism #˙ W IdM

'�! D2 from Definition 7.7.

(ii) The monoidal structure on IdM induced by the isomorphisms f C
X .resp. f �

X /

is equal to the monoidal structure defined by (7.1) .resp. (7.2)/.
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Proof. To prove (i), we have to show that for each X 2 M, the diagram

X ˝ n0
f˙

X ��

(15.1)
���

��
��

��
��

��
n0 ˝ X

idn0
˝#˙

X
��		
		
		
		
		
	

n0 ˝D2.X/

commutes; here the bottom left arrow is the isomorphism (15.1). This is a diagram
of functors; evaluating them on a test object Y 2 M, we get the diagram

Hom.Y ˝ X;K/
.ˇ˙

X;Y /
�

��

(2.3)
























Hom.X ˝ Y;K/

.#˙
X

˝idY /
�

�����
���

���
���

��

Hom.D2X ˝ Y;K/

which commutes by Definition 7.7.

Statement (ii) of the lemma is equivalent to the following easy fact about braided
monoidal categories: if X; Y;Z 2 M, then the square

X ˝ Y ˝Z
ˇX;Y ˝Z ��

.ˇY;XˇX;Y /˝idZ

��

Y ˝Z ˝X

ˇY;Z˝X

��
X ˝ Y ˝Z

ˇX˝Y;Z

�� Z ˝X ˝ Y

(15.3)

commutes. To verify this fact, note that by the hexagon axiom, the diagram

X ˝ Y ˝Z
ˇX;Y ˝Z ��

ˇX;Y ˝idZ 

��
���

���
���

Y ˝Z ˝X

ˇY;Z˝idX 

��
���

���
���

ˇY;Z˝X �� Z ˝ X ˝ Y

Y ˝X ˝Z

idY ˝ˇX;Z

�������������

ˇY ˝X;Z

�� Z ˝ Y ˝X

idZ ˝ˇY;X

�������������

commutes. Moreover, the functoriality of ˇ implies that

.idZ ˝ˇY;X/ B ˇY˝X;Z D ˇX˝Y;Z B .ˇY;X ˝ idZ/;

which implies that (15.3) commutes and proves statement (ii).
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16. From Grothendieck–Verdier categories to r-categories

In §§16.1–16.3 we prove Proposition 10.4. In §16.4 we give an example showing
that in Proposition 10.4 the condition Df D f does not hold automatically.

To prove Proposition 10.4, we provide a right inverse for the construction described
in §10.1. Namely, given a Grothendieck–Verdier category .M0; K 0/ and a morphism
f W K 0 ! 10 such that Df D f , we construct an r-category M and a closed
idempotent e 2 M (this is done in two steps: in §16.1 we construct M as an abstract
category, and in §16.2 we define the monoidal structure on M). Then we show in
lemmata 16.4–16.6 that the pair .M; e/has the properties required in Proposition 10.4
(in particular, we prove that the monoidal category M is an r-category).

16.1. M as an abstract category. In this subsection we work with abstract cate-
gories rather than monoidal ones. For convenience, we preserve the same notation
as above: namely, we consider a category M0 together with objects K 0; 10 2 M0 and
a morphism f W K 0 ! 10. However, we make no assumptions about K 0; 10; f .

Definition 16.1. Let .M; �; 1; ı; �/ be the universal17 datum consisting of a category
M, a functor � W M0 ! M and a commutative triangle

1
�

���
��

��
��

�

�.K 0/

ı

��









�.f /
�� �.10/

in M (note that M is determined uniquely up to isomorphism of categories).

Lemma 16.2. Let .M; �; 1; ı; �/ be as in the definition above. Then

(i) � is fully faithful;

(ii) for each X 2 M0, the maps

HomM.�.X/; �.K
0// �! HomM.�.X/; 1/; g 7�! ı B g;

and

HomM.�.1
0/; �.X// �! HomM.1; �.X//; g 7�! g B �;

are bijective.

(iii) the map

Hom.�.K 0/; �.10// �! Hom.1; 1/; g 7�! ı B g B �;
is injective with image Hom.1; 1/ n fid1g.

17I.e. initial as an object of the (1-)category of all such data, with the obvious notion of morphism.
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Proof. We first construct a datum .M; �; 1; ı; �/ for which properties (i)–(iii) are
obvious and then check that this datum is universal.

The class of objects Ob.M/ is defined to be the disjoint union of Ob.M0/ and a
one-element set f1g. Define maps

ˆ;‰ W Ob.M/ �! Ob.M0/

as follows:

ˆ.1/ D 10;

‰.1/ D K 0;

ˆ.X/ D ‰.X/ D X; X 2 Ob.M0/:

For all X 2 Ob.M/ let

fX W ‰.X/ �! ˆ.X/

be the morphism in M0 given by

f1 D f;

fX D idX ; X 2 Ob.M0/:

For X; Y 2 Ob.M/, set

hom.X; Y / D HomM0.ˆ.X/; ‰.Y //:

Given X; Y;Z 2 Ob.M/ and u 2 hom.X; Y / D HomM0.ˆ.X/; ‰.Y // and v 2
hom.Y; Z/ D HomM0.ˆ.Y /; ‰.Z//, set

v QBu defD v B fY B v 2 hom.X;Z/ D HomM0.ˆ.X/; ‰.Z//:

It is evident that QB defines an associative composition operation on the sets hom.X; Y /.
Now add to M one more morphism 1 ! 1, denoted by id1, and extend the

operation QB by setting

id1 QBu D u and v QB id1 D v

whenever these compositions make sense. Then M becomes a category. By con-
struction, M0 is a full subcategory of M. Let � W M0 ,! M be the inclusion functor,
let ı 2 hom.K 0; 1/ correspond to idK0 2 HomM0.K 0; K 0/, and let � 2 hom.1; 10/
correspond to id10 2 HomM0.10; 10/.

The datum .M; �; 1; ı; �/ clearly has properties (i)–(iii). It remains to check that
this datum is universal, i.e. given another datum . xM; N�; N1; Nı; N�/ there is a unique
functor F W M ! xM such that

F jM0 D N�; F.1/ D N1;
F.ı/ D Nı; F.�/ D N�:

(16.1)
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If such F exists then one should have

F.ı QBg/ D Nı B N�.g/; g 2 Hom.X;K 0/; X 2 M0; (16.2)

F.gQB�/ D N�.g/ B N�; g 2 Hom.1; X/; X 2 M0; (16.3)

F.ı QBgQB�/ D Nı B N�.g/ B N�; g 2 Hom.K 0; 1/: (16.4)

Since M has properties (i)–(iii) the action of F on objects and morphisms is
uniquely determined by (16.1) and (16.2)–(16.4). It is easy to check that the action
of F on morphisms defined by (16.1)–(16.4) agrees with composition.

16.2. M as a monoidal category. In this subsection we assume that M0 is a
monoidal category with unit object 10, and that .K 0; f / is a pair consisting of an
object K 0 2 M0 and a morphism f W K 0 ! 10. Let .M; �; 1; ı; �/ be as in Defini-
tion 16.1. By Lemma 16.2, � is fully faithful, so we will view M0 as a full subcategory
of M and omit the symbol � from now on.

Lemma 16.3. Suppose that the following diagram commutes:

10 ˝K 0
'

���
��

��
��

��

K 0 ˝K 0

f˝idK0

������������

idK0 ˝f 

















K 0

K 0 ˝ 10:
'

�����������

(16.5)

Then there is a unique way to extend the monoidal structure ˝W M0 � M0 ! M0 to
a bifunctor ˝W M � M ! M so that the following properties are satisfied:

(1) the functors X 7�! 1 ˝ X and X 7�! X ˝ 1 are equal to the identity functor
on M;

(2) for each X 2 M0, the morphisms

X D 1 ˝X
�˝idX�����! 10 ˝X and X D X ˝ 1

idX ˝������! X ˝ 10

are equal to the isomorphismsX
'�! 10 ˝X andX

'�! X˝ 10 that come from
the structure of unit object on 10 2 M0.

Furthermore, there is a unique way to extend the associativity constraint for ˝ on M0
to an associativity constraint for the bifunctor ˝ on M so that .M;˝; 1/ becomes a
monoidal category with trivial unit constraints.
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Proof. The universal property of M implies that there is a unique way to defineX˝Y
as a functor of Y 2 M for a fixed X 2 M, and as a functor of X 2 M for a fixed
Y 2 M. It remains to check the commutativity of the diagram

X1 ˝ Y1
idX1

˝v
��

u˝idY1

��

X1 ˝ Y2

u˝idY2

��
X2 ˝ Y1 idX2

˝v
�� X2 ˝ Y2

for all objects X1; X2; Y1; Y2 2 M and morphisms u W X1 ! X2 and v W Y1 ! Y2
in M. In fact, it suffices to do this when each of u and v is one of the “standard
generators” of M (i.e. is either a morphism in M0, or ı W K 0 ! 1, or � W 1 ! 10). The
only nontrivial case is where u D v D ı (so that X1 D Y1 D K 0 and X2 D Y2 D 1).
Here we are reduced precisely to the commutativity of (16.5).

The next result is obvious from the construction.

Lemma 16.4. If the assumptions of Lemma 16.3 are satisfied and M is equipped
with the monoidal category structure described in the lemma, then � is an idempotent
arrow in M and M0 is identified with the Hecke subcategory 10M10 � M.

Remark 16.5. The monoidal category M together with morphismsK 0 ı�! 1
��! 10,

constructed above, can also be characterized by a universal property. Namely, suppose
N is a monoidal category, $ W 1N ! e is an idempotent arrow, F W M0 ! eN e is a
monoidal functor and 
 W F.K 0/ ! 1N is a morphism such that the triangle

1N

$

����
���

���
���

���
���

�

F.K 0/

�
����������

F .f /
�� F.10/ ' �� e

commutes. Then F admits a unique extension to a monoidal functor M ! N such
that ı 7! 
 and � 7! $ .

16.3. Proof of Proposition 10.4. In this subsection we assume that all the hypothe-
ses of Proposition 10.4 are satisfied. Let .M; 1; ı; �/ be as in §16.2. The assumption
thatDf D f is equivalent to the commutativity of the diagram (16.5), and we equip
M with the monoidal structure described in Lemma 16.3. In view of Lemma 16.4, the
proof of Proposition 10.4 will be complete once we establish the following lemma.
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Lemma 16.6. LetD denote the unique extension of the duality functorD W M0 ��! M0
to a contravariant functor D W M ! M determined by D.1/ D 1, D.ı/ D � ,
D.�/ D ı. Then D W M ! M is an anti-autoequivalence and there are functorial

isomorphisms Hom.X ˝ Y; 1/
'�! Hom.X;DY / for all X; Y 2 M; in particular,

M is an r-category.

Proof. The unique extension ofD�1 W M0 ��! M0 to a contravariant functor M ! M

determined by 1 7! 1, ı 7! � , � 7! ı is quasi-inverse to D W M ! M; thus D is an
anti-autoequivalence of M.

Next, consider the contravariant functors F1.X; Y / D Hom.X ˝ Y; 1/ and
F2.X; Y / D Hom.X;DY / from M � M to the category of sets. By assumption, we

have an isomorphism F1jM0�M0
'�! F2jM0�M0 , since by construction, ı W K 0 ! 1

identifies F1jM0�M0 with the functor .X; Y / 7! Hom.X˝Y;K 0/. It is easy to check

that this isomorphism extends to a unique isomorphism F1
'�! F2 such that when

Y D 1, the induced map

Hom.X; 1/ D Hom.X ˝ 1; 1/
'�! Hom.X;D1/ D Hom.X; 1/

equals the identity, and when X D 1, the induced map

Hom.Y; 1/ D Hom.1 ˝ Y; 1/
'�! Hom.1; DY /

equals D W Hom.Y; 1/ ! Hom.D1; DY / D Hom.1; DY /. This proves the lemma.

16.4. An example. We will show that in Proposition 10.4 the condition Df D f

does not hold automatically.
Let k be a field, X D f.x; y/ 2 A2

k
j xy D 0g, and let M0 D D.X/ D

Db
c .X;

xQ`/ be the bounded derived category of constructible `-adic complexes onX
equipped with the usual (derived) tensor product ˝. Put K 0 D KX Œ�2�, where KX
is the dualizing complex of X . Then .M0; K 0/ is a Grothendieck–Verdier category,
and we claim that there exists a morphism f W K 0 ! 10 such that Df ¤ f .

Proof. Since M0 is a symmetric monoidal category, equipped with the standard sym-

metry isomorphisms M ˝N
'�! N ˝M , it follows that a morphism f W K 0 ! 10

satisfies Df D f if and only if the corresponding morphism K 0 ˝ K 0 ! K 0
is symmetric. Thus we need to check that Hom

� V2
K 0; K 0� ¤ 0. We have

Hom
� V2

K 0; K 0� D Hom
�� V2

KX
�
Œ�2�; KX

�
. Since

V2
KX is concentrated at

the singular point 0 2 X , one has

Hom
�� 2̂

KX

�
Œ�2�; KX

�
D Hom

� 2̂

.KX/0Œ�2�; xQ`

�
;

where .KX/0 is the stalk of KX at 0. But H�1..KX/0/ D xQ` and H i ..KX/0/ D 0

for i � 0, so Hom
� V2

.KX/0Œ�2�; xQ`

� D Hom.Sym2 xQ`; xQ`/ D xQ`.
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